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Abstract

This article uses a variety of graphical and mathematical approaches to analyse

600- and 60-MHz (‘benchtop’) proton NMR spectra acquired from lipophilic

and hydrophilic extracts of roasted coffee beans. The collection of 40 authenti-

cated samples comprised various coffee species, cultivars and hybrids. The

spectral datasets were analysed by a combination of metabolomics approaches,

cross-correlation and whole spectrum methods, assisted by visualisation and

mathematical techniques not conventionally employed to treat NMR data. A

large amount of information content was shared between the 600-MHz and

benchtop datasets, including in its magnitude spectral form, suggesting the

potential for a lower cost, lower tech route to conducting informative metabo-

lomics studies.

KEYWORD S

benchtop NMR, coffee, compact NMR, graphical exploration, high-resolution NMR, inter-
correlation, magnitude spectra, metabolomics, spectral form, visualisation

1 | INTRODUCTION

High-resolution NMR spectroscopy is utilised extensively
in many scientific disciplines. In the life sciences, major
uses include the elucidation of structures of biochemical
compounds, metabolite quantitation and metabolomics
experiments. The current work concerns a 600-MHz 1H
NMR metabolomics investigation of hydrophilic (polar)
and lipophilic (non-polar) extracts of ground roast coffee,
combined with a parallel study of lipophilic extracts
obtained from the same sample collection using 60-MHz
(‘benchtop’ or ‘compact’) 1H NMR.

The genesis of modern benchtop NMR spectroscopy
dates back to the early 2000s when significant advances
were made in the design and manufacture of rare-earth
ferromagnets. These permanent magnets produce fields
of �1.5 T. Corresponding to a proton Larmor frequency

of 60 MHz, this was a typical field strength in state-of-
the-art NMR spectroscopy of the 1970s. However, devel-
opments in electronics and computing power make
today's 60-MHz spectrometer an entirely different beast:
Fourier transform rather than continuous wave, with
high resolution on the frequency scale and much-
improved signal to noise. Their size and weight are suit-
able for truly ‘benchtop’ operation, and there is a strong
emphasis on ease of use: The only part of the system
requiring user interaction is the probe, located between
the poles of the magnet and accommodating the
sample tube.

Taking a more commercial view, a key attraction of a
benchtop NMR spectrometer is its much lower capital,
maintenance and running costs,1 which are an order of
magnitude less expensive than a research grade instru-
ment. Most reported studies that involve benchtop NMR
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have a focus on industry-oriented or high-throughput
applications. Examples include a variety of quality con-
trol and screening tasks,2 and benchtop versus high-field
comparisons, often in terms of the performance of predic-
tive models.3–7

Coffee has been examined by both high-field and
benchtop 1H NMR for a variety of purposes: structural
determination of individual compounds8 and composi-
tional analysis of green9,10 and roasted coffee beans11,12

and of coffee oil and spent coffee grains.13 Many other
agricultural commodities have likewise been studied by
NMR including beverages (tea14,15 and wine16) and food
too, such as vegetable oils17 and meat,18 with appropriate
extraction techniques for handling the different sample
matrixes. Another recorded area of application is product
authentication. There is a long history of fraud in the
global food supply chain, and analytical tests can help by
detecting instances of adulteration of high-value products
with cheaper alternatives. With an authentication focus,
NMR has been used to study pulp-wash from citrus
fruits19 and the spices saffron20,21 and vanilla.22

In the coffee sector, cases of fraud usually involve the
substitution of Coffea arabica L. (‘Arabica’) with the
other commercially important species, C. canephora
Pierre ex A. Froehner (also known as C. canephora
v. robusta). The former generally trades at twice the price
of the latter. The presence of canephora in a blend is
betrayed by its aftertaste, described as ‘peanutty’,23

although the limit of detection even by trained sensory
experts is around 15% w/w. Analytical tests developed
using NMR can perform substantially better than
this,24–27 down to detection limits commensurate with
‘adventitious contamination’28,29: very low amounts of
adulteration arising from some kind of mistake during
transport or processing rather than deliberate fraud.

Spectra of complex biological samples such as coffee
invariably contain large numbers of peaks, typically in
the hundreds, and the dynamic range of the spectral
intensities is such that the largest resonances dwarf the
smallest by orders of magnitude. This makes holistic
inspection of the spectra quite a challenge. In the present
work, various strategies for visual exploration and com-
parison of such datasets are explored, using a range of
different graphical methods and resources.30–34 These are
inspired by approaches used in other disciplines but
unconventional in NMR data analysis, perhaps because
researchers tend to utilise only software provided with
the instrument console. It is shown that these contempo-
rary, data-agnostic software tools and graphics resources
offer many possibilities for the compelling visualisation
and effective exploration of complex NMR datasets.

The datasets used in the work comprise 60- and
600-MHz 1H NMR spectra of lipophilic extracts and

600-MHz 1H NMR spectra of hydrophilic extracts from
roast coffee beans of assured origin. Also considered are
60-MHz magnitude spectra from the same samples, as
well as two additional collections: known blends and hos-
pitality/retail-purchased surveillance samples. The spec-
tra were obtained during the development of a method
for coffee species authentication via a selected peak inte-
gral.28 None have been previously treated as whole spec-
tral profiles, and the magnitude data have not been
previously disclosed. All datasets have been placed in the
public domain35 to encourage further analysis.

