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Visual exploration is a central process in early cogni-
tive development. As infants gaze around their envi-
ronment, they gather new information about the world 
and strengthen existing representations. These represen-
tations form the basis for learning to discriminate be-
tween new and old stimuli, building categories, learning 
which sounds go with seen events, and—when labels 
are added to the mix—learning words. A long history 
of experimentation and theory in cognitive development 
has provided a rich picture of infants' looking behaviors 
with and without labels present and how those behav-
iors change over development. Here, we examine the de-
veloping influence of words on visual exploration in the 
second year, a period characterized by early, but often 
rapid, vocabulary development.

The prior literature has shown that the interaction of 
visual exploration and words is shaped by numerous as-
pects of the visual and auditory input and evolves over 

multiple timescales from moment-to-moment changes in 
gaze to trial-to-trial changes as representations form, to 
developmental changes across age. Given this complex-
ity, we ground our examination of these visual–auditory 
interactions in a formal neural process theory that in-
stantiates the multiple processes involved in early visual 
exploration and word learning and how these processes 
change over time. We highlight how formal process the-
ories can be usefully generalized across tasks, shedding 
light on the multiple processes that underlie infants' and 
toddlers' performance. This serves two key goals. First, 
we use model simulations to explore the origin of effects 
from two key experiments situated in a complex litera-
ture that uses multiple methods and concepts. These 
simulations highlight how process models can clarify 
the complex. Second, we use the simulations to address 
questions central to the special section: what makes a 
good model or theory of development and how should 
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Abstract
The interaction of visual exploration and auditory processing is central to early 
cognitive development, supporting object discrimination, categorization, and 
word learning. Research has shown visual–auditory interactions to be complex, 
created from multiple processes and changing over multiple timescales. To better 
understand these interactions, we generalize a formal neural process model of early 
word learning to two studies examining how words impact 9- to 22-month-olds' 
attention to novelty. These simulations clarify the origin and nature of previously 
demonstrated effects of labels on visual exploration and the basis of mutual 
exclusivity effects in word learning. We use our findings to discuss key questions 
for this special section: what makes a good theory and how should formal theories 
interface with empirical paradigms and findings?
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formal theories interface with empirical paradigms and 
findings? We envision a future where models and exper-
iments are tightly integrated with a rich dialog back and 
forth.

Visual exploration and the impact of labels in 
early development

In laboratory tasks of visual processing, infant and 
toddler-looking preferences are influenced by a range 
of factors including the timing of stimulus presentation, 
the complexity of the stimuli, and the age of the child 
(Aslin,  2007; Jadva et  al.,  2010; Richards,  2010; Rose 
et  al.,  1982). Infants initially build a visual representa-
tion of an object, preferring to look at a familiar stimu-
lus. Once that representation becomes stronger, infants 
show habituation and the emergence of a novelty pref-
erence (Hunter & Ames, 1988; Perone & Spencer, 2012, 
2013). Importantly, if neither of the presented stimuli are 
more familiar and if they are of equal complexity, initial 
looking can be expected to be driven by idiosyncratic 
factors across infants and, thus, looking preferences at 
the group level should be at chance. If looking is ana-
lyzed at the level of individual infants, however, the fa-
miliarity-to-novelty pattern is seen (Roder et al., 2000). 
The formation of robust memories is also suggested to 
underlie performance in speed of processing tasks (Rose 
et al., 2002, 2003).

Studies examining the influence of auditory input on 
visual processing span a range of research topics includ-
ing multimodal processing, categorization, and word 
learning (see Gogate & Maganti, 2016 for review). This 
diversity means the experimental paradigms used can 
vary in ways that make direct comparison or succinct 
conclusions difficult. For example, one line of investi-
gation has examined whether processing of auditory 
stimuli “overshadows” processing of visual stimuli (e.g., 
Sloutsky & Robinson,  2008; Zupan & Sussman,  2009). 
In these studies, pairs of auditory and visual stimuli 
are presented in conjunction for some familiarization 
period. Then, either the auditory or visual stimulus is 
changed, and an increase in looking is used to gauge de-
tection of the change (e.g., Robinson & Sloutsky, 2007a, 
2007b; Sloutsky & Robinson, 2008). In contrast, studies 
of infant and toddler categorization include multiple 
exemplars of a category of visual stimuli and may in-
clude pre-familiarization of some stimuli (e.g., Plunkett 
et  al.,  2008). These studies may use non-linguistic 
sounds, novel made-up words, words unknown to the 
young participants, or words expected to be familiar to 
the participants. Moreover, these words or sounds may 
be presented in non-labeling (e.g., “look at that”) or la-
beling contexts marking them as nouns, verbs, or adjec-
tives (e.g., “look at the blicket/its blicking/its blickish,” 
respectively). Finally, studies of early word learning may 
include a single object and word presented a handful of 

times (e.g., Woodward et al., 1994), multiple word–object 
pairs that are presented over a series of individually am-
biguous naming trails as in cross-situational word learn-
ing tasks (e.g., Smith & Yu, 2008), or a mix of novel and 
well-known words and objects as in studies of mutual 
exclusivity (ME), referent selection, or disambiguation 
(e.g., Bion et al., 2013; Horst & Samuelson, 2008; Kucker 
et al., 2018; Mather & Plunkett, 2009).

Review of this expansive literature is complicated due 
to the diverse methods; however, evidence suggests that 
by the end of the first year, infants' experiences have led 
them to process visual stimuli in the context of words 
differently from stimuli presented in the context of 
non-linguistic sounds (Perszyk & Waxman, 2018). And, 
from late in the first year onward, overshadowing of vi-
sual processing by auditory stimuli appears to decline. 
In categorization tasks, words appear to support the for-
mation of categories in infants and toddlers (Perszyk & 
Waxman, 2018), resulting in increased looking to novel, 
non-category stimuli (see Ferguson & Waxman, 2017, for 
a review). In contrast, in cross-situational word learn-
ing studies, 12- to 14-month-olds demonstrate learn-
ing by looking more at familiar targets at test (Smith & 
Yu, 2008).

Although this literature shows that infants and tod-
dlers can learn categories and words, differences in 
methods cloud conclusions about the influence of words 
on visual processing. One set of studies, however, pro-
vides a direct assessment of the influence of words on 
visual processing: Mather et al. (2011) compared infants' 
visual processing of the same novel stimuli in condi-
tions with and without a word. In two experiments, they 
showed that the addition of a word slowed visual pro-
cessing in 9- to 21-month-old infants, both across blocks 
of the experiment and within individual trials. Mather 
and Plunkett (2012) later manipulated object familiarity 
to examine how word knowledge and object novelty/fa-
miliarity interact in the formation of new word object 
mappings. They showed that in 22-month-old infants, 
the novelty of visual stimuli, rather than knowledge of 
familiar object names, supports referent selection. These 
studies help clarify the influence of words on visual pro-
cessing, highlighting the operation of basic processes 
such as encoding, habituation, novelty detection, atten-
tion shifting, and learning. They also point to the mul-
tiple timescales upon which changes in these processes 
occur—from millisecond-to-millisecond shifts in atten-
tion to trial-to-trial learning as infants build word–ob-
ject mappings, and to developmental changes with age 
and vocabulary growth.

What is the current state of theory in this 
literature?

There are multiple computational models of word 
learning and other models of visual exploration (see 
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Supporting Information). Few models, however, explic-
itly integrate these processes. Moreover, few models have 
tried to tackle the diversity of empirical methods used 
in the literature. This is not surprising: it is often hard 
enough to develop a theory of one task/domain; gener-
alizing across tasks presents major hurdles because the 
details of the stimuli across paradigms can vary, the 
number of word–object pairings can vary, the behaviors 
measured can vary, and so on. Of course, it would be 
particularly useful to have theories that can generalize 
across tasks because these could inform experiments, 
shedding light on which factors are key, how multiple 
factors/processes impact behavior, and integrating find-
ings across studies.

One way for theories to generalize across tasks is 
if they are formalized as process models. What does 
this mean? Process models take time seriously, that is, 
they specify or formalize how processes unfold over 
time or across iterations. Part of this involves speci-
fying how “inputs” change over time—which objects 
appear when, which auditory events occur and when, 
and so on. But this also requires formalizing the pro-
cesses that operate on these inputs through time, pro-
cesses of attention or memory formation, or learning. 
Finally, process models are grounded in behavior, that 
is, they must specify how the evolution of the model's 
operations through time give rise to key aspects of 
what children do in the task (looking, pushing but-
tons, responding verbally, etc.). Process models are 
particularly good at generalization because they often 
capture the ways in which empirical paradigms differ. 
Consider the set of experiments described above by 
Mather and colleagues. Across experiments, they var-
ied whether visual events were presented in isolation 
or with words, they varied the number of word–object 
pairings, and they varied the novelty/familiarity of the 
presented items. Because process models must capture 
the details of the inputs and how these vary over trials, 
such manipulations should be readily captured by a 
process model of visual exploration and word learning.

