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Abstract

Early adversity can change educational, cognitive, and mental health outcomes.

However, the neural processes through which early adversity exerts these effects

remain largely unknown.We used generative networkmodeling of themouse connec-

tome to test whether unpredictable postnatal stress shifts the constraints that govern

the organization of the structural connectome. A model that trades off the wiring cost

of long-distance connections with topological homophily (i.e., links between regions

with shared neighbors) generated simulations that successfully replicate the rodent

connectome. The imposition of early life adversity shifted the best-performing param-

eter combinations toward zero, heightening the stochastic nature of the generative

process. Put simply, unpredictable postnatal stress changes the economic constraints

that reproduce rodent connectome organization, introducing greater randomness into

the development of the simulations. While this change may constrain the develop-

ment of cognitive abilities, it could also reflect an adaptive mechanism that facilitates

effective responses to future challenges.

KEYWORDS
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1 INTRODUCTION

The structure of the human brain undergoes complex changes over the

first three decades of life (Bethlehem et al., 2022). At the macroscopic

level, neural development proceeds through the formation of a net-
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work of white matter projections between populations of neurons, a

process both subject to genetic control and environmental regulation

(Dubois et al., 2014; Scholz et al., 2009; Stiles& Jernigan, 2010). A com-

plete wiring map of the brain, known as a “connectome,” can be recon-

structed through diffusion-weighted magnetic resonance imaging
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(MRI) and analyzed using graph theory (Sotiropoulos & Zalesky, 2019).

Healthy neural architecture is characterized by a precise pattern of

organization, or topology, that emerges over the course of childhood

(Betzel, 2022;Kaiser, 2017). For instance, brain networks exhibit small-

worldness, a balance between a short average path length and high

clustering that permits both integrated and segregated processing of

information (Bullmore & Sporns, 2009, 2012). Features of connectome

organization can predict developmental differences across individuals,

including variation in cognitive ability and mental health (DiMartino

et al., 2014; Siugzdaite et al., 2020).

The structural organization of the brain emerges amid a tight set of

constraints. The most significant of these is the spatial embedding of

the network, because of which long-distance connections incur a large

metabolic cost (Cherniak, 1994). The brain has adapted to limit this

cost by making parsimonious use of energy and space, creating com-

paratively expensive features—such as connections between spatially

distant regions—judiciously (Bullmore & Sporns, 2012; Chen et al.,

2006). But cost minimization alone cannot account for the observed

organization of biological neural networks (Costa et al., 2007; Kaiser

& Hilgetag, 2004). Rather, the brain appears to negotiate an economic

trade-off between the physical cost of structural connections and the

topological value they add to the network (Bullmore & Sporns, 2012;

Rubinov et al., 2015; Vértes et al., 2012). Recent advances in computa-

tional modeling offer a way to directly investigate the constraints that

govern the development of the connectome by generating networks

using different wiring rules (Bassett & Betzel, 2017; Beul et al., 2017;

Horvát et al., 2016; Kaiser & Hilgetag, 2004; Vértes et al., 2012). Stud-

ies employing this approach have shown that slight manipulations in

the trade-off between two key generative model terms—wiring cost

and topological value—can reproduce real-world diversity in structural

brain organization, and account for differences in behavioral pheno-

types (Akarca et al., 2021; Betzel et al., 2016; Vértes et al., 2012). Thus,

this model successfully compresses the complex topology of the bio-

logical connectomes into parameters that approximate its key features.

However, the impact of developmental factors, including social envi-

ronmental conditions in early life, on the wiring economy of the brain

remains unknown.

The quality of the early environment is a critical determinant of

neurodevelopment (McLaughlin et al., 2014). Childrenwho experience

adversity or maltreatment show subtle differences in the organization

of their connectomes, including lower connectivity between modules

and altered centrality of regions such as the amygdala (Ohashi et al.,

2017; Teicher et al., 2016). Such neural differences may be conducive

to navigating a hostile and unpredictable early environment, but may

come at the expense of poorer cognition and mental health later in

life (McLaughlin et al., 2019). Due to the methodological and ethical

limits of human research, experimental studies in rodent models have

proven invaluable for establishing the causal role of adversity in neural

outcomes (Luby et al., 2020). Recentwork inmice has shown that early-

life stress causes local changes in brain network organization, including

an increase in frontolimbic connectivity and decrease in efficiency

of the amygdala, that drive a global increase in small-worldness and

heightened anxiety-related behavior (Wendel et al., 2021;White et al.,

2020). The increasingly thorough demonstration of adversity-related

differences in brain structure highlights a crucial mechanistic gap in

our understanding: how does early adversity alter the development of

network-level brain organization?

In the current study, we test whether early adversity alters the

wiring economyof thedevelopingmouse connectomeusing aparadigm

of unpredictable postnatal stress (UPS). UPS pups are raised under

conditions of limited bedding to mimic impoverishment and are also

exposed to unpredictable hour-long bouts of maternal separation and

nest disruption tomodel chaotic and complex adversity (Johnson et al.,

2018; White et al., 2020). We reconstructed the structural connec-

tomes of 49 adult mice, half of which were exposed to UPS during

the first 4 weeks of life (Johnson et al., 2018). Using generative net-

work modeling, we computationally simulated realistic networks for

each animal and evaluated howwell they replicated the observed con-

nectomes. We then tested for differences in the wiring economy of

the brain by comparing the mathematical conditions that best repli-

cated the connectomes of each group, and explored the developmental

implications of shifts in model parameters.

2 METHODS

2.1 Animals

Thirty femaleBALB/cByjmicewerehoused inbreeding cageswith stan-

dard bedding, and subsequently transferred to maternity cages once

visibly pregnant. On postnatal day 0 (P0), litters were culled to five to

eight pups and randomly assigned to dams to mitigate the effects of

genetics and litter size. Of 49 total pups, 25 (13 male and 12 female)

were assigned to a control group, while 24 (12 male and 12 female)

were assigned to an unpredictable early-life stress (UPS) condition.