2 | MATERIALS AND METHODS

2.1 | Datasets

A public domain data repository35 of NMR spectra from
extracts of roast coffee beans was used in this work. It
contains 60- and 600-MHz 1H NMR spectra of lipophilic
extracts and 600-MHz 1H NMR spectra of hydrophilic
extracts, giving three matched datasets of 40 spectra from
samples of the same original coffees. Details of the sam-
ples are given in Table 1. The sample preparation
methods and spectral acquisition have been previously
described in Gunning et al.28 but for convenience are
summarised in Table S1.

Also used in this work are 60-MHz spectra of lipo-
philic extracts from two further sample collections:
27 serial blends of assured Arabica and canephora beans
and 63 hospitality/retail-purchased ground roast coffees.
Sample preparation and spectral acquisition were as
above; sample listings are given in Table S2. These spec-
tra in their magnitude form together with those of the
40 assured origin coffees detailed above are made avail-
able to accompany this manuscript.

2.2 | Data processing

Following routine FID post-processing (see Table S1), all
spectra were exported via MestreNova (Mestrelab
Research, Santiago de Compostela, Spain) from their
native binary format into .csv files for further data analysis.

All subsequent data processing was carried out in the
Matlab technical computing language installed with the
Statistics & Machine Learning and Signal Processing tool-
boxes (The Mathworks, Cambridge, UK). In addition, use
has been made of various third-party, public domain
tools for the Matlab environment, as follows: the Crameri
collection of scientific colour maps,31 the ‘circularGraph’
toolbox32 and the sparse canonical correlation analysis
(CCA) toolbox.34
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TABLE 1 Details of the assured origin coffee beans used to obtain the spectra utilised in the present work.

# Sample code Species/hybrid Country of origin Category # Gunning et al.28

1 WB_01 Arabica Ethiopia Wild type 16

2 WB_02 Arabica Ethiopia Wild type 8

3 WB_03 Arabica Ethiopia Wild type 15

4 WB_04 Arabica Uganda Cultivar 25

5 WB_05 Arabica Ethiopia Wild type 6

6 WB_06 Arabica Brazil Cultivar 24

7 WB_07 Arabica La Reunion Cultivar 23

8 WB_08 Arabica Colombia Cultivar 22

9 WB_09 Arabica Ethiopia Wild type 14

10 WB_10 Arabica Ethiopia Wild type 13

11 WB_11 Arabica Ethiopia Wild type 1

12 WB_12 Arabica Brazil Cultivar 21

13 WB_13 Arabica Ethiopia Wild type 2

14 WB_14 Arabica Ethiopia Wild type 3

15 WB_15 Arabica Ethiopia Wild type 4

16 WB_16 Arabica Ethiopia Wild type 5

17 WB_17 Arabica Ethiopia Wild type 7

18 WB_18 Arabica Ethiopia Wild type 9

19 WB_19 Arabica Ethiopia Wild type 10

20 WB_20 Arabica Ethiopia Wild type 11

21 WB_21 Arabica Ethiopia Wild type 12

22 WB_22 Arabica Ethiopia Wild type 17

23 WB_23 Arabica Colombia Wild type/cultivar 18

24 WB_24 Arabica Colombia Cultivar 19

25 WB_25 Arabica Colombia Cultivar 20

26 WB_26 Arabica Colombia Cultivar 26

27 WB_27 Arabica Costa Rica Cultivar 27

28 WB_28 Arabica Kenya Cultivar 28

29 WB_29 Arabica � robusta < arabica (backcross) Kenya Cultivar (hybrid) 29

30 WB_30 Arabica � robusta < arabica (backcross) Kenya Cultivar (hybrid) 30

31 WB_31 Arabica/canephora (nominal 70:30 blend) Cameroon n/aa

32 WB_32 Arabica � robusta (‘Arabusta’ hybrid) Kenya Hybrid 31

33 WB_33 Canephora Vietnam 34

34 WB_34 Canephora Rwanda 36

35 WB_35 Canephora India 32

36 WB_36 Canephora India 37

37 WB_37 Canephora Brazil 35

38 WB_38 Canephora Indonesia 33

39 WB_39 Congensis � robusta India Hybrid 38

40 WB_40 Liberica Uganda 40

Note: All samples were supplied as roasted whole beans by the Royal Gardens at Kew to the original research project reported in Gunning et al.28 in which

additional details (precise geographical origin, cultivar, etc) can be found. Code numbers as used in that work are also supplied here.
aSample not used in Gunning et al.28

KEMSLEY 3

 1097458xa, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/m

rc.5373 by U
niversity O

f E
ast A

nglia, W
iley O

nline L
ibrary on [09/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3 | RESULTS AND DISCUSSION

3.1 | Exploring the 600-MHz lipophilic
spectra

Hundreds of compounds are present in the lipophilic and
hydrophilic extracts of ground roast coffee. These include
primary and secondary metabolites of coffee beans and
breakdown products from the roasting process. The 1H
600-MHz spectra reflect this complexity. An example of a
lipophilic extract spectrum is shown in Figure 1a. Coffee
beans typically contain 10%–15% w/w coffee oil, composed
mostly (>80% w/w) of triglycerides,9 so the lipophilic spec-
trum is dominated by resonances attributable to fatty acids
(FA) and the glycerol backbone (Gly), as indicated on the
figure. Other peaks include caffeine (Caf) and the various
diterpenes (Dit), although these smaller and more

interesting peaks from a compositional perspective are
poorly visible at this scale, thus hard to examine in the
context of the spectrum as a whole. This is because the full
complement of resonances accessible by modern high-field
NMR comprises intensities across a very large dynamic
range. Dealing with data that contains information at
vastly different scales is a familiar problem in other disci-
plines; consider satellite imagery, for example, where it is a
common experience to magnify aerial views of the ground
only to lose sight of the bigger picture.

