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variations in the Red Sea

Celia Marlowe1,2*, Kieran Hyder1,2, Martin D. J. Sayer3,4

and Jan Kaiser1

1Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East
Anglia, Norwich Research Park, Norwich, United Kingdom, 2Centre for Environment, Fisheries and
Aquaculture Science (Cefas), Lowestoft, United Kingdom, 3Natural Environment Research Council
(NERC) National Facility for Scientific Diving, Scottish Association for Marine Science, Oban, United
Kingdom, 4Tritonia Scientific Ltd., Dunstaffnage Marine Laboratories, Oban, United Kingdom
Dive computers have the potential to provide depth resolved temperature data

that is often lacking especially in close to shore, but spatiotemporal assessment

of the robustness of this citizen science approach has not been done. In this

study, we provide this assessment for the Red Sea, one of the most dived areas

in the world. A comparison was conducted between 17 years of minimum

water temperatures collected from SCUBA dive computers in the northern Red

Sea (23–30° N, 32–39.4° E), satellite-derived sea surface temperatures from

the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) optimal

interpolation product, and depth-banded monthly mean in-situ temperature

from the TEMPERSEA dataset, which incorporates data originating from several

in-situ recording platforms (including Argo floats, ships and gliders). We show

that dive computer temperature data clearly resolve seasonal patterns, which

are in good agreement in both phase and amplitude with OSTIA and

TEMPERSEA. On average, dive computer temperatures had an overall

negative bias of (–0.5 ± 1.1) °C compared with OSTIA and (–0.2 ± 1.4) °C

compared with TEMPERSEA. As may be expected, increased depth-related

biases were found to be associated with stratified periods and shallower mixed

layer depths, i.e., stronger vertical temperature gradients. A south-north

temperature gradient consistent with values reported in the literature was

also identifiable. Bias remains consistent even when subsampling just 1% of the

total 9310 dive computer datapoints. We conclude that dive computers offer

potential as an alternative source of depth-resolved temperatures to

complement existing in situ and satellite SST data sources.
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Introduction

Long term observations of ocean temperature are essential

for our understanding of natural variations and trends caused by

climate change (Needler et al., 1999; Rhein et al., 2013), but there

is a shortage of depth-resolved temperature data, especially in

coastal areas (Wright et al., 2016). Determining temporal and

spatial variation via remote sensing in coastal areas is

challenging (Baldock et al., 2014). Satellite products are

commonly used to measure sea surface temperature (SST) but

are affected in coastal areas by proximity of land (Ricciardulli

and Wentz, 2004) or aerosol interference (Bernstein, 1982). In

addition, satellite SST records only the skin or sub-skin

temperature at the sea surface and measurements have been

found to differ from in situ measurements by up to 6 °C (Smit

et al., 2013) with root-mean-squared errors (RMSE) amplified

nearer the coast (Lee and Park, 2020). Although interpolated

analysis products are available, it is important to understand

how temperature varies with depth for validation of these

products (Kennedy et al., 2007).

Public participation in scientific research (Bonney et al.,

2009a), often called citizen science, is a rapidly developing field

(Bonney et al., 2016). Environmental citizen science projects have

been around for well over a century; the first recorded project

being the Christmas Bird Count, which has taken place annually

in the US since 1900 (Silvertown, 2009). In conjunction with the

developing autonomous monitoring technologies, engaging

citizen scientists involved in marine recreational activities to

gather sub-surface information can help fill the data gap (Hyder

et al., 2015; Brewin et al., 2017b; Simoniello et al., 2019). One

approach is for citizen scientists to act as sensor platforms

(Haklay, 2018), providing crowdsourced ‘Volunteered

Geographic Information’ (VGI) (Schade et al., 2010) data for

research purposes, such as data from a mobile phone or

biosensing watch. Existing initiatives such as the Smartfin

project (Brewin et al., 2017a; Brewin et al., 2021) and Sonic

kayaks (Action, 2021) utilise sensor data collected from marine

recreational activity. In the diving world, dive computers are as

ubiquitous as smartphones. With as many as 10 million SCUBA

divers world-wide (Wright et al., 2016), most wearing one or more

dive computers, there is clear potential for divers to gather depth-

resolved information that is difficult to collect by traditional

means by following this crowdsourced approach. With sufficient

data, dive computers have been found to have an overall mean

temperature bias of (−0.2 ± 1.1) °C (Marlowe et al., 2021), offering

huge opportunity to contribute to observational datasets, given the

potential numbers of available data points worldwide.

Most modern dive computers record profiles of temperature

as a function of depth and time, with some older models

recording a single minimum temperature for a dive. The Red

Sea is one of the top diving destinations in the world (Shaalan,

2005), with in excess of 30 000 dives per year in some areas

(Hasler and Ott, 2008). Citizen scientist divers are active in the
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Red Sea, contributing to projects including monitoring of

marine turtles (Mancini and Elsadek, 2018), grey reef sharks

(Hussey et al., 2013) and coral reef biodiversity (Branchini et al.,

2015). This study collates minimum water temperatures

collected from SCUBA dive computers in the northern Red

Sea (longitude: 32–39.4° E, latitude: 23–30° N) between 2000 to

2017. These are compared with satellite-derived foundation sea

surface temperatures from OSTIA (E.U. Copernicus Marine

Service Information, 2020) and in-situ depth-resolved monthly

mean observations from TEMPERSEA, which brings together

data from CORA (Cabanes et al., 2013) which incorporates

profiles from several sources (e.g. Argo, GOSUD, OceanSITES

and World Ocean Database) with data sourced from all KAUST

(“King Abdullah University of Science and Technology” n.d.)

