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Abstract: Assessments of the water quality in coastal zones often rely on indirect indicators from
contributing river inputs and the neighbouring ocean. Using a novel combination of distance accu-
mulation cost methods and an ocean-colour product derived from SENTINEL-3 data, we developed a
probabilistic method for the assessment of dissolved inorganic nitrogen (DIN) in Liverpool Bay (UK)
for the period from 2017 to 2020. Using our approach, we showed the annual and monthly likelihood
of DIN exposure from its 12 major contributory rivers. Furthermore, we generated monthly risk maps
showing the probability of DIN exposure from all rivers, which revealed a seasonal variation of extent
and location around the bay. The highest likelihood of high DIN exposure throughout the year was
in the estuarine regions of the Dee, Mersey, and Ribble, along with near-shore areas along the north
Wales coast and around the mouth of the rivers Mersey and Ribble. There were seasonal changes in
the risk of DIN exposure, and this risk remained high all year for the Mersey and Dee estuary regions.
In contrast, for the mouth and near the coastal areas of the Ribble, the DIN exposure decreased in
spring, remained low during the summer and early autumn, before displaying an increase during
winter. Our approach offers the ability to assess the water quality within coastal zones without
the need of complex hydrodynamic models, whilst still having the potential to apportion nutrient
exposure to specific riverine inputs. This information can help to prioritise how direct mitigation
strategies can be applied to specific river catchments, focusing the limited resources for coastal zone
and river basin management.

Keywords: coastal water quality; land-based pollution; Liverpool Bay; ocean colour; river plume;
UK; water quality assessment

1. Introduction

Our coastal waters are important systems, being at the interface between land-based ac-
tivity and our marine waters. Rivers discharge into our estuaries and coastal waters, putting
coastal systems at a higher risk from the negative impacts of land-based pollution [1,2].
Estuaries are sinks for organic matter and nutrients entering both from their catchments
and the adjacent lands and urban areas and, in turn, they transport such materials to the
adjacent coast [3,4]. The inland expansion of urban settlements and an increased human
population place an increased burden on the surrounding coastal environment, leading
to the increased delivery of pollutants, both natural and artificial, from the terrestrial
watershed [5–7].
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Human and industrial wastes are often discharged into upstream watercourses, for
example through the combined sewer overflow (CSO) system, and in the UK, these point
sources of pollution were a major contributory factor to coastal and terrestrial waterbody
eutrophication prior to the 1980s [8–11]. Concerted action during the 80s and 90s signifi-
cantly reduced the discharged effluents from wastewater treatment plants in the UK, which
resulted in major improvements in coastal water quality [9,12]. These achievements are
easily lost, and increased pressure on water treatment plants through population increase
and reductions in monitoring oversight can result in a return to point discharges affecting
water quality [11]. However, the intensification of agriculture has also placed a burden on
the water quality of rivers and receiving coastal waters [13–16]. The use of monoculture
crops has resulted in a reliance on pesticides, and the application of artificial fertilisers has
increased the nutrient loads entering watersheds [15]. Arable and pastural practices have
often become decoupled, changing the dynamics of sustainable nutrient use. Unlike the
CSOs mentioned above, these agricultural sources of pollution are diffuse (spread unevenly
across the landscape) and can build up in natural sinks in the environment [17]. Nitrogen
is delivered mainly in its soluble forms (nitrate, nitrite, and ammonium) and enters surface
water and groundwater either from run-off from the land or through percolation via the
soil [18]. These soluble forms can remain and build up within sinks over many decades
before a tipping point is reached and they begin to infiltrate river and coastal environ-
ments [14,19]. Phosphorous, delivered in the soluble form phosphate, is readily retained
in soils and sediments, and it is believed there is a widespread phosphate overabundance
in some UK soils through its overuse in agriculture [20]. Phosphate was a major issue in
point source pollution prior to the 1980s, being heavily used in household and industrial
detergents. Reductions in detergent use have reduced the levels of this nutrient entering
UK water courses [21,22].

As a river discharges into the marine environment, it creates an area of buoyant
freshwater radiating from the mouth of the river, called the river plume. Plumes can
be categorised into ‘riverine’ and ‘estuarine’ types based on the degree of mixing that
occurs prior to their entry into the ocean [23]. A riverine plume is dominated by the
influx of freshwater discharge, such that the freshwater is discharged over the shelf waters
without mixing due to tidal or other factors. In contrast, with an estuarine plume, a
significant amount of mixing takes place, often within an enclosed basin, before the plume
is discharged into the shelf waters. A river plume is an area typified by a lower salinity
and increased surface temperature, and can include nutrients and other elements, such
as plastics flushed from the terrestrial watershed [24]. The extent of a river plume varies
enormously between different rivers and at different times of the year, as it depends on the
complex interplay between many hydrodynamic factors, including the depth of the water,
the rate and degree of the mixing of stratified water layers, tidal and residual currents,
and climatic factors such as wind direction [24]. The dynamics of the plume are further
complicated when two or more rivers discharge into the same coastal area [25–27].