3.1.1 | Log compression

Another analogue of the dynamic range problem is found
in audio processing, where the solution is to apply com-
pression to the signal intensities. In the simplest

FIGURE 1 (a) The 600-MHz 1H NMR spectrum of a lipophilic extract from an Arabica/canephora blend (sample WB_31). Peaks

attributed to compound classes are marked as follows: FA, fatty acids; Gly, glyceride backbone; Caf, caffeine; Dit, diterpenes (cafestol,

kahweol, 16-OMC). The 7.26 ppm solvent peak (d-chloroform) has been suppressed here and in the panels to follow. (b) The same spectrum

after the application of a logarithmic compression function. (c) A heatmap view of the complete set of log-compressed spectra from all

40 lipophilic extracts. To aid clarity, the pixels are elongated vertically so that each compressed intensity value is represented by a vertical

bar. Each row represents one spectrum; rows have been arranged by sample type, as indicated on the left-hand side. Colours are mapped to

the log-compressed intensities using ‘Batlow-W’ (the ‘scientific rainbow’ from the Crameri colour map collection). Indicated below the

heatmap are the integration regions used in the bucketing procedure, with nominal peak centres as marked.
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approach, each intensity value Iν is transformed by a log-
arithmic function, and this approach is equally applicable
to NMR spectra. The processed spectrum is given by
f Iνð Þ¼ a log10 1þb Iνð Þ, where the parameter b is chosen
to produce the required amount of compression and
a controls the output amplitude. By choosing suitable
values for these, the spectral profile can be substantially
altered, relatively amplifying smaller features and sup-
pressing larger ones. Notice that this transformation is
applied to individual data values, in contrast to scaling
methods that operate on the data matrix row-wise
(e.g. standard normal variate [SNV] or total area normali-
sations) or column-wise (e.g. standardisation or Pareto
scaling), where each row contains a spectrum.

Log transformations of NMR spectra have been previ-
ously reported as beneficial pre-treatments in multivari-
ate analysis.36,37 In the present work, the primary interest
is in improving visualisation. The log-compressed spec-
trum is illustrated in Figure 1b. Many more peaks are
revealed; some of which were three orders of magnitude
smaller on the original scale than the largest. The com-
pression function has allowed all to be examined
simultaneously.

3.1.2 | Heatmap representations of spectral
datasets

Log-compressed spectra are also more amenable to visu-
alisation as a heatmap than raw spectral intensities.
Figure 1c shows the complete collection of lipophilic
extract spectra, arranged row-wise into a matrix and pre-
sented as an image. This form of data representation is
encountered in other scientific fields but has only occa-
sionally been reported for NMR spectra.21,38 It provides a
clear way of presenting a large, complex dataset in a sin-
gle illustration. This can be helpful in revealing system-
atic effects that are not apparent from overlaid or stacked
spectra. For example, by organising the rows of the data
matrix by sample type, differences between Arabica and
other coffee species are made clear. This is especially
obvious amongst the diterpenes that are known to be
strongly associated with coffee species.39,40 In contrast,
other regions (e.g. >8 ppm, aromatics and aldehydes) are
seen to vary individually by sample.

The heatmap also makes it easy to examine the align-
ment of peaks across the dataset: Some resonances are
very well aligned (FA, for instance), others less so (Caf).
Rather than using the solvent peak as a reference, the
dataset shown here has been registered using correlation-
optimised alignment (COA).41 This produces a better
alignment of peaks across the whole spectral range. The
chemical shift scale was attached post hoc by setting the

average position of the largest FA peak, present in all
lipophilic extracts, to 1.25 ppm. For comparison,
Figure S3(a) shows the heatmap of the dataset aligned to
the solvent peak (d-chloroform, 7.26 ppm).

The colour map used in Figures 1c and S3(a) is
‘Batlow-W’42 from the Crameri collection of scientific
colour maps, which provide perceptually uniform colour
gradients and colour combinations readable by people
with colour vision deficiencies. How these look in human
eyes is self-evidently a subjective experience, but we can
experiment further still with alternative maps to best
communicate the information at hand. This is illustrated
in Figure S3(b)–(c), which compares heatmaps of the
chloroform-aligned, log-compressed dataset constructed
using a variety of different colour mappings.

3.1.3 | Using heatmaps to assist with
bucketing and annotation

A well-established treatment of NMR spectra is ‘bucket-
ing’, which involves integrating peak area(s) within
selected regions along the chemical shift scale. Ideally,
each bucket is associated with a single functional group,
and buckets attributed to the same molecule are expected
to be highly correlated. In studies of natural products,
which contain numerous compounds of varying concen-
trations, relative sideways shifting of peaks from sample
to sample is unavoidable. This means that stated peak
chemical shifts are approximate and may differ with
experimental conditions. As such, bucketing has become
a routine approach in metabolomics work. It aims to mit-
igate this imprecision by effectively de-resolving the spec-
trum from tens of thousands of data points to no more
than hundreds of buckets.

However, misaligned peaks can present challenges dur-
ing the bucketing process. This has long been recognised
as an issue in NMR.43 There have been a variety of
attempts to automate the procedure,44,45 but currently,
human oversight is still advised. For large studies, it is
important to consider the whole sample collection in set-
ting appropriate integration limits, rather than just a single
spectrum. With this in mind, the lipophilic extract dataset
was bucketed using the integration regions as indicated at
the bottom of Figure 1c; these were informed by inspection
of heatmaps local to each peak. The integration regions
and nominal peak centres are also tabulated in Table S4.
For many of the smaller peaks, local COA was necessary
to fine-tune the integration region. The benefit of doing
this is illustrated in Figure S5 for the cafestol (at 6.19 ppm)
and kahweol peaks (at 6.23 and 6.29 ppm).

