

Deep Learning for the Identification

and Quantification of Wheat

Disease

MEGAN CHARLI LONG

A thesis presented for the degree of

Doctor of Philosophy

University of East Anglia, UK

John Innes Centre, UK

September 2022

This copy of the thesis has been supplied on condition that anyone who consults it is understood to

recognise that its copyright rests with the author and that use of any information derived therefrom

must be in accordance with current UK Copyright Law. In addition, any quotation or extract must

include full attribution.

Abstract

Wheat is hugely important across the globe, providing food and nutrients for

millions of people and livestock. Like all crops, it struggles with pressure from

multiple diseases, which need to be controlled to preserve both yield and quality.

Breeding new varieties with resistance to important diseases is a long process that

takes many years and requires trained pathologists to manually score thousands of

plots for disease levels. Automating the disease scoring process would free up time

for pathologists to work on other important tasks. It also has the potential to improve

the accuracy of scoring through multiple applications and eliminating human error.

Here we present a dataset of wheat images taken in real growth situations, including

field conditions, with five categories: healthy plants and four foliar diseases, yellow

rust, brown rust, powdery mildew and Septoria leaf blotch. This dataset was used to

train deep learning models to identify and classify the diseases. We collect a

quantification dataset of yellow rust images and performed experiments with

different score categories to train various models. Finally, we carry out experiments

with simulated data for determining the viability of deep learning models for disease

quantification.

In this thesis we find that deep learning models are capable of classifying complex

field images, with accuracies of over 97%. We identify limitations in the data

collection for quantification of wheat diseases in the field and provide a method for

determining ideal dataset size. These results show the viability of deep learning

models for quantifying disease and determine some of the challenges which need to

be overcome to develop an automated method for use in the field.

Access Condition and Agreement

Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights,
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material
may be duplicated by you for your research use or for educational purposes in electronic or print form.
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative
Commons licence or Open Government licence.

Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in
this database has been supplied on the understanding that it is copyright material and that no quotation
from the material may be published without proper acknowledgement.

 1

Table of Contents

ABSTRACT .. 2

ASSOCIATED PUBLICATIONS .. 4

LIST OF TABLES ... 5

LIST OF FIGURES ... 7

LIST OF ABBREVIATIONS .. 13

ACKNOWLEDGEMENTS ... 15

CHAPTER 1 INTRODUCTION/ LITERATURE REVIEW

 .. 17

1.1 WHEAT AND ITS DISEASES ... 17

1.1.1 The importance of wheat ... 17

1.1.2 Wheat diseases .. 18

1.2 BREEDING FOR DISEASE RESISTANCE ... 26

1.2.1 The breeding process .. 26

1.2.2 Scoring disease levels ... 28

1.3 DEEP LEARNING FOR CROP DISEASE DETECTION .. 31

1.4 DEEP LEARNING FOR CROP DISEASE SEVERITY ASSESSMENT 36

1.5 THESIS OVERVIEW ... 38

CHAPTER 2 INTRODUCTION TO DEEP LEARNING

 .. 40

2.1 MACHINE LEARNING ... 40

2.1.1 What is classification? ... 40

 2

2.1.2 How to assess quality ... 41

2.1.3 What is overfitting? .. 42

2.1.4 What is validation? .. 43

2.2 DEEP LEARNING NETWORK COMPONENTS .. 43

2.2.1 Layers ... 44

2.2.2 Neurons ... 44

2.2.3 Optimising weights .. 47

2.2.4 Hyperparameters ... 48

2.2.5 Convolutional neural network ... 49

2.2.6 Fully connected layers .. 50

2.2.7 Batch Normalisation ... 50

2.2.8 Max Pooling .. 52

2.2.9 Dropout ... 53

2.2.10 Residual connections ... 53

2.2.11 Depthwise-separable convolutions ... 55

2.2.12 Residual Attention Network ... 56

2.3 BASICS OF TRAINING A DEEP LEARNING MODEL .. 57

2.3.1 Data requirements ... 57

2.3.2 Model Training .. 62

2.3.3 Transfer Learning ... 65

CHAPTER 3 CLASSIFICATION OF WHEAT DISEASES

 .. 68

3.1 METHODS .. 69

3.1.1 Collection of a dataset of wheat disease images in realistic growth

conditions ... 69

3.1.2 Transfer learning with our dataset ... 73

 3

3.1.3 Defining our own model architectures .. 74

3.1.4 Masking images ... 76

3.1.5 An experiment to evaluate our model against human participants 77

3.2 RESULTS .. 79

3.2.1 Dataset collection .. 79

3.2.2 Pre-trained models .. 84

3.2.3 Training new model architectures .. 85

3.3.4 Evaluation of models ... 103

3.2.5 Masking images ... 104

3.2.6 Comparing our model against trained pathologists 107

3.3 DISCUSSION ... 111

CHAPTER 4 QUANTIFICATION OF WHEAT DISEASES

 .. 115

4.1 COLLECTION OF A WHEAT DISEASE DATASET FOR QUANTIFICATION 116

4.2 EXPERIMENTATION WITH DEEP LEARNING MODELS FOR QUANTIFICATION 123

4.3 CREATION OF SIMULATED DATASETS .. 134

4.4 TRAINING DEEP LEARNING MODELS USING SIMULATED DATA 141

4.5 DISCUSSION .. 162

4.5.1 Deep learning for quantification with real field data 162

4.5.2 Deep learning using simulated data for disease quantification 163

5 .. DISCUSSION

 .. 165

5.1 WHEAT DISEASE CLASSIFICATION ... 165

5.2 EVALUATION OF MODEL PERFORMANCE .. 167

5.3 QUANTIFICATION OF DISEASE .. 170

5.4 CONCLUSION ... 171

 4

DATA AVAILABILITY .. 172

REFERENCES ... 173

APPENDIX 1 .. 181

 4

Associated Publications

This thesis contains material from the published works below:

Long, M. (2023). Using machine learning to identify and diagnose crop disease in

Advances in crop disease detection and decision support systems: Instant Insights

Guide (Publication date: Unknown) and Advances in sensor technology for

sustainable crop production (Publication date: 20th February 2023). Burleigh Dodds

Science Publishing

Contribution: Planned and drafted entire manuscript. Completed work for case study.

Long, M. et al. (2022). ‘Classification of wheat diseases using deep learning

networks with field and glasshouse images’, Plant Pathology, 72(3), pp. 536-547.

Available at: https://doi.org/10.1111/ppa.13684

Contribution: Designed experiments, alongside JKB, RJM and MH, carried out all

experiments. Performed all analyses and produced all figures. Planned and drafted

the manuscript, followed by refining with contributions from all authors

 5

List of Tables

Table 3.1: The percentage of the full dataset contained within each individual

category. ... 75

Table 3.2: Sample of network results on test data to show how images were selected

for experiment with human participants .. 77

Table 3.3: Tag numbers for each category in qtagger .. 78

Table 3.4: Information about the collection of images, including disease category,

location, company, date, and photographer ... 81

Table 3.5: Distribution of images across all five categories for the full dataset, and

the three subsets: train, validation, and test. ... 83

Table 3.6: Input sizes and number of training epochs used for each of the four pre-

trained networks ... 84

Table 3.7: Classification accuracy and F1 score for each of the pre-trained networks

 .. 84

Table 3.8: Summary of network experiments, validation accuracy results and

approximate train time ... 85

Table 3.9: The final classification accuracies and loss scores for the three fully

evaluated models .. 103

Table 3.10: The distribution of masked images across the five categories in the

dataset ... 105

Table 3.11: The distribution of images used to compare the model and pathologists’

classifications ... 107

Table 3.12: The experience and specialisation of the five pathologist participants . 108

Table 4.1: The percentage ranges for sorting Limagrain images into 1-9 categories

 .. 120

Table 4.2: The distribution of images in the YR1 dataset .. 122

Table 4.3: The distribution of images in the YR2 dataset .. 122

 6

Table 4.4: The distribution of images in the YR3 dataset .. 122

Table 4.5: The percentage of the entire datasets contained within each category for a)

YR1, b) YR2 and c) YR3 ... 123

Table 4.6: The percentage ranges used to represent each score category 135

Table 4.7: The distribution of images across the whole dataset and the train,

validation, and test sets for all the S datasets ... 137

Table 4.8: The number of epochs used for final training and the final accuracies on

the test sets for each of the S datasets .. 149

Table 4.9: The number of epochs for final training and the final classification

accuracies for all the datasets with 1000 images per category 158

 7

List of Figures

Figure 1.1: An example of yellow rust symptoms including black telia on the left

leaves and orange uredinia on the right. From https://www6.versailles-

grignon.inrae.fr/bioger/pages-perso/Suffert-Frederic Ó Frédéric Suffert, INRAE 20

Figure 1.2: Mature Septoria lesions with small black pycnidia. From

https://www.apsnet.org/edcenter/disandpath/fungalasco/pdlessons/Pages/Septoria.as

px Ó American Phytopathology Society ... 21

Figure 1.3: Brown rust. Brown rust symptoms can often be confused with yellow

rust at certain stages of its life cycle. https://ahdb.org.uk/brownrust Ó AHDB 23

Figure 1.4: Powdery mildew infection. https://eldersrural.com.au/news/powdery-

mildew-control-in-wheat/ Ó Elders ... 24

Figure 1.5: In blue: Guidance for scoring yellow rust and Septoria used for rating in

the recommended lists (https://ahdb.org.uk/recommended-lists-disease-ratings Ó

AHDB). In green: The score associated with each level of infection. 29

Figure 2.1: A neuron receives an input signals and weights. The signals are

multiplied by their weights and summed before being passed to an activation

function to produce an output signal. ... 45

Figure 2.2: Rectified linear unit (ReLU) function. Sets all negative inputs to 0. 46

Figure 2.3: Softmax function. A higher input produces a higher probability. 47

Figure 2.4: Example of how a feature map is produced using a filter in a

convolutional layer. Step 1 is element-wise multiplication, where each element in the

feature map is multiplied by the value in the image in the same position. Step 2 sums

all the outputs from element-wise multiplication and adds the resultant value to the

output feature map. The filter is then moved to the next position in the image and the

process is repeated. ... 49

Figure 2.5: Example of max-pooling down sampling an input feature map. In each

position the filter selects the maximum value to add to the output feature map. After

 8

this is complete at one position, the filter moves 2 pixels across or down to the next

position and repeats the process. .. 52

Figure 2.6: A short network with a residual connection. The output of layer 1 is used

as input for layer 2 and also added to the output of layer 3. 54

Figure 2.7: An example of a depthwise-separable convolution. a) shows the spatial

convolution and b) shows the pointwise convolution. See text for full explanation. 55

Figure 2.8: An example residual attention model. Here p, r and t are

hyperparameters. p is the number of pre-processing residual units before splitting

into trunk branch and mask branch. t is the number of residual units in the trunk

branch and r is the number of residual units between the adjacent pooling layer in the

mask branch (Wang et al., 2017, p4). .. 57

Figure 2.9: A simplified depiction of a deep learning model for the classification of

dog and cat images. The model takes images at input, has multiple hidden layers for

feature extraction, and produces classification predictions as output. 63

Figure 3.1: An artistic representation of the architecture of our fully connected

classifier network. .. 74

Figure 3.2 Example images from our dataset showing some different conditions and

levels of infection. (Part 1) ... 82

Figure 3.3: Example images from our dataset showing some different conditions and

levels of infection. (Part 2) ... 83

Figure 3.4: A visual representation of the model 1 architecture. 86

Figure 3.5: Training and validation accuracy plot for model 1.1 87

Figure 3.6: Training and validation accuracy plot for model 1.2 88

Figure 3.7: Visual representation of the model 2 architecture. 89

Figure 3.8: Training and validation accuracy (a) and loss (b) plots for model 2.4 90

Figure 3.9: Training and validation accuracy (a) and loss (b) plots for model 2.6 91

Figure 3.10: Training and validation accuracy (a) and loss (b) plots for model 2.8 .. 92

Figure 3.11: The training and validation accuracies for model 2.7. Here both

accuracies still appear to be climbing at the end of training. 93

 9

Figure 3.12: Visual representation of the model 3 architecture. 93

Figure 3.13: Training and validation accuracy for model 3.1. Here both accuracies

are still climbing at the end of training .. 94

Figure 3.14: Training and validation accuracy for model 3.2 95

Figure 3.15: Visual representation of the model 4 architecture. 95

Figure 3.16: Training and validation accuracies for model 4.1 96

Figure 3.17: Visual representation of the res1 model architecture. 97

Figure 3.18: Training and validation accuracies for model res1.2 98

Figure 3.19: Training and validation accuracies for model res1.1 98

Figure 3.20: Visual representation of the res2 model architecture. 99

Figure 3.21: Training and validation accuracies for model res2.1 100

Figure 3.23: Visual representation of the sep1 model architecture. 101

Figure 3.24: Training and validation accuracies for model sep1.1 102

Figure 3.25: Training and validation accuracies for model sep1.2 102

Figure 3.26: Confusion matrix of model 2.4's predictions on the test data set 104

Figure 3.27: Examples of the masked images (left) and their non-masked versions

(right) .. 105

Figure 3.28: Confusion matrices for the a) the un-masked image versions and b) the

masked image versions .. 106

Figure 3.29: The confusion matrices and classification accuracy results for our

model and the five pathologist participants ... 109

Figure 4.1: An example layout of a field trial where the plots are organised by line

and row numbers .. 117

Figure 4.2: Segments of the spreadsheets used to align scores with image filenames

for a) RAGT, b) Limagrain and c) KWS ... 118

Figure 4.3: The user interface for IPP, used for collecting, labelling, and storing

images .. 119

Figure 4.4: Training and validation accuracies for model 2.4 trained with YR1 125

 10

Figure 4.5: Training and validation accuracies for model 2.4 trained with YR2 125

Figure 4.6: Training and validation accuracies for model 2.4 trained with YR3 126

Figure 4.7: Training and validation accuracy for our residual attention model trained

with YR1 .. 127

Figure 4.8: Training and validation accuracy for our residual attention model trained

with YR2 .. 128

Figure 4.9: Training and validation accuracy for our residual attention model trained

with YR3 .. 128

Figure 4.10: Training and validation accuracies for res1 model with added dropout

for YR1 ... 130

Figure 4.11: Training and validation accuracies for res1 model with added dropout

for YR2 ... 130

Figure 4.12: Training and validation accuracies for res1 model with added dropout

for YR3 ... 131

Figure 4.13: Confusion matrix of classifications for the res1 model architecture with

added dropout trained on YR1 ... 132

Figure 4.14: Confusion matrix of classifications for the res1 model architecture with

added dropout trained on YR2 ... 132

Figure 4.15: Confusion matrix of classifications for the res1 model architecture with

added dropout trained on YR3 ... 133

Figure 4.16: An example image for each category in the S datasets 136

Figure 4.17: An example image for each score category for the stripe datasets 138

Figure 4.18: An example image for each score category in the colstripe datasets .. 139

Figure 4.19: The colour palette used to make our datasets, from coolors.co 140

Figure 4.20: An example image for each score category for the bg datasets 141

Figure 4.21: Training and validation accuracies for model trained with S10k for 5

epochs ... 142

Figure 4.22: Training and validation accuracies for model trained with S10k for 10

epochs ... 143

 11

Figure 4.23: Confusion matrix of the classifications by model trained with S10k .. 144

Figure 4.24: Training and validation accuracies for model trained using S100 for 5

epochs ... 145

Figure 4.25: Training and validation accuracies for model trained using S250 for 5

epochs ... 145

Figure 4.26: Training and validation accuracies for model trained using S500 for 5

epochs ... 146

Figure 4.27: Training and validation accuracies for model trained using S500 for 5

epochs ... 146

Figure 4.28: Training and validation accuracies for model trained using S100. The

red line indicates where the validation peaks and the number of epochs that the

model will be trained for using all available data .. 147

Figure 4.29: Training and validation accuracies for model trained using S250. The

red line indicates where the validation peaks and the number of epochs that the

model will be trained for using all available data .. 148

Figure 4.30: Training and validation accuracies for model trained using S500. The

red line indicates where the validation peaks and the number of epochs that the

model will be trained for using all available data .. 148

Figure 4.31: Training and validation accuracies for model trained using S1k. The red

line indicates where the validation peaks and the number of epochs that the model

will be trained for using all available data ... 149

Figure 4.32: Confusion matrices for models trained using S100 (top left), S500 (top

right) and S1k (bottom) .. 150

Figure 4.33: A selection of thumbnails of the images contained in the score 2

category of the S datasets ... 152

Figure 4.34: A selection of thumbnails of the images contained in the score 7

category of the S datasets ... 152

Figure 4.35: Confusion matrix for model trained using S250 dataset 153

Figure 4.36: Confusion matrix for model trained using S250_2 dataset 154

 12

Figure 4.37: Confusion matrices for model trained using the S100 dataset and

evaluated on the test sets from S250 (top left), S500 (top right) and S1k (bottom) 155

Figure 4.38: Training and validation accuracies for model trained with stripe1k

dataset. The red line shows the point where the validation accuracy peaks, and the

number of epochs used for final training ... 156

Figure 4.39: Training and validation accuracies for model trained with colstripe1k

dataset. The red line shows the point where the validation accuracy peaks, and the

number of epochs used for final training ... 157

Figure 4.40: Training and validation accuracies for model trained with bg1k dataset.

The red line shows the point where the validation accuracy peaks, and the number of

epochs used for final training ... 157

Figure 4.41: Confusion matrices for the models trained using stripe1k (top left),

colstripe1k (top right) and bg1k (bottom) .. 159

Figure 4.42: Training and validation accuracies for the Strike10k (top left),

Colstripe10k (top right) and BG10k (bottom) datasets. ... 160

Figure 4.43: Confusion matrices for the models trained using stripe10k (top left),

colstripe10k (top right) and bg10k (bottom) .. 161

Figure 5.1: Example activation atlas screen taken from

https://distill.pub/2019/activation-atlas/ ... 169

 13

List of Abbreviations

Here is a list of the abbreviations used within this thesis, along with their meanings.

This does not include abbreviations contained in references or appendices.

AHDB Agriculture and Horticulture Development Board

API Application programming interface

BBSRC Biotechnology and Biological Sciences Research Council

BLS Bacterial leaf streak

BYDV Barley yellow dwarf virus

CNN Convolutional neural network

CPU Cental processing unit

DUS Disctinctiveness, uniformity and stability

GOV Government

GPU Graphics processing unit

HPC High performance computing

iCASE Industrial cooperative awards in science and engineering

ILSVRC ImageNet large scale visual recognition challenge

IPP Inventory photos plus K (app)

JIC The John Innes Centre

KWS Seed breeding company (Klein Wanzlebener Saatzucht)

NIAB National Institute of Agricultural Botany

NPIF National productivity investment fund

PIL Python image library

POI Probability of infection

QOI Quinone outside inhibitor fungicide

QTL Quantitative trait loci

RAGT Seed breeding company

RGB Red, green and blue

SDHI Succinate dehydrogenase inhibitor fungicide

UK United kingdom

UUID Unique universal identifier

 14

VCU Value for cultivation and use

VGG Visual geometry group

VPN Virtual private network

 15

Acknowledgements

My studentship was supported by a BBSRC-NPIF iCASE studentship with KWS

UK Ltd, Limagrain UK Ltd and RAGT Seeds Ltd as industrial partners.

I would like to thank my primary and secondary supervisors, James Brown, and

Richard Morris, for their continued support throughout this project. As a physicist

with very little biology knowledge, James has been so helpful with his mini lessons

and directions to useful information and references to help me learn what I needed.

Thank you to Richard for always being a sounding board as I’ve planned my

experiments and interpreted the results. The continued support from both of you as I

struggled during the pandemic and with family illness meant so much and helped me

get back on track to finish this thesis.

Thank you also to the other member of my supervisory team from the JIC, Matthew

Hartley. Matthews technical help in the first couple of years was invaluable in

helping me learn about deep learning and plan my experiments.

I would also like to thank my supervisors from the three companies associated with

this PhD: Ruth Bryan (RAGT), Nicholas Bird (KWS) and Simon Berry (Limagrain).

Thank you especially with all your help collecting images for my datasets. Without

your knowledge of when and where to photograph and your help with image

collection, I would not have been able to produce any of the results I have. A special

thanks also to Paul Fenwick and Rachel Goddard (Limagrain) for getting involved

with the project and helping with image collection and the test pathologist

experiment.

Thank you to Douglas Brown for being the most hard-working summer student I’ve

ever come across and for following my (often unnecessarily convoluted) instructions

to a tee. Thank you also to Patrick Seed for allowing me to visit and photograph his

Septoria infected plants at Nottingham University.

 16

Thank you to the members of the Morris Dancers for providing coding help when I

needed it and for making the effort to include me in meetings since I’ve continued to

work from home. Thank you also to the members of the Brown and Nicholson

groups who, although I didn’t spend a great deal of time with them, were always so

enthusiastic and welcoming at any meetings or group events.

A very special thank you to my family (Nikki, Carl and Alex Long) and fiancé

(Ashley Robinson) for always bigging me up and providing endless encouragement

throughout. And finally, thank you to my dog Drax for being my fluffy work buddy!

Megan Long

John Innes Centre, Norwich

September 2022

 17

Chapter 1 Introduction/ Literature Review

1.1 Wheat and its diseases

1.1.1 The importance of wheat

Wheat is a hugely important staple crop, which provides food for humans and

livestock worldwide (Shewry, 2009). It is consumed across the globe and cultivated

over a huge range from 67°N in Scandinavia and Russia to 45°S in Argentina,

including elevated regions in the tropics and subtropics (Feldman, 1995). In 2020

over 760 million tonnes of wheat were produced worldwide, making it the third most

produced crop globally (FAOstat https://www.fao.org/faostat/en/#data/QCL). Due to

the growing demands of a rising population, the production of wheat and other grain

crops has tripled since 1960 and is expected to continue rising (Godfray et al., 2010).

For humans, wheat is a major source of starch and energy, as well as providing many

other health benefits. It provides protein, vitamins, dietary fibre, and phytochemicals

(Shewry and Hey, 2015). In the UK especially, wheat is an extensive source of

dietary fibre, which can help reduce the risk of type 2 diabetes, cardio-vascular

disease, and some cancers. Due to westernisation of the diet, global demand for

wheat is increasing due to its gluten proteins which are used in the production of

processed foods (Day et al., 2006). Gluten provides valuable viscoelastic functional

qualities to dough (Shewry et al., 2002), for producing consumables such as bread,

noodles and pasta.

Some modern day wheat species are diploid (having two sets of chromosomes),

however many are polyploid having four sets of chromosomes (tetraploid) or six sets

(hexaploid) (Hancock, 2004). The most commonly produced species of wheat is

Triticum aestivum (hexaploid), sometimes known as bread wheat, which makes up

approximately 95% of the global wheat production. In the UK, this makes up the

very great majority of wheat grown. The second most cultivated species is Triticum

 18

durum (tetraploid), or durum wheat, used for pasta, which makes up the majority of

the remaining wheat production. There are a few other species cultivated in only

small areas; einkorn (diploid T. monococcum var. monococcum), emmer (tetraploid

T. turgidum var. dicoccum), and spelt (T. aestivum var. spelta) (Shewry and Hey,

2015)

The vast majority of wheat grown in the UK is winter wheat, which is sown early

autumn and harvested in the spring and summer. It requires a period of cold,

vernalisation, in order to produce seed. The rest of the wheat grown in the UK is

spring wheat, which is sown late winter and is harvested late summer.

1.1.2 Wheat diseases

As the population of the world continues to grow, one of the biggest challenges

facing food security is crop disease (Strange and Scott, 2005). Wheat, like all crops,

can be subject to yield losses thanks to pests and diseases, which have been reported

to consume over 20% of the world’s wheat crop annually (Savary et al., 2019).

Disease can have devastating effects on the yield of a crop, in some cases causing

major losses where food quality is concerned. Not only is this a problem on a global

scale, but it also has effects on a local scale for individual farmers. In poorer areas of

the world, farming is the main or only source of income for many families

For any farmer, being able to detect and identify diseases on their plants is hugely

important for the mitigation of potential losses. The problem with this, however, is

that identifying crop diseases often requires specialist knowledge which is not

always readily available to all farmers and can be expensive. Even with specialist

knowledge, there are multiple factors that make it even more challenging. Many

diseases appear with similar symptoms, meaning they are easily confused with one

another. Furthermore, it is not uncommon for multiple diseases to be present at any

one time, making the task of distinguishing them even more difficult. For this

reason, it is important to know about the ailments, their symptoms and when and

how to treat them. In this thesis we focus on foliar diseases (diseases affecting the

leaves) for wheat plants. These diseases were chosen because, at the time of planning

 19

the work in this thesis, they were considered to be of particular importance in the

UK.

The first disease we will discuss is yellow rust, also called stripe rust, caused by the

basidiomycete fungus Puccinia striiformis f.sp. tritici (Pst) (Liu and Hambleton,

2010). This is an important disease across the UK, especially in the East. It can cause

yield losses of 40-50% in susceptible wheat varieties and affect grain quality,

however resistant varieties and fungicide sprays can mitigate the losses so they are

usually small (AHDB, 2020). Yellow rust rated by AHDB as having high

importance for variety recommendation and therefore breeding. Although it’s the

most important disease in dryer parts of England (the east), it’s easier to control with

fungicides than some other diseases, e.g., Septoria (see below).

Yellow rust infection can occur whenever there is green leaf material, and the

conditions are favourable. In the UK this is usually in the spring, when temperatures

are in the range of 2-15°C and humidity levels are high, however some strains are

capable of surviving in higher temperatures, up to 23°C. When the temperature is

lower, below 2°C,t the fungus lies dormant as mycelium until favourable conditions

return and spores can be produced. Mild winters can mean that the epidemic starts

much earlier in the season, thus lasting much longer. Spores are spread by contact

between the leaves or by the wind.

The earliest yellow rust infections in the season appear as randomly scattered

yellow/ orange uredinial pustules on younger leaves. These pustules contain asexual

urediniospores, which are produced on wheat and infect wheat, thus generating

annual epidemics. As the leaves age, the pustules form stripes, giving way to the

most recognisable symptoms of the disease. yellow rust gets to the later stages of its

life cycle, the distinctive orange spores fall from the leaf leaving necrotic lesions

with black telia (AHDB, 2020). These black telia are often pulvinate to oblong in

shape and range from approximately 0.2 – 0.7mm in length and 0.1mm in width

(Chen et al., 2014). Figure 1.1 shows yellow rust symptoms on leaves.

 20

Telia produce teliospores, the resting stage of rust fungi. Teliospores produce

basidiospores, which infect alternate hosts, a deciduous, evergreen shrub called the

barberry species, on which sexual reproduction occurs. This happens from Iran to

China but sexual reproduction is not yet known to occur in Europe.

The genotypes of Pst which have appeared in Europe since 2011 originated from

east Asia (Hovmøller et al., 2016) and have a much higher capacity for telia

production than the only clone of Pst which was present in northern Europe until

2010 (Ali et al., 2011).

Figure 1.1: An example of yellow rust symptoms including black telia on the left leaves and orange
uredinia on the right. From https://www6.versailles-grignon.inrae.fr/bioger/pages-perso/Suffert-

Frederic Ó Frédéric Suffert, INRAE

 21

The next disease we include in our work is Septoria tritici blotch, also known as

Septoria leaf blotch or simply Septoria, caused by the ascomycete fungus

Zymoseptoria tritici (formerly Mycosphaerella graminicola) (Hardwick et al. 2001).

It is thought to be the most important and damaging disease for winter wheat in the

UK (AHDB, 2020). It is rated as having very high importance for variety

recommendation and thus breeding, partly because of its potential for causing yield

losses and partly because of the difficulty of controlling it with fungicide (because

Zymoseptoria tritici is now largely resistant to azole, QOI and SDHI fungicides). It

causes infections across the whole country, with areas where rainfall is higher being

most at risk. Much like yellow rust, yield losses can be high (up to 50%) and the

quality of the grain affected. Mitigating the losses largely depends on the

development of resistant varieties and dryer weather throughout the summer months.