platforms in the Red Sea (e.g. ships, gliders and Argo floats)

(Agulles et al., 2019). We establish the quantitative validity of

dive computer temperature for resolving seasonal and

interannual temperature variations, exploring agreement with

satellite and in situ data under different grouping conditions.
Materials and methods

Study area: Red Sea

The Red Sea is a marginal sea formed by continental rifting

(Zolina et al., 2017) and has one of the longest reef systems in the

world (Fine et al., 2019), at 4000 km (Kleinhaus et al., 2020). 40%

of the Red Sea basin is shallower than 100 m, with a maximum

depth of 2800 m (Shaked and Genin, 2011). It is economically

important for tourism, shipping, oil and gas (Shaltout, 2019),

and is a focus for climate science and coral reef research, because

of the unprecedented heat tolerance of its scleractinian, reef

building corals (Kleinhaus et al., 2020). One of the hottest ocean

basins (Abdulla et al., 2018; Krokos et al., 2019), the Red Sea has

a pronounced annual temperature cycle (Al-Subhi and Al-

Aqsum, 2008). It has an annual mean surface temperature of

(27.9 ± 2.1) °C (1982 - 2016) (Shaltout, 2019), with a summer-

winter difference of 6 °C (Berman et al., 2003). Interannual

variability is greatest in the winter in the north (Karnauskas and

Jones, 2018). An SST gradient of 4 °C exists from north to south

(Alraddadi et al., 2021), along with a weaker zonal gradient;

eastern monthly mean surface temperatures are 0.3 °C higher in

the north than on the western side (Al-Subhi and Taqi, 2014). A

shallow thermohaline-driven circulation is seen above 150 m

(Tragou and Garrett, 1997), with weak semi-diurnal currents in

the northern parts (Sofianos and Johns, 2007).
Dive computer data

Dive computers (DC) have temperature bias related to

model, pressure sensor location and housing material, but,
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with aggregation of sufficiently large numbers, a mean bias

of -0.2 °C from CTD measured temperature was found

(Marlowe et al., 2021). For the present study, 323 088

anonymous data points from unknown dive computers

containing date, minimum temperature, maximum depth,

latitude and longitude were provided by divelogs.de (Mohr R).

These data have been submitted as ‘public’ logbooks and are

freely available. While most modern dive computers store full

temperature-depth profiles, these were not stored in divelogs.de

and were therefore not available for use. However, all dives had a

minimum temperature recorded, and we were interested to see

the usefulness of this basic dataset. Using anonymous data from

an online dive log provided a real test of the potential of raw dive

computer data as a useful source for temperature monitoring,

where no additional metadata were available about the device,

such as model, material, or pressure sensor location.
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All data were processed in R version 4.2, using the tidyverse

suite of packages (tidyverse overview). Basic validity tests were

carried out (Figure 1), with the number of dives retained

decreasing at each step of the filtering process (Figure 1). The

majority of retained dives were in the northern Red Sea. To

avoid skewing the comparison (whole region) climatology with

temperatures from the warmer southern Red Sea (Fishelson,

1971; Karnauskas and Jones, 2018), the study range was spatially

restricted to the northern Red Sea: 23–30° N, 32–39.4° E. Only

dives within standard recreational depths (maximum dive depth

≤ 40 m), years with more than 75 dives per year and with a

spread of dives across most months were retained (2000 to

2017). Only dives with minimum temperatures between 20 and

31 °C were selected. These temperature constraints were applied

as, in the Red Sea, temperatures as low as 20 °C have only been

found in water at depths >1500 m (Shaked and Genin, 2011)
FIGURE 1

Flow chart showing the filtering process and n(dives) retained at each step.
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and>31 °C SST only in the extreme southern Red Sea

(Karnauskas and Jones, 2018). Only dives with a collocated

OSTIA, and TSEA datapoint at the relevant depth band were

retained (further details in section 3.3.3). A 15 arc second-

resolution bathymetry (approximately 0.5 km) for the area was

downloaded from GEBCO (General Bathymetric Chart of the

Oceans) (GEBCO Compilation Group, 2020). Bathymetry

depths associated with each dive location were found using the

get.depth function in the marmap package in R (Pante et al.,

2020). To exclude any incorrectly geolocated dives where the

recorded latitude and longitude correlated with land rather than

sea, all records for which the corresponding bathymetry depth

was shallower than the maximum recorded dive depth were

removed. As there were only 48 dives remaining at 7 m or

shallower, only dives with maximum depths over 7 m were

retained. The study area and retained dives are shown

in Figure 2.

The Red Sea is an area subject to high solar radiation (Al-

Aidaroos et al., 2014) and extremely low precipitation (Abdulla

et al., 2018). A cooler surface stratification layer is therefore not

expected. Under these conditions, we assumed that the

minimum temperature is coincident with the maximum depth.
Frontiers in Marine Science 04
However, during a short dive, a dive computer may have not

been at depth sufficiently long to equilibrate to the ambient water

temperature (Marlowe et al., 2021). Although an uncommon

profile, in a short ‘bounce’ descent to maximum depth followed

by an ascent straight back to the surface, the bottom time might

be short and artificially high minimum temperatures may be

recorded (Wright et al., 2016). No metadata were available about

the length of dive, so we have no way to eliminate this potential

warm bias in the dive-computer data.
Comparison data

Daily satellite-derived SST data were obtained from the

global ocean OSTIA sea surface temperature and sea ice

product (E.U. Copernicus Marine Service Information, 2020).