In the remainder of this paper, we illustrate this 
strength of process models using a specific exam-
ple: a dynamic field (DF) model of early visual ex-
ploration and word learning called WOLVES (Word 
Object Learning via Visual Exploration in Space; Bhat 
et al., 2022). This model was recently used to capture 
data from cross-situational word learning tasks, that 
is, word learning in the context of multiple, individ-
ually ambiguous naming episodes. Critically, because 
WOLVES is a process model, it has a way to capture 
the details of the auditory–visual inputs in the task, 
it specifies the attention and memory processes that 
operate on these inputs through time, and it speci-
fies how these processes give rise to changes in look-
ing behavior through time. Thus, in principle, using 
this model to explain the findings from, for instance, 
studies by Mather and colleagues should largely be a 

programming task: we just need to embed WOLVES 
in these new tasks and see what the model does. We 
can then ask whether the model is a good match to the 
child data, what matters in the model (and by analogy 
in children), and see if WOLVES is a useful tool, not 
just for fitting behavioral data, but for shedding light 
on what might matter in these experiments. Through 
this exercise, we address key questions of the special 
section including how process theories are formalized, 
implemented, and evaluated, as well as how process 
theories can be useful tools for understanding empiri-
cal findings.

OVERVIEW OF WOLVES A N D 
DF TH EORY

WOLVES is instantiated in the framework of dy-
namic field theory (DFT; Schöner et al., 2016; see Bhat 
et al., 2022, for a complete model description). Thus, we 
begin this section with a brief overview of DFT. This is 
followed by an introduction to the WOLVES model.

DFT proposes that cognition arises from activation 
within DFs. DFs are collections or “populations” of neu-
rons, which are wired up in a particular way that mimics 
how neural populations in the brain are wired up. In par-
ticular, neurons are wired up based on the perceptual, 
cognitive, or motor dimensions they represent. For in-
stance, we might have a DF with neurons that represent 
retinal spatial position (see Figure 1a; e.g., Markounikau 
et  al.,  2010). Here, neurons on the left side of the field 
would be “tuned” to inputs at “left” spatial positions, 
while neurons on the right side of the field would be 
tuned to inputs at “right” spatial positions. With this 
setup, “neighboring” neurons in the field (i.e., neurons 
that “code for” similar spatial positions) would excite 
one another (local excitation), while neurons far apart 
in the field would inhibit one another (surround inhibi-
tion; see Figure 1g–i). Consequently, a DF can “encode” 
visual inputs to the network. For instance, one could 
present a visual stimulus 20° to the left of midline. This 
would activate neurons that “prefer” inputs on the left 
side of the retina, particularly those that really like the 
20° location. The excited neurons would then activate 
their local neighbors, further driving up activation. At 
the same time, the excited neurons would inhibit neurons 
“far away” in the field, preventing excitation from grow-
ing out of control. The result will be a “peak” of activa-
tion—a local above-zero “bump” of activity centered at 
20° in the field—which faithfully represents the presence 
of the visual stimulus at this location (see Figure 1a).

Interestingly, by changing the wiring in a DF, 
one can create different types of activation patterns 
through time. For instance, if local excitation and 
inhibition are moderate, peaks will be stable when 
inputs are present (e.g., visible), but decay back to a 
resting level (i.e., no peak) when the input disappears 
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(we call such fields “input-driven,” see Figure  1a). If, 
however, excitation and inhibition are strong, peaks 
can be self-sustaining and remain active even if input is 
removed, acting as a form of working memory to main-
tain information even when inputs are no longer avail-
able (Figure  1b; Schöner et  al.,  2016; Spencer,  2020). 
Finally, with the addition of strong global inhibition 
(see Figure 1i), DFs can be selective, forming only one 
peak at the time. Consequently, if two inputs are pres-
ent, the field will “pick” one, forming a peak at one 
input location and suppressing activation at the other 
input location (Figure 1c).

DF architectures can be constructed by coupling 
fields together, that is, by having one DF pass activa-
tion to another DF and vice versa. This must be done 
carefully as each DF is “tuned” to particular types of 
information. For instance, we might have one DF that 
is sensitive to retinal spatial position and another that is 
sensitive to color (i.e., hue). In this case, how would we 
pass activation from the spatial field to the color field as 
these dimensions do not have any a priori relationship 
(i.e., blue objects can be on the left or right; the same 
for red objects)? In this case, the spatial and color fields 
need to be joined up into a two-dimensional DF where 
we have neurons “tuned” to all possible combinations of 
space and color (see the “color-space” field in Figure 2). 
In this case, the presentation of a blue object on the left 
would lead to a peak in the “blue-left” position of a col-
or-space field while the presentation of a red object on 
the right would lead to a peak in the “red-right” position 
of the color-space field (Figure 2). Interestingly, we can 
also pass activation to and from this two-dimensional 

field to separate retinal space and color fields as shown 
in Figure 2 (see bidirectional blue arrows). This enables 
the neural architecture to represent that the object is on 
the “left” (in the space field), it is “blue” (in the color 
field), and the “blue object is on the left” (in the col-
or-space field). Note that we do not always have to rep-
resent information in multi-dimensional DFs; indeed, 
there are good reasons not to do this as very high-di-
mensional DFs have a lot of neurons (more than in the 
human brain). Thus, we have proposed some rules for 
how to join dimensions up to create large neural archi-
tectures using special “binding” dimensions. To date, 
these include spatial dimensions (as in Figure 2) as well 
as more abstract binding dimensions such as words or 
labels. Because WOLVES uses these binding dimensions, 
we return to this issue below.

So far, we have discussed how DFs capture patterns of 
neural activation from second-to-second through time. 
But we also need a way for the patterns of activity to 
be carried forward over longer periods of time. For in-
stance, how can a pattern of activity on trial 1 impact 
a future pattern of activity on trial 2 or trial 12? DFT 
uses a variant of Hebbian learning to capture such ef-
fects. In particular, “memory traces” can form in DFs 
when strong peaks build. In this case, the peak boosts 
activation in a memory trace which feeds back on the 
field activity, strengthening local excitation in that par-
ticular region of the field. For instance, if the model was 
asked to encode and respond to the blue item on the 
left, a memory trace might form which makes the model 
faster to respond to blue things on the left in future trials 
(because the memory trace boosts local excitation in this 

F I G U R E  1   The graphs in the top row (a–c) show how activation (z-axis) evolves through time (y-axis) in the dynamic field across locations 
in retinal space (x-axis) as inputs are turned on and off. The blue arrow in each panel shows when input is turned on; the red arrow shows when 
input is turned off. The panels in the middle row (d–f) show the state of the field activity at the last time step. The dark blue line shows the 
activation level (y-axis) over retinal space (x-axis), the red line shows which neurons are engaged in neural interactions (i.e., above zero activity), 
and the cyan line shows the strength of the memory trace. The graphs in the bottom row (g–i) show the rule governing how neurons talk to one 
another, with local excitation around the activated site (0) and surround inhibition to the left and right (at farther distances in retinal space). 
The simulation in the left column shows an “input-driven” dynamic field (DF) with moderate excitation and inhibition. The simulation in the 
middle column shows a “self-sustaining” DF with strong excitation/inhibition where activity is sustained even though the input is turned off. 
The simulation in the right column shows a “selective” DF with strong excitation and global inhibition. Here, the field “selects” one input, even 
though two inputs are presented (see panel c).
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region of the field). This results in a “pre-shaping” effect, 
facilitating recognition of familiar inputs.

Overview of WOLVES

WOLVES integrates prior DF models. One prior model 
captured the processes of linking words and objects 
together (Samuelson et  al.,  2011) and others captured 
the processes of visual attention and memory (Perone 
& Spencer,  2013; Schneegans et  al.,  2015). By bring-
ing these prior models together in one neural architec-
ture, WOLVES was able to explain data from studies 
of cross-situational word learning, capturing data from 
7 studies with adults and 5 studies with children (Bhat 
et al., 2022). The WOLVES model has been implemented 
in Matlab using the COSIVINA framework, a free ob-
ject-oriented framework to construct DF architectures 
in Matlab, simulate the evolution of activation in these 
architectures, and create graphical user interfaces to 
view the activation time course and adjust model param-
eters online (Schneegans, 2012). The model code and the 
simulation files are available on OSF (https://​doi.​org/​10.​
17605/​​OSF.​IO/​NG2VF​), including instructions for how 
to run the model. The full model specification including 
model equations can be found in Bhat et al. (2022). We do 
not attempt to reproduce all these details here in favor of 
focusing on the general concepts of the model as well as 
what the modeling exercise below can tell us about the 
role of formal models in developmental science.

A schematic of WOLVES is shown in Figure 3. This 
box-and-arrow view highlights what each part of the 
neural architecture does. The schematic is laid out like 
a brain with higher-level cortical fields to the left (i.e., 
at the front of the brain) and lower-level cortical fields 
to the right (i.e., at the back of the brain). Thus, when 

F I G U R E  2   An example of a dynamic field model with a two-
dimensional color-space field that shares activation with a retinal 
space field (top) and a color field (left). Input from the visual display 
is passed directly into the two-dimensional field, mapping the 
location of the input along both the spatial dimension (15 degrees; 
x-axis) and the color dimension (hue value 120 = “blue”; y-axis). The 
intensity of activation in the 2D field is captured by the color value 
with “hotter” colors showing more intense activation. Activation 
in the color-space field then projects activation to the retinal space 
field (top) and the color field (left), building a peak in those fields 
(see activation profile in blue; y-axis). The red curve in the space and 
color fields shows which neurons are above 0 activation (i.e., “active” 
or “on”). These peaks then pass activation back to the 2D field, 
further amplifying the activation pattern in the color-space field.