In 2019, only 16% of the surface water bodies in England had a good ecological status
according to Water Framework Directive (WFD) assessments [28], and diffuse pollution
from agriculture remains one of the major causes of these assessment failures. An improved
understanding of the interactions between catchment activities and the coastal environ-
ment are important to guiding the prioritisation of best management practices and urban
improvements. Whilst the UK has been assessing the state of its transitional and coastal
waters under the WFD (and the new Water Framework Regulations—WFR), the assessment
of a coastal area is limited to 1 nm from the shore. In turn, the offshore assessment areas
used to assess eutrophication under the OSPAR Comprehensive Procedure [18] can extend
to larger areas, diluting the impact of these coastal waters. Recent work [29] has identified
plume extents from Liverpool Bay that extend further than the WFD assessment areas, but
are still relatively nearshore. The nutrient and plankton dynamics in these plume areas
need to be considered in their own right, and not as the edge of the WFD or the initial
zone in the OSPAR offshore area [18]. Mapping plume waters using remote sensing and
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the water quality gradients within has been used successfully in monitoring programs,
providing a tool to increase the data frequency and connect catchment activities to the
transport of pollutants into the marine environment [29–31].

Liverpool Bay is a shallow coastal section of the semi-enclosed Irish Sea, lying off the
north coast of Wales and the west coast of England. The bay receives freshwater input from
English rivers, including the Mersey, Ribble, and the English section of the Dee, which
flow through heavily industrialised and highly populated areas, and Welsh rivers such as
the Clwyd and Conwy, which flow through the more pristine rural catchments of north
Wales and the Snowdonia National Park. The bay has large tidal currents, with a spring
tidal range in excess of 10 m, which has important implications for the fate of freshwater
influxes. The bay represents a Region of Freshwater Influence (ROFI) and the dynamics of
freshwater and saltwater mixing throughout the water column are strongly influenced by
estuarine outflows that are typically high-intensity and short-duration events [32]. This is
further complicated by the salinity and temperature gradients that can affect the buoyancy
of the freshwater plume with an increase in stratification during the summer months. The
degree and extent of the stratification and mixing of the freshwater plume is, therefore, a
complex interaction of tidal, wind, temperature, and salinity differences, and the intensity
and duration of the outflows from the estuaries around the bay [32,33].

The UK Marine Strategy consists of a framework for achieving a good environmental
status through protection, the prevention of deterioration, and where applicable, the
restoration of the marine environment, whilst allowing for the sustainable use of marine
resources. In an environment with multiple influxes of nutrients entering a complex
hydrodynamic domain, being able to understand the relative contributions of each source
to elevated nutrient levels is important for targeting alleviation measures. Further, bridging
the gap between the riverine input and its inland source within the terrestrial watershed
would enable management scenarios to be tested and evaluated. In this regard, the aim of
this study was to (a) develop a model of probable exposure to dissolved inorganic nitrogen
(DIN) of coastal waters in Liverpool Bay, based on empirical Earth Observation (EO) data;
and (b) enable the apportionment of DIN in the Liverpool Bay river plume to individual
riverine inputs.

2. Materials and Methods
2.1. Study Area

Liverpool Bay is situated in the eastern section of the Irish Sea off the northwest coast
of England and the northeast coast of Wales (Figure 1). It is a shallow bay (<50 m) receiving
freshwater input from 12 major rivers along the coastline. The major rivers with coastal
outlets are the Clwyd, Dee, Mersey, Ribble, and Wyre, accounting for significant annual
discharge and DIN input into the bay [31]. Other rivers discharging into the coastal zone
include the Conwy, Alt, Lune, Keer, Bela (including Kent), Leven, and Duddon.

2.2. DIN Discharge Loads from Rivers into Liverpool Bay

Measurements from the Environment Agency Water Quality stations and discharge
data from the National River Flow Archive (https://nrfa.ceh.ac.uk/; (accessed on
19 January 2023) see Supplementary Materials Table S1 for details) were used to calculate
the DIN load for each of the 12 major riverine inputs into Liverpool Bay for the period from
2010 to 2020. Briefly, the combined gauged daily flow data were obtained for the river(s)
feeding into the bay, with any missing readings substituted with a separate mean daily
gauged flow rate for each river. A mean monthly DIN concentration was obtained from the
EA water quality archive. If a direct measurement of DIN was not available, the sum of the
total oxidised nitrogen and ammoniacal nitrogen was used instead. The daily DIN load
was calculated using Equation (1) and summed monthly to produce monthly estimates for
each month between 2010 and 2020, using a standard approach [34].