This is a level 4 (L4) analysis product (Donlon et al., 2004) with a

horizontal resolution of 0.05° x 0.05°, which combines satellite

SST data with in-situ data from the HadIOD dataset within an

optimal interpolation system (Group for High Resolution Sea

Surface Temperature). L4 products are gridded and processed to

be gap free, with uncertainty estimates. Foundation SST values
FIGURE 2

Map of the study region with final selection of dives used in analyses. Inset map shows wider contextual area, with area of interest highlighted
with a box.
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were used, which represent the mixed layer temperature

(equivalent to 0.2 to 1 m below the surface measured just

before sunrise) (Donlon et al., 2012) and therefore removes

diurnal variations.

The four nearest OSTIA grid cells by Haversine (or great

circle) distance were identified, using the geosphere package in R

(Hijmans et al., 2019). A cell is defined as land if greater than

50% of the cell surface is land (Kara et al., 2007). Any returned

grid cells with a land mask flag were excluded. An interpolated

SST value, q(sat), for the specified latitude and longitude was

calculated from the four grid cells. As bilinear interpolation

requires four surrounding data points and many dives were

situated along the coastline, to calculate the interpolated value,

the inverse distance weighted interpolation function from the

Akima package (Gebhardt, 2020) was used.

‘TEMPERSEA’ (TSEA), a 3-D gridded monthly mean 0.25°

by 0.25° in situ data product utilizing an optimal interpolation

algorithm was used as a reference in situ dataset (Agulles et al.,

2019). TSEA has 23 vertical (depth) levels, two within the

recreational diving depths of interest in this study (15 and

30 m), plus another one just below, at 50 m. Dive computer

data were matched to the TSEA spatial grid at the closest TSEA

level below the maximum dive depth, i.e., dive computer data at

depths of between 7 and 15 m [q(DC15)] were compared with

15 m TSEA data [q(TSEA15)], from 15 m to 30 m [q(DC30)]

were compared with 30 m TSEA data [q(TSEA30)], and between

30 m and 40 m [q(DC40)] with TSEA 50 m [q(TSEA50)]. Values

did not exist for all grid cell/depth level combinations. If present,

the value (mean monthly temperature at that location/depth)

was selected for in situ comparison. Plots of q(DC) vs. q(sat),
q(DC) vs. q(TSEA) and q(sat) vs. q(TSEA) were created.

Bias was calculated as q(DC) – q(sat), q(DC) – q(TSEA), or
q(sat) – q(TSEA).

Monthly and weekly (based on day of year) climatologies of

the whole region were produced encompassing the entire

temporal and geospatial extent of the study �q(region). For
example, to create a monthly climatology, all daily OSTIA data

from all years were aggregated by month and average

temperatures produced. These provided baseline seasonal

patterns. Mean annual, monthly and weekly values were

calculated for each data source for comparison. Anomalies

from annual means were calculated for each year and data

source (DC, sat, TSEA), to ascertain interannual variation.

Amplitudes for each dataset were calculated by year, and each

depth band by year, by taking the difference between maximum

and minimum mean temperature for each subset. Temporal and

spatial resolutions for each data source are summarised

in Table 1.

Coastal satellite SST has been found to have poorer

agreement with in-situ data (Brewin et al., 2017a). Therefore,

we investigated whether dive computer temperature correlated

better with satellite data away from the coast. We extracted a

10 m resolution shapefile for the Red Sea coastline from a global
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coastline shapefile (ne_10m_coastline.shp) (Natural Earth). The

shortest distance from dive locations to the coastline were

calculated using the sf package in R (Pebesma). As the OSTIA

data are on a 0.05° grid, approximating 5.5 km at these latitudes,

all dive computer points within 11 km of the coast were

categorised as coastal and beyond 11 km as offshore, allowing

comparisons to be made between biases based on distance

from shore.
Statistical approach

The lm function in R (Carchedi et al.) was used to calculate a

simple linear regression between each combination of q(DC),
q(TSEA) and q(sat). As uncertainty was present in both

variables, York regression was applied to subset data at

monthly and weekly resolutions, using the yorkregression

function in R (Lichter and Delgado) and using sx and sy for
each subset as the error value.

Adjusted R2 (R̂ 2)(was calculated using the Wherry formula 1

as defined by Yin and Fan (Yin and Fan, 2010) (Eq.1) where N is

the sample size, p is the number of predictor variables and R is

the sample multiple correlation coefficient:

R̂ 2 = 1 −
N − 1

N − p −  1
 (1 −  R2) (1)
Results

A total of 9310 records with co-located values for q(DC),
q(TSEA) and q(sat) were identified (Figure 2). Simple

linear regression of q(sat) vs. q(DC) (intercept= 1.3 °C, slope =

0.93, R̂ 2=0.78, p =<0.001), q(TSEA) vs. q(DC) (intercept= -0.5 °C,

slope = 1.01, R̂ 2= 0.65, p =<0.001) and q(sat) vs. q(TSEA)
(intercept= 7.0 °C, slope = 0.72, R̂ 2= 0.74, p =<0.001) (Figure 3)

found q(sat) and q(TSEA) respectively explained 78% and 65% of

the variation in q(DC). Mean timeseries bias was (-0.5 ± 1.1) °C

for q(DC) – q(sat), (–0.2 ± 1.4) °C for q(DC) – q(TSEA), and
(0.3 ± 1.1) °C for q(sat) – q(TSEA).

