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Piezoelectric semiconductor materials (PS) have attracted much attention in recent years due to their unique prop-
erties. This paper explores the electromechanical coupling behavior of bent piezoelectric semiconductor fibers with
non-uniform cross-sectional areas. The study uses the generalized differential quadrature method (GDQM) to numeri-
cally solve the field equations with variable coefficients derived from piezoelectric theory. The research examines the
mechanical and electrical field distribution of bent variable cross-section fibers, comparing the performances of non-
uniform fibers with different profiles. The study reveals that the variable cross-section profile of the fiber changes the
characteristic of the uniform fiber’s electrical distribution along the axis, and it exhibits a more sensitive and stronger
electrical response to the same external force. The research also shows that the concavity and convexity of the radius
distribution function of the non-uniform fibers determine whether there are extreme points of surface potential. Finally,
the study suggests that by designing extreme points of the PS fiber profile, surface potential extreme points can be
artificially created at the same location. These results offer a theoretical direction for creating advanced piezoelectric
semiconductor nanodevices and present novel insights into designing higher-efficiency nanogenerators and mechanical
strain sensors in the future.

I. INTRODUCTION

Piezoelectric semiconductor (PS) innovative nanostruc-
tures have proliferated in the last few decades. They have
been successfully used in the fields of nanogenerators1,2,
piezotronic field-effect transistors3,4, piezotronic and chem-
ical sensors5,6, piezotronic logic nanodevices7, piezotronic
acoustic tweezers8 and others. Among the various PS struc-
tures, one-dimensional fibers have attracted the most interest
among scholars. Compared to other structures such as thin
films and tubes, PS fibers can be fabricated more easily and
can withstand larger mechanical deformation9. Consequently,
their electromechanical behaviors, including vibration10,11,
bending12, extension13,14, and torsion15, have been exten-
sively investigated, and the results have proven invaluable for
device design.

It is noteworthy that the above-mentioned studies are all
based on uniform PS fibers. However, some recent studies
suggest that non-uniform fibers with variable cross-sections
may exhibit better piezotronic performance. For instance, Hu
et al.16 proposed a simple, cost-effective, and robust approach
for fabricating a nanogenerator by dispersing conical ZnO
nanofibers on a flat polymer film. They found that the output
power was strong enough to drive a commercial liquid crystal
display continuously. Using the finite element method, Ara-
neo et al. simulated the axial17 and transverse18 deformation
of tapered PS nanofibers and demonstrated that non-uniform
strain leads to higher on-off ratios of devices. Fang et al.19

investigated the electromechanical properties of extensional
non-uniform PS fibers using a macroscopic phenomenologi-
cal theory. They proposed a power series expansion method
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to solve the differential equations with variable coefficients
describing the field distributions and demonstrated that non-
uniform fibers are more sensitive to external forces. Ren20

and his team derived theoretical approximate closed-form so-
lutions for the electromechanical fields in strain gradient non-
uniform PS fibers, which is an extension of the general PS
theory. Nonetheless, studies on non-uniform PS fibers are still
rare. More importantly, as material science continues to de-
velop, it will become increasingly feasible to perform precise
designs of PS fiber configurations, requiring a deeper under-
standing of the properties of non-uniform PS fibers. The dif-
ferences in the mechanical and electrical properties of variable
cross-section fibers and uniform fibers also result in some pe-
culiar phenomena under bending deformation. For example,
in the case of a monotonous change in cross-sectional area,
the surface potential does not always correspondingly change
monotonically, but instead sometimes exhibits extreme points.
Another example is that when an extreme point appears in
the cross-sectional area, the coordinates of the corresponding
shear stress extreme point exhibit an offset relative to the area
extreme point. These phenomena are obtained through cur-
rent finite element simulations, but lack a reasonable theoret-
ical explanation, which is the starting point of this paper. Our
research aims to fill the gap in the theoretical derivation of the
bending deformation of variable cross-section fibers and pro-
vide a reliable and effective theoretical solution. Additionally,
the obtained theory will be used to analyze and explain the
above-mentioned mechanical and electrical behavior.

This paper focuses on the study of non-uniform PS fibers
in bending. The analysis is based on the general macro-
scopic theory, which includes the piezoelectricity theory and
the drift-diffusion theory of carriers. The generalized differ-
ential quadrature method (GDQM) is adopted to numerically
solve the coupled equations with variable coefficients. Fol-
lowing that, the electromechanical responses of the fibers un-
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der different contour profiles and external forces are then com-
prehensively investigated. The article begins with a brief in-
troduction to the basic theory of PS materials in Section II.
Subsequently, Section III and IV derive and solve the cou-
pling equation system of variable cross-section bending PS
fibers. Finally, the simulation results and discussions are pre-
sented in Section V and VI.

