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Abstract 

Incorporating the domains of space and time to the analysis of infectious diseases can 

reveal unseen structure that may elucidate the mechanisms leading to infection. Spatial 

statistical methods have been available for many years, but they are not used routinely for 

surveillance purposes or for risk assessment during outbreaks. The primary aims of this 

thesis were to identify high or low risk areas of STEC O157 and SARS-CoV-2 in England; 

examine the spatial relationship between STEC O157 case density and environmental and 

socio-demographic risk factors and investigate the relationship between individual 

exposure to risk factors and residence in areas considered high risk for STEC O157. This 

was achieved using non-parametric smoothing techniques and multivariable negative 

binomial and logistic regression models  

We identified areas of England where the risk of STEC and SARS-CoV-2 infection was 

significantly increased accounting for the underlying population at risk. For SARS-CoV-2, 

we describe the highly dynamic spatio-temporal risk at the start of the pandemic and show 

that widespread transmission was underway prior to lockdown in March 2020. For STEC 

O157, the risk of infection was greatest in the North, North West and South West of 

England.  

Compared to baseline, STEC O157 risk was associated with cattle (Incidence rate ratio 

(IRR) 2.2, p<0.001) and sheep (IRR 1.7, p<0.001) density, rural residence (IRR 1.6, 

p<0.001) and presence of private water supplies (IRR 1.4 p=0.02) and we identified a 

novel association between sheep density and STEC O157 PT21/28 (IRR 2.8, p<0.001). 

Socio-economic status appeared to modify the risk related to travel outside the UK. Direct 

contact with the environment (Population attributable risk (PAR) 14%) and contact with 

dogs (PAR 12%) were important risk factors for residents of high-risk areas. Indirect 

contact with the environment (PAR 44%) and daytrips (PAR 37%) were more important 

for travellers. Residents of high-risk areas were less likely to report travel (adjusted Odds 

Ratio 0.56, p<0.001) suggesting that they acquired their infection close to home. 

These results highlight the importance of considering spatial location and mobility when 

considering risks of infection. Identifying geographical areas that present an increased risk 

of infection allows public health messages to be targeted at residents and visitors.  
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1 Introduction  

1.1 Brief overview of Shiga-toxin producing Escherichia coli 

Shiga-toxin producing Escherichia coli (STEC) are a group of bacteria associated with 

human disease and are defined by the presence of one or both phage encoded Shiga toxin 

(Stx) genes; Stx1 and Stx2 (1). These toxins are amongst the most potent bacterial toxins 

known (2). First recognised as a human pathogen in 1982 (3), STEC are now globally 

distributed (4). The infectious dose is low and the mean incubation period ranges from 3.5 

to 8.1 days (5). 

1.2  Nomenclature 

Throughout this thesis, we use the term STEC or STEC O157 to refer to STEC O157:H7, 

STEC may also be referred to in the literature as verotoxigenic E. coli (VTEC), because of 

the cell line (Vero) on which their cytotoxicity was first demonstrated, or 

enterohemorrhagic E. coli (EHEC), because they often cause bloody diarrhoea.  

1.3 Brief overview of severe acute respiratory syndrome coronavirus 2 

Coronaviruses (CoV) are found globally in humans and many different animal species. 

They are classified in the Orthocoronaviridae subfamily (order: Nidovirales, subordination: 

Cornidovirineae, family: Coronaviridae).2 CoV can be grouped into 4genera, including α-

/β-/γ-/δ-CoV and α- and β-CoV can infect mammals, while γ- and δ-CoV primarily infect 

birds (6). 

CoV have a high mutation rate and homologous recombinations often occur (7). These 

properties have contributed to a great diversity of CoV in nature, which enables these 

viruses to infect numerous species. The SARS pandemic, in 2002–2003, led to an 

increasing number of studies in wild animals on all continents and the greatest diversity of 

CoV is seen in bats (8). The most recent introductions to humans are thought to be bat 

viruses, spread via an intermediate animal (eg, the Himalayan palm civet for SARS-CoV 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7173023/#R2
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and the dromedary camel for the Middle East respiratory syndrome [MERS]-CoV). 

However, data on the prevalence of zoonotic CoV in wild animal populations are patchy, 

particularly in economically and/or politically unstable regions of the world (8). 

In late December 2019, several cases of pneumonia of unknown origin were reported from 

China, which in early January 2020 were announced to be caused by a novel coronavirus. 

The virus was later denominated severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) and defined as the causal agent of Coronavirus Disease 2019 (COVID-19). Despite 

attempts to contain the disease in China, the virus spread globally, and COVID-19 was 

declared a pandemic by the World Health Organization (WHO) in March 2020.  

SARS-CoV-2 is efficiently transmitted from person-to-person and spread rapidly across all 

continents in our globalized world. In the resulting COVID-19 pandemic, 766,895,075 

people have been infected and 6,935,889 patients have died so far (as of 24th May 2023, 

source: WHO Coronavirus (COVID-19) Dashboard). 

1.4 Surveillance of infectious diseases and infectious intestinal diseases (IID) in 

England 

1.4.1 The Health Protection (Notification) Regulations 2010 

The Health Protection (Notification) Regulations 2010 (9) provide the legal basis for the 

notification of certain infectious diseases and the organisms that cause them. The diseases 

and causative agents are listed in Schedule 1 and Schedule 2 respectively (9). The main 

purpose of notification is to enable cases or outbreaks of infection to be investigated and 

also to provide information for surveillance purposes.  
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1.4.1.1 Duty to make notifications 

Where a registered medical practitioner suspects a patient or dead person has a notifiable 

disease listed in Schedule 1, they are legally required to notify the proper officer of the 

local authority where the person usually resides or, in the case of travellers, the port health 

authority where the patient disembarked (9). Where diagnostic laboratories identify a 

Schedule 2 causative agent in a human sample, they must report this to UKHSA as a 

laboratory confirmed case. COVID-19, food poisoning, Haemolytic Uraemic Syndrome 

(HUS) and infectious bloody diarrhoea are all notifiable diseases (9). SARS-CoV-2 and 

Verocytotoxigenic Escherichia coli (including E. coli O157) are notifiable causative agents 

(9). 

1.4.2 The surveillance pyramid for IID 

Despite being very common in the community, not all cases of infectious intestinal disease 

(IID) present to a healthcare professional, and not all cases that present are reported to 

national surveillance systems. For a laboratory confirmed case to be included in national 

surveillance, the case must feel unwell enough to seek medical help, the clinician must 

request a sample which should then be submitted to a laboratory. The laboratory must 

examine the sample using appropriate methods and, if a pathogen is identified, report the 

result to a national surveillance system. Reports of laboratory confirmed IID pathogens 

therefore represent only a fraction of the true incidence in the community, and because it 

relies upon cases being unwell enough to seek medical attention, likely reflects the severe 

end of the disease spectrum. Surveillance data in the UK therefore underestimate the total 

burden of IID and this pattern of ascertainment is commonly described schematically as 

the surveillance pyramid presented in Figure 1.1 taken from the second study of infectious 

intestinal disease in the community (10). 
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Figure 1.1 The surveillance pyramid 

 

1.5 Surveillance of STEC in England 

1.5.1 Microbiological detection, confirmation and typing 

In England, isolates of STEC identified by local pathology laboratories are sent for 

confirmation and typing at the UK Health Security Agency (UKHSA) Gastrointestinal 

Bacterial Reference Unit (GBRU). Detection and confirmation of STEC includes 

biochemical identification and serotyping of bacterial isolates. Since 1989, STEC strains 

have been further differentiated using a phage typing (PT) scheme developed in Canada 

(11). Retrospective real-time polymerase chain reaction (PCR) targeting Stx 1 or Stx 2 and 

the intimin (eae) gene, associated with intimate attachment of the bacteria to the host gut 

mucosa, was introduced in 2012 (11). Since 2015, all isolates have been routinely 

sequenced allowing identification of genetic lineage/sub-lineage and stx subtypes (12, 13).  
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1.5.2 The National Enhanced Surveillance System for STEC (NESSS) 

The National Enhanced Surveillance System for STEC (NESSS) was introduced in 

England in 2009. The system collects clinical and epidemiological information for each 

laboratory confirmed case using a standardised questionnaire, a copy of which is provided 

in the supplementary material (SM 1). This includes details about whether they had 

travelled abroad or within the UK prior to their illness onset and the residential postcode of 

each case (an alphanumeric reference developed by the UK Post Office to facilitate the 

delivery of mail, each containing around 15 addresses). This information is linked to 

reference microbiology information including PT, presence of virulence factors and whole 

genome sequence data [1]. 

For the purposes of surveillance, cases are defined as follows: 

• Primary case: The individual who introduced the disease into a group or the 

population (not necessarily the index case or the first case diagnosed). 

• Co-primary case: Case whose date of onset is within one incubation period (4 

days) of the primary case, that is a case thought to have been exposed to the same 

risk factor(s) as the primary case. 

• Secondary case: Case whose date of onset is more than one incubation period (4 

days) after the primary case or whose risk factor is believed to be “exposure to a 

primary case”. 

• Travel-related case: Case whose date of onset is within one exposure period (7 

days) of having been outside of the UK.  

• Asymptomatic case: a person identified through contact screening procedures, 

who has not had any symptoms consistent with VTEC infection within one 

exposure period (7 days) of the symptomatic contact. They are still a case (as they 
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are shedding bacteria). It is expected that an asymptomatic case does not have an 

onset date at all. 

Cases also present themselves in the following ways: 

• Outbreak related case: Generally speaking, outbreaks occur when observed case 

numbers exceed those expected and are epidemiologically and microbiologically 

linked, usually in time and space. Cases are carefully defined during outbreak 

investigations based on microbiological and epidemiological similarities. 

• Clustered case: Cases that are microbiologically similar but where no common 

epidemiological link can be established. These cases may also cluster in space 

and/or time and are usually within expected numbers. 

• Sporadic case: where the case is not microbiologically or epidemiologically linked 

to another known case. These cases may acquire their infection outside the UK or 

may be single cases of infection acquired in the UK.  

Most cases in England are considered sporadic (14), however, the introduction of whole 

genome sequencing (WGS) from 2015 greatly improved our ability to identify cases that 

are phylogenetically linked, thus reducing the number of cases considered to be sporadic. 

Isolates that fall within a 5- Single Nucleotide Polymorphism (SNP) cluster are considered 

to have been exposed to the same source of infection but because these clusters tend to be 

small, establishing the route by which people were exposed to the source remains a 

challenge (13, 15, 16). This 5-SNP threshold is based upon a pairwise SNP distance 

distribution of isolate pairs with a known epidemiological link, which showed that no pair 

had >5 SNP differences with a mean of 1 SNP in isolates from the same household or 

known common source of infection (13). 
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1.6 Overview of STEC 

1.6.1 Microbiological characteristics and typing methods 

STEC has multiple genetic and phenotypic features that contribute to its pathogenicity or are 

used for detection and identification. The primary virulence factor defining the STEC group 

is production of Stx1, Stx2, or both. The genes encoding the toxins, Stx1 and Stx2 are the 

targets of commercial and in-house diagnostic PCR assays. Both toxins can be divided into 

several subtypes, stx1a–1d and stx2a–2g (17).  

The inability to ferment sorbitol along with other factors differentiates STEC O157 from 

≈90% of other gastrointestinal bacteria (17), facilitating the detection and identification of 

STEC O157 on selective media (17).  

For many years, further characterisation was provided using a phage typing (PT) scheme 

(18) developed in Canada (19). Bacteriophages are viruses that infect bacteria and cause 

bacterial lysis and cell death, but also play a role in bacterial genome evolution (18). In 

simple terms, phage typing involves culturing the bacterial isolate and then inoculating this 

with different phages. If lysis occurs with Phage A, for example, the isolate would be 

classified (or typed) as Phage Type (PT) A.  

More recently, the introduction of multi-locus variable number tandem repeat (VNTR) 

analysis (MLVA) and whole genome sequencing (WGS) for routine typing of STEC has 

revealed previously undetected phylogenetic and evolutionary relationships (12). WGS is 

highly discriminatory and demonstrates unparalleled sensitivity and accuracy in identifying 

linked cases coupled with phylogenetic clustering of how strains are related over time and 

space. Its ability to accurately define sporadic cases over time enables better characterisation 

of the population at risk and assessment of the relative importance of exposures leading to 

sporadic infections and those that are genetically or epidemiologically linked (13).   
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1.6.2  Clinical features and severity of STEC infection 

Symptoms range from asymptomatic infection through to serious systemic disease and, 

rarely, death. Clinical illness is characterised by diarrhoea which can range from mild and 

self-limiting to more severe bloody diarrhoea. Unlike other bacterial GI infections, fever is 

uncommon and if present, tends to be mild. This lack of fever combined with bloody 

diarrhoea is used to indicate STEC infection, particularly in children.  

During infection, STEC release Shiga- toxins (Stx), the primary virulence factor 

responsible for the most serious clinical outcomes. The Stx target cells expressing the 

glycolipid lobotriaosylceramide (Gb3), disrupting protein synthesis and resulting in 

apoptotic cell death. Renal epithelial cell membranes are enriched for Gb3 meaning that 

kidneys bear the brunt of Stx toxicity but damage to cardiovascular and neurological 

systems can also occur (20). 

Between 6% and 14% of STEC cases go on to develop haemolytic uraemic syndrome 

(HUS) (20). HUS is defined as microangiopathic haemolytic anaemia, thrombocytopaenia 

and acute kidney injury (20) and usually occurs 5–13 days after initial diarrhoeal 

symptoms (20). Children under the age of 5 are at greatest risk of HUS, (20, 21) and a 

study of paediatric HUS cases in the UK and Ireland found that STEC infection was the 

cause of 80% HUS cases (21). 

Strains of STEC O157 encoding the stx2-only toxin, specifically the stx subtype stx2a, are 

significantly associated with progression to HUS (1, 11, 20). Antibiotic usage is generally 

contraindicated for use in cases of STEC infection, due to the possibility that bacterial 

DNA damage may upregulate the production of Stx, particularly the stx2 subtype (20), 

therefore increasing the risk of HUS. Observational epidemiological studies, and analysis 
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of outbreak data have shown that clinical presentation and the use of antibiotics are risk 

factors for HUS (20).  

1.6.2.1 Burden of STEC  

Compared to other bacterial pathogens, STEC is a relatively rare infection in many parts of 

the world but is of public health concern due its low infectious dose (<100 bacteria) (1) and 

potential to cause severe disease (1, 22-25). Worldwide, it is estimated that there are 

around 2.8 million cases annually, leading to 3,890 cases of HUS and 230 deaths (26). The 

Europe wide rate of infection is estimated to be 2.2 cases per 100,000 population but 

reported rates vary between countries (Range: <0.1 to 16.3 cases per 100,000 population) 

(27). This may be due to genuine differences in prevalence but may also be a result of the 

differences in the methods of detection and surveillance used across the European Union. 

The O157 STEC serogroup is most commonly associated with human disease in the UK 

however, other serogroups are seen more frequently in other European countries (27). 

Rates of infection in England have remained fairly constant for many years (around  (11). 

Europe showed a similar pattern until an increase since 2011 attributed to wider use of 

molecular methods following a large outbreak linked to sprouted fenugreek seeds (28).  

There are around 800-1,000 cases of STEC reported each year in England but 

underreporting means that the real number of cases in the community is under-ascertained 

by a factor of 8:1 (29). Rates of infection are highest in children (1, 27) and most cases 

occur in the late summer, at least in temperate areas, and this pattern is seen universally 

(30).  

Roberts et al. (31) assessed the economic costs of a serious STEC outbreak that occurred in 

Central Scotland in 1994 (32). The average cost per HUS case was £62,353, a case of 

thrombotic thrombocytopenic purpura (TTP) case cost £21,422, non-HUS and non-TTP 
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cases cost £1,030. The costs of investigating and controlling the Central Scotland outbreak 

were £171,848 and the costs of cases projected over 30 years were £11.9 million, or 

£168,032 per case (31). More recent figures show that the total societal burden of 

foodborne STEC O157 infection in the UK to be £3.9 million each year (33). 

1.6.3  Geographical and temporal distribution 

There is evidence that a common ancestor of STEC was introduced to countries around the 

world on a number of occasions in the past, likely due to international transport of animals 

and/or contaminated animal feed (34). Following introduction, localised genetic variation 

has occurred leading to a patchwork of strains that are related at the global level but show 

distinct geographical differences. Within the United Kingdom, rates of STEC infection in 

Scotland are more than twice that of England (35) . Within England, rates of infection vary 

considerably from 0.40 to 1.34 cases per 100,000 person years in London and the North 

respectively (11, 14) and there is evidence that this relates to living in areas with high 

densities of farmed animals (36).  

However, the strains infecting humans are not always the same as those circulating in the 

‘local’ ruminant reservoir (37, 38). The reasons for this are unclear but may be due to 

widespread exposure to a remote source of infection, or localised exposure to a source 

where the availability of comparative microbiological information is scant (14). 

Conversely, evidence from outbreak investigations shows that transmission of highly 

related strains can occur via multiple routes from geographically restricted sources (15, 

39).  

Figure 1.2 shows the weekly numbers of STEC fitted with an exceedance algorithm 

developed by Farrington et al (40) and improved by Noufaily et al (41). The algorithm uses 

the preceding six years of data (2009-2015) to provide an indication of expected numbers, 
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superimposed by the purple line in the figure. Observed numbers that exceed the expected 

represent large national outbreak events responsible for much of the inter year variation, 

but smaller outbreaks and phylogenetic clusters occur within endemic levels throughout 

the year.  

Figure 1.2 Observed and expected (purple line) weekly counts of STEC in England 

2015-2022 

 

 

The distinct seasonal pattern is seen from year to year; low levels during the winter months 

are followed by an increase in infections during March and April, and a late summer peak. 

This pattern is pronounced in rural areas (14) and is seen globally (30), likely the result of 

multiple factors including farming practices, animal movements, human behaviour 

(including travel) and climatic factors. 

There have been considerable changes in the strains circulating in England since 

surveillance began. Adams et al (11) described the changes in phage types over time 

presented in Figure 1.3. This shows that the predominant strains circulating until the late 

1990s were PT2 and PT1 until they were replaced by PT 8 and 21/28. This was also seen 
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in Scotland (42), suggesting a strain replacement event. The reasons for this change are 

unclear but the destruction and restocking of UK cattle herds after concerns about bovine 

spongiform encephalopathy and foot and mouth disease during the study period may be 

contributing factors (11). 

Figure 1.3 Proportions of common phage types (PTs) of Shiga toxin–

producing Escherichia coli O157 identified, England and Wales, 1989–2012 

 

More recently, phylogenetic analysis of strains circulating in humans and UK cattle during 

2014 (12) described three distinct lineages (I, II and I/II) descended from a common 

ancestor. Lineage I contains PT 21/28 and PT32; strains encoding Stx2 only and associated 

with more severe disease. Lineage II contains PT8 and Lineage I/II PT2. Isolates from 

humans and UK cattle are closely related suggesting that PT8 and, in particular, PT21/28,  
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Figure 1.4 Timeline of key events influencing the epidemiology (A), microbiology 

(B), and guidance and control (C) of STEC O157, England and Wales, 1983–2012. 