Figure 1.2: Mature Septoria lesions with small black pycnidia. From

https://www.apsnet.org/edcenter/disandpath/fungalasco/pdlessons/Pages/Septoria.aspx Ó

American Phytopathology Society

 22

Septoria lesions appear in long oval shapes restricted by the leaf veins, resulting in a

rectangular lesion shape. Immature lesions appear as brown necrotic tissue. As they

mature, small black fruiting bodies, called pycnidia, form, see Figure 1.2. These

pycnidia are smaller than the telia of yellow rust, approximately 0.06 – 0.2mm in

diameter, and are almost spherical in shape (Tiley, Foster and Bailey, 2018). Higher

levels of infection can mean that lesions join together to form large areas of the leaf

that are necrotic, brown tissue.

Septoria lies dormant during the winter, predominantly as pseudothecia (sexual

fruiting bodies) and some pycnidia (asexual fruiting bodies). The pseudothecia

sexually produce ascospores, which are wind-born, and pycnidiospores are produced

asexually by pycnidia in the epidemic phase, which are transferred through rain

splash in infected lower leaves. In the spring and summer, when the majority of

Septoria infection happens due to optimal temperatures of 15-20°C, pycnidiospores

are responsible for the majority of the spread of disease. Following infection,

symptoms appear following a latent period of two – four weeks.

Yellow rust and Septoria can cause problems for a pathologist throughout the

scoring process due to their similar appearance at certain stages in their life cycle

(Brown 2021). Before sporulation, both diseases form lesions with yellow or pale

brown areas of necrosis on the infected leaf. In most of Europe, the uredinial stage of

yellow rust is formed a few weeks earlier than the pycnidial stage of Septoria. These

two stages are clearly visible different, however at the later stages of yellow rust

infection when the black telia are formed, it can be difficult to distinguish from

mature Septoria lesions that are formed at approximately the same time (Schirrmann

et al., 2021). The yellow rust telia are superficially similar to Septoria pycnidia, thus

presenting problems even for experienced pathologists when they have limited time

to look closely at each plot. This can lead to mistakes when assessing wheat varieties

and treatment options.

To further complicate the problem, another important wheat disease, brown rust

caused by Puccinia triticina (Goyeau et al. 2006; Bolton et al. 2008), produces

orange/brown pustules on the leaves of wheat plants. Brown rust is rated as medium

 23

importance nationally, but this is an average rating. It has high importance in south-

east England (south of Cambridge and east of Bournemouth) and is unimportant in

northern England and Scotland.

In its earliest stages, the brown rust pustules appear in a way similar to early yellow

rust infection, with a lighter orange colour, thus leading to the two diseases

frequently being confused with one another. Later in the season, as the infection

develops, the colour of the brown rust pustules is often darker, and the pustules

continue to be randomly dispersed across the leaf, see Figure 1.3. At this stage, it is

easier to distinguish the two rust diseases.

Brown rust is active at 7-25°C, a wider temperature range than yellow rust and

requires surface moisture on leaves for spore germination (AHDB, 2020). Spores are

Figure 1.3: Brown rust. Brown rust symptoms can often be confused with yellow rust at certain

stages of its life cycle. https://ahdb.org.uk/brownrust Ó AHDB

 24

spread by wind and infection in the UK often occurs mid-late summer, due to the

optimum temperature and humidity levels.

The final foliar disease to mention is powdery mildew, which is an important disease

in many parts of the world and is caused by Blumeria graminis (Dubin and

Duveiller, 2011). Mildew mainly appears with distinctive white, fluffy pustules,

which are easy to distinguish from the three other diseases we have discussed, Figure

1.4. That being said, no list of wheat diseases would be complete without its

inclusion.

Mildew of winter and spring wheat is mostly well controlled by breeding (Brown

and Wulff, 2022). Currently rated by AHDB as medium importance but will be

upgraded to high importance from 2023, because it is now resistant to most

fungicides, therefore it is important for the moderate to high durable resistance found

in all current varieties to be maintained. Only one variety with a rating of 3 (on a 1-9

scale, lower numbers represent high susceptibility and high numbers represent high

Figure 1.4: Powdery mildew infection. https://eldersrural.com.au/news/powdery-mildew-control-

in-wheat/ Ó Elders

 25

resistance) has been released in the last 40 years (Leeds in 2017, on which mildew

was difficult to control).

Powdery mildew requires living plant tissue to grow. When this is not available, it

survives as mycelium in host plants. When conditions are right for germination, the

mycelium produce conidia which infect living host plants and are dispersed through

wind. Infection can happen over a wide temperature range (5-30°C), with 15°C

being the optimal temperature. Rain or other free water inhibits germination,

however high humidity is required. Following infection there is a latent period of a

week before symptoms are shown. Typical mildew infection begins with the white

fluffy pustules mentioned above. Towards the end of the season black spore cases

(cleistothecia) develop within the pustules (AHDB 2020).

The four diseases described above are not the only diseases which affect wheat. Here

we will mention a selection of other diseases which we have decided not to include

in our work:

• Septoria nodorum (Parastagonospora nodorum) was important until about

1990 but has now been almost completely controlled by breeding (Cowger et

al., 2020).

• Fusarium head blight: UK varieties are susceptible but environmental

conditions are unusually not conducive to disease development. Hence rated

by AHDB as medium importance. However, important to breeding

companies for markers in areas of Europe with warm, humid summers,

especially central Europe (southern Germany, Switzerland, Austria,

Hungary, Romania). Fusarium head blight mainly affects the ears of wheat,

rarely causing severe symptoms on leaves.

• Tan spot (Pyrenophora tritici-repentis or Drechslera tritici-repentis) is

common in the UK and is not thought to cause significant yield losses.

• Stem rust (Puccinia graminis) occurs sporadically (Saunders, Pretorius and

Hovmøller, 2019) and is a serious disease in hotter, dryer areas such as East

Africa and Southwest Asia. Recent outbreaks of wheat stem rust in Europe

have caused yield losses in Sicily but not in northern Europe.

 26

• Barley yellow dwarf virus (BYDV), transmitted by aphids, was controlled

until 2019 by neonicotinoid insecticides, which are now banned (European

Commission, no date). It was considered locally unimportant at the time of

planning the work in this thesis, so was not included, however its importance

has since risen. BYDV causes areas of necrosis at the leaf tip, which can

sometimes be confused with Septoria, however it is more important on

barley and oats than on wheat.

1.2 Breeding for disease resistance

1.2.1 The breeding process

Resistance to common diseases is a trait that is desirable amongst the farming

community. Often this resistance needs to be bred into the crop over a long period of

time. Over multiple breeding seasons, varieties can be selected based on their levels

of disease resistance. However, this is not the only desirable trait, and as such

multiple traits are measured during the breeding process. In the UK, as there is not

one standout trait which is important over all others, breeding for wheat is a

balancing act between desirable traits such as yield, disease resistance and grain

quality. This is in contrast to locations in Europe, for example, where fusarium

resistance is a standout trait which all varieties need to strive for, see previous

section.

The breeding process for new wheat varieties takes many years, moving from

millions of seeds all the way to only one or two varieties which will be produced

commercially. The pedigree method is very common for use in wheat breeding,

however is very resource and labour intensive (Baenziger, 2016). It allows selection

among individual plants and whole families at every inbreeding generation

(Rutkoski, Krause and Sorrells, 2022) . This method begins by making many crosses

between lines which contain desirable traits, based on knowledge and genomics.

Each plant contains thousands of genes, so selecting the plants for crossing is a

complex process. A team of individuals will then make the crosses by emasculating

 27

the female plant and fertilising using pollen from the male. From this process, often

millions of seeds are collected for planting as the F2 population in the subsequent

year. Each new generation is planted in subsequent years.

The F2 population is planted in single plant rows, so that individual plants within

families can be selected and caried forward to the next generation (F3). Generations

F3 and F4 are planted as families in rows. Visual selection takes place for every

generation, taking only the lines which appear to be showing the best traits through

to the next year. Generations F5 – F7 are often planted as both treated and untreated

yield plots, where they can be tested for different traits. It takes approximately 5-6

years for the lines to meet the desired level of homozygosity.

By the eighth year, the number of varieties has decreased significantly to

approximately 10 lines, which can now be taken forward for national list trials. For a

variety to be marketed commercially, they must be added to the national lists (GOV

https://www.gov.uk/guidance/national-lists-of-agricultural-and-vegetable-crops).

These trials take place over two years at various approved locations. The varieties

which are added to the national lists must demonstrate that they pass distinctiveness,

uniformity, and stability (DUS) and value for cultivation and use (VCU) testing.

DUS tests need to prove that the varieties differ from any other variety already

available within the species, that the distinctive characteristics are produced

uniformly and that these characteristics are stable (do not change) over subsequent

breeding periods. VCU tests need to show that the variety has satisfactory value for

cultivation and use (GOV https://www.gov.uk/guidance/vcu-protocols-and-

procedures-for-testing-agricultural-crops). Once they have passed these tests, they

can be listed on the national lists and sold commercially. Usually only one or two

varieties makes from the initial cross make it to this point.

The final end goal for any newly bred variety, however, is inclusion on the

recommended lists. The recommended lists are publications which provide potential

consumers with information about traits such as the quality, yield and resistance to

individual diseases to aide in choosing varieties. The recommended varieties are

considered to have the potential to provide a consistent economic benefit to the UK

cereals or oilseeds industry (AHDB https://ahdb.org.uk/knowledge-library/using-the-

 28

recommended-lists-for-cereals-and-oilseeds-rl). The varieties are chosen for

recommendation based on information and data gathered from many trials.

The pedigree method can take 9 years to get a variety listed on the national lists, and

even longer to be selected for the recommended lists. For this reason, there are a

couple of methods used by breeders to speed up the process: single seed descent and

double haploid production. In single seed descent, a single seed is taken from each

plant in the earlier generations and used to grow the next generation. This happens in

the glasshouse and multiple generations can be produced in the same year, thus

reducing the number of years required to reach the desired level of homozygosity.

The downside of this is that it is more expensive than the normal pedigree method.

In double haploid production a haploid plant is created by either intergeneric crosses

(with maize or corn) or by another culture. The chromosomes of the haploid plant

are doubled, producing a double haploid plant which is completely homozygous. A

single seed is then taken to form the next generation. As with single seed descent,

this method reduces the time taken to reach the desired level of homozygosity,

however it is an even more expensive method.

Often, due to only using single seeds for the first few generations, when either of

these methods are used, the same crosses are used with the pedigree method also.

This is in case any information is lost throughout the sped-up process.

1.2.2 Scoring disease levels

During various stages of the breeding process, plants need to be scored for the

amount of disease present in order to assess the resistance or susceptibility to certain

diseases. The lines with high susceptibility are removed from consideration, while

those with high resistance are put forward to the next stage. For help making these

decisions, the plants are scored using a scale which represents how much of each

disease is present.

 29

A widely used scale used for scoring disease is a scale of 1-9 developed by NIAB.

This scale gives a score between 1-9 based on the amount of disease present on a

plot, from zero disease present (most resistant) to no green tissue left (most

susceptible). Figure 1.5 shows the guidance for scoring yellow rust and Septoria of

wheat taken from the AHDB recommended list guidance (AHDB

https://ahdb.org.uk/recommended-lists-disease-ratings). For brown rust and mildew

the same separations of infection are used for different categories. Most breeding

companies give a score of 1 to the most resistant plots (0% infection) and a score of

9 to the most susceptible (100% infection). The recommended lists use the same

Figure 1.5: In blue: Guidance for scoring yellow rust and Septoria used for rating in the

recommended lists (https://ahdb.org.uk/recommended-lists-disease-ratings Ó AHDB). In green:

The score associated with each level of infection.

 30

score categories to rate their varieties, however they give score 1 to the most

susceptible plots and score 9 to the most resistant. In this thesis we follow the

method used by breeding companies.

Although the final varieties put forward for the recommended lists are scored into

these score categories, over the course of the breeding process some breeding

companies use variations of this method for their own plants. In some cases, the

categories are expanded to have decimal values, or half values in order to give better

differentiation between the levels of disease. Otherwise, come companies give a

percentage score, which can then be transformed into a score based on the above

figure.

Scoring is a time-consuming process, often made more difficult by the variation in

disease symptoms, similarity between different diseases and the presents of multiple,

simultaneous infections. Currently scoring needs to be undertaken by an experienced

pathologist, which can be expensive, especially with non-local trials where the

pathologist is required to travel. Often, in these cases, non-local trials are only scored

once per season.

It would be beneficial to produce an automated method to aide scoring for breeders.

An automated method would allow pathologists to use their time for other important

tasks, while the automated scoring model could be used by any person, perhaps as a

mobile application. It could also be taken out multiple times, even in non-local trials,

where a person local to the trial could be hired for this purpose. This would be more

efficient in managing time and cost. It would also remove the difference in scores by

different pathologists, and eliminate errors made due to tiredness etc.

In this thesis we investigate deep learning as a possible tool for automating the

scoring process. We begin with identification of wheat diseases in field conditions,

before investigating models for quantifying the amount of disease present.

 31

1.3 Deep learning for crop disease detection

In recent years, deep learning models have become a key player in the role of

detection and identification of crop diseases. If you are not familiar with machine

learning, refer to chapter 2 for an introduction to the concepts described here.

Convolutional neural networks (CNN) (LeCun et al., 1999) are a type of deep

learning network which have become popular for image classification of plant

diseases (Boulent et al., 2019). Many studies utilise pre-defined CNN structures for

their work. A few examples that occur over and over again throughout the literature

are AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2014) and

Inception (Szegedy et al., 2016), however there are plenty of others which provide a

starting point for almost all of the studies we will discuss. These pre-defined

networks are all CNNs with different numbers of layers and additional features to aid

with feature extraction. See chapter 2 for description of deep learning components

and the training process.

A good place to start here is with the Plant Village dataset (Hughes and Salathe,

2016). This collection of almost 88,000 images taken in controlled conditions was

the first openly available dataset of crop disease images. The dataset contains 38

categories, each corresponding to a plant-disease pair. Each image contains a single

diseased or healthy leaf taken from the plant and placed on a neutral background and

photographed under different lighting conditions. Many studies use the whole or part

of this dataset with their work (Mohanty, Hughes and Salathé, 2016; Amara, Bouaziz

and Algergawy, 2017; Brahimi, Boukhalfa and Moussaoui, 2017; Ferentinos, 2018;

Rangarajan, Purushothaman and Ramesh, 2018; Zhang, Huang and Zhang, 2018;

Saleem et al., 2020).

Mohanty et al., (2016) aimed to show the viability of deep learning networks for

classification of a range of different diseases. They performed the first deep learning

experiments using the Plant Village dataset with two different pre-trained networks:

AlexNet and GoogLeNet. Through training these two networks both from scratch

and using transfer learning, with a range of image processing techniques and train-

test splits (the split of data between training and testing), they returned near perfect

 32

classification accuracy of 99.34% by using a pre-trained GoogLeNet, full colour

images and an 80-20 train-test split.

Much like Mohanty et al., Brahimi et al., (2017) also used transfer learning with the

two pre-trained networks AlexNet and GoogLeNet. In this study however, rather

than using the entire Plant Village dataset, a subset of images containing only

diseased tomato leaves was used. Both studies utilized the networks by transfer

learning and by training from scratch in an attempt to compare the results from both

methods. In the same way as in the work of Mohanty et al., the best results gained in

Brahimi et al.’s work were of extremely high accuracy, reaching 99.18% accuracy in

classifying tomato diseases. Again, this result came from the use of GoogLeNet with

pre-training, although they do not specify the train-test split.

Another study that made use of a subset of the Plant Village dataset is that of

Amara et al., (2017). They used only the banana leaf images in their work with the

LeNet (Lecun et al., 1998) architecture. Although using a previously defined

network, they did not use a pre-trained version, rather the architecture was trained

from scratch with the banana leaf images. They used a range of train-test splits with

both coloured and grayscale images. It was shown that the networks that used

coloured images always outperform those without, thus showing the importance of

colour information for the problem. Using a train-test split of 80-20, the network

achieved an accuracy of 98.61%, another extremely promising result.

Too et al., (2019) took the whole of the Plant Village dataset and evaluated the

performance of multiple pre-trained networks in classifying the diseases. They used

transfer learning with some fine-tuning of VGG16, Inception V4, Resnet with 50,

101 and 152 layers and DenseNets (Huang et al., 2018). DenseNets was the best

performer having gained an almost perfect accuracy of 99.75%.

This almost perfect accuracy is a common occurrence in studies which use only

images from the Plant Village dataset. Although comprehensive in that it covers a

wide range of diseases and plant species, the images within are not representative of

those which would be found in real growth situations. They contain images of leaves

taken from the plant and placed on a plain background, thus eliminating any

 33

background information, which obviously would not be the case in the field. The

high accuracies gained in these studies are impressive, however it is unknown how

any of the models would perform when confronted with real field data.

Ferentinos, (2018) demonstrated the issues of the Plant Village dataset for field use in

their work. They made use of multiple pre-trained networks within his study; AlexNet,

AlexNetOWTBn (Krizhevsky, 2014), GoogLeNet, Overfeat (Sermanet et al., 2013)

and VGGNet. The dataset used contains images taken from Plant Village as ‘lab

condition’ images and was supplemented with more images taken in the field. This

resulted in a dataset of 87,848 images sorted into 58 classes, some that contained just

lab conditions, others that contained just field conditions and some with both. The

most successful architecture in this study was the VGG network, which gained an

accuracy of 99.53% on unseen images. Due to the presence of both lab condition and

field condition images within the dataset used, Ferentinos (2018) experimented with

training on laboratory condition images and testing on field condition images and vice

versa. The accuracy of classification in these experiments was significantly lower than

with the mixture of images for training. Training on field images and testing on

laboratory images resulted in an accuracy of 65.69%, whereas the other way around

resulted in an accuracy of only 33.27%. These figures emphasize the importance of

including all relevant conditions within a training set for use in practice.

Although the Plant Village dataset is used regularly throughout the literature, there

are plenty of studies which make use of data acquired elsewhere. Sladojevic et al.,

(2016) created a large dataset of images (over 30,000 in 15 classes) by taking

pictures from internet searches. The dataset included a class for just healthy leaves

and also a class with just background images. The reason for this was to train their

network to differentiate leaves from their surroundings. The network used for this

study was the pre-trained CaffeNet (Jia et al., 2014) model. Using this method, they

gained a classification accuracy on their dataset of 96.3%. They concluded that the

accuracy for individual categories was slightly lower on the classes which contained

fewer images. Another thing to note about this study is how the images were

collected. As they were taken straight from the internet, it is possible that some of

the images have been wrongly classified which would have affected the accuracy of

the network.

 34

Barbedo, (2018) used a dataset of images collected in both field and controlled

conditions. The size of the dataset was relatively small, only 1383 images in total,

spread over 56 disease-crop categories. This meant that there were only a small

number of samples for each class. They performed experiments by training a model

to classify the images both as is, and with the background removed. The results

varied over all the categories, with no distinctive positives or negatives recorded for

removing the background information. This was probably because the low number

of training images was not enough for the model to make accurate representations

from the data, whether the background was included or not.

A study by Lu et al., (2017) used a relatively small dataset of rice disease images

(500 images) to train CNNs inspired by LeNet and AlexNet architectures. Although

they did not use the actual networks for either training from scratch or transfer

learning, they did create a very similar network to those already defined. The

accuracy gained for this network was 95%; while still a very encouraging result, this

is slightly lower than many of the results discussed before. A reason for this could be

to do with the size of the dataset used; with only 500 images spanning 10 categories,

it could be hard for the network to learn all the characteristics present in each of the

categories.

Alongside their own network modelled on a combination of AlexNet and

GoogLeNet, Liu et al., (2018) utilized four pre-trained networks on their apple leaf

disease identification problem; AlexNet, GoogLeNet, VGGNet and ResNet .They

compared their network results to those obtained through transfer learning with the

pre-trained networks and found that their model outperforms the known networks.

The final accuracy recorded for their network was 97.62%, a percentage point higher

than the next best performer VGGNet. Many studies make use of pre-defined

networks; however, Liu et al. show that in some cases, defining a new network will

gain a better performance. Often new networks will be inspired by one or several of

the widely known networks (like in Lu et al., (2017)), but this might be the best way

to get all the best components for tackling the problem.

 35

The train-test split is important for ensuring a network has enough data to learn from,

while also having enough to for evaluating its performance. It is also important to

include validation where possible. Often the validation is incorporated into the train

part of the split when described in the literature.

Oppenheim et al., (2018) experimented with different train-test splits to find the best

combination for their work detecting potato tuber disease. Their dataset contained

2465 images of disease lesions cropped from whole potato images, with four

diseased and one uninfected category. They found that, unsurprisingly, more training

data increased accuracy. The model that performed best on the test data used a 90-10

train-test split and gained an accuracy of 95.8%. Many studies elect to stick to an 80-

20 split in the training and test data, in this case the higher amount of training images

may improve training, but the lower amount of test images may not have contained

enough images to fully show the performance of the network considering the size of

the original dataset. A 90-10 split may be more suited to a larger dataset where the

test set would contain more images. This would not be an issue, of course, with a

significantly large dataset containing, for example, 100,000’s of images, where each

subset would contain ample data.

At the time the classification work in this thesis was carried out, there was little to no

research which utilised a large, multi-category dataset of field images for any

disease. In recent years, the Plant Village dataset is still a popular tool for testing

new deep learning architectures and training methods (Kulkarni et al., 2021;

Albattah et al., 2022; Pandian et al., 2022). We have encountered one study by

Haque et al., (2022) where a dataset collection effort similar to our own was

conducted. In this study, they collect images in field of maize plants with three

diseases and a healthy category. Data augmentation methods are used to combat

imbalance between the number of images per category.

The studies discussed above have shown the great potential for deep learning to be

used for crop disease detection. The Plant Village dataset was a breakthrough in the

field, which has seen multiple networks classify its images with incredibly high

accuracy. Furthermore, other works have used more complex images while still

gaining promising results. The problem with these works is that they are not likely to

 36

be viable for use in the field. Due to the time investment often required for collecting

field data, many of the datasets used are relatively small. This means that it is

unlikely that the range of variable conditions which would occur in the field are

represented within the training data. Moreover, in some cases only two classes are

used, one disease and healthy. Here, when confronted with a disease which wasn’t

included, a model would likely classify it as the disease it was trained on, which

could cause problems with applying the wrong control measures. There is a lot of

room for expanding these techniques for use with more comprehensive field datasets

containing more diseases and crop types.

1.4 Deep learning for crop disease severity assessment

When compared with the research for using deep learning for crop disease detection,

little research has been conducted for determining the severity of crop disease using

deep learning. Much of the research into this problem has been conducted since the

planning of our quantification experiments took place in early 2020, so plans were

guided mainly by our own experience and knowledge.

The studies for this section can be split into two main groups. The first involves the

collection of data which is then labelled with a severity score or class. These images

are then used to train a deep learning model to classify them into the pre-defined

scores. One of the earliest studies for severity assessment was by Wang et al.,

(2017), who took apple black leaf rot images from the Plant Village dataset and had

botanists assign a class to each; : healthy stage, early stage, middle stage, or end

stage. They end up with just over 100 images per category, which their model is able

to classify with an accuracy of 90.4%. This is a good starting point, although they

highlight the need for collecting more data, across more severity categories in more

versatile conditions.

In a different approach, Mi et al., (2020) collected 5242 images of wheat leaf images

in the field, with various levels of stripe rust infection. The images were divided into

6 levels of infection. In this study, prior to network training the images were cropped

 37

to form a rectangle around the leaf, so little background information remained. The

result was a fairly well-balanced dataset, with over 600 images per score category.

After training, their model was able to classify images from their test set with

97.99% accuracy. This study provided encouraging results, however it would be

ideal for a model to not require cropping images prior to usage. If this model were

deployed in the field, there would be a significant time investment to get the data

into the right format for use.

The second group of studies require more data preparation. Images are annotated in a

process called semantic segmentation, where each pixel is assigned a class label. In

the case of crop disease severity, these classes could be healthy tissue, disease tissue

and background information. A model then learns to perform this segmentation

themselves, and from there calculate a percentage of infection.

An earlier example of this method was by Lin et al., (2019). In their work with

cucumber powdery mildew, they collect a small dataset of 50 leaf images taken in

controlled conditions. Every image is manually annotated with the segmentation of

the disease lesions. 30 of the images are augmented and used to make the train

dataset. They determine that their model achieves a “satisfactory” segmentation

accuracy when tested on the other 20 images and conclude that their method is

feasible in practice. The main limitation with this study is the dataset size. Although

the data is augmented to produce more training samples, there are only 30 initial

samples to augment, meaning that there will be little natural variation in the images.

Chen et al., (2021) collect a dataset of rice bacterial leaf streak (BLS) images, taken

in the field. They use LabelMe software (Russell, Torralba and Murphy, 2008) to

assign a class of BLS lesion, rice leaf or background to each pixel in the images. The

percentages of infection were sorted into five disease score categories. Their model

was able to accurately segment the disease lesions and classify the images into the

corresponding score category with at least 89% over all classes. It is important to

note that in this study, despite using realistic field data, the data is all collected on a

single day in a single location. Therefore, the range of conditions and amount of data

needs to be built upon for deployment in the field.

 38

In a similar experiment, Divyanth et al., (2023) used a segmentation model to

identify and then calculate the severity of three corn diseases. Through their

segmentation methods and model training, they were able to identify and quantify

the severity of the diseases to a high accuracy. The inclusion of multiple diseases is a

useful tool for working towards an automated method. In many cases, multiple

infections can be present at once. It would be useful to build on this work with a

larger dataset for training.

Both types of study discussed in this section show the early stages of this problem.

They show the promise of using deep learning for quantifying the amount of disease

present using two different methods. The first, classifying labelled images into

severity classes, shows promise using carefully curated or cropped images. It would

be useful to be able to use images that are not taken in controlled conditions or

require editing by the user before use.

The second method using semantic segmentation also produces good results with

small datasets of images. In each case, the segmentation process performs with

relatively good accuracy, meaning they can approximate the amount of disease

present fairll well. The accuracy of these models could likely be increased with

further training data.

All the studies discussed in this section use single leaf images, whether in controlled

or field conditions, to train their models. While this is a promising start, a breeder

will not be scoring disease on a single plant very often. During the breeding process,

they are required to score full plots. To be able to automate this process, any model

will need to be trained using full plot images.

1.5 Thesis overview

In this thesis we will investigate the potential for deep learning models for wheat

disease identification and scoring given complex images taken in realistic growth

conditions. This will provide a foundation for eventually producing an automated

 39

method to aid breeders and farmers in tasks which usually require specialist

knowledge to achieve.

In chapter two we give an introduction to deep learning. Here we provide

descriptions of the individual aspects of the deep learning models used in our work

as well as the process of training a deep learning model as a whole. We also outline

the challenges posed by data collection and the data requirements for using deep

learning to classify and quantify crop diseases.

In our third chapter we produce deep learning models for the classification of wheat

diseases. We collect a dataset of diseased wheat leaf images taken in complex,

realistic growth conditions, which is used to train a deep learning model to classify

four diseases (and a healthy category). We show that deep learning models are

capable of handling complex images and can classify them with high accuracies. The

performance of our model is compared to human participants, revealing it can

perform at least as well as pathologists on image data. We perform an experiment to

verify that the correct information is being used by the model to drive classifications.

Breeders have identified a need for automating the scoring process to save time and

remove differentiation between different scorers. The fourth chapter explores deep

learning models for quantifying the amount of disease present. A dataset of scored

yellow rust plots is collected and used to train deep learning models. We highlight

limitations in the collection of field data for this problem. We perform experiments

with simulated data which show that classification based on infection level is

possible given sufficient data. This work provides the means for evaluating the best

experimental design for a disease quantification problem.

In our final chapter we discuss the results of our work, along with the limitations we

discovered and possible ways these could be overcome. The potential next steps for

taking this work closer to an automated disease scoring system are also outlined.

 40

Chapter 2 Introduction to Deep Learning

The use of deep learning is a constant theme throughout this thesis. For this reason,

we provide an introduction, within this methods chapter, to the various elements of

deep learning for crop disease detection and quantification that we have used.