Annotations have been drawn from established litera-
ture assignments,46–48 with some revisions that were
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made possible as a direct result of the careful bucketing
process. One such example is the peak at 2.60 ppm,
which has been assigned in the literature to cafestol.46

However, close inspection of the spectral profiles in this
region strongly suggests contributions from more than
one compound (Figure S6). A likely candidate is the
other major diterpene found in coffee, kahweol, which
has a broadly similar molecular structure to cafestol and
is mostly absent in non-Arabica species.40 This hypothe-
sis is well-supported by correlations of the region's inte-
gral with those of other annotated cafestol and kahweol
peaks elsewhere in the spectrum. This leads us to con-
clude that the complex peak profile around 2.60 ppm
contains resonances from both cafestol and kahweol.
Although not fully resolved at 600-MHz field strength, it
is possible to access information on their relative abun-
dances through the calculation of partial integrals, as
illustrated in the figure.

Peak intercorrelations can help make decisions on
which buckets to retain for further analysis. Where reli-

able annotation was absent, it was elected to keep only
those that are highly correlated with other buckets in the
dataset or that contain a clearly resolved singlet or multi-
plet. Figure 2 shows all bucket intercorrelations, with an
associated dendrogram giving the hierarchical cluster
tree constructed from the correlation matrix. Serving as a
useful check on the integrity of bucketed data, the lowest
level clusters are seen to arise from integrals assigned to
the same compound.

Higher levels of clustering show associations between
groups of compounds. These can broadly be divided into
three, as indicated: cluster A comprises diglycerides, caf-
feine, sterols and 16-OMC. The latter two are recognised
as markers for distinguishing coffee species39,49; the bitter
alkaloid caffeine also tends to be present in larger
amounts in canephora beans compared with Arabica.
Also in this cluster are five unassigned buckets which,
from their correlation patterns, likely comprise two dis-
tinct compounds: UL1 with two peaks at 5.66 and
6.48 ppm and UL2 with three at 6.75, 6.96 and 7.02 ppm.

FIGURE 2 Heatmap showing the correlation matrix from the 600-MHz bucketed lipophilic dataset, with an associated dendrogram

showing the agglomerative hierarchical cluster tree constructed from the correlation matrix using unweighted average distances (UPGMA)

linkage. The blocks of high correlations along the leading diagonal correspond to the lowest level clusters: These arise from integrals

assigned to the same compound. Three higher level clusters (A(L), B(L), C(L)) indicate groups of compounds that vary similarly across the

dataset. Cluster A comprises diglycerides, caffeine, sterols, 16-OMC and two unassigned compounds, UL1 and UL2. Cluster B comprises the

buckets from cafestol only and is uncorrelated with all other compounds. Cluster C, especially kahweol and UL5, is generally anti-correlated

with cluster A. The remaining compounds in cluster C include the triglycerides, fatty acids and 5-HMF.
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From their chemical shifts, it is possible that these arise
from as-yet unassigned compounds from the extensive
sterolic fraction.50,51

Cluster A is uncorrelated with cluster B, which com-
prises cafestol only and is uncorrelated with all other
compounds. Cluster C is generally anti-correlated with
cluster A, especially kahweol and another unannotated
peak (UL5) at 10.16 ppm. The remaining compounds in
cluster C include the triglycerides, fatty acids and
5-HMF, an aldehyde-furan formed from reduction of
sugars upon roasting.52,53 The literature contains annota-
tions of other features in the peroxide and aldehyde
region (>7 ppm). However, in the present dataset, the
profile across samples is highly inconsistent here, with
peaks varying in number, size and precise location. This
can be seen from the heatmaps in Figures 1 and S3.

3.2 | Exploring the 600-MHz hydrophilic
extract spectra

The spectra of the hydrophilic extracts were processed
similarly. The raw and log-compressed spectra of the
Arabica/canephora blend and a heatmap of the whole
dataset are shown in Figure S7. Compared with those of
the lipophilic extracts, the raw signal intensities are lower
and the spectra are more crowded. The main phenolic
compounds in coffee beans are chlorogenic acids (CGAs,
mainly 3-, 4- and 5-caffeoylquinic acid), which, along
with their breakdown products such as
N-methylpyridine, contribute significant peaks in multi-
ple regions of the spectrum.8,53,54 Other resonances arise
from the alkaloid trigonelline, various polysaccharides
and organic acids.55 The latter are particularly susceptible
to variation on the chemical shift scale. Caffeine also
appears in the hydrophilic extracts, although its peaks in
the middle-field region are highly mobile on the chemical
shift scale and sometimes entangled with other reso-
nances making them difficult to integrate; a partial inte-
gral approach was adopted in these cases, analogous to
Figure S6 for cafestol/kahweol.

The hydrophilic spectra were likewise bucketed with
the assistance of visualisation and registration tools,
again retaining only those from which a reliable integral
(or partial integral) could be obtained (Table S8). Of
these, 46 were confidently annotated by cross-referencing
with the literature, although published annotations for
the hydrophilic fraction are notably less consistent than
those for coffee oil. This may be because the composi-
tional profile is more strongly influenced by factors such
as the species, cultivar, or grade of bean, as well as vari-
ability arising from the roasting process.10–12,56 A further
six buckets are tentatively ascribed to three different

unknown compounds (UA1–3). These could not be iden-
tified from reviewing the literature but are considered of
interest because of their intercorrelation with other com-
pounds. Experimental investigations (e.g. 2-D NMR) to
establish their identity are precluded, however, because
the sample collection is no longer available for further
study.