DIN Load(kg N) = 86.4 × Flow Rate
(

m3 s−1
)
× DIN Concentration

(
mg L−1

)
(1)

https://nrfa.ceh.ac.uk/
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2.3. Earth Observation Data Processing and Generation of the River Plume Boundary

The Forel-Ule (FU) scale consists of 21 colours and is used to visually identify optical
water types [35–37]. The Forel-Ule Index (FUI) was derived from the FU scale using the X,
Y, and Z tristimulus values in the chromaticity diagram, which correspond to red (X), green
(Y), and blue (Z) in the visible light spectrum, based on camera or satellite images [36,38,39].
The FUI derived from Sentinel-3 has been used to map the extent of flood plumes, with FU
values of 10 or above being representative of riverine-influenced areas (primary, secondary,
and tertiary plumes) [40]. In our study, the FUI was derived for the study area using
Sentinel-3 OLCI level 1C data, which were atmospherically corrected using POLYMER [41].
An updated open-source FUME repository was deployed to generate the FUI values. For
each month, the median, mean, minimum, maximum, standard deviation, standard error,
and number of observations of the FUI were calculated from all the available images (for
a detailed description of the methodology, see links in the Data Availability statement).
Using the FUI values, the maximum extent of the river plume was determined across the
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whole time series to provide a boundary to constrain the analysis. To do so, cells with an
FUI value of 10 or above and with an overall frequency above 0.5 across the whole time
series (that is, present for at least 30 out of the 60 months), were considered as part of the
river plume. The resultant map was refined by using focal statistics to remove isolated
cells and create a continuous plume boundary edge. All the subsequent analyses used the
monthly median value of the FUI.

2.4. Current Direction in Liverpool Bay

The direction of the residual surface-level currents in Liverpool Bay is largely influ-
enced by the prevailing wind direction [42]. Modelled surface current velocities were
obtained from the Atlantic-European North West Shelf-Ocean Physics Reanalysis dataset.
Monthly mean current velocities (eastward and northward) from the geographical extent
between 54.5◦N and 53◦N and −4.5◦E and −2.75◦E, the period from 2017 to 2021, and
water depths between 0 and 100 m were downloaded from Copernicus (for details see
the Data Availability Statement. Using R [43] and the packages raster [44], rgdal [45], and
plotly [46], the geographical current direction was resolved using the vertical (vo) and
horizontal (uo) velocities, and the monthly mean angular direction was calculated for each
grid cell for the years from 2017 to 2021. The output direction raster was resampled and
interpolated in ArcGIS Pro to a grid cell size of 0.003◦ × 0.003◦, using a bilinear approach
to match the resolution of the satellite-derived plume boundary. The monthly residual
current direction rasters used in the distance accumulation are shown in the Supplementary
Materials (Figure S1). These match the north to northwest residual current direction in
Liverpool Bay [32,47,48].

2.5. Generation of Monthly DIN Exposure Risk Maps for the Liverpool Bay River Plume

A probabilistic approach was used to determine the contribution of different rivers
in the formation of an overall monthly DIN exposure risk map. The workflow comprised
the generation of probability maps for the presence of the river plume at each grid cell, the
likelihood of riverine inputs from a specific river reaching the grid cell, and the likelihood
of DIN in the plume at the grid cell having the river as its source (Figure 2). Individual
monthly river risk maps were generated and combined, using an average of the proportion
of the DIN loads from the river, to create monthly DIN exposure risk maps.
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2.5.1. Spatial Plume Frequency Maps

The presence of the river plume from the satellite-derived FUI values was determined
using established techniques [29,30]. All the monthly median FUI layers were reclassified
for the presence of the river plume (FUI value ≥ 10), and for each calendar month, the
frequency of the plume presence was calculated for the same months between 2017 and
2021. For grid cells with no available FUI data, the frequency was taken only for those
months with data present.

2.5.2. Spatial Probability of Riverine Input across the River Plume

For each of the 12 major rivers feeding into the Liverpool Bay study area, for each
calendar month, a distance accumulated cost approach was used to calculate the probability
of riverine input from each individual river reaching a location within the plume. For
each grid cell across the river plume, the cost of moving across the cell was set at 1. This
cost surface was used in the distance accumulation approach for each of the 12 rivers in
turn, using the Distance Accumulation tool from the spatial analyst toolbox in ArcGIS Pro
2.9.0. This approach was performed for each month, both with and without the residual
current direction as the input horizontal factor. Where the current direction was used, the
horizontal factor was a linear function of the horizontal relative moving angle with a zero
factor of 1, a cut angle of 181◦, and a slope of 0.01. The resulting distance accumulation
raster was normalised by subtracting the cost at each cell from the maximum cost across
the river plume and dividing this by the maximum cost across the river plume. This gave a
normalised probability scale from 0 (location with the highest associated cost) to 1 at the
source outlet.