F I G U R E  3   A schematic of WOLVES which integrates two previous models: the word–object learning (WOL; blue box) model and the 
visual exploration in space (VES; red box) model. Note that the VES model is also an integration of earlier models of visual processing, 
including models of the neural dynamics in early visual fields, spatial attention, visual working memory (VWM), and spatial working memory 
(SWM).
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viewing a brain from the side facing left, information 
flows through the model in a “back to front” (or right to 
left) fashion. Starting in the red box to the right, one can 
see parts of the model that capture visual exploration in 
space (Perone & Spencer, 2013; Schneegans et al., 2015). 
Initially, visual inputs are represented in a visual field to 
the far right, which encodes features like color and shape 
and where these features are on the retina. This informa-
tion is then passed along two pathways: a dorsal pathway 
for spatial information and a ventral pathway for feature 
information. Along the dorsal pathway, the model rep-
resents where objects are in the world, including a spa-
tial working memory (SWM) for important locations 
within the current scene. Along the ventral pathway, 
the model represents object features, including a visual 
working memory (VWM) for which features are present. 
This information is re-combined into a scene represen-
tation (i.e., what is where) using focal attention (see also 
Treisman & Gelade, 1980).

The left side of the schematic in the blue box 
shows the word–object learning portion of the model 
(Samuelson et al., 2011). Auditory inputs to the model 
are fed into the word representation field which iden-
tifies the labels provided. Words and object features 
are then integrated into the word-feature binding field. 
Over time, memory traces of word-feature bindings 
build up in the long-term memory trace layer. These 
can support recognition of word–object mappings and 
direct looks to familiar items when a word is presented 
via top-down connectivity (i.e., passing activation 

from the word-feature field to “lower-level” fields in 
the model; see long, horizontal blue arrow toward the 
bottom of the figure).

Cycles of action in WOLVES

A picture of the full WOLVES neural architecture is 
shown in Figure 4. This shows neural activation at the 
moment when the model has remembered a word–ob-
ject mapping and directed attention to the object in the 
visual field. Each box (except the visual display in the 
upper right) is a DF. To explain how the model works, it 
is useful to think about three autonomous cycles of ac-
tion in WOLVES—the visual exploration in space cycle, 
the word–object learning cycle, and the top-down atten-
tion cycle. The visual exploration in space cycle starts 
when the model looks at a visual display; for instance, 
the blue square on the left and the red circle on the right 
(see “visual display”). This pattern is input to the visual 
field, creating an activation peak on the left at the inter-
section of blue/left and an activation peak on the right 
at the intersection of red/right. The blue and red fea-
tures are then input into the contrast field (color contrast 
field). This field detects visual novelty (defined as any 
feature that “contrasts with” or fails to match the con-
tents of working memory). At the start of a visual explo-
ration of space cycle, all inputs are novel. At other times, 
peaks in VWM (color VWM) can suppress peaks in the 
contrast layer, differentiating what is “known” (i.e., the 

F I G U R E  4   The WOLVES model neural architecture, showing one-dimensional and two-dimensional dynamic fields in the model 
responding to the visual display in the top right. Arrows represent uni-/bidirectional connectivity (blue: excitatory, red: inhibitory). Some 
working memories and memory traces are not shown for simplicity. One-dimensional fields show activation profile in blue and above-threshold 
neural activity in red as in prior figures. Horizontally oriented 1D fields show activation across space (x-axis); vertically oriented 1D fields show 
activation over the color (hue) dimension (y-axis); and the word field shows activation distributed over a “word” dimension with each site in the 
field representing a different auditory word. Two-dimensional visual and scene fields show activation patterns along space (x-axis) and color (y-
axis), with higher activation in “hotter” colors. 2D word-feature field and word-feature memory trace show activation patterns along the word 
dimension (x-axis) and color (y-axis).
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peak in VWM) from what is novel (i.e., the peak in color 
contrast).

Peaks in the contrast field pass activation to the at-
tention field (color attention). The attention field is a 
“winner-take-all” or selective field and can support only 
one peak at a time—the focus of attention. The peak in 
the attention field then amplifies activation in the visual 
field, selecting this peak as the focus of attention and 
boosting spatial attention. In Figure 4, WOLVES is cur-
rently attending to the blue square on the left with color 
attention highlighting the “blue” feature and spatial at-
tention highlighting the “left” location. Once a visual 
item is attended, it is consolidated in working memory. 
This happens along the ventral pathway in VWM (color 
VWM) and along the dorsal pathway in SWM. As these 
peaks are consolidated in the working memory fields, ac-
tivation is also passed into the 2D scene field. This field 
binds the feature and spatial information together, but 
now at the level of the spatial scene (i.e., a non-retinal 
position, typically anchored to the body or an external 
frame of reference). Once the item is consolidated at the 
level of the scene (i.e., a peak forms in the scene field), it is 
detected by the inhibition of return field. Consequently, 
a peak forms in the inhibition of return field at the loca-
tion of the currently attended item. This inhibition of re-
turn peak, in turn, suppresses spatial attention, releasing 
the current item from the focus of attention. The model is 
then free to attend to another novel item detected by the 
color contrast field and the visual exploration in space 
cycle repeats.

The word–object learning cycle is engaged when an 
auditory word is presented, activating a word in the 
word field. The peak in the word field sends input into 
the word-feature field. If the model is currently attend-
ing to a visual object, the features of this object (i.e., 
blue) are simultaneously projected into the word-feature 
field. When these inputs combine, they can build a peak 
of activation in the word-feature field, “binding” the 
word to the visual features (see hotspot of activation in 
the word-feature field). This peak leaves a trace in the 
memory trace layer. Such traces build slowly over time 
and decay even more slowly. With repeated presentations 
of the word and the visual object, the model learns the 
mapping. Note that the model in Figure 4 has been pre-
sented with multiple words and multiple objects, so there 
are many mappings in the word-feature memory trace 
(see light blue dots). Some of these are correct; some are 
incorrect. This reflects the ambiguity of the cross-situ-
ational word learning task on which WOLVES was ini-
tially benchmarked.

The final cycle central to how WOLVES works is the 
top-down attention cycle. When the model has a strong 
memory trace for a word–object mapping, present-
ing that word causes a peak to form in the word-fea-
ture field at the location of the strong memory trace. 
This peak then passes a “top-down” signal from the 
word-feature field to the color contrast field, causing 

strong activation of the associated feature in the con-
trast field and directing attention to the object via in-
teractions with the color attention field. This is how 
the model directs attention to a visual object when 
hearing a known word.

Autonomous visual exploration over multiple 
timescales in WOLVES

The visual exploration in space, word–object learning, 
and top-down attention cycles emerge over multiple 
timescales as neural activation propagates in the model 
as it performs the task. On the real timescale of millisec-
onds and seconds, the model autonomously looks back 
and forth between the visible objects in the visual field 
(i.e., it attends to the left item, then attends to the right 
item, and so on). It also recognizes words and binds vis-
ual features and words together. At this level, the model's 
real-time behavior can be mapped to participants look-
ing behavior, enabling us to embed the model in the same 
visual and word learning scenarios as participants sim-
ply by instantiating the same presentations of visual and 
auditory inputs and asking if the model “looks” like chil-
dren and adults do.

Over a learning timescale, we can ask if WOLVES 
learns as participants learn. Here, it is important to em-
phasize that learning is not isolated to the word-feature 
memory trace in Figure 4. In fact, every field in the neural 
architecture (except the visual field, the attention fields, 
and the inhibition of return field) has a memory trace. 
This has consequences for each cycle. For the visual ex-
ploration in space cycle, learning is felt most strongly in 
the working memory fields. Here, strong memory traces 
can support the fast consolidation of peaks in working 
memory as well as robust maintenance of these peaks. 
This can alter the visual exploration in space cycle, caus-
ing the model to quickly release fixation for “known” 
items and, consequently, spend more time looking at 
novel items later in learning. This is the basic process 
underlying visual habituation in WOLVES (see Perone 
& Spencer, 2013).

Learning also impacts the word–object learning cycle. 
Here, learning cascades on itself, helping the model to 
figure out the statistics of correct word-object co-occur-
rences. Critically, as the model forms robust word–ob-
ject memories, these can “block” the formation of new 
erroneous associations. This mechanism is particularly 
evident in adult studies of cross-situational word learn-
ing (for discussion, Bhat et  al.,  2022). Finally, learning 
impacts the top-down attention cycle as strong memory 
traces in the word-feature fields can lead to a strong 
“top-down” signal to the contrast field which drives 
looking to the labeled object.

We have also used WOLVES to understand how visual 
exploration and word learning change on a developmen-
tal timescale. In particular, Bhat et  al.  (2022) proposed 
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that memory traces decay less quickly over development. 
Consequently, models of older infants and children show 
faster habituation to repeated visual stimuli because mem-
ory traces build more robustly (i.e., they decay less quickly). 
Likewise, if words are repeatedly presented with objects, 
individual word–object mappings will build more robustly 
/ decay more slowly. This allows individual word–object 
associations to have more of an impact on visual explo-
ration as it is less likely the representation of the mapping 
will have decayed fully before the word–object pairing is 
encountered again. Thus, models of older infants and tod-
dlers will show faster learning of new word–object map-
pings and more top-down attention to familiar stimuli.

