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Theory predicts that the ability of selection and recombination to purge mutation load is enhanced if selection against deleterious

genetic variants operates more strongly in males than females. However, direct empirical support for this tenet is limited, in part

because traditional quantitative genetic approaches allow dominance and intermediate-frequency polymorphisms to obscure the

effects of themany rare and partially recessive deleterious alleles that make up themain part of a population’s mutation load. Here,

we exposed the partially recessive genetic load of a population of Callosobruchusmaculatus seed beetles via successive generations

of inbreeding, and quantified its effects by measuring heterosis—the increase in fitness experienced when masking the effects of

deleterious alleles by heterozygosity—in a fully factorial sex-specific diallel cross among 16 inbred strains. Competitive lifetime

reproductive success (i.e., fitness) was measured in male and female outcrossed F1s as well as inbred parental “selfs,” and we

estimated the 4 × 4 male-female inbred-outbred genetic covariance matrix for fitness using Bayesian Markov chain Monte Carlo

simulations of a custom-made general linear mixed effects model. We found that heterosis estimated independently in males

and females was highly genetically correlated among strains, and that heterosis was strongly negatively genetically correlated

to outbred male, but not female, fitness. This suggests that genetic variation for fitness in males, but not in females, reflects the

amount of (partially) recessive deleterious alleles segregating at mutation-selection balance in this population. The population’s

mutation load therefore has greater potential to be purged via selection in males. These findings contribute to our understanding

of the prevalence of sexual reproduction in nature and the maintenance of genetic variation in fitness-related traits.
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Impact Statement
Why do the large majority of eukaryotic species reproduce

sexually if it means that females must spend half of their re-

productive effort producing males, whereas males contribute

few or no resources to offspring production themselves? In

principle, a lineage of a mutant asexual female that simply

clones herself into daughters would grow at twice the rate

of her sexual competitors (all else equal). What prevents this

from being the predominant mode of reproduction throughout

eukaryotes? One hypothesis regards the role of males in facil-

itating the purging of deleterious mutations from the popula-

tion’s genome because very strong selection in males, unlike

selection in females, can occur in many species without re-

ductions in population offspring numbers. Due to the inherent

difficulties of isolating this source of standing genetic varia-

tion for fitness, empirical evidence for this theory is mixed and

limited to indirect evidence from manipulative experiments

and experimental evolution studies. Here, we demonstrate that

recessive deleterious alleles in a population of the seed bee-

tle, Callosobruchus maculatus, are selected against in males

but not females. Using a fully factorial diallel cross among

328
© 2021 The Authors. Evolution Letters published by Wiley Periodicals LLC on behalf of Society for the Study of Evolution
(SSE) and European Society for Evolutionary Biology (ESEB).
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
Evolution Letters 5-4: 328–343

D
ow

nloaded from
 https://academ

ic.oup.com
/evlett/article/5/4/328/6697686 by U

niversity of East Anglia user on 03 O
ctober 2023

https://orcid.org/0000-0001-8925-5066
https://orcid.org/0000-0002-5859-6260
https://orcid.org/0000-0002-3501-3376
https://orcid.org/0000-0003-0196-6109
http://creativecommons.org/licenses/by/4.0/


PURGING MUTATION LOAD VIA MALES

16 inbred strains, we measured the degree to which fitness

in the outbred offspring of those crosses improved relative to

their inbred parents. This measure is known as heterosis and

offers an estimate of the relative amount of partially reces-

sive deleterious alleles carried by a genetic strain. We then

analyzed the relationship between the strains’ heterosis values

and their additive genetic breeding values for fitness measured

in males and females, revealing the extent to which segregat-

ing (partially recessive) deleterious alleles are selected against

in males and females. We found that a strain’s heterosis value

was strongly genetically correlated with its additive genetic

breeding value for male fitness, but not female fitness. This

suggests that mutations with deleterious effects on population

growth rate due to their effects on females can be selected

against (i.e., purged) more efficiently via their male siblings.

This process would offer a benefit to sexual reproduction that

may partly compensate for its costs, and therefore yields in-

sight to the prevalence of sex in nature.

Sexual reproduction is paradoxically prevalent when con-

sidering the cost of producing male offspring, which contribute

little to offspring production themselves (Maynard Smith 1971,

1978; Lehtonen et al. 2012; Gibson et al. 2017). Counterintu-

itively, this same male feature may offer long-term benefits to

lineages producing sons, as deleterious alleles can be purged via

strong selection in males without appreciable reductions to a lin-

eage’s offspring production (Manning 1984; Kodric-Brown and

Brown 1987; Agrawal 2001; Siller 2001; Whitlock 2002; Lorch

et al. 2003; Whitlock and Agrawal 2009). For this process to

advantage sexual lineages over mutant asexual competitors, and

thereby account for the maintenance and prevalence of sex in

eukaryotes, purifying selection against mutations with deleteri-

ous effects on female fecundity, and hence population offspring

production, must be stronger in males than in females (Agrawal

2001; Siller 2001; Whitlock and Agrawal 2009). Selection is

likely stronger in males than females in many systems (Wade and

Arnold 1980; Whitlock and Agrawal 2009) owing to sexual se-

lection operating more strongly in males (Wade 1979; Andersson

1994; Janicke et al. 2016), which is ultimately due to sex differ-

ences in gamete investment (i.e., anisogamy; Parker et al. 1972;

Schärer et al. 2012).

Empirical support for male-enhanced purging of the genetic

load on females comes mostly from studies of induced, accu-

mulated, or known mutations (e.g., Radwan 2004; Sharp and

Agrawal 2008, 2013; Hollis et al. 2009; Grieshop et al. 2016) or

experimental evolution (e.g., Firman and Simmons 2010, 2012;

Lumley et al. 2015; Dugand et al. 2018, 2019b; Yun et al. 2018;

Buzatto and Clark 2020; Kyogoku and Sota 2021; reviewed in

Cally et al. 2019), but detecting this process in a snapshot of

the standing genetic variation has proven difficult (Chenoweth

et al. 2015). This difficulty may owe to interference between

signals stemming from the “mutation load” and the “segrega-

tion load” (Crow 1958; Charlesworth and Charlesworth 2010;

Whitlock and Davis 2011). The former is attributed to rare, of-

ten partially recessive, deleterious alleles in mutation-selection

balance (Haldane 1927; Lande 1975; Lynch et al. 1999; Zhang

et al. 2004) and the latter is attributed to (net) heterozygote ad-

vantage, including genetic trade-offs where heterozygotes are the

most fit on average due to alleles having conditionally deleteri-

ous/beneficial effects on fitness (Rose 1982; Connallon and Clark

2012). The fact that mutation-selection balance alone tends to be

insufficient to account for all of the observed genetic variance in

fitness and life history traits (Houle et al. 1994; Charlesworth and

Hughes 2000; Barton and Keightley 2002; Mitchell-Olds et al.