Mice in the control group were raised with standard bedding and nest-

ing material. Mice in the UPS group received 25% of the standard

amount of bedding material, received no nesting material, and were

separated from their dam for 1 h on P14, P16, P17, P21, P22, and

P25. Additional details about the paradigm are available elsewhere

(Johnson et al., 2018). After weaning on P26, all mice were group

housedwith standard bedding andnonestingmaterial. All experiments

received theapproval of theInstitutionalAnimalCareandUseCommit-

tee (IACUC) at Yale University andwere conducted in accordancewith

the NIHGuide for the Care and the Use of Laboratory Animals.

See Figure 1a for an overview of the experimental design and

generativemodeling procedure.

2.2 Tissue and imaging acquisition

Tissue was collected from the mice in adulthood (>P70) after the

conclusion of behavioral testing unrelated to this analysis. Mice

were anesthetized withchloral hydrate (100 mg/kg) and, once unre-

sponsive, transcardially perfused using cold phosphate buffer saline

(PBS)/heparin (50 units/mL) solution followed by 10% formalin
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F IGURE 1 Experimental design and generativemodeling procedure. (a) On postnatal day 0, 49 pups were randomly assigned to a paradigm of
unpredictable postnatal stress or standard rearing conditions until postnatal day 26. After postnatal day 70, mice were sacrificed and ex vivo
diffusion imaging was performed.Whole-brain probabilistic tractography was used to reconstruct the structural connectome of each animal. (b)
An illustration of the generative process using a simplified connectome of 10 nodes. Starting from a sparse seed network (t= 0), edges are added
one at a time until the simulation reaches the number of edges found in the observed connectome (t= e). Thematrix of wiring probabilities is
updated at each step, allowing for dynamic shifts as the topology of the network emerges. (c) By systematically varying generative rules and
parameter combinations, it is possible to identify the topological term K and the parameters 𝜂 and 𝛾 that best simulate the organization of the
observed connectome.

(polyScience). The mice were decapitated and intact skulls were

immersed in 10% formalin at 4◦C for 24h, transferred to sterile 1×PBS

(pH 7.4), and kept at 4◦C until imaging acquisition.

Magnetic resonance images were acquired at imaging facility of

NewYorkUniversity using a 7-Tesla scanner equippedwith a cryogenic

probe for enhanced signal-to-noise ratio (Ratering et al., 2008). Amod-

ified 3D gradient-and-spin-echo (3D-GRASE) sequence was used with

an echo time of 33 ms, repetition time of 400 ms, 100 µm isotropic

resolution, two non-diffusion-weighted (b0) images, and 60 images

acquired at unique gradient directions with b = 5000/mm2 (Wu et al.,

2013). Additional acquisition details are available in a protocol paper

(Arefin et al., 2021). Imageswere corrected for noise andGibbs ringing

artifacts using MRtrix3 (Kellner et al., 2016; Tournier et al., 2019; Ver-

aart et al., 2016), displacement andeddy currents usingFSL (Andersson

&Sotiropoulos, 2016), and field bias using theN4algorithmprovided in

Advanced Normalization Tools (ANTs) (Tustison et al., 2010).
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2.3 Connectome construction and comparisons

For each mouse, a map of brain connectivity was reconstructed using

probabilistic tractography. First, unsupervised estimation of tissue-

specific response functions was conducted using the Dhollander algo-

rithm (Dhollander et al., 2016). The fiber orientation distribution was

then estimated using multi-shell multi-tissue constrained spherical

deconvolution (Jeurissen et al., 2014). Probabilistic streamline fiber

tracking with second-order integration (iFOD2) (Tournier et al., 2010)

was performed with whole-brain seeding until 10 million streamlines

were reached. Fiber tracking parameters were optimized for ex vivo

rodent tissue (step size, 50 µm; curvature threshold, 45◦; fractional

anisotropy (FA) threshold, 0.1; minimum fiber length, 0.5 mm) (Chen

et al., 2015;Wang et al., 2020).

A structural connectomewas then built from each tractogram using

a parcellation previously adapted from the Allen Mouse Brain Atlas

(AMBA) and Allen Developing Mouse Brain Atlas (ADMBA) by Rubi-

nov et al. (2015). The bilaterally symmetric parcellation consists of

41 cortical and 24 extracortical regions per hemisphere, for a total of

130 regions. Using ANTs (Avants et al., 2011), each subject image was

first registered to the AMBA template space using affine and diffeo-

morphic transformations, then the inverse transformation was used to

project the parcellation into subject space. The number of streamlines

connecting each pair of regionswas counted and transformed into con-

nectivity matrices, which were symmetrized. Self-connections were

removed. To eliminate spurious connections and highlight topological

variation across subjects (Zalesky et al., 2016), a weight-based thresh-

old of 6100 streamlines was applied to achieve a sparse connectome

density (M = 3.52%, SD = 0.13%). Node-wise comparisons were con-

ducted on four measures of local topology: nodal degree, betweenness

centrality, clustering coefficient, and efficiency, each computed using

the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/

Home) in MATLAB. Group differences at each node were assessed

using t-tests, and p-values were corrected using the False Discovery

Rate approach (Benjamini &Hochberg, 1995).