The two main libraries we use for creating and training our deep learning models are

Keras (Chollet and others, 2015) and Tensorflow (Abadi et al., 2015). Keras is an

interface (API) for Tensorflow, allowing for a quick and easy implementation of a

deep learning model that relieves the user from many of the complexities of

Tensorflow. A deep learning model in Keras can be written in a few, relatively

simple, lines of code and is much more user-friendly than Tensorflow. Tensorflow is

a comprehensive, open-source library for machine learning. Where Keras is useful

for learning and understanding deep learning models, and quick experimentation

with model architectures, Tensorflow has a wider range of capabilities for real world

applications.

2.1 Machine Learning

To understand deep learning and its purpose in this project, it would first be wise to

introduce the entire topic of machine learning, of which deep learning is a type.

Machine learning is a field that focuses on using algorithms that ‘learn’ to perform a

task. The following section will describe some of the aspects of a machine learning

problem, which are important for the work in this thesis.

2.1.1 What is classification?

In machine learning, classification is an algorithm which predicts a class label

associated with the input data. For example, in this thesis we are using a model to

 41

predict the disease present in an image. A classification model is trained using

labelled data, in our case images labelled with a disease class,

2.1.2 How to assess quality

As with any scientific problem, it is important to be able to assess the quality of the

results. For classification, the main metrics for this are accuracy, precision, and

recall, the latter two often being combined to give an F1 score.

Accuracy is defined as the percentage of correct predictions out of all predictions

made. In a perfect scenario, where the model had learned enough to correctly predict

every classification, the accuracy would be 100%, however in practice, a 100%

accuracy is rarely (if ever) achievable. The accuracy which would be deemed

acceptable often depends on the particular problem at hand and the accuracy of a

human completing the same task. In some cases, a lower accuracy may be accepted

where the model is able to compete in another manner, for example speed or man

hours. Accuracy is the main metric we look at in this thesis due to the replicable

nature of the work.

In some classification problems, in addition to accuracy, it is useful to know the

measure of false positive and false negatives for the model. This would be of

particular importance for example in a medical field false classifications in disease

diagnoses could have critical repercussions. This is where precision and recall come

in.

Precision is a measure of how many of the classification predictions for a certain

class were correct. So, in a medical sense, the number of positive diagnoses that

were actually positive cases. Obviously, it wouldn’t be ideal to diagnose a person as

having a condition when they don’t actually have it, as this would result in emotional

trauma and unnecessary treatments and tests. In this work, the precision would be the

number of predictions for each class that were correct for that class. Falsely

predicting the wrong disease could result in the wrong fungicides being deployed, so

 42

the precision for each class needs to be high. Precision is calculated by the number

of true positives over the sum of true and false positives.

Recall is a measure of how many actual pieces of data from a certain class were

correctly identified. In this work, that would be the number of correctly classified

images for one class out of all the images of that class. Although the recall should

ideally be high, it is not quite as important in this case due to the replicability of our

model. In a field there would be 1000’s of plants allowing for several classifications

to be performed to build a full picture of the disease situation in the field. In a

medical field it is more important, missing a positive diagnosis would mean that vital

treatment would not be given. Recall is calculated by the number of correctly

identified positives out of all positive pieces of data.

In machine learning, an F1 score is often used as a measure of quality, combining the

precision and recall over the whole model for all categories. We used the macro

averaged F1 scores for our work, which is the unweighted mean of F1 scores for

each class. The F1 score for each individual category was calculated using Equation

1, then an average F1 score was calculated for the entire model.

Equation 1

𝐹1 = 2 ×
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)

2.1.3 What is overfitting?

A common issue in machine learning problems, and one that needs to be mitigated

during training, is the problem of overfitting. Overfitting occurs when a machine

learning model learns specifics about the training data and so is not able to perform

accurately on new data. This means that the model would be able to make extremely

accurate predictions on the training data, but essentially be useless in the field. When

working correctly, a model will learn general features about the training data which

it is able to apply to new data it has never seen before.

 43

There are multiple ways to try and combat overfitting when training a model, the

first and most obvious being the use of validation data.

2.1.4 What is validation?

Validation is the process of evaluating the performance of a machine learning model.

A validation set of a data is used during the training of a machine learning network

to help ensure that the model does not overfit to the training data.

In this thesis we use a hold-out validation set, which is separate to the test set. After

each iteration through the training data, the model makes predictions on the

validation data to see how it performs on new information. If the model is learning

too much about the training samples, it will not perform well on the validation set as

it will not be able to generalise to this data. This information allows us to see when

the model overfits and use this to determine how many iterations to train the final

model for prior to evaluating on the test set (completely new, unseen data).

2.2 Deep Learning Network Components

In this section we will introduce the different elements of the deep learning models

that we create throughout this thesis. The descriptions contained within this section

are sufficient for the reader to have a good understanding of the work in this thesis,

however they are not fully comprehensive. More information can be found in the

papers cited as well as various books including (but not limited to):

• Deep Learning with Python – Francois Chollet

• Deep Learning – Aaron Courville, Ian Goodfellow, Yoshua Bengio

 44

2.2.1 Layers

Before jumping into the individual components that make up our deep learning

models, it would first be beneficial to describe the overall topology of a neural

network.

A neural network is a type of machine learning or deep learning model which learns

to perform a task in a way that is inspired by the human brain. It is made up of

interconnected neurons (see section 2.2.2) which are arranged in a layer formation.

Every network begins with an input layer. This is the layer which takes the raw data

into the model (for example image data). At the end of each network there is an

output layer. This layer provides predictions about the data, for example

classifications.

In between the input and output layer there are hidden layers. Hidden layers perform

computations to transform the input data into something the output layer can use to

make its predictions. The number of layers can be anything from zero upwards

depending on the experimental design. For a simple problem with little available

data for training, fewer hidden layers may be used, however for more complex

problems with lots of data there may be more. This can be experimented with during

the training process.

2.2.2 Neurons

A neuron takes input signals, either from neurons in the previous layer or from input

data, performs a function and then sends output signals to the neurons in the

following layer. Each input signal has an associated weight, which is a learnable

parameter which is adjusted throughout training. The weight dictates the importance

of the preceding signal on the entire network. At the beginning of training, the values

 45

for the weights are randomly initialized. Neurons are present in all layers of a deep

learning network and are the nodes through which data flows.

Once the neuron has received the input signals and their associated weights from all

neurons, 𝑛, in the preceding layer, the signals, 𝑥!, are multiplied by their weights, 𝑤!,

and summed before being passed to an activation function. The activation function

calculates the output of the neuron, see Figure 2.1. The activation function is chosen

for each layer and is applied to all the neurons in that layer.

In the models we create in this thesis, we use two different activation functions. For

the input layer and all layers before the output, a rectified linear unit (ReLU)

function is used, see Figure 2.2, which sets all negative values to 0. This activation

function is commonly used in neural networks due to their computational simplicity,

meaning faster training, and linear behaviour for positive values, which allows for

easier optimisation of the model. Networks which utilise the ReLU function often

yield better performance than networks trained with other activation functions

(Glorot et al., 2011).

Figure 2.1: A neuron receives an input signals and weights. The signals are multiplied by

their weights and summed before being passed to an activation function to produce an

output signal.

 46

For the output layer which gives the predictions a softmax function is used, see

Figure 2.3. It converts the input of the function to a probability distribution over the

number of classes, where the values are non-zero and add up to one. Here, a higher

input value would produce a higher probability.

Each layer in a deep learning network is made up of multiple neurons, which are

connected to a selection of the neurons in the previous and following layers. This

selection depends on the type of layer used. There can be any number of neurons in a

layer. A small number will mean a small number of learnable weights, and therefore

a limit on the amount the network can learn. Conversely, too many neurons will

overcomplicate the problem and increase the computing power required for the

calculations. It is best to use the fewest number of neurons possible to complete the

task, without having too few. This number depends on several factors such as the

complexity of the data, and the types of activation function used, and can be

determined by experimenting with different values.

Figure 2.2: Rectified linear unit (ReLU) function. Sets all negative inputs to 0.

 47

2.2.3 Optimising weights

After each run through the input data (epoch), the output is predictions for the

classifications of the data. A loss function is used to measure how far these

predictions are from the expected output. It takes the predicted results and computes

a distance score for how far away they are from the true results. The loss is the result

which shows how well the network performed on the previous data. Throughout

training, the network needs to update its weights in order to minimise the loss.

In this work we use categorical cross-entropy as the loss function. This can be

calculated by Equation 2 where S is the number of samples, N is the number of

classes, t is the true distribution for a sample of data (this will be a vector zeros of

length N, with a 1 at the position corresponding to the correct class) and p is the

predicted distribution produced by the output activation function.

Figure 2.3: Softmax function. A higher input produces a higher probability.

 48

Equation 2

𝐿(𝑡, 𝑝) = −99𝑡!"𝑙𝑜𝑔;𝑝!"<
#

"$%

&

!$%

The nature of neurons in a deep learning network means that information is only

passed forwards through the model. To be able to update the weights after each

iteration, information somehow needs to be passed back through the model. This

process is called back-propagation and is how the network fine-tunes the weights.

The model uses information about the loss function and an optimizer to calculate the

new values for the weights. An optimizer is a function used to minimise the loss

function. There are many different optimizers, three which are commonly used are

Adagrad (Lydia and Francis, 2019), RMSProp (Hinton and Tieleman, 2012) and

Adam (Kingma and Ba, 2017).

2.2.4 Hyperparameters

In addition to these weights that are optimised through the training process, a

number of other factors are important that need to be chosen prior to training – these

are hyperparameters. When developing a deep learning model for a specific purpose,

it always involves tuning the network hyperparameters to find the configuration

which gains the optimal results. Examples of hyperparameters are:

● network architecture – the number, size, and type of layers in the model

● batch size – how many images the model works through before updating its

parameters

● learning rate – the magnitude of change to the model weights during training

● number of training epochs – how many times the model works through every

piece of training data

● optimizer – used to update the weights to reduce the loss function. The loss

function is how the network measures its performance. It computes how far

 49

the predictions of the network are from the true labels of the images and

gives a loss score. The more accurate the predictions, the lower the loss.

The choice of hyperparameters can greatly affect the convergence rate and overall

performance of a network.

2.2.5 Convolutional neural network

Convolutional Neural networks (CNNs) (LeCun et al., 1999) are widely used in a

multitude of different computer vision tasks. They have proven to perform well on

many image classification problems, including the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) (Russakovsky et al., 2015).

Figure 2.4: Example of how a feature map is produced using a filter in a convolutional layer.

Step 1 is element-wise multiplication, where each element in the feature map is multiplied by the

value in the image in the same position. Step 2 sums all the outputs from element-wise

multiplication and adds the resultant value to the output feature map. The filter is then moved to

the next position in the image and the process is repeated.

 50

An image is made up of pixels, each of which has a value corresponding to the

colour of the pixel. For a grayscale image, each pixel is denoted by a single number

between 0 and 255. For an RGB image each pixel has three values, one for each of

the three channels: red, green, and blue. A convolutional layer uses filters to create

multiple feature maps from an input image.

The filter slides over the input image and performs element wise multiplication at

each point. The outputs are then summed to generate the input for the feature map.

The filter then slides to the next position on the input image and repeats this process.

This process is shown in Figure 2.4 giving an example of a filter’s resulting feature

map on a given input image. The feature maps generated after each layer then

become the input for the following layer. The number of filters, and the size of the

filters are hyperparameters which can be set during the definition of the model

architecture. Our figures show a 3x3 filter, but larger filters are also used in many

models.

2.2.6 Fully connected layers

A fully connected layer (also called a dense layer) is a layer where all its neurons are

connected to all the neurons in the preceding layer. This is different to a

convolutional layer, where the neurons in one layer are only connected to a selection

of neurons in the following layer. Fully connected layers are used as part of the

classification part of the model. First the data is flattened to be one dimensional as

this is the format needed to provide the classifications. Fully connected layers

followed by a softmax activation function make the classifier, which provides the

predictions.

2.2.7 Batch Normalisation

Batch normalisation (batch norm) allows a model to use normalised data throughout

the training process (Ioffe and Szegedy, 2015). Much like the input data, which is

 51

normalised prior to being fed through the network, see section 2.3.1, a batch norm

layer normalises the outputs of the neurons from the previous layer prior to the

activation function being applied. It does this for each batch of data. Throughout

training, as the weights of the model are updated, it is possible for one weight to

become significantly larger than the other weights. Deep learning networks do not

handle large values well as they stop the model from converging. This is where batch

norm comes in to normalise the data between layers. The addition of these layers

makes training more stable and decreases the learning time due to the standardised

data they produce.

For each batch of data, batch norm takes the outputs from the previous layer’s

neurons (𝑂!) and calculates the mean (µ) and standard deviation (s) using Equation

3 and Equation 4 respectively where 𝑚 is the number of neurons in the previous

layer.

Equation 3

𝜇! =
1
𝑚9𝑂!

Equation 4

𝜎! = A
1

(𝑚 − 1)9
(𝑂! − 𝜇)'

The outputs are then normalised using Equation 5.

Equation 5

𝑂B! =
𝑂! − 𝜇!
𝜎!

For data to be normalised the mean needs to be scaled and shifted to zero and the

standard deviation to one. This is done using Equation 6 and the batch norm layer’s

two trainable parameters g and b, which are learned over the epochs like the

neuron’s weights and are different for each batch norm layer.

 52

Equation 6

𝑏𝑛()*+)* = 𝛾𝑂B! + 𝛽

Much like the weights throughout the network, g and b are adjusted throughout

training to find the optimal values to produce the best predictions.

2.2.8 Max Pooling

Max pooling layers are used to down sample the size of the feature maps, so reduce

their dimensions, produced after a convolutional layer. This reduces the number of

parameters that the network needs to learn and therefore the computational cost of

the model. It is also used as a method to combat overfitting resulting from using only

convolutional layers. Over time, a CNN without any max pooling would start to

associate the presence of features with a specific location. Adding max pooling to

reduce the dimensionality means that the filters used to produce the feature maps

will be looking at a larger portion of the input. This in turn means that the network

will learn to be less dependent on the location of specific features.

The way a max pooling layer works is similar to a convolutional layer, using filters

to perform an operation on the input feature map. Where it differs is that instead of

Figure 2.5: Example of max-pooling down sampling an input feature map. In each position the

filter selects the maximum value to add to the output feature map. After this is complete at one

position, the filter moves 2 pixels across or down to the next position and repeats the process.

 53

performing element wise multiplication, the filter instead picks out the maximum

value in the receptive field. Most commonly, the filter size used by a max pooling

layer is 2 x 2, which moves across the input feature map with a stride 2. The stride of

a layer defines how much a filter moves across an image. In a convolutional layer it

is often set as 1, meaning the filter moves by one pixel to the next location. A stride

of 2 for a max pooling layer down samples the feature maps by a factor of 2. Figure

2.5 shows an example of the max pooling operation over an input feature map.

2.2.9 Dropout

Dropout works by randomly dropping (setting to zero) a number of output features

of the layer throughout training (Srivastava et al., 2014). For example, if a layer

would usually return a vector [1.2, 0.3, 1.1, 0.9, 0.8], after applying dropout there

would randomly be zeros in a number of locations in the vector: [1.2, 0, 0, 0.9,

0.8]. The percentage of features which are dropped is set by the dropout rate, usually

0.5 in the networks used within this thesis.

This method helps to reduce overfitting by introducing noise into the results.

Without the noise, the network may start to learn coincidental patterns which aren’t

significant. The noise breaks up these patterns so that the model can’t remember

them, thus only learning significant features.

2.2.10 Residual connections

In a deep learning network, each layer is built on top of the one before. This means

that the output of one layer is only available as input to the following layer. Hence, if

any information is lost along the way, for example due to a layer not having enough

neurons to handle all the information available to it, then it cannot be regained at a

later stage – it is lost for good. The loss of information in this way is called a

representational bottleneck (Chollet, 2017a).

 54

Backpropagation propagates a signal from the output layer of a network back

through previous layers to the earlier layers, this is how a neural network is trained.

The more layers that are stacked upon one another, i.e., the deeper the network, the

more likely that the signal being propagated can become weaker or disappear

entirely. If this happens then the network can no longer be trained. This is the

problem of vanishing gradients (Hochreiter, 1998).

Residual connections (He et al., 2016) provide a way to help tackle both

representational bottlenecks and vanishing gradients. They provide a way for

information from the output of earlier layers to be fed into later layers, thus limiting

the amount of information lost. Figure 2.6 shows an example of a very short network

with a residual connection. Here, it shows that the output of Layer1 is not only being

used as input to Layer2 but is also being added to the output of Layer3. This creates

a kind of shortcut for the earlier outputs to be included in the later layers. Residual

connections are often used in deep neural networks with many layers to ensure that

as much information is being maintained throughout the training process, and we

experiment with several models that utilize them in this thesis.

Figure 2.6: A short network with a residual connection. The output of layer 1 is used as

input for layer 2 and also added to the output of layer 3.

 55

2.2.11 Depthwise-separable convolutions

Depthwise separable convolutional layers provide a less computationally demanding

alternative to normal convolutional layers (Chollet, 2017b). These layers reduce the

number of trainable parameters in a network, making them faster to run than using

conventional convolutional networks. As well as reducing computational cost and

time, the use of these layers can often increase the final accuracy gained on a

problem.

Where the filters in a convolutional layer perform a convolution on all channels at

once, the depthwise separable convolutional layer performs a spatial convolution on

each individual channel from the input separately. Following this it performs a 1x1

Figure 2.7: An example of a depthwise-separable convolution. a) shows the spatial convolution

and b) shows the pointwise convolution. See text for full explanation.

 56

pointwise convolution on all channels together. Figure 2.7 shows an example of how

a depthwise separable convolution works. In Figure 2.7 a), the input is an 18x18

image with three channels. Three single channel 3x3 filters are used to perform

spatial convolution on each of the channels of the input, so resulting in one channel

of the output image for each of the filters. The output will then be a 16x16 image

with three channels.

Figure 2.7 b) shows the pointwise convolution part of the operations. A 1x1

convolution is performed over the output 16x16x3 image, meaning that it iterates

over every pixel. The 1x1 filter has three channels to match the number of channels

in the image. The resulting image has the same height and width (16x16) but only

one channel. The number of channels can be increased in the same manner as for a

normal convolutional layer, by using multiple 1x1x3 filters to gain multiple 16x16x1

output feature maps.

2.2.12 Residual Attention Network

Attention modules are used within CNNs to get the network to give more attention to

the important information in the data and disregard the unimportant background

information. A residual Attention Network is built by stacking Attention Modules

which generate attention-aware features (Wang et al., 2017b). We use a residual

attention network in our quantification chapter in the hope that it would be able to

focus on the amount of disease present without being distracted by the complex

background information.

The attention module is made up of two parts, the trunk branch, and the mask

branch. The trunk branch uses residual units to perform feature processing to gain

meaningful information about the input. With input 𝑥 the output of the trunk branch

is 𝑇(𝑥). The mask branch uses a bottom-up top-down structure to softly weight

output features, to estimate the importance of the features, with the goal of

improving trunk branch features. The bottom-up step down-samples the image with

max pooling to gain information about the whole image, while the top-down step

combines this global information with the original feature maps by up-sampling

 57

(interpolation) to keep the output feature map the same size as the input feature map.

The output of this branch is a learned mask 𝑀(𝑥) which is the same size as the input

feature maps. It acts as a gate for passing information through the network. A

simplified example is a mask that blocks out blue colour, thus eliminating the

background sky information. The output of the attention module 𝐻 is given by

Equation 7 where 𝑖 is the range of spatial information and 𝑐 is the channel index.

Equation 7

𝐻!,-(𝑥) = 𝑀!,-(𝑥) ∗ 𝑇!,-(𝑥)

Figure 2.8 shows the architecture of the residual attention network used in Wang et

al. (2017) which is used as the basis of our experiments with a residual attention

model in Chapter 4.

2.3 Basics of Training a Deep Learning Model

2.3.1 Data requirements

Figure 2.8: An example residual attention model. Here p, r and t are hyperparameters. p is the

number of pre-processing residual units before splitting into trunk branch and mask branch. t is

the number of residual units in the trunk branch and r is the number of residual units between the

adjacent pooling layer in the mask branch (Wang et al., 2017, p4).

 58

One of the biggest challenges for the successful application of machine learning

techniques for the identification of plant diseases (or any image classification task

for that matter) is the availability of data. The majority of these methods require

large datasets of labelled or annotated images, which can be time-consuming to

collect and process. For example, with plant disease detection, it is necessary to have

a large number of images for each disease for each plant species that is being

modelled. In the case of disease quantification, there needs to be enough images for

every score or disease severity level.

One of the most famous, and largest, datasets used for image analysis with deep

learning is the ImageNet dataset (Deng et al., 2009). This dataset was created for use

with object recognition software. The full dataset contains more than 14 million

images with over 20,000 categories, however a smaller subset of this has been used

in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky

et al., 2015). This challenge ran annually between 2010 and 2017, encouraging

participants to develop and improve computer vision techniques for image

classification and object recognition. Multiple winning networks created for this

competition over the years are now used as the starting point for hundreds of deep

learning problems, including the problem of crop disease detection.

Collecting a dataset of images for use with any deep learning problem is not quite as

easy as simply gathering as many images as possible by any means. It is important to

ensure that the dataset contains appropriate information for the required use case.

The rest of this section will discuss the factors to consider when preparing a dataset

for plant disease recognition and classification. These factors include range of

conditions, controlled versus uncontrolled capture conditions, image quality issues,

the number of images required and labelling and annotation requirements.

The most widely known, and one of the only openly available datasets used for the

recognition of plant diseases, is the Plant Village dataset (Hughes and Salathe,

2016). This is a collection of almost 88,000 images taken in controlled conditions

with 38 categories, each corresponding to a plant-disease pair. Each image contains a

single diseased or healthy leaf taken from the plant and placed on a neutral

background and photographed under different lighting conditions. While this dataset

 59

was ground-breaking in the field of plant disease detection when it was first created,

the use of controlled conditions in the photos means that it is not comprehensive

enough to be useful for an automated system in field conditions.

The Plant Village dataset was useful for demonstrating the potential of deep learning

methods for the classification of plant diseases; however, in order to create a model

that will be useful in realistic growth conditions, it is now important to collect

datasets which accurately represent those conditions. PlantDoc (Singh et al., 2020) is

a dataset created to cover many of the diseases present in the Plant Village dataset,

but the images instead cover real field conditions. Here, images were downloaded

from the internet and checked by members of the team before being added to the

new dataset. This resulted in almost 3000 images, spanning 27 of the categories from

Plant Village (any classes with fewer than 50 samples were removed for this

dataset). This is a step in the right direction, but there is a distinct possibility of mis-

classified samples within the dataset due to them being taken from internet searches.

Also, with it still being a relatively small dataset spanning a lot of classes, there is

still a high chance that not all conditions are being covered.

For studies that are looking at building a model for a certain crop, as for the work

within this thesis, it is unlikely that there are already datasets openly ready and

available for use. This means that, for each case, there will be a large collection

operation required prior to any numerical experiments. The result is usually a

relatively small dataset with few categories (in some cases only two: diseased or

healthy). While these can be useful for the problem at hand, there is still some way

to go with generating a larger dataset to be used in a wider variety of cases.

The collection of a dataset which sufficiently covers each category can be a time-

consuming task, often requiring the specialist knowledge of an expert pathologist

and multiple volunteers to take the pictures. Furthermore, it is not simply a case of

capturing a large number of images for each category, but also including a

representative range of conditions. If the model is to be used for identifying diseases

in the field, then the range of typical conditions that could be encountered in the field

need to be represented. This includes:

 60

· The variation in crop varieties/ species – for example different leaf

colours or sizes

· State of the crop – seedling, adult, flowering, mature with seed

· Stage and severity of the disease – early to late infection, mild to severe

symptoms (particularly important for disease quantification)

· Weather and lighting conditions – Full sun, sun, and cloud, overcast, rain,

etc.

· Background information – this needs to be consistent throughout the

dataset. Having one class with different background information to the

rest (e.g., glasshouse instead of field) will cause issues in training

· Image qualities – Focus, depth of field, range of angles

The main point to remember when creating a dataset for deep learning is that the

conditions present need to be consistent between classes. Any class (category)

containing conditions which are not present in the others, for example one class

having sky in the background whereas no other does, will cause the network to learn

the wrong information about that class and classify it based on the presence of sky,

rather than the disease information.

Another factor to consider if working with real condition images is the diversity of

background information, which might contribute negatively to the training process

by distracting from the features that are of interest. If the images are collected in a

field, for example, this may not be too much of an issue as the field conditions are

likely to be relatively uniform. However, if the images are of a plant species which

grows in various wild locations, then a vast array of background information can be

expected. Where possible, the full range of diverse background conditions should be

represented in images across all classes.

The number of images is also important. The number of images to aim for per

category will depend on the complexity of the problem at hand. A simpler problem,

for example a binary classification problem of healthy or diseased, will require fewer

images than a classification problem with multiple diseases with similar symptoms.

However, the general rule of thumb with deep learning datasets is the more data, the

 61

better (ideally hundreds, if not thousands or even tens of thousands, of images per

category in our opinion). The more images the network has to learn from, the better

its performance is likely to be. It is also best if the data is relatively well balanced,

with a similar number of images in each category, so the network does not learn a

bias towards one class due to it having significantly more training samples than the

others.

One technique to increase the number of images in a dataset where it is not possible

to collect more is data augmentation. Augmenting the data involves performing

multiple transformations on each image to add new samples to the dataset (Perez and

Wang, 2017). For example, an image may be mirrored, flipped horizontally or

vertically, rotated, or shifted to create tens of new images from a single sample. The

main drawback of this is that there is no actual new data created, just variations of

existing data. This means that the original dataset still needs to contain enough

variation so that the network can learn enough to form predictions. There are other

methods for working with smaller datasets, however where possible it is always

better to collect more data.

After collecting all available data, it will then need to be labelled and collated into a

full dataset. For best results, a pathologist will need to label each image with the

correct category, either as the images are taken, or by going through all data and

assigning categories later. This of course can be incredibly time consuming and can

result in misclassifications within the dataset if a pathologist is not available. In

cases where different visualisation techniques are being used with the dataset, it may

also be necessary to annotate the data with further information (e.g., a bounding box

around a disease lesion). This often has to be done manually on each image and is a

huge undertaking, requiring many hours of work and in some cases specialised

knowledge.

Once all labelling and annotation is complete, the data can be sorted into the train,

validation and test sets and go through pre-processing prior to being used with a

deep learning model. It is important to separate the data into the three subsets before

any pre-processing occurs to ensure that data leakage does not affect the model. If

pre-processing is done on all the data together, then it will have access to knowledge

 62

about the dataset as a whole which will influence the training. Data leakage can

happen when the model gains information about the test or validation set during

training, which means it can make more accurate predictions which will not be a true

representation of the model’s ability on unseen data.

Deep learning networks take floating-point tensors as their input, so any data used

for training or evaluating a model should be formatted as such. In computer science a

tensor is a multi-dimensional array which stores data of a specific type. With image

classification, the images are often stored in the dataset as .JPEG or .PNG files. Pre-

processing is the method of converting these image files into floating-point tensors

prior to feeding them into a network. First the images are decoded into their RGB

pixel grids, where each pixel has a value between 0 and 255 for each of the three

colour channels. Following this, the data is normalised by dividing each value by

255 to get all data in the range 0 – 1, giving a dataset for each image in the format

A[i][j][k]. Normalising is important because feeding larger or heterogeneous values

into a network can stop the model from converging.

2.3.2 Model Training

The deep learning networks that are used for the identification of crop diseases are

often a type of CNN trained to perform their task by image analysis and

classification. CNNs are used because of their strong ability to extract useful features

from the images (Yamashita et al., 2018). Each network has an input layer where the

data (in this case images) is fed into the network and an output layer, which is where

the predictions are given. Between these are a number of hidden layers which

perform feature extraction. The number, size, and type of layers in a deep learning

network is referred to as the model architecture.