In summary, WOLVES is well positioned to advance 
our understanding of how core processes of attention, 
working memory, long-term memory, and word–object 
associative learning create patterns of visual exploration, 
novelty detection, habituation, and word learning biases 
over the timescales of a trial, an experiment, and devel-
opment. In what follows, we apply WOLVES to studies 
by Mather et al. (2011) and Mather and Plunkett (2012) 
examining how words impact visual exploration and 
how novelty influences word learning. In so doing, we 
highlight how process models like WOLVES can be gen-
eralized beyond their initial testing context.

This exercise also highlights several issues central to 
the special issue regarding how models and data “talk” 
to one another. For instance, we note that the data 
from studies by Mather et  al.  (2011) and Mather and 
Plunkett (2012) are variable as is often the case with in-
fant data from looking experiments. Thus, we highlight 
what is statistically significant in these studies below, 
but we acknowledge that these findings have not yet 
been replicated. We also note that our goal was not to 
ask if the model could precisely quantify all details of 
the empirical data. This would require optimizing the 
many parameters in WOLVES (an issue we return to in 
the General Discussion). Instead, we varied a small set 
of parameters and asked how the model captures the 
patterns from these studies. Although this limits the 
modeling exercise to a more qualitative, exploratory 
comparison (rather than a detailed statistical analysis of 
the model data), it emphasizes how process models can 
have a useful dialog back and forth with data even as 
understanding of empirical phenomena is still develop-
ing. Process models can inspire new ways of thinking 
about different aspects of the data even when their fit 
to data is not (yet) optimal, and data can provide useful 
constraints for models, even when replication has not yet 
happened.

SIM U LATION STU DY 1:  M ATH ER 
ET A L . (2011),  EXPERIM ENT 1

The goal of this study was to examine whether auditory 
disruption of visual processing, seen in prior studies 

with younger infants, occurred during the developmen-
tal period of early vocabulary growth. Prior studies had 
found that infants between 8 and 12 months of age pro-
cessed visual input better when they were presented in 
silence than when presented with accompanying sounds 
(Sloutsky & Robinson, 2008). These findings were taken 
to suggest that when visual and auditory input are pre-
sented together, infants preferentially process the audi-
tory input, overshadowing the visual input. However, 
other work suggested that labels enhanced processing of 
visual stimuli, facilitating infants' abilities to categorize 
stimuli, and that this might particularly be the case after 
12 months of age as vocabulary development progresses 
(see Perszyk & Waxman, 2018).

To examine these possibilities directly, Mather 
et al.  (2011) used a visual paired comparison procedure 
to observe 9- to 19-month-old infants' processing of novel 
objects with or without accompanying label input. On 
each trial, infants were presented with two novel car-
toon-style creatures in either a silent or labeling condi-
tion. One of the two creatures repeated on each of the 30 
trials and the other was a different new creature on each 
trial. Mather et al. (2011) hypothesized that attentional re-
sources are shared across the auditory and visual modal-
ities and therefore that there would be a disruptive effect 
of labels on visual processing of novel objects, especially 
during early stimulus exposure. They used suppression of 
novelty preference in the context of words as the indica-
tor of this disruption. The data were separated by age for 
analysis into younger (9- to 14-month-olds) and older (15- 
to 19-month-old) groups. The dependent variable was 
the novelty preference, calculated as proportion looking 
at the novel stimulus divided by total looking on a trial. 
Data were grouped into five blocks of six trials (note that 
block 1 had five trials because the first trial, when both 
stimuli were novel, was dropped from analyses). The re-
sults are presented in the top two panels of Figure 5.

Mather et al. (2011) reported the following effects in 
their paper as verified with one-tailed t-tests follow-
ing a significant three-way interaction in an ANOVA 
comparing performance across trial blocks, age 
groups, and conditions: (a) younger infants showed a 
stronger novelty preference in the silent condition than 
in the labeling condition during the first trial block 
(t(34) = −1.94, p = .031, d = .64) and (b) the fourth trial 
block (t(34) = −2.32, p < .015, d = .76); (c) older infants 
showed a stronger novelty preference in the silent con-
dition than in the labeling condition during the second 
trial block (t(34) = −1.82, p < .038, d = .55). In addition, 
Mather et al. compared performance in each condition 
to chance levels using one-tailed t-tests with alpha set 
at .01 to correct for multiple comparisons. They found: 
(d) in the silent condition, younger infants showed a 
novelty preference during the first trial block and in 
the fourth and fifth trial blocks; (e) in the labeling 
condition, younger infants showed a marginal novelty 
preference in the third block and a significant novelty 
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      |  9MODELLING HOW WORDS IMPACT VISUAL EXPLORATION

preference in the fifth block; (f) in the silent condition, 
older infants showed a significant novelty preference 
in all blocks; and (g) in the labeling condition, older 
infants showed a significant novelty preference in all 
blocks except block 1.

Simulation methods

WOLVES is a process model; thus, at the most basic 
level, simulating the Mather et  al.  (2011) study is a 
programming task—we have to write code to embed 
the model in the same task infants experienced. This 
involves exposing the model to the same sequence 
of auditory and visual events infants experienced on 
each trial, recording the same behavioral measures 
(i.e., looking left and right), and then iterating through 
all the trials in the experiment with the same trial 

randomization. WOLVES has two feature pathways 
along the ventral pathway shown in Figure 4—one for 
color and one for shape. Gaussian inputs were used 
to represent the color and shape features of the visual 
input to the visual field; Dirac functions were used to 
capture auditory inputs to the word field. We assumed 
all the objects and words were distinct and randomly 
spaced across the shape, color, and word fields. Each 
simulation time step was scaled to equal eight real-time 
milliseconds as in our prior work. Thus, we turned in-
puts on and off to mimic all timing details in the ex-
periment. We recorded looking in the model at each 
time step based on whether the model was attending to 
the left, right, or away (i.e., whether there was a peak in 
spatial attention on the left, right, or no peak/a peak in 
some other location).

The next question was how many “infants” to run. 
One approach is to run the same number of models as 

F I G U R E  5   Top two panels show empirical data from Mather et al. (2011) Experiment 1. Infants were grouped into a younger, 9- to 
14-month-old, and older, 15- to 19-month-old, groups. Data are shown as function of condition and trial block. Error bars are ±1 SE; 
*comparison to chance p < .01, one-tailed. The bottom panels show simulation data for corresponding age groups.
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infants in the experiment; however, as in experiments, if 
you run too few infants, estimates of performance will be 
noisy. In experiments, we might conduct a power analy-
sis to determine the sample size. In a model, we can do 
something similar—run batches of simulations with dif-
ferent numbers of infants and evaluate when the model's 
performance converges on roughly the same values from 
batch to batch. Bhat et al. (2022) conducted such an anal-
ysis and found that 300 simulations were needed to con-
verge on stable performance. The reason is quite simple: 
to model infants' performance, we need a noisy model, 
and to sample the behavior of that noisy model robustly, 
we need a lot of iterations. We used the same simulation 
approach here and conducted 300 runs of the model for 
each condition/age group.

Running 300 simulations per condition/age group 
takes a lot of time. Thus, we used parallel computing to 
speed things up. With DF models, we cannot parallelize 
the computations for each model/infant because what the 
model does on each time step influences the next time 
step; however, we can run each individual simulation on 
a separate processing “core.” In an ideal world, we would 
have 300 cores available; thus, running one “batch” of in-
fants would take roughly the same amount of time as run-
ning one infant model. Instead, we ran the simulations on 
two machines: an Intel i5 processor-equipped PC with 36 
parallel processing cores and a high-performance clus-
ter with 96 parallel processing cores (RSCS-UEA, 2015). 
All simulations were conducted in Matlab 2016b using 
the COSIVINA framework (Schneegans, 2012; Schöner 
et al., 2016). To quantitatively evaluate the model's per-
formance, we computed two standard metrics: the root 
mean squared error (RMSE) and mean absolute per-
centage error (MAPE) between the simulated and em-
pirical data. Note that we opted to evaluate the fit of the 
model qualitatively in the present report, rather than 
statistically. Statistical comparisons with a model N of 
300 would not be terribly meaningful as even small dif-
ferences would be significant. If we had more detailed 
information about the variance in the data, we could 
make a more detailed quantitative comparison. As this 
was not available—and as the data have not yet been rep-
licated—we think a more qualitative comparison is the 
best approach.

Even with a more qualitative comparison, we must 
evaluate whether the model “worked,” that is, does the 
model show a low RMSE/low MAPE score when com-
pared to the young and old infants in the Mather et al. 
study and did it reproduce the right qualitative patterns. 
To evaluate this, we must first “tune” the developmental 
parameters of the model to fit the data from infants be-
cause the specific ages examined in Mather et al. did not 
precisely match the ages examined in Bhat et al. (2022). 
In that prior work, Bhat et al. (2022) captured develop-
mental changes by changing the tau_decay parameter, 
with lower values of tau_decay (faster forgetting) for 
younger infants. Concretely, then, we had to examine a 

range of tau_decay values, picking the values that min-
imized RMSE/MAPE across the two age groups such 
that tau_decay of “younger” models would be lower than 
tau_decay of “older” models.