2.5.3. Spatial Normalised Potential of DIN in the River Plume

To generate a cost surface for DIN, the observed FUI was used as a proxy for the
normalised concentration of DIN in the surface water. A quantitative analysis of the
correlation between the FUI and in situ measurements of nitrate, nitrite, and ammonium for
Liverpool Bay was extensively covered in [29]. The observed DIN values were estimated
from the observed values of nitrate, nitrite, and ammonium taken at 202 sample points
around Liverpool Bay between 2017 and 2021 (see Supplementary Materials Figure S2.1
for details). All FUI values below 10 were assumed to be offshore and given a maximal
normalised cost of 0.9, and estuarine water (FUI of 21) was given a normalised cost of 0.1.
For FUI values between 10 and 21, a LOESS correlation between the observed DIN and
FUI values was used to obtain the normalised cost for each FUI value (Supplementary
Materials Figure S2.2). The function used to create the normalised cost values is shown in
the Supplementary Materials Figure S2.2c.

In a two-step process, normalised cost surfaces were generated from the median FUI
values for each calendar month between 2017 and 2021. In the first step, a mean of the FUI
monthly values was calculated, with missing data values ignored. Seasonal cost surfaces
were generated in a similar way, except that the mean was taken for all the months in
that season. In the second step, the value of the FUI at each grid cell was converted into
a normalised cost value using the normalised cost function (Supplementary Materials
Figure S2.2). This resulted in monthly and seasonal cost surfaces that were used in the
distance accumulation approach (see Supplementary Materials Figure S4).

Finally, to generate the spatial grids of the normalised potential of DIN presence, the
cost surfaces described above were used with the distance accumulation tool for each river,
month, and/or season. These distance accumulation surfaces were normalised against the
maximum cost, taking the maximum cost as 0. This approach was performed with and
without the residual current direction as the input horizontal factor. Where the direction of
the current was used, the horizontal factor was a linear function of the horizontal relative
moving angle with a zero factor of 1, a cut angle of 181◦, and a slope of 0.01.
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2.5.4. Calculation of Risk of DIN Exposure in the River Plume from Individual Rivers

For each cell in the 0.003◦ × 0.003◦ (WGS84) grid, the risk (probability PExp) that the
cell could be exposed to DIN input from a given river r was calculated using Equation (2)
below as the product of the probability that water from river r reached the cell (Pr), the
frequency of a river plume at that location over the specified time period (FPlume), and the
normalised potential of DIN presence at that location from river r (CDIN; derived using the
cost surface derived in Section 2.5.3).

PExp(r) = Pr × FPlume × CDIN(r) (2)

River risk maps for each river were reclassified into 1% groupings and converted
into polygons using ArcGIS Pro. All polygons with a risk of 75% or over were extracted,
combined, and converted into line features. The line features in the coastal zone were
extracted and smoothed to create contour lines representing the boundary of risk above 75%.

2.5.5. Calculation of Risk of DIN Exposure in the River Plume from All River Inputs

The DIN exposure risk maps produced in Section 2.5.4 represent the risk of DIN
exposure of each grid cell based on individual rivers discharging into Liverpool Bay. To
consider the different levels of the DIN load from each river, all river risk maps (PExp) were
multiplied by the proportional input of the DIN (PropDIN) for that month, averaged over
the period from 2010 to 2020. For each month, these proportional risk maps were summed
to create an overall DIN risk exposure map (RTotal), according to Equation (3) below.

PExp(Total) =
r

∑
i=1

PExp × PropDIN (3)

The monthly risk maps were used to generate risk frequency maps, showing the
number of months, as a fraction of a year, that each cell was exposed to any risk (risk value
greater than 0) or to a risk of at least 0.5, meaning that the location had a 50% likelihood of
being exposed to DIN above the background (open sea) level, in that month or year.