The connectomes were then binarized in preparation for genera-

tive network modeling. Binary connectomes were compared between

groups on five measures of global topology that have been associated

with adevelopmental historyof stress ormaltreatment (Hoet al., 2018;

Puetz et al., 2017): (1) number of edges; (2) total edge length, approx-

imated using the sum of the Euclidean distances between connected

regions; (3) number of long-distance edges, defined as connections

that are more than 2 standard deviations above the mean connection

length across the sample; (4) global efficiency, calculated as the average

inverse shortest path length of the network (Bullmore&Sporns, 2009);

and (5) small-worldness, defined as the ratio of clustering to shortest

path length compared to its random network equivalent (Humphries

et al., 2006), which was obtained by averaging across an ensemble

of 500 networks that were randomized while preserving the degree

distribution.

Wherever group differences were assessed, a Shapiro test was first

applied to test the normality of the distributions; normal distributions

were compared using analysis of variance (ANOVA), while others were

compared using a Kolmogorov–Smirnov (KS) test.

2.4 Generative network modeling procedure

To simulate the formation of each connectome, we formalized a trade-

off between two competing factors: the wiring cost incurred by new

connections and the topological value they add to the network (Betzel

et al., 2016; Vértes et al., 2012). The cost term penalizes long-distance

connections, thereby capturing the evolutionarily conserved drive to

minimize the metabolic and material expense of axonal projections

(Bassett & Betzel, 2017; Bullmore & Sporns, 2012). The value term

favors connections between regions that share some topological prop-

erty, such as a similar pattern of clustering or a large number of existing

connections (Bassett & Betzel, 2017; Bullmore & Sporns, 2012; Kaiser,

2017).

The model begins with a preliminary seed network, which was com-

posed of the strongest 28 connections shared across all mice so that,

in line with previous work (Akarca et al., 2021; Betzel et al., 2016),

it comprises about 10% of the final network density. See Figure S1

for additional details on seed network construction. At each step, the

model then estimates the likelihood of a new structural connections

forming within the network using the following probability equation

(Betzel et al., 2016; Vértes et al., 2012):

Pi,j ∝ (Di,j)
𝜂(Ki,j)𝛾 , (1)

where Pi,j is the probability of forming a binary connection between

any two previously unconnected regions of the brain, i and j . The first

term Di,j represents the wiring cost. As the resources required by an

axonal projection increase with its length (Bullmore & Sporns, 2012),

Di,j approximates the cost of a connection using the Euclidean distance

between the brain regions it would connect. The term is scaled by a

parameter 𝜂, which determines the strength of its contribution to the

overall wiring probability. To penalize longer distance connections, 𝜂 is

negative.

The second term Ki,j represents the topological value of a connec-

tion and can take numerous forms, each one quantifying a different

topological relationship between the two nodes i and j. Ki,j is scaled

by a parameter 𝛾, which is positive to favor connections with a higher

topological value. Following previous work (Akarca et al., 2021; Bet-

zel et al., 2016; Vértes et al., 2012), we tested 13 variations of K

(known as “generative rules”). In addition to a purely spatial model,

which did not include a topological term, we assessed two homophily

models (number of common neighbors and the matching index); five

clustering-based models (the average, minimum, maximum, difference

in, and product of clustering coefficients); and five degree-based mod-

els (the average, minimum, maximum, difference in, and product of

node degrees) (Betzel et al., 2016). All models were computed using

the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/

Home) inMATLAB.
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At every step of the generative process, the model multiplies the

cost and value terms for each pair of regions to produce a matrix of

relative wiring probabilities, and probabilistically chooses a “winning”

edge to add to the simulation (Figure 1b). As each added edge changes

the topological similarity of certain nodes, Ki,j and Pi,j are continually

updated at every step of the generative process. If an edge is added

between nodes i and j, Pi,j is set to zero. In other words, the model

continually re-computes the probability of future connections.

Shifts in wiring probability can occur rapidly, especially while the

connectome is sparse (Akarca et al., 2021). For example, consider the

network at step t = 0 in Figure 1b. Suppose it is growing accord-

ing to a generative rule that favors connections between regions with

shared neighbors. According to the probability function (Equation 1),

nodes 4 and 5 would be unlikely to wire together at first, because they

are relatively distant and share no neighbors. Instead, at step t = 1,

a connection forms between proximal nodes 5 and 6. However, this

new connection gives nodes 4 and 5 a shared neighbor and there-

fore increases the topological value of forming a direct connection,

which occurs at step t= 2, despite the greater distance between them.

While wiring cost remains the same across development, the topolog-

ical value of connections, and therefore the overall wiring probability,

is dynamic from one step to the next. As the network grows, longer

connections become increasingly likely as the topological value added

by new links outweighs the penalization of wiring cost (Akarca et al.,

2022).

The generative process terminates when the synthetic network

reaches the number of edges of the connectome that the model is sim-

ulating. By varying the generative rule used as the topological term Ki,j,

and the 𝜂 and 𝛾 parameters, it is possible to systematically manipulate

the conditions that govern the development of the synthetic network

and thereby to identify the rules and parameters that best simulate the

connectome of an individual (Figure 1c). Thus, without modeling white

matter growth, the model can shed light on what may have guided the

emergence of the organization of a connectome (Akarca et al., 2021;

Bassett & Betzel, 2017; Betzel et al., 2016).

2.5 Evaluation of generative models

2.5.1 Model energy

To find the optimal parameters for each model, a grid search was per-

formed in the space defined by −10 ≤ 𝜂 ≤ 0 and 0 ≤ 𝛾 ≤ 10. A total of

160,000 parameter combinations were tested per subject and model,

corresponding to 40,000 unique values of both 𝜂 and 𝛾.

The fit of each simulation was assessed according to the following

energy equation (Betzel et al., 2016):

E = max (KSk,KSc,KSb,KSd) . (2)

The equation consists of the KS statistics comparing the synthetic

and empirical networks on distributions of node degree (k), clustering

coefficients (c), betweenness centrality (b), and edge length (d). These

four measures are critical properties of networks that are linked to

stress exposure and psychiatric conditions (Ho et al., 2018; Menon,

2011) and have previously been used to assess the similarity of empir-

ical and economically simulated connectomes (Akarca et al., 2021;

Betzel et al., 2016; Zhang et al., 2021). As the energy is the maximum

of the four statistics, a lower energy corresponds to better model fit,

or amore similar distribution of nodal statistics between the simulated

and observed networks.

