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CropQuant-Air: an AI-powered
system to enable phenotypic
analysis of yield- and
performance-related traits
using wheat canopy imagery
collected by low-cost drones

Jiawei Chen 1,2†, Jie Zhou 1,2†, Qing Li 3†, Hanghang Li 1,
Yunpeng Xia 1, Robert Jackson 4, Gang Sun 1,
Guodong Zhou 1, Greg Deakin 4, Dong Jiang 3

and Ji Zhou 1,4*

1State Key Laboratory of Crop Genetics & Germplasm Enhancement, Academy for Advanced
Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China, 2College of Engineering,
Nanjing Agricultural University, Nanjing, China, 3Regional Technique Innovation Center for Wheat
Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of
Agriculture, Nanjing Agricultural University, Nanjing, China, 4Cambridge Crop Research, National
Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
As one of the most consumed stable foods around the world, wheat plays a

crucial role in ensuring global food security. The ability to quantify key yield

components under complex field conditions can help breeders and researchers

assess wheat’s yield performance effectively. Nevertheless, it is still challenging to

conduct large-scale phenotyping to analyse canopy-level wheat spikes and

relevant performance traits, in the field and in an automated manner. Here, we

present CropQuant-Air, an AI-powered software system that combines state-of-

the-art deep learning (DL) models and image processing algorithms to enable

the detection of wheat spikes and phenotypic analysis using wheat canopy

images acquired by low-cost drones. The system includes the YOLACT-Plot

model for plot segmentation, an optimised YOLOv7 model for quantifying the

spike number per m2 (SNpM2) trait, and performance-related trait analysis using

spectral and texture features at the canopy level. Besides using our labelled

dataset for model training, we also employed the Global Wheat Head Detection

dataset to incorporate varietal features into the DL models, facilitating us to

perform reliable yield-based analysis from hundreds of varieties selected from

main wheat production regions in China. Finally, we employed the SNpM2 and

performance traits to develop a yield classification model using the Extreme

Gradient Boosting (XGBoost) ensemble and obtained significant positive

correlations between the computational analysis results and manual scoring,

indicating the reliability of CropQuant-Air. To ensure that our work could reach

wider researchers, we created a graphical user interface for CropQuant-Air, so

that non-expert users could readily use our work. We believe that our work
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represents valuable advances in yield-based field phenotyping and phenotypic

analysis, providing useful and reliable toolkits to enable breeders, researchers,

growers, and farmers to assess crop-yield performance in a cost-

effective approach.
KEYWORDS

wheat spike detection, drone phenotyping, key yield component, yield classification,
open AI software
Introduction

Yield performance is in the heart of breeding, crop research and

agricultural practices (Ferrante et al., 2017). The ability of reliably

classifying and predicting yield production was key for plant

researchers and breeders to understand crop yield performance

under complex field conditions (Jin et al., 2017). Moreover, to be

able to estimate yield production during the season could facilitate

growers and farmers to make reliable decisions of agronomic

management such as crop rotations, fertilisation, and irrigation,

so that growing conditions for crops could be optimised to facilitate

more accurate and sustainable agricultural practices (Reynolds

et al., 2020).

In this study, we used wheat (Triticum aestivum) as our model

plant, a key staple food in China and many countries around the

world. Global wheat consumption reached 793 million tons in

2021/22 (Nduku et al., 2023), demonstrating the great significance

to ensure its supply. Nevertheless, wheat yield production could be

affected by many factors in the field, ranging from environmental

factors to agronomic inputs (Yang et al., 2021). Hence, it is

important to equip breeders and plant researchers with suitable

toolkits, so that they could assess yield performance during the

reproductive phase. To characterise wheat grain yield, key

components such as spike number per unit area (SNpM2), grain

number per spike (GNpS), and thousand grain weight (TGW) were

often utilised (Griffiths et al., 2015). The SNpM2 trait was regarded

as a key indicator to evaluate yield potential (Bastos et al., 2020).

Breeders, crop researchers, growers and farmers often manually

scored or statistically estimated this trait during field surveillance

(Marza et al., 2006). However, traditional methods to quantify

SNpM2 in the field were not only laborious, but also prone to

error (Qiu et al., 2019), leading to new approaches developed to
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address this challenge (Furbank et al., 2019). More importantly, due

to the rapidly changing climates, breeding strategies were reformed

towards the improvement of crops’ climate resilience and

sustainability, requiring more effective data collection and analytic

tools to accelerate the process of characterising yield components

(Bevan et al., 2017).

Unmanned aerial vehicles (UAVs) based plant phenotyping

has been developed rapidly in the past decade (Jang et al., 2020).

Due to the decreasing costs of drones and image sensors, the

improvement of flight control software, and more powerful UAV-

based analytic software introduced to the research field, many

research groups integrated drone phenotyping into their field-

based research activities (Yang et al., 2017). In order to study yield

performance, a range of image sensors such as red-green-blue

(RGB) cameras, multi- and hyper-spectral devices, Light

Detection and Ranging (LiDAR), and thermal and infrared

sensors (Kachamba et al., 2016; Gracia-Romero et al., 2017; ten

Harkel et al., 2020) were utilised in drone phenotyping to acquire

plant’s morphological and spectral features, from which yield-

related traits and proxies could be derived (Jiang et al., 2021). For

example, AirSurf applied convolutional neural networks (CNNs)

to analyse millions of lettuce heads collected by manned light

aircrafts, so that marketable yield of lettuce production could be

estimated (Bauer et al., 2019); multi-temporal vegetation indices

derived from drone-collected multi-spectral and RGB imagery

were employed to predict rice grain production, showing the

drone-based phenotyping could be used to identify the optimal

stage for carrying out yield prediction in rice (Zhou X. et al., 2017);

deep CNNs were employed to estimate rice yield performance

during ripening based on aerial imagery (Yang et al., 2019);

multimodal data fusion and deep learning were integrated into

the classification of yield production in soybean through drone-

based field phenotyping (Maimaitijiang et al., 2017); CropQuant-

3D utilised open-source 3D point clouds analysis algorithms to

extract canopy-level yield-related traits (e.g. 3DCI) collected by

light detection and ranging (LiDAR) or drones to identify resource

use efficiency wheat varieties and their yield performance (Zhu

et al., 2021); AirMeasurer combined computer vision and

supervised machine learning (ML) to bui ld dynamic

phenotyping algorithms to analyse yield-related traits in rice

(e.g. early establishment and heading date) based on 2D/3D

aerial imagery, resulting in reliable loci identified to enable the

exploration of new candidate genes (Sun et al., 2022).
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The above research made valuable progresses in yield-based

aerial phenotyping. Still, much research aimed to establish

relationships between physiological parameters (e.g. vegetation

indices and canopy structural features) with yield production,

which were useful proxies but did not provide a direct yield-based

measure (Gizaw et al., 2018). Due to the rapid advances in vision-

based artificial intelligence (AI) and deep learning (DL), AI-

powered techniques such as object detection, classification,

semantic segmentation, and pattern recognition opened a new

door for yield-based trait analysis (Wang et al., 2020). For

example, SpikeSegNet (Misra et al., 2020) used an encoder-

decoder with hourglass architecture to detect wheat spike signals

for indoor experiments; DeepCount (Sadeghi-Tehran et al., 2019)

combined simple linear iterative clustering and deep CNNs to

identify wheat spikes in the field, indicating the feasibility of

applying DL to detect spike-like objects but was limited in scale

and varieties; by tilting camera angles, DL models were trained to

count wheat spikes and estimate yield when spike density was low

(Hasan et al., 2018); fully convolutional network (FCN) and transfer

learning were employed to perform semantic segmentation of wheat

spike regions using time series collected by CropQuant

workstations (Zhou J. et al., 2017; Alkhudaydi et al., 2019),

demonstrating the usefulness of AI-powered trait analysis of key

yield components.

The above methods verified that DL-based approaches could

bring unique values to the detection of key yield components such

as wheat spikes under field conditions. Nevertheless, due to the

complex field conditions and the large-scale nature of field trials,

ground-based stationed phenotyping devices were rather limited if

hundreds of plots needed to be examined. Consequently, drone-

based field phenotyping was likely to bridge the gap between

accuracy and scalability in yield-based studies (Yang et al., 2017).

