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Summary: This paper proposes a new overidentifying restrictions test in a linear model when
the number of instruments (possibly weak) may be smaller or larger than the sample size n or
even infinite in a heteroscedastic framework. The proposed J test combines two techniques: the
jackknife method and the regularisation technique which consists in stabilising the projection
matrix. We theoretically show that our new test achieves the asymptotically correct size in the
presence of many instruments. The simulation results demonstrate that our modified J statistic
test has better empirical properties in small samples than existing J tests. We also propose a
regularised F-test to assess the strength of the instruments, which is robust to heteroscedasticity
and many instruments.
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1. INTRODUCTION

When the number of the instruments grows, it is well known that the conventional J test for
overidentifying restrictions performs poorly. It was shown that the asymptotic behaviour of the
conventional J test of Hansen (1982) gives a limit distribution which is not standard when
the number of instruments or moment conditions is very large (see Kunitomo et al., 1983 and
Burnside and Eichenbaum, 1996). Here, we focus on linear models with many instruments.

We propose a modified version of the J test which remains valid in the presence of many
(semi-)weak instruments and when the error is heteroscedastic. We construct our proposed test
by using regularisation to compute the inverse involved in the projection matrix P , instead of
using the usual projection matrix (see Carrasco et al., 2007, for a review on inverse problems).
For that purpose, we apply the Tikhonov regularisation method, which is also known as the
ridge regression. It depends on a tuning or regularisation parameter α. To compute the residual
of the regression, we replace the unknown regression coefficient by the regularised jackknife
IV estimator (RJIVE) proposed by Carrasco and Doukali (2017). We show that our test has
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72 M. Carrasco and M. Doukali

correct asymptotic size provided that the regularisation parameter α goes to zero at a certain rate
which depends on the strength of the instruments. Interestingly, no restrictions are imposed on
the number of instruments which can be larger or smaller than the sample size. In practice, the
tuning parameter, α, is chosen so that it minimises the cross-validation approximation of the mean
squared error (MSE) derived in Carrasco and Doukali (2017). Our Monte Carlo study shows that
our proposed J test performs favourably compared to other existing J tests. Indeed, its empirical
size remains close to the theoretical one even when the number of instruments is large and its
power is large.

We also develop a new test to assess the strength of the instruments. This test based on jackknife
and regularisation is robust to many instruments and heteroscedasticity of the error. Following
Stock and Yogo (2005), the critical value is selected so that the bias of the jackknife estimator
does not exceed 10%.

Other regularisation techniques could have been used in this framework such as the Landweber–
Fridman technique which is an iterative method or the principal component which consists in
selecting the eigenvectors associated with the largest eigenvalues. Carrasco (2012) used those
regularisation techniques to estimate a linear model in the presence of many instruments in a
consistent and efficient way. Carrasco and Doukali (2017) proposed a new estimator which they
called the regularised jackknife instrumental variable estimator (RJIVE) when the number of
available instruments is very large in linear models.

There are many studies related to this paper. Lee and Okui (2012) proposed a modification
of the Sargan’s (1958) test of overidentifying restrictions in a homoscedastic framework when
the number of instruments L grows with the sample size n. They established the asymptotic
null distribution of their proposed test statistic and studied its local power under some regularity
conditions. Anatolyev and Gospodinov (2011) proposed a modification of the Anderson–Rubin
(AR) test and of the conventional J test for overidentifying restrictions in linear models with
homoscedasticity assumption under many instruments asymptotics. They consider an alternative
way to compute the critical values of the chi-squared distribution. In a recent paper, Carrasco and
Tchuente (2016) propose to use regularisation techniques to construct a robust Anderson–Rubin
(AR) test in linear models when the number of instruments is large. Their inference relies on a
new restricted efficient bootstrap method and simulated Monte Carlo test. The closest paper to
our approach is Chao et al. (2014), where they propose a new version of the J test that is robust to
many instruments and heteroscedasticity. Their test is based on subtracting the diagonal terms in
the numerator of the test statistic. They consider the heteroscedasticity-robust version of the Fuller
(1977) estimator of Hausman et al. (2012). Here, we consider instead the RJIVE. We choose this
estimator because of its good properties (see Carrasco and Doukali, 2017, for more details) and
we implement the Tikhonov technique to stabilise the projection matrix P that appears in the
numerator of the test statistic in order to improve the accuracy of the overidentifying restrictions
test. The advantage of the regularisation is that it permits us to handle cases where the number of
instruments exceeds the sample size.