2.6 Model topological fingerprints

While Equation (2) compares the overall distributions of nodal statis-

tics, it does not reveal whether a simulation replicates local patterns of

relationships between these statistics. For instance, brain regions with

high betweenness centrality tend to be lower in clustering, given their

position between modules (Fornito et al., 2016). To assess the rela-

tive ability of generativemodels to capture such hallmarks of empirical

connectivity, the topological fingerprint (TF)matrices of both empirical

and synthetic networks were calculated.

TF matrices are a measure recently developed for this purpose

(Akarca et al., 2022). First, the lowest energy simulations produced by

each generative rule were selected. Six common measures of nodal

topology were then calculated, including degree, betweenness cen-

trality, clustering coefficient, edge length, local efficiency, and mean

matching index. Pearson correlations between these measures were

computed, averaged across the sample, and summarized in a 6 × 6 TF

matrix.

A visual comparison of the synthetic and empirical TF matrices

provides a heuristic for assessing the similarity of the correlational

structure of their topology, and thereby evaluating the generative

models’ ability to replicate the organization of empirical networks. To

quantify this formally, the difference between TF matrices is given by

the following equation (Akarca et al., 2022):

ΔTFi,j =

√√√√∑
i

∑
j

(
TFempiricali,j − TFsysthetic

i,j

)2
. (3)

Here,ΔTF is theEuclideannormof thedifferencebetweenempirical

and synthetic TF matrices. Using ΔTF, the generative rules from each

category (i.e., spatial, homophily, clustering, and degree) that produced

the lowest energy networks were compared. The generative rule that

obtained the lowestΔTFwas used in all subsequent analyses. To obtain

accurate estimates of the optimal parameters for each subject, a sec-

ond grid search of an additional 40,000 parameter combinations was

performed in a smaller parameter space defined by−3.75 ≤ 𝜂 ≤ −1.75

and 0.2 ≤ 𝛾 ≤ 0.6.

To extend the analysis of local topology to include the precise

location of connections, a measure of the edge overlap between

the synthetic and empirical networks, consisting of the sum of true

positives and true negatives, was also computed.
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2.6.1 Modal spatial layout

The spatial layout of the six nodal measures was also assessed (Akarca

et al., 2021). Four of these measures (node degree, betweenness cen-

trality, clustering coefficient, and edge length) are included in the

energy equation, while two (local efficiency and matching index) are

not. For eachmeasure, the value at each node was averaged across the

synthetic networks of all 49 subjects, resulting in a single 130 × 1 vec-

tor. The sameprocedurewas performedon the empirical connectomes.

Linear correlations between synthetic and empirical vectorswere then

calculated. At each node, the spatial error (or discrepancy) of each

measure was calculated by subtracting its average value in the syn-

thetic networks from its average value in the empirical connectomes

(Akarca et al., 2021). Thus, a lower spatial error indicates more similar-

ity between the local topology of a particular region in the simulations

and in the observed connectomes. An absolute error was calculated as

the sum of the Z-scores of all six generative errors.

2.7 Group comparisons on generative modeling
parameters

A partial least squares (PLS) discriminant analysis (Wold, 2004) was

run to test whether the optimal model parameters (i.e., the values

of 𝜂 and 𝛾 producing the lowest energy simulations) reflected a sin-

gle latent factor. The correlation between each predictor component

and the primary response component was calculated, and their sig-

nificance was assessed by permuting the group membership of the

mice 100,000 times. For the loading of each parameter onto the PLS

components, 95% confidence intervals were calculated by generating

100,000 bootstrapped samples of 49 subjects and re-computing the

loadings.

The distance of each mouse from the origin of the parameter space

(i.e., 𝜂 = 0 and 𝛾 = 0) was then calculated and compared between

groups using ANOVA.

2.8 Exploration of model stochasticity

To explore the implications of a shift inmodel parameters, the composi-

tion of thewiring probabilitymatrices (Pi,j) was also compared between

groups (Akarca et al., 2022). This was achieved by testing for differ-

ences in the distribution of probability values in the wiring matrix,

taken as the average across all steps of the lowest energy simulations.

To examine whether the dispersion among probability values emerges

over the course of the generative process, the variance among wiring

probabilities was calculated across developmental time.

To consider the effects of attenuated model parameters more sys-

tematically, additional simulationswere run scaling 𝜂 and 𝛾 toward zero

(i.e., running models at 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%,

10%, and 0% of the optimal parameters). The distribution of values

found in the wiring probability matrices (Pi,j) of these simulations was

measured andplotted. To evaluate the randomness of simulation topol-

ogy, the final networks for each of these simulations were compared

to 1000 randomly wired networks using the ΔTF measure described

above. The same comparison was conducted using the optimal simu-

lations for each mouse, and the biological connectomes were derived

through tractography.

Previous work has suggested that early adversity accelerates the

pace at which brain networks become integration and segregated over

the course of childhood (Tooley et al., 2021). To assess the potential

impact ofmodel parameters on the emergenceof these topological fea-

tures, the trajectories of integration and segregation of the simulations

across the generative process were reconstructed. The integration of

the networks was operationalized as global efficiency, calculated as

the average inverse shortest path length of the network (Bullmore &

Sporns, 2009). The segregation of the networks was operationalized,

following previous work (Tooley et al., 2020), as maximum modularity

(Q), which quantifies the difference between the observed intracom-

munity connectivity and that expected by chance (Newman, 2004). The

trajectorieswere scaled to 100 steps to present developmental time as

a percentage of the total length of the generative process.