While the above ML/DL methods advanced our capability in

detecting wheat spikes, the generality and scalability of them

needed to be improved due to diverse wheat spike morphologies

(e.g. awned, awnless, long and short spikes) and recent advances in

vision-based AI research (Patrıćio and Rieder, 2018). In fact, besides

morphological and spectral features, semantic information should

also be considered in the detection of wheat spikes from the canopy

(Sadeghi-Tehran et al., 2019). Hence, domain knowledge such as

wheat spike developmental (e.g. key growth stages) features and

plot- and organ-level morphological features should be taken into

consideration when building DL models (Zhou et al., 2022), so that

wheat spikes could be identified reliably under field conditions,

including colour changes caused by changing natural illuminance,

clustered or sparse spikes due to dissimilar growth paces, or canopy-

level spike occlusion during the reproductive phase.

Our work, CropQuant-Air, presents an open and AI-powered

software system that combined state-of-the-art DL techniques into

the detection of wheat spikes under complex field conditions. The

CropQuant-Air system first integrated the YOLACT-Plot model, a

DL model based on the YOLACT++ model (Angeles Ceron et al.,

2021), to enable the automated plot segmentation based on drone-
Frontiers in Plant Science 03
collected wheat canopy image series. Within the segmented plots,

an optimised YOLOv7 model (Wang et al., 2022) was trained using

our labelled spikes together with the Global Wheat Head Detection

(GWHD) dataset (David et al., 2020), which was employed to

perform spike detection and quantify the SNpM2 trait. Moreover,

we have included a range of image processing algorithms in

CropQuant-Air to conduct canopy-level trait analysis using

spectral and textural features possessed by the aerial images. To

verify the CropQuant-Air system, we applied it to a field experiment

studying 210 wheat varieties (two replicates; 420 plots) selected

from main wheat production regions in China. Besides the analysis

of the SNpM2 and canopy-level traits, we also developed the

Extreme Gradient Boosting (XGBoost) ensemble (Chen and

Guestrin, 2016) to classify yield groups using the quantified yield-

and performance-related traits. After that, we performed

correlation analysis between the computational analysis results

and manual scoring on target traits and obtained significant

positive correlations, indicating the reliability of the CropQuant-

Air system in AI-powered phenotypic analysis. Finally, to ensure

that our work could reach the broader plant research community,

we created a graphical user interface (GUI) for CropQuant-Air, so

that non-expert users could readily use our work for their yield- and

performance-related trait analysis.
Materials and methods

Plant materials and field experiments

In order to verify trait analysis results generated by CropQuant-

Air, we selected 210 winter wheat varieties cultivated for several

main wheat production regions in China including Jiangsu (East

China), Shandong (North China), and Henan (Central China).

These lines were known for their dissimilar yield performance

and different spike morphologies (Betts et al., 2014), which were

suitable for building generalised DL models to incorporate

dissimilar phenotypic variation into the AI-powered plot and

spike detection based on canopy-level wheat images (see Table S1

in Supplementary Material for the list).

The field experiment was conducted at the Nanjing Agricultural

University’s Baimai field trial center (Nanjing China; 31°36’57.8” N,

119°10’46.1” E; red coloured 5-point star, Figure 1A), just below 0.6

hectares (ha) in size. During the 2021/22 growing season, the 210

wheat varieties (two replications; dark blue and dark red shading

areas; Figure 1B) were sown in 1.5 × 1.5 m plots, with 20 cm

spacing, 5 rows per plot, and around 450 plants per plot. At the end

of the season, we threshed and weighted the dry grains to measure

grain production per plot (in kg), grain production per m2

(GPpM2), and thousand grain weight (TGW, in kg). The yield

data was manually classified into three groups (i.e. high, medium,

and low) according to protocols previously published (Leilah and

Al-Khateeb, 2005), which were also used as groundtruthing when

verifying the yield classification model.
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Drone-based phenotyping

As we focused on collecting canopy-level features using low-

cost drone phenotyping, we therefore developed a smartphone-

based flight control function based on the DJI developer Mobile

SDK (DJI, Shenzhen, China), which could control small drones

(i.e. Mavic2 Pro, equipped with an high-definition RGB camera,

with a maximum image resolution of 5,472 × 3,648 pixels). After

verifying the image resolution for AI-powered detection as well as

the speed of drone phenotyping, we chose to fly the drone to image

wheat canopy from an overhead perspective at a 4-m altitude

during late flowering and early grain filling stages, so that we

could accomplish the aerial imaging within 30 minutes and with

AI-compatible wheat imagery (Figure 1C). Also, due to the

aviation regulation in China, we manually flew the drone via an

Android smartphone to hover at fixed spots directly above target

plots and imaging was conducted using an auto-ISO mode with a

fast fixed shutter speed (Figure 1D, left). Two series of images were

generated during the phenotyping, consisted of 210 aerial images,

representing the 210 winter wheat varieties’ morphological and

spectral properties at the canopy level (Figure 1D, right). After

each flight, the acquired images were transferred to a cloud server

(Baidu Netdisk, Beijing, China) to enable different project partners

to review and pre-process. Some testing files were uploaded to our

GitHub repository for academic research and development

(R&D) activities.
Frontiers in Plant Science 04
The training dataset for AI-powered
trait analysis

AI-powered plant phenomics research heavily relied on high-

quality labelled data. To extract wheat plots (i.e. regions of interest,

ROIs; Figure 1E, left) from acquired aerial images effectively, we

first employed the Labelme toolkit (Torralba et al., 2010) to label

plot outlines (480 labelled plots in total, in the COCO2017 format);

then, we applied the Labelimg tool (Yu et al., 2019) to annotate

wheat spikes within the ROIs (212,596 spikes in total, stored in the

PASCAL VOC format). Some of the labelled plot- and spike-level

datasets (Figure 1E, right) was also uploaded to the

GitHub repository.

The wheat-plot training dataset was used to enable the AI-

powered plot detection, so that the central plot region in a given

aerial image could be reliably identified (Figure 2A). To improve the

wheat-plot training dataset in terms of unevenly distributed

samples (i.e. dissimilar variety numbers from the three wheat

production regions), we applied image augmentation techniques

to enhance the dataset, including techniques such as luminance

enhancement, random rotation, pretzel noise, and mosaics

(Figure 2B; middle), resulting in a total of 1,920 annotated plots,

which were divided into training (1,351 images; 70%) and testing

(579 images, 30%) sets.

The wheat spike annotation was conducted by three specialists,

whose labels were combined as the wheat-spike training dataset.
D

A B

E

C

FIGURE 1

The field experiment and plot-based images acquired by low-cost drones. (A, B) Geo-location of the trial centre, where 210 wheat varieties were
studied; the varieties were selected from three main wheat production regions in China. (C, D) The aerial phenotyping using a low-cost drone and
wheat canopy imagery acquired from an overhead perspective, with some representative varieties listed. (E) The image resolution of the collected
aerial images together with plot- and spike-level image annotation.
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Besides our own imagery, we utilised training datasets previously

published, i.e. the GWHD dataset (collected by nine organisations,

covering genotypes from Western Europe, North America,

Australia and East Asia), where an open and diverse dataset of

wheat spikes were labelled from RGB images for developing and

benchmarking ML/DL models. In order to improve the

generalisation and accuracy of our AI-powered wheat spike

detection algorithm, we combined GWHD and our wheat-spike

training data with image augmentation techniques to train the

YOLOv7 (Wang et al., 2022) based wheat spike detection model.
The algorithmic workflow of
phenotypic analysis

We developed a three-step algorithmic workflow to incorporate

computer vision and DL algorithms into the plot-based trait

analysis: (1) a YOLACT-Plot segmentation algorithm (Figure 2B;

right) was trained to enable the detection of wheat plots in aerial

images; (2) then, canopy-level signals within the segmented plot

were analysed by computer vision and DL-based object detection

algorithms, resulting in the measurement of a range of phenotypic

features, including plot-level wheat spikes, spectral (i.e. excess red

vegetation index, ExR; normalised difference yellowness index,

NDYI; visible atmospherically resistant index, VARI) and textural

traits (i.e. canopy coverage; angular second moment, ASM;

greyscale co-occurrence matrices, GLCM dissimilarity); (3) finally,

plot-based trait analysis results (in CSV) and processed images (i.e.

plot region segmentation and plot-level spike detection; in JPG)

were produced and downloadable via the CropQuant-Air system
Frontiers in Plant Science 05
(Figure 2C). When calculating spectral traits, we followed the

approach that was developed for RGB-sensor-based trait analysis

without radiation calibration (Svensgaard et al., 2021).
The YOLACT-Plot segmentation model

The YOLACT++ model was an enhanced fully-convolutional

model built for real-time instance segmentation. We adopted its

learning architecture and built the YOLACT-Plot model to identify

wheat plots within aerial images. The YOLACT++ network was

composed of a ResNet101 backbone network to extract features

from input images, generating five feature maps (i.e. from C1 to C5;

Figure 3E). Following the standard architecture, we utilised the C3-

C5 feature maps (red coloured numbered circles 1-3) as input layers

of the feature pyramid, which were fused to produce five sub-feature

maps (P3 to P7) at different scales (Figure 3B). The ResNet-101-

based backbone network in the YOLACT++ employed the

Bottleneck Residual structure as the fundamental module to

enhance feature extraction and address the gradient vanishing

problem (Wu et al., 2019). In our case, different sizes and shapes

of plots needed to be detected under complex field conditions.