Feature extraction is the process where the network learns features from the images

that are relevant for the predictions. Earlier hidden layers, closer to the input layer,

learn low level features, for example lines and edges. As the images are progressed

through the hidden layers, the extracted features become increasingly complex.

 63

Figure 2.9 shows a simplified representation of the deep learning workflow for

image analysis. Feature selection prior to deep learning approaches was done

manually by experts with domain knowledge and was a highly time-consuming

undertaking. An advantage of the manual approach is that the features are often

meaningful features that humans can relate to, such as number of eyes, number of

legs, etc. The features inherent to deep learning networks are learnt during the

training phase by adjusting the weights in the network to increase the performance.

This automation brings huge advantages in terms of saving time and not relying on

expert domain knowledge but has the disadvantages that the features are often not

easy to extract and interpret. Feature selection is thus part of the overall network

weight optimisation process.

Training a network for image analysis requires a large dataset of images to work

with, ideally tens of thousands of images depending on the problem. The image

dataset is split into smaller datasets, usually train, validation, and test sets, however

some studies use only a train set and test set. In cases where there is enough training

data, having a separate validation set is usually the best method. However, if the

dataset used is smaller and having a separate validation set would make the train

and/or test set too small, then studies often use other validation techniques such as

Figure 2.9: A simplified depiction of a deep learning model for the classification of dog and cat

images. The model takes images at input, has multiple hidden layers for feature extraction, and

produces classification predictions as output.

 64

K-fold validation and iterated K-fold validation and shuffling (Refaeilzadeh, Tang

and Liu, 2009). The split of the dataset between these sets varies over different

studies, but the bulk of the images is always contained within the train set, with a

smaller amount in the validation and test sets.

When training a model, the train set of images is fed into the network in small

batches (e.g., 64 images at a time). Once all the images have been through once, this

is known as an epoch. The network will be trained for a certain number of epochs, as

defined by the programmer. The number of epochs should be sufficient to reach

convergence during the optimisation process to deliver the best performance.

Training for too many epochs can waste computational resources and lead to

overfitting (see below). This number is often picked by taking an educated guess

based on previous research and experiments in similar fields. Many studies will try

multiple experiments with different numbers of epochs before finding the number

that yields the best results for their data.

Between every epoch, the current network parameters are evaluated against the

validation set to ensure that the training process is not overfitting to the data in the

train set. If it were overfitting, then it would be learning features that are specific to

the images in the train set and would not be able to generalise to new data of the

same type once training is complete, as would be found in the test set. For example,

if the network were looking for a certain feature from the train data which did not

appear in the validation data, such as the presence of different soil colours, the

validation set would highlight a discrepancy in the performance. The network

parameters would then be readjusted to ensure that it is not using that soil

information from the train set for classifying that disease, but rather the disease

information on the plant instead. Ideally, the train, validation and test tests would all

contain both colours of soil.

Throughout training, the network is constantly adjusting its internal parameters after

each batch and epoch to allow it to better make predictions about the images. As it

learns, the accuracy of the predictions increases until it reaches a peak at the end of

training. At this point, a new, trained instance of the network is defined and trained

for the same number of epochs that returned the peak accuracy. It is trained on all

 65

available training data, the train and validation sets combined. Following this, the

network can be evaluated on the test set of images. This is a set of images of the

same kind as contained in the train and validation sets, but that the network has

never seen before. This shows how the trained network performs on brand new

images to give a final accuracy rating. The whole process from start to finish can

take a long time, from hours to days, to even months. This depends on multiple

factors, such as the computing power available, the size of the network and the size

of the dataset. For example, a model with 10 convolutional layers would likely take

double the time to train than a model with 5 convolutional layers would using the

same data. Furthermore, training the same model using one or many GPUs would be

significantly faster (for example hours or days) than training using only CPUs (for

example tens of days or months).

2.3.3 Transfer Learning

A lot of studies begin their experiments by using transfer learning with their datasets.

This is a method that takes the knowledge learned by a previously trained network

and applies it to the new problem. The main advantage of this is that it is relatively

quick compared to training a deep learning network from scratch. Some examples of

networks often used for transfer learning are AlexNet (Krizhevsky, Sutskever and

Hinton, 2012), GoogLeNet (Szegedy et al., 2014), VGGNet (Simonyan and

Zisserman, 2015), ResNet (He et al., 2016), Inception V4 (Szegedy, Ioffe, et al.,

2016) and MobileNet (Howard et al., 2017).

Transfer learning uses a network which has been fully trained on a large dataset

(often the ImageNet dataset described in section 2.2.2). The pre-trained network is

divided into two parts; the convolutional base, which is the part that performs feature

extraction on the images, and the fully connected classifier, which forms predictions

about the images. Depending on the method used, all or parts of the network are

repurposed for the new dataset. In some cases, only the network structure is used and

is retrained for the new problem without using the pre-trained knowledge. We use

two different methods of transfer learning over the course of this PhD, which will

 66

each be described in the following sub-sections. These both use the same pre-trained

models and fully connected classifier, however they are trained in different ways.

2.3.3.1 Method 1

The first method of transfer learning that we will describe takes the convolutional

base of the pre-trained network, complete with learned weights from having been

trained on a larger dataset. The original fully connected classifier is discarded. This

is because the features learned by the convolutional base are often more general and

able to be reused, but the classifier is likely to have learned representations which are

much more specific to the original training data.

We feed the data for the new problem (here for wheat disease classification) through

the convolutional base a single time, allowing the convolutional base to perform

feature extraction. The extracted features are then used to train a newly defined,

fully-connected classifier network. This method is much quicker and cheaper to run

than training the entire model from scratch (see method 2), as the convolutional base,

which is the most computationally expensive part of the network, only needs to be

run once.

2.3.3.2 Method 2

The second method we use takes the entire pre-trained network, without separating it

into the convolutional base and fully-connected classifier. In this case, we freeze the

weights for the convolutional portion of the network. This means that they stay the

same throughout training and can no longer be changed as the model learns. The

fully-connected classifier portion of the network, however, does learn through

training and its weights and parameters are constantly updated as it learns.

The new data is sent through the entire network for multiple training epochs, much

like training a full model from scratch, until a final accuracy is reached. This is a

much more time consuming and expensive method, however it allows the user to

 67

retrieve information from the individual layers in the convolutional base. This

information can be used for analysing the performance of the model by generating

area importance heatmaps (Selvaraju et al., 2020), for example.

 68

Chapter 3 Classification of Wheat Diseases

The first step to producing an automated deep learning model for scoring wheat

disease in the field is to ensure that the defining features of the disease can be

detected and classified from realistic field data. If this is not possible then there is no

way that it would be able to identify and then quantify the amount of disease present.

It is important to use data collected in real growth situations for training a model as

this will reflect the conditions that would be encountered in the field. Including this

kind of data in a training dataset will allow the model to learn to ignore background

features. Furthermore, the disease information can be affected by the environment

around it. For example, the lighting conditions that would be found in the field are

different to those that would be experienced in controlled laboratory conditions,

therefore the appearance of the disease symptoms will be different in each situation

due to the variance in light.

For any model to be useful in real field situations, it would ideally need to perform at

a level of accuracy and speed at least equal to the human pathologists who would

usually be classifying these diseases. However, a slightly lower accuracy than human

classification, several percentage points for example, would also be acceptable as our

model could be taken out multiple times to build a clearer picture of the infections in

a certain location. We explore the human and model accuracies for our problem in

section 3.1.5. This could be done by anyone and wouldn’t require the time of a

trained pathologist to do so.

In this chapter we aimed to produce a viable deep learning model for wheat disease

detection in the field. We hypothesized that convolutional neural networks (CNNs)

would be able to handle the complex images and be able to classify the different

diseases. We collected a large, comprehensive dataset of images taken in realistic

growth conditions, including four of the most important wheat foliar diseases in the

UK (see section 1.1.2). We experimented with multiple deep learning architectures

to find the configuration that classifies the images into their disease category with

the highest accuracy. Ideally, any model would need to perform at least as well as

 69

human pathologists to be useful in the field, so we compared our best performing

model’s classification power against five expert pathologists with backgrounds in

identifying these wheat diseases.

3.1 Methods

3.1.1 Collection of a dataset of wheat disease images in

realistic growth conditions

Training a network to classify images requires a large dataset of images sorted into

categories. A dataset that could be used to train a network to identify and classify

wheat diseases needed to be collected. For this work we aimed to define and train a

deep learning model to classify images containing a single disease using images

taken in realistic growth conditions, including complex background information.

The diseases we decided to include in our dataset were Septoria, yellow rust, brown

rust, and mildew. We also included a healthy category to ensure that any trained

model would not classify healthy leaves as having a disease due to a lack of any

other option. The locations for photography were chosen by my supervisor, James

Brown (in particular locations in Norfolk), and pathologists from RAGT, Limagrain

and KWS. The majority of field photographs were taken in plant breeders’ trials

containing thousands of wheat lines. A minority were taken in farmers’ fields

containing diverse commercial varieties, which were not identified or marked in any

way for the image collection. These locations provided plenty of variation in the

appearance of the wheat over different varieties, as well as a range of susceptibility

to the diseases. This was important to collect a variety of infection levels for the

dataset.

Photos were taken over a three-week period in diverse weather conditions. However,

due to a lack of mildew in field situations thanks to breeders having good control

over mildew in the UK (Brown, 2015), many mildew images were taken in

 70

glasshouse conditions. The images were taken from diverse lines from genetic and

plant breeding experiments. Each photography location was identified by a

pathologist as having only one disease present during the photography window and

the resulting photographs were all labelled with that disease. This was possible due

to many of the photography locations being breeding trials where other diseases

were controlled with fungicides. Other locations were chosen because they were

known to have high levels of one disease and low levels of other diseases, reducing

the risk of mixing diseases. We were able to make logical decisions for

photographing in farmers’ fields based on the part of the country and what part of the

growth season it was. Different diseases can be more prevalent in some areas and at

certain points in the season.

It would be ideal for any model trained to identify wheat diseases to be deployed on

a mobile device, as this way any person would be able to take it out to the field

without having to rely on a trained pathologist. To replicate the capture conditions

for deployment on a mobile device, the majority of the photographs were taken using

various iOS and Android smartphones, with a range of camera resolutions. Some

images were also taken using a low-resolution setting of a digital camera. The

resultant images had resolutions that ranged from 6 – 16 Megapixels.

Photography volunteers were given instructions for capturing their images to ensure

that the data was collected consistently over the whole dataset. They were told to

collect images of leaves still attached to the plant, where the main focus was from

one up to five leaves all infected with the same disease (or healthy). The images

were to contain normal background information and be taken at a range of distances

and angles to emulate the different capture styles that would be used by the future

user. The volunteers were also provided with a selection of sample images to allow

them to see visually what the images we needed would look like.

We were conscious of the need to collect images which accurately represented the

range of conditions that would typically be found in realistic growth environments.

All weather and light conditions which could affect the appearance of the diseases

needed to be included, for example sun, cloud, and rain. We also had to make sure

 71

that we captured variation in the wheat plants that we imaged, including leaf colour

and growth stage of the plants. Additionally, it is important to be able to identify

these diseases through all stages of their life cycle and over all possible symptoms,

so we needed to include the different stages and symptoms in the images we

collected. This was achieved by visiting some of the sites multiple times and

photographing each category across the entire growth period to include early,

middle, and late infections. Making many visits to photography locations for each

category allowed us to collect a good range of variation in symptoms. While trying

to capture as diverse a range of conditions in our dataset as possible, we had to

ensure that this range was as consistent as possible over all of the categories to

ensure that our models did not learn something about a single category due to the

absence of a certain attribute in all other categories. Information about the location,

disease, weather conditions and date were noted for each collection session.

As with the other categories, the mildew was imaged over the entire growth period,

and where possible, with different weather conditions. However, naturally as many

images were captured in glasshouses, there was a difference in the background

information included in these images when compared to the field images.

We wanted to make sure that the dataset included as much useful information

(disease and leaf tissue) with as few misclassifications as possible. Every image was

loaded individually using preview and checked for quality control purposes. Due to

the way we classified the images initially, by labelling all images from one location

with a single disease (or healthy), there was the potential of other diseases forming

multiple infections on the plants in some of the images. In some cases, other diseases

weren’t entirely controlled by fungicides, so some images were taken of the wrong

disease in error. During quality control, any image that contained a disease other

than the one that matched the initial label was removed. This included images with

multiple diseases present.

As with any task carried out by humans, there was also the possibility of human

error in the photographing. This meant that some images contained no useful

information about the disease (for example an accidental image taken which contains

 72

predominantly soil and little to no leaf information), were too blurry to be included

or the useful leaf and disease information was covered by a hand or shoe etc. All of

these images were removed, however we kept images that had additional features

(like fingers, boots, or line markers) as long as the relevant disease information was

not obstructed. This was done to ensure that the images were as representative as

possible of the type that would be taken when the model is taken out on a mobile

device in future. We cannot assume that every image taken by every person using the

model would be perfect without additional features or manageable amounts of blur.

All images that passed quality control were assigned a label corresponding to the

disease present.

We took every precaution to ensure that the images were correctly classified prior to

being included in the dataset, however due to the nature of the problem there will

naturally be some misclassifications included. The way the images were labelled as a

group depending on where they were photographed and then being quality controlled

by a single person means that some misclassifications would have slipped through.

In an ideal world, the data would be checked by multiple pathologists before using to

train any models to ensure that as many images were labelled correctly.

At this point, we sorted the images into a train, validation and test set ready for use

with our deep learning models. Each category was shuffled prior to being divided

into the three sets. This meant that images from each location were likely to be

spread across the three sets, ensuring that a model was trained and tested on the same

variety of conditions. We split our dataset as follows: 60% of images in the train set

and 20% of images in each the validation and test sets. Every category was divided

in these proportions. We felt that our dataset was of sufficient size for this split to

contain enough variation across all three subsets. The exact numbers contained in

each category for each set of data is discussed in section 3.2.1.

 73

3.1.2 Transfer learning with our dataset

Our goal was to develop and train deep learning networks to classify images as

Septoria, yellow rust, brown rust, mildew, or no disease from images taken in

realistic growth conditions. We decided that the best place to start was by utilising

pre-trained networks through transfer learning. By using these models which have

already been trained on a larger dataset, we were able to extract features from our

dataset much quicker than training a model from scratch. This meant that we could

get some results early in the process which would tell us whether or not deep

learning networks could handle a complex dataset like ours without us having to do

any pre-processing to our images prior to training.

For the experiments in this chapter, we used keras version 2.2.0 (Chollet and others,

2015) to define, train and evaluate all the deep learning models in python 3.5.1. We

experimented with four pre-trained networks (MobileNet (Howard et al., 2017),

InceptionV3 (Szegedy et al., 2015), VGG16 (Simonyan and Zisserman, 2015) and

Xception (Chollet, 2017b)) to extract features from our dataset. These four models

were chosen as they were available within keras and could be imported with the pre-

trained weights using only a few lines of code. One further model, Resnet50 (He et

al., 2016), was tried, however the code repeatedly failed, so it was removed from our

experiments.

We used method 1 for transfer learning, see section 2.2.3.1. We removed the part of

the pre-trained network which provides classifications and sent our images once

through the part of the network which extracts features, the pre-trained convolutional

base. Having extracted the features, we defined a short classifier network which took

the extracted features as input for training. The architecture of the classifier network

was the same for all four pre-trained networks (see Figure 3.1) and used an

RMSProp optimizer (Hinton and Tieleman, 2012). For each model we use

classification accuracy and F1 score (Goutte and Gaussier, 2005) to evaluate

performance.

 74

Our first experiments used input image sizes of (150,150) or (128,128) depending on

the individual network requirements for input size. Batch size 32 was used for

training the classifier network. Due to the complexity of our images, we also

experimented with a larger batch size and input image sizes. We multiplied each

component by four for every model, giving a batch size of 128 and input image sizes

of (512,512) or (600,600).

3.1.3 Defining our own model architectures

The results from transfer learning suggested that deep learning networks can deal

with complex images such as those taken for our dataset, under real field conditions,

Figure 3.1: An artistic representation of the architecture of our fully

connected classifier network.

 75

for detecting wheat diseases. The results are above the baseline metrics that we

calculated based on our data.

To find a baseline for our models, we used the zero rule, which is widely used in the

machine learning community. This rule states that if the classifier always chooses the

most common class (the class with the most samples), then it will be right 𝑥% of the

time, where 𝑥 is the percentage of the whole dataset contained within the most

common class. In our case this is the Septoria class, containing 36.84% of the test

data. Therefore, our zero-rule baseline for classification accuracy is 36.84%.

Table 3.1: The percentage of the full dataset contained within each individual category.

Category Percentage of dataset

Brown rust 13.06%

Healthy 11.86%

Mildew 15.35%

Septoria 36.84%

Yellow Rust 22.89%

Total 100%

Another baseline metric we used is that of the weighted random guess. If our dataset

were perfectly balanced then a random guess would have a one in five chance of

being correct, so would have a 20% accuracy. As our dataset is imbalanced, we use a

weighted random guess which squares the percentages (in decimal format e.g., 30%

as 0.3) of the dataset for each category and adds them together. Table 3.1 shows the

percentage of the full dataset contained within each category. For our dataset, the

accuracy baseline for a weighted random guess is 24.28%. Any model with an

accuracy above this point is adding value, however, to be useful as a predictor is also

needs to be above the zero-rule baseline.

Although the accuracies of the pre-trained network are relatively high, they were not

as high as would be ideal for use in the field. We estimate that a trained pathologist

 76

undertaking the same task in the field would be able to classify the diseases with

accuracy percentages of 95% or higher. We decided to explore other network

architectures to see if we could optimize the classification accuracy. We

experimented with multiple deep learning architectures, based on convolutional

neural networks (CNNs), where we changed the number of layers and the types of

layers used to find the combination which provided the highest classification

accuracy on the test data. We also experimented by changing the hyperparameters

(such as input image size, batch size, learning rate, number of epochs) to further

optimise the performance of our models.

Each model was trained, validated, and tested using the method described in section

2.2.2 All networks were trained using the Norwich Bioscience Institute’s high-

performance computing (HPC) facilities. The pre-trained networks used central

processing units (CPUs) on the HPC clusters, whilst our own networks were trained

using graphics processing units (GPUs) to decrease training time.

3.1.4 Masking images

While it is important for a trained model to be able to classify the images with high

accuracy, it is no use if the classifications are being made based off of the wrong

information. In our case, we want the model to be using the leaf and disease

information to drive classification, and not any arbitrary background features which

may be present in the dataset.

As an experiment to determine whether our model was using the correct information

for its classifications, we used black masks to cover the important information

(disease lesions and leaf tissue) in a selection of images from our test dataset. A

rectangular mask was placed over the foreground diseased (or healthy) leaves in

images from each category. We theorised that with a mask covering this information,

a deep learning model would have trouble to correctly classify the images and would

instead have to ‘guess’ rather than make an informed decision. This would result in a

drop in classification accuracy for the masked image dataset when compared with

 77

the same images with no mask. The masks were added using the editor functions in

the Preview app, available on apple computers. The number of masked images

created for each category is described in section 3.2.5.

We sent the newly masked images and their original counterparts through the trained

network to gain predictions for each set. Confusion matrices were used to compare

the results.

3.1.5 An experiment to evaluate our model against human

participants

Table 3.2: Sample of network results on test data to show how images were selected for

experiment with human participants

We designed an experiment which allowed us to evaluate the performance of our

model against multiple trained pathologists with backgrounds in working with these

diseases on wheat. The experiment took a small subset of images (describe in the

next paragraph) from the original dataset and gained classification accuracy results

Filename Prediction

score

Network

prediction

Correct/

Incorrect

Mildew1936 35.7 YellowRust Incorrect

Healthy1598 36.1 Mildew Incorrect

Yrust240 40.9 BrownRust Incorrect

⋮ ⋮ ⋮ ⋮

Brust173 39.8 BrownRust Correct

Yrust3027 57.4 YellowRust Correct

Mildew1282 60.1 Mildew Correct

Healthy1976 63.9 Healthy Correct

Mildew1121 66.0 Mildew Correct

Healthy1744 68.9 Healthy Correct

 78

for our model and five pathologist participants. The smaller dataset used for this

experiment contained images taken from the test set of images. It contained 999

images, which is about a quarter of the size of the original test set. This number

represents a reasonable compromise between getting a good statistical assessment on

the performance of the pathologists and the network and the number of images that

could realistically be classified by a human in a few hours.

To choose the images for this experiment we first took all the images from the test

set which were incorrectly classified by the network. We did this to see if there was

any correlation between the images that the network struggled to classify and those

that the pathologists struggled with. From there, we ordered the rest of the images by

the network’s prediction scores and added every fourth image to the dataset, see

Table 3.2. This ensured that the dataset contained a selection of images that, from the

network’s perspective, had varying degrees of difficulty in classification and were

well distributed across the five categories. The images were shuffled randomly to

ensure that there was no way to know which disease would appear next when

presented to the participants.

Table 3.3: Tag numbers for each category in qtagger

We used a tagging system, qtagger (Hartley, no date) (link in reference), created by

supervisory team member, Matthew Hartley, which allowed us to present the images

in our smaller set to each of the five pathologist participants in the same order. The

tagging system worked by loading each image individually onto the screen. The

Category Tag

Brown Rust 1

Yellow Rust 2

Septoria 3

Mildew 4

Healthy 5

 79

participants then assigned a tag to the image corresponding to the class it contained,

and this action caused the next image to be loaded, replacing the previous. Each

category was assigned a number between one and five (see Table 3.3) so that,

instead of having to find the right category name each time, the participants only

needed to enter the number which represented the category they had chosen. This

meant that the tag could be entered quickly without much additional effort. Qtagger

is open source and freely available. It is implemented in python and uses the Qt

framework as a graphical interface and the dtool library for data management.

The system made a record of the tags made by each participant, and the time taken

between clicks. We could then compare the classifications for each participant with

those of the network and the true labels for each category, and also get a rough idea

of the time taken for each participant to classify every image in the dataset. We used

confusion matrices to display the classification results for each participant and our

model.

Initially, we presented this experiment to the pathologist participants as individuals,

however we conducted a second experiment where the group were allowed to

discuss their classifications and even remove images that they were not able to agree

upon. For this second experiment, we removed all images that all five pathologists

classified correctly in the first experiment. This was done to save time, as we

theorised that there was a high chance that they would classify these images the

same a second time and working as a group was likely to take longer than individual

classification.

3.2 Results

3.2.1 Dataset collection

To evaluate the potential of automated disease detection from realistic field images

with complex background information, we collected images that reflected the

 80

conditions found in typical growth situations. With the help of volunteers, we

collected over 20,000 images (before quality control) across the five categories.

Table 3.4 gives information about the photography locations, approximate number of

images collected and weather information where available. In all categories other

than mildew, all of the images were taken in outdoor field conditions, except for a

very small amount in the healthy category that were taken in glasshouses.

Approximately 80% of mildew images were taken in glasshouse conditions due to a

lack of available mildew-infected field plots.

The dataset contains images of wheat leaves with either Septoria, yellow rust, brown

rust, mildew, or no disease, taken in real growth conditions. The photos include

complex backgrounds, as would be encountered in the field. We took care to include

many different conditions which are found in the field, firstly, so the model can work

in all situations and secondly, to reduce the risk of the model learning features that

are not related to the disease. The different conditions Ie camera position, weather,

lights, wheat varieties including shades of green of leaves, age of plant and the life

cycle stage of any disease present. There were similarly diverse conditions in the

photos of mildew on Iheat in glasshouses, however the background information in

many of the glasshouse pictures was different than for those images taken in the

field. Figure 3.2 and Figure 3.3 show example images for each category in field

conditions, as well as an example image for mildew taken in glass house conditions.

After image collection was complete, the images were quality controlled and the

final dataset contained 19,172 images, spread across all five categories. Each

category was split so that 60% of images were placed into the train set, and 20%

went into each the validation and test set. Table 3.5 shows the distribution of images

in our dataset overall and through the three subsets.

 81

Di
se

as
e

Ap
pr

ox
 n

um
be

r
Lo

ca
tio

n
W

ea
th

er
Co

m
pa

ny

Da
te

No
tes

Co
lle

cte
d

by
H

ea
lth

y
45

0
N

ew
to

n,
 C

am
br

id
ge

su
n/

 cl
ou

d
K

W
S

14
/0

3/
20

19
Se

ed
lin

g
M

eg
an

 L
on

g
H

ea
lth

y
45

0
N

ew
to

n,
 C

am
br

id
ge

K
W

S
14

/0
3/

20
19

gl
as

sh
ou

se
M

eg
an

 L
on

g
M

ild
ew

55
0

N
ew

to
n,

 C
am

br
id

ge
K

W
S

14
/0

3/
20

19
gl

as
sh

ou
se

M
eg

an
 L

on
g

Y
ell

ow
 ru

st
55

0
N

ew
to

n,
 C

am
br

id
ge

su
n/

 cl
ou

d
K

W
S

01
/0

5/
20

19
tee

na
ge

' p
lan

ts
M

eg
an

 L
on

g
H

ea
lth

y
25

0
N

ew
to

n,
 C

am
br

id
ge

su
n/

 cl
ou

d
K

W
S

01
/0

5/
20

19
tee

na
ge

' p
lan

ts
M

eg
an

 L
on

g
Se

pt
or

ia
15

50
Su

tto
n

Bo
nn

in
gt

on
,N

ot
tin

gh
am

su
n/

 cl
ou

d
RA

G
T

- s
tu

de
nt

14
/0

5/
20

19
M

eg
an

 L
on

g
Y

ell
ow

 ru
st

85
0

Ic
kl

eto
n,

 C
am

br
id

ge
clo

ud
/ra

in
RA

G
T

04
/0

6/
20

19
M

eg
an

 L
on

g
Se

pt
or

ia
40

0
Su

tto
n

Bo
nn

in
gt

on
,N

ot
tin

gh
am

ra
in

RA
G

T
- s

tu
de

nt
11

/0
6/

20
19

M
eg

an
 L

on
g

Br
ow

n
ru

st
10

50
W

oo
lp

it,
 S

uf
fo

lk
clo

ud
/ra

in
Li

m
ag

ra
in

12
/0

6/
20

19
M

eg
an

 L
on

g
M

ild
ew

65
0

JI
C

JI
C

21
/0

6/
20

19
gl

as
sh

ou
se

Ja
m

es
 B

ro
w

n
Se

pt
or

ia
30

0
Su

tto
n

Bo
nn

in
gt

on
,N

ot
tin

gh
am

su
n/

 cl
ou

d
RA

G
T

- s
tu

de
nt

21
/0

6/
20

19
Pa

tri
ck

 S
ee

d
Y

ell
ow

 ru
st

12
50

Ro
th

w
ell

, L
in

co
ln

sh
ire

su
n/

 cl
ou

d
Li

m
ag

ra
in

18
/0

6/
20

19
M

eg
an

 L
on

g
M

ild
ew

65
0

Ro
th

w
ell

, L
in

co
ln

sh
ire

su
n/

 cl
ou

d
Li

m
ag

ra
in

18
/0

6/
20

19
M

eg
an

 L
on

g
Se

pt
or

ia
80

U
nk

no
w

n
lo

ca
tio

n
Ire

lan
d

Te
ag

as
c

Ew
en

 M
ul

lin
s

Br
ow

n
ru

st
85

0
Ca

m
br

id
ge

clo
ud

N
IA

B
25

/0
6/

20
19

M
eg

an
 L

on
g

Se
pt

or
ia

35
0

Ro
th

w
ell

, L
in

co
ln

sh
ire

Li
m

ag
ra

in
18

/0
6/

20
19

Ed
w

ar
d

Fl
atm

an
H

ea
lth

y
12

50
M

or
ley

 F
ar

m
, N

or
fo

lk
su

n/
 cl

ou
d

JI
C

27
/0

6/
20

19
M

eg
an

 L
on

g
M

ild
ew

10
50

JI
C

JI
C

28
/0

6/
20

19
gl

as
sh

ou
se

M
eg

an
 L

on
g

Br
ow

n
ru

st
85

0
Th

rip
lo

w
, C

am
br

id
ge

K
W

S
01

/0
7/

20
19

D
ou

gl
as

 B
ro

w
n

Se
pt

or
ia

10
50

Su
tto

n
Bo

nn
in

gt
on

,N
ot

tin
gh

am
RA

G
T

- s
tu

de
nt

03
/0

7/
20

19
D

ou
gl

as
 B

ro
w

n
Y

ell
ow

 ru
st

13
50

Ro
th

w
ell

, L
in

co
ln

sh
ire

Li
m

ag
ra

in
02

/0
7/

20
19

D
ou

gl
as

 B
ro

w
n

Se
pt

or
ia

12
50

M
or

ley
 F

ar
m

, N
or

fo
lk

JI
C

04
/0

7/
20

19
D

ou
gl

as
 B

ro
w

n
Se

pt
or

ia
55

0
Th

rip
lo

w
, C

am
br

id
ge

K
W

S
16

/0
7/

20
19

D
ou

gl
as

 B
ro

w
n

Se
pt

or
ia

16
50

Su
tto

n
Bo

nn
in

gt
on

,N
ot

tin
gh

am
RA

G
T

- s
tu

de
nt

15
/0

7/
20

19
D

ou
gl

as
 B

ro
w

n
Y

ell
ow

 ru
st

45
0

Th
rip

lo
w

, C
am

br
id

ge
K

W
S

16
/0

7/
20

19
D

ou
gl

as
 B

ro
w

n
M

ild
ew

65
0

JI
C

JI
C

18
/0

7/
20

19
Ja

de
Se

pt
or

ia
40

0
Ro

th
w

ell
, L

in
co

ln
sh

ire
Li

m
ag

ra
in

11
/0

7/
20

19
Ed

w
ar

d
Fl

atm
an

Y
ell

ow
 ru

st
30

0
Ro

th
w

ell
, L

in
co

ln
sh

ire
Li

m
ag

ra
in

23
/0

7/
20

19
Si

m
on

 B
er

ry
, P

etr
os

 Z
af

eir
io

u

Ta
bl

e
3.