3 RESULTS

3.1 Empirical connectomes

Using probabilistic tractography, we reconstructed structural connec-

tomes for each mouse. The UPS group showed higher betweenness

centrality of the right visual area and left cerebellar cortex, lower

betweenness centrality of the right hypothalamus and right ectorhinal

cortex, and greater nodal degree and efficiency in the left auditory area

(Tables S1–S4). Once binarized for generative network modeling, the

connectomes showed no differences between groups on gross mea-

suresof global topology, includingonnumberof edges (p= .89), number

of long-distance connections (p = .52), maximum modularity (p = .72),

global efficiency (p = .71), or small-worldness (p = .47) (see Section 2;

Table S5). Groups did not differ on the distributions of key local char-

acteristics, including node degree, clustering coefficient, betweenness

centrality, edge length, mean matching index, and nodal efficiency (all

p> .96) (see Section 2; Table S6).

3.2 Homophily-based simulations achieve best
model fit

We first sought to identify the generative rule that most successfully

reproduced the structural connectomes of our sample ofmice (N= 49).

For each animal and generative rule, we tested 160,000 parame-

ter combinations evenly distributed throughout the space defined by

−10 ≤ 𝜂 ≤ 0and0 ≤ 𝛾 ≤ 10.Weassessedhowwell each synthetic net-

work fit the connectome it was simulating using the following energy
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F IGURE 2 Relative performance of
generative networkmodels in replicating the
organization of empirical connectomes. (a) The
energy of the top-performing synthetic
networks for each animal (N= 49) across 13
generative rules: a purely spatial model, which
considers only the distance between two
regions; two homophily models, which also
consider ameasure of the similarity of the
neighborhoods of the respective regions; five
clustering-basedmodels, which compare the
clustering coefficients of the regions; and five
degree-basedmodels, which compare their
node degree.White points indicate the sample
mean. (b) The topological fingerprint (TF) is a
correlationmatrix of local network statistics,
including node degree, clustering coefficient,
betweenness centrality, total edge length, local
efficiency, andmeanmatching index. TFs are
shown for the empirical networks and the
best-performing rules across the three
categories of generativemodels. Across all four
matrices, the value of the correlation can be
inferred from the color bar (spans−0.15 [pale
lilac] through 0 [white] to 1 [teal]). Correlations
shown are the sample average (N= 49). (c)
Across the sample (N= 49), homophily
achieves lowestΔTF, a measure of the
discrepancy between the correlational
structure of the local topology of the
simulations and the empirical connectomes,
computed using the equation shown.

equation (Betzel et al., 2016):

E = max (KSk,KSc,KSb,KSd) , (4)

which compares the nodal statistics of each synthetic network to the

organization of the biological connectome; if the distributions of these

topological features are similar, then the energy will be low.

To assess the performance of the models, we compared the low-

est energy simulation produced by each rule. All generative rules

outperformed a purely spatial model that considered only wiring

cost (Figure 2a; Table S7). An ANOVA and post hoc Tukey test con-

firmed that models specifying homophily as the topological Ki,j term

achieved lower energy than those utilizing clustering (diff = −0.090,

p = 1.97 × 10−12) or degree (diff = −0.020, p = 1.16 × 10−9).

To account for the stochastic nature of network development, we

repeated this comparison while taking the average of the energy of

the top 10 best-performing networks for each subject. Though the dif-

ference in group means shrank, homophily once again outperformed

the clustering-based (diff = −0.082, p = 1.97 × 10−12) and degree-

based (diff = −0.012, p = 6.95 × 10−4) categories of models (Figure

S2). Thus, generative models that trade off the wiring cost of a con-

nection with a measure of neighborhood similarity produce synthetic
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8 of 15 CAROZZA ET AL.

networks whose global topological distributions closely resemble

those of the observed connectomes. As multiple models achieved low

energy, the success of the top-performing models from each category

was examined further.

3.3 Homophily best recapitulates the local
properties of observed networks

The energy equation effectively assesses how closely the statistical

distributions of nodal characteristics of the synthetic networks resem-

ble those of the empirical connectomes. However, brain networks also

exhibit local patternsof relationships betweennodal characteristics. To

assess whether the models successfully captured this, we calculated

the TF matrices (Akarca et al., 2022) of the empirical and simulated

networks, a measure that summarizes the unique patterns of local

organization found across a network (see Section 2).

TFs for the empirical connectomes and the top-performing gener-

ative models from each category can be found in Figure 2b (all other

rules are shown in Figure S3a). An ANOVA with post hoc Tukey test

indicated that the homophily model achieved lower ΔTF than the best
clustering-based (diff = −0.804, p < 1.0 × 10−20) and degree-based

models (diff = −0.662, p < 1.0 × 10−20), confirming the visual impres-

sion that its TF most resembled that of the empirical connectomes

(Figure 2c; comparable results are shown for all other rules in Figure

3b). In other words, a model that balances the cost of an additional

connection against the number of shared neighbors produces net-

workswith local patternsof organization that closely resemble thoseof

the rodent connectome, even though local topology was not explicitly

optimized by the energy function.

Note that similarity in local network organization does not neces-

sarily entail exact correspondence in edge location. An ANOVA with

post hoc Tukey test found that the lowest energy homophily model

achieved lower edge overlap than the lowest energy clustering model

(diff = −67.35, p = 1.05 × 10–10) but did not detect a difference

between it and the lowest energy degree model (diff = 3.18, p = 0.99)

(Figure S4). Thus, while the homophily-based approach bests approx-

imate topology, this may not extend to the precise localization of

edges.