Our F-test for weak instruments is closely related to a recent paper by Mikusheva and Sun
(2020) who propose a pre-test for weak identification which also uses jackknife and is robust to
many instruments and heteroscedasticity. However, it does not rely on regularisation and hence
needs to restrict the number of instruments to be smaller than the sample size.

The remainder of this paper is organised as follows. Section 2 describes the model and the
test statistic. Section 3 establishes asymptotic results. Section 4 reports Monte Carlo simulation
results. In Section 5, we propose a regularised F-test for weak instruments. Empirical applications
are illustrated in Section 6. Section 7 concludes. All of the proofs are provided in the appendix.
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Regularised J test 73

2. MODEL, ESTIMATOR, AND TEST STATISTIC

This section presents the model, the estimator, and the regularised J test.
Consider the linear IV regression model:

yi = X′
iδ0 + εi, (2.1)

Xi = ϒi + Ui. (2.2)

i = 1, . . . , n. The vector of interest is δ0 which is a p × 1 vector for some fixed p. yi is the
scalar outcome variable. The vector ϒi is the optimal instrument, which is typically unknown.
We assume that yi and Xi are observed but the ϒi is not and E(Xiεi) �= 0. The estimation will
be based on a sequence of instruments Zi = Z(τ ; νi) where νi is a vector of exogenous variables
and τ is an index taking countable values.

For the estimation of δ0, we consider the Tikhonov jackknife estimator proposed in Carrasco
and Doukali (2017) because of its good properties relative to other existing IV estimators in the
presence of many instruments. First we recall the expression of the jackknife estimator (JIVE)
proposed by Angrist et al. (1999) when the number of instruments is finite.

δ̂ = (ϒ̂ ′X)−1(ϒ̂ ′Y ) (2.3)

=
(

n∑
i=1

ϒ̂iX
′
i

)−1 n∑
i=1

ϒ̂iyi . (2.4)

The leave-one-out estimator ϒ̂i is defined as ϒ̂i = Z′
i π̂−i , where π̂−i = (Z′Z − ZiZ

′
i)

−1(Z′X −
ZiX

′
i) is the ordinary least-squares (OLS) coefficient from running a regression of X on Z using

all but the i th observation.
The JIVE estimator can alternatively be written as:

δ̂ =
(

n∑
i=1

π̂ ′
−iZiX

′
i

)−1 n∑
i=1

π̂ ′
−iZiyi, (2.5)

with

π̂ ′
−iZi = (X′Z(Z′Z)−1Zi − PiiXi)/(1 − Pii) =

n∑
j �=i

PijXj/(1 − Pii)

where P is a n × n matrix defined as P = Z(Z′Z)−1Z′ and Pij denotes the (i, j)th element of P .
Then, the JIVE estimator is given by:

δ̂ = Ĥ−1
n∑

i �=j

XiPij(1 − Pjj)
−1yj ,

where Ĥ = ∑n
i �=j XiPij(1 − Pjj)−1X′

j , and
∑

i �=j denotes the double sum
∑

i

∑
j �=i . When the

number of the instruments is large, the inverse of Z′Z needs to be regularised because it is singular
or nearly singular.

Now let us suppose that the number of moment conditions is finite or countable infinite. Here
are some examples of Zi .

If Zi = νi where νi is a L-vector of exogenous variables with a fixed L, then Z(τ ; νi) denotes
the τ th element of νi .
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74 M. Carrasco and M. Doukali

If Z(τ ; νi) = (νi)τ−1 with τ ∈ N , then we have an infinite countable sequence of instruments.
We note that, unlike the other existing test statistics, the number of moment conditions is not

restricted and may be smaller or larger than the sample size.
The expression of the Tikhonov jackknife IV estimator δ̂α is

δ̂α = Ĥ−1
n∑

i �=j

XiP
α
ij (1 − P α

jj )−1yj (2.6)

Ĥ =
n∑

i �=j

XiP
α
ij (1 − P α

jj )−1X′
j , (2.7)

where P α is a n × n matrix defined as

P α = Z(Z′Z + αI )−1Z′, (2.8)

and P α
ij denotes the (i, j )th element of P α . The Tikhonov jackknife estimator depends on a

regularisation term α. In practice, we choose α that minimises the mean squared error (MSE) as
in Carrasco and Doukali (2017).