Hence, we optimised the model by replacing the Bottleneck module

with a modified Res2Net module (Gao et al., 2021), which facilitated

the extraction of deeper and high-level features contained in a single

layer. The Res2Net module consisted of four feature sub-graphs that

had the same spatial size and channels, whose output was convolved

3 × 3 with the previous feature sub-graph as its input. Finally, the

outputs of the four feature sub-graphs were combined via a 1 × 1

convolution, enabling the reuse of features to help us expand the
A B

C

FIGURE 2

The analysis workflow of the CropQuant-Air system established for extracting plot-level phenotypic traits from drone-collected wheat canopy
images. (A) The establishment of wheat-plot training data to identify wheat plot region using the Labelme toolkit. (B) Image augmentation applied to
enhance the wheat-plot training dataset. (C) The CropQuant-Air system developed for processing drone-collected wheat images and quantifying
phenotypic traits based on morphological and spectral signals.
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perceptual domain to facilitate the extraction of both global and

local information (Figure 3A; below).

Additionally, to further the enhancement of feature extraction in

the YOLACT-Plot model so that invalid or irrelevant features could

be suppressed, we added a Convolutional Block Attention Module

(CBAM) to the Res2Net module (Woo et al., 2018). The CBAM block

(Figure 3C) had two components: (1) channel attention and (2)

spatial attention, which could generate weights of one-dimensional

channel attention from the feature map as well as two-dimensional

spatial attention. The channel attention component obtained the

input feature map U (in H ×W × C format, C represents the number

of feature map channels) through global maximum pooling and then

average pooling, producing two 1 × 1 × C feature maps, both of which

were fed into a two-layer perceptron with shared weights. The output

features were summed and activated to produce channel attention

weights Mc (Eqns. 1-3). Finally, the input feature map and the

channel attention weights were multiplied to generate the channel

attention feature map F0 (Eqn. 4), enabling the model to focus both

high- and low-level features of target plots and hence the

improvement of YOLACT-Plot’s feature extraction.

Zavg = AVGPool(U) (Eqn: 1)

Zmax = MAXPool(U) (Eqn: 2)

Mc = s½f2(d(f1(Zavg))) + f2(d(f1(Zmax)))� (Eqn: 3)

F0 = Mc � U (Eqn: 4)

where  AvgPool  denotes the global average pooling, averaging

the pixel-based intensity values of each channel; MaxPool denotes

the global maximum pooling, preserving the maximum intensity
Frontiers in Plant Science 06
value of each channel’s feature map; f1   represents the fully

connected layer of an input channel C for the CBAM and output

channel C/16; f2   represents the fully connected layer of input

channel C/16 and output channel; d signifies a rectified linear unit

(ReLU) function; s signifies the Sigmoid function.

The spatial attention component used the input feature map F0  
through the average pooling and maximum pooling of channel

dimensions to obtain two H × W × 1 feature maps, which were

combined and then passed through a 7 × 7 convolution layer,

followed by the Sigmoid function to obtain the spatial attention

weights Mc (Eqns. 5-7) from a single channel in two dimensions.

Finally, multiplying the spatial attention weights with the channel

attention feature map resulted in a new feature map F00 , with both

spatial and the channel attention features (Eqn. 8).

ZAVG = AVGPool(U) (Eqn: 5)

ZMAX = MAXPool(U) (Eqn: 6)

Mc = s½f3(ZAVG,ZMAX)�� (Eqn: 7)

F00 = Ms � F0 (Eqn: 8)

where AVGPool denotes channel dimensional averaging

pooling, where pixel values corresponding to each channel’s

feature map are summed and averaged; MAXPool denotes

maximum pooling of channel dimensions, where the maximum

pixel intensity value of teach channel’s feature map are retained; f3
represents a convolution of size 7 × 7, with an output channel of 1; s
signifies the Sigmoid function.

Building on the refined feature maps (C1-C5) and the above

attention mechanism, P3-P7 sub-feature maps were fed into two
DA B

EC

FIGURE 3

The learning architecture of the YOLACT-Plot model, which was built on the YOLACT++ model together with wheat plot training data. (A) The
backbone architecture of the improved YOLACT-Plot model. (B, C) The architecture with improved Res2Net together with the prediction head as
well as the CBAM block with attention mechanism. (D, E) The Protonet block and the plot segmentation result produced by the learning model.
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parallel branches to perform plot detection: (1) the ProtoNet branch

(square-dotted rectangle; Figure 3C, upper), which generated k-

prototype masks with varying regional responses from the P3

feature map (red coloured numbered circle 4 in the square-dotted

rectangle; Figure 3D upper); (2) the prediction head (square-dotted

rectangle; Figure 3B upper left), which produced anchor frames

with varied aspect ratios (i.e. 1, 1/2, 2, 1/3, 3) that employed pixel-

based points of the output feature map as anchor points to detect

instances, followed by an anchor-frame classification and the

coefficient prediction. Both Fast Non-maximum Suppression

(NMS) filters and Bounding Box Regression were applied to

screen all the candidate detection boxes, resulting in instance

prediction that was linearly combined with the prototype mask

coefficients and hence the final mask obtained after the auto-

thresholding (Figure 3E).
YOLOv7 for wheat spike detection

We combined the annotated wheat spikes in GWHD and our

annotated wheat spikes to train a detection model based on

YOLOv7 as the baseline model. YOLOv7 was an efficient and

accurate object detector that was suitable for detecting small

objects in regions with dense target objects. Particularly, we chose

YOLOv7 to detect canopy-level wheat spikes when they were

densely clustered, occluded, or under varied nature illuminance

because the YOLO-based model was suitable for recognising objects

in crowded scenes in a high-throughput and high-accuracy manner

(Chen et al., 2021). As a result, we chose the Standard version of

YOLOv7 due to the easiness of the software deployment and

reasonable computational cost. The detailed implementation of

other versions of YOLOv7 (e.g. Tiny and W6) can be found via

https://github.com/WongKinYiu/yolov7.
Model training strategies

We built a workstation (Intel Core i7-8700 CPU, Nvidia 3060

GPU, and 64 GB RAM) to conduct the DL training. Both PyTorch

(v1.11) framework (Paszke et al., 2019) and Python (v3.8) were

utilised to implement and train the above two DL models, one for

plot segmentation and one for wheat spike detection. During the

training, an input images were first resized (550 × 550 pixels) and

then trained with optimised parameters (e.g. batch size = 8;

stochastic gradient descent (SGD) momentum = 0.9; learning rate

= 0.001; epochs = 500). The loss value was used as an evaluation

metric to quantify the deviation between the predicted results and

the labelled data (i.e. the lower the loss value, the higher the

prediction accuracy) through each iteration during training. We

applied the binary cross-entropy as the loss function. When the

number of iterations increased, the loss value decreased, indicating

an improved performance. The loss value of the YOLACT-Plot

model stabilised at approximately 0.52 after 800 iterations, whereas

the optimised YOLOv7 model stabilised at around 0.22 after

1,000 iterations.
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Model evaluation

We selected average precision (AP) as the performance metric to

evaluate the segmentation result. AP was calculated using Eqns. 9-11.