Numbers before 1989 are available only as an aggregate for that period and 

therefore cannot be presented by year. BSE, bovine spongiform encephalopathy; 

FMD, foot and mouth disease; MLVA, multilocus variable-number tandem-repeat 

analysis; MOLIS, Modular Open Laboratory Information System; NESSS, National 

Enhanced Surveillance Scheme for STEC; PFGE, pulsed-field gel electrophoresis; 

PT, phage type; STEC, Shiga toxin–producing Escherichia coli; VTEC, 

verocytotoxin–producing E. coli. 
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have a domestic source and are domestically acquired (12). With the advent of routine 

WGS, it is now possible to identify links between cases that previously appeared sporadic 

in nature. These cases may exhibit spatial clustering, sometimes over long periods of time, 

suggesting geographically restricted transmission of highly related strains (15) and 

extended persistence in the zoonotic reservoir. 

1.7 Modes of transmission 

Figure 1.4, taken from the report and action plan of the Scottish E. coli O157 Task Force 

(43) describes the numerous routes by which STEC can be transmitted to humans from the 

zoonotic reservoir. 

The predominant routes leading to human infections are via food (including water), 

person- to -person contact or contact with the ruminant reservoir and/or environments 

contaminated with their faeces. Irrespective of the route of transmission, cases present 

themselves sporadically (occurring independently of other cases) or as part of outbreaks 

where cases are microbiologically and epidemiologically linked in some way e.g., by 

eating at the same fast-food outlet.  

Direct contact with the farming environment or ruminants, such as in open farms or petting 

zoos, are important risk factors for STEC infection (1, 44). One outbreak associated with a 

petting farm in South-East England in 2009 resulted in 93 infections, 27 admissions to 

hospital and 17 cases of HUS (45). Indirect contact with animals or environments 

contaminated with their faeces is also of importance but the actual process leading to 

infection is less well understood. The role of fomites has been considered for STEC O157 

transmission between animals (46) but compared to other food borne pathogens (47-49), 

there is little published information specific to STEC O157 and fomites.  Heavy rainfall 

and flooding events can lead to contamination of fresh and marine water systems (50), 
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beaches (51-55) and food crops. Poorly managed private water supplies present a particular 

risk in areas of high animal density (56, 57).  

 

Figure 1.4 Overview of modes of transmission leading to colonisation of animals and 

infection of humans 

 

1.8 Risk factors 

Infection with STEC is the result of a complex set of interactions between distal and 

proximal risk factors related to the reservoir, the environment, the pathogen, the host and 

opportunities for transmission (30). Distal risk factors are those factors that have a remote 

or indirect causal influence on the disease outcome and include age, sex, ethnicity and 

socio-economic status. Proximal risk factors are those in the causal chain that precipitate 

disease and include the virulence of the infecting organism, food, water, exposure to 

animals and the rural environment as well as travel within the UK and abroad. 
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1.8.1  Risks presented by animals and the environment 

The association between increased cattle density and rates of infection has been 

demonstrated in a number of studies in the UK and Europe. These are summarised in Table 

1.1.  

In the UK, most work has been carried out in Scotland on account of their persistently 

higher rates of infection compared to other countries. A spatial and temporal analysis in 

Scotland between 1996 and 1999 showed significant regional variation, a distinct temporal 

pattern linked to season and increased rates of infection from West to East and South to 

North. Spatial effects appeared to be distant rather than locally driven; that is the 

attributable risk of living at specified distances from an existing case was at its highest 

between 50 and 100km. The study also found cattle population density; human population 

density and the number of cattle per person were variously significant depending on 

geographical location (35). In Europe, the association has been examined in the 

Netherlands (58, 59), France (60), Germany (61), Sweden (62) and Finland (63).  

Taken together, these studies all show that the risk of infection and/or poor clinical 

outcome (e.g. HUS) is associated with cattle or sheep density (14, 35, 59-64), farm 

density/rural residence (14, 59, 65, 66) and summer months (59) (14).  
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Table 1.1 Summary of studies exploring the role of the agricultural environment on STEC infection and HUS  

Country Dependent variable(s) Significant risk factors Statistical methods Year Reference 

Sweden Mean annual incidence 1995–1998 Farm density  

Cattle density 

 

Multiple linear regression 2004 (62) 

France HUS incidence in children aged 15 years 

or under. 

Total cattle density  

Ratio of calves to children  

 

Multivariate Poisson regression 2005 (60) 

Scotland   Poisson GLM, Scan statistic, K-function 

analysis. 

2005 (35) 

Germany Counts of STEC O157 by serogroup Cattle density 

Age 

Bayesian Poisson regression 2008 (61) 

Scotland Incidence of STEC O157 stratified by 

phage type 

Farm level prevalence of STEC in 

cattle stratified by phage type. 

Season 

Geography 

Comparison of proportions using the Cochran 

Mantel Haenzel test. 

2009 (42) 

Netherlands STEC O157 incidence Cattle density 

Age 

Sex 

Season 

Integrated nested Laplace approximation 

(INLA) with fixed and random effects.  

2011 (59) 

Finland Counts of STEC Bulls per population 

Adult education levels 

Bayesian Poisson complementary-log log 

(clog log) hurdle model with and without 

spatial correlation variable 

2011 (63) 
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Country Dependent variable(s) Significant risk factors Statistical methods Year Reference 

Disadvantaged households with 

children  

Farm density 

Fresh water coverage  

Republic of 

Ireland 

Spatial presence/absence of ≥ 1 STEC 

O157 or O26 case. 

Livestock density 

Septic tank density  

Private wells 

Serotype 

Age 

Sex 

Multivariate logistic regression 2017 (64) 
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Swimming or paddling in fresh or seawater has been linked to outbreaks (51-54, 67). 

Swimming pools and paddling pools have also been identified as risk factors or the source 

of outbreaks (68-72). The proportion of land covered with freshwater was positively 

associated with risk in Finland (63). 

Animal based attractions (petting farms, agricultural shows and zoos) have been associated 

with many outbreaks worldwide (45, 73-77). One outbreak in south-east England in 2009 

affected at least 93 people (45) was subject to an independent investigation that resulted in 

over 40 recommendations focused on minimising visitor contact with animal faeces, 

raising public awareness about this risk, developing an approved code of practice for open 

farms, getting regulators to work together, and performing research on rapid diagnosis and 

the reduction of the carriage of STEC in animals (78).  

1.8.2  Risks presented by food and water 

Raw (unpasteurised) drinking milk (RDM) and products made with unpasteurised milk 

(cheese, yoghurt, cream etc.) may be contaminated with STEC (79) and have been 

associated with outbreaks worldwide (22, 80-89). The sale of RDM is illegal in Scotland 

and is regulated by the Food Standards Agency and the Dairy Hygiene Inspectorate in 

England.  

A 2016 systematic review showed that of 32 studies that included consumption of pink or 

raw meat as a risk factor, 20 (62.5%) found this to be associated with STEC infection (90). 

Random-effects meta-analysis provided pooled odds ratios and population attributable 

fraction (PAF) of 19% for undercooked/raw meat, followed by person-to-person 

transmission at 15%. Contact with animals and visiting farm environments had PAFs of 

14% and 12% respectively (90) although these results differed geographically. 
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Watercress was identified as a risk factor in a case control study in England (44). 

Outbreaks associated with leafy greens are becoming more common (11, 91) and have also 

been identified as a risk factor for specific STEC lineages (92). 

The risk associated with mains drinking water is considered to be low (57) as STEC is 

susceptible to the range of contemporary treatments used. However, outbreaks linked to 

drinking water do occur, most notably that which occurred in Walkerton, Ontario in 2000 

associated with over 2,000 cases and at least seven deaths (93). There is extensive evidence 

that private water supplies are a risk factor for STEC infection (14, 68, 90, 91, 94-109). 

The use of septic tanks to treat and dispose of sewage in rural areas was identified as a risk 

factor in the Republic of Ireland (64). 

1.8.3 Socio-demographic risk factors 

A study in England showed that Accident and Emergency attendance and hospitalisation 

because of STEC illness was higher amongst the most disadvantaged group compared to 

the least, suggesting potential lower ascertainment of milder cases or delayed care-seeking 

behaviour in disadvantaged groups (110). Advantaged individuals were significantly more 

likely to report salad/fruit/vegetable/herb consumption (110), non-UK or UK travel (14, 

65, 110) and environmental exposure (walking in a paddock, soil contact) suggesting that 

other risks, such as person-to-person transmission, could be more important in the most 

disadvantaged groups (110).  

An ethnographic study showed that in disadvantaged areas, gastrointestinal infections 

spread to multiple households within a small radius, compared to advantaged areas where 

illness was confined to one household or dispersed over long distances (111). These 

differences were shaped by historical, social, and economic contrasts in housing; social 

networks and childcare arrangements; employment and household income. Educational 
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attainment in disadvantaged households has also been suggested as a risk factor for STEC 

in low -income households in Finland (63). 

Travel outside the UK is generally regarded as a risk factor for IID. Some Lineage II 

strains of STEC. are particularly associated with travel outside the UK (1, 12, 14). 

Rates of infection are consistently higher amongst younger age groups (1, 11, 20, 66). This 

may be a surveillance artefact (parents are more likely to seek medical attention for their 

children than themselves), a reflection of testing protocols (112, 113) or, indeed, a real 

feature of the disease. 

In those aged 18 or under, rates are comparable between the sexes. However, rates in 

women are higher across all adult age groups (1, 114) and women and children are more 

likely to progress to HUS (20). 

The relative importance of these risk factors may also vary at different spatial scales (14). 

For example, the same seasonal distribution of cases is seen in countries separated by large 

distances and this is thought to reflect the presence of similar agricultural and climatic risk 

factors (30). However, these factors alone are unlikely to explain the considerable variation 

of infection rates between (115-118), and within (119), countries around the world, 

particularly when considering the comparable levels of carriage by cattle in those countries 

(120).  

1.9 Overview of spatial methods 

Identifying geographical areas with significantly higher or lower rates of infection has the 

potential to provide important clues on the presence of environmental or socio-

demographic risk factors in particular areas compared to others. These clues can then be 

used to inform the design of epidemiological studies to generate the evidence base needed 

for sound public health policies designed to reduce morbidity. Routine integration of 
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spatial information with infectious disease surveillance data is increasingly common and 

statistical methods that allow precise delineation of high and low risk areas are widely 

available. These methods include area-based studies; global, local, and focused tests for 

spatial clustering; estimates of spatially varying risk; and spatiotemporal modelling.  

1.9.1 Ecological studies 

Area-based studies compare disease rates or counts between different populations, often 

combined with other data, to examine the effect of risk factors (62, 121). 

1.9.2 Global, local and focused tests for spatial clustering 

 Global tests for spatial clustering, such as Moran’s I (122) and the Diggle-Chetwynd 

statistic (123), identify whether there is a general tendency for cases to occur more closely 

together than would be expected compared to the underlying population at risk. Local and 

focused tests for clustering, such as Local Indicators of Spatial Association (LISA)(122) 

and Kuldorff’s scan statistic (124), are used to identify specific concentrations of disease 

that are statistically significant and may require further investigation.  

Global statistics help to describe the spatial structure of data (i.e., is it clustered, dispersed 

or uniform? Does autocorrelation exist?). However, they do not identify the location of 

clusters or  quantify how spatial dependency varies from one place to another (125). 

Local statistics quantify spatial autocorrelation and clustering within small areas that 

together comprise the study area. They quantify spatial dependency by identifying clusters 

of high or low values or outliers in a given locality (125).  

Focused statistics quantify clustering around a specific location or focus and are 

particularly useful to identify and explore possible clusters of disease near potential 

sources of environmental pollutants (125).  
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1.9.3 Spatially varying risk 

Methods to estimate spatial variation in risk are used to describe the change in risk over a 

given study area and include kernel smoothing, which forms a key component in the 

estimation of the kernel density-ratio or relative risk function (126-129), and spatial 

interpolation methods such as inverse distance weighting (130) and kriging (131).  

1.9.4 Spatio-temporal modelling 

Modelling approaches can either take the form of empirical or mechanistic models that 

consider the effect of space and time alongside other factors (132-134).  

The mechanistic approach models individuals or populations as moving between discrete 

states (e.g., susceptible, infected, recovered) to represent the specific mechanisms of 

infection. The empirical (or statistical) approach uses associations to estimate or predict 

transmission variables or disease risk and includes so-called forecasting models. Both 

forms are used to project disease burden and to test competing hypotheses on what 

mechanisms best explain observed disease dynamics (135).  

1.9.5 Application to STEC and other infectious intestinal diseases 

Smith et al. (136) systematically reviewed the use of spatial methods in infectious disease 

outbreaks between 1979 and 2013. Most reports were from the United Kingdom and a 

range of techniques was used, including simple dot maps, cluster analyses and modelling 

approaches. Spatial methods were used in only 0.4% of the total number of published 

outbreaks, predominately for environmental or waterborne infections, and were applied in 

only one foodborne outbreak. Since 2013, spatial methods have been applied specifically 

to infectious intestinal disease data and have included tests for global (137-141) and local 

(137, 138, 141-147) clustering, spatial variation in risk (118, 139, 148), modelling and 

other approaches (118, 134, 138, 139, 143, 146, 149-152). 
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1.10 Contribution 

This thesis explores the applied use of spatial and spatio-temporal statistical techniques to 

enhance the understanding of risk factors associated with STEC in England.  

It explores hypothesised links from previous research conducted within the UK and further 

afield using a novel geodatabase that linked disparate information on risk factors (animal 

density, private water supplies, distance to coast, freshwater coverage) spatially linked to 

detailed information on human infections at a fine spatial scale. 

For the first time in England, we investigated the effects of hypothesised risk factors on 

case incidence, described geographical differences in the distribution of STEC cases using 

phenotypic and genetic information, and explored the relationship between residential 

location and the risk of infection. We focused on sporadic infection, the major fraction of 

cases, and the role of residential location and the environment at fine spatial scales. 

We also used a novel approach to explore the relationship between risky behaviour and 

likely place of exposure. We did this by comparing behaviours reported by cases living in 

high-risk areas with those living in low-risk areas as well as comparing the differences 

between those living in low-risk areas who had travelled within the UK compared to those 

who stayed at home. 

We also demonstrate the flexibility of kernel density estimation during the first six months 

of the COVID-19 pandemic in England and applied the methodology to the routine 

surveillance of new variants of SARS-CoV-2 during 2021. 

1.11 Thesis structure 

The core of this thesis is divided into four data chapters. Each chapter is structured as a 

paper for publication in an academic journal. 
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Chapter 2 aimed to identify high or low risk areas of STEC O157 in England, and the 

lineages associated with these areas, between 2009 and 2015. We used kernel smoothing 

techniques to produce continuous risk surfaces, space-time slices and spatio-temporal 

animations. We identified specific areas of England where the risk of infection was 

significantly elevated and explored differences in the spatial distribution of genomic 

lineages associated with severe disease outcomes. 

A similar version of this chapter has been published as: Elson R, Davies TM, Jenkins C, 

Vivancos R, O'Brien SJ, Lake IR. Application of kernel smoothing to estimate the spatio-

temporal variation in risk of STEC O157 in England. Spatial and Spatiotemporal 

Epidemiology. 2020 Feb; 32:100305. Authors’ contributions: RE conceived and designed 

the study. RE collected and analysed the data with technical advice from TMD. RE 

interpreted the data with support from IRL, TMD and RV. RE produced the draft and 

critical revisions were received from RE, IRL, RV, CJ and TMD. 

Chapter 3 examined the spatial relationship between the occurrence of cases and the 

presence of environmental and socio-demographic risk factors associated with sporadic 

Shiga toxin-producing Escherichia coli O157 infection in England between 2009 and 2015. 

We used geographical information systems (GIS) to create a geodatabase linking human 

surveillance data with a range of information (animal density, type of domestic water 

supply, fresh water coverage, residential distance from coast, urban/rural setting) at a fine 

spatial scale. 

A similar version of this chapter has been published as: Elson R, Grace K, Vivancos R, 

Jenkins C, Adak GK, O'Brien SJ, Lake IR. A spatial and temporal analysis of risk factors 

associated with sporadic Shiga toxin-producing Escherichia coli O157 infection in England 

between 2009 and 2015. Epidemiology and Infection. 2018 Nov;146(15):1928-1939. 

Authors’ contributions: RE conceived and designed the study with KG. RE collected and 
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analysed the data. RE interpreted the data with support from IRL and RV. RE produced the 

draft and critical revisions were received from RE, IRL, RV, CJ and GKA. 

Chapter 4 investigates the relationship between individual exposure to risk factors and 

residence in high-risk areas associated with STEC. Using the boundaries describing high 

risk areas from Chapter 2, we compared the exposures reported by cases living inside and 

outside areas considered high risk. Multivariable logistic regression was used to identify 

differences between risk factors for those living in high-risk areas as well as those 

travelling away from home during their incubation period. 

A similar version has been drafted for submission as: Elson R, Davies TM, Jenkins C, 

Vivancos R, O'Brien SJ, Lake IR. Using spatial relative risk to identify modifiable risk 

factors for STEC O157 infection in England. Authors’ contributions: RE conceived and 

designed the study. RE collected and analysed the data with technical advice from TMD. 

RE interpreted the data with support from IRL, TMD and RV. RE produced the draft and 

critical revisions were received from RE, IRL, RV, CJ and TMD. 

Chapter 5 estimates the spatial-temporal variation of COVID-19 in England in the first six 

months of 2020. We applied the methodology described in Chapter 2 to demonstrate its 

application to a different disease. The work describes the introduction, spread and 

establishment of SARS CoV2 during a public health emergency. Our analysis shows the 

volatile nature of the initial stages of the pandemic and the subsequent increased risk 

observed in some large urban areas of England.  

A similar version of this paper has been published as: Elson R, Davies TM, Lake IR, 

Vivancos R, Blomquist PB, Charlett A, Dabrera G. The spatio-temporal distribution of 

COVID-19 infection in England between January and June 2020. Epidemiology and 

Infection. 2021 Mar 8;149:e73. Authors’ contributions: RE conceived and designed the 
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study. RE collected the data with GD and analysed the data with advice on bandwidth 

selection from TMD. RE interpreted the data with support from TMD and RV. RE 

produced the draft and critical revisions were received from IRL, TMD, PBB, AC. 
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2 Application of kernel smoothing to estimate the spatio-temporal variation in 

risk of STEC O157 in England 

2.1 Abstract 

Identifying geographical areas with significantly higher or lower rates of infectious 

diseases can provide important aetiological clues to inform the development of public 

health policy and interventions designed to reduce morbidity. We applied kernel smoothing 

to estimate the spatial and spatio-temporal variation in risk of STEC O157 infection in 

England between 2009 and 2015, and to explore differences between the residential 

locations of cases reporting travel and those not reporting travel. We provide evidence that 

the distribution of STEC O157 infection in England is non-uniform with respect to the 

distribution of the at-risk population; that the spatial distribution of the three main genetic 

lineages infecting humans (I, II and I/II) differs significantly and that the spatio-temporal 

risk is highly dynamic. Our results also indicate that cases of STEC O157 reporting travel 

within or outside the UK are more likely to live in the south/south-east of the country, 

meaning that their residential location may not reflect the location of exposure that led to 

their infection. We suggest that the observed variation in risk reflects exposure to sources 

of STEC O157 that are geographically prescribed. These differences may be related to a 

combination of changes in the strains circulating in the ruminant reservoir, animal 

movements (livestock, birds or wildlife) or the behaviour of individuals prior to infection. 