After doing this exercise, we noted that the model did 
not show a strong enough change in the novelty bias over 
learning. In some ways, this is not surprising: WOLVES 
was previously optimized to capture data from cross-sit-
uational word learning studies and the Mather et al. task 
is rather different. But how should we modify WOLVES 
to better capture the data? WOLVES is a complex neural 
architecture, with many parameters, so which parame-
ters should we change? When we looked at the model's 
performance, we noticed two key things. First, the model 
oscillated its looking left and right more regularly than 
infants did (e.g., the model did not show enough vari-
ation in looking, with some short looks and some long 
looks). Second, the model formed robust working mem-
ories for the objects quite quickly; consequently, there 
was not much change in looking dynamics over learn-
ing. This insight came from our prior work on visual 
habituation in a “speed of processing” task analogous 
to the “silent” conditions of Mather et al. (see Perone & 
Spencer, 2013). That work showed how the slow buildup 
of memory traces over learning gradually supported 
peaks in working memory fields leading to habituation.

There are probably multiple ways to alter these two 
problematic behaviors in WOLVES. We opted to explore 
increasing the amplitude of noise in the model. This 
was appealing in that noise is something hypothesized 
to change in development (with stronger noise early in 
development; see, e.g., Spencer et al., 2022). Thus, “tun-
ing” noise is a bit like “tuning” tau_decay: the baseline 
parameters of WOLVES can remain fixed but we can 
vary developmental parameters to optimize the fit of the 
model to the age groups of interest. We modified noise in 
two ways. First, we increased the noise amplitude in the 
inhibition of return field (ior_s) to introduce variability 
in the release from fixation (to create some short looks 
and some long looks). Second, we increased the noise 
amplitude in the feature working memory field (wm_ f ). 
This created variability in the stability of working mem-
ories for recently seen visual stimuli creating more habit-
uation-related change in the model's looking over trials.

To fit WOLVES to the empirical data, we conducted 
a 7 × 7 × 7 grid search, varying three parameters (tau_
decay, ior_s noise strength, and wm_ f noise strength) to 
find parameter values that resulted in minimal RMSE 
for each age group (see Figure 6). The range of values 
for exploration of each of these parameters was chosen 
around the baseline value used by Bhat et  al.  (2022). 
Specifically, we varied noise in the inhibition of return 
field between 0.8 and 1.9 (baseline value = 1.0), the noise 
in the working memory feature fields between 1.0 and 
6.0 (baseline value = 1.0), and memory decay parameter 
tau_decay between 800 and 8000 (baseline values for 
14- to 68-month-old models varied from 800 to 5000 
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with the “adult” baseline value set at 15,000). For each 
one of the 7 × 7 × 7 parametric combinations, the model 
was simulated for 300 runs, resulting in 205,800 sim-
ulations for the two task conditions in experiment 1. 
Figure 6 plots the RMSE values when the model is fit to 
data from “younger” children (left panel) and “older” 
children (right panel). The plots show that the RMSE 
values vary smoothly and systematically as the three 
parameters are varied, indicating that the model's be-
havior changes systematically across parameter space.

Data points corresponding to the best-fitting parame-
ters for the “younger” model are circled in red in the left 
panel of Figure 6 (for details, see Table 1). For the “older” 
model, we examined the three best-fitting parameter sets 
in more detail because they all had comparable errors yet 
suggested different developmental hypotheses. As can 
be seen in Table 1, parameter sets 1 and 2 suggest that 
noise is reduced over development. In the first param-
eter set, noise is reduced in the working memory fields. 

In the second, noise is reduced in the inhibition-of-re-
turn field and in the working memory fields. We note 
that Simmering  (2016) proposed a DF model of VWM 
where noise reduction in working memory was a key as-
pect of the developmental changes in parameters. The 
third parameter set suggests that tau_decay changes over 
development. This is consistent with the developmental 
proposal set forth in Bhat et al. (2022).

Given that these best-fitting parameter sets for the 
“older” model suggest two different developmental hy-
potheses—noise reduction and change in tau_decay—we 
explored parameter sets 1 and 3 further. Note that pa-
rameter set 2 was not explored further as the other noise 
reduction parameter set (set 1) fit the data slightly better.

In the next step, we examined the fit of parameter sets 
1 and 3 to the 16-month-old data from experiment 2 of 
Mather et al. (2011). Full details of these simulations can 
be found in Supporting Information. As can be seen in 
Table 2, parameter set 3 fared considerably better in this 

F I G U R E  6   Plots of the volumetric data of root mean squared error (RMSE) values between the model and empirical data against three 
parameters (noise in the inhibition of return field [ior_s], noise in the working memory feature fields [wm_ f ], and tau_decay). Left panel plots 
model RMSE from the data from 9- to 14-month-olds (‘Young’) and the right panel shows RMSE against 15- to 19-month-olds (‘Old’). Points 
highlighted in red circles indicate the best-fitting parameters for the two age groups (see text for details).

TA B L E  1   Parameter values and model fit metrics for the best-fitting grid search parameters for the “younger” model (9–14 months) and 
three best-fitting model parameters for candidate “older” models (15–19 months) when fit to data from Experiment 1 of Mather et al. (2011).

ior_s wm_f tau_decay RMSE MAPE

9–14 months 1.3 2 800 2.48 3.91

15–19 months param set 1 1.3 1 800 2.13 3.21

15–19 months param set 2 1 1 800 2.22 3.24

15–19 months param set 3 1.3 2 4500 2.33 3.29

Abbreviations: MAPE, mean absolute percentage error; RMSE, root mean squared error.

TA B L E  2   Parameter values and model fit metrics for parameter sets 1 and 3 for candidate “older” models when fit to the 16-month-old data 
from Experiment 2 of Mather et al. (2011).

ior_s wm_f tau_decay RMSE MAPE

16 months parameter set 1 1.3 1 800 4.55 6.97

16 months parameter set 3 1.3 2 4500 3.51 5.29

Abbreviations: MAPE, mean absolute percentage error; RMSE, root mean squared error.
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generalization experiment. Across experiments 1 and 2 
from Mather et  al.  (2011), parameter set 1 had a mean 
MAPE of 5.09 while parameter set 3 had a mean MAPE 
of 4.29—a considerable improvement. Thus, we report 
results for parameter set 3 as our primary findings. Note 
that parameter set 3 is circled in red in the right panel of 
Figure 6.

Results

Simulation results from the best-fitting parameters for 
the “younger” and “older” models are shown in the bot-
tom panels of Figure  5. To facilitate more meaningful 
comparisons between the model and the data, we com-
puted standard errors by running 10 random permuta-
tions on the data, sampling sets of 40 simulations (the N 
from Mather et al., 2011), and computing a mean stand-
ard error over these permutations.

Overall, WOLVES shows a solid fit to the empirical 
data; the RMSE and MAPE for all data points are 2.40 
and 3.61, respectively. In terms of comparisons between 
the silent and labeling conditions, recall that younger 
infants showed a stronger novelty preference in the 
silent condition than in the labeling condition during 
the first trial block (effect “a” in the summary above). 
This is the case in the model as well, although the ef-
fect is quantitatively small. The younger model does 
not capture the condition difference for the younger 
infants in the fourth trial block (effect “b”). The older 
model shows a stronger novelty preference in the si-
lent condition than in the labeling condition during 
the second trial block, reproducing effect “c”; again, 
however, the effect in the model is quantitatively small. 
In terms of above-chance performance, the model is 
robustly above chance for all trial blocks. Recall that 
for the younger infants, blocks 2 and 3 in the silent con-
dition were not above chance, and blocks 1, 2, and 4 
in the labeling condition were not above chance. The 
younger model is relatively f lat in the silent condition, 
so it fails to capture these variations (effect “d”), but it 

does reproduce the lower performance in blocks 1, 2, 
and 4 of the labeling condition (effect “e”). In addition, 
the older model shows a strong novelty preference over 
trials (effects “f” and “g”), particularly in the silent 
condition with some decline in block 5 for the labeling 
condition. It also shows the smallest novelty preference 
in block 1 of the labeling condition; recall that this was 
the only data point that was not robustly above chance 
for the older infants (effect “g”).

To more closely examine how the word presentation 
impacts novelty preference over the course of the ex-
periment, we examined the model's looking dynamics 
within trials. Figure  7a,b show the time course of per-
centage looking to novel stimuli across the 6000 ms of a 
trial for the models simulating the older age group. As 
can be seen in Figure 7a, in both the silent (black curve) 
and labeling (cyan) conditions, the model looks to the 
novel stimulus at the start of the trial with a second look 
to the novel item roughly 3 s into the trial. During the 
first block of the trials in both conditions (Figure 7a), the 
memory traces associated with the contrast fields, scene 
attention fields, and word-feature fields (see Figure  4) 
are just forming; thus, these memory layers do not have 
much effect on where the model looks initially. Why, 
then, does the model tend to look at the novel item first? 
This is caused by sustained activation in the working 
memory fields as the model tends to maintain peaks for 
the features of the repeated stimulus.