REMARK 2.1. It is useful to write the RJIVE as

δ̂α = Ĥ−1
n∑

i,j=1

XiC
α
ji yj , (2.9)

where Ĥ = ∑n
i,j=1 XiC

α
ji X

′
j , and Cα = (Cα

ij ) =
{

P α
ij

1−P α
ii

if i �= j

Cα
ii = 0 if i = j

. Then, we obtain:

√
n(δ̂α − δ0) =

(
X′Cα ′X

n

)−1 (
X′Cα ′ε√

n

)
. (2.10)

The test statistic

Chao et al. (2014) proposed a modified J statistic with many instruments based on the
heteroscedasticity-robust version of the Fuller (1977) estimator, which is known as HFUL esti-
mator. Their test statistic takes the form:

JCHNSW = ε̂′P ε̂ −∑n
i=1 Piiε̂

2
i√

V̂
+ L, (2.11)

with

V̂ = ε̂(2)′P (2)ε̂(2) −∑n
i=1 P 2

ii ε̂
4
i

tr(P )
=
∑n

i �=j ε̂2
i P

2
ij ε̂

2
j

L
,

where L is the number of instruments, P is the projection matrix, ε̂i = yi − X′
i δ̂, ε̂(2) =

(ε̂2
1 , ...., ε̂

2
n), P (2) is the n-dimensional square matrix with ij th component equal to P 2

ij . Note
that the numerator of the test statistic,

∑n
i �=j ε̂iPijε̂j , is the numerator of the traditional Sargan

test without the observation i. The denominator is a heteroscedastic consistent estimator of the
variance of

∑n
i �=j ε̂iPijε̂j . The test rejects the null hypothesis when JCHNSW is greater than the

critical value of a chi-squared distribution with L − p degrees of freedom. Chao et al. (2014),
Anatolyev and Gospodinov (2011), and Lee and Okui (2012) have proposed tests that allow for
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many instruments, but they impose that the number of moment conditions L cannot be larger
than n, which is not the case in our present work.

In this paper, we assume that the number of moment conditions L is large relatively to n.
The inverse of Z′Z needs to be stabilised because it is nearly singular or even not invertible
whenever L ≥ n. The main contribution is the use of the Tikhonov regularisation method to
stabilise the inverse of (Z′Z) in presence of many instruments. Let P α be defined as (2.8) when
the number of instruments is finite and as (A.1) in Appendix A when the number of instruments
is infinite. We note here that the Tikhonov technique involves a tuning parameter α. The case
α = 0 corresponds to the case without regularisation. We obtain P 0 = P = Z(Z′Z)†Z, where †
denotes the Moore–Penrose generalised inverse. The regularisation parameter needs to go to zero
at a certain rate characterised in Section 3.

To describe our proposed test statistic, let P α(2) be the n-dimensional square matrix with (i, j )
element equal to (P α

ij )2.
The test statistic we propose is

JTikh = ε̂′P αε̂ −∑n
i=1 P α

ii ε̂
2
i√

V̂
+ tr(P α), (2.12)

with

V̂ = ε̂(2)′P α(2)ε̂(2) −∑n
i=1 (P α

ii )2ε̂4
i

tr(P α)
=
∑n

i �=j ε̂2
i (P α

ij )2ε̂2
j

tr(P α)
, (2.13)

where ε̂i = yi − X′
i δ̂

α where δ̂α is the regularised jackknife estimator of Carrasco and Doukali
(2017). It will be shown in the next section that JTikh follows asymptotically a chi-squared with
tr(P α) − p degrees of freedom. Let qr (τ ) be the τ th quantile of chi-squared distribution with
r degrees of freedom. We reject the null hypothesis of our test with the asymptotic rejection
frequency β if JTikh ≥ qtr(P α )−p(1 − β).

Our test has the same form as Chao et al.’s (2014) test with the projection matrix P replaced
by the regularised projection matrix P α and the number of instruments L replaced by the trace
of P α , i.e., tr(P α).

3. ASYMPTOTIC DISTRIBUTION

This section presents the asymptotic theory under which we establish the limiting behaviour of
our proposed test statistic in the presence of many moment conditions. We consider many weak
instruments asymptotic as in Chao et al. (2014).

Let K be the covariance operator defined in Appendix A. For a finite number of instruments,
K = Z′Z/n.

ASSUMPTION 3.1. (a) The operator K is nuclear. (b) There exists a constant C̄ such that
P α

ii ≤ C̄ < 1, i = 1, ..., n.