Further work to identify the importance of behaviours and exposures reported by cases 

relative to residential location is needed. 

2.2 Introduction 

Shiga-toxin producing E. coli (STEC) are a group of bacteria associated with human 

disease and are defined by the presence of one or both phage encoded Shiga toxin genes; 

Stx1 and Stx2 (1). The main reservoir is ruminant animals, particularly cows and sheep.  
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First recognised as a human pathogen in 1982 (3), STEC are now globally distributed (4). 

There is evidence that a common ancestor of STEC was introduced to countries around the 

world on a number of occasions in the past, likely due to international transport of animals 

and/or contaminated animal feed (34). Following introduction, localised genetic variation 

has occurred leading to a patchwork of strains that are related at the global level but show 

distinct geographical differences. 

Infection with STEC is the result of a complex set of interactions between distal and 

proximal risk factors related to the reservoir, the environment, the pathogen, the host and 

opportunities for transmission (30). The relative importance of these factors may vary at 

different spatial scales (14). For example, the same seasonal distribution of cases is seen in 

countries separated by large distances and this is thought to reflect the presence of similar 

agricultural and climatic risk factors (30). However, these factors alone are unlikely to 

explain the considerable variation of infection rates between (115, 116, 153-156), and 

within (119), countries around the world, particularly when considering the comparable 

levels of carriage by cattle in those countries (120).  

Within the United Kingdom, rates of STEC infection in Scotland are more than twice that 

of England (35). Within England, rates of infection vary considerably from 0.40 to 1.34 

cases per 100,000 person years in London and the North respectively (11, 14) and there is 

evidence that this relates to living in areas with high densities of farmed animals (14). 

However, the strains infecting humans are not always the same as those circulating in the 

‘local’ ruminant reservoir (37, 38). The reasons for this are unclear but may be due to 

widespread exposure to a remote source of infection, or localised exposure to a source 

where the availability of comparative microbiological information is scant (14, 37). 

Conversely, evidence from outbreak investigations shows that transmission of highly 
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related strains can occur via multiple routes from geographically restricted sources (15, 

157).  

Identifying geographical areas with significantly higher or lower rates of infection 

therefore has the potential to provide important aetiological clues. These can then be used 

to inform the design of epidemiological studies to generate the evidence base needed for 

sound public health policies designed to reduce morbidity. Routine integration of spatial 

information with infectious disease surveillance data is increasingly common and statistical 

methods that allow precise delineation of high and low risk areas are widely available. 

These methods include area-based studies; global, local and focused tests for spatial 

clustering; estimates of spatially varying risk; and spatiotemporal modelling.  

Area-based studies compare disease rates or counts between different populations, often 

combined with other data, to examine the effect of risk factors. Global tests for spatial 

clustering, such as Moran’s I (158) and the Diggle-Chetwynd statistic (123), identify 

whether there is a general tendency for cases to occur more closely together than would be 

expected compared to the underlying population at risk. Local and focused tests for 

clustering, such as Local Indicators of Spatial Association (LISA) (122) and Kuldorff’s 

scan statistic (124), are used to identify specific concentrations of disease that are 

statistically significant and may require further investigation. Methods to estimate spatial 

variation in risk are used to describe the change in risk over a given study area and include 

kernel smoothing, which forms a key component in the estimation of the kernel density-

ratio or relative risk function (126-129), and spatial interpolation methods such as inverse 

distance weighting (130) and kriging (131). Modelling approaches can either take the form 

of empirical or mechanistic models that consider the effect of space and time alongside 

other factors (132-134). 
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Smith et al. (136) systematically reviewed the use of spatial methods in infectious disease 

outbreaks between 1979 and 2013. Most reports were from the United Kingdom and a 

range of techniques was used, including simple dot maps, cluster analyses and modelling 

approaches. Spatial methods were used in only 0.4% of the total number of published 

outbreaks, predominately for environmental or waterborne infections, and were applied in 

only one foodborne outbreak. Since 2013, spatial methods have been applied specifically 

to infectious intestinal disease data and have included tests for global (137-140, 159) and 

local (137, 138, 140, 141, 143, 145-147, 152) clustering, spatial variation in risk (118, 139, 

148, 153), modelling and other approaches (118, 134, 138, 139, 143, 146, 149, 151, 152). 

The aims of this study were to identify areas presenting a higher or lower risk of infection 

with STEC O157 in England by estimating the space-time variation in risk over the study 

period and exploring any difference between the residential locations of cases reporting 

travel and those not reporting travel.  

2.3 Methods 

In England, isolates of E. coli O157 identified locally are sent for confirmation and typing 

at the Gastrointestinal Bacterial Reference Unit (GBRU). Detection and confirmation of 

STEC includes biochemical identification and serotyping of bacterial isolates. Since 1989, 

strains belonging to E. coli O157 have been further differentiated using a phage typing 

(PT) scheme developed in Canada (11). Retrospective real-time polymerase chain reaction 

(PCR) targeting stx1 or stx2 and the intimin (eae) gene, associated with intimate 

attachment of the bacteria to the host gut mucosa, was introduced in 2012 (11). Since 2015, 

all isolates have been routinely sequenced allowing identification of genetic lineage/sub-

lineage and stx subtypes (13, 160).  

The National Enhanced Surveillance System for STEC (NESSS) was introduced in 

England in 2009. The system collects clinical and epidemiological information for each 
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laboratory confirmed case using a standardised questionnaire. This includes details about 

whether the case had travelled abroad or within the UK prior to their illness onset and the 

residential postcode of each case (an alphanumeric reference developed by the UK Post 

Office to facilitate the delivery of mail, each containing around 15 addresses). This 

information is linked to reference microbiology information including PT, presence of 

virulence factors and whole genome sequence data (1). 

Case selection 

We selected primary cases of STEC O157 with valid postcodes reported to the NESSS 

between 2009 and 2015. Strains of STEC O157 circulating in humans fall into three 

distinct lineages (I, II and I/II) descended from a common ancestor. Lineage I contains PT 

21/28 and PT32; strains encoding stx2 only and associated with more severe disease. 

Lineage II contains PT8 and Lineage I/II PT2 (12). Cases were categorised into these 

Lineages and Lineage II was further divided into sub-lineages IIa, IIb and IIc. Because 

routine whole genome sequencing (WGS) was not introduced until 2015, we extrapolated 

the phenotypic characteristics of PT and stx of strains identified by whole genome 

sequencing to isolates falling into Lineage II. This was not possible for isolates in Lineage 

I because sub-lineages are identified using the stx subtype which is inferred from the 

sequence result. The categorisation and numbers of strains are presented in Table 2.1.  

The NESSS categorises cases into primary, co-primary, secondary, or unknown. This 

categorisation is given at the time of the case interview and is quality checked when the 

data are entered into the system. Primary cases are either those that are not 

epidemiologically linked to other cases or, in the case of household outbreaks, the case that 

developed symptoms first. We selected primary cases only and cases linked to known 

outbreaks were excluded.  
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Control selection 

Controls were randomly sampled from the National Population Database (NPD) (161). The 

NPD is a point-based Geographical Information System (GIS) dataset that combines 

locational information from providers like the Ordnance Survey with population 

information about those locations, mainly sourced from UK government statistics. It 

consists of a number of dataset layers, including population data from the 2011 Census 

(162). Data are provided in a 100-metre by 100-metre grid situated on a centroid of the 

square with the population generalised to this level (161, 163). Four control locations per 

case were drawn without replacement. The probability of a location being sampled was 

weighted by the summed population of each grid square to reflect the spatially varying 

nature of the underlying population at risk.  

Analytical strategy  

We chose the kernel smoothing method because our primary interest was to identify large 

scale variation in risk as opposed to small-scale localised clustering (164). This method is 

also well suited to studying the occurrence of cases relative to the heterogeneous nature of 

the underlying at-risk population present in our data and the tools with which to perform 

the analyses are free and easily accessible (165). 

The data used to estimate a particular relative risk surface are given as two distinct samples 

of planar points assumed to originate from (unknown, possibly equivalent) density 

functions f (cases) and g (controls) (166). A fixed or adaptive (167, 168) bandwidth 

determines the spread of smoothing kernels centred on each point, producing a 

nonparametric density estimate that can be evaluated at all locations within the spatial 

study region. The ratio of case density to control density is calculated to provide a 

continuous estimate of relative risk which can then be plotted on a map. Where f > g there 
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is a peak in the surface (indicative of heightened risk); where f ≅ g, the surface is flat (no 

difference in risk); and where f < g, there is a trough in the surface (lower risk). Specialised 

coordinate-wise hypothesis tests permit detection of statistically significant departures of 

these peaks and troughs from uniformity, and any such sub-regions can be delineated by 

drawing associated tolerance contours upon the risk surface in question (128, 129, 167). 

Spatially varying risk 

To estimate the spatially varying risk we created case-control datasets for all PTs, Lineages 

I, II and I/II and Sub-Lineages IIa, IIb and IIc. For all PTs, we included cases that reported 

travel abroad or within the UK in the seven days prior to the onset of symptoms. For the 

Lineage and Sub-Lineage analysis, only cases who reported no travel were included. The 

same control dataset described earlier was used for each analysis.  

For all spatial risk surfaces we used adaptive kernel estimation following Abramson’s 

square-root rule (169). This adaptation reduces the smoothing in areas of high point density 

(to capture more detail in the final estimate where we have an abundance of data), while 

increasing the smoothing in areas where the observations are relatively sparse (reflecting 

our greater uncertainty in areas where we do not have as much information). Such an 

approach has been shown to work extremely well for applications in geographical 

epidemiology (166-168, 170), but the issue of bandwidth selection is more complicated 

than in the fixed bandwidth case; we require selection of both a “pilot” and a “global” 

bandwidth value to initialise the estimator for a single density estimate. To simplify the 

selection problem, recent work has shown constraining these two values to be equal, as 

well as following an established practice of choosing equal values between both the case 

and control density estimates (128) offers both theoretical and practical benefits for the 

resulting risk function estimate. 
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As such, we followed these guidelines in producing all spatial risk surfaces in this work, 

calculated as symmetric adaptive risk function estimates using the pooled case/control data 

set to compute the variable bandwidth factors (168), using equal global and pilot 

bandwidths chosen simultaneously via the likelihood cross-validation methodology 

described in (171). The global bandwidth value was used for the fixed estimate in the 

sensitivity analyses. The far-right hand column of Table 2.1 reports the common 

case/control bandwidth found for each estimate.  

All estimates are edge-corrected to account for kernel weight lost over the boundary of the 

study region (172, 173) and results are reported as log-relative risk surfaces log f – log g 

for symmetry around the ‘null’ log risk value of zero. Finally, corresponding asymptotic p-

value surfaces were estimated for each surface (167, 168), and contours were 

superimposed at the 5% significance level to delineate areas of significantly higher or 

lower risk. 

To estimate the spatial effect of reported travel, we created a dataset containing case data 

only. Cases were marked with the following travel status categories: ‘Foreign travel’ (cases 

reporting travel outside the UK in the seven days prior to onset); ‘Any travel’ (cases 

reporting foreign travel and/or travel within the UK in the seven days prior to onset) and; 

‘No travel’ (cases reporting no travel either in the UK or abroad in the seven days prior to 

onset). We calculated the spatial relative risk for reported foreign travel by comparing 

cases in the ‘Foreign travel’ category to those falling into the “Any” and “No” travel 

categories. To produce the risk surface for ‘Any travel’, we compared cases falling into the 

‘Any travel’ category with those in the ‘No travel category’.  

Rural residence is known to be associated with an increased risk of STEC infection in 

England (14). To explore the potential confounding effects of this on our analysis, we 

conducted two sensitivity analyses using both fixed and adaptive bandwidths. The first was 
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restricted to rural areas only and the second used data stratified by urban/rural residence. 

For both these analyses we compared fixed to adaptive bandwidths to explore whether they 

produce similar results.  

Spatio-temporal risk 

Creating a dataset containing all cases marked with the month of disease onset as a 

temporal event permits exploration of the temporal variation in the spatial risk of STEC 

O157. However, estimation of spatio-temporal relative risk is somewhat more complicated 

than purely spatial risk, and the properties of adaptive kernel estimators for such functions 

have not yet been studied in sufficient detail in the statistical literature. Thus, we approach 

these estimates using the Fernando-Hazelton fixed bandwidth kernel estimator (174). Each 

spatio-temporal density estimate requires a separate smoothing bandwidth for the spatial 

and the temporal margins of the data. As in the purely spatial setting, it is recommended to 

choose the same values of these bandwidths between the case and control estimates. For 

the sake of comparison, we produced fixed-bandwidth relative risk surfaces (174) using 

two bandwidth prescriptions. The first used the maximal smoothing principle proposed by 

Terrell (175) applied separately to the spatial and temporal margins of the data. The second 

used the fixed bandwidth cross-validated likelihood method (171) to produce a risk surface 

with less smoothing. Estimates were edge corrected using the same methodology as 

mentioned earlier and results are reported as raw-risk estimates for ease of interpretation. 

Asymptotic p-value contours are again superimposed to identify areas of elevated risk only 

at the 5%, 1% and 0.01% significance levels. 

Data preparation was performed using ArcMap v10.2 (176). All subsequent analyses were 

performed using the contributed packages sparr (166) and spatstat (177, 178) in the R 

language (179). Bandwidth selections were performed using cases and/or controls falling 

within a simplified polygon of the mainland boundary of England. 
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2.4 Results 

The spatial locations of all unmarked cases and controls are shown in Figure 2.1. A total of 

3,592 cases and 14,392 controls were considered for analysis. The majority of cases fell 

into Lineages I and II (Table 2.1). Just over half of all cases (1,942; 54%) reported no 

travel in the seven days preceding the onset of their symptoms, 29% (1,029) reported 

foreign travel and 17% (621) reported travelling within the UK (Table 2.1). Over half of 

the cases (2011;56%) were female and most (2157; 60.1%) were adults aged over 18 years 

or more. One fifth of cases (735; 20.1%) were children aged five years or less and the 

remainder (700; 19.5%) were children aged between 6 and 18 years. 

The relative risk surface for all cases (including those reporting travel) is shown in Figure 

2.2. There were three main areas where risk was significantly higher compared to the 

underlying population at risk. These were in the North/North West of the country and the 

South West. Areas of significantly lower risk were largely confined to the South. 
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Table 2.1 Case selection criteria and associated common case-control bandwidths 

 

Case details  PTs stx n 

Common  

smoothing 

 bandwidth 

 (km) 

All cases  - - 3,592 9.39 

Reporting foreign travel  - - 1,029 31.84 

Reporting any travel  - - 1,650 31.84 

Lineage I*  21/28, 32 2 752 12.37 

Lineage II*  4,8,34,54 - 778 18.10 

 Sublineage IIa 34,54 2 134 92.79 

 Sublineage IIb 4,8 2 140 60.15 

 Sublineage IIc 8,54 1&2 493 20.31 

Lineage I/II*  2 2 120 21.69 

Others  1,14,31,33,46,51,8 (stx1),4(stx1&2) - 652 - 
*- cases reporting no travel
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Figure 2.1 Spatial location of 3,592 STEC O157 cases (left panel) and 14,392 randomly selected controls (right panel)
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The relative risk surfaces for Lineages I, II and I/II are presented in Figure 2.3. For 

Lineage I, the greatest risk was largely seen in the North West and South West of the 

country. Areas of lower risk were confined to the Midlands and South as well as a small 

urban area in the North West.  

Compared to Lineage I, the risk surface for Lineage II was more uniform across the 

country. Areas of significantly elevated risk for Lineage II were confined to the North and 

North West, and two areas in the South West of the country. Areas of significantly lower 

risk were largely restricted to the extreme South and South East of the country.  

For Lineage I/II, areas of significantly higher risk were restricted to the North, the East and 

the far South West of the country. Areas of significantly lower risk were located in the 

South East. 

The relative risk surfaces for Sub-Lineages IIa, IIb and IIc are presented in Figure 2.4. For 

Sub-Lineage IIc, areas of significantly elevated risk appeared in the North West and the 

South West. Areas of significantly lower risk were located in the South and the far South 

East. The risk for IIa appeared highest in the far South West and for IIb across the North 

and South West of the country but these were not statistically significant.  

The results of the spatiotemporal analysis are best viewed in the animation provided in the 

supplementary material (SM2).  This shows that the spatio-temporal risk was largely 

confined to the north and South West of the country but was highly dynamic within and 

between these areas. The over-smoothed surface (left panel in the animation) showed an 

area of elevated risk largely restricted to the far North West. In late 2010, this area 

expanded to the East and South and persisted across the North of England for two years 

before disappearing towards the end of 2013.  
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In the South West, risk was similar to the North but lower between 2010 and 2013, after 

which the highest risk areas were seen in this area. Compared to the North, the areas of 

high risk were more mobile and appeared in different areas from year to year. 

Figure 2.5 shows the two risk surfaces for cases reporting foreign travel and for those 

reporting foreign travel or travel within the UK in the seven days preceding onset of 

symptoms. Cases reporting travel were significantly more likely to live in the South and 

South East of the country than cases who reported no travel, who were more likely to live 

in the North or South West. 

The results of the sensitivity analysis comparing the main results with those of the rural 

areas only and the analysis stratified by urban/rural residence are presented in the 

supplementary material as SM 3. Each analysis identified broadly the same areas of higher 

and lower risk identified by the main analysis. When compared to the adaptive surfaces, 

those produced using the fixed bandwidths were ‘noisier’, even though both generally 

agree on areas of heightened and lowered risk. This is likely the result of simultaneous 

over- and under-smoothing in different areas of the study region; a common symptom of 

fixed-bandwidth estimation (180).  
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Figure 2.2 Estimated log relative risk for all cases of STEC O157 (including cases 

reporting travel). Tolerance contours are superimposed as solid lines at the 95% 

confidence level. Solid lines indicate areas of significantly higher risk and dashed lines 

indicate areas of lower risk 
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Figure 2.3. Estimated log relative risk for STEC O157 Lineages I, II and I/II in cases reporting no travel. Darker areas indicate areas of lower risk. 

Tolerance contours are superimposed as solid lines at the 95% confidence level. Solid lines indicate areas of significantly higher risk and dashed 

lines indicate areas of lower risk



 

44 

 

Figure 2.4 Estimated log relative risk for STEC O157 sub-lineages of Lineage II in cases reporting no travel. Darker areas indicate areas of lower 

risk. Tolerance contours are superimposed as solid lines at the 95% confidence level. Solid lines indicate areas of significantly higher risk and 

dashed lines indicate areas of lower risk higher risk and dashed lines indicate areas of lower risk 
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Figure 2.5 Estimated log relative risk for cases of STEC O157 reporting foreign travel (left panel) and those reporting any travel. Tolerance 

contours are superimposed at the 95% confidence level. Solid lines indicate areas of significantly higher risk and dashed lines indicate areas of 

lower risk higher risk and dashed lines indicate areas of lower risk.  
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2.5 Discussion 

Our analysis provides evidence that the distribution of STEC O157 infection in England is 

non-uniform with respect to the distribution of the at-risk population; that the spatial 

distribution of the three main genetic lineages infecting humans differs significantly and 

that the spatio-temporal risk is highly dynamic. We also provide evidence that cases of 

STEC O157 reporting travel within or outside the UK are more likely to live in the 

south/south-east of the country, meaning that their residential location may not reflect the 

location of exposure that led to their infection. We propose that the observed variation in 

risk is likely to reflect a differential exposure to a source of STEC O157 that is 

geographically prescribed. 