The correlation heatmap and dendrogram for the
hydrophilic extracts are given in Figure S9. The lowest
level clusters are again from buckets arising from the
same compounds. This is reassuring, as the greater peak
movement and overlap in the hydrophilic spectra make
the bucketing process more prone to errors. The next
level of clustering highlights some interesting associa-
tions between compound classes. Cluster A comprising
sucrose and CGAs is inversely correlated with cluster E
containing N-methylpyridine along with an unassigned
compound UA2. N-methylpyridine is formed by the
breakdown of trigonelline during roasting and has been
found to be inversely related to CGA concentration57; so
by association, it is probable that UA2 is also a break-
down product. This could potentially be gamma-
quinide,58 although the presence of this compound and
its chemical shift(s) are inconsistently reported in the
literature.

Cluster B comprises a disparate mix of compounds
present in green coffee beans (citric and malic acids, tri-
gonelline) and breakdown products of sucrose and other
polysaccharides (lactic and formic acids59 and 5-HMF).
The latter is notably anti-correlated with
N-methylpyridine, even though both are associated with
the roasting process; this can be explained by their differ-
ent precursors. Clusters C and D contain further organic
acids (acetic and quinic) along with caffeine.

3.3 | Relationships between the
lipophilic and hydrophilic 600-MHz bucket
datasets

3.3.1 | Using circular graphs

Because the lipophilic and hydrophilic spectra were
obtained from the same collection of coffees, the
bucketed datasets can be concatenated and explored col-
lectively, beginning with an examination of their inter-
correlations. Thus far, correlation values have been
depicted as heatmaps, but other graphical forms are
available that can elegantly illustrate these relationships.
Undirected graphs are commonly used to represent con-
nections in networks but are also well suited to the task
of illustrating intercorrelations. In the present work, use
has been made of a publicly available package for the
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Matlab environment, circularGraph.32 Screenshots taken
directly from the tool are illustrated in Figure S10. A key
attraction of this tool is its interactivity: Different net-
works can be easily activated, greatly facilitating explora-
tion of the correlation matrix.

Figure 3 contains circular graphs showing positive
intercorrelations in the concatenated dataset. Each of the
96 nodes corresponds to a bucket (with peak centres as
labelled), and each of the edges has a correlation; only
values significant at p < 0.01 (with Bonferroni multiple test
adjustment) have been included, to avoid overcrowding
the graph. Highlighted in Figure 3a is a single closed net-
work that includes many of the between-fraction

correlations. Caffeine is extracted in both the lipophilic
and hydrophilic extracts, and all its buckets are found in
this network. The other participating buckets from the
hydrophilic extracts are from the FA (methylene) and
UA3, which along with caffeine are highly correlated with
sterols, aromatics and 16-OMC from the lipophilic extracts.

A second network (Figure 3b) links only the buckets
from 5-HMF, which is present at very low concentrations
in both fractions (see Figures 1 and S7; its resonances are
barely visible even in the log-compressed profiles). Never-
theless, this breakdown product of the roasting process is
regarded as potentially harmful and worthy of monitor-
ing.53,60 Finding that its buckets are well-correlated

FIGURE 3 Circular graphs showing positive intercorrelations in the 600-MHz lipophilic and aqueous concatenated dataset. Each of the

96 nodes corresponds to a bucket, with peak centres as labelled, and each of the edges a correlation. Only values significant at p < 0.01

(Bonferroni multiple test adjustment) have been included, to avoid overcrowding the graph. Panel (a) highlights a closed network that

includes many of the between-fraction correlations at this significance level, such as caffeine from both the lipophilic and hydrophilic

extracts. Panel (b) shows a second network which contains only the buckets from 5-HMF, present at only very low concentrations in both

fractions. The final closed network that links the two fractions is shown in panel (c) and includes all the buckets from trigonelline and

kahweol in respectively the hydrophilic and lipophilic extracts. Both these compounds are known to be significantly higher in Arabica

coffee.
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across fractions reassures on the reliability of both the
sample preparation and data integration procedures. The
final closed network that links the two fractions
(Figure 3c) includes all the buckets from trigonelline and
kahweol in respectively the hydrophilic and lipophilic
extracts. Both of these compounds are known to be sig-
nificantly higher in Arabica coffee.61

3.3.2 | Biplots of the principal components

To examine these inter-species differences in the sample
collection, the concatenated peak integrals were analysed

using principal component analysis (PCA). As there are
orders of magnitude differences in the scale of the inte-
grals, both within and between the two datasets, the cor-
relation matrix form of PCA was employed. This variant
of PCA is routinely used in such circumstances; it is
equivalent to standardising the buckets (mean-centring
and scaling to unit variance) before analysis.

A biplot showing loadings and scores for the first two
PC dimensions is given in Figure 4, which together
account for �57% of the dataset variance. The scores scat-
terplot highlights the contribution to this variance from
the coffee species. In the first PC dimension, the Arabica
and Arabica back-crosses cluster together and are clearly

FIGURE 4 Two-dimensional PCA biplot illustrating the first and second scores and loadings obtained from the 600-MHz concatenated

dataset. The scores scatterplot highlights the role of coffee species in determining the variance in the dataset. There is clear clustering of the

Arabica (and back-cross) samples; the first PC axis is sufficient to distinguish these from the canephora and congensis x robusta samples.