2007; Charlesworth 2015; Sharp and Agrawal 2018) suggests

that the segregation load comprises a considerable fraction of a

population’s fitness variance. Thus, although sex-specific esti-

mates of variance in fitness would indicate the relative strength

of selection in males versus females (Crow 1958; Charlesworth

and Hughes 2000; Cox and Calsbeek 2009; Janicke et al. 2016;

Singh and Punzalan 2018), simply comparing fitness variance

between the sexes would confound the effects of rare uncon-

ditionally deleterious alleles with those that impose conditional

fitness effects. This is particularly problematic for comparing

the strength of purifying selection between the sexes in light of

segregating sexually antagonistic alleles, whose fitness effects

are conditional upon sex (Chippindale et al. 2001; Bondurian-

sky and Chenoweth 2009; van Doorn 2009; Connallon et al.

2010; Connallon and Clark 2012). This is because strongly se-

lected male-benefit/female-detriment alleles that impose detri-

ments to female offspring production will be overrepresented

in the standing genetic variation relative to alleles with detri-

mental effects in both sexes that are maintained at mutation-

selection balance (Pischedda and Chippindale 2006; Long et al.

2012; Berger et al. 2016a). Indeed, this phenomenon is predicted

to obfuscate experimental detection of the long-term benefits of

male-enhanced purging of mutation load (Whitlock and Agrawal

2009, p. 576).

To address this issue, we experimentally uncovered sex-

specific fitness effects of the rare, partially recessive delete-

rious alleles that comprise the mutation load in a population

of the seed beetle, Callosobruchus maculatus, by increasing

genome-wide homozygosity in 16 genetic strains and then an-

alyzing heterosis for fitness (competitive lifetime reproductive

success). Here, heterosis of a genotype is the increase in fit-

ness in outbred progeny of crosses involving that genotype rel-

ative to its inbred/homozygous state (Charlesworth and Willis

2009). Although fitness variance (Charlesworth and Hughes

2000; Kelly and Willis 2001; Barton and Keightley 2002; Kelly
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2003; Mitchell-Olds et al. 2007; Charlesworth 2015; Sharp and

Agrawal 2018) and inbreeding depression (Charlesworth and

Charlesworth 1987, 1999; Charlesworth et al. 2007; Dugand et al.

2019a) can both be attributable to the mutation load and the

segregation load, heterosis in crosses among inbred strains of a

given population should be disproportionately attributable to the

masking of rare, partially recessive deleterious alleles by het-

erozygosity (Charlesworth and Willis 2009). Our estimates of

strain-specific heterosis—the difference between a strain’s out-

bred and inbred fitness—should therefore primarily reflect each

strain’s relative share of the population’s mutation load on fe-

male offspring production. Although the segregation load may

in theory also contribute to heterosis (Charlesworth and Willis

2009), it is unlikely to play a role in the present study popu-

lation. First, the correlation between male and female heterosis

is near unity (see Results), indicating that this population’s most

relevant source of segregation load, its sexually antagonistic ge-

netic variation (Berger et al. 2014,2016a; Grieshop and Arnqvist

2018), contributes little or nothing to variation in heterosis among

strains. Second, fitness in the inbred state exhibits a substantially

reduced mean and increased variance relative to the outbred state

(see Results), which is consistent with fitness being underlain

by rare, partially recessive deleterious alleles (Robertson 1952;

Houle et al. 1997; Kelly 1999; Charlesworth and Hughes 2000;

Kelly and Tourtellot 2006).

We therefore reason that an approximation of the strength

of purifying selection against mutation load alleles in each sex is

given by quantifying the relationship between strains’ male and

female additive genetic breeding values for relative fitness and

their genetic values for heterosis (i.e., a measure that should re-

veal the relative amount of mutation load alleles carried by each

strain). If selection in males acts to purge mutation load on female

fecundity, there should be a negative genetic covariance between

outbred male fitness and female heterosis (see Methods). In other

words, strains with a greater relative share of the population’s mu-

tation load should have lower male fitness. Similarly, if selection

in females acts to purge mutation load, there should be a negative

genetic covariance between outbred female fitness and heterosis.

Thus, we predicted a negative relationship between heterosis and

outbred fitness among strains, and that this relationship would be

stronger in males than females if selection in males enhances the

purging of mutation load.

Methods
STUDY POPULATION AND INBRED STRAINS

Callosobruchus maculatus (Coleoptera: Bruchidae) is a pest of

leguminous crops that has colonized most of the tropical and

subtropical regions of the world (Southgate 1979). Laboratory

conditions and fitness assays closely resemble the grain storage

facilities and crop fields to which they are adapted. Females lay

eggs on the surface of dry beans and hatched larvae bore into

the beans, where they complete their life cycle, emerging from

the beans as reproductively mature adults (Southgate 1979). This

species is facultatively aphagous (requiring neither food nor wa-

ter to reproduce successfully), exhibits a generation time of ∼3

weeks (Southgate 1979), and exhibits a polyandrous mating sys-

tem (Miyatake and Matsumura 2004; Katvala et al. 2008).

The origin of this population’s isofemale lines and inbred

lines has been described thoroughly by Berger et al. (2014),

Grieshop et al. (2017), and Grieshop and Arnqvist (2018).

Briefly, 41 isofemale lines were constructed from a wild pop-

ulation of C. maculatus that was isolated from Vigna unguicu-

lata seed pods collected at a small-scale agricultural field close

to Lomé, Togo (06°10’N 01°13’E) during October and Novem-

ber 2010 (Berger et al. 2014; see Fig. S1A). Each isofemale line

stemmed from a single virgin male/female pair whose offspring

were expanded into small subpopulations (Fig. S1A). These 41

isofemale lines have an inbreeding coefficient of 0.25 (Falconer

and Mackay 1996) and were cultured for 12 generations prior to

the fitness assays of Berger et al. (2014). From January 2013 to

January 2014, 20 replicate lineages of each isofemale line (to-

taling >800 lineages) were subjected to single-pair full-sibling

inbreeding (i.e., “close” inbreeding; Falconer and Mackay 1996)

for 10 consecutive generations or until extinction (Grieshop et al.

2017; Fig. S1A). For the 16 inbred strains chosen for the present

diallel cross, this was followed by one generation of expansion

into small populations, comprising a total of 12 generations of

full-sibling mating (1 full-sibling isofemale line expansion + 10

generations of close inbreeding + 1 full-sibling inbred line ex-

pansion), which corresponds to an inbreeding coefficient of 0.926

(Falconer and Mackay 1996). During the inbreeding regime, in-

bred lineages stemming from isofemale lines that were enriched

for male-benefit/female-detriment sexually antagonistic genetic

variation tended to go extinct prior to completing the full inbreed-

ing program (Grieshop et al. 2017), making it impossible to re-

trieve a representative inbred line from four of the most male-

benefit/female-detriment isofemale lines. The present 16 inbred

strains were chosen with the aim of countering that biased repre-

sentation (Fig. S2).

SEX-SPECIFIC FITNESS ASSAY

The present study used data from a fully factorial diallel cross

(Lynch and Walsh 1998) among the 16 inbred strains, where

sex-specific competitive lifetime reproductive success (hereafter:

fitness) was measured in F1 males and females separately. The

partitioning of genetic variance in fitness is reported in detail

by Grieshop and Arnqvist (2018), and the aspects that bear rele-

vance to the present study are given below and in the Discussion.
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The experiment was conducted in two replicate “blocks” for a

total of 3278 individual fitness estimates performed in 237 of

240 possible outbred crosses and all 16 parental selfs (Fig. S1B).