To ensure a comprehensive evaluation of the performance of the DL

models, AP50 (intersection over union, IoU = 0.5), AP75 (IoU =

0.75), and the mean Average Precision (mAP) were employed since

the selection of IoU could influence the precision and recall scores.

P =
TP

TP + FP
(Eqn: 9)

R =
TP

TP + FN
(Eqn: 10)

AP =
Z 1

0
P(R)dR (Eqn: 11)

where TP denotes the number of samples where the predicted

category of the model matches the true labelled category; FP

indicates the number of samples where the predicted category

does not match the true labelled category; FN denotes the

number of samples where the predicted category is the

background, but the true labelled category are other categories.

The complexity of the learning model was evaluated using the

number of parameters and floating-point calculations (FLOPs).

Since the activation functions and biases affect the calculation of

FLOPs, different calculations were performed. To ensure

consistency of our analysis, we used PyTorch’s third-party library,

Thop (Jian et al., 2022), to calculate model parameters and FLOPs.

For a single convolution operation, the model parameters and

FLOPs were calculated using the equations below:

Parameter = K2 � Cin � Cout + Cout (Eqn: 12)

FLOPs = Cin � K2 � Cout � H �W (Eqn: 13)

where Cin and Cout are the number of input and output feature

map channels; K denotes the size of the convolution kernel; H �W

stands for the size of the output feature map.
GUI design and software implementation

Finally, to ensure that our AI-powered phenotypic analysis system

could reach the broader research community, we created a graphical

user interface (GUI) for nonexperts. The CropQuant-Air GUI

followed a modular architecture and implemented using the Python

programming language. The cross-platform GUI (in EXE) integrated

the above trained AI models and trait analysis algorithms into a

stepwise software system and was developed using the Tkinter library

(Shipman, 2013). To implement phenotypic analysis and ML/DL

libraries, we employed open-source libraries such as SciPy (Virtanen

et al., 2020) for scientific data processing, OpenCV (Bradski and

Kaehler, 2008) for image analysis, Scikit-Learn (Pedregosa et al., 2011)

for yield classification modelling, and the AirMeasurer libraries (Sun

et al., 2022) for developing phenotypic trait analysis.
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Yield classification model and
statical analysis

In order to train a ML-based model to classify yield production,

we used the seven traits produced by the CropQuant-Air (i.e.

SNpM2, NDYI, ExR, VARI, canopy coverage, ASM and GLCM

dissimilarity) as input parameters and the manually measured yield

production (i.e. GPpM2 and TGW) as targets. After testing a range

of supervised ML models, we chose a stochastic gradient boosting

algorithm, extreme gradient boosting (XGBoost) ensemble, as it

provided the best performance compared with other supervised ML

classifiers. When training the model, we fine-tuned the

hyperparameters of the XGBoost model, including the number of

trees, tree depth, learning rate, the number of samples, and the

number of features. A grid-based search was employed to fine-tune

the model to yield optimised hyper-parameters, followed by a

combination of parameters with reasonable ranges of parametric

values to simplify the procedure. Finally, k-fold cross-validation was

adopted to evaluate the model performance, based on which the

model with the best accuracy was selected. The above algorithmic

steps and software implementation were performed using the

Scikit-Learn library and saved in a separate executable Jupyter

notebook, which can be downloaded from our GitHub repository.
Results

Datasets collected from the study

We collected two series of aerial images from the field

experiment between booting and early grain filling using the low-
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cost drone, over 15.3 GB in total. The plot- and spike-training

datasets were built using these images, including 420 annotated

plots, 212,596 labelled wheat spikes, and augmented sub-images

(2,940 for plots and 1,488,172 for spikes), covering the 210 varieties.

During post-harvest handling, plot-based yield production, GPpM2

and TGW were manually quantified from the 420 plots, which were

randomly divided into 70% and 30% datasets for training, testing

and validation to build the yield classification model.
Plot segmentation using the
YOLACT-Plot model

We applied the YOLACT-Plot model to identify the central plot

in a given aerial image (Figure 4A; first column). To evaluate the

impacts of different components or hyper-parameters on the plot

detection, we conducted an ablation study (Meyes et al., 2019),

which compared different components in the model and identified

the essential factors for the plot detection. Three sets of experiments

were accomplished (Table 1). The 1st and 2nd experiments suggested

that the introduction of the Res2Net module in the backbone

network improved the mAP of the prediction frame (2.35%) and

mask (1.76%); whereas the 2nd and 3rd experiments indicated that

the Res2Net-CBAM module improved the mAP of the prediction

further (1.89% and 0.85%, respectively), with slightly decrease in

speed (i.e. 1 frame per second, FPS).

With an improved backbone network, features from different

channels of the same feature layer were combined for multiple

times, facilitating the extraction of semantic information while

leading to an increase in the size and parameters of the model.
A B

C

FIGURE 4

Plot- and spike-based detection using the trained YOLCAT-Plot and YOLOv7 models together with correlation analysis between AI-derived and
manually scored spike number per m2 (SNpM2), followed by comparisons of eight AI models for wheat spike detection. (A) Plot regions detected
from aerial images using YOLACT-Plot model, followed by the optimised YOLOv7 model established for detecting wheat spikes. (B) Correlation
analysis performed between AI-derived and manually scored wheat spikes using 420 plot-based wheat canopy images, showing a significant positive
correlation. (C) Performance comparisons of eight state-of-the-art AI-powered object detection methods, indicating that the optimised YOLOv7
model performed the best in terms of the mean average precision at intersection over union (IoU) thresholds of over 0.5 (mAP@0.5).
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Table 2 listed the number of parameters and the total FLOPs before

and after the optimisation, suggesting that the YOLACT-Plot model

improved in the network parameters (9.8%), model size (1.06%),

and FLOPs (6.7%) compared with a standard YOLACT++ model.

To further evaluate the YOLACT-Plot model in instance

segmentation, we compared the model with several state-of-the-

art instance segmentation DL algorithms such as Mask R-CNN,

SOLOv2, and YOLACT++ (Zhao et al., 2021). Our wheat-plot

training data was also used when training and testing these DL

models. Table 3 listed the results, indicating that the YOLACT-Plot

model outperformed Mask R-CNN, SOLOv2, and YOLACT++ in

the mAP by 4.15%, 5.33% and 4.1%, respectively. Hence, the feature

extraction capability in the YOLACT-Plot model was clearly

enhanced due to the optimisation of the learning architecture.
Wheat spike detection using the optimise
YOLOv7-based model

In order to evaluate the YOLOv7-based model for wheat spike

detection within an identified plot, we have performed correlation

analysis based on the 210 varieties possessing varied spike

morphologies such as long and awned, short and awned, and

awnless varieties (Figure 4A; second column). The detected wheat

spikes, red-coloured binding boxes and confidence levels were also

generated by the model (Figure 4A; third and fourth columns). We

arranged three technicians to manually score the number of wheat

spikes per plot using the same plot images segmented by the

YOLCAT-Plot model. Coefficient of determination (R2) was

computed to evaluate correlations between the CropQuant-Air-

derived and manually scored spike numbers together with root-

mean-square error (RMSE), resulting in R2 = 0.981 (P < 0.001,

RMSE = 17.52; Figure 4B). The result suggested that the AI-

powered spike detection was significantly correlated with the

manual scoring, indicating the reliability of the AI-powered

detection under field conditions.