II. BASIC EQUATIONS OF PIEZOELECTRICITY

This section presents the description of the electromechani-
cal coupling behaviors of PSs using a Cartesian tensor system
of three-dimensional differential equations. The field equa-
tions, which include the motion equation, Gauss’s theorem in
electrostatics, and the continuity equation of holes and elec-
tron charges, are provided as follows21–23:

Tji, j = ρ üi
Di,i = q(p−n+N+

D −N−
A )

Jp
i,i =−qṗ

Jn
i,i = qṅ

(1)

Here a partial derivative concerning the coordinate associ-
ated with the index is indicated by a comma after the index,
while a time derivative is shown as a dot that is superimposed.
Tji, ui, and Di are the components of the stress tensor, mechan-
ical displacement vector, and electric displacement vector, re-
spectively. The elementary charge and mass density are de-
noted by q and ρ . p and n are the concentrations of holes and
electrons, therefore Jp

i and Jn
i represent the hole and electron

current densities. According to the theory of drift-diffusion of
currents in semiconductors21, they can be expressed as:

Jp
i = qpµ

p
i jE j −qDp

i j p, j
Jn

i = qnµn
i jE j +qDn

i jn, j
(2)

E j is the electric field component here. µ
p
i j and µn

i j are
the hole and electron mobility, Dp

i j and Dn
i j are the hole and

electron diffusion coefficients. The equations above demon-
strate that the total current in the semiconductor consists of
two terms: the drift term caused by the electric field driving
the carrier motion and the diffusion term caused by the carrier
concentration gradient.

In PSs, the force equilibrium equations are coupled to the
electrical equations through the following constitutive rela-
tionship:

Ti j = ci jklSkl − eki jEk
Di = εi jE j + ei jkS jk

(3)

Si j is the strain component, ci jkl , eki j and εi j are the elastic
constant, piezoelectric constant, and dielectric constant of the
material, respectively.

The relationship between strain and displacement, electric
field and potential are:

Si j =
1
2 (ui, j +u j.i)

Ei =−ϕ,i
(4)

To linearize the equation, the carrier concentration is usu-
ally represented in the analytical model as a perturbation in
the form of:

p = p0 +∆p
n = n0 +∆n
p0 = N−

A
n0 = N+

D

(5)

In Equation (5), ∆n and ∆p are the perturbations of elec-
tron concentration and hole concentration respectively. In this
case, Gauss theorem and the continuity equation in (1) be-
come:

Di,i = q(∆p−∆n)
q ∂

∂ t (∆p) =−Jp
i,i

q ∂

∂ t (∆n) = Jn
i,i

(6)

The current Equation (2) is linearized as:

Jp
i = qp0µ

p
i jE j −qDp

i j(∆p), j
Jn

i = qn0µn
i jE j +qDn

i j(∆n), j
(7)

The linearized equations mentioned above have been suc-
cessfully applied to study the static and dynamic problems
of various structures such as PS rods10,20,24,25, beams26–28,
plates29–33, tubes34,35, and blocks11,36–38.

III. COUPLED EQUATIONS OF BENT PS FIBER

Figure 1: Sketch of the bent PS fiber with variable
cross-section.

Consider the bending deformation of the PS fiber with vari-
able cross-sections shown in Figure 1. The length of the fiber
is L. The cross-sectional area A varies along the x3 axis. Also,
the fiber has its left end fixed and a shear force F is applied at
its right end. The c axis is in the same direction as the x3 axis,
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which locates along the central line with its origin set at the
left end surface.

Referring to the Mindlin plate theorem, power series expan-
sions of displacement, potential, and internal carrier concen-
tration variations with first-order approximation are39–41:

u2 ∼= ν(x3, t)
u3 ∼= x2ψ(x3, t)
ϕ ∼= x2φ 1(x3, t)
∆n ∼= x2n1(x3, t)
∆p ∼= x2 p1(x3, t)

(8)

Here ν is the deflection and ψ is the deflection-related shear
deformation. φ 1, n1, and p1 are the first-order coefficients de-
scribing the transverse distribution of the potential, variations
of electron and hole concentrations, respectively. The corre-
sponding strain, electric field, and carrier concentration gradi-
ent can be expressed as:

S3 = x2ψ,3 S4 = ν,3 +ψ

E2 =−φ 1 E3 =−x2φ 1
,3

∆n,2 = n1 ∆n,3 = x2n1
,3

∆p,2 = p1 ∆p,3 = x2 p1
,3

(9)

Using the stress relaxation condition, the expressions for
the stress and electric displacement can be derived from Equa-
tion (3) in Section I:

T3 = c̄33S3 − ē33E3 = c̄33x2ψ,3 + ē33x2φ 1
,3

T4 = c̄44S4 − ē15E2 = c̄44(ν,3 +ψ)+ ē15φ 1

D2 = ē15S4 + ε̄11E2 = ē15(ν,3 +ψ)− ε̄11φ 1

D3 = ē33S3 + ε̄33E3 = ē33x2ψ,3 − ε̄33x2φ 1
,3

(10)

The material constants in Equation (10) satisfy the follow-
ing relationship:

c̄33 = 1/sE
33 c̄44 = 1/sE

44
ē33 = d33/sE

33 ē15 = d15/sE
44

ε̄11 = εT
11 − (d15)

2/sE
44 ε̄33 = εT

33 − (d33)
2/sE

33

(11)

Here c̄33, ē33 and ε̄33 are the one-dimensional equivalent
elastic constants, piezoelectric constants and dielectric con-
stants. The constitutive relationships of the current are:

Jn
2 = qn0µn

22E2 +qDn
22∆n,2 =−qn0µn

22φ 1 +qDn
22n1

Jn
3 = qn0µn

33E3 +qDn
33∆n,3 =−qn0µn

33x2φ 1
,3 +qDn

33x2n1
,3

Jp
2 = qp0µn

22E2 −qDp
22∆p,2 =−qp0µn

22φ 1 −qDn
22 p1

Jp
3 = qp0µn

33E3 −qDp
33∆p,3 =−qp0µn

33x2φ 1
,3 −qDn

33x2 p1
,3
(12)

The bending moment M, shear force Q and the equivalent
electric displacement D0

2 and D1
3 in the structure can be de-

rived from the following constitutive relationships:

M =
∫

A x2T3dA = c̄33Iψ,3 + ē33Iφ 1
,3

Q =
∫

A T4dA = c̄44A(ν,3 +ψ)+ ē15Aφ 1

D0
2 =

∫
A D(1)

2 dA = ē15A(ν,3 +ψ)− ε̄11Aφ 1

D1
3 =

∫
A x2D(1)

3 dA = ē33Iψ,3 − ε̄33Iφ 1
,3

(13)

where the cross-sectional rotational inertia I can be expressed
as:

I =
A2

4π
(14)

The current relationship can also be obtained by integrating
over the cross-section:

Jn0
2 =

∫
A Jn

2 dA =−qn0µn
22Aφ 1 +qDn

22An1

Jn1
3 =

∫
A x2Jn

3 dA = qn0µn
33Iφ 1

,3 +qDn
33In1

,3

Jp0
2 =

∫
A Jp

2 dA =−qp0µn
22Aφ 1 −qDn

22Ap1

Jp1
3 =

∫
A x2Jp

3 dA = qp0µn
33Iφ 1

,3 −qDn
33I p1

,3

(15)

Assuming that the model in Figure 1 is n-type PS fiber, the
total field equation in static equilibrium can be written as:

Q,3 = 0
M,3 −Q = 0
D1

3,3 −D0
2 =−qIn1

Jn1
3,3 − Jn0

2 = 0

(16)

The boundary conditions are:

ν(0) = 0 M(L) = 0 ψ(0) = 0 Q(L) = F
D(1)

3 (0) = 0 D(1)
3 (L) = 0 Jn(1)

3 (0) = 0 Jn(1)
3 (L) = 0

(17)

IV. FIELD DISTRIBUTION ANALYSIS

Substituting equations (13) and (15) into Equation (16), the
exact expressions of the field equation are obtained:
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c̄33Iψ,33 + c̄33I,3ψ,3 + ē33Iφ
(1)
,33 + ē33I,3φ

(1)
,3 − c̄44A(v,3 +ψ)− ē24Aφ (1) = 0

c̄44A(v,33 +ψ,3)+ c̄44A,3(v,3 +ψ)+ ē24Aφ
(1)
,3 + ē24A,3φ (1) = 0

ē33Iψ,33 + ē33I,3ψ,3 − ε̄33Iφ
(1)
,33 − ε̄33I,3φ

(1)
,3 − ē24A(v,3 +ψ)+ ε̄22Aφ (1) =−qIn(1)

−qn0µn
33Iφ

(1)
,33 −qn0µn

33I,3φ
(1)
,3 +qDn

33In(1),33 +qDn
33I,3n(1),3 +qn0µn

11Aφ (1)−qDn
11An(1) = 0

(18)