3. Results
3.1. Boundary Extent and Seasonal Frequency of the Primary River Plume

The extent of the freshwater river plume estimated using FUI values has a coverage
area of 8468 km2 and a maximum westerly extent of 4.2◦ out from the English coastline, in
agreement with [32] (Figure 3). The seasonal frequency of the river plume between 2017
and 2021, as indicated by an FUI of 10 or above, is shown in Figure 3. As expected, this
shows that the plume had the greatest extent in the winter months (December to February),
when the river discharges were highest, and this receded during spring (March to May)
to the smallest extent in the summer (June to August). A similar seasonal pattern was
found in [29], where a monthly river discharge was analysed against the FUI derived
plume extent between 2017 and 2020. The increase in the plume extent was highest off the
coast of Blackpool around Shell Flat, with only marginal increases along the northwest
coast of Wales. Individual calendar monthly plume frequency maps are shown in the
Supplementary Materials Figure S3.
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3.2. Spatial Probability of Riverine Input into the Plume

The river plume in Liverpool Bay consists of a complex interaction of all the inputs
from the rivers along the coast. The dispersal of the inputs from an individual river will
depend on the interplay of different factors, including the volume and concentration of
the discharge, the tidal cycle and hydrodynamics of the estuarine area, weather conditions
such as the strength and direction of the wind, the surface mixing in the coastal waters,
and the velocity of the residual current. In the absence of suitable in situ observations at
daily and sub-daily time resolutions, in particular, for the volume and concentration of the
DIN in the discharge, a distance accumulation approach was used to generate the spatial
probability of the riverine inputs reaching a given grid cell within the plume. Figure 4
shows example riverine spatial probabilities for July, for the inputs from the rivers Conwy,
Ribble, and Leven. In Figure 4a, the residual current for July was used to generate the
spatial probabilities, whereas in Figure 4b, no current direction was employed. The results
show small, but potentially significant, differences in the likelihood of riverine inputs to
the plume. For example, for Conwy, there is an increased likelihood of its riverine input
reaching more northerly and westerly regions, for Ribble, the likelihood is concentrated
more along the western coastline, and for Leven, there is a decrease in the likelihood of its
riverine input reaching the Ribble estuary.

3.3. Normalised Distance Accumulation Grids of DIN from the Major Rivers

Monthly DIN cost surfaces were used to generate distance accumulation surfaces for
each calendar month, for each major river inlet. The cost distance maps were normalised;
Figure 5 shows the maps for January and July for the four rivers that supply the greatest
inputs to the bay. These maps show the potential level of DIN supplied by individual rivers
for each month.
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3.4. DIN Exposure Risk Maps for Riverine Inputs into Liverpool Bay

The risk of exposure to DIN from the 12 major rivers was calculated for each month
and, using these, a contour line was generated, marking the boundary of the areas of
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coastal waters adjacent to each river mouth where the likelihood of DIN exposure from that
river was 0.75 or above. Example maps for Clwyd, Dee, Mersey, and Ribble are shown in
Figure 6, with monthly contour lines plotted for each month within the four seasons. These
maps show that, for each river, the greatest exposure risk was local to the estuary mouth
and that the exposure risk was greatest in winter, decreasing marginally over autumn, with
significant declines in spring and the smallest extent in summer.
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For the River Clwyd in summer, the DIN exposure risk was concentrated to the
nearshore waters to the east of the mouth of the river, probably reflecting the influence
of the residual current direction. During the autumn months, this risk extended further
offshore and began to increase along the westerly coast as the level of DIN load from the
river increased. This peaked in winter, with a large increase in its extent to the east of the
river mouth, at the intersection with the discharge from the River Dee. A similar pattern
was observed for the River Dee, although the extent to the east of the river mouth was
much larger and the difference to the westerly extent was more pronounced in the summer
months. The extent across the easterly and westerly nearshore waters increased through
autumn and peaked in December and January. February showed a marked decrease in
extent and the risk boundary resembled that observed during the spring months.

The 0.75 risk contour for Ribble was restricted to the nearshore coastal waters north
and south of the mouth of the river. This was pronounced during the summer months and
extended towards open ocean during the autumn months. In addition, the risk contour
moved further north and receded marginally from the extreme southern extent. In contrast
to the Clwyd and Dee, November showed the greatest extent and was matched by all of
the winter months, including February, during which, no recession of the boundary was
observed. Interestingly, the greatest incursion into the Mersey was observed during the
spring, particularly during April.

Throughout the year, the 0.75 risk contour for the River Mersey extended into the
mouths of the River Dee to the south and the Ribble to the north. The nearshore extent
increased significantly north and south along the coast during October and November.
Unlike the Rivers Clwyd, Dee, and Ribble, the extent started to recede in January and the
most westerly edge moved eastwards. The incursion along the nearshore waters to the
west of the mouth of the Dee resumed in the spring.