Dive computer resolution is limited to integers in many

models. This is seen in the predominance of dive computer

temperatures at integer values in Figure 3. Mean annual SST

amplitude was (6.5 ± 1.0) °C for q(sat). Annual temperature
TABLE 1 Temporal and spatial resolution by data source.

Data source Temporal resolution Spatial resolution

q(DC) Point Point

q(sat) Daily 0.05° x 0.05°

q(TSEA) Monthly mean 0.25° x 0.25°

q(region) Mean daily Whole study region
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amplitude was comparable for q(DC15) at (6.8 ± 1.2) °C, and

q(TSEA15) (6.2 ± 0.7) °C.
Monthly resolution

York regression on mean monthly bias showed variation in

intercept and slope (Figure 4) but equivalent R̂ 2 across all three

comparison datasets.

Bias for all three monthly timeseries is shown in Figure 5. The

mean maximum depth across all months was consistent at (22.5 ±

1.0) m. The highest biases for q(DC) – q(sat) and for q(sat) –

q(TSEA) were seen in July and August (Figures 5A, C). q(DC) –
q(sat) bias ranged from (–0.2 ± 1.0) °C in February to (–0.8 ± 1.2) °C

in July and August (Figure 5A). q(DC) – q(TSEA) bias ranged from
(-0.7 ± 0.9) °C in March to (0.0 ± 1.2) °C in May. Absolute mean

bias ≤ 0.1 °C was found between May and October (Figure 5B).

q(sat) – q(TSEA) bias ranged from (-0.4 ± 0.7) °C inMarch to (1.0 ±

1.3) °C in August, with absolute mean bias ≤ 0.4 °C found between
Frontiers in Marine Science 06
October and April and in June (Figure 5C). Mean monthly

temperatures for all data sources show seasonal patterns

consistent with those seen in the regional climatology. Seasonal

patterns can be seen in overall mean monthly data for each data

source, and also individual years (Figure 6)

We also explored bias on a weekly basis, with the same patterns

of relative differences observed (See supporting information).
Interannual variation

All-year mean temperatures were q(DC) = (25.1 ± 2.2) °C,

q(sat) = (25.7 ± 2.3) °C and q(TSEA) = (25.5 ± 1.8) °C. The

annual mean temperature anomalies (annual mean data

compared with all-year mean temperature) show consistency

(Figure 7). 2003, 2010 and 2016 were warm years across all three

timeseries, with 2010 being the warmest �q(region) year of our
study period at (27.1 ± 2.3) °C. This is reflected in q(DC) and
q(sat), where highest mean annual temperature is also seen for
A B

C

FIGURE 3

Scatterplot of retained dives (n = 9310). (A) q(sat) vs. q(DC), (B) q(TSEA) vs. q(DC), (C) q(sat) vs. q(TSEA). Linear regression is solid line, dotted line
is 1:1 (included as a visual aid).
frontiersin.org

https://doi.org/10.3389/fmars.2022.976771
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Marlowe et al. 10.3389/fmars.2022.976771
2010 [q(DC) = (26 ± 2) °C, q(sat) = (26.0 ± 2.1) °C]. In contrast,

although q(TSEA) shows 2010 as a warm year at (25.6 ± 1.7) °C,

it is only equal third warmest.

Months with unusually large anomalies are also comparable

across timeseries; for example, the warmest November is 2010 for

both q(sat) (1.5 °C anomaly) and q(DC) (1.8 °C anomaly), but for

q(TSEA), November 2010 was equal third warmest, with no

anomaly from average November temperature.
Latitude bands

In addition to assessing the representativeness of the dataset

by comparison with the regional climatology, geospatial and depth

effects were investigated. Mean q(DC), q(sat) and q(TSEA)
temperature all decreased northwards, except from 28–29° N to

29–30° N (Table 2). Mean q(DC) – q(sat) bias ranged from (-0.6 ±

1.0) °C for 23–24° N to (1.1 ± 0.8) °C for 29–30° N, but with bias of

–0.6 °C or smaller in the five most southerly bands (Table 2).
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Mean q(DC) – q(TSEA) bias followed a similar pattern, turning

increasingly negative northwards, except for the most northerly

band (Table 2). Mean q(sat) – q(TSEA) bias ranged between

(-1.2 ± 0.8) °C for 29–30° N and (0.8 ± 1.3) °C for 24–25° N, with

smaller absolute bias in the 25–28° N band.
Distance from coast

When categorised into coastal (≤ 11 km) or offshore (>11 km)

by distance from the coastline, q(DC) – q(sat) mean bias was

similar for coast and offshore: (-0.6 ± 1.1) vs (-0.5 ± 1.1) °C. q(DC)
– q(TSEA) bias was smaller offshore by 0.3 °C and q(sat) –

q(TSEA) was 0.5 °C larger offshore (Table 3). When depth level is

included in coastal comparisons, all three data sources showed

consistent patterns in direction of temperature bias irrespective of

the coastal/offshore category (Table 3). Mean DC depths in the

levels (15, 30, 40) m were comparable: (12.6, 21.8, 33.4) m for the

coastal dives and (12.7, 23.5, 34.7) m offshore. All biases were 0.1
A B

C

FIGURE 4

Solid line shows York regression on mean monthly temperature for (A) q(sat) - q(DC), (B) q(TSEA) - q(DC) and (C) q(sat) - q(TSEA), showing
intercept a, slope b and R̂2. Dashed line is 1:1. Error bars are standard deviation for a given month/dataset, across all years.
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to 0.3 °C greater offshore, with the exception of q(DC30) -