Male and female fitness, as well as inbred and outbred fitness,

was measured independently (Fig. S1B,C), and all were approx-

imately normally distributed. There are 1616 outbred male (oM ),

1450 outbred female (oF ), 115 inbred male (iM ), and 97 inbred

female (iF ) individual fitness estimates. Each observation of the

fitness assay consisted of a 90-mm ø petri dish containing about

100 V. unguiculata seeds, a focal individual from a given outbred

cross or inbred self, a sterilized same-sex competitor from the

outbred base population, and two opposite-sex individuals from

the base population (Fig. S1C). Same-sex competitors were

sterilized with a 100 Gy dose of ionizing radiation from a Cs137

source (Fig. S1C), which does not notably reduce life span or

reproductive competitiveness in either sex, but does cause zygote

lethality, accrediting all emerging offspring to focal individuals

(Grieshop et al. 2016). Thus, counts of F2 offspring emerging

in the petri dishes are integrative measures of focal individuals’

fitness (Fig. S1C), the differences among them being attributable

to focal F1 individuals’ pre- and postcopulatory reproductive

success and their offspring’s larval viability. Our fitness assays

therefore enable, but are not limited to, the following mecha-

nisms of selection in adults: mate searching and oviposition site

selection, mating success, mating resistance, sexual conflict over

remating rate, sperm competition, cryptic female choice, fertility,

fecundity, life span, and offspring egg-adult survival (discussed

further by Grieshop et al. 2016; Grieshop and Arnqvist 2018).

Despite lacking many of the elements of natural selection that

might apply to these beetles in nature (as would any labora-

tory fitness assay), this method has been effective in revealing

sex-specific genetic variance in fitness (Berger et al. 2014,

2016a,b; Grieshop et al. 2016; Martinossi-Allibert et al. 2019b),

perhaps owing to its relatively greater resemblance to the beetles’

natural ecology compared with other model systems and/or the

inherent three-dimensional physical complexity provided by the

beans, which may play an important role in achieving balance

between sexually concordant and sexually antagonistic mating

interactions in the laboratory (Singh et al. 2017; Yun et al. 2017).

MODELING THE GENETIC COVARIANCE MATRIX

We modeled the male-female-inbred-outbred additive genetic

(co)variance matrix for fitness, H:

H =

⎡
⎢⎢⎢⎣

iF iF , oF iF , iM iF , oM

oF , iF oF oF , iM oF , oM

iM , iF iM , oF iM iM , oM

oM , iF oM , oF oM , iM oM

⎤
⎥⎥⎥⎦ , (1)

where genetic variances were estimated for parameters listed

along the diagonal, and genetic covariances were estimated for

pairs of parameters listed in the off-diagonal elements. Although

this resembles a cross-sex cross-trait G matrix that would typ-

ically be modeled with the aim of assessing the sex-specific

genetic architecture of multiple traits and whether it constrains

or enables (sex-specific) adaptation (Lande 1980; Gosden and

Chenoweth 2014; Ingleby et al. 2014; McGlothlin et al. 2019;

Sztepanacz and Houle 2019; Cheng and Houle 2020; Kollar et

al. 2021), our H matrix is distinct in two important ways: (1)

it is a cross-sex cross-state (rather than cross-trait) (co)variance

matrix, which models inbred/homozygous effects versus out-

bred/heterozygous effects for the same “trait,” and (2) that “trait”

is fitness.

The H matrix was modeled in a general linear mixed-effects

model (GLMM) using Bayesian Markov chain Monte Carlo

(MCMC) simulations in the “MCMCglmm” package (version

2.25; Hadfield 2010) for R (version 3.6.0; R Core Team 2019).

To attain proper estimates of additive genetic variance, two addi-

tional random effects (and corresponding variance components)

were included to estimate symmetrical epistasis (v) and sex-

specific symmetrical epistasis (v × S) (i.e., [sex-specific] strain-

strain interaction variance among outcrossed families only), as

these effects are known to be present in these data (Grieshop and

Arnqvist 2018). Fixed factors in this model were sex (S, male or

female), inbred (I , inbred self or outbred cross), block (B, first

or second replicate of the full diallel cross), and the interactions

S × I and B × I , making the full GLMM:

y = μ + S + B + I + S × I + B × I + H + v + v × S + ε, (2)

where y is relative fitness, μ is the intercept, and ε is the

residual/unexplained error, normally distributed as ε ∼ N (0, σ2)

with variance σ2. We enabled (co)variance estimation to differ

among elements of the H matrix, and used minimally informative

parameter-expanded priors (Hadfield 2012). The model was run

for 2,000,000 iterations after a burn-in of 200,000, with a thinning

interval of 2000, which provided 1000 uncorrelated posterior es-

timates of each sex-/strain-specific effect to be stored and used

for resampling the relationships described below. We used the

Gelman-Rubin criterion to ensure model convergence (Gelman

and Rubin 1992; Fig. S3). Posteriors were unimodally distributed

and their trend was stable over the duration of the simulations af-

ter the burn-in period. The model that was fit for the purpose of

estimating the H matrix and resampling the stored posteriors (see

below) was fit to relative fitness, i.e., fitness standardized by the

sex-specific outbred mean, whereas the model that was fit for the

purpose of plotting results was fit to untransformed/raw data.

We estimated heterosis (e.g., in females) as the differ-

ence between a strain’s outbred, oF , and inbred, iF , fitness.

As explained in the Introduction and in more detail below, the

genetic variance in female heterosis, V (oF − iF ), and its genetic
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covariance with male outbred fitness, COV (oM , oF − iF ), are of

central interest to our study, but are not explicitly modeled in

our H matrix. Relationships involving heterosis were therefore

assessed by resampling the sex-/state-specific breeding values

from the 1000 stored posteriors. This approach incorporates the

uncertainty around those breeding values into the estimated rela-

tionships and their credibility intervals (CIs), hence enabling the

quantification of statistical significance in a way that accounts

for breeding values being otherwise anticonservative when used

to assess relationships that are not accounted for by the model

(Postma 2006; Hadfield et al. 2010).

ESTIMATING GENETIC RELATIONSHIPS BETWEEN

OUTBRED FITNESS AND HETEROSIS

Assuming that heterosis is predominantly due to rare (partially

recessive) deleterious alleles (see Introduction section and Dis-

cussion), we develop two complementary measures of how such

mutation load alleles affect outbred fitness. Our first measure

approximates the strength of selection on partially recessive

deleterious alleles (β′
a). In males, for example, β′

aM
is given

by the genetic covariance between outbred relative fitness and

female heterosis, divided by the genetic standard deviation in

heterosis: β′
aM

= COV (oM , oF − iF )/SD(oF − iF ). We note that

our measure of selection is an additive genetic version (hence

the subscripted “a”) of a univariate standardized phenotypic se-

lection gradient (β′
z = Cov[ω, z]/σz; Lande and Arnold 1983,

p. 1219), or “selection intensity” (Crow 1958; Falconer and

MacKay 1996), used to provide comparable estimates of the

strength of phenotypic selection across different traits or popula-

tions (Matsumura et al. 2012; Walsh and Lynch 2018). Our usage

of this formulation differs from its original application in that our

“phenotype,” heterosis, is not a feature of individuals but rather

of genetic strains, and hence, our estimate of selection intensity is

based on genetic (co)variances as advocated by Rausher (1992).