Note also the intermediate placement of the Arabica/canephora blend, hybrid and Liberica samples with respect to this axis. The association

of the various metabolites with species is depicted by the loading weights, which are shown for each bucket by the vectors extending from

the origin. For buckets in the lipophilic dataset, the terminal crosses are green, and crosses are blue for the hydrophilic metabolites; convex

hulls are used to indicate loadings from the same compound within each fraction.
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separated from the canephora and congensis samples; the
Liberica, hybrid and blend are found between the two
groups. The association of the various metabolites with
this species distinction is depicted by the loading weights,
shown for each bucket by vectors from the origin. The
buckets most associated with Arabica are from kahweol,
trigonelline, 5-HMF (in both fractions), most of the
organic acids potentially including UA1, and other uni-
dentified compounds (likely aldehydes) UL3, UL4 and
UL5. Diametrically opposite are caffeine and methylene
(in both fractions), 16-OMC, diglycerides, sterols and the
unidentified (possible sterols) UL1, UL2 and potentially
UA3. The latter group of compounds maps directly onto
the closed network in the discussion of Figure 3a. There
is little association with species in the second PC dimen-
sion; instead, it may relate to the roasting process, with
CGAs and sucrose weighted in opposition to the break-
down products N-methylpyridine and quinic acid. The
PC biplot presented here is qualitatively similar to the
biplot shown in a study of 38 coffees of different species
by de Souza and Benassi,61 although fewer compounds
were studied in that work. This suggests that the com-
bined lipophilic and hydrophilic bucketed datasets have
provided a good, general representation of the key char-
acteristics of ground roast coffee composition.

3.4 | Benchtop NMR spectra

3.4.1 | Correlation with 600-MHz NMR
bucket dataset

This section examines whether similarly detailed infor-
mation can be obtained from 60-MHz NMR spectra of
the same collection of samples. Lipophilic extracts only
are considered, as the issue of water suppression is more
difficult to address at benchtop field strengths because of
the greater intrinsic width of spectral bands. For the same
reason, 60-MHz spectra of complex biological samples
are not generally amenable to bucketing either, apart
from a few serendipitous cases. One such exception con-
cerns the 16-OMC peak in coffee, which can be quanti-
fied and used as a marker of non-Arabica species. The
spectra presented here were used for that purpose previ-
ously28 but have never been explored as whole spectral
profiles.

The collection of raw 60-MHz spectra is shown in
Figure 5a. The wide range of peak intensities limits what
can be conveyed by this representation of the dataset, in
contrast to Figure 5b where the spectra have been log-
compressed. In both panels, the spectra are colour coded
by coffee species. In the log-compressed data, some of the
small diterpene peaks have been amplified sufficiently

for inter-species differences to be seen. These are anno-
tated in the figure; an assignment of other features in the
60-MHz spectrum is given in Figure S11. In panel (c), the
log-compressed dataset is presented as a heatmap, analo-
gous to that in Figure 1c. This shows the highlighted spe-
cies distinctions in the kahweol and 16-OMC regions
very clearly. The spectra have been likewise registered
using COA, and the chemical shift scale attached using a
signal from the triglycerides common to all samples.
Sideways movement of peaks is as much of an issue at
low field strengths, although the greater peak widths
mask the effect to an extent. Panel (d) presents a heatmap
of the correlations between the 60-MHz raw spectral
intensities and the 600-MHz bucketed data, also from the
lipophilic extracts. To assist with the examination of the
heatmap, it is aligned with the chemical shift scale of
panel (c). The colour mapping indicates that there are
very high correlations (the brightest green pixels in the
heatmap) for many of the 600-MHz peak integrals with
the 60-MHz intensities.

Circular graphs can again assist with detailed inspec-
tion of these values. For example, in Figure 6a, a graph
has been constructed from the bucketed data and the
subset of 60-MHz spectral data points that have a correla-
tion of >0.9 with any bucket. The network highlighted is
for kahweol, and it indicates two main regions (5.94–
5.96 ppm and 6.26–6.35 ppm) in the 60-MHz spectrum
that are highly correlated with the 600-MHz kahweol
buckets. Reasonably distinct peaks are found here in the
60-MHz spectra (see Figure 5b), and we can conclude
that these correspond to 600-MHz kahweol buckets with
peak centres of 5.88, 6.23 and 6.29 ppm. The third region
indicated by the correlation analysis is 1.63–1.66 ppm,
which is heavily overlapped in the 60-MHz spectra. It is
plausible that this pinpoints information from kahweol,
because there is a 600-MHz bucket centred at 1.76 ppm.
Note, however, that there is not always direct correspon-
dence in chemical shift values at different field
strengths.62

3.4.2 | CCA

Multivariate statistical methods are well-established for
dealing with spectral data. One such method is CCA,
which seeks out shared information in two multivariate
datasets and expresses it as successive, maximally corre-
lated linear combinations of variables. It is a powerful
method for analysis and visualisation of two collections
of observations made on the same samples. However,
CCA cannot be applied directly to high-dimensional
datasets (i.e. with more variables than observations, such
as in the present study). Further, CCA easily tends
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towards ‘overfitting’, conceptualised as looking too hard
for something in the data that may not actually be there.
Overfitting increases with the number of variables used,
even for data that are not high-dimensional. One work-
around is to use PCA as a dimension-reducing pre-

treatment and pass just a few PC scores to CCA, although
this likely means that we are discarding at least some per-
tinent information and, in the worst case, could even be
throwing it all away; the subset of PCs may simply not
contain the information common to both datasets.