In this article, the system of partial differential equations in
Equation (18) is difficult to solve analytically due to the vari-
able parameters along x3 axis, i.e., the cross-sectional area A
and the rotational inertia I. Therefore, a numerical calculation
method called the generalized differential quadrature method
(GDQM) will be used to discretely solve the equations. The
GDQM was proposed by Shu42 and is an extension of the dif-
ferential quadrature method (DQM)43. The DQM can obtain
highly accurate numerical results with considerably fewer grid
points than conventional low-order finite difference and finite
element methods, requiring relatively little computational ef-
fort. The GDQM was developed in the late 1980s to solve the
ill-conditioned algebraic equations generated by early DQM
and to release the restriction on the number of grid points.
As a result, the GDQM has emerged as a powerful numerical
discretization tool in recent years and has been efficiently em-
ployed in a wide range of problems in engineering and physi-
cal sciences.
In the GDQM approach, the value of the derivative at each
node is represented as a weighted sum of the function values
at the discrete points, which define the domain of the func-
tion. According to GDQM, the s-order partial differential of
the continuous differentiable function f (x) can be expressed
as (for the sake of clarity, the x3 axis is written directly as x
in the following equations, while xi denotes the coordinates of
the ith discrete point):

∂ s f (x)
∂xs | x = xi

=
R

∑
j=1

B[s]
i j f (x j) i = 1,2...R (19)

where R is the number of discrete points and B[s]
i j is the s-order

weighted coefficient matrix. For the problems in this section,
the variables ν , ψ , φ1 and n1 are expressed in the following
form:

{ν ,ψ,φ 1,n1}=
R

∑
j=1

L j(x){V j,Ψ j,Φ j,N j} (20)

where L j(x) is the Lagrangian polynomial:

L j(x) =
R

∏
k=1
k ̸= j

x− xk

x j − xk
(21)

According to Equation (19), the s-order derivatives of
Equation (20) are:{

v[s] (xi) ,ψ
[s] (xi) ,φ

1[s] (xi) ,n1[s] (xi)
}
=

R

∑
j=1

B[s]
i j

{
V j,Ψ j,Φ j,N j

}
(22)

Here the expression of the first-order weighted coefficient
matrix B[1]

i j is:

B[1]
i j = L[1]

j (xi) =



R
∏

k=1
k ̸=i, j

(xi − xk)/
R
∏

k=1
k ̸= j

(x j − xk) (i ̸= j)

R
∑

k=1
k ̸=i

1
(xi−xk)

(i = j)

(23)
The remaining higher-order weighting coefficients matrix

can be obtained by multiplying the lower-order weighting co-
efficient matrix:

B[s+1]
i j = B[1]

i j B[s]
i j (24)

For selecting discrete points, we adopt the Chebyshev-
Gauss-Lobatto point system42 with the following distribution:

xi =
1
2

[
1− cos

(
i−1
R−1

π

)]
(25)

Employing Equation (22), the field Equation (18) at each
discrete point (1 < i < R) in the domain becomes:

c̄33I(xi)
R
∑

j=1
B[2]

i j Ψ j + c̄33I,3(xi)
R
∑

j=1
B[1]

i j Ψ j + ē33I(xi)
R
∑

j=1
B[2]

i j Φ j + ē33I,3(xi)
R
∑

j=1
B[1]

i j Φ j − c̄44A(xi)(
R
∑

j=1
B[1]

i j V j +Ψi)− ē24A(xi)Φi = 0

c̄44A(xi)(
R
∑

j=1
B[2]

i j V j +
R
∑

j=1
B[1]

i j Ψ j)+ c̄44A,3(xi)(
R
∑

j=1
B[1]

i j V j +Ψi)+ ē24A(xi)
R
∑

j=1
B[1]

i j Φ j + ē24A,3(xi)Φi = 0

ē33I(xi)
R
∑

j=1
B[2]

i j Ψ j + ē33I,3(xi)
R
∑

j=1
B[1]

i j Ψ j − ε̄33I(xi)
R
∑

j=1
B[2]

i j Φ j − ε̄33I,3(xi)
R
∑

j=1
B[1]

i j Φ j − ē24A(xi)(
R
∑

j=1
B[1]

i j V j +Ψi)+ ε̄22A(xi)Φi +qI(xi)Ni = 0

−n0µn
33I(xi)

R
∑

j=1
B[2]

i j Φ j −n0µn
33I,3(xi)

R
∑

j=1
B[1]

i j Φ j +Dn
33I(xi)

R
∑

j=1
B[2]

i j N j +Dn
33I,3(xi)

R
∑

j=1
B[1]

i j N j +n0µn
11A(xi)Φi −Dn

11A(xi)Ni = 0

(26)
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Meanwhile, according to the boundary conditions in Equation
(17), the following conditions are satisfied at the two discrete
points on the boundary:

V1 = 0

c̄33I(xR)
R
∑
j=1

B[1]
R jΨ j + ē33I(xR)