3.5. Scaling Probabilistic Risk Maps to Reflect the Differing Riverine DIN Discharge Loads

The probabilistic risk maps generated for each river assumed an equal discharge of
DIN into the Liverpool Bay area, which is not the case. The DIN loads for each of the
12 major inlets into Liverpool Bay were calculated for the period from 2010 to 2020 (see
Section 2.2). The average annual input of DIN from the 12 rivers was 156,181 MT and
was greatest in the months from November to March, with totals of 13,988 MT, 22,948 MT,
20,876 MT, and 18,096 MT for November, December, January, and February, respectively
(Table 1). The Mersey was the greatest annual contributor of DIN, with a mean annual load
of 63,862 MT, followed by the Ribble (25,186 MT), the Dee (24,308 MT), and the Clwyd
(13,979 MT).

Table 1. Mean monthly DIN loads for the major river inputs into Liverpool Bay, calculated from river
discharges and DIN concentrations for the period 2010 to 2020. Values shown are metric tonnes (MT).

River Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Clwyd 2392 2216 1388 892 482 513 349 331 529 914 1401 2573

Dee 4457 3208 1959 1749 1393 1243 787 875 1174 1425 2047 3994

Mersey 6597 5844 6763 4342 5121 4927 4404 5003 4150 4379 5561 6772

Ribble 3328 2994 1811 838 533 2160 1598 1698 1404 1910 1998 4914

Lune 923 806 199 113 35 114 57 863 270 268 511 894

Bela 2116 2082 1903 731 551 477 785 975 1208 1486 1702 2759

Leven 532 550 354 214 138 141 139 229 194 309 403 487

Others * 531 396 310 133 117 107 172 186 201 250 365 555

Total 20,876 18,096 14,687 9012 8370 9682 8291 10,160 9130 10,941 13,988 22,948

* Rivers Alt, Conwy, Duddon, Kent, and Wyre combined.
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The monthly proportions of DIN entering Liverpool Bay from the river inputs were
used to scale the probabilistic river risk maps, which were then summed to obtain the
probabilistic total exposure risk to DIN for each calendar month (Figure 7). Due to the
distance accumulation source being located at the mouth of the river, the upstream areas
of the Rivers Dee, Mersey, and Ribble showed a moderate decrease in their scaled risk
to DIN due to a processing artefact. Aside from this, the maps aligned closely with
the non-cohesive sediment distribution map generated using a hydrodynamic model by
Huang et al., 2015, and revealed that the estuarine regions of the Dee, Mersey, and Ribble,
along with near-shore coastal areas from the Dee estuary to Colwyn Bay, around Taylors
Bank and Horse Bank, had the greatest probability of DIN exposure during the year. The
DIN exposure risk changed throughout the year. For example, the risk remained high
throughout the year for the Mersey and Dee estuarine regions, but decreased in April
and May for the mouth of the Ribble, and remained low along the near-shore Blackpool
coast and Shell Flat between April and September, before increasing between October and
February. By using river probability maps (Supplementary Materials Figure S5) and maps
of the percentage of DIN risk from each river (Supplementary Materials Figure S6), we were
able to resolve the rivers contributing to these observed effects. For example, the change in
risk for the Ribble mouth and Shell Flat was due to discharge from the rivers Wyre and
Mersey. Changes in the risk pattern along the Blackpool near-shore were predominantly
due to discharge from the Ribble and the Wyre.

3.6. Annual Exposure Risk to DIN in Liverpool Bay

Using the monthly DIN exposure risk maps, the frequency that a grid cell was exposed
to the risk of DIN exposure was determined. For example, if a location had a risk exposure
value above 0 for 3 months of the year, then this cell was given a frequency value of 0.25.
The frequency was stratified into classes for no exposure, exposure every month, and
exposure for 9 to 11 months, 6 to 8 months, 3 to 5 months, and 1 to 2 months. This was
performed for any monthly DIN risk (Figure 8a) and only for monthly risk frequencies
greater than 0.5 (Figure 8b).

There was a constant DIN exposure risk throughout the year for all the nearshore
waters along the Liverpool Bay coastline. However, the scale of this risk differed, with a
constant risk level above 0.5 only observed in the mouths of the Rivers Ribble, Dee, and
Mersey, and the nearshore regions connecting these river mouths. Interestingly, the area of
risk with a frequency of 9–11 months was much lower than that for 6–8 months, or for all
12 months, both for all risks, and solely for risk levels above 0.5 (Table 2). This is consistent
with the observations in Section 3.4, showing the risk contours for the major rivers.

Table 2. Areal size of the river plume in Liverpool Bay with an annual frequency of DIN exposure
greater than 0 (all risks), or greater than 0.5. Value in brackets represents the percentage area of
the plume.