3.4 Homophily replicates spatial layout of
empirical networks

Given that the wiring of biological neural networks is shaped by their

embedding in anatomical space (Bassett & Stiso, 2018), realistic syn-

thetic connectomes should ideally exhibit a spatial layout of topology

akin to that of connectomes derived from tractography. To test this

similarity, we first calculated the six characteristics of each node of

the parcellation, averaged across the sample, then correlated the val-

ues between simulated and empirical connectomes (Akarca et al.,

2021; Betzel et al., 2016). As shown in Figure 3, all four measures

included in the energy equation exhibited significant correlations:

degree (r = .360, p = 2.68 × 10−5), clustering coefficient (r = .346,

p = 5.40 × 10−5), betweenness centrality (r = .530, p = 9.33 × 10−11),

and edge length (r = .543, p = 2.52 × 10−11). Correlations were also

observed between synthetic and empirical nodes on local efficiency

(r = .420, p = 7.01 × 10−7) and mean matching index (r = .334,

p = 1.02 × 10−4). When repeating the assessment of spatial similarity

between empirical and simulated connectomes at the individual level,

the correlations on these measures were more moderate and variable

across the sample (degree: M = 0.1948, SD = 0.1353; M = 0.0946,

SD = 0.0808; M = 0.1857, SD = 0.1233; M = 0.2923, SD = 0.01325;

M = 0.1411, SD = 0.0932; M = 0.1686, SD = 0.1787). Thus, for some

subjects and for the sample on average, the simulations replicated the

spatial layout of key nodal features.

We also assessed discrepancies between the simulated and

observed connectomes in the layout of these local characteristics. At

each node, we computed a measure of spatial error by subtracting

the average value of each characteristic in the synthetic networks

from its average value in the empirical connectomes (Akarca et al.,

2021). Thus, a lower spatial error indicates more similarity between

the local topology of a particular region in the simulations and in the

observed connectomes. While overall spatial error was distributed

throughout the brain (Table S8), a significant correlation was observed

between spatial error and node degree in the seed network (r = .436,

p = 2.221 × 10−7) (Table S9). This indicates that generative models

may benefit from instructions as to where to begin adding connec-

tions if they are to best replicate the spatial patterning of network

characteristics.

3.5 Early adversity attenuates wiring constraints
in optimal simulations

Across all generative models, the homophily model implementing the

neighbor rule exhibited the smallest coefficient of variation in the 𝛾

parameter and second smallest in the 𝜂 parameter (Table S7). Thus,

while this rule was best able to account for variations in topology

across animals, it did so throughminute adjustments in theweightingof

its cost and value terms, likely indicative of the highly regulated nature

of connectomic organization (Figure 4a). To obtain maximally precise

parameters for each animal, we therefore performed a second search

of 40,000 parameter combinations in a narrow space centered at the

apparent minimum of the energy landscape: −3.75 ≤ 𝜂 ≤ −1.75 and

0.2 ≤ 𝛾 ≤ 0.6.

The parameters producing the lowest energy networks for each

animal are shown in Figure 4b. The cost and value parameters were

correlated (r = −.574, p = 1.65 × 10−5), placing the simulations on an

axis fromtheoriginof theparameter space (𝜂 = 0, 𝛾 = 0). This indicates

that simulations with a more severe penalty on long-distance connec-

tions usually had stronger preference for connections between regions

with shared neighbors.

Along this axis, animals in the UPS condition tended to fall closer to

the origin; we confirmed this observation by comparing the length of a

vector from the origin to each point between groups (UPS M = 2.63,
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10 of 15 CAROZZA ET AL.

F IGURE 4 Adversity attenuates optimal generativemodeling parameters. (a) In the first run of the homophily model, 160,000 unique
combinations of cost parameter 𝜂 and value parameter 𝛾were tested. The energy surface shown is the sample average (N= 49). (b) Optimal values
of 𝜂 and 𝛾 produce the lowest energy synthetic networks. Values were obtained by testing an additional 40,000 parameter combinations in a
narrow low-energy window of the initial grid search, highlightedwith a black rectangle in panel (a). Each data point in the scatterplot represents a
single animal. Density plots above and to the right highlight differences between unpredictable postnatal stress (UPS) and control conditions.
Optimal parameters tend to fall closer to the origin—at the bottom right of the plot—for animals in the UPS condition (ANOVA F1, 47 = 5.700,
p= .021).

SD = 0.213, Control M = 2.79, SD = 0.210; ANOVA F1, 47 = 5.700,

p= .021). The simulations for animals in the UPS conditionwere there-

fore subject to weaker constraints on the formation of connections.

One possible confound here is that the models may simply perform

better for one group than the other, but this was not the case: no dif-

ference in model energy was observed (UPS M = 0.101, SD = 0.015,

Control M = 0.105, SD = 0.010; ANOVA F1, 47 = 0.719, p = .401). To

test the sensitivity of this finding to the choice of the lowest energy

simulation, we took the average of the eta and gamma across the 10

lowest energy simulations (Figure S5).While the UPS group was found

closer to the origin of the parameter space (UPSM= 2.68, SD= 0.117,

Control M = 2.71, SD = 0.106), the difference in group means again

shrank, and an ANOVA did not detect a significant difference (ANOVA

F1, 47 = 1.185, p= .282).

What is the nature of this group difference in parameters? One pos-

sibility is that either or both parameters drive the change in a relatively

independent manner. Alternatively, it could reflect a single underly-

ing shift in wiring constraints that incorporates both parameters. We

distinguished these alternatives using a PLS discriminant analysis (see

Section 2). This formally tests for the presence of underlying factors

that explain the group difference in parameter combinations. There

was a significant correlation between the group affiliation and the

first latent variable (r = .36, ppermuted = .011) but not the second

latent variable (ppermuted = .898). Both parameters of the generative

model (𝜂 coefficient=−1.5549, 95%confidence interval [CI] [−1.8929,

−1.2969]; 𝛾 coefficient = 0.1229, 95% CI [0.0684, 0.1858]) loaded

significantly onto this component. Therewas no between-group differ-

ence in scores on the component (KS D1, 47 = 0.308, p = .159). Thus,

it seems that the observed group difference in location in the parame-

ter space reflects a change that incorporates both wiring parameters,

rather than reflecting one or two independent effects.