Comparison with other studies 

Contact with the agricultural environment is a known risk factor for STEC infection (14, 

44, 90, 181). Within the British Isles, increased risk of STEC O157 infection is associated 

with rural areas where there are high densities of animals (particularly cattle and sheep) 

and less likely to be served by mains water supplies (14, 64, 182, 183). There is evidence 

that the spatial distribution and relative importance of risk factors differ by pathogen sub-

type (14, 64, 118) and similar findings have been produced from Northern European 

countries (35, 59-61, 63, 184), the United States (118), Canada (184, 185) and New 

Zealand (119).  

Our analysis is exploratory and therefore inference regarding causation cannot be drawn. 

However, the areas of elevated risk presented here are consistent with findings from other 

studies in that they are predominately rural areas with sparse populations, high densities of 

farmed animals and with greater numbers of private water supplies (14). They also share 

similar locations to national parks; popular destinations for day trips for local 

residents and longer holidays, particularly for those living in the south and south east 
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of England (186). In contrast to most farmland in England, public access to National 

Parks is largely unrestricted and visitors often camp, walk or cycle in areas where 

animals and/or their faeces are present (186, 187). 

The importance of the pathways through which pathogens are transferred from the 

environment to humans is subject to debate (187).However, because of their low infectious 

dose, widespread prevalence in farmed animals and their ability to survive in the 

environment for extended periods of time STEC are well suited to environmental 

transmission. Recent studies using boot sock sampling over wide geographical areas 

demonstrate that Campylobacter (187) and STEC (188) can be recovered from boots 

following recreational walks in the countryside. The rate of recovery for both pathogens 

was highest in North West England (47% for Campylobacter and 25% for STEC) and is 

likely a reflection of high densities of cattle and sheep in this part of the country (187). 

Spatial variation in risk at Lineage and Sub-Lineage level 

Strains falling into Lineage I/II were the dominant strain infecting humans in England for 

many years but are now uncommon (11) and our analysis demonstrates that these strains 

are also spatially restricted. Lineages I and II have dominated since the late nineties (11) 

and this is reflected in the geographically widespread areas of elevated risk seen in broadly 

similar areas of the country. However, at regional level, the spatial distribution of the three 

lineages differed. Increased risk of infection with STEC in England is generally associated 

with residential proximity to high densities of farmed animals, however, risk of infection 

with Lineage I strains is particularly associated with sheep density (14). This suggests that 

the presence of particular lineages in the environment is uneven and dependent, at least to 

some extent, on the underlying distribution of the zoonotic reservoir. This finding is 

consistent with the distribution of Campylobacter sp. in the environment relative to the 

presence of different animal species in England (187).  
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Spatio-temporal relative risk 

The two versions of the animated spatiotemporal risk surface provide the opportunity to 

critically appraise the detected sub-regions of significantly elevated risk. For example, a 

large area that remains significant over an extended period of time in the over smoothed 

estimate (left panel in animation SM 2) could, to a certain extent, be a methodological 

artefact arising from too generous a bandwidth. However, if certain smaller pockets within 

such a sub-region persist for noticeable periods in the noisy (“less-smooth”) estimate (right 

panel in animation SM2), this indicates that anomalies in the infection rates are genuine, in 

turn suggesting these are a result of geographically restricted source. This was indeed the 

case, particularly in the North and South West. The appearance, persistence and decline of 

an area of very high risk in the north of England between 2010 and 2013 appeared distinct 

to activity elsewhere in the country and corresponds with an unexplained decline in 

Lineage 1 strains, particularly in rural areas (14).  

Bandwidth selection for kernel estimation 

Choosing an optimal bandwidth is important for making reliable inference from relative 

risk surfaces. Even with tailored bandwidth selection methods (189), classical fixed 

bandwidth estimators can be unstable and do not cope well with the smoothing 

requirements of highly heterogeneous patterns (165, 167, 180). However, choosing 

appropriate smoothing parameters for the more sophisticated adaptive estimator is far more 

difficult, and this is an active area of research (165, 166, 180).  

We used a recently developed likelihood-based selection strategy for the purely spatial 

analyses (171), and while theoretically valid, further research into how well this type of 

simultaneous global/pilot bandwidth selection might perform in practice is warranted. This 

bandwidth selection method did not identify an optimal bandwidth within a scale-



 

49 

 

appropriate range for the risk surfaces of Sub-lineages IIa and IIb, erring toward excessive 

smoothing. Such a result is suggestive of spatial uniformity of risk, though the relatively 

low numbers of cases falling into these sub-lineages may, at least in part, be to blame in 

these instances. Of note is that Sub-lineage IIb (an unusual clone of PT8 encoding stx2), 

only emerged in significant numbers following an outbreak towards the end of 2015 (157, 

190) and so fell outside the scope of our analysis. Further work on the recent spatio-

temporal nature of this event is recommended. 

Cases reporting foreign travel or travel within the UK 

To provide the best estimate of indigenous risk, our study design at Lineage and Sub-

lineage level did not consider cases reporting travel and did not therefore capture the 

possible location of exposure related to foreign or UK travel. Notwithstanding this, the 

inclusion of cases reporting travel made little difference to the overall results suggesting 

that the distribution of these cases is broadly similar to the underlying population at risk. 

However, when considering spatial relative risk between cases, those who did report travel 

were significantly more likely to live in the south and south-east of the country. This is 

consistent with previous findings that for these cases, exposure to risk factors not present 

in their residential environment are important when considering the source of their 

infections (14). 

Data quality and potential limitations  

One potential limitation to our study is that for every STEC O157 infection reported to 

national surveillance systems in England, there are an estimated 7.4 in the community (29). 

The reasons for this are likely to be related to severity of disease, health seeking 

behaviours and whether a clinician takes a sample and requests a microbiological 



 

50 

 

examination from a laboratory. It is unknown whether these reporting biases vary 

geographically and hence would affect the spatial patterns presented in this paper.  

There were no changes to laboratory methods or surveillance systems during the study 

period (11). However, a large petting farm outbreak in 2009 (45) attracted media attention 

and prompted a review of national guidelines for the public health management of STEC 

which had the potential to improve case ascertainment and follow-up from 2010 onwards, 

as well as reducing risk. 

In addition, the Health Protection (Notification) Regulations 2010 (9) came into force 

during the study period. This legislation introduced the mandatory reporting of STEC as a 

causative agent, and haemolytic uraeamic syndrome (HUS) as a notifiable disease. Our 

results do not suggest that these events created a reporting differential based on severity of 

disease because risk is elevated in similar geographical areas for Sub-lineage IIc strains 

that tend to be associated with less severe symptoms than those falling into Lineage I.  

We also considered the effect of rural versus urban residence in our sensitivity analysis, the 

results of which suggest that the observed spatial variation is unlikely to be explained by 

rural residence alone, and that the adaptive bandwidths used in this paper do not produce 

different results to fixed bandwidths.  

Conclusion 

To conclude, the risk of sporadic infection with STEC O157 varies significantly across 

England. We suggest that this is due to differential exposure of the population to 

geographically restricted risk factors. The appearance, expansion and decline of an area of 

significantly elevated risk in the north of England between 2010 and 2013 corresponds 

with an overall reduction of STEC O157 in England, seen most acutely in PT21/28 
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reported in rural areas (14). Cases reporting travel prior to onset of illness were more likely 

to live in south of England.  

These differences could be related to a combination of changes in the strains circulating in 

the ruminant reservoir, animal movements (livestock, birds, or wildlife), contaminated 

animal feed or the behavior of individuals prior to infection. Further work to identify the 

importance of behaviours and exposures reported by cases relative to residential location is 

needed. Statistically speaking, designing a semi-parametric, generalised additive style of 

model (see for example (191, 192) is one way we could build in extraneous predictors and 

estimate any associated effects on infection risk in such an analysis. We anticipate the 

findings in this work will help guide such future research endeavours.  
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3 A spatial and temporal analysis of risk factors associated with sporadic Shiga 

toxin-producing Escherichia coli O157 infection in England between 2009 and 2015 

3.1 Abstract 

Infection with STEC O157 is relatively rare but has potentially serious sequelae, 

particularly for children. Large outbreaks have prompted considerable efforts designed to 

reduce transmission primarily from food and direct animal contact. Despite these 

interventions, numbers of infections have remained constant for many years and the 

mechanisms leading to many sporadic infections remain unclear.  

Here we show that two thirds of all cases reported in England between 2009 and 2015 were 

sporadic. Crude rates of infection differed geographically and were highest in rural areas 

during the summer months. Living in rural areas with high densities of cattle, sheep or pigs 

and those served by private water supplies were associated with increased risk. Living in 

an area of lower deprivation contributed to increased risk but this appeared to be associated 

with reported travel abroad. Fresh water coverage and residential proximity to the coast 

were not risk factors. 

To reduce the overall burden of infection in England, interventions designed to reduce the 

number of sporadic infections with STEC should focus on the residents of rural areas with 

high densities of livestock and the effective management of non-municipal water supplies. 

The role of sheep as a reservoir and potential source of infection in humans should not be 

overlooked. 

3.2 Introduction 

Shiga toxin-producing Escherichia coli (STEC) are a group of bacteria associated with 

human disease and are defined by the presence of one or both phage encoded Shiga toxin 

genes; Stx1 and Stx2. Compared to other bacterial pathogens, it is a relatively rare 
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infection in many parts of the world but is of public health concern due its low infectious 

dose (<100 bacteria) (1) and potential to cause severe disease (27). 

Worldwide, it is estimated that there are around 2.8 million cases annually, leading to 

3,890 cases of haemolytic uraemic syndrome (HUS) and 230 deaths (26). The Europe wide 

rate of infection is estimated to be 1.4 cases per 100,000 population but reported rates vary 

between countries (Range: <0.1 to 12.4 cases per 100,000 population) (193). The O157 

STEC serogroup is most commonly associated with human disease in the UK however, 

other serogroups are seen more frequently in other European countries (27, 193). Rates of 

infection in England have remained fairly constant for many years (around 1.65 (95% CI 

1.49–1.81) cases/100,000 person-years) (11). Europe has shown a similar pattern with an 

increase since 2011 attributed to wider use of molecular methods following a large 

outbreak linked to sprouted fenugreek seeds. Rates of infection are highest in children and 

most cases occur in the late summer, at least in temperate areas, and this pattern is seen 

universally (30) . 

Healthy cattle are the main reservoir of STEC although they are also carried by sheep and 

other animals (194). Animals shed a range of phage types (PTs) with the most prevalent in 

UK cattle being PT21/28, 8 and 34, PT 4 in sheep and PT2 in pigs (195, 196). STEC O157 

survives well in the environment, remaining viable for many months in temperate 

conditions (197, 198).  

Transmission to humans occurs through multiple routes. Cases present themselves 

sporadically (occurring independently of other cases) or as part of small outbreaks due to 

person-to-person spread in closed settings, particularly childcare facilities. The low 

infectious dose of STEC means that once in the population, person-to-person spread is 

common (1). Larger outbreaks tend to be associated with foodborne transmission, with an 

increasing trend towards salad vegetables and away from meat and dairy products (11). 
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Direct contact with the farming environment or ruminants, such as in open farms or petting 

zoos (1), are important risk factors for STEC infection (44). Indirect contact with animals 

or environments contaminated with their faeces is also of importance but the actual process 

leading to infection is less well understood. Heavy rainfall and flooding events can lead to 

contamination of fresh and marine water systems (50), beaches (51-55) and food crops. 

Poorly managed private water supplies present a particular risk in areas of high animal 

density (56)(57).  

Phylogenetic analysis of strains circulating in humans and UK cattle during 2014 described 

three distinct lineages (I, II and I/II) descended from a common ancestor. Lineage I 

contains PT 21/28 and PT32; strains encoding Stx2 only and associated with more severe 

human disease. Lineage II contains PT8 and Lineage I/II PT2. Isolates from humans and 

UK cattle are closely related suggesting that PT8 and PT21/28, have a domestic source and 

are domestically acquired (12). With the advent of routine whole genome sequencing 

(WGS), it is now possible to identify links between cases that previously appeared sporadic 

in nature. These cases may exhibit spatial clustering, sometimes over long periods of time, 

suggesting that geographically restricted transmission of highly related strains can occur 

(15). 

Ecological studies in the UK, Europe and further afield demonstrate a spatial association 

between rates of infection, cattle density, and other factors and all describe a seasonally 

driven picture with rates highest in the summer (59-61, 63, 64, 153, 183, 185). There are 

limitations to these studies. Sheep were only considered in one study (64), despite being a 

known reservoir. The study populations were restricted to children (60) or focussed upon 

severe disease (60). Some studies may also have included cases linked to outbreaks which 

is not ideal as the source of their infection may have differed from sporadic cases (185). 

Cases reporting foreign travel were included in some studies (60, 61, 153, 185), but not 
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others (35, 59, 63, 153). Finally, all these studies were performed at serogroup level only, 

even though different subgroups may have different sources and hence potentially different 

risk factors. 

In this study we overcome these limitations using enhanced surveillance of STEC which 

has been performed in England since 2009. These data arguably represent the most 

comprehensive dataset for STEC infections in the world. This allows accurate 

identification of cases who have been part of an outbreak (and so are not representative of 

all cases) and those who report travel abroad or within the UK 

This study had three aims. The first was to describe the spatial and temporal distribution of 

sporadic STEC O157 cases in England, the second was to test the relationship between the 

numbers of infections and hypothesised risk factors, the third was to test whether these 

risks differed by STEC subtype. Finally, we explored how these risks varied between all 

sporadic cases and sporadic cases when those reporting national or foreign travel are 

excluded.  

3.3 Methods 

Isolates of STEC O157 identified locally are sent for confirmation and typing at the 

Gastrointestinal Bacterial Reference Unit (GBRU). Detection and confirmation of STEC 

includes biochemical identification and serotyping of bacterial isolates. Since 1989, strains 

belonging to STEC O157 have been further differentiated by using a phage typing scheme 

developed in Canada (11). 

The National Enhanced Surveillance System for STEC (NESSS) was introduced in 

England in 2009. The system collects clinical and epidemiological information for each 

laboratory confirmed case using a standardised questionnaire. This information is linked to 
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reference microbiology information including PT, presence of virulence factors and whole 

genome sequence data. 

The case definition for the purpose of this study was a sporadic case of STEC, confirmed 

by GBRU and reported to the national enhanced surveillance system for STEC (NESSS) 

between January 1st 2009 and December the 31st 2015. An overview of the data selection 

process is shown in Figure 3.1.  

The main aim of our analysis was to estimate the effect of hypothesised risk factors on the 

occurrence of sporadic cases (i.e., those occurring independently of each other). We 

therefore excluded cases linked to known outbreaks because their residential location 

rarely reflects exposure to the source of their infection, particularly for large outbreaks 

linked to widely distributed foodstuffs. Cases linked to household outbreaks were also 

excluded. Household outbreaks were identified as those where at least two cases had 

isolates of the same serotype and phage type that were collected within six months of each 

other, processed by a laboratory in the same Health Protection Team area and sharing the 

same surname and/or UK postcode.  

The postcode (an alphanumeric reference developed by the UK Post Office to facilitate the 

delivery of mail and each containing around 15 addresses) for each case was geocoded to 

provide a spatial reference, allow visual display of the location of cases and enable the 

details of each case to be spatially joined to other datasets at the Lower Super Output Area 

(LSOA) level defined by the Office for National Statistics (162). LSOAs were chosen 

because they provide the most homogenous unit in terms of geographical size (Mean 3.9 

km2, Range 0.02-684 km2) and population size (Mean 1,613 persons, Range 985-8,300 

persons). 
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Crude incidence rates were calculated using the total population denominator data for each 

LSOA drawn from the last ONS Census performed in 2011 (162).  

For each LSOA, a dependent variable, indicating the number of cases that occurred during 

the study period was created. Because STEC is an uncommon infection, the majority 

(90.1%) of LSOAs had no cases, 9.3% had one case and less than 0.6% had more than one 

case.  

Dependent variables were created for all PTs, PT21/28 and PT8, further divided into three 

classes (all reported cases, those not reporting foreign travel and those reporting no travel 

either within the UK or abroad) giving a total of nine dependent variables. 

The following explanatory variables were constructed for each LSOA: 

Livestock density variables for cattle, sheep and pigs were calculated using the agricultural 

census of 2010. This census is performed every ten years by the Department for the 

Environment, Food and Rural Affairs and collects detailed information on land usage and 

livestock populations. Farm level data are aggregated to a 5x5 km grid and individual 

farms are not identified.  

Estimates of deprivation were obtained from the Office of National Statistics (ONS). The 

index of Multiple Deprivation (IMD) was obtained for England for 2011 (162) which 

provides a set of relative measures of deprivation for LSOAs. This is based on seven 

domains of deprivation (income, employment, education, health, crime, housing and living 

environment). These domains are combined and ranked to produce the overall IMD score 

for each LSOA. For our analysis these data were divided into quintiles where quintile 1 is 

most deprived.  

The degree of rurality for each LSOA was derived from the ONS rural urban classification 

used to distinguish rural and urban areas in England and Wales in 2011 (199). The 
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classification defines areas as rural if they are outside settlements with more than 10,000 

resident population. For LSOAs, there are four urban classes (major conurbations, minor 

conurbations, cities and towns, cities, and towns in sparse settings) and four rural classes 

(town and fringe, town and fringe in a sparse setting, village and dispersed settlements, 

village and dispersed settlements in sparse settings). Due to the small numbers of cases 

resident in areas considered sparse, we grouped these eight classes into five by merging the 

three sparse categories with the corresponding non-sparse categories.  

Outbreaks have been linked to beaches (51, 54), hence the straight-line distance from the 

centroid of each LSOA to the GB coastline was calculated in kilometres. 

Inland water coverage was identified as a risk factor in a Finnish study (63). The shapes 

and areas of inland water features were extracted from the Ordnance Survey Master Map 

Topography Layer, summed and divided by the area of each LSOA to provide a 

proportional measure of freshwater coverage. 

For each LSOA, the count of private water supplies was calculated using data submitted by 

local authorities to the Drinking Water Inspectorate during 2016. Local authorities are 

responsible for the enforcement and monitoring of the Private Water Supplies (PWS) 

Regulations (200) which require PWS to meet certain standards and for the location of 

each supply to be recorded. Three classes were created (0, 1-20 and >20 supplies). 

Because the datasets used for inland water coverage and animal density differed from 

LSOAs in terms of geographical area or shape, we used a geographical information system 

(GIS) overlay function to create proportional measure in km2 for each LSOA.  

We used Jenks’ natural breaks method to create four categorical variables for each animal 

species, distance from the coast and inland water coverage. This method is designed to 
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determine the best arrangement of values into different classes by seeking to minimise the 

variance within classes and maximise the variance between classes (201).  
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Statistical analysis 

We considered three methods of regression analysis: Poisson, negative binomial and zero 

inflated Poisson. The results of a likelihood ratio test of alpha and goodness of fit test 

following Poisson regression indicated that the data were over dispersed. The same 

analysis was repeated using negative binomial and zero inflated negative binomial 

regression respectively. The Vuong test was not significant indicating that the standard 

negative binomial approach was best suited to the data. Proceeding with the negative 

binomial regression approach we conducted a multivariable analysis for each dependent 

and the independent variables. The first set of dependent variables were all sporadic cases, 

all sporadic cases minus those reporting foreign travel and all sporadic cases with no 

foreign or domestic travel. Two further models were then produced focussing upon 

PT21/28 and PT8 only. Person years (the total population of each LSOA multiplied by the 

years of observation) was included as an exposure variable. None of the multivariable 

analyses showed any associations with the distance from the coast and inland water 

coverage variable, hence these were removed from the analysis. The remaining 

independent variables were all included in the nine models to allow greater comparability 

between models. The dependent and independent variables were checked for correlation 

using Spearman’s rank test. All coefficients showed low to moderate correlation except for 

cattle and sheep density with a coefficient of 0.7. An analysis for collinearity indicated that 

the addition of each independent variable in turn did not lead to significant changes in the 

coefficients or significance of any other variables in the model. Presenting each livestock 

density variable to the model as continuous variables did not affect the results.  