Assumption 3.1(a) is the same as in Carrasco (2012). Condition (a) means that the eigenvalues
of the covariance operator K are summable. Condition (b) is reminiscent of Assumption 1 in
Chao et al. (2014): ‘for some C̄ < 1, Pii < C̄, i = 1, ..., n’. However it is much less restrictive.
Indeed, Pii < C̄ < 1 implies that

∑
i

Pii
n

= L
n

< 1, L = rank(Z), which restricts the number of
instruments. Our condition P α

ii ≤ C̄ < 1 implies that trace(P α) = ∑
i qi < n, which implies a
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condition on α, where qj = λ2
j

λ2
j +α

, and λj are the eigenvalues of K . Recall that from Carrasco

(2012)
∑

i qi = O( 1
α

). So Assumption 3.1(b) implies 1
αn

< 1.
The next assumption allows for the presence of many weak instruments. A measure of the

strength of the instruments is the concentration parameter, which can be seen as a measure of
the information contained in the instruments. If one could approximate the reduced form ϒ

by a sequence of instruments Z, so that X = Z′π + u where E[u2|Z] = σ 2
u , the concentration

parameter would be given by

μ2
n = π ′Z′Zπ

σ 2
u

.

The following assumption generalises this notion.

ASSUMPTION 3.2. ϒi = Snfi/
√

n where Sn = Ŝndiag(μ1n, . . . , μpn) such that Ŝn is a p × p

bounded matrix, the smallest eigenvalue of ŜnŜ
′
n is bounded away from zero, for each j, either

μjn = √
n (strong identification) or μjn√

n
→ 0 (weak identification). Moreover μn = min

1<j<p
μjn →

∞ and 1/(
√

αμ2
n) → 0, α → 0. Also there is a constant C̄ such that ||∑n

i=1 fif
′
i /n|| ≤ C̄ and

λmin(
∑n

i=1 fif
′
i /n) ≥ 1/C̄, almost surely for n large enough (a.s.n).

Assumption 3.2 allows for both strong and weak instruments. If μjn = √
n, the instrument j

is strong. If μ2
jn is growing slower than n, this leads to a weaker identification as that of Chao

and Swanson (2005). fi defined in Assumption 3.2 is unobserved and has the same dimension as
the infeasible optimal instrument, ϒi . Then fi can be seen as a rescaled version of this optimal
instrument.

An illustration of Assumption 3.2 is as follows. Let us consider the simple linear model
yi = zi1δ1 + δ0pxi2 + εi , where zi1 is an included instrument and xi2 is an endogenous variable.
Suppose that xi2 is a linear combination of the included instrument zi1 and an unknown excluded
instrument zip, i.e., xi2 = π1zi1 + ( μn√

n
)zip. The reduced form is:

ϒi =
(

zi1

xi2

)
=
(

zi1

π1zi1 + ( μn√
n

)zip

)
=
(

1 0
π1 1

)(
1 0
0 μn√

n

)(
zi1

zip

)
with

Ŝn =
(

1 0
π1 1

)
, μjn =

{√
n , j = 1

μn , j = 2
, with

μn√
n

→ 0, andfi =
(

zi1

zip

)
.

ASSUMPTION 3.3. There is a constant C > 0 such that (ε1, U1), ..., (εn, Un) are indepen-
dent, with E[εi] = 0, E[Ui] = 0, E[εiϒi] = 0, E[ε2

i ] < C, E[||Ui ||2] ≤ C, V ar((εi, U
′
i )

′) =
diag(�i, 0), and λmin(

∑n
i=1 �i/n) ≥ 1/C.

Note that (εi, Ui) are independent but not necessarily identically distributed. This assumption
allows for heteroscedasticity but requires the second moment of the disturbances to be bounded.
It also imposes uniform nonsingularity of the variance of the reduced form disturbances.

ASSUMPTION 3.4. There exists a πL such that
∑n

i=1 ||fi − πLZi ||2/n → 0.

Assumptions 3.1 and 3.4 imply that the structural parameters are identified asymptotically.
Although Assumption 3.4 implies that fi belongs to the closure of the linear span of instruments,
it does not imply that fi is a finite linear combination of the instruments.
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ASSUMPTION 3.5. There is a constant C > 0 such that, with probability one,
∑n

i=1 ||fi ||4/n2 →
0, E[ε4

i ] ≤ C and E[||Ui ||4] ≤ C.

Assumption 3.5 can be found in Chao et al. (2014). It simplifies the asymptotic theory in the
sense that certain terms vanish asymptotically.

ASSUMPTION 3.6. α goes to zero and 1/(αμ2
n) → C for a finite C.

Note that Assumptions 3.1, 3.2, and 3.6 imply some restrictions on α, namely α needs to go to
zero but not too fast.