3.6 Shift in wiring economy induces greater
stochasticity

Simulations closer to the origin of the parameter space have greater

stochasticity or randomness in the generative process (Akarca et al.,

2022). To understandwhy this is the case, imagine that the edges in the

wiring probability matrix are competing with one another. When the

cost penalty and topological preferences are strong, fewer edges have

high probabilities of wiring and the preferredwinner is clear. But when

constraints are weaker, more edges qualify as good contenders, giv-

ing the probabilistic nature of the process a greater role in the gradual

organization of the network.

Simulations for theUPS condition showed a flatter distributionwith

a greater dispersion of values in the probabilitymatrix compared to the

control condition (Figure 5a; KS D1, 47 = 0.055, p = 2.20 × 10−16), cor-

responding to more potential connections with higher probabilities of

wiring and therefore heightened stochasticity. Variance among wiring

probabilities rose over the course of the development of each simu-

lation, particularly in the UPS condition, indicating that this increase

in stochasticity was more pronounced later in the generative process

(Figures 5b and S6). At the end of the generative process, the simu-

lations for mice in the UPS condition exhibited a distribution of node

degree that was closer to normal (kurtosis: KSD1, 47 = 0.475, p= .005),

indicating that the shift in wiring probabilities subtly randomized

network topology.

To explore the relationship betweenmodel stochasticity and param-

eters more systematically, we produced additional simulations scaling

𝜂 and 𝛾 toward the origin of the parameter space. Specifically, we ran

models at 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, and 0% of

the optimal wiring parameters (Figure 5c). We then measure and plot-

ted the distribution of values found in the wiring probability matrices
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CAROZZA ET AL. 11 of 15

F IGURE 5 Weaker wiring constraints heighten stochasticity of network development. (a) Distributions of wiring probabilities (Pi,j) within the
probability matrix, taken as the group averages across all steps of optimal simulations. The unpredictable postnatal stress (UPS) condition shows a
flatter distribution with greater dispersion, corresponding tomore connections with higher wiring probabilities. (b) Variance among values in the
probability matrix (Pi,j) corresponds to the dispersion of likelihoods of potential future connections.Wiring probability variance rises as
simulations develop, especially in the UPS condition, indicating thatmodel stochasticity wasmore pronounced later in the process. (c) To assess the
effect of systematically manipulating wiring constraints, simulations were run at 10% increments from the optimal values for each animal to zero.
This resulted in the 490 parameter combinations plotted in this space. (d) Distributions of wiring probabilities (Pi,j) within the probability matrix,
taken as the average across all steps, at each parameter interval.Wiring probabilities for simulations with weaker parameters approach a normal
distribution. (e) Topological dissimilarity (ΔTF; see Section 2) was averaged across 1000 randomly wired networks. The organization of simulated
networks gradually resembles random topology as parameters approach zero. The same trend is observedwhen comparing the UPS condition to
the control condition, both for (f) optimal generativemodels and (g) biological connectomes derived through tractography.

(Pi,j) of these simulations. As the parameters neared 𝜂 = 0 and 𝛾 = 0,

the distribution of values within the wiring probability matrices (Pi,j)

exhibited greater dispersion (Figure 5d). This corresponds to a greater

number of connections with high probability of wiring over the course

of the generative process.

Simulations with smaller wiring parameters had a more random

topology (Figure 5e), as measured by the average ΔTF to 1000 ran-

domly wired networks. We found the same trend toward random

network topology in the UPS group, both in the optimal simulations

(Figure 5f; UPS M = 1.18, SD = 0.214, Control M = 1.27, SD = 0.214,

ANOVA F1, 47 = 2.158, p = .148) and the biological connectomes

(Figure 5g; UPSM= 0.915, SD= 0.125, ControlM= 0.973, SD= 0.126,

ANOVA F1, 47 = 2.647, p = .110). Though subtle, this is in line with the

principle that weaker wiring constraints heighten stochasticity in the

formation of structural connections, thereby leading to more random

brain network topology.

As recent work suggests that early adversity can accelerate devel-

opmental trajectories of network connectivity (Callaghan & Totten-

ham, 2016; Tooley et al., 2021), we reconstructed the emergence of

network integration and segregation across the generative process
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12 of 15 CAROZZA ET AL.

for both the optimal simulations and the additional models run with

parameters scaled toward the origin of the parameter space. Results

can be found in Figure S7. Attenuated model parameters appear to

accelerate the increase in global efficiency and the drop in maximum

modularity that occur over the course of simulation development.

4 DISCUSSION

We explored the effects of early adversity on the development of the

structural connectome. We deployed generative network modeling in

a mouse model of UPS to test whether adversity alters the economic

trade-off that best simulates structural brain organization. The param-

eters that reproduced the rodent connectomes were closer to zero for

themice exposed toUPS, resulting in greater variability inwiring prob-

abilities and therefore stochasticity in the generative process. Thus,

exposure to a chaotic and unpredictable environment may attenuate

or weaken constraints governing the emergence of complex brain net-

work topology. These results point to a crucial intermediate level of

explanation for the developmental impact of early adversity.