q(TSEA30) which had a 0.2 °C smaller offshore bias.
Vertical resolution

The mean DC depth was 12.6 m for q(DC15), 22.2 m for

q(DC30), and 34.2 m for q(DC40). When considered in isolation

(not including temporal or spatial factors), mean q(DC) was

consistent irrespective of depth: (25.4 ± 2.3) °C for q(DC15),

(25.7 ± 2.3) °C for q(DC30) and q(DC40). Although q(sat) is a
foundation temperature and therefore does not have depth

level variation, local temperature of the dives will be affected

by spatial factors, so it is still a useful comparison, for example,

mean comparison satellite temperature was 0.8 °C colder for

q(DC15) dives [q(sat) = (25.7 ± 2.2) °C] than q(DC40) [q(sat) =
(26.5 ± 2.2) °C]. Mean q(TSEA15) °C was (26.1 ± 2.1) °C,

reducing to (25.2 ± 1.3) °C for q(TSEA50). As depth increased,

q(DC) cooled compared with q(sat) and both q(DC) and q(sat)
Frontiers in Marine Science 08
became warmer in comparison with q(TSEA) (Table 4

and Figure 8).

When taking depth level into account in combination with

month, the mean bias shows a clear impact of depth (Table S1

and Figure 8). q(DC) – q(sat) bias is negative across all q(DC)
depths. All q(DC) – q(TSEA) biases are negative except for

q(DC40) - q(TSEA50) between May and October (Figure 8). All

q(sat) – q(TSEA15) and q(sat) – q(TSEA30) month biases are

negative [q(sat)< q(TSEA)] except December [q(sat) –

q(TSEA15|30)], May and October [q(sat) – q(TSEA30)]. All

q(sat) – q(TSEA50), biases are positive except February.
Group size

To ascertain the number of dive samples required for

consistent results, an approach based on a random fraction of

samples per year was used. Analysis was run on random samples

of different sample fractions (75, 50, 25, 10 and 1%). This
A B C

FIGURE 5

(A) q(DC) - q (sat), (B) q(DC) - q(TSEA) and (C) q(sat) - q(TSEA) bias by month. Error bars show standard deviation for a given month/dataset,
across all years.
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generated sample sizes of 6982, 4655, 2328, 931 and 93,

respectively. Mean q(DC) vs. q(sat) bias remained consistent at

(-0.5 ± 1.1) °C at all sample sizes down to 1% (-0.8 ± 1.2) °C.

Similarly, q(DC) vs. q(TSEA) bias remained consistent with biases
Frontiers in Marine Science 09
of (-0.2 ± 1.4) °C at all sample sizes down to 1% (-0.6 ± 1.5) °C. To

check for consistency, from a bootstrap of 50 iterations of 1%

(ndives = 93), 36/50 absolute mean biases [q(DC) - q(sat)]
were ≤0.5 °C, with the remaining 14/50 between 0.5 and 8 °C.
A B

FIGURE 6

Mean monthly temperatures for q(DC), q(sat) and q(TSEA) with �q(region) for (A) all years, (B) for an example year (2015).
FIGURE 7

Interannual variation in anomalies from mean q(DC), q(sat) and q(TSEA). Red denotes years that are warmer than average (for the data source)
and blue cooler than average.
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45/50 absolute mean q(DC) - q(TSEA) biases were ≤0.5 °C, with

5/50 between 0.6 and 8 °C. 45/50 absolute mean q(sat) - q(TSEA)
biases were ≤0.5 °C, with 5/50 between 0.5 and 0.7 °C.
Discussion

The Red Sea has a pronounced seasonal temperature cycle

(Al-Subhi and Al-Aqsum, 2008). This study utilised a 17-year

non-continuous timeseries of in situ and satellite sea

temperature data, investigating the potential for temperature

data from citizen science logged dives to contribute useful ocean

temperatures. We found that temperature data from dive

computers can be used to derive interannual patterns in

temperature change, and seasonal temperature cycles at

monthly and weekly resolutions. These patterns, in agreement

with satellite-derived climatology, are consistently seen in

timeseries of biases for q(DC) - q(sat), q(DC) - q(TSEA) and
q(sat) - q(TSEA). The overall mean q(DC) - q(sat) bias of (–0.5 ±
1.1) °C is comparable to the result of Woo and Park (Woo and

Park, 2020) who found consistent warm bias in coastal SST of

over 0.3 °C in coastal regions when compared with in situ data
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from buoys, but is in contrast to studies in other areas where a

0.3 °C cool bias in satellite SST was found (Baldock et al., 2014).
Temporal resolution

The overall mean maximum depth of dives was consistent

across months at (22.5 ± 1) m. The mixed layer depth (MLD) of

the northern Red Sea shows monthly variations (Eladawy et al.,

2017). In winter, surface cooling forces convection and a

subsequent deepening of the MLD, leading to uniform

temperatures around 22 °C (Yao et al., 2014). In summer,

surface warming increases SST to over 28 °C, with a

coincident reduction of MLD. When surface temperatures are

warmest, poorest q(sat) vs. q(DC) and greater q(DC) vs.

q(TSEA) agreement is seen (Figure 6), indicating shallower

MLD and increased stratification leading to greater variation

in water temperature. This agrees with the MLD climatology

(Figure 9); depending on month and latitude, MLD varies from

< 20 m to > 80 m, with shallow mean MLDs (< 25 m) in our

latitude range mainly observed between April and September

(Abdulla et al., 2018). The difference in biases seen by month, in

agreement with varying MLD values, demonstrates the

importance of depth-resolved data and the potential value dive

computers an bring by giving insight into local conditions at

depth which is not possible to gather with just sea surface

temperature or an interpolated monthly in situ value. Dive

durations are unknown, but a likely contributing factor to

increased variance in summer months is device heating due to

solar radiation prior to the dive.