Results are presented in terms of Incidence Rate Ratio (IRR) estimates and the 95% 

Confidence Interval (CI). The overall significance for a variable was estimated using the 

Wald test. All statistical analyses were performed using Stata version 13 (202). 
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3.4 Results 

Rates of infection 

Figure 3.2 describes the process followed to determine whether a case should be included 

in the study. A total of 3,559 (34% of 5,783) cases were eligible for inclusion in the 

statistical analysis. 

The crude incidence of all sporadic confirmed STEC O157 cases (including those reporting 

foreign travel) reported during the study period was 9.1 per million person years. The rural 

rate (13.3 per million person years) was 1.6 times higher than that of the urban rate (8.1 per 

million person years). Rates varied across the country with the highest in the North of the 

country, the North West, Midlands and the South West Peninsula and this was seen each 

year during the study (Figure 3.2). 

The crude incidence rate of PT21/28 was 2.5 per million person years and for PT8 it was 

3.3 per million person years. There was a distinct seasonality both in rural and urban areas 

with rates comparable during the winter but higher in rural areas during the summer 

(Figure 3.4.). The rate of infection declined from 2012, particularly for PT21/28 infections 

in rural areas (Figure 3.3).  

The spatial distribution of animals varied across the country (Figure 3.4 g-i). The mean 

cattle density ranged from 0-199 animals/km2 with the highest densities observed in the 

South West Peninsula, areas of the North West (Cheshire) and Midlands (Staffordshire) 

and in the North. Sheep density ranged from 0-572 animals/km2 with the highest densities 

observed along the Welsh Borders, Oxfordshire, the South West Peninsula and in the 

North. Pig density ranged from 0-499 animals/km2 with the highest densities observed in 

East Anglia and the North East. 
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Figure 3.1 Flow diagram showing case selection process 

Figure 1. Flow chart for case selection. 
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Figure 3.2 Annual incidence rate of STEC O157 per million population including 

cases reporting travel outside the UK in England between 2009-2015. (Unit of analysis 

is a local authority area) 
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 Figure 3.3 Monthly rate of sporadic STEC O157 infection per million population in urban and rural settings in England between 2009 and 2015 

(Travel included)   
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 Figure 3.4 Monthly rate of sporadic STEC O157 PT21/28 infection per million population in urban and rural settings in England between 2009 and 

2015 (Travel included)   
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Figure 3.5 Monthly rate of sporadic STEC O157 PT8 infection per million population in urban and rural settings in England between 2009 and 

2015 (Travel included)  
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Figure 3.6 (a) Cumulative incidence rate (sporadic cases/million person years) and 

spatial distribution of the eight independent variables used in the analysis (b) 

Residence (1: urban–major conurbation, 2: urban–minor conurbation, 3: urban–city 

and town, 4: rural–town and fringe, 5: rural-village. (c) IMD (quintiles). (d) Distance 

from LSOA centroid to GB coast in kilometres. (e) Proportion of inland freshwater 

coverage of each LSOA (km2). (f) Numbers of PWS in each LSOA. (g) Cattle density 

(animals/km2). (h) Sheep density (animals/km2). (i) Pig density (animals/km2)

Figure 2. a. Cumulative incidence rate (Sporadic cases/million person years) and spatial 

distribution of the eight independent variables used in the analysis b.) Residence (1: 

Urban-Major conurbation, 2: Urban-Minor conurbation, 3: Urban-City and town, 4: 

Rural-Town and fringe, 5: Rural-Village. c.) IMD (deciles). d.) Distance from LSOA 

a b c 

d e f 

g h i 
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Multivariable analysis 

The results of the multivariable analysis for all sporadic cases are presented in Table 3.1. 

These indicate that living in a rural village, in an area with high densities of farmed 

animals (cattle, sheep or pigs), the presence of PWS and those areas considered least 

deprived were positively associated with risk for all sporadic cases. Removing cases 

reporting foreign travel removed the effect seen in the IMD variable.  

The dataset was then split into PT21/28 and PT8. The results for PT21/28 are presented in 

Table 3.2 and indicate that living in an area with high densities of farmed animals and 

being served by PWS were positively associated with risk. Living in a rural village was a 

risk factor only for cases who reported no travel. Areas regarded as the most deprived were 

associated with increased risk of PT 21/28 infection. 

The results of the multivariable analysis for PT8 are presented in Table 3.3 and indicate 

that living in a rural village and areas with high densities of cattle and/or pigs and areas 

considered least deprived (Quintiles 4&5) were positively associated with risk. Removing 

cases reporting foreign travel from the dependent variable increased the risk effect for 

cattle and pig density but removed the effect of deprivation. PWS and sheep density were 

not significant predictors of infection for PT8. 
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Table 3.1 Results of multivariable analysis of all STEC 
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Table 3.2 Results of multivariable analysis of STEC PT21/28



 

71 

 

Table 3.3 Results of multivariable analysis of STEC PT8 
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3.5 Discussion 

Risk was positively associated with cattle density across all models. The risk of a case 

occurring in areas with 87 animals/km2 or more was more than twice that of area with 

fewer than 18 animals/km2. This finding was somewhat expected as cattle are regarded as 

the main reservoir of STEC O157 (194) and the most common subtypes shed in cattle 

faeces are PT21/28 followed by PT8 (196). 

Sheep density was positively associated with risk for all STEC O157 cases and PT21/28 

cases but not for PT8. The greatest effect of sheep density was seen in the PT21/28 model 

where the risk was increased almost threefold in areas with high densities of sheep. There 

is increasing evidence that sheep and other small ruminants are an important reservoir of 

STEC, and that sheep density is associated with non O157 STEC infections (64). The 

association with PT21/28 is interesting because the carriage of PT21/28 in sheep is low 

(14%) compared to cattle (37%) (203) yet they appear strongly significant in our model. 

This exposure to sheep and lambs has been linked to at least two PT21/28 outbreaks at 

petting farms/lambing events in England and an extended outbreak of closely related 

strains was linked to an ovine source (204). A recent study in the Republic of Ireland 

demonstrated a geographical association between sheep density and STEC O26 but not 

STEC O157 (101). Disentangling the relative contribution of ruminant species to the 

overall burden of infection is difficult due to scant contemporary information on shedding 

by sheep compared to cattle, a lack of genetic difference between cattle and sheep strains 

(109) and the fact that sheep and cattle are farmed in the same geographical areas in the 

UK. However, our results suggest that the role of sheep as a reservoir and potential source 

of infection in humans should not be overlooked. 

Pig density was positively associated with risk across all models. However, for the PT8 

and PT21/28 models, the observed effect was not linear. Pigs can shed STEC (205), and 
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pork products have been implicated as the source or vehicle of infection in outbreaks 

worldwide, but they are not generally considered to be an important reservoir for STEC 

O157 (206) or source for human infection (58). Studies of intestinal carriage in England 

showed a low carriage rate in pigs and that the characteristics of pig strains differed from 

those seen in humans during the same period (196, 203, 207). Pig density was not 

identified as a risk factor for STEC infection in the Netherlands (59). Despite this, 

associations with pig density appear in this study. This dichotomy may be partly explained 

by the few areas of the country with high pig densities or may be due to differences in pig 

husbandry practices between countries.  

We found an increased risk associated with the presence of PWS for all STEC O157 cases, 

PT21/28 cases but not PT8. Private water supplies that do not meet the requirements of the 

EC directive present a high risk of infection with STEC(57), however, the reason for the 

difference between PTs is unclear and may relate to factors not considered by this study.  

Living in a rural village was a risk factor for all STEC O157 cases and for PT8. For the 

PT21/28 model, living outside a major urban conurbation was a significant risk factor but 

only for cases reporting no travel. Residents of rural areas are more likely to come into 

contact with contaminated environments either through work or leisure (185) and 

residential proximity to the ruminant reservoir also increases the possibility of exposure 

from wildlife and insect vectors (208, 209). 

Living in less deprived areas was strongly associated with all STEC O157 cases and PT8. 

What is intriguing was that when foreign travel cases were removed, this effect was 

removed for all STEC O157 cases and PT8. This indicates that the deprivation effect is 

strongly driven by foreign travel and that risk factors for these groups differ from 

indigenously acquired infection. The strong association with foreign travel in the PT8 

model was anticipated as a greater proportion of cases of PT8 report travel abroad 
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compared to other PTs (1). Lower deprivation was protective for cases of PT21/28 

reporting no travel but the reasons for this are unclear. One explanation could be related to 

deprivation and/or likelihood of exposure to PT21/28 compared to other strains. PT21/28 is 

a strain indigenous to the UK and rates of infection are highest in the north of England 

where there are also more areas considered to be the most deprived. However, crude rates 

of infection with STEC are lower in the most deprived areas, cases are less likely to travel 

abroad or within the UK (110) and levels of social interaction differ from residents of less 

deprived areas (111). Socioeconomic status has been shown to be associated with risk for 

other gastrointestinal infections (210-212) introducing the possibility that whilst risk 

factors may differ broadly across the country, within regions, socio-economic status has a 

greater influence on risk factors and transmission dynamics. This is an area that would 

benefit from further research. 

 In developed countries, disadvantaged children, but not adults, appear to be at greater risk 

of gastrointestinal infection and that living in deprived areas is protective for infectious 

intestinal disease (IID) overall but is associated with more severe symptoms in those who 

do become infected (213). Our findings indicate that once the effect of foreign travel is 

removed, deprivation has little effect on sporadic infection with STEC O157. This suggests 

that infection is a result of a localised and stochastic process driven by exposure to the 

local environment and that exposures related to affluence, such as diet, occupation or 

leisure pursuits are likely to be less important.  

Residential distance from the coast and living in an area with a high proportion of 

freshwater coverage were not significant and removed at an early stage of the modelling 

process. These environments may act as reservoirs for STEC (214) and recreational 

exposure to fresh water has been suggested as a risk factor for STEC infection in 

epidemiological studies from other countries. The lack of an association in the UK may 
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relate to the general unpopularity of freshwater swimming in the UK in comparison to 

other countries (67, 153, 215-217). These variables were proxies for exposure and so do 

not capture details of individual interactions with these environments.  

There are several potential limitations to our study. First, molecular typing methods, used 

routinely in England since 2015, are superior to the phenotypic methods we used to 

discriminate between cases and have been shown to reduce the number of cases considered 

to be sporadic (16). It is therefore possible that a small number of cases included in our 

study were microbiologically linked and therefore may not be considered truly sporadic. 

Secondly, we excluded cases linked to household outbreaks. We made this decision based 

on the difficulty in identifying the primary case amongst co-primary and asymptomatic 

(microbiologically confirmed) cases generated by microbiological screening of household 

contacts. In addition, we noted epidemiological links between foodborne outbreaks and 

secondary transmission within households which may have introduced a bias away from 

the exposures of interest. Thirdly, for every STEC O157 infection reported to national 

surveillance systems in England, there are an estimated 7.4 in the community (29). The 

reasons for this are likely to be related to severity of disease, health seeking behaviours and 

whether or not a clinician takes a sample and requests a microbiological examination from 

a laboratory. Notwithstanding that the ratio of STEC O157 reports is considerably smaller 

than other pathogens, the cases reported to national surveillance represent a biased sample 

of the true community burden of STEC O157 in England. Transmission routes are varied, 

and infection is a result of complex interactions between people and their local 

environment. Our approach meant that individually reported exposures could not be 

considered in our analysis. Finally, this is an ecological study and association does not 

equal causation which could only be inferred from other study designs involving an 

intervention. We are confident that the association with animal density is most likely due 



 

76 

 

to environmental exposure, however, other factors not included in our study (for example, 

locally sourced food) cannot be ruled out as a potential route of infection.  

In conclusion, using arguably one of most comprehensive enhanced surveillance of STEC 

datasets in the world, we found that two thirds of infections were sporadic, and that the 

spatial and temporal distribution of these cases showed distinct variation within England. 

We provide evidence that living in a rural area with high densities of farmed animals and 

served by private water supplies partly explain this variation. Our results indicate that 

travel abroad may expose individuals to risks not present in their local residential 

environment and that this risk is influenced by socio-economic status i.e., the ability to 

afford foreign travel. Further analysis is required to elucidate the relative importance of 

exposures reported by individual cases including travel, contact with animals and the 

agricultural environment and consumption of food and water.  

To reduce the overall burden of infection in England, interventions designed to reduce the 

number of sporadic infections with STEC O157 should focus on the residents of rural areas 

with high densities of livestock and the effective management of non-municipal water 

supplies.  
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4  Using spatial relative risk to identify modifiable risk factors for STEC O157 

infection in England 

4.1 Abstract 

Evidence from outbreak investigations suggests a shift in importance from food borne to 

animal contact transmission since STEC was first identified in the UK and increased risk is 

associated with areas that have high densities of ruminant animals. Most control measures 

designed to prevent transmission of STEC O157 in England are focused on the food chain, 

do not account for geographical differences in incidence and are not always tailored to 

specific groups. 

We used the geographical location of likely exposure to known risk factors for STEC 

infection to explore whether reports of ‘risky’ behaviours differed between cases identified 

in England between 2009 and 2018. Using kernel density estimation, we identified areas of 

the country where the risk of infection was significantly higher or lower. Using the 

residential postcode, we assigned each case to one of these areas to create a binary 

residential risk variable (either high or low risk). We also identified cases who had 

travelled within the UK (including travel to high-risk areas) during their incubation period.  

Using logistic regression, we then explored the relationship between reported exposure to 

the agricultural environment, place of residence and place of exposure for those who 

travelled.  

Adjusting for age sex and socio-economic status, increased odds of a case occurring in a 

high risk area were associated with direct exposure to the agricultural environment (aOR 

1.52, 95% CI 1.27-1.82) contact with dogs (aOR 1.25 , 95% CI 1.07-1.45 ) or drinking 

water from a PWS (aOR 2.14 , 95% CI 1.52-3.02) although the proportion of cases 

exposed to PWS was less than 10%. Decreased odds were associated with reported UK 

travel (aOR 0.56, 95% CI 0.47-0.67). 
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Increased odds of a case occurring in the UK travel group were associated with going on a 

daytrip (aOR 4.94, 95% CI 4.00-6.11, direct environmental contact (aOR 1.40, 95% CI 

1.12-1.76), indirect environmental contact (aOR 2.10, 95% CI 1.70-2.59) contact with 

domestic animals (aOR 1.22 95% CI 1.0-1.48) and drinking from a PWS (aOR 2.47 95% 

CI 1.49-4.09).  

The population attributable risk (PAR%) for residents of high-risk areas were similar 

(direct contact; 14%, indirect contact;12%, contact with dogs;12%) whereas for travellers, 

indirect contact was greatest (44%) followed by daytrips (37%) and direct contact (26%).  

We recommend that, where appropriate, residential risk (as opposed to residential location) 

should be considered when developing new public health policy or revising existing 

guidance related to STEC O157 infection. The greatest risk reductions would be gained by 

targeting people travelling in the UK with focused communications highlighting the risks 

of STEC infection and, most importantly, providing simple guidance designed to reduce 

risk.  

4.2 Introduction 

Infection with STEC O157 occurs via multiple routes including contaminated food, person 

to person or via direct or indirect contact with farm animals. The risk of infection with 

Shiga- toxin producing E. coli (STEC) O157 varies significantly across England. The 

highest risk areas are in the North and Southwest (65) and significantly lower rates of 

infection are found in the South and South-East. Remaining cases are widely distributed 

across areas where the spatial distribution of cases does not differ significantly from the 

underlying population. This pattern is geographically consistent from year to year 

suggesting that infection rates are driven by the presence of risk factors in those areas (14, 

65). 
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Most control measures designed to prevent transmission of STEC O157 in England are 

focused on the food chain and are universal, i.e., they do not account for geographical 

differences in incidence. These control measures have largely been introduced as a result 

of large foodborne outbreaks (32, 45, 218) but since these were introduced, STEC case 

numbers have remained fairly stable (11, 27) suggesting either that they are having little 

effect or other routes of transmission may be of importance. 

Evidence from outbreak investigations suggests a shift in importance from food borne to 

animal contact transmission since STEC was first identified in the UK. Increased risk is 

associated with areas that have high densities of ruminant animals (14) and contact with 

the agricultural environment has been identified as a major risk factor for infection in 

England (44) and Scotland (181), but not Wales (219). However, direct contact with farm 

animals is reported infrequently and many cases report no contact with the farming or rural 

environment at all (1). Travel outside the UK is also risk factor, particularly for Lineage II 

strains (1) and this appears to be associated with cases living in more affluent areas of 

England (65). Cases living in areas considered high risk are less likely to report travel 

outside the UK (65) and although travel within the UK is a potential risk factor (15, 44), 

this has not been explored in detail.  

Since 2009, all laboratory confirmed cases of STEC O157 in England have been 

interviewed using a standardised questionnaire (1) to collect epidemiological (age, sex, 

occupation) and clinical (duration of illness, hospitalisation) information, as well as details 

of travel, foods eaten and exposure to animals and/or the environment in the seven-day 

period preceding illness onset. This information is matched with laboratory typing 

information to create a rich source of information on this important pathogen.  

 We used this information to examine the relationship between exposures reported by cases 

living in areas of England deemed high risk in the 7 days preceding their illness onset in 
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comparison to those living in areas of low risk. It is based upon the location of the case 

during the median incubation period of 4 days, (inter-quartile range 3-7 days) (5). 

The anticipated impact of this study is to identify modifiable risk factors that can be used 

to develop or refine geographically specific public messaging or interventions.  

4.3 Methods 

We selected primary cases of STEC O157 reported to the National Enhanced STEC 

Surveillance System (NESSS) between the 1st January 2009 and the 31st December 2018. 

All cases were provided with a spatial location based upon their residential postcode. 

Questionnaires were administered by staff in local Health Protection Teams (HPT) who 

take the case through the questionnaire recording responses throughout. The questionnaire 

is divided into sections designed to capture the following details: case classification 

(primary, co-primary, secondary), personal details (age, sex, occupation), symptoms, travel 

history, food (including water) history and exposure to water, animals, and the 

environment. Questions about food, water and environmental exposures are binary. If the 

case answers “yes” to a question, then further details are requested. For example, if a case 

states that they travelled within the UK, details about destinations, accommodation and 

daytrips are requested and recorded. A copy of the questionnaire is provided in the 

supplementary material. 