Define σ 2
i = E[ε2

i ], Hn = ∑
i fif

′
i /n, �n = ∑

i fif
′
i σ

2
i /n , 
n =

S−1
n

∑n
i �=j (P α

ij )2(E[UiU
′
i ]σ

2
j (1 − Pjj)−2 + E[Uiεi](1 − Pii)−1E[Ujεj ](1 − Pjj)−1)S ′−1

n .

THEOREM 3.1. Suppose that Assumptions 3.1–3.6 are satisfied. Then,

V
−1/2
n (δ̂α − δ0)

d→ N (0, Ip), where Vn = H−1
n (�n + 
n)H−1

n .

Proof: See the proof in Carrasco and Doukali (2017, Theorem 2). �

REMARK 3.1. As in Chao et al. (2012), the term 
n in the asymptotic variance of δ̂α accounts
for the presence of many instruments. The order of this term is 1

αμ2
n
. So if 1

αμ2
n

→ 0, the term 
n

vanishes asymptotically and the asymptotic variance becomes Vn = H−1
n �nH

−1
n .

THEOREM 3.2. Let qtr(P α )−p(1 − β) be the (1 − β) quantile of a chi-square distribution with
tr(P α) − p degrees of freedom. If Assumptions 3.1–3.6 are satisfied then Pr(T̂ ≥ qtr(P α )−p(1 −
β)) → β.

Proof: See Appendix. �

Theorem 3.2 shows that, under the many instruments asymptotic condition, our modified J test
achieves the correct asymptotic critical value β. We can see this test as a specification test for the
linear instrumental variables regression (see Hansen, 1982). If the model is correctly specified,
all the moment conditions (including the overidentifying restrictions) should be close to zero.
The novelty of our proposed test is that it is robust to many instruments in the sense that we do
not make any assumption on the number of instruments.

Related Literature. In the literature on testing overidentifying restrictions in linear models with
many instruments, the J test performs poorly when one increases the number of the instruments.
To deal with this problem, Anatolyev and Gospodinov (2011) proposed a new J test that guar-
antees the asymptotical sizes, but their test is valid only under the homoscedasticity assumption
and when the number of instruments is a fraction of the sample size 0 < L

n
< 1. Lee and Okui

(2012) proposed a modification of the Sargan (1958) test in the presence of a large number of
instruments. They gave the limiting behaviour of their proposed test statistic when the number of
instruments and the sample size go to infinity, but they still maintained the assumption 0 < L

n
< 1.

Donald et al. (2003) established the asymptotic distribution of some parameter and specification
tests in models when the number of instruments L increases asymptotically, but again slowly
relative to the sample size n. They called this assumption a moderately many instruments, but
the validity of their test fails in the case of the many instruments theory of Bekker (1994). Hahn
and Hausman (2002) developed a new specification test for the validity of instrumental variables
in linear models. They compared the difference of the forward (conventional) two-stage least
squares (2SLS) estimator with the reverse 2SLS estimator under the assumption 0 < L

n
< 1.
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In this paper, we consider the case when the number of instruments is potentially very large.
The matrix Z′Z may be nearly singular or possibly not invertible, so the projection matrix
P = Z(Z′Z)−1Z′ that appears in the numerator of the J test may affect the precision of the test
statistic. Inverting Z′Z can be seen as solving an ill-posed problem. We implement the Tikhonov
technique to stabilise the projection matrix. The advantage of the regularisation is that we can
use all the available information and we do not need to discard some instruments a priori. This
yields an improved performance of the J test as illustrated in the simulation study.

4. SIMULATION STUDY ON REGULARISED J TEST

The goal of our simulation study is to demonstrate the finite-sample performance of the proposed
J test and compare it to other existing J tests. We consider a linear model with one regressor and
L instruments. The J statistic is interpreted as a test of the validity of the L − 1 overidentifying
restrictions. We investigate two cases: the homoscedastic and heteroscedastic cases.

Homoscedastic case. The data generating process (DGP) is generated as follows:

yi = δXi + εi (4.1)

Xi = z′
iπ + ui, (4.2)

where (εi, ui)
iid∼ N (0,

∑
) and

∑ =
(

0.25 0.20
0.20 0.25

)
, zi

iid∼ N (0, IL), δ = 1, and π = 1√
L
ιL, where

ιL is an L-vector of ones.
Heteroscedastic case. Now the error is allowed to be heteroscedastic, we keep the same DGP

except that the errors are now generated as follows:

ui

iid∼ N (0, 1), εi = ρui +
√

1−ρ2

φ2+0.864 (φv1i + 0.86v2i), where v1i

iid∼ N (0, z2
1i) and v2i

iid∼
N (0, (0.86)2). We choose ρ = 0.3, φ = 0.2.