This estimate—being standardized by SD(oF − iF )—has an ad-

vantage to other measures of selection as it is independent of the

arbitrary magnitude of heterosis in our population, which is a di-

rect consequence of the number of generations of inbreeding that

we applied in our experiment. Thus, β′
a gives the genetic change

in outbred relative fitness associated with one genetic standard

deviation change in heterosis, which reflects the amount of mu-

tation load alleles in the present population. Further, the compar-

ison of this standardized measure of selection in males (β′
aM

) ver-

sus females (β′
aF

, defined below) estimates the sex difference in

selection against these mutation load alleles. Retrieving unbiased

estimates of β′
aF

is problematic, however, due to measurement er-

ror in female outbred fitness also featuring in the heterosis term

of both the numerator and denominator, which could drive spu-

rious correlations and false positive discoveries (Postma 2011;

Berger and Postma 2014). To address this, we explored whether

male estimates of heterosis (oM − iM ) may be so highly geneti-

cally correlated to the female estimates (oF − iF ) that they effec-

tively convey the same information, enabling β′
aF

to be estimated

using male heterosis. As male and female heterosis were, indeed,

highly correlated (see Results), we ultimately estimated selection

in males and females as

β′
aM

= COV (oM , oF − iF ) /SD (oF − iF ) (3a)

and

β′
aF

= COV (oF , oM − iM ) /SD (oM − iM ) , (3b)

respectively.

The genetic correlation between male and female heterosis,

roM−iM,oF−iF (used to assess the validity of 3a and 3b), is also in-

formative regarding the degree to which the deleterious effects of

the genetic variation underlying heterosis in our population are

conditional upon sex or not, where roM−iM,oF−iF = 1 would indi-

cate that heterosis is attributable to alleles whose effects are com-

pletely unconditional on sex and correlations below unity would

indicate some sex-specificity to heterosis. Thus, the following ge-

netic correlation was resampled 1000 times from the stored pos-

teriors:

roM−iM ,oF −iF = COV (oM − iM , oF − iF )√
V (oM − iM ) · V (oF − iF )

. (4)

However, even though oM − iM and oF − iF were highly

genetically correlated (see Results), β′
aM

and β′
aF

are not di-

rectly comparable. Thus, the assessment of whether β′
aM

and

β′
aF

were significantly different, as well as the magnitude of

their fold difference, was assessed using sex-averaged het-

erosis, that is, β
′′
aM

= COV (oM , o − i)/SD(o − i) and β
′′
aF

=
COV (oF , o − i)/SD(o − i), where o − i = ( oM+oF

2 ) − ( iM+iF
2 ).

Despite the potential bias owing to shared measurement error

(described above), β
′′
aM

and β
′′
aF

provided a qualitatively identi-

cal result to β′
aM

and β′
aF

, respectively (see Table S1), but enable

a like-to-like comparison that is our least caveated estimate of

the sex-difference in the efficacy of purifying selection against

partially recessive deleterious alleles.

Our second estimate of how these rare partially recessive

deleterious alleles affect fitness is given by the genetic correla-

tion between outbred fitness and heterosis. The issue with shared

measurement error in female outbred fitness and heterosis also

applies to these correlations, and we thus took the same approach

as described above when estimating the male and female correla-

tions:

roM ,oF −iF = COV (oM , oF − iF )√
V (oM ) · V (oF − iF )

(5a)
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and

roF ,oM−iM = COV (oF , oM − iM )√
V (oF ) · V (oM − iM )

, (5b)

respectively. These correlations are merely different standardiza-

tions of the same numerator as the β′
a estimates (above); hence,

their predictive frameworks (and reasoning therein) are similar

to that given above, but with some important differences. Most

importantly, they no longer reflect the strength of selection, per

se, as they are standardized by fitness variance. Thus, these cor-

relations represent the extent to which outbred fitness variance

reflects mutation load alleles in each sex, where a correlation of

−1 suggests that all fitness variance is solely due to rare and un-

conditionally deleterious alleles. These correlations are thus of

particular interest for sexual selection theories of mate choice

(Zahavi 1975; Hamilton and Zuk 1982; Grafen 1990; Andersson

1994) and “genic capture” in sexually selected traits (Rowe and

Houle 1996; Tomkins et al. 2004), the latter based on the specific

assumption that variance in sexually selected traits is maintained

by polygenic deleterious mutation (see Discussion). Again, sex-

averaged heterosis (see above) was used to assess whether male

and female genetic correlations were significantly different from

one another. Our main interpretations are therefore based on the

estimated selection intensities (equations 3a and 3b) and genetic

correlations (equations 5a and 5b), where sex differences in those

were assessed using sex-averaged heterosis. All frequently used

symbols are listed in Table A1.

Note that the selection intensities and correlations that were

based on sex-averaged heterosis not only feature shared measure-

ment error between outbred fitness and heterosis, but potentially

also shared MCMC sampling error upon resampling these

estimates from the posteriors. To avoid this issue, each of the

1000 resampled estimates of sex-averaged selection intensities

and correlations drew their vector of sex-specific outbred fitness

estimates (oM and oF ) from different iterations than those used

for sex-averaged heterosis (“o − i”). The point estimates of se-

lection intensities and genetic correlations are the posterior mode

of the Bayesian posterior distribution based on 1000 resampled

estimates, and these distributions were unimodal in all cases. The

(95%) CIs around those point estimates are given by the highest

posterior density (HPD) intervals. Two-tailed P-values for these

correlations and covariances were calculated as the proportion of

times that those 1000 estimates fell on the opposite side of zero

relative to the posterior mode (or overlapped the point estimate of

the other sex in the case of assessing sex differences), multiplied

by two. The plotted breeding values, heterosis estimates, and

95% confidence ellipses are for visual purposes only, and are

based on the HPD means of the model fit of untransformed/raw

fitness; they do not depict the uncertainty in those breeding

values that was incorporated into the resampled estimates of CIs

Table 1. Estimated H matrix for relative fitness, displaying ge-

netic variances (with credibility intervals [CIs] and residual vari-

ances) on the diagonal, their covariances in the lower triangle, and

their Pearson’s correlation coefficients (r) in the upper triangle. Co-

variances and correlationswith 95%CIs excluding zero are bolded.

iF oF iM oM

iF 0.0108 0.43 0.85 0.46
(0.004,

0.021)
(0.0256)

oF 0.001 0.0015 0.20 0.03
(<0.001,

0.003)
(0.0150)

iM 0.0106 0.0002 0.0199 0.67
(0.006,

0038)
(0.0863)

oM 0.0016 −2.5 × 10–5 0.0030 0.0018
(<0.001,

0.004)
(0.0837)

and P-values. Because these HPD means are zero-centered in

the “MCMCglmm” output (even for models fit to untransformed

data), they were rescaled to the more intuitive original scale

before plotting, and the minimum heterosis value was set to

zero.

The potential for nongenetic parental effects and sex-

chromosome inheritance to explain our findings was thoroughly

addressed. In short, we statistically removed these effects from

our data and reran our analyses to confirm that our findings stand

in the absence of those effects (Appendix B). See Data archiving

regarding the R code for reproducing all analyses, procedures,

tables, and figures.