At a weekly resolution, comparable seasonal patterns are

observed (Figure S2). As with monthly comparisons, larger

q(DC) - q(sat) biases are seen in the summer weeks when

surface temperatures are higher and MLD shallower. The

reduced consistency in q(DC) - q(TSEA) bias seen at weekly

resolution is expected as q(TSEA) has only monthly resolution.

q(sat) interannual variation was largely in agreement with

Karnauskas and Jones (2018), with largest SST variations seen

in winter. Berman et al. (2003) found a mean surface

temperature summer-winter difference of 6 °C. We found

amplitudes of 6.4 °C [q(DC)], 6.5 °C [q(sat)] and 5 °C
TABLE 3 Mean bias by depth level and coastal grouping.

Measure Coast/°C Offshore/°C Difference/°C

q(DC) - q(sat) -0.5 ± 1.1 -0.6 ± 1.1 0.1

q(DC) - q(TSEA) -0.3 ± 1.3 -0.0 ± 1.5 -0.3

q(sat) - q(TSEA) -0.1 ± 1.0 -0.6 ± 1.3 0.5

q(DC15) - q(sat) -0.3 ± 1 -0.5 ± 1.1 0.2

q(DC30) - q(sat) -0.5 ± 1.1 -0.5 ± 1.1 0.0

q(DC40) - q(sat) -0.7 ± 1.2 -0.8 ± 1.2 0.1

q(DC15) - q(TSEA15) -0.6 ± 1.2 -0.9 ± 1.4 0.3

q(DC30) - q(TSEA30) -0.4 ± 1.3 -0.2 ± 1.3 -0.2

q(DC40) - q(TSEA50) 0.4 ± 1.4 0.5 ± 1.6 0.1

q(sat) - q(TSEA15) -0.3 ± 0.8 -0.4 ± 0.9 0.1

q(sat) - q(TSEA30) 0.1 ± 0.9 0.3 ± 1 0.2

q(sat) - q(TSEA50) 1.2 ± 1.2 1.3 ± 1.4 0.1
TABLE 2 Mean temperature and bias (q (DC) - q(sat), q(DC) - q(TSEA) and q(sat) - q(TSEA) by latitude band.

Latitude band q(DC) /°C q(sat) /°C q(TSEA) /°C q(DC) - q(sat) q(DC) - q(TSEA) q(sat) - q(TSEA) n
Bias/°C Bias/°C Bias/°C

23–24° N 27.0 ± 2.4 27.6 ± 2.1 26.9 ± 2.0 -0.6 ± 1.0 0.1 ± 1.4 0.7 ± 1.2 602

24–25° N 26.3 ± 2.4 26.9 ± 2.3 26.2 ± 1.9 -0.6 ± 1.3 0.1 ± 1.5 0.8 ± 1.3 1287

25–26° N 25.9 ± 2.5 26.0 ± 2.3 26.2 ± 2.0 -0.2 ± 1.1 -0.3 ± 1.3 -0.1 ± 1.0 887

26–27° N 25.6 ± 2.2 26.0 ± 2.0 25.8 ± 1.7 -0.5 ± 1.1 -0.3 ± 1.3 0.2 ± 1.0 3292

27–28° N 25.2 ± 2.2 25.7 ± 2.1 25.6 ± 1.8 -0.5 ± 1.1 -0.4 ± 1.3 0.1 ± 1.0 3158

28–29° N 24.1 ± 2.0 24.1 ± 2.0 24.9 ± 1.7 0.0 ± 1.4 -0.8 ± 1.3 -0.8 ± 1.0 55

29–30° N 26.4 ± 1.4 25.3 ± 1.6 26.5 ± 1.2 1.1 ± 0.8 -0.1 ± 0.5 -1.2 ± 0.8 29
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[q(TSEA), amplitude decreasing with increased depth]. This

consistency is another demonstrable instance of dive

computers producing comparable data to that from more

commonly used sources.
Spatial differences

�q(region) is composed of data across the entire spatial and

temporal bounds of the study. Comparing the time series with

climatology of the whole region gives insight into seasonal pattern
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expectations and agreement. The Red Sea is known to display a

strong latitudinal temperature gradient from south to north

(Chaidez et al., 2017), and a weaker zonal gradient in the

north, with eastern monthly mean surface temperatures 0.3 °C

higher than the western side (Al-Subhi and Taqi, 2014; Alraddadi

et al., 2021). As most dives in our dataset are located near the

western coast, this will contribute to the observed bias with the

regional climatology (Figure 6). Inspecting latitude bands, we see

good spatial agreement, with the latitudinal south – north cooling

trend observable in the mean temperatures by latitude band in all

datasets, with the consistent exception of the most northerly
TABLE 4 Mean DC depth, temperature and bias by depth band for q(DC), q(sat) & q(TSEA).