Dependent variables 

To create dependent variables, we first identified the geographical areas of England where 

risk was significantly higher or lower (Figure 4.1).  
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Figure 4.1 Log relative risk surface for primary cases of STEC O157 in England 

between 2009 and 2018. Tolerance contours are superimposed at the 95% confidence 

level. Solid lines indicate areas of significantly higher risk and dashed lines indicate 

areas of lower risk higher risk and dashed lines indicate areas of lower risk.  
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To do this we used the kernel smoothing method described in (165) and (65) to estimate 

the relative risk of STEC O157 between 2009 and 2018. To provide the best estimate of 

indigenous risk, we excluded cases who had travelled abroad on the basis that their place 

of exposure may not reflect their place of residence. Cases from known outbreaks were 

also excluded to avoid introducing bias from large numbers of cases associated with 

national and regional outbreaks.  Once the relative risk surfaces were produced, we then 

used the tolerance contours from this indigenous risk estimate to categorise the residential 

risk for all cases (including those that reported travel and were part of an outbreak). Cases 

who fell into areas of significantly increased risk were categorised as high and those who 

fell into areas of significantly decreased risk (or where risk did not differ significantly) 

were categorised as low (Figure 4.2). Using this classification, we created a dichotomous 

dependent variable indicating whether or not a case lived in a high-risk area (1) or a low-

risk area (0).  

Independent variables 

Independent variables were created by collapsing reported exposures from the standardised 

questionnaire into five categorical variables: direct exposure to the farming environment, 

indirect exposure to the farming environment, contact with domestic animals, contact with 

dogs and consumption of water from private water supplies or unpasteurised milk. Full 

details of the exposures and how they were grouped are provided in Table 4.1. We 

included exposure to unpasteurised milk or water from private water supplies a priori 

because these are known risk factors for STEC infection and PWS have a similar 

geographical distribution to cases (14). Contact with dogs was considered separately from 

other domestic animals because unlike other pets, they often require regular outdoor 

exercise which may directly or indirectly expose their owners to the agricultural 

environment. 
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Figure 4.2 Maps of England showing risk categorisation of all cases for place of 

residence (left panel) and UK travel destination (right panel). Red = significantly 

increased risk, Blue = significantly decreased risk, Grey = risk not significantly 

different to underlying population 

 

 

 Details of individual socio-economic status are not collected as part of the NESSS. To 

provide a proxy for socio-economic status, each case was assigned a deprivation measure, 

the Index of Multiple Deprivation 2010 (IMD), based upon the lower super output area 

(LSOA) that contained their residential postcode. LSOAs are the smallest geographical 

area at which IMD data is available, each with a population of around 1,500 people. The 

IMD was divided into quintiles, with the first quintile being the most deprived and the fifth 

quintile the least deprived LSOA.  

Within the NESSS, UK travel is defined as at least one night away from home. Cases 

reporting travel within the UK were given an additional spatial reference: their UK travel 

location. The level of detail provided by cases about their movement within the UK was 

variable. The best spatial reference was the postcode of the accommodation. Where this 
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was unavailable, we used the description of the destination (village, town or city) to 

retrieve a spatial location from Streetmap (available from www.openstreetmap.org).  

If only a region (county) was reported, the polygon centroid was used. Where the 

destination was ambiguous (e.g., where the same town name occurred in two or more 

regions), we checked the free text detail to confirm the location. If this was unavailable, the 

location was not used but the case was included as having travelled in the UK.  
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Table 4.1 Construction of independent variables 

Variable Exposure Detail 

Direct contact with environment Case visited a farm (including petting farms) 

Case reported contact with cattle, sheep, goats, pigs, poultry or horses. 

Case handled or bottle-fed animals at a farm. 

Indirect contact with environment Case walked across a field grazed by animals. 

Case reported recreational contact with fresh or sea water. 

Case handled soil or animal manure. 

Private water consumption Case drank from a private water supply. 

Unpasteurised milk consumption Case drank unpasteurised milk. 

Contact with domestic animals Case reported contact with cats, rabbits, reptiles, rodents etc.  

Contact with dogs Case reported contact with dogs. 
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We explored univariate relationships between the dependent and independent variables. 

Exposures reported by at least 20% of cases or controls and with a p value of 0.1 or less 

were included in multivariate logistic regression models. Raw drinking milk and PWS 

consumption were included as a priori risk factors. Each model was adjusted for age, sex, 

and socio-economic status. Each model was run including age in years as a continuous 

covariate and then stratified by age group (adult/child) with age in years included as a 

continuous covariate. 

To check for collinearity, we created a correlation matrix before fitting each model using a 

coefficient value of 0.7 or above to indicate strong correlation. A postestimation check for 

collinearity was also performed after each model run using a variance inflation factor 

(VIF) value of 10 or more to indicate the presence of multicollinearity.  

To investigate whether the strength of any relationship was moderated by the inclusion of 

another variable, we tested the effect of adding interaction terms. These terms were 

selected where there were two or more significant main effects in the multivariable model 

and included only if the presence of an interaction was biologically plausible.  

Using adjusted ORs and the fraction of cases exposed, the population attributable risk 

percentage (PAR%) was determined for each factor that increased risk in the final models. 

The concept of population attributable risk or fraction is to estimate how much disease 

burden might be reduced if an exposure were eliminated. 

All geocoding and spatial joins were performed using Arc GIS version 10.5.1(176). 

Spatially varying risk was estimated using the sparr package (166) in R (179) and all 

remaining analyses were conducted in STATA v.15 (202). 
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4.4 Results 

A total of 6,792 cases were eligible for analysis. Of these, UK travel destinations were 

mapped to 1,276 cases using postcode for 58% (n= 746), destination description for 35% 

(n= 446). For 7% (n=84).  

For the remaining analyses, cases reporting travel outside the UK (22%, n=1,525) or 

known to be part of an outbreak (23%, n= 1,290) were excluded. Of the remaining 4,157 

cases, just over half (51%, n=2,125) were adults (aged 18 years or over) and 53% of these 

(n=2,189) were female. The majority (69%, n=2878) described themselves as white British 

and the proportion of cases living in each IMD quintile varied from 16% (n= 671) in the 

most deprived to 21% (n= 873) in the least deprived quintile.  

Just over one fifth (22%) of cases (n= 897) reported travelling within the UK. Of these, 

30% (266) travelled to an area considered ‘high risk’.  

Less than a third (28%, 1147) of these cases lived in an area considered high risk. The 

majority (61%, 2529) lived outside these areas in areas that were not significantly different 

and 12% (481) lived in areas considered to present a significantly lower risk.  

Risk factors associated with residence in high-risk areas compared to low-risk areas. 

The results for this analysis are presented in Table 4.2. Adjusting for age sex and socio-

economic status, increased odds of a case occurring in a high risk area were associated 

with direct exposure to the agricultural environment (aOR 1.52, 95% CI 1.27-1.82) contact 

with dogs (aOR 1.25 , 95% CI 1.07-1.45 ) or drinking water from a PWS (aOR 2.14 , 95% 

CI 1.52-3.02). The proportion of cases exposed to PWS was less than 10%. Decreased 

odds were associated with reported UK travel (aOR 0.56, 95% CI 0.47-0.67).



 

88 

 

Table 4.2 Adjusted and unadjusted multivariable logistic regression analysis comparing STEC O157 cases living in high-risk areas with those living 

in medium and low risk areas 

aOR** 

aOR** 

aOR** 
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This effect was seen across all strata for direct environmental contact (Adults aOR 1.39, 

95% CI 1.07-1.80; Children aOR 1.56, 95% CI 1.22-2.0) and UK travel (Adults aOR 0.62, 

95% CI 0.48-0.81 ; Children aOR 0.53, 95% CI 0.41-0.70). Contact with dogs and 

consumption of water from a PWS remained only for children (Dogs aOR 1.39, 95% CI 

1.11-1.73: PWS aOR 2.99, 95% CI 1.82-4.92). 

Adding an interaction term between direct environmental contact and contact with dogs 

was significant for all cases and children (All 1.39 95% CI 1.01-1.90: Children 1.84 95% 

CI 1.18-2.86)). The main effect of direct environmental exposure alone remained for all 

cases but not children. The main effect for dogs alone was lost for both groups. 

Risk factors for residents of low-risk areas travelling in the UK. 

The results for this analysis are presented in Table 4.3. Accounting for age, sex, and socio-

economic status, increased odds were associated with going on a daytrip (aOR 4.94, 95% 

CI 4.00-6.11 , direct environmental contact (aOR 1.40, 95% CI 1.12-1.76), indirect 

environmental contact (aOR 2.10, 95% CI 1.70-2.59) contact with domestic animals (aOR 

1.22 95% CI 1.0-1.48) and drinking from a PWS (aOR 2.47 95% CI 1.49-4.09).  

Daytrips, indirect environmental contact and drinking from a PWS remained significant for 

both age strata but direct contact remained only for children. (Adults: daytrip aOR 5.56, 

95% CI 4.08-7.56), indirect contact aOR 1.73 95% CI 1.29-2.31, PWS aOR 2.40, 95% CI 

1.25-4.63. Children: daytrip aOR 3.70 95% CI 2.85-4.80, direct contact aOR 1.79, 95% CI 

1.37-2.3, indirect contact aOR 2.95 95% CI 2.24-3.88, PWS aOR 2.30, 95% CI 1.10-

4.81).Interaction terms between daytrips and indirect contact with the environment or 

contact with domestic animals were significant for all cases (Indirect 0.62 95% CI 0.40-

0.95 Domestic animals 0.66 95% CI 0.44-1.0). The main effects of direct and indirect 

environmental exposure remained. The inclusion of the interaction terms increased the 
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main effect of daytrips from an aOR of 4.9 to an aOR of 8. No interaction terms were 

significant for adults (Daytrip indirect env 0.55 95%CI 0 .3-1.01) or children (daytrip 

direct 1.15 .62-2.12, daytrip indirect 0.55 95% CI 0.28-1.09. 

Travel to high-risk areas amongst residents of low-risk areas 

The results for this analysis are presented in Table 4.4. Accounting for age, sex, and socio-

economic status, the odds of indirect exposure to the environment was increased amongst 

UK travellers to high-risk areas (aOR 1.71, 95% CI 1.21-2.40). A summary table of these 

results is provided in Table 4.5 

Attributable risk. 

Population attributable risk percentages (PAR%) are shown in Table 4.6. For residents of 

high-risk areas, direct exposure had the highest attributable risk (13.7%), not dissimilar to 

indirect exposure or dogs (both 12.1%). However, for children the PAR for direct 

environmental exposure was twice that of adults (18.3% vs 8.7%) and higher for contact 

with dogs (15.1% vs. 9.2%). 

For those who travelled in the UK, the highest PAR% was for indirect environmental 

exposure (43.5%), followed by going on a daytrip (37%) and direct environmental 

exposure (26%). The PAR for indirect exposure amongst travellers was threefold that of 

residents (43.5% vs. 12.1%) and almost double for direct environmental exposure (25.5% 

vs 13.7%). For children, the highest PAR% was for indirect contact which was more than 

double that of adults (61% vs. 21.3)  

For those travelling to high-risk areas, the PAR% for indirect environmental exposure was 

52.5%. For children, the PAR % was 71.5% compared to 37.1% for adults. 
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Table 4.3 Adjusted and unadjusted multivariable regression analysis for cases living outside high-risk areas and UK travel 
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Table 4.4 Adjusted and unadjusted multivariable regression analysis for cases travelling to high-risk areas 
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Table 4.5 Adjusted odds ratios and significance levels for all models 

Exposure 
High risk residence Travelled in UK Travelled to high-risk area 

All Adults Children All Adults Children All Adults Children 

Travelled in UK 0.56*** 0.62*** 0.53*** ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ 

Went on a daytrip ⁻ ⁻ ⁻ 4.94*** 5.56*** 3.7*** 1.12 ⁻ 1.35 

Direct environmental contact 1.52*** 1.39* 1.56*** 1.4** 1.22 1.79*** 1.25 ⁻ 1.55 

Indirect environmental contact 1.13 1.21 1.01 2.1** 1.73*** 2.95*** 1.7** 1.78** 1.76* 

Contact with domestic animals 0.95 ⁻ 1.07 1.22* 1.21 1.05 ⁻ 0.84 ⁻ 

Contact with dogs 1.25** 1.18 1.39*** 0.85 0.88 0.78 ⁻ 0.61* ⁻ 

Drank unpasteurised milk† 1.39 0.88 1.72 0.94 0.74 1.56 1.86 0.53 3.00 

Drank from a private water supply† 2.14*** 1.46 2.99*** 2.47*** 2.4** 2.3* 1.28 1.51 1.25 

Significance levels: * <0.05, ** <0.01, *** <0.001 †: <10% cases or controls exposed 
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Table 4.6 Population attributable risk (PAR%) of exposures significantly associated with high-risk residence and travel within the UK 

Exposure 
High risk residence Travelled in UK Travelled to high-risk area in UK 

All Adults Children All Adults Children All Adults Children 

Went on a daytrip - - - 37.0 30.2 44.6 - - - 

Direct environmental contact 13.7 8.7 18.3 25.5 14.3 38.1 - - - 

Indirect environmental contact - - - 43.5 28.3 61.0 52.5 37.1 71.5 

Contact with dogs 12.1 9.2 15.1 - - - - - - 

Drank from a private water supply 4.0 2.1 5.9 4.0 4.2 3.8 - - - 
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4.5 Discussion 

Our approach of combining behaviours and geographical risk allows us to describe the risk 

gradient between individuals living in different areas of the country. We were also able to 

examine the effect of travel within the UK in the days preceding illness onset.  

Previous studies comparing risk factors between those living in rural and urban areas (1, 

110) do not consider that risk is associated with rural areas with high densities of farmed 

animals and other risk factors, not just rurality alone. Studies incorporating geography and 

ecological risk factors (14, 210, 220) provide information on the likelihood of exposure to 

known risk factors and the nature of the population at risk but don’t account for variation 

in people’s behaviour within that environment.  

The importance of environmental exposures overall, and indirect exposure in particular, 

were greater for those cases who travelled in the UK than for those living in high-risk areas 

or non-travellers. Jones et al (221) investigated awareness of STEC O157 amongst 

residents of, and visitors to, areas of high disease incidence in Scotland and Wales. 

Awareness and understanding of STEC O157 amongst visitors to high incidence areas was 

poor; most had never heard of STEC and if they had, thought it more likely to be 

foodborne and not picked up from animals or the wider environment. Visitors are likely to 

be immunologically naive to pathogens more common in rural areas [20] and this, 

combined with a lack of awareness means that less likely to adjust their behaviour in 

relation to the risk posed by livestock or the environment. This has obvious implications 

for the probability and outcome of infection.  

This is important when considering that around a quarter of holidays in the UK are 

described as countryside breaks (Statista) and about six million people visit rural Wales 

and five million visit Scotland’s countryside each year [21]. These destinations provide 

opportunities to explore rural and coastal environments. Animal based attractions are 
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popular destinations for daytrips for families with children. Walking and swimming are 

also reasons that people visit these areas. STEC and other GI pathogens can be recovered 

from the rural environment even in the absence of large numbers of animals (187, 222) and 

environmental contamination can occur over wide geographical areas via marine and 

freshwater means, animal movements and manure application. The observed differences in 

exposures reported by adults and children may reflect differences in the types of activities 

undertaken by those travelling with children (e.g., direct exposure from petting farms 

versus indirect exposure through walking).  

Direct contact with the agricultural environment and PWS consumption were risk factors 

both for residents of high-risk areas and travellers. However, the PAR% for environmental 

exposures for residents in high-risk areas were all less than 15% and much lower than 

cases who had travelled. 

Drinking from a PWS increased risk but accounted for only a small proportion of cases and 

a relatively low PAR%. According to the UK Drinking Water Inspectorate, around 1% of 

the population of England and Wales are served by a PWS, the majority of which supply 

single dwellings. Poorly managed PWS are a known risk factor for a range of infections 

including STEC O157 (14). These supplies tend to be located in very rural areas and the 

risk of contamination is likely to be higher in areas with high densities of animals.  

The odds of a case occurring in a high-risk area were increased for children when the joint 

effect of contact with dogs and direct contact with the farming environment was 

considered. Dogs require regular exercise accompanied by a human and the probability of 

both encountering farm animals and/or their faeces is greater in areas high risk areas. Dogs 

also demonstrate a propensity to roll in mud, faeces and animal carcasses resulting in 

contamination of cars, domestic environments and direct exposure to other family 

members who come into contact with the dog.  
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Drinking unpasteurised milk was not a risk factor in any of the models. Although only a 

small fraction of the UK population drink RDM, consumption has increased from 3% in 

2012 to 10% in 2018 and it is now readily available via internet sales and on-farm vending 

machines. Current advice in England is that RDM should not be consumed by vulnerable 

groups including children, so it is of concern that children formed the highest proportion of 

consumers in our study, even though numbers exposed were low. 

However, living in a high-risk area or travelling within the UK cannot explain the majority 

of sporadic cases that occurred during the study period. The spatial distribution of these 

cases did not differ significantly from the underlying population at risk suggesting that 

their infections resulted from eating contaminated food, being exposed to an infected 

individual or possibly as a result of changes in localised environmental contamination due 

to transient events such as flooding or seasonal animal movements.    

Data quality and potential limitations  

One potential limitation to our study is that for every STEC O157 infection reported to 

national surveillance systems in England, there are an estimated 7.4 in the community (29). 

The reasons for this are likely to be related to severity of disease, health seeking 

behaviours and whether a clinician takes a sample and requests a microbiological 

examination from a laboratory. It is unknown whether these reporting biases vary 

geographically and hence would affect the spatial patterns presented in this paper.  

Another potential limitation is that spatial risk does vary from year to year and our analysis 

was purely spatial. However, the areas described as high risk in our study are consistently 

associated with increased risk from year to year (65). The reasons for this variation are 

likely due to multiple factors, including outbreak activity. Our approach controlled for this 

by excluding cases linked to known outbreaks.  
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The quality of information collected as part of NESSS can be variable and subject to recall 

and confirmation bias, particularly for food related exposures. Because we focused on non-

foodborne exposures, the potential impact of recall bias could be considered to be lower 

than that of foods consumed. There is little evidence in the literature that can be used to 

quantify the true effect of this on our results. One study suggests differences in recall over 

time regarding consumption and experience (223) but we suggest that the lack of 

awareness of potential risks associated with animals or the environment described by Jones 

et al (221) indicates that the effects of confirmation bias are likely to be minimal.  

Public messaging and interventions 

Infection with STEC is the result of a complex and active interaction between the 

pathogen, its reservoir, the environment and the host. Modification of any of these factors 

has the potential to reduce the risk of infection. At a population level, controls for STEC 

are focused on the food chain. Food producers are legally required to produce food that is 

safe for consumption and this process is subject to regulation and enforcement. Most STEC 

controls focus on the safety of nationally distributed food, specific demographic groups 

(children) or settings (nurseries and petting farms). These controls build upon sector 

specific legislation and are subject to regulation and enforcement.  

Reducing the risk of infection from environmental exposure is much more challenging due 

to the relatively unpredictable and uncontrolled ways in which individuals may be 

exposed. For example, public access to farmland and other areas grazed by animals is 

largely unrestricted in England so walking through cattle faeces may result in exposure to 

STEC when cleaning shoes afterwards; swimming in the sea or freshwater following heavy 

rainfall may increase the risk of being exposed to STEC due to agricultural runoff or 

sewage discharges.    
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However, there is evidence that awareness-based interventions (including distribution of 

signage, fliers, and presentations, implementable in different geographical scales) are both 

cost-effective and have the highest impact on lowering Lyme disease risk compared to 

attempts to control the reservoir and/or vector (224) and further advice on how and when 

to raise awareness utilising social media is available (PHE Guidance 

https://www.gov.uk/government/publications/tick-bite-risks-and-prevention-of-lyme-

disease). 