4:
 In

fo
rm

at
io

n
ab

ou
t t

he
 c

ol
le

ct
io

n
of

 im
ag

es
, i

nc
lu

di
ng

 d
ise

as
e

ca
te

go
ry

,

lo
ca

tio
n,

 c
om

pa
ny

, d
at

e,
 a

nd
 p

ho
to

gr
ap

he
r

 82

Figure 3.2 Example images from our dataset showing some different conditions and levels of

infection. (Part 1)

 83

Table 3.5: Distribution of images across all five categories for the full dataset, and the three

subsets: train, validation, and test.

Category Full Dataset Train Set Validation Set Test Set

Brown Rust 2503 1501 501 501

Healthy 2274 1364 455 455

Mildew 2943 1765 589 589

Septoria 7063 4237 1413 1413

Yellow Rust 4389 2633 878 878

TOTAL 19172 11500 3836 3836

Figure 3.3: Example images from our dataset showing some different conditions and levels of

infection. (Part 2)

 84

3.2.2 Pre-trained models

Our first experiments used pre-trained models MobileNet, InceptionV3, VGG16 and

Xception for feature extraction, before training a newly defined classifier network to

classify the images in our dataset. The classifier network that we used had the same

architecture for each of the pre-trained models. It consisted of one fully connected

layer with 256 neurons, dropout (Srivastava et al., 2014) and the fully connected

output later which provided the predictions. We used a learning rate of 1x10-4 and a

batch size of 128. Table 3.6 provides individual information for each of the four

models about the input image sizes and number of training epochs we used for

training on all available data prior to testing.

Table 3.6: Input sizes and number of training epochs used for each of the four pre-trained

networks

Models used Input image size for
feature extraction (pixels)

Number of
training epochs

InceptionV3 600 x 600 20

MobileNet 532 x 532 15

VGG16 532 x 532 30

Xception 600 x 600 15

Table 3.7: Classification accuracy and F1 score for each of the pre-trained networks

Models Used Classification accuracy

on test dataset

F1 Score

MobileNet 91.46% 0.90

InceptionV3 91.41% 0.91

VGG16 85.16% 0.83

Xception 89.87% 0.89

 85

Table 3.7 shows the classification accuracies and F1 scores for each of the pre-

trained models used for this experiment. These results are significantly higher than

our weighted random guess and zero rule baselines, proving that deep learning

models are capable of handling complex data, such as the images in our dataset.

Following this, we decided to experiment with our own model architectures with the

aim of finding the network that provides the highest classification accuracy.

3.2.3 Training new model architectures

We did a collection of experiments with different numbers and types of layers. First,

we started by using the train and validation step to try different architectures and

hyperparameters, then the models which seemed to perform best on the validation set

were evaluated on the test set. Table 3.8 shows a summary of our experiments and

the different hyperparameter values used, the highlighted rows show the models

which were sent for testing. All initial training was conducted using the HPC cluster,

not the GPU nodes.

Table 3.8: Summary of network experiments, validation accuracy results and approximate train

time
Model Input size Batch size Epochs Learning rate Approx. train time Peak validation acc.

1.1 (256,256) 32 30 1.00E-05 1 day 76.92%
1.2 (512,512) 128 30 1.00E-05 17 days 78.90%
2.1 (256,256) 128 50 1.00E-04 6 days 91.79%
2.2 (512,512) 128 50 1.00E-04 18 days 92.26%
2.3 (256,256) 128 75 1.00E-04 8 days 93.12%
2.4 (256,256) 8 75 1.00E-04 8 days 96.76%
2.5 (256,256) 128 125 1.00E-04 12 days 94.84%
2.6 (512,512) 32 50 1.00E-04 16 days 97.55%
2.7 (512,512) 32 20 1.00E-04 9 days 96.75%
2.8 (256,256) 8 200 1.00E-04 28 days 97.11%
2.9 (512,512) 32 100 1.00E-04 38 days 98.04%

2.10 (256,256) 8 400 1.00E-04 60 days 97.55%
3.1 (512,512) 8 20 1.00E-04 9 days 95.31%
3.2 (512,512) 8 48 1.00E-04 30 days 96.71%
4.1 (512,512) 8 20 1.00E-04 21 days 84.30%

res1.1 (160,160) 128 50 1.00E-04 4 days 76.17%
res1.2 (512,512) 64 30 1.00E-04 7 days 80.26%
res2.1 (512,512) 64 30 1.00E-04 7 days 85.79%
sep1.1 (128,128) 128 50 1.00E-04 4 days 72.07%
sep1.2 (512,512) 128 30 1.00E-04 8 days 76.17%

 86

We used our knowledge of previous image classification experiments, such as those

found in ‘Deep Learning with Python’ (Chollet, 2017a), coupled with the available

information about the pre-trained models to determine a sensible starting point for

our experiments. The pre-trained models ranged from 16 to 71 layers deep, so we

decided to test different numbers of layers, starting small, to find the optimal

number. We chose to start small with the aim of keeping training time as short as

possible. In general, models with more layers take longer to train than those with

fewer layers.

3.2.3.1 Model 1

To start our experiments, we defined a CNN consisting of 6 convolutional layers, as

model 1. The layers were organised in blocks of two, with batch normalisation

following each and the blocks separated by a max pooling layer. We included

dropout of 0.3. A visual representation of the model architecture is shown in Figure

3.4. We trained two instances of this network architecture, the first, model 1.1, with

input image size (256,256) and batch size 32, and the second, model 1.2, with input

image size (512,512) and batch size 128. The learning rate was set at 1x10-5. The

first model ran significantly quicker than the second, where the training accuracy

climbed in steps, see Figure 3.5. To a certain extent, the quicker run time was

expected, however as seen in Table 3.8, the difference is quite extreme ranging from

Figure 3.4: A visual representation of the model 1 architecture.

 87

1 day for model 1.1 to 17 days for model 1.2, We are uncertain what caused the

significant change in training time or the step climbing nature of the validation

accuracy, however as the second model yielded better results (Figure 3.6) we

decided not to pursue model 1.1 any further.

Figure 3.5: Training and validation accuracy plot for model 1.1

 88

3.2.3.2 Model 2

As the validation accuracies did not seem to be reaching the same levels as the pre-

trained models did, we decided to try a deeper architecture. The architecture, model

2, consisted of 13 convolutional layers, again each followed by batch normalisation.

The layers were separated into blocks by max pooling layers, two blocks of two

convolutional layers followed by three blocks of three convolutional layers. This

time dropout was set at 0.5 and the learning rate was 1x10-4. A visual representation

of the model 2 architecture is shown in Figure 3.7. With this architecture, 10

experiments were conducted, models 2.1 – 2.10, where the batch size, input size and

number of training epochs were changed. Figure 3.8, Figure 3.9 and Figure 3.10

show the training and validation accuracy and loss plots for the three experiments

using this architecture which we decided to evaluate on the test set (models 2.4, 2.6

and 2.8). In each case the validation accuracy reaches over 96%, which is

Figure 3.6: Training and validation accuracy plot for model 1.2

 89

significantly higher than for the first model architecture. As such, neither model 1.1

or 1.2 were sent to test.

The results in Table 3.8 show three other instances for the second model architecture

where the validation accuracy climbed above 96%. Model 2.7 was not sent for

evaluation because the validation accuracy still appeared to be climbing, see Figure

3.11. Instead, a new version of this model, with the same hyperparameters, was sent

to train for 100 epochs instead of 20 (model 2.9). This yielded the highest validation

accuracy of all our experiments but took over a month to train. At this point we had

already finished evaluating all three of the other models and continued with further

experiments detailed in this thesis, so decided not to invest the extra time with this

model.

The other model which had an accuracy over 96% which we decided not to test was

2.10. Although one of the highest validation accuracies, this model was just a

version of model 2.4 but trained for 400 epochs instead of 75. This was done because

there was a slight slope in the validation results for 2.4 and we wanted to see whether

it would climb much further with extra training time. We concluded that the

validation results were not significant enough to warrant the two months of training

time required, and therefore did not pursue this model further.

Figure 3.7: Visual representation of the model 2 architecture.

 90

a)

b)

Figure 3.8: Training and validation accuracy (a) and loss (b) plots for model 2.4

 91

Figure 3.9: Training and validation accuracy (a) and loss (b) plots for model 2.6

a)

b)

 92

a)

b)

Figure 3.10: Training and validation accuracy (a) and loss (b) plots for model 2.8

 93

3.2.3.3 Model 3

Another CNN was defined to test whether an even deeper model would be able to

improve on the results of the previous architecture and if so, would it be significant

enough improvement to justify the added computational cost. The third model,

Figure 3.11: The training and validation accuracies for model 2.7. Here both accuracies still

appear to be climbing at the end of training.

Figure 3.12: Visual representation of the model 3 architecture.

 94

model 3, architecture added a fourth block of three convolutional layers to the end of

the second model, this new architecture can be seen in Figure 3.12. With this

architecture, two experiments were conducted with different numbers of training

epochs. Both experiments took the larger (512, 512) input image size. Initially, for

model 3.1, we tried 20 epochs, however it was clear from Figure 3.13 that both the

validation and training accuracy were still climbing. Consequently, more training

epochs were added for model 3.2. This model trained for 48 out of the 50 intended

epochs before it was cancelled due to down time on the cluster. As a result, the

individual results for each epoch were not stored, nor was the trained model saved.

All accuracy results were collected by manually going through the results file

generated during training, see Figure 3.14.

Again, the validation and train accuracy appear to be rising further, and it would

have been possible to send a new version of the model to train for even more epochs.

We decided against this due to the time taken for training. The results possibly could

have gotten higher than all previous models, but we decided that the added time

Figure 3.13: Training and validation accuracy for model 3.1. Here both accuracies are still

climbing at the end of training

 95

investment was not worthwhile. This decision was influenced by the fact that we had

already collected good results for the fully evaluated models using the shorter model

2 architecture.

3.2.3.4 Model 4

Figure 3.14: Training and validation accuracy for model 3.2

Figure 3.15: Visual representation of the model 4 architecture.

 96

One more CNN architecture was defined, model 4, with 8 convolutional layers in

four blocks of two. Max pooling, batch norm and dropout of 0.5 were included.

Throughout all previous experiments, the filter size for all convolutional layers was

kept at (3x3). For this model (4.1), we used different filter sizes throughout the

model. In the first block the filters were (8x8). Blocks two and three had filter sizes

(5x5) and the fourth block had filter size (3x3). A visual representation of the model

4 architecture can be seen in Figure 3.15. Figure 3.16 shows the validation and train

accuracies for this model. It appears the model is overfitting to the train data from

around epoch 10 and the validation accuracy peaks around 84% and plateaus. We

conducted no further experiments with this model architecture.

3.2.3.5 Model res1

As well as using ordinary convolutional layers in our experiments, we utilized two

other layer types: depth-wise separable convolutions and residual connections. Our

first experiment, res1, included three blocks of two convolutional layers with

Figure 3.16: Training and validation accuracies for model 4.1

 97

residual connections between the outputs of blocks one and two, and the outputs of

blocks two and three. Max pooling and batch norm were used; however, no dropout

layer was included. This was because this architecture was taken from some earlier

experiments that we had conducted using the Plant Village dataset whilst learning

about deep learning and we had not included dropout at that point. Figure 3.17

shows a visual representation of the res1 model architecture. We trained two models

Figure 3.17: Visual representation of the res1 model architecture.

 98

res1.1 and res1.2 with different input and batch sizes. In both cases, the model

appears to overfit almost immediately, see Figure 3.19 and Figure 3.18.

Figure 3.18: Training and validation accuracies for model res1.2

Figure 3.19: Training and validation accuracies for model res1.1

 99

3.2.3.6 Model res2

A second attempt at a residual model, res2, added a fourth block of convolutional

layers and a further residual connection between the outputs of blocks three and four.

A visual representation of the res2 model architecture can be seen in Figure 3.20. We

theorised that a deeper model may be better equipped to handle our data. Error!

Reference source not found. shows that this is not the case as the model overfits in

the same way as res1.1 and res1.2.

Figure 3.20: Visual representation of the res2 model architecture.

 100

3.2.3.7 Model sep1

Our final model architecture, sep1, combined depth-wise separable convolutions and

residual connections, much like Xception (Chollet, 2017b). The architecture contains

a block of two convolutional layers followed by three blocks of two depthwise

separable convolution layers, with a residual connection between the outputs of

blocks two and three. Again, max pooling and batch norm were used without

dropout. Figure 3.23 shows a visual representation of the sep1 architecture. Sep1.1

and sep1.2 were trained using different input image sizes and different numbers of

epochs. Much like the residual models, overfitting occurred very early on, with the

validation accuracy plateauing much lower than the training accuracy, see Figure

3.24 and Figure 3.25 .

Figure 3.21: Training and validation accuracies for model res2.1

 101

Figure 3.22: Visual representation of the sep1 model architecture.

 102

Figure 3.23: Training and validation accuracies for model sep1.1

Figure 3.24: Training and validation accuracies for model sep1.2

 103

3.3.4 Evaluation of models

After all our experiments with different architectures and hyperparameter values,

three models were chosen to be evaluated. All were variations of the model 2

architecture. Two models, 2.4 and 2.8, used input size (256, 256) and batch size 8,

but were retrained on all available train data prior to testing for 75 and 200 epochs

respectively. The other, 2.6, had input size (512, 512) and batch size 32, and was

trained for 50 epochs. When this work was carried out, we were able to complete the

evaluation process for model 2.4 using the GPU node on the cluster, so gaining

results in 7 days. The other models were evaluated using the ordinary cluster nodes

due to memory availability at the time. The final accuracy and loss results for the

fully trained models can be seen in Table 3.9.

Table 3.9: The final classification accuracies and loss scores for the three fully evaluated models

Model Final classification
accuracy

Final loss

2.4 97.05% 0.122
2.6 97.31% 0.120
2.8 97.34% 0.213

Due to the nature of our experimentation, where the choice of hyperparameters was

influenced by the results of previous experiments, the evaluation process took place

at different times for these models. Consequently, we gained results for model 2.4

over a month before any other model. Whilst the others were still training and

evaluating, we conducted further experiments detailed in this thesis using model 2.4

and so it is the model we will focus on for the rest of this thesis.

In Figure 3.26, the confusion matrix shows that model 2.4 performs consistently well

across all categories, with 94% classification accuracy or above. Where there are

misclassifications, Septoria is often the predicted category. This is to be expected

due there being more Septoria data in the dataset, therefore the potential for some

 104

bias. However, this does not seem to be affecting the model too much as the results

are still consistently high.

3.2.5 Masking images

A number of images from our test dataset were chosen from each category and

masks were added to cover the important leaf and disease information by my

summer student, Douglas Brown. Examples of the masked and non-masked images

used in this experiment are shown in Figure 3.27. The distribution of images across

each of the categories is shown in Table 3.10.

The classification results for the original versions of the images used in this

experiment and the masked images are shown in the confusion matrices in Figure

3.28. There is a clear difference between the classifications of the two sets of images.

As expected, the confusion matrix for the original images’ echoes that of the full

Model 2.4

Figure 3.25: Confusion matrix of model 2.4's predictions on the test data set

 105

dataset, where the network classifies the images with high accuracy, making only a

small number of misclassifications.

Table 3.10: The distribution of masked images across the five categories in the dataset

Category Number of masked images
Brown rust 148
Healthy 99
Mildew 97
Septoria 175
Yellow rust 118
Total 637

Figure 3.26: Examples of the masked images (left) and their non-masked versions (right)

 106

a)

b)

Figure 3.27: Confusion matrices for the a) the un-masked image versions and b) the

masked image versions

 107

The masked images produced different results. Here, there was a clear bias towards

mildew classification over all the categories. This means that there was only a small

difference between the mildew category classifications over both image sets, which

implies that the model could have been using background information to classify

these images. There was also a smaller tendency of incorrect classification as

healthy. This was not as obvious as the bias towards mildew, but it was the only

other category which was consistently picked as an incorrect classification over all

categories.

3.2.6 Comparing our model against trained pathologists

To assess the performance of our deep learning model, we compared its

classification performance on a portion of images from the test set against five

experienced pathologists using the same subset of data. The dataset used in this

experiment contained 999 images representing samples of varying levels of

difficulty in classification (based on the network’s performance). This dataset

included 111 images that the network incorrectly classified and 888 images that were

correctly classified by the network. Our model’s prediction accuracy for this dataset

was thus 88.88%. Table 3.11 shows the distribution of images across the categories

in the smaller dataset used for this experiment.

Table 3.11: The distribution of images used to compare the model and pathologists’

classifications

Category Number of Images

Brown Rust 128

Healthy 122

Mildew 161

Septoria 349

Yellow Rust 239

Total 999

 108

The human participants for this experiment were five expert crop pathologists, one

each from the John Innes Centre, RAGT and KWS and two from Limagrain. Each

participant had substantial experience in identifying and scoring these wheat

diseases. Table 3.12 gives a summary of the experience and specialisations for each

pathologist participant. We asked the pathologists to classify the images as

individuals in order to obtain a range of results to represent the breadth of knowledge

which could be expected to be found in breeding companies.

Table 3.12: The experience and specialisation of the five pathologist participants

Participant
Number

Years of Experience Specialisation

1 35 Cereal diseases, in particular mildew,
yellow rust and Septoria, especially in field
trials

2 40+ Cereal pathologist for major breeding
company

3 20 Wheat disease observation plots, mainly
for QTL mapping work

4 10 Scoring trial plots for wheat disease, in
particular rusts and Septoria

5 12 Common European cereal diseases

 109

Figure 3.28: The confusion matrices and classification accuracy results for our model and the five

pathologist participants

 110

The confusion matrices in Figure 3.29 show the results of the trained network

compared with the results of the five pathologist participants. Our network classified

each category with an accuracy of 80% or higher, with mildew being the category

with the most incorrect classifications. In contrast to this, each of the five

participants classified mildew with 94-95% accuracy, making it one of the highest

accuracy classes. Of the 999 images, 643 images were correctly classified by all five

participants.

Another difference between the network’s results and the pathologists was in the

classification of the Septoria category. Here, the network performs extremely well,

gaining 96% accuracy, but all but one of the pathologists were less accurate, with a

range of 76-85%. For these four pathologists, the main source of incorrect

classification was yellow rust, with healthy also being significantly misclassified for

two of the four. The pathologist who performed similarly to the network on the

Septoria category instead showed a dip in classification accuracy in the yellow rust

category. Here, almost all the misclassifications were Septoria.

In a second experiment, the same five pathologists were presented the images again,

but this time they classified them together as a group. For this, we removed 643 that

all five participants correctly classified in the first experiment, leaving 356 to be re-

classified together. In this experiment the group was allowed to disregard any image

that they could not agree on a classification for. This happened due to possible

misclassifications in the dataset itself, or the presence of multiple diseases that was

missed during quality control.

Of the 356 images that the group were presented with, there were 46 which the

group could not decide on a classification for and so were disregarded for assessment

later. Of the remaining 310 images, the group correctly classified 265. Assuming that

the 643 images which were correctly classified by all in the original experiment

would be correctly classified by the group, that meant that all together the group

correctly classified 908 images. Removing the 46 disregarded images, the total

number classified was 953, thus giving a classification accuracy score for the group

of 95.28%.

 111

Of the images that were disregarded, none were in the healthy category. This was not

surprising due to the clear differences between a healthy and diseased leaf. Only one

image was in the mildew category, and it was a very light infection, so the discussion

was between whether to classify as mildew or healthy. The remainder of the images

were brown rust, yellow rust and Septoria. In all cases the discussion was whether

there was a misclassification in the image, or whether there were multiple diseases

present in the image. This highlighted potential issues in a few of the images

contained within our dataset, which likely arose from human error during the initial

labelling and quality control stages of data collection.

3.3 Discussion

In this chapter we aimed to evaluate the viability of deep learning models,

specifically convolutional neural networks, for identifying wheat diseases from

images taken in realistic growth conditions. In recent years, datasets acquired in the

field have become more widely used (Li, Zhang and Wang, 2021). Our dataset

includes images that capture the complex conditions found typically in real growth

situations and represent typical examples of the kind of images that automated

disease scoring in realistic situations would need to be able to deal with. Several

studies pre-processed their images to remove complex background information

(Barbedo, 2018), or did not include background information in their images at all

(Mohanty, Hughes and Salathé, 2016; Liu et al., 2018). We aimed to use our dataset

as is, without removing the background information, so that there would not need to

be any extra pre-processing steps when deployed in the field.

In many cases, the datasets collected and used for plant disease detection with deep

learning are still significantly smaller than those used in other cases (such as the

ImageNet dataset) (Liu and Wang, 2021). Our dataset aimed to overcome this

bottleneck for wheat disease, whilst also being as comprehensive as possible for use

in the UK. Internationally, other foliar diseases are important too, and any

international user of this model would need to take that into account or provide

additional training data for these diseases.

 112

Our models gained over 97% classification accuracy on new data from the test set.

These results show that, with enough data, there is no need to augment or segment

the images prior to training. Deep learning models are capable of handling and

classifying images with complex background information.

If the results of these experiments had been poor, we would have had to look into

options for enhancing our dataset to aid learning. The first method would have been

to collect further data. Another option would have been to augment the data, so

creating a larger dataset by rotating, mirroring, and shifting our images to create new

ones. Failing that, we could have experimented with segmenting the images to remove

background information or annotating our data in some way to show the model where

the disease information is in each image.

To confirm that the network was performing correctly (i.e., using the leaf and

disease information to drive classification), we used images in which we masked the

relevant diseased areas of the plant. A comparison of the classification accuracy

between the masked and unmasked images, showed a steep drop in prediction

accuracy when the important parts of the image were covered for all but the mildew

category. This suggests that the network was correctly identifying diseased parts of

the plant for the Septoria, yellow rust, brown rust, and healthy categories. For the

mildew images the prediction accuracy using masked images remained comparable,

suggesting that other, non-disease related features might have been driving the

classification. This is supported by our model’s higher rate of misclassification of

mildew images than the other diseases in the experiment with pathologist

participants.

To understand this, the conditions in which the photographs of different diseases

were taken should be considered. Almost all the incorrect classifications of the

masked images were healthy or mildew. The misclassifications as healthy likely

arose from having little disease and much greenery present in the background. The

issue with the mildew images may result from them being collected predominantly

in glasshouse conditions, rather than in the field. The black pots used in the

glasshouse, which are present in many of the mildew images, may have caused many

 113

of the masked images to be classified as mildew in the absence of any other disease

information, because the black masks may have been mistaken for plant pots.

If this is the case, then our assumption that the other four categories are performing

as they should, could be wrong. This is because the issue with the mildew could be

the overpowering force for the masked images, so even if there are other

misrepresentations in the data, the black masks as mildew takes precedence.

Although we believe that our dataset contains a consistent range of conditions over

each category other than mildew, and so should not be learning any irrelevant

features, further investigation is required to clarify that the model is basing its

corrections on the correct features. We discuss potential methods for testing this in

section 5.2.

In our experiment to compare the model’s classification power against human

participants, our network outperformed each participant by at least 2%. Furthermore,

the network classified the 999 images faster (approximately one hour on a Mac

desktop) than the pathologists, who took close to three hours for the same dataset. The

model’s computation could also be sped up by using GPUs and parallelisation much

more easily than it would be to recruit more trained pathologists to perform the same

job.

An important thing to note here is that this classification was performed on static

images. The deep learning network achieved an impressive accuracy for such data, at

least comparable to that of expert crop pathologists, however, it is likely that the

performance of the pathologists would increase with real plants. In a real field

situation, a pathologist would be able to take a closer look, change their viewing

angle, and obtain information that would normally be available to them that isn’t

accessible from static images. So, although this experiment is an interesting exercise

to compare classifications from images, it does not fully represent the overall

performance of the pathologists in practice. That being said, a significant problem

with disease scoring in large trials, such as plant breeding trials, is that for trials to be

scored by a person is slow and requires a lot of time of people with valuable

specialist skills. The ability to move and gain other angles in the field is likely to

increase the viewing time for each specimen, so this needs to be considered.

 114

Furthermore, there is the issue of discrepancies between human labelling to consider.

For example, in this experiment there were 160 cases where only one participant

gave an incorrect classification. When shown the images again as a group, in many

cases there was a unanimous decision on the classification of the image, indicating a

human error aspect to this experiment. However, in some cases where two or more

participants incorrectly classified an image and were shown it again as a group, there

was still difficulty in deciding which disease was present. This presented evidence of

the difficulties in distinguishing Septoria from yellow rust, and yellow rust from

brown rust when certain symptoms are present.

An automated system deployed on a mobile phone will greatly increase the

throughput and reduce the cost of disease scoring, making it possible to score a large

trial several times. This has the potential to increase substantially the accuracy of the

process through repetitive scoring. The next step would be to use deep learning

methods to quantify the amount of disease present and to give a score. Whereas a

classification model is useful for identifying the presence of a disease on a plot or

field, a scoring model would allow breeders to quantify the spread of the disease and

be hugely beneficial for developing varieties with resistance to certain diseases. We

start to look at this problem in our next chapter.

 115

Chapter 4 Quantification of Wheat Diseases

The classification of diseases is an important step towards breeding for disease

resistance. The previous chapter showed how deep learning can accelerate and

automate this process. The next crucial next step is to use deep learning for

quantifying the amount of disease present. Breeding for disease resistance in crops

currently takes multiple growth periods and a lot of hard work and input from

pathologists throughout. Often, it is only possible to score each plot once during the

growth period due to the time investment required and the availability of

pathologists (Bird, N., KWS, personal communications). Here, we explore ways of

computationally automating disease quantification. An efficient and automated

quantification algorithm would allow for continuous monitoring of crops throughout

the growing season and a more robust evaluation of resistance.

A deep learning model, deployed for example on a mobile device, which could score

disease would allow any member of the breeding team to apply it with little to no

training. This would free up the time of pathologists for other important tasks, with

the added benefit of being able to track disease progression over time thanks to

multiple scores.

Here, we investigate the viability of using deep learning models to aid with scoring

of wheat diseases by training various model architectures using a dataset of yellow

rust disease images that we collected. Due to the complexity of the problem, we

experiment with different simulated images based on the same scoring system used

in our real data experiments.