Annual Frequency of DIN
Exposure Risk

(Months at Risk)

Area with DIN Exposure
Risk Greater than 0 (km2)

Area with DIN Exposure
Risk Greater than 0.5 (km2)

0 26.8 (0.3) 5148.6 (60.8)
1–2 2832.4 (33.4) 984.3 (11.6)
3–5 2518.6 (29.7) 643.3 (7.6)
6–8 1072.0 (12.7) 750.6 (8.9)

9–11 511.5 (6.0) 365.9 (4.3)
12 1511.7 (17.8) 580.4 (6.8)
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(a) map showing the frequency of where DIN exposure is greater than 0 across the plume; (b) map
showing the areas of DIN exposure risk with a level greater than 0.5 (b).

4. Discussion

Riverine inputs to the ocean are a major contributor of freshwater, along with trans-
ported substances such as nutrients, heavy metals, plastics, microbes, and other substances
of concern [49]. Monitoring programmes to assess the quality of coastal zone waters,
typically for bathing or shellfish hygiene, often use low-frequency, in situ measurements,
usually sampled close to the shoreline, to indicate the status of the water with respect
to threshold levels of pollutants [31,50–52]. Whilst these methods consider the directly
observed measurements of the pollutant of concern, there is concern over the represen-
tativeness of such point data, especially in a turbulent environment [33]. In contrast,
hydrodynamic models can be used to provide a detailed representation of the fate of ad-
vected material in estuarine and coastal regions [53–55]. In shallow ROFI such as Liverpool
Bay, these models rely on a complex set of forcing parameters, including wind speed and di-
rection, sporadic and highly variable discharges and pollutant loads from the river sources,
and shallow waters with strong tidal influences [47,56]. Such approaches inevitably involve
a simplification of the processes and complexity, thereby placing limits on their ability to
hindcast and forecast [57]. Furthermore, model validation relies on a comprehensive range
of ground-truth data that is seldom available [54], and often these complex models are used
for river basin management without due consideration of their limitations [57].

In this paper, we presented a probabilistic approach to the spatial mapping of the ad-
vected dissolved inorganic nitrogen (DIN) from the riverine inputs to Liverpool Bay, which
coupled remote sensing data with distance accumulation methodology. Our approach was
based on [58], which used ocean colour data derived from MODIS-Aqua true-color satellite
data to model the DIN and sediment transported in the river plume from seven rivers
discharging into the Great Barrier Reef (GBR), Australia. In our case, the individual extents
of the plumes from the 12 rivers discharging into the Liverpool Bay region were unavailable,
likely due to the complex nature of the currents within Liverpool Bay and difficulty in
locating and apportioning the low-salinity water to each river across the entire bay [48,59].
Therefore, a novel method was devised using a probabilistic approach to define the likeli-
hoods of river plume presence, freshwater input from each river, and the presence of DIN.
Moreover, we used ocean-colour classes based on the FUI Forel-Ule index scale, consisting
of 21 colour classes. Álvarez-Romero et al., 2013 [58], used six colour classes; therefore, the
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remote sensing data used in our study should provide a better resolution of the differences
in DIN levels. Both approaches represent a compromise between observational modelling
with limited empirical data and complex hydrodynamic modelling [60]. They both use
large-extent empirical data to determine river plume boundary and composition, and both
adopt a structured approach that can be used to apportion the source material within a
plume. Whilst the approach described in this paper has the benefit of being applicable to
other plumes where the extent is unknown, it is limited to only producing a likelihood of
DIN being present, without indicating any scale of the level of DIN.

The application of remote sensing to the generation of large-scale observational data
(for example for sea surface temperature) is commonplace, and has been suggested as
a means of providing observational data for hydrodynamic model validation [33]. By
using remote sensing data, one ensures the realisation of a large spatial and temporal
extent: in this study, data from nearly 8500 km2 were used at a monthly frequency over a
5-year period. Moreover, remote sensing data offer the opportunity for the near real-time
estimation of the water quality across a river plume. However, it is important to note that
the use of such data only considers the water surface layer and, therefore, information
within the water column is absent. Furthermore, the use of satellite-derived ocean colour
to estimate the concentration of a component can be straightforward when the component
is optically active [61,62], but in our case, the ocean-colour acted as a proxy for the DIN
concentration and, therefore, represents an estimation of the concentration. Whilst a strong
correlation between ocean colour and DIN concentration was observed in our study and
elsewhere [29,58], it is not a direct measure of this concentration, and could be influenced
by the varying presence of coloured dissolved organic matter or coloured sediments.
To mitigate this, the correlation between the local in situ DIN concentrations and the
corresponding derived FUI was used, along with a normalised function mapping of the
FUI value with a relative level of DIN. Ocean colour has been used routinely for mapping
phytoplankton blooms, sediment [63], and CDOM [64,65], and future work will expand
the process outlined here to map these components.