R
∑
j=1

B[1]
R jΦ j = 0

Ψ1 = 0

c̄44A(xR)(
R
∑
j=1

B[1]
R jV j +ΨR)+ ē24A(xR)ΦR = F

ē33I(x1)
R
∑
j=1

B[1]
1 j Ψ j − ε̄33I(x1)

R
∑
j=1

B[1]
1 j Φ j = 0

ē33I(xR)
R
∑
j=1

B[1]
R jΨ j − ε̄33I(xR)

R
∑
j=1

B[1]
R jΦ j = 0

−n0µn
33I(x1)

R
∑
j=1

B[1]
1 j Φ j +Dn

33I(x1)
R
∑
j=1

B[1]
1 j N j = 0

−n0µn
33I(xR)

R
∑
j=1

B[1]
R jΦ j +Dn

33I(xR)
R
∑
j=1

B[1]
R jN j = 0

(27)

The field distributions at each discrete point can be obtained
by solving the system of linear equations consisting of equa-
tions (26) and (27) using MATLAB.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, the materials of the PS fiber are chosen as
ZnO, whose material constants are listed in Table I. Besides,
the parameters of the PS fibers we used are shown in Table II.

A. First-order variation of cross-sectional area

In this subsection, we consider fibers with first-order vari-
ation in cross-sectional area. The area variation profile of the
fibers is chosen to be:

A = A0 −λ ×A0x/L (28)

Here in Equation (28), λ represents the taper of the fiber.
The sharpness of the PS fiber increases with increasing λ .
Therefore, the radius distribution of the fibers, i.e. the shape
of the profile, is shown in Figure 2. Firstly, the convergence
and correctness of the algorithm we used need to be verified.
When A0 = 2.598× 10−14 m2, F = 0.02 nN, and λ = 0.6,
the n1 distributions obtained by choosing different numbers of
discrete points R are shown in Figure 3. The number of dis-
crete points, denoted by R, is found to affect the smoothness
of the distribution curve, with the curve shape remaining rela-
tively unchanged when R is greater than 50. For the numerical
calculations in this paper, R is set to 200. FEM results given
by COMSOL Multiphysics are used to validate the GDQM re-
sults. Figure 3 also compares the n1 distribution computed by
the GDQM with those computed by FEM. The results indicate
that the computed n1 distributions from FEM and GDQM are
in agreement, thus validating the theoretical analysis using the
GDQM method.

0 0.1 0.2 0.3 0.4 0.5 0.6

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 2: Fiber radius distribution with first-order variation
in cross-sectional area for different values of λ

Table I: Material constants of ZnO

Notation Description Value
sE

33 Elastic compliance constant 6.94×10−12 m2/N
d33 Piezoelectric constant 11.67×10−12 C/N
εT

33 Dielectric constant 1.12×10−10 F/m
q Elementary charge 1.602×10−19 C
kBT/q Thermal voltage at 300 K 0.0259 V

Table II: Parameter settings in Section V

Notation Description Value
L Length of the fiber 0.6 µm
Al Area of the left end surface 2.598×10−14 m2

Ar Area of the right end surface Varies with function A(x)
F Applied end force 2 nm
n0 Initial electron concentration 1021 m−3

Next, the impact of variable cross-section on the distribu-
tion of electromechanical fields within the fiber is explored.
With an external force of F = 0.02 nN, Figure 4 displays the
electromechanical field distributions for various values of λ .

The distribution of deflection ν and shear deformation ψ

are presented in Figure 4(a) and 4(b), respectively. The re-
sults indicate that an increase in the parameter λ leads to
larger values of both deflection ν and shear deformation ψ .
This can be attributed to the contraction of the right part of
the fiber with increasing λ , which makes deformation easier.
In addition, Figure 4(c) and 4(d) depict the distribution of one-
dimensional potential φ 1 and electron concentration variation
n1. When λ = 0, the fiber is uniform along the x3 axis, and
the results indicate that only φ 1 and n1 near the left end of
the fiber exhibit drastic variations, while those in the remain-
ing part of the fiber remain nearly constant. This finding is in
agreement with previous studies44,45, which suggested that the
distribution of electrical quantities in bending-deformed uni-
form PS fibers is independent of the axial direction. In con-
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Figure 3: The distribution of the electron concentration variation n1 for correctness and convergence verification

trast to the previous findings in uniform fibers, in non-uniform
fibers, the distribution of electrical quantities changes along
the axial direction as the strain parameter λ increases. The
change in potential φ 1 and electron concentration n1 is more
significant near the right end of the fiber due to the specific
strain distribution. In addition, the distribution of the shear
strain S4 is shown in Figure 4(e). It can be seen that S4 is ba-
sically constant along the axial direction for λ = 0. However,
as λ increases, S4 becomes larger on the right side of the fiber,
leading to a more significant variation in potential and carrier
concentration.