Results
The genetic variance in fitness for inbred males, V (iM ), was

1.85× that of inbred females, V (iF ), and the genetic variance for

outbred males, V (oM ), was 1.24× that of outbred females, V (oF )

(Table 1). Males also exhibited 3.37× and 5.58× the residual

variance in fitness relative to females when inbred and outbred,

respectively (Table 1). Genetic variance for inbred fitness was

10.92× and 7.35× that of outbred fitness in males and females,

respectively (Table 1).

There was a large global improvement in mean fitness

of outcrossed observations relative to the inbred/homozygous

parental selfs (i.e., the fixed effect of I, mean reduction in relative

fitness of inbreds versus outbreds = 0.294 [95% CI, 0.19, 0.41],
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PMCMC < 0.001; Fig. 1A). Although outbred fitness in males

and females was genetically uncorrelated (roM , oF = 0.03 [95%

CI, −0.56, 0.54]; Figs. 1A and S4), inbred fitness was highly ge-

netically correlated (riM , iF = 0.85 [95% CI, 0.38, 0.97]; Figs. 1A

and S5), suggesting that these large heterosis effects were un-

conditional with respect to sex (estimated directly below). These

correlations are explicitly estimated in the H matrix (Table 1).

Heterosis was highly genetically correlated between males

and females (resampled roM−iM , oF −iF = 0.86 [95% CI, 0.66,

0.95], P < 0.001; Fig. 1B) with even narrower CIs than the in-

bred intersexual genetic correlation, riM , iF (see above), showing

alignment between the sexes in the deleterious effects revealed

by heterosis among strains. The point estimate of the strength

of selection in males against these partially recessive deleteri-

ous effects on female fitness showed that one genetic standard

deviation change in heterosis was associated with 1.25% reduc-

tion in outbred male fitness (resampled β′
aM

= −0.0125 [95% CI,

−0.031, −0.003], P = 0.008; Fig. S6). By contrast, the corre-

sponding estimate of selection in females was weak and unde-

tectable (resampled β′
aF

= −0.0014 [95% CI, −0.013, 0.009],

P = 0.672; Fig. S6). Outbred male fitness was significantly and

strongly negatively genetically correlated to female heterosis (re-

sampled roM , oF −iF = −0.59 [95% CI, −0.81, −0.11], P = 0.008;

Fig. 1C), suggesting that a sizeable proportion of fitness variance

in males is due to rare partially recessive deleterious alleles. Fe-

male fitness, by contrast, was not significantly genetically cor-

related to male heterosis (resampled roF , oM−iM = −0.14 [95%

CI, −0.40, 0.28], P = 0.672; Fig. 1C). Estimates of selection

and genetic correlations that were based on sex-averaged hetero-

sis yielded qualitatively identical results (Table S1). Using those

directly comparable estimates based on sex-averaged heterosis

revealed that selection against partially recessive deleterious al-

leles was 3.7× stronger in males than females, yet estimates of

selection (proportion of 1000 estimates of β
′′
aF

> β
′′
aM

times two:

P = 0.104) and genetic correlations (P = 0.12) were not signif-

icantly different between the sexes using two-sided hypothesis

testing.

Discussion
Our findings suggest that the mutation load of our population is

more effectively purged via selection in males than in females

(Fig. 1C). With heterosis being so highly sexually concordant

(Fig. 1B), we were able to circumvent the potential bias caused

by shared measurement error between fitness and heterosis by

assessing the relationship between the outbred breeding values

in one sex and heterosis in the other (see Methods, equations

3a,b and 5a,b). Moreover, relationships between male fitness and

female heterosis (β′
aM

and roM , oF −iF ; see equations 3a and 5a)

are much more central to the question of whether selection via

males can purge a population’s mutation load, because popu-

lation productivity in most taxa is limited by female offspring

production. That the female equivalents of this assessment (β′
aF

and roF , oM−iM ; see equations 3b and 5b) were found to be in-

distinguishable from zero suggests that genetic variation in fit-

ness among females of this population does not evidently re-

flect the partially recessive deleterious mutations that they carry

in their genomes. These results remained essentially unchanged

when analyses were performed on estimates of heterosis averaged

across the sexes (Table S1).

We used heterosis as a measure of the relative share of the

population’s mutation load that is captured within each of our

strains. Heterosis among inbred strains of a population should

predominantly owe to the same type of genetic variation that

is often expected to constitute a population’s mutation load—

rare, partially recessive deleterious alleles (Haldane 1927; Lande

1975; Houle et al. 1997; Lynch et al. 1999; Zhang et al. 2004;

Charlesworth and Willis 2009). This is particularly likely in the

case of our study population, as its genetic variance in fitness is

characteristic of that underlain by rare, partially recessive delete-

rious alleles: fitness in the inbred state exhibits a substantially

lower mean and greater variance relative to the outbred state

(Robertson 1952; Houle et al. 1997; Kelly 1999; Charlesworth

and Hughes 2000; Kelly and Tourtellot 2006; Table 1; Fig. 1A).

Further, although this synthetic diallel population (Grieshop and

Arnqvist 2018) as well as its wild-caught origins (Berger et al.

2014, 2016a) bear the hallmarks of fitness variance maintained

by sexually antagonistic balancing selection, this sexually antag-

onistic genetic variation apparently plays little or no role in de-

termining the magnitude of heterosis in crosses among inbred

strains, as the magnitude of heterosis experienced on average

among strains is nearly identical between the sexes (Fig. 1B).

In accordance, a previous estimate of dominance variance in this

population, which is based to a large extent on heterosis (Hay-

man 1954; Lynch and Walsh 1998; Lenarcic et al. 2012; Maurizio

et al. 2018; Shorter et al. 2019), was likewise found to describe

sexually concordant fitness effects (Grieshop and Arnqvist 2018).

Reciprocally, the sex-reversed dominance effects (Kidwell et al.

1977; Fry 2010; Barson et al. 2015; Spencer and Priest 2016;

Connallon and Chenoweth 2019) that were previously identified

in this population (Grieshop and Arnqvist 2018) were detected

via methods that are not based on heterosis. Thus, there is very lit-

tle, if any, scope for this population’s genetic variance in hetero-

sis to be attributable to factors other than rare, partially recessive

deleterious alleles, and we are confident that the most relevant

form of the “segregation load” (see Introduction) that could pos-

sibly confound this interpretation—that is, sexually antagonistic

genetic variation—is absent from our estimates of sex-/strains-

specific heterosis (further discussion in Appendix C). The genetic

covariance between those heterosis estimates and sex-specific
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Figure 1. Breeding values from the MCMC model of untransformed (raw) fitness (for plotting purposes only). (A) A summary of the

data and main result (y = x line for reference), showing each strain’s male (x-axis) and female (y-axis) fitness in the inbred (circles: riM, iF

= 0.85 [95% CI, 0.38, 0.97]) and outbred (triangles: roM, oF = 0.03, [−0.56, 0.54]) state, shaded by sex-averaged heterosis (i.e., {[oM –

iM] + [oF – iF]}/2). Variation in heterosis is clearly distributed along the population’s outbred male, but not female, breeding values. (B)

Depiction of the genetic correlation for heterosis in male and female fitness across strains, showing that these sex-specific measures

are conveying essentially the same information (roM−iM, oF−iF = 0.86 [95% CI, 0.66, 0.95], P < 0.001). (C) Depiction of main finding: the

statistically significant resampled genetic correlation between outbred male fitness and female heterosis (blue: roM, oF−iF = −0.59 [95%

CI, −0.81, −0.11], P = 0.008) would enable the mutation load on population mean fitness to be purged via selection in males. In contrast,

the outbred female breeding values do not reflect this mutation load (red: roF , oM−iM = −0.14 [95% CI, −0.40, 0.28], P = 0.672). Ellipses

are 95% confidence ellipses fit to the breeding values, and therefore do not depict the uncertainty that was included in the resampled

estimates of statistical significance (see Methods). β′
aM and β′

aF depicted in Fig. S6.
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outbred fitness therefore indicates how selection would act to

purge the alleles that make up this population’s mutation load.