As the experiment proceeds, the memory traces and 
model dynamics drive looking differently for the silent 
and labeling conditions. In the silent condition, look-
ing is like earlier in the task, but with a stronger novelty 
preference overall, particularly early in the trial. This 
reflects habituation to the repeated item driven by stron-
ger working memory peaks for the repeated features sup-
ported by the associated memory traces. In the labeling 
condition, however, the memory traces for the word–ob-
ject associations become stronger and counteract habit-
uation, directing attention to the repeated object at the 
start of the trial. This can be seen in panel b as a sharp 
decrease in looking at the novel object in the labeling 

F I G U R E  7   Panel a shows percentage preferential looking by the model to the novel object during the 6 s time course of a trial for both 
conditions, aggregated over trials 2–6 of the first block. The vertical gray rectangles indicate timing and duration of label presentation. Panel 
b shows a similar time course aggregated over the last block of six trials. Panel c shows the percentage novelty preference when the parameter 
controlling top-down attention is manipulated from weak (10) to strong (20).
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condition (first big dip, cyan curve). Interestingly, the 
word–object associations are strong enough to cue atten-
tion even before the word is presented. This reflects how 
subtle factors can bias looking at the start of the trial 
when the model is not currently looking at either item.

During the remainder of the trial, every time the word 
is presented, it activates top-down attention again. This 
drives the second dip in the cyan curve in Figure 7b, just 
after the second word presentation. At this moment, the 
model has just released attention from the novel item; 
thus, top-down attention drives the model to look to 
the repeated object. This is followed by a final cycle of 
looking at the novel item as fixation is released from the 
repeated item.

The top-down attention effect on novelty preference 
is further illustrated in panel c of Figure 7. Here, we ma-
nipulated the top-down attention parameter (i.e., the 
strength of the projection from the word-feature field to 
the feature contrast field, see long horizontal blue arrow 
in Figure 4). This parameter controls the extent to which 
acquired word–object associations modulate look-
ing behavior in the system with lower values meaning 
word–object associations have less impact on looking. 
As Figure 7c shows, in the first block of the experiment, 
differences in this parameter do not influence novelty 
preference much. However, as word–object associations 
grow, higher values of top-down attention allow those 
associations to direct attention more to the repeated ob-
ject, and the model shows less novelty bias. Nevertheless, 
the strong influence of habituation is also evident in the 
figure—the novelty preference shown by the model is still 
above chance, even with a top-down attention parameter 
5 units stronger than the value used in our baseline sim-
ulations (15). Thus, while words clearly influence visual 
processing, they do not completely override the tendency 
to attend more to novelty.

Discussion

Data from the empirical study by Mather et  al.  (2011) 
suggest that the repeated presentation of a label de-
creased the strength of infants' novelty preference. Thus, 
in a direct comparison of conditions that only differed in 
the inclusion of labels, labels “disrupted” visual process-
ing and slowed the development of a novelty preference 
(Mather et al., 2011). In the silent condition, models and 
both the younger and the older infants showed a novelty 
preference early in the first block of trials. In the labeling 
condition, in contrast, the novelty preference in the first 
block was lower in both infants and models, although 
this effect was quantitatively small in the model. This 
was also the case in block 2 for the labeling condition for 
older infants and models. The model failed to capture 
the increase in novelty preference in the silent condition 
in block 4 for the younger infants and, more generally, 
failed to show much modulation across trial blocks in 

this condition. The younger model showed more modu-
lation in the labeling condition, capturing, for instance, 
the increase in novelty preference in block 3. For the 
older model in the labeling condition, the model showed 
the lowest novelty preference in block 1, consistent with 
the data. Overall, then, the model's performance was 
mixed: it captured some of the statistically significant ef-
fects from the data but missed other significant patterns.

Nevertheless, the model can inform our understand-
ing of how words impact visual processing. Mather 
et al. (2011) reviewed two possible causes for the impact 
of labeling. One possibility is that because attentional 
resources are shared across visual and auditory modali-
ties, labeling introduces additional load that suppresses 
processing of visual novelty. Alternatively, they sug-
gested that separable visual and word learning processes 
competed in directing infants' gaze, and this competition 
slows visual processing. Our simulations with WOLVES 
support and augment the later explanation. Labeling re-
sults in the formation of word–object associations over 
the first few trial blocks. These associations have a top-
down effect on looking behavior and can drive looking 
to the corresponding object. At the same time, the visual 
exploration of the repeated object leads to habituation 
to that object, directing attention toward novelty. Thus, 
word learning “competes” with visual habituation, com-
petition which is manifest in the contrast fields as these 
fields receive both top-down input from the word-fea-
ture fields and inhibitory input from working memory 
(see Figure 4). Note that WOLVES suggests that looking 
less at novel objects in the task is not necessarily indica-
tive of slower visual processing but a combined effect of 
preference for novelty, created by habituation, and pref-
erence for familiarity created by learning the statistical 
relationships between words and objects.

This conclusion is further supported by simulations 
of Mather et al.'s (2011) second experiment (reported in 
Supporting Information). In that study, Mather et al. in-
creased the number of repeating objects and labels, ar-
guing that it would increase the processing demands and 
result in a reduction in the novelty bias. A reduction in 
the novelty bias was indeed found in the empirical study 
and captured in WOLVES. Importantly, however, this re-
duction occurs in both the labeling and silent conditions. 
WOLVES provides additional insight on this finding as 
it shows how the stated experimental manipulation—in-
creasing the number of objects and words presented—re-
sults in reducing the frequency of presentations of each 
object which results in less habituation to the repeating 
objects and, thus, less novelty bias in both conditions. 
This demonstrates, then, how the application of process 
models that capture the details of tasks and experiments 
over time can help unpack how changes to an experiment 
produce changes to participant behavior.

Note that we restricted the grid search to three pa-
rameters (two noise parameters and tau_decay) to ex-
plore whether WOLVES could effectively generalize to 
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a new paradigm. Simulation results were mixed; despite 
this, the model was still a useful tool in clarifying the 
factors that might underlie infants' performance in this 
task. Thus, even though data from Mather et al.  (2011) 
are variable and have not yet been replicated, and even 
though our quantitative fit was not extremely precise, we 
can still see a useful dialog back and forth between the-
ory and data. It is important to acknowledge that there 
are likely other parameter sets that fit the data from the 
present experiment with greater precision. Given that 
there are no global optimization methods available for 
DFT yet, parameter tuning is a time-consuming task. 
This is clearly an important area for future work (see 
General Discussion for additional details).

SIM U LATION STU DY 2: 
M ATH ER A N D PLU N K ETT (2012), 
EXPERIM ENT 1

In this experiment, Mather and Plunkett  (2012) exam-
ined the role of novelty in early word learning with the 
aim of elucidating the processes underpinning the ME 
bias. ME is the bias children demonstrate when they as-
sociate novel words with new objects (Markman, 1989, 
1990). With young infants, ME is frequently explored via 
looking-based tasks wherein infants are presented with 
images of one or more familiar objects they would al-
ready know the name of along with a novel “name-un-
known” object. Across trials, known and novel names 
are presented and the stimulus that infants look to more 
is taken to be the one they have mapped to the word (see, 
e.g., Bion et al., 2013; Halberda, 2003). The typical find-
ing is that infants will look to the novel object when novel 
names are presented, thus demonstrating a bias to as-
sociate novel words with objects that do not yet have a 
name (see Mather, 2013, for review).

As reviewed by Mather and Plunkett (2012), much re-
search has examined the basis for this bias, but many of 
these studies use “name-unknown” objects that are also 
completely novel to the infant, confounding novelty and 
name knowledge. Mather and Plunkett untangled these 
factors by presenting three objects on each testing tri-
al—a familiar object, a pre-exposed name-unknown 
novel object, and a completely novel name-unknown ob-
ject. The experiment began by familiarizing infants with 
two novel objects each presented individually six times 
for 4000 ms. No names were presented during these fa-
miliarization trials, such that on subsequent novel label 
trials, these objects were pre-familiarized but name 
unknown. On each of the six novel label trials, three 
objects—one of the pre-familiarized name-unknown 
objects, a completely novel name-unknown object, and 
a familiar, name-known object were presented together 
for 8000 ms. During these trials, one of two novel names 
was presented with onsets of 3633 and 5633 ms thereby 
dividing the trial into a 4000 pre-naming baseline period 
(0–4000 ms) and a post-naming period (4000–8000 ms).

The data are presented in the left panel of Figure 8, 
aggregated across trials. For analysis, infants' total fix-
ation times to each object across the 8000 ms test trial 
were measured and proportion of infants fixating at each 
object in each 40 ms time bin was calculated in the pre- 
and post-naming phases. Mather and Plunkett  (2012) 
reported the following main effects in their paper: (a) 
infants displayed a significant preference for the novel 
object over the pre-exposed object during pre-nam-
ing phase (t(24) = 3.05, p < .01, d = .61); (b) infants also 
displayed a significant preference for the novel object 
over the pre-exposed object during post-naming phase 
(t(24) = 4.72, p < .001, d = .94); (c) prior to naming, infants 
had a significant preference for the known object over 
the pre-exposed object, (t(24) = 2.73, p < .015, d = .55); (d) 
with naming, there was no difference in attention to 

F I G U R E  8   Time series of proportion of infants (left) and models (right) attending to the known, novel, and pre-exposed objects over the 
course of the 8000 ms novel label trials. The vertical dashed lines in the left panel and the right side of the gray bars in the left panel indicate 
naming offset. Horizontal dashed lines indicate chance.
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the known object and the pre-exposed object (p > .5); 
(d) prior to naming, there was no significant preference 
for the known and novel objects; (e) with naming, atten-
tion to the novel object over the name-known object in-
creased significantly (t(24) = 4.75, p < .001, d = .95); and (f) 
the increase in preference for the novel object pre-nam-
ing versus post-naming was significant (t(24) = 4.15, 
p < .001, d = .83; for related findings, see Horst et al., 2011; 
Kucker et al., 2020). Mather and Plunkett (2012) argued 
these data provided compelling evidence that novelty is 
the mechanism behind ME as infants looked most to the 
novel object and least to the pre-exposed object.