In the following study, the value of λ is fixed while varying
the external force F to examine the field distribution. The
distribution of one-dimensional potential φ 1 in Figure 5(a)
changes dramatically as expected, with changes occurring si-
multaneously with opposite signs near both ends, which is in
contrast to Figure 4(c), where the field changes only at one
end. This is because, as shown in Figure 5(b), the variation
of F affects the distribution of shear strain S4 along the whole
fiber, whereas, in Figure 4(e), S4 is essentially unchanged at
the left end due to the fixed surface area.

In the context of their use as energy harvesters and sensors,
the potential distribution on the fiber surface is of more prac-
tical concern. However, as can be seen from Equation (8),

the φ 1 discussed in Figure 4 and 5 represents only the one-
dimensional coefficients of the two-dimensional potential dis-
tribution, while the potential distribution on the fiber surface
equals to φ 1 × r, where r is the fiber radius. Thus, although
the value of φ 1 in Figure 4(c) varies monotonically along the
x3 axis with increasing λ , it does not necessarily indicate that
the potential distribution on the surface of the fiber also varies
monotonically. This is because the surface potential is de-
termined by the product of the potential and the fiber section
radius. In the case of λ > 0, the potential rises rapidly, but
the section radius r also shrinks abruptly near the right end of
the section. The higher-order terms in the product can cause
local poles in the potential along the axial direction. Figure
6 shows the potential distribution ϕ on the lower surface of
the fiber corresponding to the values of λ considered in Fig-
ure 4. It can be observed that, for the fiber with λ = 0.9, the
surface potential has an extreme point near the right end. To
further illustrate this phenomenon, analyze the causes of the
phenomenon and thus control this property, different forms of
cross-sectional area functions are chosen and the correspond-
ing surface potentials are calculated and compared in the next
subsection.
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Figure 4: The distribution of the electromechanical fields for different values of λ : (a) deflection ν ; (b) shear deformation ψ;
(c) electric potential φ 1; (d) electron concentration variation n1; (e) shear strain S4
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Figure 5: Distributions of the electromechanical field under different magnitudes of external forces F : (a) potential φ 1; (b)
shear strain S4
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Figure 6: Distribution of surface potential ϕ for different
values of λ

B. Analysis of surface potential extreme point phenomenon

In response to the phenomenon discovered in the previ-
ous section, where a bending fiber with a monotonic change
in cross-sectional area exhibits a surface potential extremum,
this study first used COMSOL software to perform three-
dimensional modeling and simulation calculations to verify
the existence of this phenomenon. The results showed that,
under the action of bending deformation, the variable cross-
sectional fiber did exhibit a potential extremum near the right
end face when λ approaches 1, confirming the existence of
this phenomenon and the necessity of this study. The simula-
tion process is presented in the appendix.

In this section, the comparison was made among five dif-
ferent cross-sectional area functions of the bent and deformed
cross-sectional area fibers. These five fibers’ cross-sectional
area functions are listed in Table III. The left-end cross-

Table III: Area formulas for comparison

No. Formula When x = L and µ → 1
1 A = A0 −µ ×A0x2/L2 r → 0; dr/dx < 0
2 A = A0 −µ ×A0x/L r → 0; dr/dx < 0
3 A = A0(1− (1−

√
1−µ)× x/L)2 r → 0; dr/dx < 0

4 A = (1−µ)×A0 +µ ×A0(L− x)2/L2 r → 0; dr/dx → 0
5 A = (1−µ)×A0 +µ ×A0(L− x)3/L3 r → 0; dr/dx → 0

sectional area of these fibers is fixed at a uniform value A0, and
the cross-sectional area decreases monotonically with increas-
ing x, with the smallest cross-sectional area at the right end.
Among the five functions, µ uniformly represents the contrac-
tion amplitude of the fiber’s right-end surface compared to the
left-end surface, i.e., the ratio of the right-end cross-sectional
area to the left-end cross-sectional area. Specifically, when
µ = 0, the fiber is uniform, and the cross-sectional area does
not change. When µ = 1, the right-end cross-sectional area is
0, that is, the right end of the fiber becomes a sharp point. The
parameter µ is selected at values of 3/4, 15/16, 63/64, and
255/256, which correspond to the right end face radius con-
tracting to half, one-fourth, one-eighth, and one-sixteenth of
the maximum radius. The five cross-sectional area functions
are sorted according to the concavity and convexity of their
corresponding radius functions, from the concave function to
the linear function to the convex function. The radius function
corresponding to the cross-sectional area function of number
3 is linear.