 116

4.1 Collection of a wheat disease dataset for

quantification

We wanted to test the ability of deep learning models for quantifying the amount of

disease present as well as being able to identify and classify. This required a new

dataset of images to be able to train a model. When breeders are scoring plants, they

assign a score for the amount of disease present in the entire plot. Therefore, to be

useful for breeders trying to score wheat plots, we needed to collect a dataset

containing images of full wheat plots.

The number of volunteers and places we could photograph were limited due to

various restrictions in place as a result of the global Covid19 pandemic. As a result,

we had to make some decisions about what would be best to focus on for these

collection periods. We decided to focus on just one disease to begin with for

quantification to begin with. Yellow rust was chosen by the pathologists from the

breeding companies associated with this project, Limagrain, KWS and RAGT,

because they each had access to field trials which were either sprayed against other

diseases or were grown in areas where other diseases were not likely to be prevalent.

The collection of images required much preparation and planning to ensure that it

contained the appropriate information for quantitative scoring. Each session of

photography had to take place on the same day, or as close as possible, to when the

plots were scored by a pathologist. The images needed to be collected in a way that

allowed us to later label the photo of the plot with the score that was given by the

pathologist. Photography took place over several weeks in the summers of 2020 and

2021. It was done by me, and representatives from each of the three companies,

RAGT, KWS and Limagrain.

As with the classification of wheat diseases, we wanted to include as many growth

conditions as possible in our dataset, including light, weather and plant and disease

life cycle stage. It was also important to capture the images in a way that would

replicate how a pathologist would see the plot and give it a score. The majority of the

 117

time, pathologists look at the top and side of the plot, although some pathologists

like to part a plot to see how much disease is present within. We decided to take a

mixture of images from the top of the plot and as a side angle and not to photograph

a parted plot. The reason for this is that one of the aims of training a deep learning

model to quantify disease is to reduce the time needed for this process. Having to

part each plot to take an image would add time to the collection process.

There were two methods used for collecting images over the photography period.

The first method was simply taking a single image per plot, or three images where

the plots were larger. Figure 4.1 depicts an example field layout for the wheat plots

photographed. The layout can differ slightly depending on the company and trial

type, but this model can be used as a base. The photographer would note the line

number that was being photographed and take the pictures for every row in that line.

A separation picture would be taken of something else to show the end of the line

and make it easier to sort the images later. Once all the images were collected in this

manner, they could be assigned with a score. The scores were stored in a

Figure 4.1: An example layout of a field trial where the plots are

organised by line and row numbers

 118

spreadsheet, making it easy to take the images taken for a certain line and match

them to the scores for that line, see . In cases where three images were taken per

plot, each line in the score spreadsheet was triplicated to allow the images to match

up correctly.

The second method of collection used a free application called “Inventory Photos

Plus”, which can be found in the google play store for android phones as

“INVPHOTOPK: Inventory Photos Plus K”. From here we will refer to the

application as IPP. The reason that IPP was not used by all photographer volunteers

is because it was not available for use with iOS smartphones, meaning those with

apple devices had to use the first method detailed above.

IPP allows the user to give photos taken a custom name with index number and

saves them into a custom folder, see Figure 4.3. For our task, we were able to label

images with the date taken, photography location and company, and align the photo

index numbers with the plot numbers. All photos were then easily aligned with the

Figure 4.2: Segments of the spreadsheets used to align scores with image filenames for a)

RAGT, b) Limagrain and c) KWS

 119

correct scores using the plot numbers in the score spreadsheet and the index numbers

of the images.

The locations for photography were dedicated yellow rust trials, which had been

sprayed against other diseases. In some cases, other diseases were not fully

controlled by fungicides, and so the plots were scored for these diseases as well as

yellow rust. We chose to remove any images where a disease other than yellow rust

had been given a score of 5 – 9. This left only images with no other disease or only

small amounts of other diseases present other than yellow rust.

Over 6000 images were collected across England at breeding sites belonging to

KWS, RAGT and Limagrain. Discussions with all three companies involved

determined that the best scoring method to use for our datasets so that the resultant

Figure 4.3: The user interface for IPP, used for collecting, labelling, and storing images

 120

model would be most useful all round was the NIAB 1-9 scale (see section 1.2.2).

All plots that were photographed at the KWS sites were scored using this method,

however plots at RAGT and Limagrain were scored using slightly different systems

unique to the company.

For the images taken at Limagrain, the plots were scored by being given a

percentage of infection. During image sorting and quality control, we had to convert

these scores into the 1-9 categories. Table 4.1 shows the ranges of percentages that

were sorted into each of the 9 score classes.

Table 4.1: The percentage ranges for sorting Limagrain images into 1-9 categories

Score Infection percentage
range

1 0
2 0.01 – 0.4
3 0.5 – 2
4 2.1 – 7
5 7.1 – 17
6 17.1 – 35
– 35.1 - 60
8 60.1 – 80
– 80.1 - 100

The plots that were photographed at RAGT were scored similarly to the 1-9 scale

however, they included .5 categories also. Upon discussion with the pathologist from

RAGT, we decided that the .5 scores would be assimilated into the score above. For

example, plots with a score of 2.5 would be included in the score 3 category in our

dataset.

Having matched all images with their scores, the images were sorted into folders

corresponding to the score number. We then manually quality checked each folder

for any images that were not acceptable for inclusion in the final dataset. Images that

were removed were those that were considered too blurry to show enough

information (for example, where the leaf and background information could not be

distinguished between), those that were clearly not showing the same score as its

classification or any that showed significant amounts of any other disease.

 121

We chose to divide the dataset in three different ways based on the amount of data

collected. The original dataset, we have called YR1, represented the optimal scenario

of 9 categories. Ideally, a model would be able to learn how to classify the images

into one of nine categories for each of the 9 scores. However, with the complexity of

the images collected and the number of them, there may not have been enough data

for the model to learn to distinguish between that many categories. For this reason,

we combined the categories in two different ways as well as keeping one version of

the dataset with all nine categories separate.

Having consulted with pathologists from the three companies, the first way we

combined categories was to have the first six scores as separate categories, as in the

first dataset. Then, due to a lower number of images in the higher categories and

because a breeding line with a score of 7 or above would usually be rejected, we

grouped scores 7, 8 and 9 into a single category. This dataset we have called YR2.

In the event that this would still not be enough to train a network to a high accuracy

with the available data, we combined the scores one more way into a third dataset.

Score 1 was kept on its own as a ‘no disease’ category. Scores 2 and 3 were

combined to make a ‘low disease’ category. Scores 4 and 5 made a ‘moderate

disease’ category and scores 6 – 9 combined to make an ‘unacceptable’ category.

This dataset we have called YR3.

All three datasets were divided into train, validation, and test sets ready for training

deep learning models. 60% of the images for each category were put into the train

set, while 20% were added to each the validation and test sets.

After quality control was complete, we were left with a dataset of 5526 images.

Table 4.2, Table 4.3 and Table 4.4 shows the number of images per category for the

three datasets and their distribution into the train, validation, and test sets for YR1,

YR2 and YR3 respectively.

 122

Table 4.2: The distribution of images in the YR1 dataset

Score category Total no.
images

Train set Validation
set

Test set

1 1683 1010 336 337
2 844 507 168 169
3 686 412 137 137
4 556 334 111 111
5 753 452 150 151
6 530 318 106 106
7 324 195 64 65
8 115 69 23 23
9 35 21 7 7

Table 4.3: The distribution of images in the YR2 dataset

Score category No. Images Train set Validation
set

Test set

1 1683 1010 336 337
2 844 507 168 169
3 686 412 137 137
4 556 334 111 111
5 753 452 150 151
6 530 318 106 106
7 + 474 285 94 95

Table 4.4: The distribution of images in the YR3 dataset

Score category No. Images Train set Validation
set

Test set

No disease 1683 1010 336 337
Low disease 1530 918 306 306
Moderate disease 1309 786 261 262
Unacceptable 1004 603 200 201

 123

4.2 Experimentation with deep learning models for

quantification

Having collected and sorted our images into new datasets for training deep learning

models to quantify the amount of disease present, we moved on to experimenting

with different model architectures.

As with our classification work in chapter 3, we needed to find the baseline for our

models. These baselines were different for each of the three datasets we used in these

experiments. Table 4.5 a), b) and c) show the percentages of the entire dataset

contained within each category for YR1, YR2 and YR3 respectively.

Table 4.5: The percentage of the entire datasets contained within each category for a) YR1, b)

YR2 and c) YR3

Score
category

Percentage
of dataset
%

 Score
category

Percentage
of dataset
%

 Score
category

Percentage
of dataset
%

1 30.46 1 30.46 No disease 30.46
2 15.27 2 15.27 Low disease 27.69

3 12.41 3 12.41 Moderate
disease

23.69

4 10.06 4 10.06 Unacceptable 18.16

5 13.63 5 13.63
6 9.59 6 9.59

7 5.86 7+ 8.58

8 2.08

9 0.64

As the most common class in each of the three datasets is score 1, or no disease for

YR3, the zero-rule baseline for all three datasets is 30.46%. In the case of the

weighted random guess, each of the three datasets has a different baseline. For YR1

this is 17.33%, for YR2 it is 17.68% and for YR3 it is 25.86%.

a) b) c)

 124

The models we used for these experiments were CNN’s. Different layer types and

architectures were experimented with including depth-wise separable convolutional

layers (Chollet, 2017b), residual connections (He et al., 2016) and attention

mechanisms (Wang et al., 2017b). See chapter 2 for descriptions. The neural

networks were developed using keras version 2.2.0 (Chollet and others, 2015) in

Python 3.5.1. Training was carried out using a RMSProp optimiser.

Each model architecture was sent to train using each of the three datasets. The best

performing model was retrained using all available training data (train and validation

sets combined) for all three yellow rust datasets prior to being evaluated using the

test dataset to gain a final accuracy score. All images from the test set were sent

through the trained models to get a classification prediction. These predictions along

with the true labels for each image were used to create a confusion matrix showing

where the models made misclassifications. The confusion matrices were generated

using functions from the scikit-learn (sklearn) (Pedregosa et al., 2011) package in

python.

Having determined that our classification model 2.4, used in the experiments with

pathologists and masked images, was able to handle complex input images, we chose

to begin our quantification experiments with this network architecture. See chapter 3

for details about model 2.4. We could then adjust the model, test different

architectures, and eventually tune the hyperparameters to get the best results for the

new problem.

A new instance of model 2.4 was sent to train for each of the three datasets, YR1,

YR2 and YR3. We chose to go straight in at 75 epochs as we were dealing with

more complex data than the classification data, therefore it was unlikely that the

model would be able to train to a high accuracy with fewer epochs. The models took

approximately two days to run, significantly quicker than our classification model

due to the smaller dataset.

 125

Figure 4.5: Training and validation accuracies for model 2.4 trained with YR2

Figure 4.4: Training and validation accuracies for model 2.4 trained with YR1

 126

Figure 4.4, Figure 4.5 and Figure 4.6 shows the training and validation plots for all

three datasets. In each case, it is clear that the model starts to overfit between 20 and

25 epochs, when the validation accuracy stops plateaus. The validation accuracy

peaks at approximately 40% for both YR1 and YR2 and at 50% for YR3. While this

is better than our weighted random guess and zero rule baselines, they are not

accuracies that would make a model useful for work in the field.

We were inspired to research attention mechanisms and modules by the work by Mi

et al., (2020), where they used attention mechanisms for classifying wheat stripe rust

on individual leaves. This work was very similar to our current problem, only using

single leaves instead of full plots. We hypothesized that the methods would be

transferrable, and a model of the same type would perform better on our data than

model 2.4.

Figure 4.6: Training and validation accuracies for model 2.4 trained with YR3

 127

We repurposed a code by Deontae Pharr (https://github.com/deontaepharr/Residual-

Attention-Network) which creates a residual attention network for image

classification using keras. This began with a convolutional layer, then max pooling.

The remainder of the convolutional base of the model consisted of residual blocks

(containing residual connections) and attention modules. The model ended with three

fully connected layers followed by dropout, then the final fully connected

classification output layer. See Appendix 1 for full attention module code used. For

each dataset, we trained an instance of this residual attention model with input image

size (256,256). Initially the models were sent to train for 20 epochs, however the

training accuracy seemed to be climbing still and we hoped that the validation

accuracy would follow suit with further training time. Therefore, we sent the models

to train for 200 epochs.

Figure 4.7: Training and validation accuracy for our residual attention model trained with YR1

 128

Figure 4.8: Training and validation accuracy for our residual attention model trained with YR2

Figure 4.9: Training and validation accuracy for our residual attention model trained with YR3

 129

The train and validation accuracy plots the residual attention model trained with

YR1, YR2 and YR3 are shown in Figure 4.7, Figure 4.8 and Figure 4.9. It can be

seen that in each case, the model gains both a lower train and validation accuracy.

The training accuracy peaks at approximately 30% for YR1 and YR2, and

approximately 38% for YR3. Meanwhile, in each case the validation accuracy yields

strange results. For YR1 and YR2, the validation accuracy hits 30% immediately and

does not move from that point. For YR3, the validation accuracy actually climbs

higher than the training accuracy.

This could be for a few reasons. The first could be due to the use of dropout. In this

model we use three dropout layers, where 50% of the features are set to zero each

time during training. When the model is validated however, all of the features are

used, therefore leading to a higher accuracy on the validation data than the training

data. Another potential reason for the higher validation accuracy is due to the size of

the dataset. The model may be learning patterns in the data, and due to the larger size

of the train set when compared with the validation set, there is more variance in the

train set. This leads to a higher error rate for the train set than the validation set.

We decided not to perform any further experiments with this model. Although the

results were not particularly useful in terms of building a model for scoring yellow

rust in the field, it did point out a potential pitfall (the size and lack of variance) in

our dataset, which is important for continuing this work.

We took the res1 and sep1 model architectures from our classification experiments

(section 3.2.3) to try with our three datasets. Each model was trained using each of

the three datasets using an input size of (256,256). In each case, the model overfits

almost immediately. In an attempt to combat this, we added dropout of 0.5 to the end

of both models. We also increased the input image size to (512,512) with the aim of

allowing the models to capture more features from the data.

 130

Figure 4.11: Training and validation accuracies for res1 model with added dropout for YR2

Figure 4.10: Training and validation accuracies for res1 model with added dropout for YR1

 131

The results of these experiments yielded results that were much the same those

without our additions to combat overfitting. The second residual model, with added

dropout, however produced the highest validation accuracy over all the experiments.

The training and validation accuracies for this model can be seen in Figure 4.10,

Figure 4.11 and Figure 4.12, for YR1, YR2 and YR3 respectively.

We chose this model to send for testing for all three datasets. The purpose of testing

at this point was to gain information about the classifications the models were

making. From the training results, it was clear that there was going to be many

misclassifications across the board. Using the predictions on the test sets from each

fully trained model, we produced confusion matrices. Ideally, we would want to see

the misclassifications for each score coming from the score to either side, e.g.,

images of score 5 would be misclassified as score 4 or score 6 when not correctly

classified as score 5. If this were the case, it would show that we require more data

for training, but that the data is of the correct sort and that the model should be

Figure 4.12: Training and validation accuracies for res1 model with added dropout for YR3

 132

capable of learning to classify with the inclusion of further data. Figure 4.14, Figure

4.13 and Figure 4.15 show the confusion matrices for our residual model trained and

tested using YR1, YR2 and YR3 respectively.

Figure 4.14: Confusion matrix of classifications for the res1 model architecture with added

dropout trained on YR2

Figure 4.13: Confusion matrix of classifications for the res1 model architecture with added

dropout trained on YR1

 133

Figure 4.15: Confusion matrix of classifications for the res1 model architecture with added

dropout trained on YR3

Unfortunately, all three confusion matrices show that the misclassifications are not

limited to the neighbouring categories as we hoped. Instead, for YR1 and YR2, there

is a strong bias to the score 1 category, which is unsurprising due to the imbalance in

the dataset. Where the misclassifications are not as score 1, they are scattered across

the rest of the categories suggesting that the model is struggling to learn features

which are representative of the different classes.

The performance of the YR3 model is marginally better, where there are more

correct classifications, especially in the unacceptable category. We believe this is

because this dataset was more balanced in terms of number of images per category

than the other two datasets.

It is clear that the data we have for these experiments is not sufficient for training a

model to score the amount of disease present. The scattered misclassifications

 134

throughout suggest that the data is not fully representative of the labelled classes, a

problem which is also not helped by the imbalance in image quantities throughout

the data for YR1 and YR2. To continue with this work, further image collection

efforts will be required to balance the datasets and ensure accurately scored images.

At this point we decided to not do any hyperparameter tuning with these models. We

determined that any tuning would be unlikely to affect the accuracy results

significantly enough to make the models useful in the field. In a situation where we

were confident that the images contained accurate score information, we could have

experimented with removing some of the ‘no disease’ data to help balance the

dataset. As we did not have this confidence, we did not pursue this idea.

4.3 Creation of simulated datasets

Following the results of the work with real field images for yellow rust

quantification, it became clear that a much larger and much more time-consuming

image collection effort would be needed to have a chance of producing high enough

accuracies for use in the field. Therefore, we devised a set of experiments with

simulated data to test whether deep learning models would be capable of quantifying

the amount of disease present using the 1-9 score categories from an image under

more controlled conditions.

For our first experiments we created simulated images of black (0) and white (1)

pixels, where black represented an ‘uninfected’ pixel and white was an ‘infected’

pixel. We used NumPy in python to create arrays of zeros of size (500, 500) where

each pixel had a percentage chance of being ‘infected’ depending on the disease

score the image was representing. We chose this size as it was similar to the input

size for our classification model (512,512) and was easily divisible into percentages.

We followed the same categories for the scores as with the real field data, so created

a dataset with 9 categories labelled as score_1 to score_9. Table 4.6 shows the

percentage of infection each score represented and the range of infection percentages

that this included to make the dataset more representative of real conditions.

 135

For each category, a value within the percentage range was chosen using the

numpy.random.uniform function. This was the probability of infection for a single

pixel, we will call this POI. A 500 x 500 array of 0’s and 1’s was then created using

numpy.random.choice, where each pixel had a 1-POI chance of being a 0 and a POI

chance of being a 1.

Table 4.6: The percentage ranges used to represent each score category

Score % of infection % range
1 0 0
2 0.1 0.01 – 0.4
3 1 0.5 – 2
4 5 2.1 – 7
5 10 7.1 – 17
6 25 17.1 – 35
7 50 35.1 – 60
8 75 60.1 – 80
9 100 80.1 – 100

The resultant arrays were converted to datatype uint8 and assigned a unique

universal identifier (UUID). They were then saved to a folder corresponding to the

score number as a .png using python image library (PIL).

For the initial dataset we made 10,000 images per category, 7000 in the train set,

2000 in the validation set and 1000 in the test set, we will call this dataset S10k. This

was used as the ideal dataset, which would have enough images per category to show

the full potential of deep learning models for this problem.

Following this, we made four other smaller datasets with 100, 250, 500 and 1000

images per category sorted in the same proportions, these will be known as S100,

S250, S500 and S1k respectively. These were designed to try and find guide for the

number of images required for producing high accuracies. Each dataset contains

images of the same type, but new images were generated for each dataset purely

because it took less computational time to generate brand new images than it did to

 136

copy a portion of the original dataset. Image generation was done using a MacBook

Pro connected to the internal JIC VPN, to allow them to be stored in the group

scratch location. Figure 4.16 shows an example image from each of the 9 score

categories for the S datasets.

Table 4.7 shows the number of images in each category for the train, validation, and

test sets for all five S datasets created.

Figure 4.16: An example image for each category in the S datasets

 137

Table 4.7: The distribution of images across the whole dataset and the train, validation, and test

sets for all the S datasets

Dataset Total images

per category
No. of train
images per
category

No. of
validation
images per
category

No. of test
images per
category

S10k 10,000 7,000 2,000 1,000
S1k 1,000 700 200 100
S500 500 350 100 50
S250 250 175 50 25
S100 100 70 20 10

The next step towards creating a more realistic simulated dataset was to arrange the

infected pixels in a way that was more representative of disease lesions on a leaf. To

do this we made a new dataset of simulated images, again using zeros as ‘healthy

tissue’ and ones as ‘infected tissue’, however this time the ones were added in line,

or stripe, formations. This was done to imitate yellow rust lesions, to test whether

having patches of infection produces a different outcome to having a uniformly

distributed infection.

To create this data, we again started with a 500 x 500 NumPy array of zeros. We also

defined a 2 x 50 array of ones, which was our individual stripe lesion. The POI was

randomly selected in the same way as before for each category and used to calculate

the number of pixels that would need to be converted into ones to reach that

percentage, we will call this the infection level. To place the stripe lesions onto our

zeros array we used a loop to randomly select a zero coordinate. There we replaced

the surrounding pixels with the ones in our stripe array. After each loop, the number

of ones in the array were counted and if it were fewer than the infection level, then

the process of adding a stripe lesion was repeated. If the number of ones was equal to

the infection level, then the loop was broken, and the array was ready to be saved as

an image. Finally, if the number of ones was greater than the infection level then we

calculated how much greater and changed that number of ones back to zeros

 138

(randomly selecting ones across the entire array). The arrays were saved in the same

way as for the S datasets (S10k, S1k etc.). We created two datasets, first with 1000

images per category and then with 10,000 images per category, named stripe1k and

stripe10k respectively. Figure 4.17 shows an example image for each score category

in the stripe datasets.

We were interested to see how using more realistic colours in our images would

affect the results of training. We hypothesised that it would make little difference to

the results, however it would be useful to discern whether the model is learning any

internal colour representations. We created a third set of data in the same way as the

Figure 4.17: An example image for each score category for the stripe datasets

 139

stripe dataset, however when converting the array to an image prior to saving, we

used a colour palette to assign green to all zeros as ‘leaf tissue’ and orange to all

ones/ stripes as ‘infected tissue’. Again, we created two datasets with 1000 and

10,000 images per category, named colstripe1k and colstripe10k. Figure 4.18 shows

an example image from each score category for the colstripe datasets.

In real field images, there is a lot of background information, such as sky, soil, or

stones, as well as leaves and disease. We wanted to introduce this into our simulated

data and so take them one step closer to realistic images. A fourth set of images was

made, again beginning with a 500 x 500 array of zeros. This time, instead of

Figure 4.18: An example image for each score category in the colstripe datasets

 140

calculating the infection level for the whole array, it was calculated for 90% of the

array. We considered this 90% of the array to be leaf tissue which could be infected

(225,000 pixels) and the other 10% would be background information. The stripes

were placed again using the same method until the infection level was reached. Once

all stripes were placed, the background information was added. In our colour

palette, we assigned each of the five background numbers a colour that would be

typical of the kind of background information that would be found in the field

(brown, blue, grey). 25,000 pixels (equal to 10% of the array) containing a zero

(healthy pixel) were randomly chosen and replaced with either 2, 3, 4, 5 or 6, with a

20% chance of choosing each value. This left an image with 10% of the pixels

representing background information uniformly distributed across the array. To pick

the colours used in our data and get their RGB values we used the website

coolors.co. See Figure 4.19 for the palette we chose from this website. The two

datasets created in this way were names bg1k and bg10k. An example image for

each score category in the bg datasets can be seen in Figure 4.20.

Figure 4.19: The colour palette used to make our datasets, from coolors.co

 141

The simulated images for the stripe, colstripe and bg datasets required more

computing power and time to produce than for the S dataset images. For this reason,

the GPU node on the JIC HPC facilities were used to speed up the process.

4.4 Training deep learning models using simulated data

For the purpose of testing whether a deep learning model has the potential for

disease quantification from images, we simply took the final model architecture from

our classification network and used it for all of our experiments. We had shown this

Figure 4.20: An example image for each score category for the bg datasets

 142

architecture was capable of classifying complex images, which we hypothesised

would translate to this problem also. As we were only testing the viability of using

deep learning models for scoring levels of infection and not aiming to find the ideal

network architecture, we did not do any hyperparameter tuning at this stage.

Initially, we trained a version of our model for 5 epochs using the large S10k dataset.

The aim of this was to determine whether a deep learning model would be able to

classify an image into severity of infection (where white pixels are infected and

black are healthy). The results of the real field data experiments showed that training

broke down within the first few epochs, so it was logical to test whether the same

would happen here before training for longer. Following this the four smaller S

datasets were used to find a guide for the minimum number of images required to

train a model of this kind. A new instance of our model was trained with each of

these datasets.

Figure 4.21: Training and validation accuracies for model trained with S10k for 5

epochs

 143

Having decided on the optimum number of training epochs for each of the datasets, a

new instance of the model was trained on all available data (train and validation

together) for the determined number of epochs. Then, the model was shown the test

images, which it had never seen before, and a final accuracy score was given. As

with the real field data, we used the test data to collect classification predictions and

generate confusion matrices for each of the fully trained models.

Figure 4.21 shows the training and validation accuracies for each of the five epochs

when trained using S10k. We can see that the validation accuracy stays close to the

train accuracy, with expected fluctuation in the earliest epochs, and shows no

obvious signs of overfitting. It reaches approximately 95% accuracy, however there

is possibility that it could climb a percentage point or two higher with more training

epochs.

For this reason, we re-ran our code to train the model for 10 epochs. It can be seen

from Figure 4.22 that the validation accuracy stays very close to the train accuracy

throughout training. There is still potential for higher accuracies with further

Figure 4.22: Training and validation accuracies for model trained with S10k for 10

epochs

 144

training, however this was not an exercise to maximise classification accuracy.

Therefore, this model was sent to test to get a final accuracy and obtain classification

prediction information for the confusion matrix, see Figure 4.23. The confusion

matrix shows that the model classifies all categories with very high accuracies (95%

or above), and that all misclassifications occur within the score categories adjacent to

the true label.

We created the four smaller datasets with the aim of finding a lower limit on the

amount of data required for a problem like this. Using each dataset, a new model was

trained for five epochs initially. Again, this was done to ensure that training would

run as expected and that there would be no overfitting due to smaller amounts of

training data.

Figure 4.23: Confusion matrix of the classifications by model trained with S10k

 145

Figure 4.24: Training and validation accuracies for model trained using S100 for 5

epochs

Figure 4.25: Training and validation accuracies for model trained using S250 for 5

epochs

 146

Figure 4.27: Training and validation accuracies for model trained using S500 for 5

epochs

Figure 4.26: Training and validation accuracies for model trained using S500 for 5

epochs

 147

Figure 4.24, Figure 4.25, Figure 4.26 and Figure 4.27 shows the training and

validation plots for the models trained on S100, S250, S500 and S1k for five epochs.

In each case the training accuracy still appears to be climbing. The validation

accuracies are harder to interpret due to the small number of epochs. For S250 and

S1k, the validation accuracy appears to be mostly climbing in the same way as the

training accuracy, however for S100 and S500 the validation accuracies are a little

more erratic. This could be due to overfitting, however more likely simply the early

stages of training where the use of the validation set of images is ensuring that the

models do not learn specifics from the train set. Training for further epochs would

confirm this.

We concluded that it would be beneficial to try training for all four datasets for

further epochs. We trained a new model for each dataset for 20 epochs. Following

this the S100, S250 and S500 models all looked like they had the potential for their

accuracies to climb further with more training, so they were sent to train for 50

epochs. The validation accuracy for the S1k model appeared to peak within the 20

epochs, therefore it was not sent to train for further epochs.

Figure 4.28: Training and validation accuracies for model trained using S100. The red line

indicates where the validation peaks and the number of epochs that the model will be trained

for using all available data

 148

Figure 4.29: Training and validation accuracies for model trained using S250. The red line

indicates where the validation peaks and the number of epochs that the model will be trained

for using all available data

Figure 4.30: Training and validation accuracies for model trained using S500. The red line

indicates where the validation peaks and the number of epochs that the model will be trained

for using all available data

 149

After training models for 20 epochs with S1k and 50 epochs with S100, S250 and

S500, we were able to see clear points where the validation accuracy reaches its

highest point before plateauing and the model starts to overfit. Figure 4.28, Figure

4.29, Figure 4.30 and Figure 4.31 shows the training and validation accuracy plots

for these four models with the epoch where the validation peak is reach marked with

a red line. This point marks the number of epochs that each model will be trained for

using all available data (training plus validation) prior to being tested with new

images from the test set. See Error! Reference source not found. for the number of

epochs used for final training of the four models along with their final accuracy

results on the test data.