Additionally, we compared the spike detection results generated by

the optimised YOLOv7 model and seven state-of-the-art object

detection models, including YOLOv4, YOLOv5, YOLOX, Faster-

RCNN, SSD, RetinaNet, and CenterNet (Zhang et al., 2023), all of
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which were carefully fine-tuned to yield an optimal wheat spike

detection. The detection results produced by the DL models

(Figure 4C) suggested that the YOLOv7-based model achieved the

best accuracy in terms of the mAP@0.5 (i.e. 0.9286), slightly higher

than YOLOX (0.9277), YOLOv5 (0.9133), SSD (0.9058), and YOLOv4

(0.9101), demonstrating the biological relevance of applying DL

techniques to study spike-like yield components under field conditions.
The GUI of CropQuant-Air software

The CropQuant-Air software system provides a graphical user

interface (GUI) that enables non-expert users to perform plot-based

trait analysis using an aerial image selected through a unified

workspace. A user selects the image selection section (Figure 5A)

to choose an aerial image. After that, the CropQuant-Air will

initiate the display function to visualise the selected image in the

workspace for the user to verify the selection. By clicking the ‘Next’

button, the software invokes the plot segmentation module that

applied the YOLACT-Plot model to process the selected image,

resulting in the central plot in the input image segmented from its

surrounding pixels (Figure 5B). Depending on the GPU and the size

of the selected image, the segmentation process could take up to 10-

15 seconds. The final step of the analysis is to carry out wheat spike

detection (using the optimised YOLOv7) and canopy-level trait

analysis (using the AirMeasurer library), which generates red-

coloured binding boxes and confidence levels of all the detected

spikes (Figure 5C, right), as well as trait analysis results (including

SNpM2, canopy coverage, ExR, NDYI, VARI, ASM, and GLCM

dissimilarity) in a table at the bottom of the workspace (red dotted

rectangle; Figure 5C, left). The software also supports batch-

processing, which can analyse a series of input images and export

associated trait analysis (in CSV). Users can download the analysis

results and processed images (i.e. segmented plots and detected

spikes) via the software. Using an NVIDIA 3060 graphics card, we

could achieve a shorter running time (27-30% fasters than CPU-

based computation during batch processing) on the CropQuant-Air

system compared with an integrated graphics (e.g. Intel’s Iris

graphics series) as both plot segmentation and spike detection

models were accelerated by GPU through parallel computing.
TABLE 2 Comparison of parameters and FLOPS before and after improving the model.

Model Parameter size/MB Model size/MB FLOPS/GFLOPS

YOLACT++ 31.62 126 15.36

YOLACT-Plot 33.79 129 16.77
TABLE 1 Ablation experiments conducted to identify key components essential for better detection performance in the YOLACT-Plot model.

Ablation experiment ID Backbone
network FPS Frame mAP% Frame AP75% Mask

mAP%
Mask
AP75%

1 ResNet-101 28.9 62.34 73.11 61.69 68.91

2 Res2Net 26.7 64.69 76.01 63.45 70.75

3 Res2Net-CBAM 27.7 66.38 77.13 64.30 72.36
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Trait analysis using varieties from different
production regions

We aimed to apply the CropQuant-Air software to quantify

differences between varieties selected from the three wheat

production regions (53 varieties from Central China, 83 from

East China, and 74 from North China; also see Supplementary

Material). After processing the 210 varieties, we produced six

phenotypic traits relevant to yield components. Comparing the

SNpM2 trait, while the average value of spike density was slightly

different across the three variety groups, increasing between Central

(350-500 per m2, mean = 410), Eastern (400-550 per m2, mean =

500) and Northern wheat varieties (500-575 per m2, mean = 530),

the distribution for Northern varieties was much more diverse

(Figure 5D), indicating the large variation of spike density in the

variety group.

The same elongation was apparent when comparing

performance-related traits, where the spectral traits (i.e. ExR and
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NDYI) also had a much broader distribution in the selected

Northern varieties (Figure 5E; right), suggesting varied colour

features (i.e. ExG) and developmental paces (i.e. NDYI) among

the Northern varieties. The three other measured traits such as

canopy coverage, VARI, and ASM were generally similar between

the three variety groups according to the violin diagrams. It seemed

that the canopy-level phenotypic variation between all the Eastern

and Central varieties were relatively small, whereas the Northern

varieties possessed much bigger differences (Figure 5E). The above

observation was applied to the following yield-based analysis and

was utilised when building the yield classification model.
The yield classification in wheat

To classify wheat yield production for agronomic management

reasons (Leilah and Al-Khateeb, 2005), we chose the XGBoost

model to perform yield-based classification. We used the trait
TABLE 3 Result comparison between DL models using the wheat-plot training dataset.

DL models Backbone network FPS Mask mAP% Mask AP75% Mask AP50%

Mask R-CNN ResNet-101 25.8 61.21 68.21 84.10

SOLOv2 ResNet-101 29.6 60.03 68.31 85.87

YOLACT++ ResNet-101 25.1 61.26 69.43 86.33

YOLACT-Plot CBAM-ResNet-101 21.2 65.36 72.60 87.39
D

A B

E

C

FIGURE 5

Graphic user interface (GUI) of the CropQuant-Air software system developed for non-expert users together with trait analysis results produced by the
system. (A–C) The GUI window of the CropQuant-Air system, consisting of input and analysis sections, which could process a single or a series of
drone-collected aerial image for plot segmentation and phenotypic analysis, quantifying traits such as SNpM2, morphological and spectral traits. (D, E)
CropQuant-Air-derived traits divided by wheat varieties selected from three main wheat production regions in China, i.e. Central, East and North China.
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analysis results (seven parameters; n = 210 records, which was

averaged using the two replicates) generated by the CropQuant-Air

system as inputs (Figure 6A), including SNpM2, canopy-level

spectral (i.e. ExR, NDYI, VARI) and textural traits (canopy

coverage, ASM, dissimilarity). The dataset together with the

variety-based yield production data (210 records, derived from

plot-based grain production) was then divided into 7:3 ratio, with

70% (147 lines) for training and 30% (63 lines) for testing. When

applying the XGBoost learning model to classify yield production,

we performed cross-validation in each round of Boosting iteration,

enabling the optimal iteration number (Figures 6B, C). The yield

production was divided into three categories, i.e. high-, medium-,

and low-yielding groups, following a published approach for wheat

breeding and cultivation (Pantazi et al., 2016).

The trained XGBoost model identified 101 high-yield, 90

medium-yield and 19 low-yield wheat varieties (Figure 6D; also

see Table S2 in the Supplementary Material). We used confusion

matrices to verify the accuracy of the model with manually scored

yield production and concluded that: (1) for the high-yielding

varieties, the model achieved an accuracy of 97.0%; (2) the

medium-yielding group, 96.4% accuracy; (3) the low-yielding

group, 94.7% accuracy (Figure 6E; left). Moreover, we studied

the weights of all the traits in the model and identified that

SNpM2, NDYI, and ASM jointly contributed 82.7% of the

prediction power (coloured red in Figure 6E; right), indicating

their relevance in wheat yield production. To gain an in-depth

understanding of the three traits, we then plotted the distribution

of the SNpM2, NDYI, and ASM traits using violin diagrams. We

could observe that: (1) for the SNpM2 trait, spike density of high-

yield varieties largely located in the 375-500 region, whereas
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medium- and low-yield groups had a more diverse spike

density; also, low-yield varieties on average had a lower SNpM2

value with many low values absent from the other two groups

(Figure 6F; left); (2) for the NDYI trait, both high- and low-yield

varieties had diverse distributions with peaks at 0.68 and 0.45,

respectively; the medium-yield varieties followed a double normal

distribution with the two peaks corresponding to those in the

high- and low-yield groups (Figure 6F; middle); (3) for the ASM

trait, broadly similar distributions across the 3 yield groups could

be observed, with descending means from high to low

(Figure 6F; right).
Discussion and conclusion

The ability to identify key phenotypic traits that could be

utilised to classify yield production was key for breeders, crop

researchers, growers and farmers, and even policymakers as

reliable decisions could be rendered to facilitate agronomic

management, the selection of crop varieties, and even planning

food supply for the market (Chen et al., 2021). For example,

understanding the yield potential at key growth stages was

essential for breeders to make decisions regarding their crop

improvement strategies, helping an efficient identification of

genotypes with desired yield- and performance-related traits

(Cobb et al., 2013). From cultivation and agronomy’s perspective,

yield-based analysis could also lead to the development of more

precise agronomic management activities to optimise crop growing

conditions and thus improved yield performance (Reynolds et al.,

2019). For growers and farmers, to be able to classify yield enabled
DA B

E F

C

FIGURE 6

The establishment of the yield classification model and identified key contributing phenotypic traits. (A–C) The XGBoost model was used to train the
yield classification model with 147 lines and 63 lines for evaluation. (D) The model was then applied to classify yield production, resulting in three
yield groups. (E) Confusion matrix and weights of every trait were computed to verify the classification result and identify key contributing traits.
(F) Violin diagrams used to represent distributions of the three key traits according to the three yield groups.
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efficient crop management, providing a baseline to plan agricultural

activities (Kremen et al., 2012).
Standard drone-based phenotyping and
AI-powered trait analysis