The area distribution of the radius r and the correspond-
ing surface potential ϕ results are displayed in Figure 7. As
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Figure 7: The corresponding radius r distribution and surface potential distribution ϕ of fibers with different cross-sectional
area functions A

shown in Figure 7, as the convexity of the functions increases,
the overall contraction of the fibers also increases, and the
amplitude of the surface potential increases accordingly. Al-
though the cross-sectional areas of these fibers are all mono-
tonically decreasing functions, in Figure 7(b),7(d) and 7(f), a
surface potential extremum appears as the contraction rate µ

increases, while no extremum appears in Figure 7(h) and 7(j)
and the slope of the surface potential ϕ approaches 0 at the
right end.

This phenomenon is consistent with the results obtained
from the theoretical formulas in the previous section. For
fibers with a monotonically decreasing cross-sectional area
under bending, although the monotonically changing cross-
sectional area leads to the monotonically changing electric po-
tential phi1 per unit length, the two-dimensional surface elec-
tric potential ϕ = φ 1 × r. Even though the absolute value of
phi1 increases continuously, r is decreasing and approaching

0. When the slope of r reaches a certain value, it will in-
evitably lead to the extreme point of the surface potential ϕ .
Therefore, we can conclude that the appearance of extreme
points is related to the concavity and convexity of the cross-
sectional radius r, or in other words, to the way that r ap-
proaches 0. Moreover, when r is a linear or higher-order con-
cave function, extremum points will appear when approaching
0 on the right-end surface. When r is a convex function and
the slope of r approaches 0 on the right end surface, the sur-
face potential will not have extremum points.

The appearance of an extreme point at the right end can
also be understood from a physical perspective. When con-
sidering the limiting case where the cross-sectional area at the
right end equals zero, the surface potential ϕ = 0. This in-
evitably leads to the fact that the absolute value of the surface
potential ϕ cannot increase without limit. Therefore, when
the cross-sectional area at the right end is close to or relatively
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small, an extreme point will naturally appear near the right
end, and the surface potential ϕ will rapidly decrease. How-
ever, when the slope of the radius r also tends to 0 at the right
end, the extreme point no longer appears, which can be un-
derstood from another physical perspective. When the slope
of r approaches zero, it can be understood that for that small
section, the fiber is uniform. Based on previous studies on
uniform fibers, we know that the surface potential on uniform
fibers remains constant. Therefore, near the right end where
the cross-sectional area of the variable cross-section fiber does
not change, the slope of the surface potential is zero, and thus
no extreme point will appear.

In summary, to prevent the occurrence of surface potential
extremum points, the following measures can be taken:

(1) Reduce the shrinkage rate µ of the fiber cross-sectional
area and increase the minimum value of the fiber cross-
sectional area.

(2) Properly set the radius distribution of the fiber, control
the concavity and convexity of the r function, and reduce the
absolute value of the slope of r at the contraction end face.

These measures can be achieved by adjusting the structural
parameters of the fiber, thereby avoiding the occurrence of
surface potential extremum points under bending, and ensur-
ing the normal operation of the fiber. This has important prac-
tical significance for the design and optimization of equipment
such as PS devices that work in bending mode.

C. Second-order variation of cross-sectional area

In this subsection, we examine PS fibers with variable
cross-sectional areas of the second order. The expression for
the cross-sectional area is given by Equation (29),

A = A0 −κ ×A0(xL− x2)/L2 (29)
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Figure 8: Fiber radius distribution with second-order
variation in cross-sectional area for different values of κ

Equation (29) describes an hourglass-shaped fiber, where
A0 denotes the initial cross-sectional area, and κ represents

the degree of shrinkage of the middle section relative to the
two ends. When κ = 0, the cross-sectional area of the fiber re-
mains constant, while when κ = 3, the middle cross-sectional
area is one-fourth of the cross-sectional area at both ends. Fig-
ure 8 displays the radius distribution of the fibers.

To investigate the distribution of the electromechanical field
in the fibers under different values of κ , we apply an external
force of F = 0.02 nN. The results are shown in Figure 9. Fig-
ure 9(a) and 9(b) show the deflection ν and shear deformation
ψ , respectively. As κ increases the values of ν and ψ increase
proportionally. This is because the smaller the cross-sectional
area, the greater the deformation of the fiber under the same
degree of external force. In particular, since the middle sec-
tion of the fiber is the smallest, the slope of the middle part of
the ψ distribution curve in Figure 9(b) is considerably higher
than that of the two ends. The distribution of one-dimensional
potential φ 1 and electron concentration variation n1 are shown
in Figure 4(c) and 4(d), respectively. In the case where κ = 0,
the fibers are uniform, resulting in distribution patterns sim-
ilar to those observed in the previous subsection for λ = 0.
Specifically, the distribution of one-dimensional potential φ 1

and electron concentration variation n1 undergo sharp changes
only near the left end of the fiber, while the rest of the distri-
bution remains essentially unchanged. However, in the non-
uniform fibers in this subsection, as κ increases, φ 1 and n1 not
only vary along the axial direction but also exhibit sharp vari-
ations, leading to an extreme point in the middle of the fiber.
The observed variation in φ 1 and n1 is attributed to the gener-
ation of larger strain S4 caused by the smaller cross-sectional
area in the middle of the fiber. The distribution of the shear
strain S4 is shown in Figure 9(e), where an extreme point can
be observed in the middle of the fiber. It is anticipated to have
a corresponding effect on φ 1 and n1.