Tables 1 and 2 present the empirical size at 5% nominal level of J , JCorr, JCHNSW, and JTikh tests
which denote respectively the conventional J test, the modified J test proposed in Anatolyev and
Gospodinov (2011), the modified J test proposed in Chao et al. (2014), and the Tikhonov J test
proposed in this paper. These results are based on 5,000 Monte Carlo replications. We consider
values of λ = L

n
equal to 0.2, 0.5, 0.8, 0.95, and 1.1. The values of λ are used in combination

with sample sizes of 100, 200, and 500. For the Tikhonov J test, the regularisation parameter α

is chosen by minimising1 the cross-validation approximation of the mean squared error (MSE)
as in Carrasco and Doukali (2017, eqn 7):

Ŝ(α) = σ̂ 2
ε

1

n
‖X − CαX‖2 + σ̂ 2

uε

tr(Cα2)

n
,

where σ̂ 2
ε and σ̂ 2

uε are consistent estimators of σ 2
ε and σ 2

uε.
Description of the other tests: Hansen-Sargan’s J test. Let δ̂2SLS = (X′PX)−1X′Py be the two-

stage least-squared estimator and ε̂ = y − Xδ̂2SLS . The Hansen-Sargan J test takes the following
form:

J = ε̂′P ε̂

σ̂ 2
, (4.3)

1 The regularisation parameter α is searched over the interval [0.01, 0.5] with 0.01 increments.
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Table 1. Empirical rejection rates at 0.05 nominal level of the J

test—homoscedastic case.

λ 0.2 0.5 0.8 0.95 1.1

n = 100
J 0.044 0.015 0 0 NA
JCorr 0.051 0.048 0.044 0.006 NA
JCHNSW 0.052 0.044 0.036 0 NA
JTikh 0.053 0.055 0.058 0.049 0.053
n = 200
J 0.044 0.023 0 0 NA
JCorr 0.048 0.053 0.041 0.026 NA
JCHNSW 0.046 0.049 0.035 0.014 NA
JTikh 0.048 0.055 0.050 0.052 0.049
n = 500
J 0.052 0.040 0 0 NA
JCorr 0.049 0.052 0.046 0.037 NA
JCHNSW 0.048 0.052 0.043 0.027 NA
JTikh 0.049 0.054 0.048 0.044 0.047

Table 2. Empirical rejection rates at 5% nominal level of the J

test—heteroscedastic case.

λ 0.2 0.5 0.8 0.95 1.1

n = 100
J 0.035 0.007 0 0 NA
JCorr 0.046 0.036 0.017 0 NA
JCHNSW 0.041 0.034 0.017 0 NA
JTikh 0.045 0.043 0.041 0.033 0.035
n = 200
J 0.035 0.010 0 0 NA
JCorr 0.046 0.042 0.030 0.004 NA
JCHNSW 0.042 0.040 0.026 0.004 NA
JTikh 0.045 0.044 0.042 0.041 0.039
n = 500
J 0.043 0.012 0 0 NA
JCorr 0.051 0.044 0.038 0.021 NA
JCHNSW 0.049 0.043 0.034 0.016 NA
JTikh 0.050 0.043 0.042 0.045 0.047

with σ̂ 2 = ε̂′ε̂/(n − p). The decision rule of Hansen-Sargan’s J test consists in rejecting the null
hypothesis if J exceeds the critical value given by the chi-square distribution with L − p degrees
of freedom.

Anatolyev and Gospodinov’s (2011) J test. They suggest to use the same J statistic as in (4.3)
with ε̂ = y − Xδ̂LIML where δ̂LIML is the limited information maximum likelihood estimator of
δ but the critical value is modified. The decision rule consists in rejecting H0 at the level β if J
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Figure 1. Power curves of J tests, n = 500, λ = 0.8, homoscedastic case.

exceeds the quantile of a chi-square distribution with L − p degrees of freedom and probability

�(
√

1 − L
n
�−1(β)), where � is the distribution function of the standard normal.

Chao et al.’s (2014) J test. JCHNSW uses the test described in (2.11) with ε̂ = y − Xδ̂HFULL,
where δ̂HFULL is the heteroscedasticity-robust version of the Fuller (1977) estimator of Hausman
et al. (2012).