Understanding the nature of riverine input is an important tool for the prioritisation
of remedial actions and mitigation measures [58,60,66]. Using a similar approach to the
one adopted here, Devlin et al., 2012 [67], were able to map the contribution of individual
rivers to the DIN and Total Suspended Sediment (TSS) pollution on the GBR. This enabled
source apportionment to the land-use practices within the catchments of the rivers, and
provided evidence to direct and prioritise mitigation strategies. In our study, the risk of DIN
exposure along the north Wales coast was predominantly influenced by the Rivers Clwyd,
Conwy, and Dee, the latter having a significant contribution; the River Dee contributed 66%
and 58% of the cumulative risk in summer and winter, respectively, compared to 33% and
41% for the River Clwyd, and less than 1% for the River Conwy (Supplementary Materials
Table S2). This would indicate a high priority for mitigation measures to reduce DIN risk.
In future, it is envisaged that, by coupling our approach to catchment-based models, such
as the Soil and Water Assessment Tool (SWAT) [67], the identification of the major sources
of anthropogenic DIN will enable the prioritisation of land management practice changes to
reduce the risk of high DIN loading. In a study in 2015, impacts on the coastal environment
of land-based solutions to conserve terrestrial ecosystems in catchments discharging into
the Gulf of California were assessed [58]. They were able to prioritise land management
strategies and show the trade-off between conversation and coastal zone impact.

Recent work [31] has shown the benefit of the integration of eutrophication condition
indicators obtained from different directives using a variety of data sources, including remote
sensing, ecosystem models, and freshwater inputs. Currently, the monitoring and assessment
of the nutrient and plankton dynamics within coastal/estuarine environments sit as an end
point for WFD assessments and the initiation point for OSPAR assessments. The complex
hydrodynamics of coastal zones, coupled with variable intermittent and high-volume inputs,
indicate that these regions warrant a separate, but integrated, assessment and monitoring
process to fully understand the impacts of nutrient enrichment on UK coastal waters. The
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results of this study provide a tool to map the risk of DIN in plume-influenced waters, adding
value to both nearshore WFR assessments and assessments of plume-influenced areas under
OSPAR and the UK Marine Strategy. At different times of year, contributing river catchments
experience different weather and nutrient inputs (diffuse and point source); therefore, their
contributions to the water quality within combined river plumes vary. Understanding these
relationships and resolving the source apportionment could lead to strategies for remediating
specific coastal water quality issues, by targeting the contributing rivers and quantifying the
influence of these rivers and their associated catchment activities on the marine environment.
Knowledge of which rivers influence which locations, and by how much, can provide valuable
information for the prioritisation of targeted mitigation measures to improve the ecological
health of UK coastal and marine waters.

5. Conclusions

The coastal zone in Liverpool Bay is a complex setting with varied inputs of freshwater
and advected compounds from the land undergoing mixing with seawater. This mixing
is heavily influenced by tidal conditions and the volume and condition of the freshwater
loads. This produces a temporally and spatially diverse environment, causing problems
in the assessment of the pollutant loading in this zone, since it is insufficient to simply
consider the riverine and open sea inputs in isolation. As shown in this study, the transport
and distribution of transported material is variable, producing “hot spots” with increased
contamination at different locations during different times of the year. Using a probabilistic
approach with satellite-derived ocean-colour data, we attempted to resolve this issue by
considering the temporal and spatial distribution of DIN within the Liverpool Bay coastal
zone, providing an additional evidence base for assessment methods. Adopting a structured
approach starting at the river catchment level facilitated the source apportionment of the
DIN risk exposure map, with the potential of linking it to land-based catchment models. At
present, the use of satellite products in the current approach limits the assessment of surface
waters in coastal zones. Fundamentally, any dataset with estimated DIN concentrations
could be used, provided it has a sufficiently large spatial extent. Therefore, the approach
can be adapted when new data become available. Future work will attempt to generate a
composite in situ map at a large spatial extent, to validate the DIN probability maps and as
a potential dataset to underpin the approach.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15143666/s1, ProbabilisticPlumeMapping_RemoteSensing.doc
containing Figure S1, Residual current maps for Liverpool Bay; Figure S2.1, Map of the water quality
sample locations extracted from the UK Environment Agency and ICES monitoring programmes;
Figure S2.2, Correlation of Forel-Ule value and nutrient concentrations; Figure S3, Liverpool Bay river
plume monthly frequency maps; Figure S4, Cost surface maps for DIN in the Liverpool Bay plume;
Figure S5, Riverine DIN input as a percentage of the cumulative DIN risk; Figure S6, Spatial maps of
the percentage of the cumulative probability that water from a river reaches a location within the
study area river plume; Table S1, Source of in situ data for river flow and nutrient inputs for rivers
inputting into the Liverpool Bay study area; Table S2, Contribution of Conwy, Clwyd and Dee to the
DIN exposure risk along the north Wales coast.
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