Replicating prior work in generative network modeling, models

with a topological term outperformed that based purely on distance

(Akarca et al., 2021; Betzel et al., 2016; Vértes et al., 2012; Zhang

et al., 2021), and models implementing the principle of homophily pro-

duced the most realistic structural connectomes in terms of topology

(Akarca et al., 2021; Betzel et al., 2016; Vértes et al., 2012; Zhang

et al., 2021). These findings accord well with previous research on

the development of the mouse brain; wiring cost alone is not suffi-

cient to recapitulate the complex topologyof itsmacroscopic structural

networks (Rubinov et al., 2015). In our study, the neighbor rule—

which favors connections between regions with a greater number of

shared neighbors—produced networks that possessed not only simi-

lar statistical distributions of nodal characteristics, but also their local

organization and spatial layout. Importantly, this organization was

not hard-coded into the algorithm but emerged from the trade-off

between cost and value over the course of the generative process. Our

study is the first to implement the two-parameter generative model

in rodents and replicate the comparative success of homophily in this

species—though studies in humans have found that thematching index

performs better than the neighbor rule, perhaps indicating a species

difference in network organization (Akarca et al., 2021; Betzel et al.,

2016;Vértes et al., 2012).Onepotential explanation for the topological

success of homophily-based rules may be that they capture the impact

of macroscopic dynamics of Hebbian learning: as regions with similar

neighborhoods are likely to experience comparable patterns of stimu-

lation, mechanisms of activity-dependent plasticity would favor their

consolidation into a structural network (Ganguly & Poo, 2013; Vértes

et al., 2014).

The parameters that produced the best-fitting synthetic networks

differed between mice according to their exposure to early adversity.

Specifically, simulations for mice in the UPS condition were subject to

a more moderate penalty on long-distance connections and a weaker

preference for connections between regions with shared neighbors.

The negative correlation betweenmodel parameters, in linewith previ-

ously findings (Akarca et al., 2021; Zhang et al., 2021) (but see also Bet-

zel et al., 2016), indicates thewiring economyof the brain differs across

individuals through co-variance of the two constraints. However, it is

still possible that a single parameter accounts for the observed group

difference. Using a PLS discriminant analysis, we confirmed that a sin-

gle latent factor that incorporates both the cost penalty and value term

best explains the relationship between model parameters and group

affiliation. As evolutionary pressures have favored heightened pheno-

typic plasticity in harsh, unpredictable environments, evenwhen this is

energetically costly (Ellis et al., 2017; Frankenhuis & Amir, 2021), the

brain may respond to early unpredictable stress by attenuating overall

constraints on the formation of new structural connections. This find-

ing is particularly striking because, using global measures of topology,

we did not detect an effect of early adversity on structural connec-

tivity, in contrast to previous work (Johnson et al., 2021; Kim et al.,

2019;Ohashi et al., 2017; Puetz et al., 2017).While this could be due to

inadequate power or the choice of experimental paradigm, it may also

reveal that a generative modeling approach can approximate complex

and subtle outcomes of adversity by reducingmanymeasures of neural

organization to a single latent factor.

As lower magnitude wiring parameters correspond to heightened

model stochasticity, early adversity appears to favor more random

structural organization of the brain. Given that UPS mice show

impaired fear learning (White et al., 2020) and weaker wiring con-

straints are associated with poorer cognitive abilities in children

(Akarca et al., 2021), our results might therefore offer a mechanistic

account for the previous finding that growing up in an unpredictable

environment can hamper cognitive development (Davis et al., 2017).

However, greater stochasticity in network development may also

reflect an advantageous process of adaptation, as individuals exposed

to early adversity tend to show skills and abilities that are con-

ducive to successfully navigating stressful contexts (Ellis et al., 2017).

Across scales, the probabilistic development of neural tissue harnesses

stochastic and noisy processes to build circuits that are robust to per-

turbation (Hiesinger & Hassan, 2018). In an adverse or unpredictable

environment, heightened stochasticity in thedevelopmentof the struc-

tural connectome could be adaptive if it enables the nervous system to

respond more effectively to future challenges in hostile environments

(Frankenhuis & Amir, 2021). This proposal is consistent with a recent

finding that the connectomes of children with cognitive difficulties are

more robust to random attacks on networks hubs (Siugzdaite et al.,

2020).

It is important to note that our generative models are not intended

to model white matter growth and not provide conclusive evidence

of longitudinal differences in neural development (Bassett & Betzel,

2017). Furthermore, the group difference in parameters was small

and sensitive to averaging across numerous simulations, indicating a

need to replicate the effect in an independent sample. Replication

should also assess the robustness of the results to different threshold-

ing approaches. These efforts may be aided by a recently developed

parameter estimation method that efficiently negotiates a trade-off

between the computational burden of generative models and the
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accuracy and reliability of optimal parameters (Liu et al., 2023). More

broadly, an exploration of the impact of the intrinsic stochasticity of

the model—by conducting within- and between-parameter compar-

isons of its output—would be useful. Methodological developments

could also increase the biological correspondence of the simulations in

a few key ways. First, as the binarization of the connectomes is a gross

simplification, a generative modeling strategy that produces weighted

networks would be a welcome next step. This would also aid future

efforts to improve themodels by elaborating themodel fitting process,

so that it considers the location and strength of precise edges in addi-

tion to network topology (which has hitherto been the focus). Second,

models may benefit from varying rules and parameters across space

and time. Additionally, models could incorporate other facts known

to shape connectomic organization, such as the functional identity or

morphology of regions (Pathak et al., 2020; Song et al., 2014). As UPS

can have sex-specific effects on brain structure (White et al., 2020),

future work should test for sex differences in the wiring economy of

the brain. Finally, comparing the effects of UPS to the impact of early

adversity on thewiring economy of the human brainwould confirm the

generalizability of these results across species.

In conclusion, we found that UPS changes the economic condi-

tions that reproduce the macroscopic structural organization of the

brain. Our results offer a promising and mathematically specified path

toward understanding how early life adversity contributes to diversity

in structural brain network organization.
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