Tables 1 and 2 report the empirical sizes of the four tests in the homoscedastic and the
heteroscedastic cases respectively. We remark that the performance of the conventional J test is
sensitive to the number of instruments, i.e., the J test strongly under-rejects as soon as the number
of instruments is moderately large. We also remark that Anatolyev and Gospodinov’s (2011) J

test, the JCHNSW and the JTikh perform very well when the number of instruments increase as long
as L is not too large. However, J , JCorr, and JCHNSW tests exhibit a large size distortion when λ

is close to 1 (i.e., λ = 0.95), which is worse in the heteroscedastic case. Our regularised JTikh

has almost the correct size even with a very large number of instruments. When the number of
instruments is larger than the sample size, the J , JCorr, and JCHNSW cannot be computed. Tables 1
and 2 show also that our proposed regularised J test performs well when L > n, in the sense that
the empirical rejection rates are close to the nominal value 5%.

To compare the powers of the different J tests, we consider the same design as before, but the
structural error is given by ξi = εi + ρzz1i . We allow the correlation ρz between structural error
and instrument to vary between 0 and 1. We choose n = 500 and λ = 0.8. The rejection frequen-
cies under the null hypothesis (ρz = 0) are 0.046, 0.043, 0.048, respectively, for JCorr, JCHNSW

and the JTikh for homoscedastic case. For the heteroscedastic case they are 0.038, 0.034, and
0.042. The power curves (rejection frequencies) are plotted in Figures 1 and 2. We see that JTikh

statistic has clearly better power properties than the JCorr and JCHNSW.
In conclusion, simulations suggest that the implementation of the Tikhonov regularisation can

increase the power, while controlling for the size. Thus, the regularisation provides a correction
to size distortions for the J test arising from the use of many instruments.
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Figure 2. Power curves of J tests, n = 500, λ = 0.8, heteroscedastic case.

5. DETECTION OF WEAK INSTRUMENTS

In this section, we propose a regularised F-test to assess the strength of the instruments in the
first-stage equation. We will consider the case where there is a single endogenous regressor (case
where δ is scalar) and we will use the notations xi and ui to emphasise the fact that Xi and Ui are
scalar. The first stage equation is then

xi = ϒi + ui = π ′zi + ui,

where ϒi = π ′zi and π is a L × 1 vector. When the number of instruments is countable infinite,
then

xi = 〈π (.) , zi (.)〉 + ui,

where 〈, 〉 denotes the inner product in L2 (ω) for some pdf ω and π and zi are elements of L2 (ω)
(see Appendix A for more details). The remainder of the section will present the test using vector
notations.

First, we develop a test for H0 : π = 0. We propose a F-test robust to heteroscedasticity and
many instruments.

FTikh =
∑n

i=1

∑
j �=i P α

ij xixj√
2
∑n

i=1

∑
j �=i

(
P α

ij

)2
û2

i û
2
j

,
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where û = (I − P α) X = X − Zπ̂α, π̂α = (
Z′Z + αI

)−1
Z′X is the ridge estimator of π . Let

γ 2 =
∑n

i=1

∑
j �=i π ′ziP

α
ij z

′
jπ√

2
∑n

i=1

∑
j �=i

(
P α

ij

)2
E
(
u2

i

)
E
(
u2

j

) .

ASSUMPTION 5.1. (a) ϒi satisfies the condition∑n
i=1

∣∣∣∑j �=i P α
ij ϒj

∣∣∣3(∑n
i=1

(∑
j �=i P α

ij ϒj

)2
E
(
u2

i

))3/2 →
n→∞ 0.

(b) Let ϒ (zi) ≡ ϒi, ϒ̂α (zi) ≡ π̂α′zi . Let D be the domain of the distribution of zi . Then,

sup
z∈D

∣∣ϒ (z) − ϒ̂α (z)
∣∣ P→ 0.

Assumption 5.1(a) is a Lyapunov’s condition needed in the proof of the asymptotic normality of
FTikh. Assumption 5.1(b) is used to show that

∑n
i=1

∑
j �=i

(
P α

ij

)2
û2

i û
2
j is a consistent estimator of∑n

i=1

∑
j �=i

(
P α

ij

)2
E
(
u2

i

)
E
(
u2

j

)
, once rescaled. It is satisfied under some regularity conditions

on ϒ (.), see Carrasco et al. (2007) and Hall and Horowitz (2007). Both conditions imply
restrictions on the rate of convergence of α depending on how regular (or smooth) the function
ϒ is.