In our study, we demonstrated that low-cost drones could be

utilised to perform standardised aerial imaging to collect canopy-

level wheat spikes at key growth stages, whose quality was sufficient

for AI-powered plot and spike detection, as well as yield-based

classification. To quantify the SNpM2 trait, we combined the plot-

and spike-level object detection, which was empowered by the AI-

based semantic segmentation and vision-based object detection to

identify ROIs (i.e. wheat plots) from an aerial image, within which

spikes were detected. This progressive algorithmic approach helped

us establish an effective workflow to batch-process aerial image

series, improving the productivity of the analysis solution presented

here. More interestingly, we incorporated spectral and textural

features and semantic information of wheat spikes into the model

training, which achieved the best detection accuracy compared with

seven state-of-the-art DL models, demonstrating a valuable attempt

that combined plot- (i.e. the YOLACT-Plot model for instance

segmentation) and spike-level (i.e. the optimised YOLOv7 model

for semantic segmentation) DL techniques with traditional image

processing algorithms to quantify key yield components. To verify

the AI-powered trait analysis, we further evaluated the

computational results with both manually scored spike number

and yield production, resulting in highly significant correlations and

thus the reliability of our phenotypic analysis pipeline.
The open-source platform and
yield classification

To enable non-experts to use our solution, we developed an

open-source software system called CropQuant-Air, which

integrated DL models and image processing algorithms to

perform plot-based spike detection, as well as spectral and

textural trait analysis with a batch-processing mode. Due to

limited toolkits available for nonexperts to examine multigenic

traits and develop markers (Sun et al., 2022), we developed the

CropQuant-Air system using open scientific libraries,

demonstrating the value of open scientific solutions for plant

researchers when carrying out phenotypic analysis. The modular

design also indicated that all the functions or modules in the

CropQuant-Air could be utilised independently, accelerating

other academic researchers or developers to build upon our work.

Furthermore, we are maintaining the software via our GitHub

repository, so that new developments of CropQuant-Air could be

promptly shared with the broader plant research community to

support other phenotyping research.

To facilitate yield classification in wheat, we produced a

separate XGBoost ensemble, through which we identified that the

SNpM2 trait contributed the most in yield classification and hence

the most important factor for yield-related prediction in wheat.
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Also, subsequent improvements to the ensemble model could

include spikelet density, historic yield records, growth stages, and

key environmental factors such as ambient temperature and

accumulated temperature (Yang et al., 2018), which could

improve the generalisation of the yield classification to be

applicable during the entire reproductive phase and across

different environments.
Limitation of the study

With the rapid development of multi- and hyper-spectral

imaging technologies in recent years, the quality of visible and

invisible spectrum imaging has been greatly improved, providing

new approaches to image wheat spikes and their development at the

canopy level. We used sRGB images to capture wheat spikes’

spectral and morphological features; however, it is likely that

multi- and hyper-spectral imagery could obtain more unique

spectral signatures of wheat spikes and thus potentially easier to

analyse the trait. Additionally, it is worth noting that the RGB

images were very limited in detecting plant abiotic or biotic stresses

at the spike level, for which hyperspectral sensors could be valuable

in studying plant-disease interactions such as the early growth of

Fusarium within infected wheat spikes (Ninomiya, 2022). Also, our

study focused on detecting wheat spikes within breeding plots and

did not perform trait analysis under agricultural conditions. Hence,

more R&D activities are still required if the CropQuant-Air system

needs to be utilised for cultivation and agronomic services.

Another limit of the open scientific platform that could prevent

easy-to-access of open scientific work was the Python dependencies.

Due to computer vis ion and DL/ML based software

implementation, when sharing, extending, and upgrading our

modules in the CropQuant-Air system, it was important to

ensure that the correct versions of ML/DL and open scientific

libraries were installed. We mitigated the version risk by releasing

an executive file (.EXE) of the system, which required us to publish

new versions of the executive file if new functions or dependencies

were updated. As a result, a community-driven solution might be

valuable to develop and improve CropQuant-Air, promoting open

and easy-to-use software solutions jointly via the GitHub platform,

which could also maximise the impacts of open scientific software

R&D in a collaborative manner.
Future work

Besides the desktop implementation of CropQuant-Air, we

could consider deploying the analysis pipeline onto the cloud-

based and/or edge computing, so that the software solution could

be utilised for different breeding and crop research scenarios. New

hardware is also likely to support near real-time analysis based upon

our phenotypic analysis solution, providing more economic and

powerful tools for agricultural practitioners and researchers. So, key

yield-related analysis could be obtained to benchmark yield

potential, comparing the performance of different crop varieties

and identifying varieties with higher yields under field conditions.
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This could also be valuable when identifying crop varieties that

were better adapted to local environmental conditions, leading to

less water, fertilisers, and other agronomic inputs, which will help

growers and farmers reduce the environmental footprint while still

maintaining yields. Finally, through big data analytics and cost-

effective hardware, much labour-intensive crop surveillance

activities could be greatly benefited, facilitating Agri-Food and

Agri-Tech companies, policymakers to determine the economic

viability of recommended varieties in changing environments,

which could also help assess the potential commercial value of

the selected varieties so that sound and affordable agricultural

production could be promoted.
Data availability statement

The testing datasets, Jupyter notebook, and CropQuant-Air

software used in this paper are available at the Zhou lab’s GitHub

repository: https://github.com/The-Zhou-Lab/CropQuant-Air/

releases/tag/v1.0. The raw data supporting the conclusions of this

article will be made available by the authors, without undue

reservation. Other data and user guides are openly available

on request.
Author contributions

JiZ and JC wrote the manuscript with inputs from all the

authors; QL, HL, YX, and RJ conducted field experiments and

aerial phenotyping under JiZ, GZ, and DJ’s supervision; JiZ, GD, RJ,

QL, and JC performed data analysis and statistical analysis; JieZ, JC,

GS, and QL built and tested the deep learning models, trait analysis,

and the yield classification model under JiZ and DJ’s supervision.

JieZ and JC developed the GUI of the CropQuant-Air system with

help from GS. JC, JieZ, and QL contributed equally to this work. All

authors contributed to the art ic le and approved the

submitted version.
Funding

This work was partially supported by the National Natural

Science Foundation of China (32070400 to JiZ). The drone-based

phenotyping and yield prediction were supported by the Key

Project of Modern Agriculture of Jiangsu Province (BE2019383).

JiZ, RJ, and GD were partially supported by the Allan & Gill Gray

Philanthropies’ sustainable productivity for crops programme
Frontiers in Plant Science 13
(G118688 to the University of Cambridge and Q-20-0370 to

NIAB). JiZ and RJ were also supported by the One CGIAR’s Seed

Equal Research Initiative (5507-CGIA-07 to JiZ), as well as the

United Kingdom Research and Innovation’s (UKRI) Biotechnology

and Biological Sciences Research Council’s (BBSRC) International

Partnership Grant (BB/X511882/1).
Acknowledgments

The authors would like to thank all members of the Zhou

laboratory at the Nanjing Agricultural University (NAU, China) and

Cambridge Crop Research, the National Institute of Agricultural

Botany (NIAB, UK). In particular, the authors would like to thank

Daniel Reynolds, Jeremy Tang, and Alex Swanepoel for their technical

supports in aerial phenotyping and establishing training datasets.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1219983/

full#supplementary-material

SUPPLEMENTARY TABLE 1

The trial design and wheat varieties studied in the 2021/22 season.