Table 4.8: The number of epochs used for final training and the final accuracies on the test sets

for each of the S datasets

Dataset No. epochs for final training Final accuracy
S100 27 78.4%
S250 20 66.9%
S500 32 94.2%

Figure 4.31: Training and validation accuracies for model trained using S1k. The red line

indicates where the validation peaks and the number of epochs that the model will be trained

for using all available data

 150

Figure 4.32 shows the confusion matrices for datasets S100, S500 and S1k. There is

a clear improvement in the results as the size of the dataset increases, with the S1k

dataset producing the best classification results. The misclassifications for each

dataset predominantly fall within the classes on either side of the true label, which is

what was expected. One class that seems to consistently cause some issues

throughout is the score 7 class. We thoroughly checked the data and concluded that

the images all contained the correct score level.

S1k 15 94.1%

Figure 4.32: Confusion matrices for models trained using S100 (top left), S500 (top right) and

S1k (bottom)

 151

We theorise that the issues which occur with the higher score categories are due to

the wider ranges for the percentage of infection, thus creating more variation in the

images within those categories. Looking at small thumbnails of a selection of images

from a lower score category and a higher score category, there is a clear difference in

the average shade range. In the lower category, e.g., score 2 (see Figure 4.33) the

images are all a very similar shade of grey. For the higher score category, score 7

(see Figure 4.34), the shade of grey varies more due to a wider range in the number

of infected pixels that the images could contain. This could be causing the model to

have more trouble learning the range of features for the higher categories than the

lower ones with less variation.

The results that were gained from the S250 dataset proved to be more problematic.

There were many more misclassifications across the board, with one category (score

6) gaining 0 correct classifications, see Figure 4.35. Furthermore, the

misclassifications were not restricted to the classes on either side of the true label but

were instead more scattered. Scores 6, 7 and 8 had many misclassifications as score

4 and score 9 was misclassified as score 6.

Upon collecting these results, the dataset and code to create the dataset were

thoroughly checked for any issues which could have caused the discrepancies. No

issues were found, so we decided to repeat the full train and testing process, with a

newly generated set of S250 data (S250_2), to see if the results were replicated.

Using the training graph from the original experiment as a guide, we trained a new

instance of our model with the new data for 30 epochs (in case the validation

accuracy took longer to peak in experiment). The validation accuracy peaked at

epoch 20, the same as previously. Final training was done for 20 epochs and the

model evaluated on the test set from S250_2. Figure 4.36 shows the confusion

matrix for the second experiment, with the new S250_2 dataset. The issue with score

6 is still present, however the misclassifications throughout are confined to the

adjacent categories to the true label.

 152

Figure 4.34: A selection of thumbnails of the images contained in the score 7 category of the S

datasets

Figure 4.33: A selection of thumbnails of the images contained in the score 2 category of the S

datasets

 153

Upon collecting these results, the dataset and code to create the dataset were

thoroughly checked for any issues which could have caused the discrepancies. No

issues were found, so we decided to repeat the full train and testing process, with a

newly generated set of S250 data (S250_2), to see if the results were replicated.

Using the training graph from the original experiment as a guide, we trained a new

instance of our model with the new data for 30 epochs (in case the validation

accuracy took longer to peak in experiment). The validation accuracy peaked at

epoch 20, the same as previously. Final training was done for 20 epochs and the

model evaluated on the test set from S250_2. Figure 4.36 shows the confusion

matrix for the second experiment, with the new S250_2 dataset. The issue with score

6 is still present, however the misclassifications throughout are confined to the

adjacent categories to the true label.

Figure 4.35: Confusion matrix for model trained using S250 dataset

 154

We hypothesise that the reason for the issues in the two S250 experiments is due to

the amount of available training data. There is not enough data in the validation set

to be able to guide the model into making the correct representations from the

images. The larger datasets are able to better find the patterns for each category, thus

leading to fewer misclassifications.

The reason we do not see the same sort of results in the even smaller S100 dataset

could simply be because the test set used is so small. With only 10 images per

category for testing, it is harder to gauge the true performance of the network as it

has fewer opportunities for misclassifying. To test this, we used the model trained

using the S100 data to generate predictions using the larger test sets from the S250,

S500 and S1k datasets. Figure 4.37 shows the confusion matrices for each of the

three experiments. Using more data highlights an issue in the score 7 category

similar to the issue we saw in the first S250 experiment.

Figure 4.36: Confusion matrix for model trained using S250_2 dataset

 155

Our experiments show that the S1k dataset produces the most consistent

classifications throughout. For this reason, we determine that 1000 images per

category is a good guide for creating a dataset. Any fewer results in some of the

classes with higher levels of infection getting misclassified more than the lower

levels of infection.

Following the experiments using the S datasets, we worked through the other

simulated datasets (stripe, colstripe and bg) to test the ability of our network as we

move towards more realistic data. In each case, the larger datasets containing 10,000

images per category were used to determine the results with an ideal amount of data.

Figure 4.37: Confusion matrices for model trained using the S100 dataset and evaluated on the test

sets from S250 (top left), S500 (top right) and S1k (bottom)

 156

The datasets with 1000 images per category were used to test how the model would

perform with our smaller size datasets, which is a more realistic amount for

collecting in the field.

To test our model with a distribution of infected pixels that was more realistic, we

created the stripe and colstripe datasets. Using these, we were able to test whether a

deep learning model would be able to classify the images by level of infection when

the infected pixels were not distributed uniformly across the image. As we had been

working with yellow rust, which appears with stripe lesions on the leaf, we decided

to place the infected pixels in stripe formations. We did this both in black and white,

like the S datasets, and in green and orange to mimic the green leaf tissue and orange

yellow rust lesions. This was done to test whether the colour of the images had any

effect on the results.

We also added noise to our data in a third set of data. This bg data included

uniformly distributed ‘background’ information. In realistic settings, there would be

soil, sky and stones etc. included in any image taken. The bg datasets were used to

determine how the results would be affected with the addition of this background

noise.

Figure 4.38: Training and validation accuracies for model trained with stripe1k dataset. The

red line shows the point where the validation accuracy peaks, and the number of epochs used

for final training

 157

Figure 4.39: Training and validation accuracies for model trained with colstripe1k dataset.

The red line shows the point where the validation accuracy peaks, and the number of epochs

used for final training

Figure 4.40: Training and validation accuracies for model trained with bg1k dataset. The

red line shows the point where the validation accuracy peaks, and the number of epochs

used for final training

 158

The first instances of our model were trained using datasets containing 1000 images

per category. We sent the models to train for 20 epochs. Figure 4.38, Figure 4.39 and

Figure 4.40 show the training and validation accuracies for stripe1k and colstripe1k

and bg1k respectively. In all three cases the validation accuracy appears to stop

rising and peaks between 90% and 95%. Therefore, we did not train the models for

any further epochs. The red lines on the graphs show where the validation accuracy

peaks and determines the number of epochs that the models were trained for using

all available data prior to testing.

Table 4.9: The number of epochs for final training and the final classification accuracies for all

the datasets with 1000 images per category

Dataset Final training
epochs

Final classification
accuracy

S1k 15 94.1%
Stripe1k 12 91.85%
Colstripe1k 8 94.08%
Bg1k 6 83.1%

Table 4.9 shows the number of epochs each of the 1k datasets was trained for prior

to testing and the final classification accuracies. The S1k results are included for

completeness. The confusion matrices in Figure 4.41 show that for all three datasets

the models are performing as expected, with no misclassifications other than in the

adjacent score categories. It is interesting to note that the colstripe1k model performs

slightly better overall. This is probably due to individual patterns learned by the

separate networks which cause the differences in accuracy. Unsurprisingly, the

model trained using the most complex dataset, bg1k, has the lowest classification

accuracy.

We also trained an instance of our model with 10,000 images per category for each

type of data. In the same manner as for S10k, the models were trained for 10 epochs.

The validation and train accuracies did still appear to be rising as can be seen in

Figure 4.42, much like for S10k, however due to time constraints we decided to test

each model at 10 epochs and not train further.

 159

The results for the 10k datasets can be seen in the confusion matrices in Figure 4.43.

Unsurprisingly, each set of data produces high accuracy results throughout, which is

a clear sign that using more data (where possible) will produce the better results.

That being said, we also show that it is possible to get high accuracies with smaller

datasets. In the case of relatively simple, and idealistic simulated data, 1000 images

per category proves to be enough to hit accuracies of 90% and above. However, this

number can be expected to be much higher as the data gets more complex and

moving into real field data.

Figure 4.41: Confusion matrices for the models trained using stripe1k (top left), colstripe1k (top

right) and bg1k (bottom)

 160

Figure 4.42: Training and validation accuracies for the Strike10k (top left), Colstripe10k (top

right) and BG10k (bottom) datasets.

 161

Figure 4.43: Confusion matrices for the models trained using stripe10k (top left), colstripe10k

(top right) and bg10k (bottom)

 162

4.5 Discussion

4.5.1 Deep learning for quantification with real field data

Due to the few studies for crop disease quantification which had been published at

the time the planning for this work was taking place (Lin et al., 2019; Wang et al.,

2019), we used our knowledge gained from chapter 3 and the desired outcomes of

the project to guide our data collection effort. Instead of taking single leaf images,

we photographed full plots, as would be expected from an automated scoring

method. With our work we could determine the pitfalls and get an idea for the

requirements for working with this kind of data.

Before even beginning our experiments with real field data for wheat disease

quantification, it was clear that this was going to be a much more complex problem

than disease classification. Where we took images that focused on a single leaf or

plant in our classification dataset, here we had to image entire plots. This meant

including messier data without a clear focal point in the image.

Before training of any model was even started, we could see some potential issues

with the collected dataset. The first was the number of images that the dataset

contained overall. In our classification dataset from chapter 3, we had 19,000 images

spanning five categories. For the quantification of yellow rust, with 9 score

categories, we had a dataset less than a third of the size. It would have been illogical

to assume that the model would perform as well on a more complex problem, with

much less training data.

The second issue was the imbalance of data across the 9 categories. For score 1 we

had 1683 images, whereas at the other end of the scale in score 9 we only had 35,

which in our view was far too few for the model to be able to learn accurate

representations. There was a general trend of having fewer samples per category as

the disease severity increased.

 163

Upon collecting all the results from our experiments with this dataset, it was clear

that no amount of fine tuning for these networks would provide the high accuracies

that would be useful in the field. We had another look at the dataset with James

Brown, who has many years of experience in scoring wheat diseases and found there

were many images where the score assigned to the image did not match the

symptoms visible in the photo. We do not believe this is due to misclassification of

the plots themselves, but due to the angle of the photo or part of the plot

photographed, the image does not match the score of the plot.

In future, a dataset collected in realistic field conditions would need to be

significantly larger than the one used in this work and have a better balance across

all categories. Furthermore, the method of collection and assigning of scores would

need to be changed. Our work makes it clear that simply scoring a plot and

photographing close to the time of scoring is not sufficient for getting images which

accurately represent the plot score, and that a new method would need to be

determined which aligns better with the methods used by pathologists. We discuss

potential ways to tackle this problem in section 5.3.

4.5.2 Deep learning using simulated data for disease

quantification

The hypothesis behind our experiments with the simulated datasets was that deep

learning models would be able to quantify the amount of disease present in an image

provided it was supplied with enough data of sufficient quality. Our first series of

experiments provided an ‘ideal’ scenario where the images were very uniform

without any background information or patterns within the infected areas. Clearly,

these datasets are a very simplified version of different infection levels and do not

fully represent what is found in the field. Their purpose was to be used as an initial

proof of concept that it was possible to use deep learning models for a quantification

problem.

 164

Although the results using these ideal simulated images are very encouraging, it’s

important to note the potential pitfalls when trying to relate this back to the problem

in the field. These datasets provide the models with very uniform images which, to

the naked eye, do not show major differences between the images within a category.

As a result, there is the possibility that our models are not in fact learning to count

the number of infected pixels or calculate the percentage of infection, but instead are

classifying the images based on the average grayscale. As the percentage of infection

or number of white pixels increases, the overall colour of the image moves from

black, through gradually lightening shades of grey, to almost white at the highest

infection level.

Our further experiments went some way to proving that the model is actually

classifying the images based on level of infection, rather than the average colour of

the image. With the infected pixels distributed in clusters more representative of

disease lesions, there was less opportunity for the model to differentiate the classes

based on colour. This was especially true in the lower score classes where the level

of infection was depicted by only a few lesions, so the infected areas were more

concentrated. The addition of background noise also affected the overall colour

interpretation of the images.

The results of our simulated data experiments provide a starting block for

determining the minimum number of images required to achieve a certain level of

accuracy for a given number of categories. With some further experiments and

optimization of the codes, this methodology could be used to determine the best

experimental design for network training. Simulated data of increasing complexity

can be generated much quicker than collecting a full dataset of field images. Finding

the amount of data required to reach an ideal accuracy would mean that the data

collection in real conditions could be more guided, and the risk of collecting too little

data reduced. This is especially important where data is collected over a growth

period, like with crop breeding, as there is a long period to wait before more data can

be gathered.

 165

5 Discussion

Having presented our results in the previous chapters, we will here discuss their

importance and contribution to the field. We will also mention the limitations of the

work conducted, as well as suggested improvements and opportunities for future

research. We will then conclude this thesis with a summary of the key findings.

5.1 Wheat disease classification

An important first step towards an automated, deep learning, scoring system for

wheat disease is simply being able to identify and classify the diseases in realistic

conditions. If this were not possible, then it is highly unlikely that any deep learning

model would be able to quantify the amount of disease present.

Many previous studies have trained deep learning models to classify crop diseases.

These studies typically use carefully curated data, taken in controlled conditions

(Mohanty, Hughes and Salathé, 2016; Barbedo, 2018). Whilst some of these datasets

are quite large, they do not contain the necessary variation in conditions which

would be expected in field situations. It would be unrealistic to presume that a model

trained on this kind of data would be able to perform when confronted with more

complex field data. Conversely, studies which use realistic field images for training

their models (Lu et al., 2017; Oppenheim et al., 2018), generally have small amounts

of data which would not be able to cover the range of conditions expected and so

would generalise to the available training data.

At the time this work took place, we were not aware of any openly available datasets

of wheat disease images with the potential to overcome these limitations. We have

since been made aware of the Wheat Fungi Disease Dataset (Genaev et al., 2021),

however upon inspection we found there to be many potential misclassifications in

several categories. Furthermore, the images in the dataset were much more varied,

 166

from entire plots to single plants, which we did not consider was especially relevant

to field scoring of diseases.

Our data collection effort produced a dataset with over 2000 images per category,

taken in realistic growth conditions. The purpose was to capture the range of

weather, light and growth stages of disease and plant which would be encountered in

the field, so any trained model should hypothetically perform when taken out to test

on new field data. We consider this dataset to be a valuable asset for the scientific

community. Not only is it useful for training deep learning models to classify

important UK wheat diseases, but it also has the potential to be used for training

purposes. Breeders, pathologists and even farmers would be able to use the range of

images to learn the symptoms of each of the disease, to allow them to be able to

identify these diseases themselves. Until such time as an automated system is

deployable, this would help people make decisions about their crops relating to

disease management.

We trained a model using our collected dataset and found it was able to classify the

images with an accuracy that rivals trained pathologists. It is interesting to note that

the classification accuracy we achieve (97.05%) is very close to those from studies

with much more controlled data. Amara et al., (2017) gained 98.61% classifying

banana leaf diseases and Brahimi et al., (2017) achieved 99.18% classification

accuracy on tomato leaf diseases, both taken from the Plant Village dataset. This

suggests that it is not necessary to take images in controlled conditions, and that field

data is sufficient for training models to classify diseases provided there are enough

training examples. Our fully trained model has the potential to be used by farmers,

agronomist, and breeders for identifying disease on their crops if it were deployed in

a usable fashion (such as on a mobile application). This is something we’d have

liked to develop; however limited time meant it wasn’t possible at this time.

It is important to note that this model is trained to classify individual wheat diseases

and does not deal with multiple simultaneous infections. In reality, there are often

cases where two or more diseases occur at once on a single plot. There is now the

opportunity to explore methods which can identify and classify multiple infections in

 167

a single image. This would be particularly helpful for farmers without access to

trained pathologists needing to determine what is infecting their crop in order to

deploy any countermeasures.

Another limitation that is worth mentioning is that our data contains only visible

infections, from the earliest visible signs through to late infection. As a result, our

model would not be able to identify asymptomatic disease on the plants. The models

we used learn features about the images in order to make a prediction about their

contents. An asymptomatic leaf would appear the same as a healthy leaf in the

visible spectrum, therefore we assumed that our model would classify all

asymptomatic images as healthy. Some studies are making use of multiple spectrums

by utilising hyperspectral imaging devices (Jin et al., 2018; Nagasubramanian et al.,

2018; Wang et al., 2019). There may be features in spectrums other than the visible

spectrum which could aid a model in classifying the disease before symptoms are

visible to the naked eye. The downside of this method is that hyperspectral cameras

are often very expensive, and so a model that requires one to use it would not be

accessible to a large portion of the community.

Comparing our model to the performance of five pathologists showed that it is

capable of classifying the diseases from images at least as well as a trained expert.

This is an important factor for a model that would be used in the field to eliminate

the need for a trained pathologist. We also found that the model classified the images

much faster than the participants. This speed can also be increased by using GPU’s

and parallelisation much easier than it would be to hire more pathologists to do the

same job.

5.2 Evaluation of model performance

It is not only important for any trained model to perform with high accuracy, but it

also needs to be working as intended. For a model to be useful, it needs to be using

the correct information to drive its classifications. In our case, the disease and leaf

information are the important information which should be used to determine the

 168

correct class. If a model were using an arbitrary background feature instead, it would

not perform well given new data and it could be highlighting a bias in the dataset.

We aimed to determine whether our model was using the correct information for

fuelling its classifications.

Our first approach was to try using Grad-CAM (Selvaraju et al., 2020) to produce

area important heatmaps for our images. This method produces a heatmap using the

information contained in the last convolutional layer of a model, which can then be

stretched over the input image. Areas which are important in driving the

classification of the model would appear red and less important parts (such as

background information) would appear blue. Unfortunately, due to the number and

types of layer we use in our final model, the output feature map for the final

convolutional layer was only 4x4 pixels, therefore the heatmap produced was also

4x4 pixels. When stretched over a much larger input image, these heatmaps did not

provide any useful information about the important locations of the images.

We took a selection of images from our test set and placed a black mask over the

important disease and leaf information. We hypothesized that covering the important

information would result in a drop in performance, providing the model has learned

to use the correct information for driving its classifications. When confronted with

masked images, our model had a higher misclassification rate. Classifications were

heavily biased towards mildew, with some bias towards healthy. It is likely that the

bias towards healthy is due to the green background information being mistaken as

healthy leaves. The mildew misclassifications are suggestive of an underlying issue

with the training data, stemming from the different collection conditions in the

mildew category. Ideally, we would have liked to collect more mildew images taken

in the same conditions as the other categories images and re-trained the model.

However, we were not able to do this due to there being little mildew in the field

thanks to high levels of resistance in many UK wheat varieties.

This experiment provides important insights about the necessity of collecting data in

the same capture conditions for all categories of a dataset. Covering a wide range of

conditions is not enough on its own, this range needs to be as similar as possible

 169

over all classes. This will eliminate biases in the data which the network could learn

instead of focussing on the important information.

While the masked images caused the confusion that we expected for a model using

the correct information to drive classifications, this experiment does not definitively

prove that this is the case. Further investigation is required to show the features

which are most important for making class predictions. One particular method we

discovered which could be incredibly valuable for this issue is the activation atlas

(Carter et al., 2019). The activation atlas is a method for visualising features in a

network, which can show what features the model is using for making its

classifications. It can show the feature space for each layer in the network, and the

features in the final layers can be very informative. Figure 5.1 shows the activation

atlas for the final layer in an example model trained using the ImageNet (Deng et al.,

2009). The main grid shows the feature space for the chosen layer. Hovering over

the individual features gives information about their attributions to a given class. In

the far-left column one can select the individual classes to highlight the important

features used for making classifications. The second column is where the different

layers can be selected, to show how the features develop throughout the model. We

believe that this could be a valuable tool for use with any classification model and

would be fruitful for future research.

Figure 5.1: Example activation atlas screen taken from https://distill.pub/2019/activation-atlas/

 170

5.3 Quantification of disease

An automated disease scoring method requires a model which is able to quantify the

amount of disease present. It was always our intention to begin by training a model

to quantify a single disease at a time, however we hoped to be able to do this for

multiple separate diseases. Due to the global Covid-19 pandemic, we were more

limited with the data we were able to collect for this part of the project. We chose to

focus on collecting images of yellow rust infections, due to the availability of yellow

rust trials which would be scored over the growth season.

We were encouraged by the work of Mi et al., (2020), where they were able to score

images of yellow rust leaves with 97.99%. Their work used images of single leaves,

which were cropped to remove the majority of background information. We hoped to

build on this work using our collection of full wheat plot images, with the hope that

we could eliminate the need for additional pre-processing such as cropping.

We collected a dataset of over 5000 images, sorted into 1 – 9 categories that

represent the amount of disease present, which was used to multiple deep learning

networks in three different configurations. Unfortunately, the results of these

experiments revealed that it was unlikely we would be able to train a model to high

accuracies using this data alone.

This work highlighted multiple issues with our quantification dataset. The first, and

most obvious, was the clear imbalance of data across the categories. The second

issue to note is the size of the dataset as a whole. Finally, we show that simply taking

an image of a scored plot does not necessarily mean that the image is going to show

the same score. Prior to fixing the amount and imbalance of the data, it is first

important to fix the content. For use in the field, an image taken would need to be

representative of the score of the plot to ensure that the plot as a whole is scored

correctly. This presents a challenge thanks to the possibility of patchy infections. In

reality a pathologist can look at a plot and be able to give the average score for that

plot, however in this work the model has to decide based on one image which may

not show all the available information.

 171

Overcoming these problems is going to require a more substantial data collection

effort. One method we suggest may work is to use multiple images per plot as input

for a network, then the model could use all the data to calculate an average plot score

in a similar way to a pathologist. This method could motivate a move from

smartphone images collection (and later deployment of a model) to the use of

drones. Drones have already been used in studies for remote sensing in agriculture

(Yang et al., 2017; Inoue, 2020). It would be easy for a drone to move over a plot

and collect for example 10 images before moving to the next plot, thus easily

collecting data for many plots without much human interaction. It would also mean

that a future model could also be deployed on a drone, so eliminating the need for

someone to take the model out manually. Clearly, there is much opportunity for

building on our work and using our findings as a guide for progressing with the

problem of automated disease scoring.

We created multiple simulated datasets of increasing complexity for determining the

viability of scoring disease on this scale given more controlled conditions. Our

results suggest that a deep learning model would be able to handle quantifying

disease in this way, provided that there was enough informative data for training.

These experiments can be used as a first assessment of the number of images

required to reach a certain level of accuracy. The methods we define could be used

to determine a minimum number of images required per category for a desired

accuracy with a given number of categories. It could be a powerful means of

evaluating the best experimental design for network training.

5.4 Conclusion

The aim of this thesis was to evaluate the viability of using deep learning models for

the identification and quantification of wheat diseases using images taken in

complex, realistic growth conditions. This work would provide a starting point for

eventually producing an automated method to aid breeders in scoring wheat disease

on their plants.

 172

We collected a large dataset of wheat disease images, including four disease

categories and one healthy category. This dataset is used to train various deep

learning models with the aim of finding the best performing architecture in terms of

classification accuracy. The accuracy results of over 97% show that deep learning

models are capable of handling images with complex background information, such

as would be found in realistic growth conditions. When compared with the

performance of five human participants, our model performs at least as well as

expert pathologists. Masking images highlights the need for collecting images of the

same type across all categories to ensure accurate results.

Another dataset of yellow rust plot images was collected, sorted into disease score

categories to train a model in quantification of disease. This dataset was significantly

smaller, yet contained more categories, than the classification dataset and our

experiments suggest the need for a much larger training set of images, especially

with regard to such a complex problem. Creating simulated images provided a

foundation for determining the ideal amount of data necessary for achieving a

desired classification accuracy.

This thesis demonstrates the potential for using deep learning in the field to classify

and quantify diseases on wheat. The results of the classification model are highly

encouraging and open the door for expanding the problem to other diseases, crops,

and potentially multiple, simultaneous infections. The data collection efforts

highlighted various issues with regards to datasets for quantification. Further work is

required to overcome these issues and move closer towards an automated scoring

system.

Data Availability

The dataset of 999 images used in the experiment with pathologists is freely

available from https://zenodo.org/record/7573133. Due to the size of the full datasets

and agreements with the associated companies, these can be requested from

james.brown@jic.ac.uk,

 173

References

Abadi, M. et al. (2015) ‘TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems’, p. 19.

AHDB (2020) ‘The encyclopaedia of cereal diseases’. AHDB Cereals & Oilseeds.
Available at: https://ahdb.org.uk/knowledge-library/encyclopaedia-of-cereal-
diseases.

Albattah, W. et al. (2022) ‘A novel deep learning method for detection and
classification of plant diseases’, Complex & Intelligent Systems, 8(1), pp. 507–524.
Available at: https://doi.org/10.1007/s40747-021-00536-1.

Ali, S. et al. (2011) ‘A rapid genotyping method for an obligate fungal pathogen,
Puccinia striiformis f.sp. tritici, based on DNA extraction from infected leaf and
Multiplex PCR genotyping’, BMC research notes, 4, p. 240. Available at:
https://doi.org/10.1186/1756-0500-4-240.

Amara, J., Bouaziz, B. and Algergawy, A. (2017) ‘A Deep Learning-based
Approach for Banana Leaf Diseases Classification’, in, pp. 79–88.

Baenziger, P. (2016) ‘Wheat Breeding and Genetics’, in Reference Module in Food
Science. Available at: https://doi.org/10.1016/B978-0-08-100596-5.03001-8.

Barbedo, J. (2018) ‘Impact of dataset size and variety on the effectiveness of deep
learning and transfer learning for plant disease classification’, Computers and
Electronics in Agriculture, 153, pp. 46–53. Available at:
https://doi.org/10.1016/j.compag.2018.08.013.

Bolton, M.D., Kolmer, J.A. and Garvin, D.F. (2008) ‘Wheat leaf rust caused by
Puccinia triticina’, Molecular Plant Pathology, 9(5), pp. 563–575. Available at:
https://doi.org/10.1111/j.1364-3703.2008.00487.x.

Boulent, J. et al. (2019) ‘Convolutional Neural Networks for the Automatic
Identification of Plant Diseases’, Frontiers in Plant Science, 10, p. 941. Available at:
https://doi.org/10.3389/fpls.2019.00941.

Brahimi, M., Boukhalfa, K. and Moussaoui, A. (2017) ‘Deep Learning for Tomato
Diseases: Classification and Symptoms Visualization’, Applied Artificial
Intelligence, 31(4), pp. 299–315. Available at:
https://doi.org/10.1080/08839514.2017.1315516.

Brown, J.K. (2015) ‘Durable resistance of crops to disease: a Darwinian
perspective’, Annual review of phytopathology, 53, pp. 513–539.

Brown, J.K.M. (2021) ‘Achievements in breeding cereals with durable disease
resistance in Northwest Europe’, in formerly Curtin University, Australia and R.
Oliver (eds) Burleigh Dodds Series in Agricultural Science. Burleigh Dodds Science
Publishing, pp. 825–872. Available at: https://doi.org/10.19103/AS.2021.0092.39.

 174

Brown, J.K.M. and Wulff, B.B.H. (2022) ‘Diversifying the menu for crop powdery
mildew resistance’, Cell, 185(5), pp. 761–763. Available at:
https://doi.org/10.1016/j.cell.2022.02.003.

Carter, S. et al. (2019) ‘Activation Atlas’, Distill, 4(3), p. e15. Available at:
https://doi.org/10.23915/distill.00015.