FIGURE 5 Panel (a) shows the 60-MHz 1H NMR spectra of the lipophilic extracts from the collection of coffee sample with raw

intensities as acquired; in panel (b), the same spectra have been log-compressed, revealing the information present in the spectral profile in a

more accessible form. The spectra have been colour coded here according to coffee species, and the clearest peaks for distinguishing between

them are annotated. In panel (c), the log-compressed dataset is presented as a heatmap. This plainly shows the species distinctions in the

kahweol and 16-OMC peaks. Panel (d) presents a heatmap of the correlations between the 60-MHz spectra and the 600-MHz lipophilic

buckets, aligned with the chemical shift scale of panel (c). There are many high correlations, indicated by the brightest green pixels;

however, not all 600-MHz buckets are expected to point to distinct features in the 60-MHz spectra, in which the information content of a

typical peak is heavily entangled with that of its equally broad neighbours.
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These issues can be circumvented by modifying the
CCA calculations. One such variant, large-scale sparse
kernel CCA33 uses regularization to deal with the rank
limitation and can be applied directly to high-
dimensional data. Implemented in cross-validation form
to mitigate overfitting, it is used in the present work to
obtain an estimate of the canonical correlation between
the 60- and 600-MHz data. Outputs from the procedure
are presented graphically in Figure 6b. Both the loadings
and scores plots show high correspondence between the
two datasets. This is an important finding, because
whereas the original 600 MHz were condensed into com-
positionally meaningful buckets, the 60-MHz spectra
were treated as full spectral profiles. The analysis shows
that these contain almost all of the same information as
the bucketed data, albeit in overlapped form. Further, the
scores plot shows that this shared information clearly dis-
tinguishes between coffee species. Collectively, the results
presented in Figure 6 make a convincing case for the use
of benchtop NMR for high-throughput profiling of the
lipophilic fraction for the purpose of coffee species differ-
entiation and authentication; this will be discussed fur-
ther below.

3.4.3 | Magnitude spectra: an alternative
spectral form

To avoid operator subjectivity in high throughput NMR
studies, it is desirable to automate the phase correction.
Nevertheless, some unwanted spectral variation is intro-
duced by this step, particularly in benchtop spectra. Even
very small changes in the magnet temperature affect the
shimming and field homogeneity at the probe. Down-
stream this causes variation in the peak shape, symmetry,
width and baseline in the phase-corrected spectra. An
alternative spectral form, the magnitude spectrum, is cal-
culated from the real and imaginary parts of the Fourier-
transformed FIDs and offers a direct measure of induced
magnetization with no phase correction step involved.
The raw phase-corrected and magnitude spectra of the
60-MHz lipophilic extracts are compared in Figure S12.
The qualitative difference between the two is obvious.
Log compression can again be applied to magnitude spec-
tra (panel c) to reduce the dynamic range and aid heat-
map visualisation (panel d), helped by the fact that
magnitude spectra contain only non-negative values. It is
recognised that using this spectral form is advantageous

FIGURE 6 Panel (a) shows a circular graph constructed from all correlations greater than 0.9 between the 60-MHz spectral data points

and the 600-MHz lipophilic extract buckets. The highlighted network is for kahweol. It identifies two main regions (5.94–5.96 ppm and 6.26–
6.35 ppm) where distinct peaks are found in the 60-MHz spectra that map onto 600-MHz kahweol buckets. A third highly correlated region

(1.63–1.66 ppm) is found to be heavily overlapped in the benchtop spectra. Panel (b) shows the first loadings and scores obtained by sparse

CCA. In both, there is high correspondence between the two datasets, with a canonical correlation of �0.99 (cross-validated). This is

important because whereas the original 600 MHz were condensed buckets, the 60-MHz spectra were treated as full spectral profiles; this

analysis shows that the latter nevertheless contain almost all of the same information as the bucketed data, just in overlapped form. Further,

the scores plot shows that this shared information clearly distinguishes between coffee species. Note that the grouping information is not

utilised in the CCA transformation at all; rather it is added post hoc as colour coding of the data points.
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for pattern recognition,63 including in its application to
benchtop spectra.64

Another interesting form of post-processing is to
take the first derivative of the magnitude spectra
(panel e). This functions as a high-pass filter, directly
extracting information on spectral peaks which in the
magnitude form appear as ‘ripples’ on a broader
underlying curve. Maxima in the derivative spectrum
identify the locations of maximum ripple gradients and
also correspond to peak centres in the phase-corrected

spectrum. The use of derivative spectra has been
reported for treating high-field NMR spectra,65

although it is much more routine in other forms of
spectroscopy that produce broad overlapped peaks,
such as FTIR or UV–Vis66 where whole collections of
spectra are processed in their derivative form. Given
their qualitative similarity, there is likely similar poten-
tial for handing benchtop NMR data in this way,
although proceeding further down this route is beyond
the scope of the present work.