SUPPLEMENTARY TABLE 2

Yield classification classified by the XGBoost model, including 101 high-

yielding, 90 medium-yielding, and 19 low-yielding wheat varieties, with

manually scored grain production per unit area (GPpM2).
References
Alkhudaydi, T., Reynolds, D., Griffiths, S., Zhou, J., and de la Iglesia, B. (2019). An
exploration of deep-learning based phenotypic analysis to detect spike regions in field
conditions for UK bread wheat. Plant Phenomics 2019, 1–17. doi: 10.34133/2019/
7368761
Angeles Ceron, J. C., Chang, L., Ruiz, G. O., and Ali, S. (2021). Assessing YOLACT+
+ for real time and robust instance segmentation of medical instruments in endoscopic
procedures. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc EMBS 1824–1827.
doi: 10.1109/EMBC46164.2021.9629914
frontiersin.org

https://github.com/The-Zhou-Lab/CropQuant-Air/releases/tag/v1.0
https://github.com/The-Zhou-Lab/CropQuant-Air/releases/tag/v1.0
https://www.frontiersin.org/articles/10.3389/fpls.2023.1219983/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1219983/full#supplementary-material
https://doi.org/10.34133/2019/7368761
https://doi.org/10.34133/2019/7368761
https://doi.org/10.1109/EMBC46164.2021.9629914
https://doi.org/10.3389/fpls.2023.1219983
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2023.1219983
Bastos, L. M., Carciochi, W., Lollato, R. P., Jaenisch, B. R., Rezende, C. R.,
Schwalbert, R., et al. (2020). Winter wheat yield response to plant density as a
function of yield environment and tillering potential: a review and field studies.
Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00054

Bauer, A., Bostrom, A. G., Ball, J., Applegate, C., Cheng, T., Laycock, S., et al. (2019).
Combining computer vision and deep learning to enable ultra-scale aerial phenotyping
and precision agriculture: a case study of lettuce production. Hortic. Res. 6.
doi: 10.1038/s41438-019-0151-5

Betts, A., Jia, P. W., and Dodson, J. (2014). The origins of wheat in China and
potential pathways for its introduction: a review. Quat. Int. 348, 158–168. doi: 10.1016/
j.quaint.2013.07.044

Bevan, M. W., Uauy, C., Wulff, B. B. H., Zhou, J., Krasileva, K., and Clark, M. D. (2017).
Genomic innovation for crop improvement.Nature 543, 346–354. doi: 10.1038/nature22011

Bradski, G., and Kaehler, A. (2008). Histograms and matching. Learn. OpenCV 193.

Chen, T., and Guestrin, C. (2016). XGBoost: a scalable tree boosting system. Proc. ACM
SIGKDD Int. Conf. Knowl. Discovery Data Min. 785–794. doi: 10.1145/2939672.2939785

Chen, J., Li, Q., Tan, Q., Gui, S., Wang, X., Yi, F., et al. (2021) Combining lightweight
wheat spikes detecting model and offline android software development for in-field
wheat yield prediction. Trans. Chin. Soc. Agric. Eng. 37 (19), 156–164. doi: 10.11975/
j.issn.1002-6819.2021.19.018

Cobb, J. N., DeClerck, G., Greenberg, A., Clark, R., and McCouch, S. (2013). Next-
generation phenotyping: requirements and strategies for enhancing our understanding
of genotype-phenotype relationships and its relevance to crop improvement. Theor.
Appl. Genet. 126, 867–887. doi: 10.1007/s00122-013-2066-0

David, E., Madec, S., Sadeghi-Tehran, P., Aasen, H., Zheng, B., Liu, S., et al. (2020).
Global wheat head detection (GWHD) dataset: a large and diverse dataset of high
resolution RGB labelled images to develop and benchmark wheat head detection
methods. Plant Phenomics 1–10. doi: 10.34133/2020/3521852

Ferrante, A., Cartelle, J., Savin, R., and Slafer, G. A. (2017). Yield determination,
interplay between major components and yield stability in a traditional and a
contemporary wheat across a wide range of environments. F. Crop Res. 203, 114–
127. doi: 10.1016/j.fcr.2016.12.028

Furbank, R. T., Jimenez-Berni, J. A., George-Jaeggli, B., Potgieter, A. B., and Derry,
D. M. (2019). Field crop phenomics: enabling breeding for radiation use efficiency and
biomass in cereal crops. New Phytol. 223, 1714–1727. doi: 10.1111/nph.15817

Gao, S. H., Cheng, M. M., Zhao, K., Zhang, X. Y., Yang, M. H., and Torr, P. (2021).
Res2Net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach.
Intell. 43, 652–662. doi: 10.1109/TPAMI.2019.2938758

Gizaw, S. A., Godoy, J. G. V., Garland-Campbell, K., and Carter, A. H. (2018). Using
spectral reflectance indices as proxy phenotypes for genome-wide association studies of
yield and yield stability in pacific northwest winter wheat. Crop Sci. 58, 1232–1241.
doi: 10.2135/cropsci2017.11.0710

Gracia-Romero, A., Kefauver, S. C., Vergara-Dıáz, O., Zaman-Allah, M. A., Prasanna,
B. M., Cairns, J. E., et al. (2017). Comparative performance of ground vs. aerially assessed
rgb and multispectral indices for early-growth evaluation of maize performance under
phosphorus fertilization. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.02004

Griffiths, S., Wingen, L., Pietragalla, J., Garcia, G., Hasan, A., Miralles, D., et al.
(2015). Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat
germplasm. PloS One 10, 1–18. doi: 10.1371/journal.pone.0118847

Hasan, M. M., Chopin, J. P., Laga, H., and Miklavcic, S. J. (2018). Detection and
analysis of wheat spikes using convolutional neural networks. Plant Methods 14, 1–13.
doi: 10.1186/s13007-018-0366-8

Jang, G. J., Kim, J., Yu, J. K., Kim, H. J., Kim, Y., Kim, D. W., et al. (2020). Review:
cost-effective unmanned aerial vehicle (UAV) platform for field plant breeding
application. Remote Sens. 12, 1–20. doi: 10.3390/rs12060998

Jian, T., Gong, Y., Zhan, Z., Shi, R., Soltani, N., Wang, Z., et al. (2022). Radio
frequency fingerprinting on the edge. IEEE Trans. Mob. Comput. 21, 4078–4093.
doi: 10.1109/TMC.2021.3064466

Jiang, Z., Tu, H., Bai, B., Yang, C., Zhao, B., Guo, Z., et al. (2021). Combining UAV-
RGB high-throughput field phenotyping and genome-wide association study to reveal
genetic variation of rice germplasms in dynamic response to drought stress.
New Phytol. 232, 440–455. doi: 10.1111/nph.17580
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Patrıćio, D. I., and Rieder, R. (2018). Computer vision and artificial intelligence in
precision agriculture for grain crops: a systematic review. Comput. Electron. Agric. 153,
69–81. doi: 10.1016/j.compag.2018.08.001

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.
doi: 10.1289/EHP4713

Qiu, R., Yang, C., Moghimi, A., Zhang, M., Steffenson, B. J., and Hirsch, C. D. (2019).
Detection of fusarium head blight in wheat using a deep neural network and color
imaging. Remote Sens. 11. doi: 10.3390/rs11222658

Reynolds, D., Ball, J., Bauer, A., Davey, R., Griffiths, S., and Zhou, J. (2019).
CropSight: a scalable and open-source information management system for
distributed plant phenotyping and IoT-based crop management. Gigascience 8, 1–11.
doi: 10.1093/gigascience/giz009

Reynolds, M., Chapman, S., Crespo-Herrera, L., Molero, G., Mondal, S., Pequeno, D.
N. L., et al. (2020). Breeder friendly phenotyping. Plant Sci. 295, 110396. doi: 10.1016/
j.plantsci.2019.110396

Sadeghi-Tehran, P., Virlet, N., Ampe, E. M., Reyns, P., and Hawkesford, M. J. (2019).
DeepCount: in-field automatic quantification of wheat spikes using simple linear
iterative clustering and deep convolutional neural networks. Front. Plant Sci. 10.
doi: 10.3389/fpls.2019.01176

Shipman, J. W. (2013). Tkinter 8.5 reference: a GUI for Python. Comput. (Long.
Beach. Calif). 1–118.

Sun, G., Lu, H., Zhao, Y., Zhou, J., Jackson, R., Wang, Y., et al. (2022). AirMeasurer:
open-source software to quantify static and dynamic traits derived from multiseason
aerial phenotyping to empower genetic mapping studies in rice. New Phytol. 236, 1584–
1604. doi: 10.1111/nph.18314

Svensgaard, J., Jensen, S. M., Christensen, S., and Rasmussen, J. (2021). The
importance of spectral correction of UAV-based phenotyping with RGB cameras. F.
Crop Res. 269, 108177. doi: 10.1016/j.fcr.2021.108177

ten Harkel, J., Bartholomeus, H., and Kooistra, L. (2020). Biomass and crop height
estimation of different crops using UAV-based LiDAR. Remote Sens. 12. doi: 10.3390/
RS12010017

Torralba, A., Russell, B. C., and Yuen, J. (2010). LabelMe: online image annotation
and applications. Proc. IEEE 98, 1467–1484. doi: 10.1109/JPROC.2010.2050290

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-0686-2

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2022) YOLOv7: trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. Available at: http://arxiv.
org/abs/2207.02696.