Our findings are pertinent to the longstanding question of

why sexual reproduction is so prevalent in nature. Because, all

else equal, the production of sons would halve the exponential

growth rate of a sexual female’s lineage relative to an asexual

competitor (Maynard Smith 1971; Lehtonen et al. 2012; Gibson

et al. 2017), there must be some mechanism(s) that compensate

for the twofold cost of sex. One explanation is that the efficacy

of selection against the mutation load on a population’s offspring

production is greater in males relative to females, which would

allow that load to be purged without the demographic costs that

would ensue given that same strength of selection acting on the

population’s females (Manning 1984; Kodric-Brown and Brown

1987; Agrawal 2001; Siller 2001; Whitlock 2002; Lorch et al.

2003; Whitlock and Agrawal 2009). Our most relevant estimate

of the relative extent to which our population’s mutation load is

purged via selection in males versus females is the fold difference

between β
′′
aM

and β
′′
aF

. Although these estimates were not statisti-

cally significantly different from one another, the male estimate

was highly significant and the female estimate clearly was not (as

was the case for β′
aM

and β′
aM

; Table S1). As a rough guide, selec-

tion against rare, partially recessive deleterious mutations was es-

timated to be 3.7× greater in males than in females, in accordance

with previous, more general, estimates of sex-specific selection in

this species: approximately three times stronger in males for se-

lection against induced mutations (Grieshop et al. 2016) and two

to four times stronger for males in outbred populations (Fritzsche

and Arnqvist 2013; Martinossi-Allibert et al. 2020). We note that

the fold difference of male bias in selection that is needed for the

production of males to yield a net benefit to females/populations

does, however, depend on the genome-wide deleterious mutation

rate, as well as other genetic, demographic, and ecological fac-

tors (Agrawal 2001; Siller 2001; Agrawal and Whitlock 2012).

This includes any costs brought on by sexual conflict (Whitlock

and Agrawal 2009; Lehtonen et al. 2012; Burke and Bondurian-

sky 2017). Indeed, both intra- and interlocus sexual conflicts—

that is, sexually antagonistic selection on sex-homologous and

sex-heterologous traits, respectively—impose costs to our popu-

lation’s offspring production (Berger et al. 2016a), which likely

drives the cost of sex to be greater than twofold. Nevertheless, at

the very least, our findings indicate that the ability of selection to

purge the population’s mutation load is detectable via males, but

absent in females, representing a striking difference between the

sexes that may partially compensate for the cost of sex.

MECHANISTIC UNDERSTANDING

One explanation for why male fitness exhibits greater sensitivity

to mutation load is that the fitness consequences of genetic vari-

ation in traits under selection are greater (i.e., phenotypic selec-

tion is stronger) in males, and/or phenotypic variance in fitness-

related traits is more sensitive to mutational input in males (Rowe

and Houle 1996). That is, rare partially recessive deleterious mu-

tations may not manifest in female fitness components strongly

enough, and/or those female fitness components may not vary

enough, to expose those deleterious alleles to selection as read-

ily as in males. Indeed, outbred males exhibited 1.24× the ge-

netic variance in fitness relative to outbred females (Table 1), and

males appear to have suffered moderately greater detriments than

females from having their partially recessive deleterious alleles

revealed by inbreeding/homozygosity (see inbred points above

the y = x line in Figs. 1A and S5). Although the present data

do not allow us to distinguish between whether male fitness vari-

ance is greater because phenotypic selection is stronger in males

or because phenotypic traits under selection are more variable in

males, these broader characteristics of our population may hold

across other animal taxa. Laboratory estimates from insects based

on inbreeding depression (Mallet and Chippindale 2011), muta-

tion accumulation (Mallet et al. 2011, 2012; Sharp and Agrawal

2013), and induced mutations (Sharp and Agrawal 2008; Alm-

bro and Simmons 2014; Grieshop et al. 2016) indirectly suggest

that males are indeed more sensitive to mutation load than fe-

males. Further, meta-analyses show that the opportunity for, and

the strength of, selection is generally greater in males than fe-

males (e.g., Janicke et al. 2016; Singh and Punzalan 2018).

Quantitative genetic studies of sex-biased genes (genes with

sexually dimorphic expression) provide further mechanistic in-

sight to our findings. Male fitness components in Drosophila

melanogaster are, at least to some extent, determined by the ex-

pression levels of genes that typically show male-biased expres-

sion (Dean et al. 2018). Further, the expression levels of male-

biased genes of D. serrata exhibit greater broad-sense heritability

than those of female-biased genes (Allen et al. 2018), suggest-

ing that selection could act more efficiently to purge deleterious

alleles from any sites that affect the expression levels of male-

biased genes. As for how this might affect female fitness, that

same study found higher intersexual genetic correlations (rMF )

for expression in male-biased versus female-biased genes (Allen

et al. 2018). High rMF for gene expression or other traits is often

interpreted as genetic constraints to sexual dimorphism, possi-

bly imposing sexually antagonistic fitness consequences (Bon-

duriansky and Chenoweth 2009; Cox and Calsbeek 2009; van

Doorn 2009; Connallon et al. 2010; Stewart et al. 2010; Grif-

fin et al. 2013; Ingleby et al. 2014; McGlothlin et al. 2019; Kol-

lar et al. 2021). However, it is certainly still possible for such

male-biased genes to have sexually concordant fitness effects, a

core assumption of the “condition dependence” theory for sex-

ually selected traits (Rowe and Houle 1996). Indeed, although

mutations in D. melanogaster’s male- and female-biased genes

had greater detriments to male and female fitness components,
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respectively, the direction of these effects nevertheless tends to

be sexually concordant—that is, detrimental in both sexes (Con-

nallon and Clark 2011). Of particular relevance to the present

study, the large majority of male-biased genes in C. maculatus

that are expressed in females are actually upregulated in females

after mating (Immonen et al. 2017). Thus, much of the mutation

load on female reproduction in C. maculatus could manifest via

the expression of male-biased genes, which the present findings

show would be purged more effectively via males. Accordingly,

C. maculatus male-biased genes show a clear pattern of purify-

ing selection that is not seen in female-biased genes (Sayadi et al.

2019).