Subsequently, to explore the response of fibers to differ-
ent external forces F , κ was set to a constant value of 3. In
Figure 10(a), the one-dimensional potential φ 1 exhibits sig-
nificant variation, which is linear with the magnitude of the
external force F . Moreover, the extremum always appears in
the middle of the fiber, which is closely related to the shear
strain S4 shown in Figure 10(b). The trend of shear strain S4
is always small at both ends and large in the middle. It is note-
worthy that the extremum of the shear strain is always slightly
to the left of the middle. This is because the shear strain is
calculated as S4 = ν,3 +ψ , and the first term in the expression
shifts the extreme point to the left. In addition, the surface po-
tential distribution of the fibers was also studied, and the re-
sults are shown in Figure 11. As expected, at the point where
the cross-sectional area has an extremum, there is also a cor-
responding extremum in the surface potential ϕ , with no shift.
This means that if we need to artificially create extremums in
the surface potential on the fiber, it can be achieved by chang-
ing the fiber contour and reasonably setting the cross-sectional
area function of the fiber. This has significant implications for
the design of nanoscale piezoelectric semiconductor devices.
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Figure 9: The distribution of the electromechanical fields for different values of κ: (a) deflection ν ; (b) shear deformation ψ;
(c) electric potential φ 1; (d) electron concentration variation n1; (e) shear strain S4
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Figure 10: Distributions of the electromechanical field under different magnitudes of external forces F : (a) potential φ 1; (b)
shear strain S4

0 0.1 0.2 0.3 0.4 0.5 0.6
-9

-6

-3

0

3

6

9

12

15

18

21

24

27
10

-5

Figure 11: Distribution of surface potential ϕ for different
values of κ

VI. CONCLUSIONS

In this paper, the electromechanical properties of PS fibers
with variable cross-sections under bending deformation are
investigated. The constitutive equations of two-dimensional
variable cross-section fibers are derived using piezoelectric
theory. The variable coefficient partial differential equation
system describing the mechanical and electrical field distribu-
tion is solved using the numerical method GDQM. The main
research findings of this study can be summarized as follows:

(1) Under the action of bending deformation, the distribu-
tion of electrical quantities of uniform PS fibers along the ax-
ial direction is uniform, while non-uniform fibers with vari-

able cross-sections exhibit axial changes. At the same time,
the electrical response of non-uniform fibers is more sensitive
and intense compared to uniform fibers under the same exter-
nal force.

(2) Under the action of bending deformation, contrary to
superficial expectations, a monotonic change in the cross-
sectional area does not necessarily lead to a corresponding
monotonic change in the surface potential of PS fibers. The
surface potential can sometimes exhibit extreme values, which
depend on the convexity and concavity of the contour function
of PS fibers.

(3) Under the action of bending deformation, it is possible
to artificially create extremum points of the surface potential
of PS fibers by setting extremum points on the fiber contour.
When the contour function is quadratic, the extremum points
of the contour coincide with those of the surface potential,
while the shear strain will produce some deviation relative to
the contour extremum points.

The research results of this paper can provide reliable theo-
retical guidance for the design of high-performance piezoelec-
tric semiconductor nano-devices, and provide new ideas for
manufacturing more efficient nano-generators and mechani-
cal strain sensors in the future.
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Appendix A: Surface potential distribution of the 3D fiber
model

Figure 12: 3D fiber model built in COMSOL

Due to the non-negligible differences in constitutive equa-
tions and assumptions between 3D models and 2D models,
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Figure 13: Surface potential distribution of the 3D fiber
model

this section only provides an existence verification. The area
function, material and model parameters are the same as in
Section V A, with F = 0.02 nN and λ = 255/256. The 3D
model established using COMSOL software is shown in Fig-
ure 12., and the potential distribution on the blue line at the
bottom surface is selected to represent the surface potential.
The surface potential distribution is shown in Figure 13, where
it can be seen that an extremum appears near the right end face
of the fiber, verifying the existence of the phenomenon dis-
cussed in Section V B and the necessity of related research.
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