Depth
band

Mean DC
depth/m

Mean
q(DC)/°C

Mean
q(sat)/°C

Mean
q(TSEA)/°C

[q(DC)–
q(sat)]/°C

[q(DC)–
q(TSEA)]/°C

[q(sat)–
q(TSEA)]/°C

q(DC15) 12.6 25.4 ± 2.3 25.7 ± 2.2 26.1 ± 2.1 -0.3 ± 1 -0.7 ± 1.2 -0.4 ± 0.8

q(DC30) 22.2 25.7 ± 2.3 26.2 ± 2.2 26.0 ± 1.9 -0.5 ± 1.1 -0.3 ± 1.3 0.1 ± 0.9

q(DC40) 34.2 25.7 ± 2.3 26.5 ± 2.2 25.2 ± 1.3 -0.8 ± 1.2 0.5 ± 1.5 1.2 ± 1.3
A

B

C

FIGURE 8

Mean bias by depth and month for (A) q(DC) - q(sat), (B) q(DC) - q(TSEA), (C) q(sat) - q(TSEA).
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band. This inconsistency is likely attributable to the small ndives in

this band (n = 29).

Satellite SST is purported to have poorer accuracy close to

coastlines (Ricciardulli and Wentz, 2004; Smit et al., 2013). As

such we would expect to see greater deviation from q(DC) in
data categorised as coastal, but instead see a marginally greater

negative bias (-0.1 °C) in the offshore data. However, a L4

analysis product was used as comparison SST, to provide a

gap-free dataset. L4 products incorporate data from drifting

buoys (E.U. Copernicus Marine Service Information, 2020), to

compensate for satellite error, minimising coastal inaccuracies.
Group size

Reducing ndives by random sampling to 1% of the initial 9

310 dives (i.e., 93 dives) did not affect mean bias, standard

deviation or R̂ 2 values. However, when increasing the

granularity by encompassing multiple categories (such as to

week by depth level), the number of points reduce to low

numbers and the relative importance of the different

explanatory variables are less clear. Despite noisy data,

significant information about trends is seen, therefore in areas

where there are few in situ data alternatives available, small

datasets may still offer trend information if care is taken.
Representativeness of data

Representativeness of data is not as simple as merely sample

size; individual device factors need to be considered. Drift can

occur in forecasting systems as well as citizen science datasets,

but sensors utilised for monitoring are usually regularly

recalibrated (Bell et al., 2013). Dive computers are not
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calibrated (after purchase) and use piezoelectric sensors, which

are known to drift over time (Otmani et al., 2011). If large

volumes of data are collected in a small area from an individual

device which has drifted, or has a large systematic bias, overall

bias may be seen in the data. In the dataset there are examples of

a pattern of morning and afternoon dives, consistent with that of

a diving holiday (for example, 10 dives over 5 days), all with a

q(DC) - q(sat) bias of (-5.1 ± 0.2) °C. In the above example (10

dives in September 2001) a corresponding monthly bias is seen;

September 2001 was the coldest September instance for q(DC)
(mean: 24.4 °C), in constrast to both q(TSEA) and q(sat) where
it was not in the coolest 6 years, and had a mean temperature of

27.7 °C. If a diver is extremely active in logging dives in a

particular area, care needs to be taken if there are only a small

number of dives logged from other devices. By carrying out

regular simple calibration in an ice bucket (Wright et al., 2016),

an indication of device bias, and any change over time, could

be collected.
Relevance for data usage: Local
monitoring

Between 1982 and 2006 the Red Sea experienced warming

SST at 5.5 times the global change (Belkin, 2009), but

temperature measurement is not straightforward. While Argo

floats are commonly used to gather in situ temperature/depth

profiles, there are few cycles recorded in the Red Sea, with only

1615 cycles recorded between 2001 and 2021 (Argo 2021),

presumably as the single narrow entry point at the Strait of

Bab al Mandeb limits their ingress. Mean differences of 0.5 °C

have been found between satellite-derived SST products in the

Red Sea (Karnauskas and Jones, 2018). Regional variation in

coral mortality is affected by local differences in physical
FIGURE 9

Mixed layer depth by month and latitude (Abdulla et al., 2018).
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parameters (Moore et al., 2012) and Davis et al. (2011) found

daily variations ranging from 0.5 °C to >5 °C on shallow Red Sea

reefs, depending on the level of protection from waves. As such,

micro level data are essential to monitor ambient temperature

variation, and its influence on corals and other ecosystem

processes (Baldock et al., 2014). With consistent biases being

seen between all three datasets at different depths, our findings

agree with Colin and Shaun Johnston (2020), identifying depth-

resolved temperature differences which are not captured by

satellite data. Dive computers therefore are interesting for their

potential to provide depth resolved data as they are not limited

to nominal depths like sea-surface (satellite) or a fixed depth (in

situ sensor). They can offer a valuable additional layer of

information at a micro level, to complement data from other

sources. Utilising the potential volumes of data that could be

available in the highly dived areas of the Red Sea, long term time

series could be collated to support monitoring of important

corals and their surrounding ecosystems. Further analyses could

expand this work, as no comparable case studies of citizen

science data exist in other locations.
Practical considerations for dive
computer accuracy

Most dive computer models do not have GPS functionality,

which introduces potential error in any user recorded

coordinates. If a position is recorded to the nearest 0.01°

longitude/latitude, the accuracy will be approximately 1 km.

The satellite SST grid used here is 0.05°, equivalent to 5.5 km. In

addition, the coordinates of the most frequently dived sites are

well documented online. Many divers will note the reef or wreck

name at the time of dive, looking up coordinates later when back

on dry land. In these instances, the potential risk for dive to be

recorded at a location greater than 5 km from the actual location

is considered small. In less well documented areas, GPS

coordinates should be carefully recorded at the start or end of

the dive using a GPS tracker or mobile.