Although our findings do not offer direct support of “good

genes” sexual selection, they do represent evidence of the pre-

requisite conditions for that process (Zahavi 1975; Lande 1981;

Hamilton and Zuk 1982; Grafen 1990; Kirkpatrick and Ryan

1991; Andersson 1994; Kirkpatrick 1996; Kirkpatrick and Bar-

ton 1997; Martinossi-Allibert et al. 2019a). Empirical evidence

for good genes sexual selection remains scant (Prokop et al.

2012). For good genes sexual selection to work, female choosi-

ness should covary with the “genetic quality” of their mates (i.e.,

males’ breeding values for fitness; Hunt et al. 2004). Further, that

genetic quality should be passed on to both sons and daughters.

Lastly, “genic capture” (i.e., polygenic mutation-selection bal-

ance; Rowe and Houle 1996; Tomkins et al. 2004) should prevent

variation in genetic quality from being depleted. Although our fit-

ness estimates are not a measure of female choice, our findings

are consistent with male breeding values for fitness (i.e., genetic

quality) reflecting polygenic deleterious mutational variation. Al-

though male mating success in this species does seem more to

do with male competition than female choice (Savalli and Fox

1999), the kicking behavior that females exhibit may still serve

as a baseline level of resistance that enables females to choose the

males that are capable of overcoming it (Maklakov and Arnqvist

2009). Further, postcopulatory cryptic female choice (Thornhill

1983; Eberhard 1996; Pitnick et al. 2009; Arnqvist 2014) may

comprise a large fraction of male fitness variance in this species

(Hotzy et al. 2012; Fritzsche and Arnqvist 2013; Bayram et al.

2019), although there is little evidence for “good genes” effects

operating in this context (Bilde et al. 2008, 2009). Thus, although

only direct selection on female choice has been demonstrated in

this system (Maklakov and Arnqvist 2009), the current findings

show that the prerequisite genetic architecture is present for indi-

rect “good genes” effects to act in conjunction with direct selec-

tion (Kirkpatrick and Barton 1997).

For selection via males to yield net benefits to fe-

males/populations, thereby contributing to the maintenance of

sexual reproduction and female trait preferences via “good

genes,” selection in the long run should necessarily act to purge

unconditionally deleterious alleles. However, the ability to detect

this process in the standing genetic variation or short-term evo-

lutionary outcomes may be overshadowed by genetic variation

whose effects are conditional upon sex (Whitlock and Agrawal

2009). Our study population is known to originally harbor sexu-

ally antagonistic standing genetic variance in fitness (Berger et al.

2014, 2016a), and as discussed above, the synthetic diallel pop-

ulation analyzed here apparently still does consist of some sexu-

ally antagonistic genetic variation (Grieshop and Arnqvist 2018).

The present findings are thus a testament to the fact that selec-

tion in males against unconditionally deleterious alleles is still

detectable and able to promote female offspring production de-

spite the male-imposed detriments of sexually antagonistic ge-

netic variation.
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APPENDIX A
Table A1. Frequently used symbols from the main text.

Symbol Meaning

β′
aF

Standardized estimate of selection in females
against deleterious effects revealed in
male heterosis (eq. 3b)

β′
aM

Standardized estimate of selection in males
against deleterious effects revealed in
female heterosis (eq. 3a)

β
′′
aF

Standardized estimate of selection in females
against deleterious effects revealed in
sex-averaged heterosis

β
′′
aM

Standardized estimate of selection in males
against deleterious effects revealed in
sex-averaged heterosis

iF Female inbred fitness
iM Male inbred fitness
oF Female outbred fitness
oM Male outbred fitness
o − i Heterosis
roF , oM−iM Genetic correlation between outbred female

fitness and male heterosis (eq. 5b)
roM , oF −iF Genetic correlation between outbred male

fitness and female heterosis (eq. 5a)
COV (x, y) Genetic covariance between x and y
SD(x) Genetic standard deviation in x
V (x) Genetic variance in x

APPENDIX B
Regarding the role of parental effects and sex

chromosomes

Rationale
There is the potential that nongenetic parental effects of each

strain could partly confound our additive genetic interpretation of

the oM and oF estimates. That is, the oM and oF estimates of each

point on Figure 1C stem from replicate observations of the same

genetic crosses, meaning that in one extreme limit, differences

among them could be attributable to the inheritance/transfer of

phenotypic condition from those same recurrent strains to their

F1 offspring rather than the inheritance of the genetic makeup

of those strains, per se. Such “condition transfer” via parent-of-

origin effects (e.g., epigenetics) may be a common adaptive fea-

ture of many organisms (Bonduriansky and Crean 2018). Further,

genes with male-biased gene expression, which we discuss as

possibly mediating our findings (see MECHANISTIC UNDER-

STANDING), may be likewise particularly relevant to condition

transfer via parent-of-origin effects, as they have been shown to

exhibit elevated condition-dependent expression in Drosophila

melanogaster (Wyman et al. 2010). In addition to nongenetic

parental effects, our main finding of sex differences in the re-

lationship between heterosis and outbred breeding values for fit-

ness could be partly attributable to the mutation load carried only

by males on the Y-chromosome, and/or that revealed only in

males on their unmasked hemizygous X-chromosome, whereas

X-chromosome heterozygosity might mask these effects in fe-

males.

We sought to address these potential concerns. Diallel data

lend themselves particularly well to identifying these effects via

contrasts of reciprocal full siblings—pairs of crosses that are au-

tosomally identical but have inherited their sex-chromosomes,

mitochondria, cytoplasm, and other epigenetic information from

opposite strains (e.g., the F1 offspring of a strain-1 father and

strain-2 mother are reciprocal full siblings with the F1s of a strain-

2 father and strain-1 mother; see Fig. S1B). These parent-of-

origin effects were identified via diallel variance partitioning (af-

ter Shorter et al. 2019) and removed from the fitness data, yield-

ing a new “Y-adjusted” fitness variable that was subject to the

same analyses reported in the Methods.

Methods
To estimate and remove the contribution of strain-specific

parental sex effects (m and φm) and asymmetric epistatic effects

(w and φw) from our fitness phenotype, y, resulting in yadjusted, we

implemented an updated version of the linear mixed model previ-

ously used in Shorter et al. (2019), using the R software package

MCMCglmm (Hadfield 2010). We used the BayesDiallel “fulls”

(full, sexed, “BSabmvw”) model to estimate the contribution of

parental strains and their various effects as described in Lenarcic

et al. (2012), where for an individual i the phenotype is modeled

as

yi = μd + αblock[i] + dT β + εi,

with εi ∼ N (0, σ2). Here, the overall mean and block effects are

modeled by μd and αblock, respectively. For dam j, sire k, and sex
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s, with indicator functions ψ, the diallel effects, dT β, are esti-

mated by

dT
( jks)β = a j + ak + mj − mk + ψ{ j = k}

(
βinbred + b j

)
+ ψ{ j �=k}

(
vd

jk + ψ j<k · wjk

)
+ ψ{s = female} ·

[
φ + φa

j + φa
k + φm

j

− φm
k + ψ{ j = k}

(
φinbred + φb

j

)
+ ψ{ j �=k}

(
φv

jk + ψ j<k · φw
jk

)]
,

where for all j strains, the strain-specific effects are modeled

marginally for additive effects as a1, a2, . . . , aJ ∼ N (0, τ2
a),

parental sex effects as m1, m2, . . . , mJ ∼ N (0, τ2
m ), inbred ef-

fects b1, b2, . . . , bJ ∼ N (0, τ2
b), and similarly for sex-specific

versions of these effects classes (φa, φm,φb). The strainpair-

specific effects for all unique j-by-k noninbred combinations

are modeled similarly for symmetric epistatic (vd ), asymmet-

ric epistatic (w), and sex-specific versions (φv and φw, respec-

tively), for example, as marginally wjk ∼ N (0, τ2
w ) for asymmet-

ric epistatic effects.