Chen, S. et al. (2021) ‘An Approach for Rice Bacterial Leaf Streak Disease
Segmentation and Disease Severity Estimation’, Agriculture, 11(5), p. 420.
Available at: https://doi.org/10.3390/agriculture11050420.

Chen, W. et al. (2014) ‘Wheat stripe (yellow) rust caused by Puccinia striiformis f.
sp. tritici’, Molecular Plant Pathology, 15(5), pp. 433–446. Available at:
https://doi.org/10.1111/mpp.12116.

Chollet, F. (2017a) Deep Learning with Python. Manning Publications.

Chollet, F. (2017b) ‘Xception: Deep Learning with Depthwise Separable
Convolutions’, in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI: IEEE, pp. 1800–1807. Available at:
https://doi.org/10.1109/CVPR.2017.195.

Chollet, F. and others (2015) ‘Keras’. Github. Available at:
https://github.com/fchollet/keras.

Cowger, C. et al. (2020) ‘Role of Effector-Sensitivity Gene Interactions and
Durability of Quantitative Resistance to Septoria Nodorum Blotch in Eastern U.S.
Wheat’, Frontiers in Plant Science, 11. Available at:
https://www.frontiersin.org/articles/10.3389/fpls.2020.00155 (Accessed: 26
September 2022).

Day, L. et al. (2006) ‘Wheat-gluten uses and industry needs’, Trends in Food
Science & Technology, 17(2), pp. 82–90. Available at:
https://doi.org/10.1016/j.tifs.2005.10.003.

Deng, J. et al. (2009) ‘ImageNet: A large-scale hierarchical image database’, in 2009
IEEE Conference on Computer Vision and Pattern Recognition. 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 248–255. Available at:
https://doi.org/10.1109/CVPR.2009.5206848.

Divyanth, L.G., Ahmad, A. and Saraswat, D. (2023) ‘A two-stage deep-learning
based segmentation model for crop disease quantification based on corn field
imagery’, Smart Agricultural Technology, 3, p. 100108. Available at:
https://doi.org/10.1016/j.atech.2022.100108.

Dubin, H.J. and Duveiller, E. (2011) ‘Fungal, bacterial and nematode diseases of
wheat: breeding for resistance and other control measures.’, in The World Wheat
Book, A History of Wheat Breeding. Angus, W., Bonjean, A. and van Ginkel, M., pp.
1131–1191.

 175

European Commission (no date) Neonicotinoids. Available at:
https://food.ec.europa.eu/plants/pesticides/approval-active-substances/renewal-
approval/neonicotinoids_en (Accessed: 26 September 2022).

Feldman, M. (1995) ‘Wheats’, in Smartt, J. and Simmonds, N. W., Evolution of crop
plants. Longman Scientific and Technical, Harlow, UK, pp. 185–192.

Ferentinos, K. (2018) ‘Deep learning models for plant disease detection and
diagnosis’, Computers and Electronics in Agriculture, 145, pp. 311–318. Available
at: https://doi.org/10.1016/j.compag.2018.01.009.

Genaev, M.A. et al. (2021) ‘Image-Based Wheat Fungi Diseases Identification by
Deep Learning’, Plants, 10(8), p. 1500. Available at:
https://doi.org/10.3390/plants10081500.

Glorot, X., Bordes, A. and Bengio, Y. (2011) ‘Deep Sparse Rectifier Neural
Networks’, in Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics. Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, JMLR Workshop and Conference
Proceedings, pp. 315–323. Available at:
https://proceedings.mlr.press/v15/glorot11a.html (Accessed: 18 May 2023).

Godfray, H.C.J. et al. (2010) ‘Food Security: The Challenge of Feeding 9 Billion
People’, Science, 327(5967), pp. 812–818. Available at:
https://doi.org/10.1126/science.1185383.

Goutte, C. and Gaussier, E. (2005) ‘A Probabilistic Interpretation of Precision,
Recall and F-Score, with Implication for Evaluation’, in D.E. Losada and J.M.
Fernández-Luna (eds) Advances in Information Retrieval. Berlin, Heidelberg:
Springer (Lecture Notes in Computer Science), pp. 345–359. Available at:
https://doi.org/10.1007/978-3-540-31865-1_25.

Goyeau, H. et al. (2006) ‘Distribution of pathotypes with regard to host cultivars in
French wheat leaf rust populations’, Phytopathology, 96(3), pp. 264–273. Available
at: https://doi.org/10.1094/PHYTO-96-0264.

Hancock, J.F. (2004) Plant Evolution and the Origin of Crop Species. CABI Pub.

Haque, M.A. et al. (2022) ‘Deep learning-based approach for identification of
diseases of maize crop’, Scientific Reports, 12(1), p. 6334. Available at:
https://doi.org/10.1038/s41598-022-10140-z.

Hardwick, N.V., Jones, D.R. and Slough, J.E. (2001) ‘Factors affecting diseases of
winter wheat in England and Wales, 1989–98’, Plant Pathology, 50(4), pp. 453–462.
Available at: https://doi.org/10.1046/j.1365-3059.2001.00596.x.

Hartley, M. (no date) ‘qtagger’. Available at: https://github.com/JIC-Image-
Analysis/qtagger.

He, K. et al. (2016) ‘Deep Residual Learning for Image Recognition’, in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2016 IEEE

 176

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.
Available at: https://doi.org/10.1109/CVPR.2016.90.

Hinton, G. and Tieleman, T. (2012) ‘Lecture 6.5 - rmsprop, COURSERA: Neural
Networks for Machine Learning’.

Hochreiter, S. (1998) ‘The Vanishing Gradient Problem During Learning Recurrent
Neural Nets and Problem Solutions’, International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 06(02), pp. 107–116. Available at:
https://doi.org/10.1142/S0218488598000094.

Hovmøller, M.S. et al. (2016) ‘Replacement of the European wheat yellow rust
population by new races from the centre of diversity in the near-Himalayan region’,
Plant Pathology, 65(3), pp. 402–411. Available at:
https://doi.org/10.1111/ppa.12433.

Howard, A.G. et al. (2017) ‘MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications’, arXiv:1704.04861 [cs] [Preprint]. Available at:
http://arxiv.org/abs/1704.04861 (Accessed: 3 March 2021).

Huang, G. et al. (2018) ‘Densely Connected Convolutional Networks’,
arXiv:1608.06993 [cs] [Preprint]. Available at: http://arxiv.org/abs/1608.06993
(Accessed: 28 September 2021).

Hughes, D.P. and Salathe, M. (2016) ‘An open access repository of images on plant
health to enable the development of mobile disease diagnostics’, arXiv:1511.08060
[cs] [Preprint]. Available at: http://arxiv.org/abs/1511.08060 (Accessed: 5 March
2021).

Inoue, Y. (2020) ‘Satellite- and drone-based remote sensing of crops and soils for
smart farming – a review’, Soil Science and Plant Nutrition, 66(6), pp. 798–810.
Available at: https://doi.org/10.1080/00380768.2020.1738899.

Ioffe, S. and Szegedy, C. (2015) ‘Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift’, arXiv:1502.03167 [cs] [Preprint].
Available at: http://arxiv.org/abs/1502.03167 (Accessed: 21 May 2021).

Jia, Y. et al. (2014) ‘Caffe: Convolutional Architecture for Fast Feature Embedding’,
arXiv:1408.5093 [cs] [Preprint]. Available at: http://arxiv.org/abs/1408.5093
(Accessed: 27 September 2021).

Jin, X. et al. (2018) ‘Classifying Wheat Hyperspectral Pixels of Healthy Heads and
Fusarium Head Blight Disease Using a Deep Neural Network in the Wild Field’,
Remote Sensing, 10(3), p. 395. Available at: https://doi.org/10.3390/rs10030395.

Kingma, D.P. and Ba, J. (2017) ‘Adam: A Method for Stochastic Optimization’.
arXiv. Available at: https://doi.org/10.48550/arXiv.1412.6980.

Krizhevsky, A. (2014) ‘One weird trick for parallelizing convolutional neural
networks’, arXiv:1404.5997 [cs] [Preprint]. Available at:
http://arxiv.org/abs/1404.5997 (Accessed: 27 September 2021).

 177

Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ‘ImageNet classification with
deep convolutional neural networks’, in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1. Red Hook, NY,
USA: Curran Associates Inc. (NIPS’12), pp. 1097–1105.

Kulkarni, P. et al. (2021) Plant Disease Detection Using Image Processing and
Machine Learning.

Lecun, Y. et al. (1998) ‘Gradient-based learning applied to document recognition’,
Proceedings of the IEEE, 86(11), pp. 2278–2324. Available at:
https://doi.org/10.1109/5.726791.

LeCun, Y. et al. (1999) ‘Object recognition with gradient-based learning’, in Shape,
Contour and Grouping in Computer Vision. International Workshop on Shape,
Contour and Grouping in Computer Vision, Springer Verlag, pp. 319–345. Available
at: https://doi.org/10.1007/3-540-46805-6_19.

Li, L., Zhang, S. and Wang, B. (2021) ‘Plant Disease Detection and Classification by
Deep Learning—A Review’, IEEE Access, 9, pp. 56683–56698. Available at:
https://doi.org/10.1109/ACCESS.2021.3069646.

Lin, K. et al. (2019) ‘Deep Learning-Based Segmentation and Quantification of
Cucumber Powdery Mildew Using Convolutional Neural Network’, Frontiers in
Plant Science, 10, p. 155. Available at: https://doi.org/10.3389/fpls.2019.00155.

Liu, B. et al. (2018) ‘Identification of Apple Leaf Diseases Based on Deep
Convolutional Neural Networks’, Symmetry, 10(1), p. 11. Available at:
https://doi.org/10.3390/sym10010011.

Liu, J. and Wang, X. (2021) ‘Plant diseases and pests detection based on deep
learning: a review’, Plant Methods, 17(1), p. 22. Available at:
https://doi.org/10.1186/s13007-021-00722-9.

Liu, M. and Hambleton, S. (2010) ‘Taxonomic study of stripe rust, Puccinia
striiformis sensu lato, based on molecular and morphological evidence’, Fungal
biology, 114, pp. 881–99. Available at: https://doi.org/10.1016/j.funbio.2010.08.005.

Lu, Y. et al. (2017) ‘Identification of rice diseases using deep convolutional neural
networks’, Neurocomputing, 267, pp. 378–384. Available at:
https://doi.org/10.1016/j.neucom.2017.06.023.

Lydia, A. and Francis, S. (2019) ‘Adagrad - An Optimizer for Stochastic Gradient
Descent’, Volume 6, pp. 566–568.

Mi, Z. et al. (2020) ‘Wheat Stripe Rust Grading by Deep Learning With Attention
Mechanism and Images From Mobile Devices’, Frontiers in Plant Science, 11.
Available at: https://doi.org/10.3389/fpls.2020.558126.

Mohanty, S.P., Hughes, D.P. and Salathé, M. (2016) ‘Using Deep Learning for
Image-Based Plant Disease Detection’, Frontiers in Plant Science, 7. Available at:
https://doi.org/10.3389/fpls.2016.01419.

 178

Nagasubramanian, K. et al. (2018) ‘Explaining hyperspectral imaging based plant
disease identification: 3D CNN and saliency maps’.

Oppenheim, D. et al. (2018) ‘Using Deep Learning for Image-Based Potato Tuber
Disease Detection’, Phytopathology®, 109(6), pp. 1083–1087. Available at:
https://doi.org/10.1094/PHYTO-08-18-0288-R.

Pandian, J.A. et al. (2022) ‘Plant Disease Detection Using Deep Convolutional
Neural Network’, Applied Sciences, 12(14), p. 6982. Available at:
https://doi.org/10.3390/app12146982.

Pedregosa, F. et al. (2011) ‘Scikit-learn: Machine Learning in Python’, Journal of
Machine Learning Research, 12(85), pp. 2825–2830.

Perez, L. and Wang, J. (2017) ‘The Effectiveness of Data Augmentation in Image
Classification using Deep Learning’. arXiv. Available at:
https://doi.org/10.48550/arXiv.1712.04621.

Rangarajan, A.K., Purushothaman, R. and Ramesh, A. (2018) ‘Tomato crop disease
classification using pre-trained deep learning algorithm’, Procedia Computer
Science, 133, pp. 1040–1047. Available at:
https://doi.org/10.1016/j.procs.2018.07.070.

Refaeilzadeh, P., Tang, L. and Liu, H. (2009) ‘Cross-Validation’, in L. LIU and
M.T. ÖZSU (eds) Encyclopedia of Database Systems. Boston, MA: Springer US, pp.
532–538. Available at: https://doi.org/10.1007/978-0-387-39940-9_565.

Russakovsky, O. et al. (2015) ‘ImageNet Large Scale Visual Recognition
Challenge’, arXiv:1409.0575 [cs] [Preprint]. Available at:
http://arxiv.org/abs/1409.0575 (Accessed: 21 September 2021).

Russell, B.C., Torralba, A. and Murphy, K.P. (2008) ‘LabelMe: A database and web-
based tool for image annotation’, 77, pp. 157–153.

Rutkoski, J.E., Krause, M.R. and Sorrells, M.E. (2022) ‘Breeding Methods: Line
Development’, in M.P. Reynolds and H.-J. Braun (eds) Wheat Improvement: Food
Security in a Changing Climate. Cham: Springer International Publishing, pp. 69–
82. Available at: https://doi.org/10.1007/978-3-030-90673-3_5.

Saleem, M.H. et al. (2020) ‘Image-Based Plant Disease Identification by Deep
Learning Meta-Architectures’, Plants, 9(11), p. 1451. Available at:
https://doi.org/10.3390/plants9111451.

Saunders, D.G.O., Pretorius, Z.A. and Hovmøller, M.S. (2019) ‘Tackling the re-
emergence of wheat stem rust in Western Europe’, Communications Biology, 2(1),
pp. 1–3. Available at: https://doi.org/10.1038/s42003-019-0294-9.

Savary, S. et al. (2019) ‘The global burden of pathogens and pests on major food
crops’, Nature Ecology & Evolution, 3(3), pp. 430–439. Available at:
https://doi.org/10.1038/s41559-018-0793-y.

 179

Schirrmann, M. et al. (2021) ‘Early Detection of Stripe Rust in Winter Wheat Using
Deep Residual Neural Networks’, Frontiers in Plant Science, 12, p. 475. Available
at: https://doi.org/10.3389/fpls.2021.469689.

Selvaraju, R.R. et al. (2020) ‘Grad-CAM: Visual Explanations from Deep Networks
via Gradient-based Localization’, International Journal of Computer Vision, 128(2),
pp. 336–359. Available at: https://doi.org/10.1007/s11263-019-01228-7.

Sermanet, P. et al. (2013) ‘OverFeat: Integrated Recognition, Localization and
Detection using Convolutional Networks’, International Conference on Learning
Representations (ICLR) (Banff) [Preprint].

Shewry, P.R. et al. (2002) ‘The structure and properties of gluten: an elastic protein
from wheat grain.’, Philosophical Transactions of the Royal Society B: Biological
Sciences, 357(1418), pp. 133–142. Available at:
https://doi.org/10.1098/rstb.2001.1024.

Shewry, P.R. (2009) ‘Wheat’, Journal of Experimental Botany, 60(6), pp. 1537–
1553. Available at: https://doi.org/10.1093/jxb/erp058.

Shewry, P.R. and Hey, S.J. (2015) ‘The contribution of wheat to human diet and
health’, Food and Energy Security, 4(3), pp. 178–202. Available at:
https://doi.org/10.1002/fes3.64.

Simonyan, K. and Zisserman, A. (2015) ‘Very Deep Convolutional Networks for
Large-Scale Image Recognition’, arXiv:1409.1556 [cs] [Preprint]. Available at:
http://arxiv.org/abs/1409.1556 (Accessed: 3 March 2021).

Singh, D. et al. (2020) ‘PlantDoc: A Dataset for Visual Plant Disease Detection’, in,
pp. 249–253. Available at: https://doi.org/10.1145/3371158.3371196.

Sladojevic, S. et al. (2016) ‘Deep Neural Networks Based Recognition of Plant
Diseases by Leaf Image Classification’, Computational Intelligence and
Neuroscience, 2016, p. e3289801. Available at:
https://doi.org/10.1155/2016/3289801.

Srivastava, N. et al. (2014) ‘Dropout: A Simple Way to Prevent Neural Networks
from Overfitting’, Journal of Machine Learning Research, 15(56), pp. 1929–1958.

Strange, R.N. and Scott, P.R. (2005) ‘Plant Disease: A Threat to Global Food
Security’, Annual Review of Phytopathology, 43(1), pp. 83–116. Available at:
https://doi.org/10.1146/annurev.phyto.43.113004.133839.

Szegedy, C. et al. (2014) ‘Going Deeper with Convolutions’, arXiv:1409.4842 [cs]
[Preprint]. Available at: http://arxiv.org/abs/1409.4842 (Accessed: 28 May 2021).

Szegedy, C. et al. (2015) ‘Rethinking the Inception Architecture for Computer
Vision’. arXiv. Available at: https://doi.org/10.48550/arXiv.1512.00567.

Szegedy, C., Ioffe, S., et al. (2016) ‘Inception-v4, Inception-ResNet and the Impact
of Residual Connections on Learning’, arXiv:1602.07261 [cs] [Preprint]. Available
at: http://arxiv.org/abs/1602.07261 (Accessed: 27 September 2021).

 180

Szegedy, C., Vanhoucke, V., et al. (2016) ‘Rethinking the Inception Architecture for
Computer Vision’, in. Available at: https://doi.org/10.1109/CVPR.2016.308.

Tiley, A.M.M., Foster, G.D. and Bailey, A.M. (2018) ‘Exploring the Genetic
Regulation of Asexual Sporulation in Zymoseptoria tritici’, Frontiers in
Microbiology, 9. Available at:
https://www.frontiersin.org/articles/10.3389/fmicb.2018.01859 (Accessed: 26
September 2022).

Too, E.C. et al. (2019) ‘A comparative study of fine-tuning deep learning models for
plant disease identification’, Computers and Electronics in Agriculture, 161, pp.
272–279. Available at: https://doi.org/10.1016/j.compag.2018.03.032.

Wang, D. et al. (2019) ‘Early Detection of Tomato Spotted Wilt Virus by
Hyperspectral Imaging and Outlier Removal Auxiliary Classifier Generative
Adversarial Nets (OR-AC-GAN)’, Scientific Reports, 9(1), p. 4377. Available at:
https://doi.org/10.1038/s41598-019-40066-y.

Wang, F. et al. (2017) ‘Residual Attention Network for Image Classification’. arXiv.
Available at: https://doi.org/10.48550/arXiv.1704.06904.

Wang, G., Sun, Y. and Wang, J. (2017) ‘Automatic Image-Based Plant Disease
Severity Estimation Using Deep Learning’, Computational Intelligence and
Neuroscience, 2017, pp. 1–8. Available at: https://doi.org/10.1155/2017/2917536.

Yamashita, R. et al. (2018) ‘Convolutional neural networks: an overview and
application in radiology’, Insights into Imaging, 9(4), pp. 611–629. Available at:
https://doi.org/10.1007/s13244-018-0639-9.

Yang, G. et al. (2017) ‘Unmanned Aerial Vehicle Remote Sensing for Field-Based
Crop Phenotyping: Current Status and Perspectives’, Frontiers in Plant Science, 8.
Available at: https://www.frontiersin.org/articles/10.3389/fpls.2017.01111
(Accessed: 30 September 2022).

Zhang, S., Huang, W. and Zhang, C. (2018) ‘Three-Channel Convolutional Neural
Networks for Vegetable Leaf Disease Recognition’, Cognitive Systems Research, 53.
Available at: https://doi.org/10.1016/j.cogsys.2018.04.006.

 181

Appendix 1

The residual attention model code by Deontae Pharr:

from keras.layers import Input, Conv2D, Lambda, MaxPool2D,
UpSampling2D, AveragePooling2D, ZeroPadding2D
from keras.layers import Activation, Flatten, Dense, Add, Multiply,
BatchNormalization, Dropout

from keras.models import Model

Todo: Make scalable/all-encompassing
class ResidualAttentionNetwork():

 def __init__(self, input_shape, n_classes, activation, p=1, t=2,
r=1):
 self.input_shape = input_shape
 self.n_classes = n_classes
 self.activation = activation
 self.p = p
 self.t = t
 self.r = r

 def build_model(self):
 # Initialize a Keras Tensor of input_shape
 input_data = Input(shape=self.input_shape)

 # Initial Layers before Attention Module

 # Doing padding because I'm having trouble with img dims
that are <= 28
 if self.input_shape[0] <= 28 or self.input_shape[1] <= 28:
 x_dim_inc = (32 - self.input_shape[0]) // 2
 y_dim_inc = (32 - self.input_shape[1]) // 2

 # Pad the input data to 32x32
 padded_input_data = ZeroPadding2D((x_dim_inc,
y_dim_inc))(input_data)
 conv_layer_1 = Conv2D(filters=32,
 kernel_size=(3,3),
 strides=(1,1),
 padding='same')(padded_input_data)
 else:
 conv_layer_1 = Conv2D(filters=32,
 kernel_size=(3,3),
 strides=(1,1),
 padding='same')(input_data)

 max_pool_layer_1 = MaxPool2D(pool_size=(2, 2),
 strides=(2, 2),
 padding='same')(conv_layer_1)

 # Residual Unit then Attention Module #1
 res_unit_1 = self.residual_unit(max_pool_layer_1,
filters=[32, 64, 128])

 182

 att_mod_1 = self.attention_module(res_unit_1, filters=[32,
64, 128])

 # Residual Unit then Attention Module #2
 res_unit_2 = self.residual_unit(att_mod_1, filters=[32, 64,
128])
 att_mod_2 = self.attention_module(res_unit_2, filters=[32,
64, 128])

 # Residual Unit then Attention Module #3
 res_unit_3 = self.residual_unit(att_mod_2, filters=[32, 64,
128])
 att_mod_3 = self.attention_module(res_unit_3, filters=[32,
64, 128])

 # Ending it all
 res_unit_end_1 = self.residual_unit(att_mod_3, filters=[32,
32, 64])
 res_unit_end_2 = self.residual_unit(res_unit_end_1,
filters=[32, 32, 64])
 res_unit_end_3 = self.residual_unit(res_unit_end_2,
filters=[32, 32, 64])
 res_unit_end_4 = self.residual_unit(res_unit_end_3,
filters=[32, 32, 64])

 # Avg Pooling
 avg_pool_layer = AveragePooling2D(pool_size=(2, 2),
strides=(2, 2))(res_unit_end_4)

 # Flatten the data
 flatten_op = Flatten()(avg_pool_layer)

 # FC Layers for prediction
 fully_connected_layer_1 = Dense(256,
activation='relu')(flatten_op)
 dropout_layer_1 = Dropout(0.5)(fully_connected_layer_1)
 fully_connected_layer_2 = Dense(256,
activation='relu')(dropout_layer_1)
 dropout_layer_2 = Dropout(0.5)(fully_connected_layer_2)
 fully_connected_layer_3 = Dense(256,
activation='relu')(dropout_layer_2)
 dropout_layer_3 = Dropout(0.5)(fully_connected_layer_3)
 fully_connected_layer_last = Dense(self.n_classes,
activation=self.activation)(dropout_layer_3)

 # Fully constructed model
 model = Model(inputs=input_data,
outputs=fully_connected_layer_last)

 return model

 # Pre-Activation Identity ResUnit Bottleneck Architecture
 def residual_unit(self, residual_input_data, filters):

 # Hold input_x here for later processing
 identity_x = residual_input_data

 filter1,filter2,filter3 = filters

 # Layer 1
 batch_norm_op_1 = BatchNormalization()(residual_input_data)

 183

 activation_op_1 = Activation('relu')(batch_norm_op_1)
 conv_op_1 = Conv2D(filters=filter1,
 kernel_size=(1,1),
 strides=(1,1),
 padding='same')(activation_op_1)

 # Layer 2
 batch_norm_op_2 = BatchNormalization()(conv_op_1)
 activation_op_2 = Activation('relu')(batch_norm_op_2)
 conv_op_2 = Conv2D(filters=filter2,
 kernel_size=(3,3),
 strides=(1,1),
 padding='same')(activation_op_2)

 # Layer 3
 batch_norm_op_3 = BatchNormalization()(conv_op_2)
 activation_op_3 = Activation('relu')(batch_norm_op_3)
 conv_op_3 = Conv2D(filters=filter3,
 kernel_size=(1,1),
 strides=(1,1),
 padding='same')(activation_op_3)

 # Element-wise Addition
 if identity_x.shape[-1].value != conv_op_3.shape[-1].value:
 filter_n = conv_op_3.shape[-1].value

 identity_x = Conv2D(filters=filter_n,
 kernel_size=(1,1),
 strides=(1,1),
 padding='same')(identity_x)

 output = Add()([identity_x, conv_op_3])

 return output

 def attention_module(self, attention_input_data, filters):
 # Send input_x through #p residual_units
 p_res_unit_op_1 = attention_input_data
 for _ in range(self.p):
 p_res_unit_op_1 = self.residual_unit(p_res_unit_op_1,
filters=filters)

 # Perform Trunk Branch Operation
 trunk_branch_op =
self.trunk_branch(trunk_input_data=p_res_unit_op_1, filters=filters)

 # Perform Mask Branch Operation
 mask_branch_op =
self.mask_branch(mask_input_data=p_res_unit_op_1, filters=filters)

 # Perform Attention Residual Learning: Combine Trunk and
Mask branch results
 ar_learning_op =
self.attention_residual_learning(mask_input=mask_branch_op,
trunk_input=trunk_branch_op)

 # Send branch results through #p residual_units
 p_res_unit_op_2 = ar_learning_op
 for _ in range(self.p):
 p_res_unit_op_2 = self.residual_unit(p_res_unit_op_2,
filters=filters)

 184

 return p_res_unit_op_2

 def trunk_branch(self, trunk_input_data, filters):
 # sequence of residual units, default=2
 t_res_unit_op = trunk_input_data
 for _ in range(self.t):
 t_res_unit_op = self.residual_unit(t_res_unit_op,
filters=filters)

 return t_res_unit_op

 def mask_branch(self, mask_input_data, filters, m=3):
 # r = num of residual units between adjacent pooling layers,
default=1
 # m = num max pooling / linear interpolations to do

 # Downsampling Step Initialization - Top
 downsampling = MaxPool2D(pool_size=(2, 2),
 strides=(2, 2),

padding='same')(mask_input_data)

 for _ in range(m):
 # Perform residual units ops r times between adjacent
pooling layers
 for j in range(self.r):
 downsampling =
self.residual_unit(residual_input_data=downsampling,
filters=filters)

 # Last pooling step before middle step - Bottom
 downsampling = MaxPool2D(pool_size=(2, 2),
 strides=(2, 2),

padding='same')(downsampling)

#===
================================

 # Middle Residuals - Perform 2*r residual units steps before
upsampling
 middleware = downsampling
 for _ in range(2 * self.r):
 middleware =
self.residual_unit(residual_input_data=middleware, filters=filters)

#===
================================

 # Upsampling Step Initialization - Top
 upsampling = UpSampling2D(size=(2, 2))(middleware)

 for _ in range(m):
 # Perform residual units ops r times between adjacent
pooling layers
 for j in range(self.r):
 upsampling =
self.residual_unit(residual_input_data=upsampling, filters=filters)

 185

 # Last interpolation step - Bottom
 upsampling = UpSampling2D(size=(2, 2))(upsampling)

 conv_filter = upsampling.shape[-1].value

 conv1 = Conv2D(filters=conv_filter,
 kernel_size=(1,1),
 strides=(1,1),
 padding='same')(upsampling)

 conv2 = Conv2D(filters=conv_filter,
 kernel_size=(1,1),
 strides=(1,1),
 padding='same')(conv1)

 sigmoid = Activation('sigmoid')(conv2)

 return sigmoid

 def attention_residual_learning(self, mask_input, trunk_input):
 # https://stackoverflow.com/a/53361303/9221241
 Mx = Lambda(lambda x: 1 + x)(mask_input) # 1 + mask
 return Multiply()([Mx, trunk_input]) # M(x) * T(x)