Adopting similar strategies to raise awareness of the risks of infection with STEC could 

also work. Our results help to provide focus for the groups most at risk and inform when 

and where these would be most effective. For those living in high-risk areas, raising 

awareness of the risks of direct and indirect contact with the farming environment 

throughout the year, aimed particularly at families with children, would have the most 

impact.  

However, at a personal level, people need to be aware of the hazard and understand what 

action they need to take to reduce the risk of infection. Recent assessment of compliance 

with COVID guidelines (225-228) emphasise the importance of communicating potential 

risks and providing simple, consistent guidance on how to reduce the spread of the virus in 

improving compliance with preventive behaviours. 

For STEC, awareness of risk varies depending on place of residence (221) and is skewed 

by the focus on large outbreaks that tend to be food borne and the link to ground beef in 

the USA. Awareness of zoonotic transmission is low and actions taken to prevent risk tend 

to be focused on cleanliness, food and the home, not animals, farms or cattle (221). 

We recommend that, where appropriate, residential risk (as opposed to residential location) 

should be considered when developing new public health policy or revising existing 

https://www.gov.uk/government/publications/tick-bite-risks-and-prevention-of-lyme-disease
https://www.gov.uk/government/publications/tick-bite-risks-and-prevention-of-lyme-disease
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guidance related to STEC O157 infection. The greatest risk reductions would be gained by 

targeting people travelling in the UK with focused communications highlighting the risks 

of STEC infection and, most importantly, providing simple guidance designed to reduce 

risk. For example, advice around environmental exposure could be targeted at families 

travelling with children and made available when results are searched for on web browsers 

or bookings are made for accommodation in or close to high-risk areas, or those served by 

PWS.  
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5 The spatio-temporal distribution of COVID-19 in England between January 

and June 2020 

5.1 Abstract 

The spatio-temporal dynamics of an outbreak provide important insights to help direct 

public health resources intended to control transmission. They also provide a focus for 

detailed epidemiological studies and allow the timing and impact of interventions to be 

assessed.  

A common approach is to aggregate case data to administrative regions. Whilst providing a 

good visual impression of change over space, this method masks spatial variation and 

assumes that disease risk is constant across space. Risk factors for COVID-19 (e.g. 

population density, deprivation and ethnicity) vary from place to place across England so it 

follows that risk will also vary spatially. Kernel density estimation compares the spatial 

distribution of cases relative to the underlying population, unfettered by arbitrary 

geographical boundaries, to produce a continuous estimate of spatially varying risk. 

Using test results from healthcare settings in England (Pillar 1 of the UK Government 

testing strategy) and freely available methods and software, we estimated the spatial and 

spatio-temporal risk of COVID-19 infection across England for the first six months of 

2020. Widespread transmission was underway when partial lockdown measures were 

introduced on the 23rd March 2020 and the greatest risk erred towards large urban areas. 

The rapid growth phase of the outbreak coincided with multiple introductions to England 

from the European mainland. The spatio-temporal risk was highly labile throughout. 

In terms of controlling transmission, the most important practical application of our results 

is the accurate identification of areas within regions that may require tailored intervention 

strategies. We recommend that this approach is absorbed into routine surveillance outputs 
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in England. Further risk characterisation using widespread community testing (Pillar 2) 

data is needed as is the increased use of predictive spatial models at fine spatial scales.  

5.2 Introduction 

On the 31 December 2019, the World Health Organization (WHO) was informed of 

a cluster of cases of pneumonia of unknown cause detected in Wuhan City, Hubei 

Province, China. Since the initial identification of  SARS-CoV-2 as the cause of COVID-

19, over 32 million cases have been diagnosed globally, with more than 900,000 fatalities, 

as of 27th September 2020 (229). The first laboratory confirmed case in England was 

reported on the 31st January 2020. A series of interventions designed to slow rates of 

infection followed, culminating in a partial lockdown announced by the UK Government 

on the 23rd March 2020.  

Understanding the spatiotemporal dynamics of COVID-19 helps to clarify the extent and 

impact of the pandemic and can aid decision making, planning and community action 

intended to control transmission (230). It also provides an opportunity to assess the impact 

of interventions over space and time.  

One approach is to describe changes in infection rates within administrative boundaries in 

England have been published widely. This approach expresses the disease risk per head of 

population and assumes that risk is constant across space i.e., the risk of disease does not 

depend upon spatial location. This is rarely the case and the distribution of risk factors for 

COVID-19 (for example population density, deprivation and ethnicity) are known to vary 

across England so it follows that absolute risk will also vary spatially.  

Another approach is to plot points to produce a spatial point pattern. This is useful for 

small data sets but as the number of points increases, over plotting makes it difficult to 

discriminate between the relative densities of points.  

http://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/
https://www.biorxiv.org/content/10.1101/2020.02.07.937862v1
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Kernel density estimation (KDE), also known as kernel smoothing, is a flexible, non-

parametric method by which spatially varying risk may be estimated without the need to 

aggregate data. Smoothing a spatial point pattern (using an appropriate bandwidth) 

overcomes the over plotting problem by expressing the number of points as an intensity 

function. Comparing the intensities of two groups, for example those with an infectious 

disease and those without, across a defined geographical area results in an intensity (or 

risk) ratio. If the ratio is ~1, this suggests that the risk of infection is unrelated to spatial 

location. Evidence of spatial variation in risk occurs where the intensities differ. Ratio 

values >1 indicate an increased risk and values <1 indicate lower risk. 

As the COVID-19 outbreak progresses in England, KDE provides a scalable means to 

identify areas of significantly higher or lower risk to inform national policy and local 

action.  

Using established methods (165, 167, 168, 180) and freely accessible software (166, 179), 

we conducted a spatio-temporal point pattern analysis of COVID-19 risk in England 

between January and June 2020. Our aims were to describe the spatio-temporal dynamics 

of the first six months of the COVID-19 outbreak and assess the potential use of this 

method to inform and support public health policy decisions as the outbreak progresses. 

5.3 Methods 

The method we followed is described in detail by Davies et al. [3] and Elson et al. (65). 

For the spatial estimates, each set of points (case and control) were smoothed using an 

adaptive (165, 167) bandwidth to determine the spread of smoothing kernels centred on 

each point to produce a density surface. Adaptive bandwidths account for greater 

uncertainty in areas with fewer points (e.g. rural areas) so the bandwidth is large resulting 

in greater smoothing. In urban areas, more data points mean the bandwidth is smaller 

resulting in a surface with less smoothing. Calculating the ratio of case and control 
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densities provides a continuous estimate of relative risk which can be plotted on a map 

(128, 129, 167).  

Case locations 

We selected confirmed cases of COVID-19 reported to the PHE Second Generation 

Surveillance System (SGSS) under Pillar 1 of the UK Government testing strategy between 

the 31st January 2020 and the 30th June 2020. Pillar 1 includes tests only for those with a 

medical need (symptomatic and seen by a clinician) but may also include some healthcare 

workers and samples taken as part of outbreak investigations (231). The data was checked 

for duplicates and presence of a valid residential postcode. Postcodes are like US Zip codes 

and represent a single residential street or group of houses.  

The statistical methodology for spatial point processes are very sensitive to duplicate data 

points (178). We used unique control locations but included multiple cases with the same 

postcode to account for sporadic and outbreak cases. 

Population at risk (‘control’) locations 

The underlying population at risk (‘controls’) was represented by points randomly sampled 

from the National Population Database (NPD). The NPD is a Geographical Information 

System (GIS) dataset that combines multiple layers of data (including population) in a 100-

metre by 100-metre grid (161, 163). Based on the centroid coordinates of each grid square, 

‘control’ locations were randomly drawn without replacement. The probability of a 

location being drawn was weighted by the summed population of each grid square to 

reflect the spatially varying nature of the underlying population at risk. The number of 

controls was chosen to match the number of cases.  

For the spatial estimates, we attempted four bandwidth initialisation methods to set the 

‘global’ and ‘pilot’ smoothing parameters needed to calculate the adaptive bandwidths 
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themselves: maximal smoothing (175), bootstrapping (165, 232), least-squares cross 

validation (LSCV) (233) and likelihood cross-validation (234) (171). 

The resulting bandwidths were used to produce density estimates at all locations of a fine 

grid of co-ordinates laid within a simplified polygon of the mainland boundary of England 

and the Isle of Wight.  

To explore the temporal variation in the spatial risk, we marked each case with the date 

that their specimen was taken. For cases with multiple test results, the specimen date that 

gave the most recent positive result was used. We then calculated the number of days that 

had elapsed from the specimen date of the first confirmed case (31st January 2020) as the 

temporal event. The spatiotemporal relative risk surface was then calculated using the 

fixed estimator of Fernando & Hazelton (174). 

All estimates are edge-corrected to account for kernel weight lost over the boundary of the 

study region. This correction reweights each observation-specific kernel and the correction 

term is the reciprocal of the kernel mass inside the study region (172, 173). For the spatial 

analyses only, the estimates are calculated as symmetric adaptive risk functions using the 

pooled case/control data and equal global and pilot bandwidths (168). Unless stated 

otherwise, results are reported as log-relative risk surfaces.  

Contours identifying areas of significantly higher risk were superimposed at the 1% 

significance level for the spatial estimates and 1% and 0.01% levels for the spatio-temporal 

estimates. Wherever temporal results are referred to in terms of weeks, this refers to the 

corresponding International Organization for Standardization (ISO) week.  

All analyses were performed using the contributed packages sparr (166) and spatstat (177, 

178) in the R language (179).  
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5.4 Results 

Between the 31st January and the 30th June 2020, 160,976 cases of COVID-19 were 

reported to PHE under Pillar 1 of the UK Government testing strategy (231). Of these, 

residential postcodes were available for 154,210 (96%). Of these, multiple cases were 

recorded at 44,989 (30%) postcode locations. 

Bandwidth selection 

The oversmoothed and bootstrap methods produced usable spatial and space-time 

bandwidths. The LSCV approach did not provide a result and the likelihood-based 

approach produced a very small bandwidth that resulted in an under smoothed, ‘spiky’ 

surface.  

Spatial risk 

Figure 5.1 shows the areas in England classified as urban by the Office for National 

Statistics (ONS) (199). The relative risk across England during the study period is 

presented in Figure 5.2. With some exceptions, the areas with the highest risk tended to be 

large urban areas.   
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Spatio-temporal risk 

An animation of the spatio-temporal analysis combining an epidemic curve with the risk 

surfaces using the oversmoothed and bootstrap estimators is provided in the supplementary 

materials (SM 4).  

The 14-day space-time slices are presented in Figures 5.3 and 5.4 for the oversmoothed 

and bootstrap estimators respectively. 

Fewer than twenty cases were recorded between the confirmation of the first case (Week 5 

commencing January 27th) and the end of Week 8 (February 23rd). Weeks 9 -10 were 

characterised by a greater geographical spread of small areas of elevated risk and an 

increase in case numbers to ~400 by the end of Week 10 (March 8th). Week 11 

(commencing 9th March) saw a rapid increase in case numbers and significantly elevated 

risk, particularly in the cities of London and Birmingham. By the end of Week 14 (5th 

April), 47,668 cases had been reported. From Week 15 (commencing 6th April) onwards, 

areas of significantly elevated risk became more dispersed with some areas in the North 

and far South East of the country experiencing sustained periods of elevated risk, even as 

case numbers declined towards the end of the study period. 

Of note is the generalised increase in risk across the country between Weeks 13-19 and the 

abrupt change in risk seen in London between Weeks 13 and 15. 
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Figure 5.1 Geographical distribution of urban areas in England
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Figure 5.2 Log relative risk estimates for COVID-19 in England between January and June 2020 using different bandwidths: oversmoothed (left), 

likelihood cross validation (centre) and bootstrapping (right). Tolerance contours indicating areas of significantly higher risk are superimposed as 

solid lines at the 1% confidence level 
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Figure 5.3 Log relative risk spacetime slices using an oversmoothed bandwidth (h=15.4km, lambda (λ)=2.04) in 14-day periods from the date of the 

first case confirmed in ISO Week 5. Solid lines outline areas of significantly higher risk at the 1% confidence level 
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Figure 5.4 Log relative risk spacetime slices using bootstrap bandwidth (based on cases only: h=4.8km, lambda (λ) =3.2) in 14-day periods from the 

date of the first case confirmed in ISO Week 5. Solid lines outline areas of significantly higher risk at the 1% confidence level  
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5.5 Discussion 

To the best of our knowledge, this is the first description of the spatio-temporal distribution 

of COVID-19 in England using unaggregated data. As such, it defines areas of statistically 

significant high and low risk at a very fine spatial scale, unhampered by administrative 

boundaries.  

Taking into account a seven-day lag for the incubation period (235) prior to sample 

collection, our results show that geographically widespread transmission was underway at 

least one week prior to the partial lockdown announced on the 23rd March 2020. 

The rapid increase in cases and geographical spread in risk coincided with the roll out of 

PCR assays to hospitals during March resulting in greater ascertainment. However, 

intensive sequencing of SARS-CoV-2 genomes revealed that there were multiple 

introductions from European countries. The frequency of these imports (introduced via 

multiple entry points by travellers returning to the UK predominately from Spain, Italy and 

France) reached a peak in mid-March 2020 (Week 12) and led to widespread onward 

transmission within the UK (236).  

The risk was greatest in some, but not all, large urban areas. At the beginning of the 

outbreak, the risk in London was significantly elevated for a prolonged period but changed 

abruptly within the period of a single week (Week 15). The reasons for this are unclear but 

may be related to the impact of non-pharmaceutical interventions (social-distancing, 

reduced use of public transport etc.) or factors related to immunity. Seroprevalence of 

antibodies to SARS- CoV-2 in samples from healthy adult blood donors in England 

showed that the prevalence in London, adjusted for assay accuracy, age and sex, increased 

from 1.5% in Week 13 to 12.3% in Weeks 15 to 16 and 17.5% in Week 18. Given that the 

antibody response takes at least two weeks to become detectable, those displaying a 
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positive result in Week 18 are likely to have become infected before mid-April. By the end 

of our study period (Week 27), prevalence had dropped to 10% in London (237).  

Large urban areas in England have higher population densities and tend to have higher 

numbers of black, Asian and minority ethnic residents. They are also the areas with the 

highest deprivation and air pollution scores: all factors associated with an increased risk of 

infection and/or poorer outcomes following infection with SARS-CoV 2 (238-240).  

Selecting the ‘right’ bandwidth is crucial for this approach. Calculation of the over 

smoothing bandwidth is extremely quick, and the results provide a good overview of 

elevated risk. However, this somewhat rudimentary approach is unlikely to identify 

focused hotspots. The bootstrap method, whilst more computationally intensive, produced 

a usable bandwidth in less than thirty minutes for the spatial analysis and around ten hours 

for the spatio-temporal bandwidth. The resulting output provides superior geographical 

detail allowing resources to be targeted more efficiently. Notwithstanding this, too small a 

bandwidth results in an under smoothed surface which can erroneously identify 

‘significant’ peaks in risk as a result of increased variability of the kernel estimator. The 

numeric stability of LSCV and likelihood based methods is known to be questionable in 

practice, with resulting estimates often being under-smoothed (128). 

There are some limitations to this analysis. First, our approach was exploratory and does 

not account for groups more likely to experience poorer outcomes following infection due 

to socio-demographic, occupational and environmental factors. Also, the data we used 

represents those who were symptomatic and sought healthcare. In common with all 

surveillance systems, this is biased towards the severe end of the disease spectrum. One 

way of overcoming this bias would be to include results from the wider community testing 

performed under Pillar 2 of the UK testing regime. We decided not to include this data 

because Pillar 2 testing was introduced part way through the study and was also subject to 
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data quality issues until May 2020 (231). The decline in cases described here is likely to be 

an underestimate of the true community incidence and may not reflect the spatial locations 

of cases identified under Pillar 2. This requires further investigation, however, considering 

the way that SARS-CoV-2 is transmitted, we anticipate that this will not differ 

considerably, and our analysis represents the spatio-temporal ‘tip of the iceberg’ for 

COVID-19 in England during the study period. Finally, the PCR assay used by hospitals 

was rolled out nationally during March 2020 resulting in greatly improved case 

ascertainment. This coincided with the rapid increase seen during March 2020 so may be 

an artefact of improved surveillance. However, this does not explain the spatial variation 

noted beyond the end of March (when the assay was in widespread use) nor the sudden 

decline in cases in Birmingham and London. 

Our analysis demonstrates how KDE can identify areas of England where the risk of 

COVID-19 infection differs significantly. In terms of controlling transmission, the most 

important practical application is the accurate identification of areas within regions that 

require improved public health messaging or tailored intervention strategies. Spatial 

modelling can be used to the predict the spread of infection (133, 241) and the 

methodology to do this has been available for some time (133, 242). Such approaches have 

already been applied to COVID-19 case data (243)and self-reported symptoms (242). It is 

hoped that this will form part of the UK response strategy in the coming months and will 

be most informative at very fine spatial scales (242). To harness the benefits of such 

modelling approaches, public health organisations and academic centres must find ways to 

share information and promote collaboration without compromising patient confidentiality.  

To conclude, we present a spatio-temporal analysis of COVID-19 in England covering the 

first six months of 2020. We recommend that this approach is absorbed into routine 

surveillance outputs and that ways to confidentially share patient data with academic 
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collaborators are explored. Further work using Pillar 2 test data and the development of 

predictive spatial models at fine spatial scales is needed. 
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6 Discussion 

6.1 Chapter findings 

This thesis builds upon previous research on STEC O157 and explores hypothesised links 

from previous research conducted within the UK and further afield.  

In Chapter 2, we investigated the spatio-temporal variation in risk of STEC O157 

infections in England using over 3,000 records recorded by the NESSS between 2009 and 

2015. Our analysis provides evidence that the distribution of STEC O157 infection in 

England is non-uniform with respect to the distribution of the at-risk population; that the 

spatial distribution of the three main genetic lineages infecting humans differs significantly 

and that the spatio-temporal risk is highly dynamic. We also provide evidence that cases of 

STEC O157 reporting travel within or outside the UK are more likely to live in the 

south/south-east of the country, meaning that their residential location may not reflect the 

location of exposure that led to their infection. For non-travel cases we propose that the 

observed variation in risk is likely to reflect a differential exposure to a source of STEC 

O157 that is geographically prescribed. 

We further investigated the spatial relationship between infections and the presence of 

hypothesised environmental risk factors in Chapter 3. We observed that risk was elevated 

for those living in rural areas with high densities of farmed animals and served by private 

water supplies. Risk was positively associated with cattle density and, for strains associated 

with severe disease, with sheep density. Our results also indicate that travel abroad may 

expose individuals to risks not present in their local residential environment. This risk 

appears to disproportionately affect more affluent people (110, 213) , presumably due to 

the cost of foreign travel but socio-economic status has also been shown to influence 

transmission networks amongst those who did not travel outside the UK (111). 
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In Chapter 4, we also explored spatial risk, but additionally incorporated risk at an 

individual level by comparing exposures reported by those living in high and low risk 

areas. We also investigated whether travel within the UK had a modifiable effect on 

reported exposure. We found that direct contact with the agricultural environment and 

contact with dogs were important risk factors for residents of high-risk areas, particularly 

children. For those who travelled in the UK, indirect environmental contact and going on 

daytrips were the factors associated with increased risk. 