Dive computers record time and date, but some require these

to be changed manually. If divers travel into a different time

zone, and divers do not do this, data are potentially recorded at

the wrong time of day. For the purposes of this study, this should

not cause an issue because the comparison foundation

temperature reflects pre-dawn values. However, a citizen

science project would need to consider this where daily

variation in temperature is relevant, such as a reef ecosystem.

With sufficient data and accurate metadata (such as time zone)

from dive computers, in areas with sufficiently large diurnal

variation, it could also be possible to gather insight into this

variation. By collecting longer term time series of dive computer

data, the demonstrated ability to identify anomalously hot or

cold periods will become another a valuable source of historical

data available for comparison with other biological datasets.
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The MS5803-14BA pressure sensor (TE Connectivity, 2017),

which is commonly used in dive computers, has sufficient

resolution (<0.01) °C to offer improved temperature recording,

especially in those models which currently only record temperature

in integer intervals. Dive computer models have time constants

(time to adjust to 63% total temperature change) ranging between

17 and 300 seconds (Marlowe et al., 2021), which affects the time

taken to equilibrate to ambient temperature. In areas of high air

temperature, this risks artificially high temperatures being recorded

because of surface heating of the device. Knowing the duration of

each dive would allow either removal of dives of less than 5

minutes (which is insufficient time to equilibrate to ambient water

temperature for some models with slower response time) or based

on a known time constant for the model.

Subject to data storage capacity, improving the recorded

resolution and recording parameters such as the model and dive

duration would ensure that bounce dives or known inaccurate

models could be excluded, as features such housing material and

pressure sensor location are known to be significant for bias

(Marlowe et al., 2021). These would allow better quality control

of a dataset and maximise future potential for using dive

computers for temperature monitoring. Computers are not

calibrated instruments and so sensor temperatures may also

drift over time, further research would be required in this area.
Uncertainties and requirements for data

Both comparison datasets used in the study have been

interpolated, spatially, using weighted algorithms and/or using

background data for gap filling. Uncertainty estimates for

individual comparison data points in this study are between

0.16 and 1.07 °C for q(sat) and between 0.04 and 1.0 °C for

q(TSEA), with the TEMPERSEA dataset having a formal error of

0.31 °C at the surface (Agulles et al., 2019). It is not possible to

ascertain the proportion of systematic error in q(DC) point data
from the current dataset and therefore, ad hoc point data is of little

use for temperature measurement in isolation. Devices with large

bias should still correctly identify seasonal variation, albeit offset.

Additionally, the overall absolute mean biases seen of 0.5 °C for

q(DC) - q(sat) and 0.2 °C for q(DC) - q(TSEA) are within the

specified uncertainty ranges of the comparison datasets, the

proportion derived from each component indeterminable.

The requirements for accuracy, spatial and temporal

resolution, and acceptable degree of uncertainty for ocean

temperature data varies depending on the intended use

(National Research Council, 2000). For example, requirements

for monitoring of deep ocean sea temperature are stringent at

0.002 °C (Pawlowicz, 2013), but the World Meteorological

Organization (World Meteorological Organization, 2020) only

requires SST measurements to 0.1 °C. The three themes of the

Global Ocean Observing System (GOOS) have requirements

more within reach; climate change detection (0.1 °C on 500 km
frontiersin.org

https://doi.org/10.3389/fmars.2022.976771
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Marlowe et al. 10.3389/fmars.2022.976771
grid at monthly resolution), operational services (e.g., numerical

weather prediction: 0.2 – 0.5 °C accuracy at 100 km grid and 3-

day resolution) and ecosystem health (0.2 °C daily) (Needler

et al., 1999; Kennedy, 2014; Moltmann et al., 2019). The

observed biases indicate dive computers can offer data within

the required range for numerical weather prediction and

ecosystem health analyses. Observations from buoys stratified

to weekly, monthly and seasonal resolutions have been used to

identify seasonal patterns, interannual variability and climate

signals related to ENSO (McPhaden et al., 2010). Buoys have SST

resolution and accuracy of (0.1 ± 1.0) °C (National Data Buoy

Centre) and while overall bias in data collected from unknown

models is greater than that, the ability to identify seasonal

patterns at different resolutions has clearly been demonstrated,

and many dive computer models are known to have comparable

resolution and accuracy (Marlowe et al., 2021). Thus, a dataset

restricted to dive computers with higher accuracy could be used

in comparable ways to buoys.
Conclusions

Our results clearly demonstrate that, in the Red Sea, dive

computers can resolve interannual variations and seasonal

patterns of data comparable with OSTIA and in-situ data. This

can provide a layer of insight at varying depths on a local level,

over and above that available from other sources. As depth

resolved data is key to monitoring of ecosystem processes, we

suggest that a database of temperature data derived from

SCUBA diver citizen scientists can deliver viable data to

complement existing datasets. The consistency between the

bias found for subsamples of the total data demonstrate that

the numbers of dives do not need to be in the thousands to be

produce useful results, with only around 100 datapoints needed

for consistency. Data will be most useful in commonly dived

areas, giving greater spatial continuity, but in areas with fewer

dives and limited or no other monitoring, patterns of data

should still be visible from smaller datasets.

Retrospectively analysing data collected without a research

question limits the possible analyses (Hochachka et al., 2012),

and these limits were seen with the lack of useful metadata such

as model of dive computer or dive duration, which could

improve overall analyses. However, despite this lack of

information our uncontrolled real-world example gave outputs

with absolute bias of 0.5 °C and less, identification of months

and years with large anomalies and consistent, comparable

seasonal patterns at different scales.
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