FIGURE 7 Panel (a) shows 60-MHz magnitude spectra of lipophilic extracts from the three coffee collections (assured origin, blend

series and survey samples), offset for clarity, SNV-treated and focussing on the chemical shift region containing resonances from compounds

that are known to distinguish coffee species. Panel (b) shows a magnification of the 3.16 ppm feature from 16-OMC which is strongly

associated with non-Arabica coffee species. The RSS from regressing this region onto a local linear baseline gives a measure of the size of the

feature, shown for each of the data collections in panel (c). PCA was applied to concatenated dataset from all three collections. The first two

scores are shown in panel (d). Two directions in the PCA subspace are associated with aspects of coffee composition, as marked.
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3.4.4 | Benchtop NMR for coffee species
authentication

The 60-MHz phase-corrected spectra have been previ-
ously used in an authenticity test based on quantifying
the 3.16 ppm 16-OMC peak.28 Establishing a normal
range for this peak area in authentic Arabica coffees gave
a straightforward test for the likely presence of non-
Arabica species. We have found that the same informa-
tion can readily be accessed in the magnitude spectra.
Figure 7a shows the lipophilic 60-MHz magnitude spec-
tra in the region between 2 and 6.8 ppm, which contains
resonances from the majority of compounds that distin-
guish coffee species. Also shown (offset in the figure) are
the two additional data collections, from serial blends of
assured Arabica and canephora beans, and from 63 retail
and hospitality coffee samples surveyed at the time of the
method development (sample listings are given in
Table S2).

The inset panel (Figure 7b) shows a magnification of
the 3.16 ppm region. There is a clear distinction in the
spectral profile between the Arabica and other species. A
simple estimate of the feature size is given by the sum of
squared residuals (RSS) between this profile and a linear
baseline. This is shown for each of the data collections in
panel (c). For the assured origin samples, the most obvi-
ous is the vast difference in the RSS between the Arabicas
and other species; further, the RSS is shown to be linearly
correlated with the 16-OMC peak area calculated from
both 60- and 600-MHz phase-corrected spectra
(Figure S13). The outcomes for the blend series confirm
that the size of the feature measured in this way mono-
tonically increases with canephora concentration. The
outcomes for the survey samples are also in agreement
with previously reported work,28 in which several clearly
suspicious ‘100% Arabicas’ had 16-OMC contents more
consistent with Arabica/canephora blends. This clearly
demonstrates the utility of the magnitude spectral form
should phase correction be sub-optimal.

Finally, the magnitude spectra are amenable to whole
spectral processing. The region as shown in Figure 7a in
all three 60-MHz collections was passed to PCA. An
amount of log compression was applied to maximise the
information content in the first two dimensions, which
together account for �70% variance. The scores are
shown in the three panels of Figure 7d, for clarity each
highlighting a different sample collection. A convex hull
is marked in all panels around the Arabicas of assured
origin. Although not intended to function as a classifier,
this outlines the extent of the authentic Arabicas in the
two dimensions under consideration. The non-Arabica
species and blends with higher canephora contents are
seen to fall outside it, as do three of the survey samples

confirmed as decaffeinated. Of these, two were deemed
suspicious from their 16-OMC content as measured by
the 3.16 ppm peak28; the two other highly anomalous
samples in that analysis also appear as edge cases with
respect to the convex hull.

This analysis demonstrates that the magnitude spec-
tra are capable of conveying detailed information on dif-
ferences between the samples. The raw and SNV
magnitude spectra from the assured origin samples are
made available to accompany this manuscript, as are the
SNV magnitude spectra from the blend and survey collec-
tion. In addition, Table S14 provides a selection of Matlab
code snippets used in the analysis as presented here.

4 | CONCLUSIONS

This paper demonstrates the usefulness of graphical tools
and chemometric methods in the untargeted analysis of
NMR spectra from complex biological samples. The com-
bination of log compression and heatmapping enabled
effective representation of whole datasets, aiding in a
600-MHz metabolomics study of the lipo- and hydro-
philic extracts from roasted coffees. The approaches were
also useful in fine-tuning the integration window for
each bucket by local peak registration using COA.

Establishing a universal annotation of coffee spectra
is challenging, especially for the hydrophilic fraction,
because of natural product variability and the breakdown
of compounds during the roasting process. Tools for visu-
alizing bucket and dataset intercorrelations helped to
obtain, for the collection of samples under consideration,
reliable cross-validated assignments for around
100 buckets across the two fractions. These were grouped
into clusters that were found to correspond to known
aspects of coffee biochemistry, suggesting that the
concatenated 600-MHz bucketed datasets yielded a
meaningful coffee composition profile.

The 60-MHz lipophilic spectra contain much broader,
overlapped peaks. Although visualisation tools to deal
with the intensity dynamic range remain useful, the peak
integration approach used in the 600-MHz analysis is of
limited utility. However, focusing exclusively on bucket-
ing is arguably a cul-de-sac, making too many problems
inaccessible to benchtop NMR. Indeed, whole-spectrum
analysis of the 60-MHz data showed that several spectral
regions were highly correlated with the 600-MHz lipo-
philic buckets, including those containing resonances
from minor constituents such as diterpenes. This finding
was supported by CCA, which gave a canonical correla-
tion between the two datasets of �0.99, indicating a very
high proportion of common information. Because of
extensive overlapping, distinct peaks were not visible in
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all of these highly correlated regions, although post-
processing by taking the first derivative of the magnitude
spectral form showed that the peak information is never-
theless embedded in the 60-MHz data.

The magnitude spectral form was also used to exam-
ine the 16-OMC resonance at 3.16 ppm, which appears as
a ripple on a near-linear baseline. This may be quantified
by its squared residual difference from a straight line and
is found to correlate highly with conventional peak inte-
grals calculated in phase-corrected spectra. Finally, the
collection of 60-MHz magnitude spectra was treated with
PCA. The representation of inter-sample differences
obtained corresponded closely to that from the
concatenated 600-MHz bucketed datasets. This suggests
that 60-MHz NMR spectra, including their magnitude
form, can be treated with appropriate data handling tools
to offer a lower cost, lower tech route to informative
metabolomics studies.
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