Simulation methods

We simulated the task in WOLVES with the same trial 
structure and timing details reported in the empirical 
work. We used the same simulation methods and pa-
rameters used for Mather et al. (2011), Experiment 2 (see 
Supporting Information), including the tau_decay values 
that correspond to the 22-month-olds tested. Since this 
task involves presentation of known objects to partici-
pants, we started models with two known word–object 
associations. The strength of these memories was deter-
mined via an iterative search to minimize RMSE that 
ended in a final strength value = 0.3. Likewise, the model 
was provided with pre-familiarization trials with two 
novel objects that were not named before the novel name 
trials. Thus, on novel label trials, the model, like infants, 
was presented with one name-unknown pre-familiar-
ized object, one name-known familiar object, and one 
completely novel object along with a novel name. Note 
that, inspired by the grid search from the first simula-
tion experiment, we explored whether a noise reduction 
parameter set might improve the fit of the model to this 
experiment. This was not the case: a model with working 
memory feature field noise equal to 1.0 instead of 2.0 (with 
inhibition of return noise = 1.3 and tau_decay = 8000) did 
not fit the data better (RMSE = 6.13, MAPE = 9.65).

Results

The simulation results are presented in the right panel 
of Figure 8. WOLVES captured the infant data reason-
ably well with overall RMSE and MAPE values of 4.83 
and 7.66, respectively. The model looks most to the novel 
object and least to the pre-exposed object, consistent 
with infants' behavior. In the pre-naming phase of the 
test trials, WOLVES looks more to the name-known 
and novel objects compared to the pre-familiarized ob-
ject like infants. However, the model's looking pattern is 
more systematic—unlike infants, the model consistently 
looks at the name-known object first and then releases 
fixation to look at the novel (name-unknown) object. 
This reflects top-down attention caused by the relatively 

strong word–object associations for the name-known 
object like the bias to look toward the repeated item 
late in learning in the labeling condition of Simulation 
Study 1 (see Figure 7b). From the list of effects in Mather 
and Plunkett (2012), as reported above, WOLVES repro-
duced effects “a,” “b,” “c,” and “e.” Effect “d” showed 
a non-significant difference between the novel item and 
the name-known item during the pre-naming period. 
The model, by contrast, shows more looking at the novel 
item during this period. In addition, the model failed to 
show effect “f”—there was no clear increase in looking 
at the novel item in the naming period.

We suspect it would be possible to create more vari-
ability in the model's initial looking preference to more 
closely mimic infants' performance which may also help 
capture effects “d” and “f.” We opted not to pursue such 
parameter tuning as this simulation study was focused 
on how process models can be usefully generalized to 
new paradigms, rather than on producing an optimal fit 
to all empirical details. Even without detailed parameter 
fitting, WOLVES shows shifts in attention to the pre-ex-
posed name-unknown object in the pre-naming phase 
similar to the pattern shown by infants. In the post-nam-
ing phase, the model showed a clear preference to look 
at the novel object more than either the name-known 
or pre-exposed name-unknown objects, with some in-
crease in looking at the novel item time locked to the 
naming instances. Thus, consistent with infant data, the 
model showed a preference for the most novel of the two 
name-unknown objects after hearing the novel label.

To establish whether the model's preference for the 
most novel object correlated with ME behavior, that 
is, assigning the novel label to the most novel object 
and not to other two objects, we examined WOLVES' 
newly learned word–object associations. We compared 
the average number of times the model associated the 
novel label with the novel object against chance (i.e., 1/3). 
WOLVES associated the novel label with the novel ob-
ject significantly above chance (M = .54, SE = .05, p < 0.01) 
compared to the pre-exposed (M = .32, SE = .04) and the 
name-known objects (M = .14, SE = .03).

Mather and Plunkett argued based on the infant data 
that ME is driven by novelty: when the novel name was 
presented, infants looked to the most novel object of 
the two name-unknown objects available. However, the 
prior simulations with WOLVES have shown that nov-
elty preferences in the context of words are influenced 
by the competing action of habituation to more famil-
iar stimuli and top-down attention driven by word–ob-
ject mappings. Thus, we further examined the basis for 
infants' novelty preference in the context of this study 
via additional simulations manipulating the strength of 
these competing processes.

To analyze the role of top-down word-driven attention 
from the known words on preferences for the most novel 
item following label presentation, we ran a set of simula-
tions wherein we systematically varied the strength of the 
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memory trace of the known word (i.e., the word–object 
association) and examined how this modulated novelty 
preferences in the task following the word presentation 
(after 4000 ms). The left panel of Figure 9 shows the re-
sults in terms of percentage preference in looking at the 
novel object compared to the other objects in the latter 
half of trials, following word presentation. As can be 
seen, with increasing strength of known-word represen-
tations, novelty preference in the model increases. This 
suggests that prior knowledge boosts the novelty prefer-
ence following word presentation. This is consistent with 
other work by Bion et al. (2013), which shows that with 
increasing age and vocabulary, the ability to disambigu-
ate novel objects improves.

To examine the effect of habituation on infants' atten-
tion to the most novel object following label presentation, 
we ran a set of simulations manipulating the strength of 
the working memory traces for the scene. This parameter 
influences how quickly the model habituates. The right 
panel of Figure 9 shows that the novelty preference con-
sistently increases with stronger working memory traces 
(i.e., stronger habituation). Stronger habituation means 
less looking at known and pre-exposed objects that are 
presented to the model many times during familiariza-
tion. Thus, habituation also contributes to the increase 
in looking at the novel object.

Discussion

This experiment and the corresponding simulations 
delve deeper into the origins of ME and tease apart 
the relative contributions of visual novelty, familiarity, 
and naming. Both the empirical findings and WOLVES 
simulations concur on the pivotal role of novelty in the 
ME bias. The model and children show a robust relative 
preference for the novel object in the post-naming period 
of the trials. Since looking drives learning in the model, 
a ME bias appears wherein the model maps the novel 
label to the more-looked-at novel object. This mapping 
is manifested in the word–object memory traces in the 
model, highlighting the synchrony in visual behavior 

and internal knowledge representation. Critically, the 
model provides a mechanistic view of the ME bias, ex-
plaining how interactions between attentional processes 
and word association processes can drive looking and 
learning behaviors in this task.

While WOLVES is consistent with Mather and 
Plunkett's viewpoint that novelty is a primary driver 
behind ME, the model also suggests that novelty is im-
pacted by multiple factors including the strength of ob-
ject knowledge and the level of habituation in the system. 
A stronger memory of known objects improves atten-
tional processing, allowing faster selection and consol-
idation of known objects. This then allows more time to 
explore the novel objects. Furthermore, as the strength 
of the known-object association increases in the exper-
iment, so does the probability that the model will look 
first at the known object. This builds a working memory 
for the known object, driving attention away from this 
object during the latter part of the trial when novel labels 
are presented. This further increases the chances of ME.

Looking away from the pre-exposed object is largely 
influenced by the level of habituation in the system. The 
more the pre-exposed objects are familiarized with the 
model (by increasing the habituation rate in the system 
or by increasing pre-exposure time), the shorter the look 
durations of the pre-exposed objects become during the 
test trials. Shorter looks to pre-exposed objects result in 
higher relative preferential looking to the novel object at 
test. Considering these factors together, we suggest that 
novelty is not an isolated, necessary, and sufficient con-
dition for ME as Mather and Plunkett  (2012) propose; 
rather, relative novelty conspires with other task-spe-
cific processes to create the ME bias (see also Mather & 
Plunkett, 2012, Experiment 2).

GEN ERA L DISCUSSION

The goal of this special section is to showcase what 
mathematical and simulation-based modeling can ac-
complish for central questions in the study of child de-
velopment. The present study used a model of early word 

F I G U R E  9   Left: Novelty preference as strength of known-object memory trace was varied. Right: Effect of habituation parameter on 
novelty preference in the post-naming phase.
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learning—WOLVES—to provide a formal, process-
based understanding of the different cognitive processes 
underlying novelty preferences and word learning in 
early development. We focused on a complex literature 
that has examined how auditory and visual events are 
processed during a period in early development when vo-
cabulary knowledge is rapidly expanding. We suggested 
that process models might be a useful tool to clarify the 
complex in this literature because they take time seri-
ously, that is, they specify the details of input, processing 
on input, and how that processing leads to behavior. We 
then used WOLVES as a tool to probe how the different 
cognitive processes underlying novelty preferences and 
word learning might impact findings from the studies by 
Mather et al. In what follows, we reflect on this simula-
tion exercise and what it reveals about the role process 
models can play in developmental science.