Wang, H., Cimen, E., Singh, N., and Buckler, E. (2020). Deep learning for plant
genomics and crop improvement. Curr. Opin. Plant Biol. 54, 34–41. doi: 10.1016/
j.pbi.2019.12.010

Woo, S., Park, J., Lee, J., and Kweon, I. S. (2018). Convolutional_Block_Attention.
Eccv 17.

Wu, Z., Shen, C., and van den Hengel, A. (2019). Wider or deeper: revisiting the
ResNet model for visual recognition. Pattern Recognit. 90, 119–133. doi: 10.1016/
j.patcog.2019.01.006

Yang, W., Doonan, J. H., Hawkesford, M. J., Pridmore, T., and Zhou, J. (2021).
Editorial: state-of-the-Art technology and applications in crop phenomics. Front. Plant
Sci. 12. doi: 10.3389/fpls.2021.767324

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., et al. (2017). Unmanned aerial
vehicle remote sensing for field-based crop phenotyping: current status and
perspectives. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.01111
frontiersin.org

https://doi.org/10.3389/fpls.2020.00054
https://doi.org/10.1038/s41438-019-0151-5
https://doi.org/10.1016/j.quaint.2013.07.044
https://doi.org/10.1016/j.quaint.2013.07.044
https://doi.org/10.1038/nature22011
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.11975/j.issn.1002-6819.2021.19.018
https://doi.org/10.11975/j.issn.1002-6819.2021.19.018
https://doi.org/10.1007/s00122-013-2066-0
https://doi.org/10.34133/2020/3521852
https://doi.org/10.1016/j.fcr.2016.12.028
https://doi.org/10.1111/nph.15817
https://doi.org/10.1109/TPAMI.2019.2938758
https://doi.org/10.2135/cropsci2017.11.0710
https://doi.org/10.3389/fpls.2017.02004
https://doi.org/10.1371/journal.pone.0118847
https://doi.org/10.1186/s13007-018-0366-8
https://doi.org/10.3390/rs12060998
https://doi.org/10.1109/TMC.2021.3064466
https://doi.org/10.1111/nph.17580
https://doi.org/10.1016/j.rse.2017.06.007
https://doi.org/10.3390/rs8110968
https://doi.org/10.5751/ES-05103-170444
https://doi.org/10.1016/j.jaridenv.2004.10.011
https://doi.org/10.1016/j.isprsjprs.2017.10.011
https://doi.org/10.1007/s00122-005-0172-3
http://arxiv.org/abs/1901.08644
https://doi.org/10.1186/s13007-020-00582-9
https://doi.org/10.3390/geomatics3010006
https://doi.org/10.1270/jsbbs.21069
https://doi.org/10.1016/j.compag.2015.11.018
https://doi.org/10.1016/j.compag.2015.11.018
https://doi.org/10.1016/j.compag.2018.08.001
https://doi.org/10.1289/EHP4713
https://doi.org/10.3390/rs11222658
https://doi.org/10.1093/gigascience/giz009
https://doi.org/10.1016/j.plantsci.2019.110396
https://doi.org/10.1016/j.plantsci.2019.110396
https://doi.org/10.3389/fpls.2019.01176
https://doi.org/10.1111/nph.18314
https://doi.org/10.1016/j.fcr.2021.108177
https://doi.org/10.3390/RS12010017
https://doi.org/10.3390/RS12010017
https://doi.org/10.1109/JPROC.2010.2050290
https://doi.org/10.1038/s41592-019-0686-2
http://arxiv.org/abs/2207.02696
http://arxiv.org/abs/2207.02696
https://doi.org/10.1016/j.pbi.2019.12.010
https://doi.org/10.1016/j.pbi.2019.12.010
https://doi.org/10.1016/j.patcog.2019.01.006
https://doi.org/10.1016/j.patcog.2019.01.006
https://doi.org/10.3389/fpls.2021.767324
https://doi.org/10.3389/fpls.2017.01111
https://doi.org/10.3389/fpls.2023.1219983
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2023.1219983
Yang, Q., Shi, L., Han, J., Zha, Y., and Zhu, P. (2019). Deep convolutional
neural networks for rice grain yield estimation at the ripening stage using UAV-based
remotely sensed images. F. Crop Res. 235, 142–153. doi: 10.1016/j.fcr.2019.02.022

Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., and Wang, Q. (2018). Response
of plant secondary metabolites to environmental factors. Molecules 23, 1–26.
doi: 10.3390/molecules23040762

Yu, C. W., Chen, Y. L., Lee, K. F., Chen, C. H., and Hsiao, C. Y. (2019). Efficient
intelligent automatic image annotation method based on machine learning techniques.
2019 IEEE Int. Conf. Consum. Electron. - Taiwan ICCE-TW 2019 4–5. doi: 10.1109/
ICCE-TW46550.2019.8991727

Zhang, G., Wang, L., Wang, L., and Chen, Z. (2023). Hand-raising gesture detection
in classroom with spatial context augmentation and dilated convolution. Comput.
Graph. 110, 151–161. doi: 10.1016/j.cag.2022.11.009

Zhao, K., Zhang, R., and Ji, J. (2021). A cascaded model based on efficientdet and yolact++
for instance segmentation of cow collar id tag in an image. Sensors 21. doi: 10.3390/s21206734
Frontiers in Plant Science 15
Zhou, J., Chen, J., Shen, L., Dai, J., Wen, Z., Sun, G., et al. (2022). Artificial
intelligence:advancing plant research beyong the state of the art. J. Nanjing Agric.
Univ. 45 (5), 1060–1071. doi: 10.7685/jnau.202207021

Zhou, J., Reynolds, D., Le Cornu, T., Websdale, D., Lister, C., Gonzalez-navarro, O.,
et al. (2017). CropQuant: an automated and scalable field phenotyping platform
for crop monitoring and trait measurements to facilitate breeding and digital
agriculture 1–41. doi: 10.1101/161547

Zhou, X., Zheng, H. B., Xu, X. Q., He, J. Y., Ge, X. K., Yao, X., et al. (2017). Predicting
grain yield in rice using multi-temporal vegetation indices from UAV-based
multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 130, 246–255.
doi: 10.1016/j.isprsjprs.2017.05.003

Zhu, Y., Sun, G., Ding, G., Zhou, J., Wen, M., Jin, S., et al. (2021). Large-
Scale field phenotyping using backpack LiDAR and CropQuant-3D to
measure structural variation in wheat. Plant Physiol. 187, 716–738. doi: 10.1093/
plphys/kiab324
frontiersin.org

https://doi.org/10.1016/j.fcr.2019.02.022
https://doi.org/10.3390/molecules23040762
https://doi.org/10.1109/ICCE-TW46550.2019.8991727
https://doi.org/10.1109/ICCE-TW46550.2019.8991727
https://doi.org/10.1016/j.cag.2022.11.009
https://doi.org/10.3390/s21206734
https://doi.org/10.7685/jnau.202207021
https://doi.org/10.1101/161547
https://doi.org/10.1016/j.isprsjprs.2017.05.003
https://doi.org/10.1093/plphys/kiab324
https://doi.org/10.1093/plphys/kiab324
https://doi.org/10.3389/fpls.2023.1219983
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	CropQuant-Air: an AI-powered system to enable phenotypic analysis of yield- and performance-related traits using wheat canopy imagery collected by low-cost drones
	Introduction
	Materials and methods
	Plant materials and field experiments
	Drone-based phenotyping
	The training dataset for AI-powered trait analysis
	The algorithmic workflow of phenotypic analysis
	The YOLACT-Plot segmentation model
	YOLOv7 for wheat spike detection
	Model training strategies
	Model evaluation
	GUI design and software implementation
	Yield classification model and statical analysis

	Results
	Datasets collected from the study
	Plot segmentation using the YOLACT-Plot model
	Wheat spike detection using the optimise YOLOv7-based model
	The GUI of CropQuant-Air software
	Trait analysis using varieties from different production regions
	The yield classification in wheat

	Discussion and conclusion
	Standard drone-based phenotyping and AI-powered trait analysis
	The open-source platform and yield classification
	Limitation of the study
	Future work

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