The priors for the five fixed effects

(μd, αblock, βinbred, φ [overall female], and φinbred) are each

set to a vague normal distribution, fixed effect ∼ N (0, 103), and

the priors for variance of the residuals (σ2) and for the variance

for each class of effects (τ2
a, τ2

m, τ2
b, τ

2
v, τ

2
w, and sex-specific

versions) are set as a weakly informative Inverse-Wishart with

V = 2, and nu = 0.002, equivalent to an inverse gamma prior

with shape and scale of 0.001. The estimates are based on

models that were run for 17,000 iterations after 2000 iterations of

burn-in.

After obtaining stable estimates, for example, m̂ for parental

effects, for all strains and strain pairs, the original fitness pheno-

types are adjusted using the following relationship for each j, k,

and s

yadjusted
jk, s = male = y jks − (

m̂ j − m̂k
) − ŵ jk

yadjusted
jk, s = female = y jks − (

m̂ j − m̂k
) − ŵ jk −

(
φ̂m

j − φ̂m
k

)
− φ̂w

jk .

These adjusted Y fitness values are then modeled in the same

way as the original fitness values in the main text (see Methods).

Results
The results we obtained using the Y_adjusted fitness values

were highly consistent with those reported in the main text. The

model fits (see eq. 2, Methods) before and after removing the

parental effects were negligibly different (DIC = −1219.80 and

−1222.275, respectively). The standardized H matrix estimated

after removing the parental effects from the data (Table A1) was

qualitatively similar to before (Table 1). Resampling this model

revealed that heterosis in males and females was still highly pos-

itively correlated (roM−iM , oF −iF = 0.84 [0.67, 0.96], P < 0.001).

Likewise, male outbred breeding values were highly negatively

correlated with heterosis in females (roM , oF −iF = −0.53 [−0.84,

−0.14], P = 0.014), whereas female outbred breeding values

were not correlated to heterosis in males (roF , oM−iM = −0.09

[−0.44, 0.25], P = 0.674). Thus, our analysis suggests that

nongenetic parental effects, sex-chromosome effects, and their

epistatic interactions with autosomal genetic variation do not con-

tribute to our main findings. For any parental effects variance

to still be present in the Y-adjusted fitness variable, and hence

still clouding our interpretation, the pattern of strain-specific non-

genetic inheritance would need to be identical between recip-

rocal full-sibling contrasts (as well as between the sex-specific,

i.e., son-daughter, contrasts of those reciprocal full-sibling dif-

ferences). We argue that this is highly unlikely considering that

parental effect variance manifests in fathers and mothers via fun-

damentally different and highly asymmetric pathways (e.g., cyto-

plasmic, mitochondrial, and sex-chromosome inheritance).

Table A2. H matrix (with CIs and residual variances) estimated

for relative Y-adjusted fitness (i.e., relative fitness after removing

parental effects; seeMethods and Appendix B), displaying genetic

variances (and residual variances) on the diagonal, their covari-

ances in the lower triangle, and their Pearson’s correlation coeffi-

cients (r) in the upper triangle. Covariances and correlations with

95% credibility intervals excluding zero are bolded.

iF oF iM oM

iF 0.0109
(0.004,

0.021)
(0.0257)

0.35 0.82 0.48

oF 0.0011 0.0015
(<0.001,

0.003)
(0.0149)

0.16 −0.02

iM 0.0106 0.0002 0.0195
(0.006,

0.038)
(0.0857)

0.70

oM 0.0017 −1.8 × 10–5 0.0030 0.0019
(<0.001,

0.004)
(0.0836)

APPENDIX C
Regarding sexually antagonistic variants and

heterosis

In an extreme case, in principle, the present synthetic diallel pop-

ulation may be largely fixed throughout all 16 inbred strains

for female-benefit sexually antagonistic alleles at many genetic
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loci due to excess lineage extinction among inbred lines that

originated from isofemale lines that were enriched for male-

benefit/female-detriment sexually antagonistic genetic variants

(Grieshop et al. 2017). Yet, some remaining sexually antagonis-

tic polymorphisms demonstrably still segregate among the inbred

strains (Grieshop and Arnqvist 2018). Under one scenario, some

strains could be completely fixed for the female-benefit alleles

across all sexually antagonistic loci, while other strains may be

fixed for most, but not all, female benefit alleles, and thus fixed

for male-benefit alleles at the remining sites. Under diminishing

returns epistasis (Whitlock et al. 1995; Martin et al. 2007; Berger

and Postma 2014), which is theoretically predicted among poly-

morphic sexually antagonistic sites (Arnqvist et al. 2014), strains

fixed for female-benefit alleles throughout all sexually antagonis-

tic loci would tend to have relatively low male fitness (oM) and

relatively high measures of male heterosis (oM–iM) owing to the

recruitment of male-benefit alleles (upon outcrossing with strains

that are fixed for some male-benefit alleles) in an otherwise male-

detriment genetic background. By contrast, strains that have some

male-benefit alleles fixed would have relatively high male fitness

and relatively low measures of male heterosis, as they have less

to gain than strains that are fixed for female-benefit alleles across

all sexually antagonistic loci (Arnqvist et al. 2014). Female fit-

ness and heterosis would be relatively unaffected in this context

because they are either completely or mostly saturated for alle-

les that benefit their fitness, making the recruitment of additional

female-benefit alleles in an otherwise female-benefit background

relatively ineffectual (Arnqvist et al. 2014). At first glance, this

explanation seems to match our results in that fitness would be

negatively correlated to heterosis in males but not females. How-

ever, our main finding is specifically between male fitness (oM)

and female heterosis (oF–iF) (Fig. 1C). Further, oM–iM ≈ oF–iF
(Fig. 1B). Neither of those findings are compatible with an expla-

nation based on sexually antagonistic genetic variation (and sex-

ually antagonistic diminishing returns epistasis) underlying het-

erosis.

Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Comparison and rationale for using opposite-sex heterosis for point estimates and sex-averaged heterosis for sex-differences.
Fig. S1. Lome population history and experimental design.
Fig. S2. The raw-means rMF of the isofemale lines.
Fig. S3. Results the Gelman-Rubin analysis, demonstrating good mixing of four independent MCMC chains.
Fig. S4. Outbred (o) breeding values from Fig. 1A shaded by sex-averaged heterosis.
Fig. S5. Inbred (i) breeding values from Fig. 1A shaded by sex-averaged heterosis.
Fig. S6. Resampled point estimates and 95% credibility intervals of β′

a for males (β′
aM

) and females (β′
aF

).
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