Our first take-home conclusion is that process mod-
els like WOLVES have a real strength—generalization 
over tasks/conditions. We argued that this is because 
such models take time seriously. Consequently, adapt-
ing WOLVES to a new paradigm involved situating the 
model in the context of the auditory and visual events 
in the task and measuring the relevant behaviors (e.g., 
looking left and right). This was largely a programming 
exercise. We then asked a key question: how do we eval-
uate the effectiveness of this generalization exercise, that 
is, how do we know if the model works? Here, we dis-
cussed the challenges of parameter fitting and running 
quantitative simulations, highlighting that the nature of 
parameter fitting depends on the goals of the modeler 
(for discussion, see Pitt & Myung,  2002). In our case, 
our goal was not to fit every detail of the empirical find-
ings. This reflects, in part, the nature of the data. While 
differences in visual processing in the context of words 
are well established in the literature, the data from the 
simulated studies are somewhat variable. Thus, our goal 
was not to mimic the data in precise detail; rather, we 
wanted to use the simulations more qualitatively to ex-
plore what processes might push infants' performance 
around. Thus, we kept our parameter explorations to a 
minimum. Ultimately, we achieved reasonable fits to the 
data from the first simulation experiment by changing 
three parameters—two noise strength parameters and 
tau_decay (which implemented the main hypothesis of 
less forgetting over development from Bhat et al., 2022). 
We identified “best-fitting” parameter values using a 
grid search and subsequently refined these parameters 
through a probe of generalization to a second experi-
ment (see Supporting Information). We then showed how 
these parameter sets captured findings from Mather and 
Plunkett (2012).

A key question is did this exercise, in fact, help clar-
ify the complex? One important way WOLVES provides 
clarity is by instantiating how processes of attention, 
working memory, long-term memory, and word–object 
associative learning create patterns of visual exploration, 

habituation, and novelty biases, and by specifying how 
these evolve over the timescales of a trial, an experiment, 
and development. The exercise of generalizing WOLVES 
to studies by Mather et al. clarified some aspects of the 
results, pointing toward future work that would add ad-
ditional clarity regarding the origin of some empirical ef-
fects. WOLVES also failed to reproduce some empirical 
findings clarifying ways in which the modeling efforts 
need enhancement as well.

The experiments we simulated addressed the rela-
tionship between familiarity and novelty preferences in 
different ways. This is a fundamental issue in the devel-
opmental literature, with data showing that infants' pref-
erence for novel versus familiar objects is impacted by a 
range of factors such as infants' age, stimulus complexity, 
and task durations (see, e.g., Hunter & Ames, 1988; Rose 
et  al.,  2003). WOLVES sheds light on the possible ori-
gin of novelty and familiarity biases within the specific 
tasks simulated here. In Simulation Study 1, WOLVES 
showed that an initial novelty bias which was slightly 
stronger in the silent condition reflects habituation due 
to the continued presence of a repeated item from trial 
to trial. In the labeling condition, this process competes 
with the formation of word–object associations. This 
competition created a U-shaped pattern over trial blocks 
in the labeling condition as the word–object associations 
became stronger, particularly for the older models with 
slower memory decay. There was mixed statistical sup-
port for a U-shaped effect in the data; we suggest that fu-
ture empirical work might investigate this in more detail. 
We note that WOLVES was not directly able to explore 
the explanation offered by Mather et al. (2011) that au-
ditory input slows down visual processing as there is no 
explicit auditory process in the model. It would be useful 
for future modeling work to formalize how this explana-
tion might work. Nevertheless, WOLVES suggests that 
competition between visual habituation and word learn-
ing processes may be key in this task. We also showed 
that more word–object pairs reduce both habituation 
and word learning (see Supporting Information). Here, 
we saw how the task structure matters, highlighting a key 
point: it is not the processes that changed across studies, 
but the processing due to the change in task structure.

A key contribution in Simulation Study 2 was the 
demonstration that novelty may be better conceptual-
ized as relative novelty. Simulations showed that the bias 
toward the novel item was influenced by the strength of 
the known word–object associations as well as habitu-
ation to the pre-familiarized item. This was clarified 
via additional simulations where we manipulated key 
parameters, revealing systematic relationships among 
processes in the model which all contribute to the ME 
bias. This is a good example of how models can be use-
ful, allowing us to directly manipulate factors that push 
behavior around.

We note that the simulations reported here could 
have been conducted differently to serve other goals. 
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For instance, the central goal of Bhat et al.  (2022) was 
to develop a comprehensive theory of cross-situational 
word learning that explained key findings from the liter-
ature, out-performed competitor models, and provided 
the first account of how cross-situational word learning 
changes over development. Bhat et al. (2022) reviewed 19 
models of cross-situational word learning, highlighting 
that most word learning models are one-shot—they do 
not unpack what happens in real time on each trial. Thus, 
the pattern of looking from second-to-second through 
time cannot be captured. Bhat et  al.  (2022) then com-
pared WOLVES with two competitor models, simulating 
132 data values from 12 experiments with children and 
adults. This included generalization to three experiments 
without any fitting of parameters in advance (similar to 
“hold-one-out” validation). Quantitative measures of fit 
(e.g., Akaike information criterion) were then compared 
across all experiments. Critically, WOLVES captured 
the data better than the competitor models in the gen-
eralization experiments, explained data that the other 
models failed to capture, and offered the only develop-
mental account. In the context of the present report, we 
use this example to highlight that there is not one single 
way to run model simulations. Rather, the approach to 
modeling should vary with the goals.

Indeed, reflecting on the different simulation ap-
proaches across studies, we see important contributions 
from both more quantitative approaches (e.g., Bhat 
et  al.,  2022) and more qualitative approaches (i.e., the 
present report). For instance, the qualitative model usage 
reported here offered potential new insights into the data, 
even though the data were somewhat noisy and the model 
failed to capture some significant findings. We perceive 
that models are more often used to capture data from lit-
eratures that are more “settled,” where studies have been 
replicated multiple times (often including pre-registra-
tion). While this is certainly a fundamental use of mod-
els, we envision a future where models and data can have 
more of a dialog back and forth; where models can be 
readily applied to multiple data sets and the model results 
are used to inform the next experiments even if model in-
terpretations are somewhat preliminary, and even when 
the model does not achieve an ideal quantitative fit.

For instance, Bhat et al.  (2022) made several novel 
predictions within the cross-situational word learning 
domain that are currently being tested. What about 
building on the work presented here? Simulations of 
experiments from Mather et  al.  (2011) show that the 
recurrence of the same novel word–object pair across 
trials helps infants acquire the repeated mapping, 
modulating novelty biases relative to the silent condi-
tion. One way to mitigate the impact of word–object 
associations would be to modify the task by providing 
a novel label on each trial. If labels are not repeated, 
the system will form only weak word–object associa-
tions, eliminating top-down influences on the visual 
dynamics.

We probed this prediction in WOLVES by simu-
lating the same task structure as Simulation Study 1 
(Experiment 1 from Mather et  al.,  2011) but included 
a different novel label on each trial. In this new label 
novel condition, WOLVES showed nearly identical be-
havior to the silent condition from the original study 
(see Figure S1). Because the labels change on every trial, 
however, there is no consistent word–object association 
as in the labeling condition of the original study. This 
means there is no top-down word-driven attention in the 
model. Thus, looking in the model is dominated by vi-
sual memory and habituation factors only as is the case 
of the silent condition. This highlights how WOLVES—
and process models more generally—can be a useful 
platform for exploring novel experimental situations and 
generating a priori novel predictions.

Although several aspects of our simulation study were 
promising, the study also revealed limitations. As noted 
previously, one major limitation is parameter tuning 
with complex models like WOLVES. We approached this 
by using a three-parameter grid search; however, the fit 
of the model to data was clearly not optimal, with the 
model failing to capture several statistically significant 
effects in the data. We are currently developing a new 
tool called “Dynamic Field Flow” that uses machine 
learning tools to optimally fit parameters of DF models. 
This requires that one specify constraints for the activa-
tion time course that must be satisfied to optimally fit 
the model to data. We have shown that this works well 
for reaction time data but have yet to generalize this ap-
proach to fitting accuracy data or looking time courses. 
Another key limitation of the study was the variability of 
the data we modeled; as noted, replication of the findings 
from Mather et al. (2011) and Mather and Plunkett (2012) 
is necessary to identify which patterns are truly robust 
in the data. On this front, it would be ideal to have more 
information on the within-subjects variance in the data 
to move simulation work toward modeling individuals 
instead of groups. This would enable us to model not just 
group means but also the variance in the data, and to test 
the fit of the model statistically. Finally, we did not ex-
amine competing models of the phenomena of interest. 
Such work is critical moving forward to probe which ex-
planations best explain the processes driving the central 
effects reported here.

In conclusion, simulations from the present study 
show how formal process models can clarify complex-
ity by making theoretical concepts and processes ex-
plicit and concrete. Looking forward, we resonate with 
goals of the special section which also highlights how 
models can contribute to the grounding of empirical 
findings within an open science framework. In line with 
this, we again point to our OSF site where all materi-
als from the present report are available. Readers might 
also be interested in materials on our DFT website, a 
central repository for the theoretical framework, with 
case studies, tutorial videos, and other tools including 
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model code and instructions (www.​dynam​icfie​ldthe​ory.​
org). We hope these efforts can contribute to a richer the-
ory–experiment dialog in developmental psychology and 
related fields.
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