Building on the finding in Chapter 3, in Chapter 5, we applied KDE to COVID-19 disease 

in England during the first six-months of the pandemic to demonstrate the wider 

applicability of this method. In this chapter we estimated the spatial and spatiotemporal 

risk of COVID-19 infection across England for the first six months of 2020. Our results 

demonstrated that widespread transmission was underway when partial lockdown 

measures were introduced on the 23rd March 2020 and the greatest risk erred towards large 

urban areas. The rapid growth phase of the outbreak coincided with multiple introductions 

to England from the European mainland. The spatio-temporal risk was highly variable 

throughout highlighting that control measures needed to be developed at a smaller spatial 

scale than the national, regional or local authority level. Our results and experiences led us 

to recommend that KDE and other spatio-temporal statistical approaches should be 

incorporated into routine surveillance. 

6.2 Recurring themes 

6.2.1 Spatial Location 

Geography and health are intrinsically linked. Spatial location plays a major role in 

shaping exposure to environmental risks and many other health effects. These spatial 

locations may change throughout people’s lives, and this is influenced by socio-economic 
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and labour market conditions (244). At a population level, exposure to environmental risk 

factors may vary in space and time. At an individual level, exposure to risk factors (and 

health outcomes) is influenced by socio-demographics, place of residence, behaviour or 

occupation.  

For example, household exposure to radon (a ubiquitous, naturally occurring radioactive 

gas produced by the decay of uranium present in all rocks and soil) is associated with an 

increased risk of lung cancer. At a population level, this risk differs markedly because 

some rocks and soils produce greater amounts of radon. In England, these rocks occur 

more frequently in the Southwest and Midlands. At an individual level, the risk is around 

25 times higher amongst smokers compared with non-smokers but can also be reduced by 

modifying built environments by, for example, increasing ventilation rates in homes.  

In this example, the individual has no control over the geographical presence of the hazard 

but their probability of exposure can be modified and individual choices may further 

reduce the risk of developing cancer. However, the degree to which exposure can be 

modified will differ depending upon an individual’s socio-economic status; those who are 

able to move to an area with lower radon levels or pay for household modifications are 

more likely to be affluent.  

To study the effect of geography on health is therefore challenging, requiring data not only 

on the outcome of interest but also on the presence of environmental hazards linked to 

information on exposures, behaviours, movement, and the socio-demographic/economic 

details of the individuals affected. However, except for specific epidemiological studies, 

this data is rarely available at the individual level and ecological measures of socio-

economic and other demographic information and risk factors are commonly used as 

surrogates for individual level data.  
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In this thesis there are numerous examples of how spatial location affects disease risk. For 

example, Chapters 3 and 6 the risk of STEC and Covid-19 are both shown to vary spatially 

and also over time. In Chapter 4 there was a lower emphasis on mapping, but risk was 

demonstrated to vary spatially associated with environmental and socioeconomic factors 

which themselves vary spatially. In Chapter 5 we explore some of the geographical as well 

as individual level factors behind low and high risk STEC areas.  

6.2.2 Residential risk 

One consistent theme throughout is the importance of residential risk; that is, the 

association between defined geographical areas and increased occurrence of infections 

seen over time. This suggests that the risk of becoming an STEC case is increased simply 

by living in a particular area of the country. Although these areas of high risk tend to be 

sparsely populated, rural areas, not all rural areas are high risk suggesting that it is the 

presence of the zoonotic reservoir, perhaps in combination with other features, that drives 

infection and not simply location. 

In the UK, residential location is defined in a number of ways from an individual address 

to various aggregations of these. One commonly used residential location which is 

frequently used as it perseveres a degree of anonymity is the postcode. Postcodes are part 

of a coding system designed to help mail delivery and are an abbreviated form of address 

allowing a set of households to be grouped together. On average, there are 15 households 

per postcode, but this varies depending on population density meaning that postcode areas 

in rural areas are larger and contain fewer households. The postcode combines letters and 

numbers that are based on four geographical levels known as area, districts, sectors and the 

postcode itself. There are 124 areas, 2,827 districts, 9,487 sectors and around 1.8 million 

postcodes in the UK (245). In urban areas, postcodes may represent part of a street or a 
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large organisation. In rural areas, individual postcodes may cover a single building, or a 

group of properties dispersed over a large area.  

One key issue around postcodes is that because they are designed for the operational 

requirements of postal deliveries the addresses within may not be homogeneous in terms of 

social or environmental conditions. In England residential postcode data is collected as part 

of routine STEC surveillance and is well completed (99% of laboratory confirmed cases 

for the data we used). Cases are also asked to provide the postcode of their workplace and, 

if the case had travelled within the UK during their incubation period, the postcode(s) of 

places they had visited. 

In this thesis residential postcode of cases was used in Chapter 2 and Chapter 5, to describe 

the distribution of disease in relation to the population at risk. The analysis simply focused 

on whether the distribution of STEC O157 was dependent upon spatial location. Our 

results showed significant spatial variation in risk defined in detail by contour lines that 

straddled administrative boundaries. This effect was seen at Lineage and sub-lineage level. 

The spatio-temporal analysis also showed that the areas of increased risk were stable from 

year to year, suggesting that a greater proportion of infection is driven by the presence of 

risk factors within these areas as opposed to introductions from elsewhere (for example 

from food or infected individuals).  

In Chapter 4 we also used postcode to accurately identify destinations for cases who 

reported travelling within the UK. This enabled us to determine whether cases had 

travelled to an area considered high risk during their incubation period. 

However, postcodes are still an imprecise measure of residential location and an increasing 

number of studies are using individual address or unique property reference number for a 
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more precise measure of residential location (246, 247), better suited to measure the effects 

of highly proximal risk factors (248) .  

However, the potential benefits of fine spatial resolution of human case data is of lower 

value unless it can be mapped to similarly fine exposure data. An ideal situation, although 

there are issues around mobility discussed in the next section, would be fine resolution 

(e.g., postcode) case and exposure data. However, we found that the spatial unit at which 

census and other data were available to us differed and were always coarser than the case 

data. For example, information on rurality was available at Output Area (OA) level. OAs 

are created specifically for the output of census estimates (age, sex, population density etc.) 

in England and Wales (ref). Built from clusters of adjacent postcodes, OAs are the smallest 

unit, containing ~125 households and with a population of ~300. They vary greatly in size 

and shape as a result of the population density gradient between urban and rural regions. 

For example, a single tower block in a large city may consist of more than one OA, 

whereas a large area of remote moorland may be covered by a single OA. 

Detailed socio-economic status of an area as well as PWS counts were only at Lower 

Super Output Area (LSOA). LSOAs are built of OAs, typically 5, and so contain ~625 

households or a mean population of ~1500, with a minimum population of 1000. There are 

32,482 LSOAs in England.  SOAs are built from groups of OAs and are more homogenous 

in terms of population and size and are not subject to boundary changes meaning that 

datasets can be reliably compared across time. Importantly the aggregation of OAs to 

LSOAs is designed in such as way as to generate LSOAs which are relatively similar from 

a socioeconomic perspective (249).  

Information on animal density was derived from a 5x5 km grid based upon aggregated 

returns from the UK agricultural census. More accurate agricultural data at the farm level 

is available but unavailable to confidential reasons. Other researchers have looked to 
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overcome this coarse resolution using dasymetric mapping to redistribution animals within 

these relatively coarse grid cells using information on landcover within (210, 250-254). 

Freshwater coverage was extracted from a detailed topographical map and in its raw form 

was not spatially aggregated.  

Given this complexity of different geographies the finest spatial scale at which we could 

explore the effect of hypothesised risk factors in Chapter 3 was at LSOA level. This 

aggregation implicitly assumes that the risk of disease or distribution of risk factors is 

constant within and between the areas of aggregation. This is rarely the case for infectious 

diseases and hampers detailed exploration of spatially varying risk factors in relation to 

disease. However, LSOA is a much finer scale than that used in the majority of comparable 

work performed at state (75, 185, 255) or municipality level (140, 141, 144) . However, 

despite efforts to make these areas as socially homogenous as possible, the characteristics 

of LSOAs vary (Area range: 0.02-684 km2, Population range: 985-8,300 persons), and 

being a fairly recent development, rarely capture the complexities of the underlying 

populations, often dissecting single streets or neighbourhoods rather than aligning with 

them. Features within their boundaries will also vary spatially and this will be amplified in 

larger LSOAs that tend to be in rural areas with sparse populations. The other data were 

also at LSOA level again making the implicit assumption that the data is homogenous 

throughout.  

In the future there would be options to perform the analysis at a finer spatial resolution. 

One relatively straightforward extension would be to perform the analysis at the level of 

OA. LSOA was the unit used in Chapter 4 due to the spatial resolution of the Index of 

Material Deprivation. However, other measures of deprivation exist (e.g., Carstairs or 

Jarman Index) which only require census information. Hence although they may contain 
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less information on deprivation (e.g., income and crime data) their benefit is that they are 

available at a finer spatial resolution. 

6.2.3 Importance of mobility 

 The residential location of a person is often the best available surrogate for the micro-

environment to which they are principally exposed as they go about their daily business 

(256)(246, 248). However, this assumes that the individual did not move far from home 

during their incubation period when in fact many people commute to work and also go on 

daytrips or move further away from home for short breaks or holidays. In our own study 

(Chapter 4), 44% reported large-scale travelling (abroad, within the UK or on daytrips) 

during their incubation period. Clearly, if a case was exposed away from home, using 

residential location may be misleading when considering risk in space and time.  

One major advance in this study over others is that we considered the impact of large-scale 

travel behaviour of cases (i.e., day trips, travel within the UK and overseas). In Chapter 2, 

we used travel status to stratify our analyses to focus on those who were most likely 

infected close to home by comparing risk factors against cases who had travelled. There 

was significant impact on results, particularly the interaction between SES and travel, 

suggesting that more affluent cases were exposed to risk factors outside the UK more often 

than those living in less affluent areas. In Chapter 2, we compared the spatial location of 

cases reporting travel with those not reporting travel and found significant differences. 

Cases reporting travel were more likely to reside in the more affluent South-East of 

England and less likely to live in the North and Southwest of the country, areas that are 

considered to present a higher risk of indigenous infection. 

Whilst travel outside the UK is accepted to be a major risk factor for a wide range of 

infectious intestinal disease (IID) (257-259) and many studies remove cases that have 
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travelled overseas (1, 14) , we believe this is the first study of any IID to use details of 

travel within the UK and link this to ecological and behavioural risk factors as a reliable 

proxy for place of exposure. Not only did this enable us to explore the importance of these 

risk factors between groups who lived in high and low risk areas but also amongst those 

who lived in low-risk areas but travelled to other parts of the UK where their probability of 

exposure to risk factors may have been increased. Overall, those living in high-risk areas 

were less likely to travel away from home. 

We went further by linking travel location to reported behaviours at those places. In 

Chapter 4, we used data at a fine spatial to show where people had travelled to in the days 

preceding the onset of their symptoms. This allowed us to investigate how behaviour 

differed between cases living in high-risk areas, travellers and those who stayed at home. 

The effect of travel on reported ‘risky’ behaviour was significant with those travelling 

reporting more exposure to the agricultural environment and this was particularly 

significant for those travelling to high-risk areas. The significance of these analyses taking 

national travel into account suggests that IID surveillance should record as much travel 

information as possible to aid future IID studies. 

Yet we acknowledge the limitations of questionnaire approaches to record many of the 

movements away from home that individuals undertake. Longer and more detailed 

questionnaires may be infeasible and lead to low response rates or poor-quality information 

(260, 261). Real time recording of individual movement using GPS trackers or mobile 

phone technology are starting to be used for epidemiological studies but are currently 

clearly fraught with ethical and practical complexities (262). Despite these challenges, 

highly detailed mobility information could provide insights on where an individual had 

been during their incubation period e.g. supermarkets, restaurants, petting farms, 
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agricultural areas, which would be less subject to the recall and cognitive bias often 

associated with traditional data collection methods.. 

In addition to cases, risk factors may not be spatially static either. In this study the data we 

used is a static estimate of livestock/animal density at a predefined geographical scale (X 

km2). Yet livestock move throughout their lives over relatively small distances such as 

within and between field. Larger scale movement also occur on weekly and seasonal scales 

according to the production cycle with peaks in late spring and early autumn for cattle in 

the UK. This is coincident with the start and finish of the ‘human’ STEC season. The 

geographical distribution of these larger scale movements is fairly stable (263) and reflects 

regional networks of animal movements (263). Movement of animals increases stress and 

has been shown to increase STEC shedding levels (264, 265). In addition, a study of hides 

at slaughter showed that these were always contaminated with strains not present on the 

farm of origin indicating that cross contamination occurs readily when animals are 

transported (266). 

Both these small and large-scale movements mean that animal density (and therefore risk) 

changes throughout the year. In England generating space – time surfaces of animal 

density should be relatively straightforward as data on every movement of every cow, 

sheep, goat, and deer in the UK is collected at postcode level. These data could be used 

Unfortunately access to these data is restricted making this impossible. Had we had 

detailed animal movement data, we could have explored seasonal changes in human STEC 

rates with corresponding spatio-temporal changes in animal density at species level by 

creating a dynamic movement surface, ideally combined with WGS results from veterinary 

surveillance systems. 
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Variations in animal density over the year are also likely to have an impact on the 

environmental presence and load of STEC. Previous research has estimated this through 

incorporation of shedding rates in different aged livestock(210). Variations in animal 

density may also result in changes to strains colonising the animal reservoir with 

subsequent effects on human health. It will also affect the spatial distribution of STEC in 

the environment.   

6.2.4 Typing 

During the period of this research, typing methods for STEC O157 underwent enormous 

change form phage typing, through MLVA and since 2015, WGS. We embraced these 

changes by using comparable data sets. In Chapter 2, we used PT to stratify our temporal 

analysis to describe how the decline in STEC O157 cases since 2014 was largely due to a 

reduction in PT21/28/ Lineage II only, particularly in rural areas. We identified significant 

differences between PT 21/28 and PT8 cases with particular reference to socio-economic 

status and foreign travel as well as a previously unidentified association with PT21/28 and 

sheep density that requires further investigation. In Chapter 3, we used the highly specific 

results of WGS to explore spatial variation at lineage and sub-lineage level and also link to 

PT results using recently described phylogenetic relationships allocating PT to one of three 

common lineages circulating in the UK (12). This an emerging area of research but there 

are currently few examples in the literature that describe the spatio-temporal characteristics 

of IID at such a fine geographical and microbiological scale (118). Our results suggest this 

is a positive development and indicates that surveillance should consider typing as routine.  

6.3 Final thoughts 

This thesis aimed to build upon previous research on STEC O157 and explore 

hypothesised links from previous research conducted within the UK and further afield with 

a specific focus on applied spatio-temporal methods. Previously, these aspects had not 
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been studied or had been performed at coarse spatial scales such as UTLA level. 

Throughout, we focused on sporadic infections (the major fraction of cases) and the role of 

residential location and the environment at the finest spatial scales possible. 

 To do this, we produced novel datasets with spatial links to ecological and molecular 

typing information from a wide range of sources. For the first time in England, we 

investigated the effects of hypothesised risk factors (including animal density, SES, PWS) 

on case incidence, described geographical differences in the distribution of STEC cases 

using phenotypic and genetic information, and explored the relationship between 

residential location and the risk of infection. Previously, the role of small ruminants and 

other animals as a reservoir or maintenance species had received much less attention than 

cattle. 

Our approach also considered the role of travel and its interaction with the socio-

demographic and behavioural characteristics of cases in relation to the risk of infection. 

We did this by exploiting the information collected on UK travel destinations and 

developing a robust method to deal with any inconsistencies. 

The outputs from this thesis have contributed to and expanded the scientific literature by 

showing that the spatio-temporal risk of STEC differs significantly across England, that 

this risk is associated with residence in rural areas with high densities of farmed animals 

and that infection with more virulent strains may be associated with sheep density. We also 

show that cases living in high-risk areas were less likely to travel in the UK, suggesting 

that their infections were acquired close to home with direct contact with the farming 

environment and contact with dogs emerging as important risk factors. Risk factors for 

cases living in low-risk areas who travelled within the UK, during their incubation period, 

daytrips and direct/indirect contact with the environment was more important.  
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Finally, although the COVID pandemic interrupted the progress of this research, we were 

able to rapidly apply the methods to describe the spatio-temporal distribution of COVID-

19 in England over the first six- months of 2020 and incorporated these outputs into 

routine surveillance systems for new variants of SARS CoV-2 during 2021 (267). This 

highlighted the challenges of using very large (>50,000 daily cases) datasets and the 

limitations of computationally intensive adaptive bandwidth selectors in this scenario. It 

also prompted fruitful collaborations between UKHSA and academic partners on the use of 

cutting-edge spatial statistics during the COVID response but highlighted the ongoing and 

urgent need for public health organisations and academic centres to find ways to share 

information and promote collaboration without compromising patient confidentiality. 

6.4 Reflections on the thesis 

A more sophisticated approach for Chapters 2 and 3 would have been to use point process 

models. Spatial statistics are embedded in this approach and these models can also be used 

to predict the spatio-temporal spread of infection as well as exploring interactions between 

cases. The use of point process models requires not only data on the distribution of cases, 

but also covariate data at a similar spatial scale but this was not available, or the time scale 

and/or resource required to access the data was prohibitive. 

6.5 Future research 

In Chapter 3, we identified a spatial association between sheep density and cases falling 

into Lineage II associated with more severe disease. Although sheep meat is not considered 

a significant source of foodborne STEC infection, prevalence is fairly high in faeces and 

on fleeces (268). Our analysis explored the spatial relationship between animal density and 

cases as a proxy for direct zoonotic or indirect environmental transmission. This would 

benefit from further exploration, particularly as colonisation in sheep is comparatively 



 

129 

 

high, varies throughout the year and may be characterised by strains that are of public 

health significance (269) yet underestimated by surveillance systems (114, 270). 
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7  Supplementary material   

SM 1 Copy of STEC enhanced surveillance questionnaire 

SM 2 Spatio-temporal animation of STEC infections 2009-2015 using oversmoothed 

and likelihood cross validation bandwidths 

SM 3 Estimated log relative risk surfaces for STEC cases and controls in rural areas 

only and controls stratified by rural urban status  

SM 4 Spatio-temporal animation of COVID-19 in England between January and 

June 2020 using oversmoothed and bootstrapped bandwidths 
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8 Glossary of terms 

CI Confidence Interval 

GBRU Gastrointestinal Bacterial Reference Unit 

GIS Geographical Information System 

HUS Haemolytic Uraemic Syndrome  

IMD Indices of Multiple Deprivation 

KDE Kernel Density Estimation 

km Kilometre 

LSOA Lower Super Output Area 

MLVA Multi-Locus Variable Tandem Repeat Analysis 

NESSS National Enhanced STEC Surveillance System  

NPD National Population Database 

ONS Office for National Statistics 

OR Odds Ratio 

PCR Polymerase Chain Reaction 

PHE Public Health England 

PT Phage Type 

PWS Private water supply 

SECs Socio Economic Circumstances 

STEC Shiga-toxin producing E. coli 

TTP Thrombotic Thrombocytopenic Purpura 

UKHSA UK Health Security Agency 

WGS Whole Genome Sequencing 
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