THEOREM 5.1. Let qγ (1 − β) be the 1 − β quantile of a normal distribution with mean γ 2 and
variance 1. Assume Assumption 3.1 and 3.7 hold, that ui is independent with mean 0 and there
exists a constant C > 0 such that E

(
u4

i

)
< C, and that α → 0 as n goes to infinity. Under the

weak instrument assumption π = π̃/
√

n, we have

Pr

(
FTikh ≥ qγ (1 − β)

) → β,

as n goes to infinity.

REMARK 5.1. The expression of γ 2 may seem complicated. However, it can be bounded by a
simple expression. Using

n∑
i=1

∑
j �=i

π ′ziP
α
ij z

′
jπ = 1

n

n∑
i=1

π̃ ′ziz
′
i

(
Z′Z + αI

)−1 ∑
j �=i

zj z
′
j π̃

≤ 1

n

n∑
i=1

π̃ ′ziz
′
i π̃

= π̃ ′
(

Z′Z
n

)
π̃ .

We obtain

γ 2 ≤
π̃ ′
(

Z′Z
n

)
π̃√

2
∑n

i=1

∑
j �=i

(
P α

ij

)2
E
(
u2

i

)
E
(
u2

j

) .
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This upper bound is equal to

π̃ ′
(

Z′Z
n

)
π̃√

2V (ui)2
(
tr
(
P α2

)−∑n
i=1 P α2

ii

) ,
in the homoscedastic case. We recognise the usual concentration parameter normalised by a term
which is of the same order as

√
trP α , i.e., 1/

√
α.

The expression of the test statistic is similar to that of Mikusheva and Sun (2020, eqn 5). The
main difference is in the numerator where they use a different estimator of the variance based
on cross-fit. They derive the joint distribution of the Wald test on δ and the F-test in order to
control the size of the two step procedure using the F-test as pre-test. Here, we will not investigate
the Wald test. Another difference with Mikusheva and Sun (2020) is that we use regularisation
which permits to handle an arbitrary number of instruments, while, in their paper, the number of
instruments has to be smaller than the sample size.

The term γ 2 is nonnegative for L large enough so that the test can be treated as a one-sided
test.

An important question is which critical value to use. The critical value based on π = 0 (similarly
on γ 2 = 0) would be too small as it is well known that the estimators of δ have bad properties
when π is close to zero. We follow Stock and Yogo (2005) and motivate our choice of the critical
value based on the bias. We wish that the absolute bias of the jackknife estimator does not exceed
10%. Here, we focus on JIVE2 estimator proposed by Angrist et al. (1999) because it has a
simpler expression than the JIVE. The regularised version of the JIVE2 estimator is given by

δ̂JIV2 =
⎛⎝ n∑

i=1

∑
j �=i

P α
ij xixj

⎞⎠−1
n∑

i=1

∑
j �=i

P α
ij xiyj .

To characterise the value of γ 2 yielding a 10% bias, we need to restrict ourselves to the case with
normal errors and constant correlation.

ASSUMPTION 5.2. (
εi

ui

)
∼ iidN

((
0
0

)
,

(
σεi σεui

σεui σui

))
,

and σεui/ (σεiσui) = ρ does not depend on i.

Ideally, we would like to compute the absolute bias:

B = lim
n→∞

∣∣E (
δ̂JIV2

)− δ
∣∣ .

But caution is in order here because the JIVE estimator does not have any moments, see Davidson
and MacKinnon (2007). The regularisation may help in that matter, for instance, Carrasco and
Tchuente (2015) show that the regularised LIML estimator has moments under certain conditions.
However, it is not clear whether the regularised JIVE estimator has moments. So instead of
computing B, we compute the bias of the leading terms of the distribution of δ̂JIV2 − δ using an
Edgeworth expansion similar to that of Rothenberg (1984, p. 920). Montiel Olea and Pflueger
(2013) use a similar approach based on Nagar approximation in the context of a finite number of
weak instruments.
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Table 3. Simulations results when π = c√
L
ιL.

n L FTikh FTikh Rej OLS JIVE γ 2 c
mean st. freq bias bias

500 250 0.48 1.96 2.16% 0.79 0.79 0.75 0.05
800 450 1.25 2.21 6.00% 0.78 0.40 2.24 0.08
1,000 600 1.41 2.27 7.56% 0.78 0.66 2.41 0.08

Table 4. Simulations results under the alternative.

n L FTikh FTikh Rej OLS JIVE γ 2 c
mean st. freq bias bias

500 250 12.65 3.53 99.38% 0.59 0.03 26.98 0.30
800 450 28.09 4.77 100.0% 0.49 0.01 56.05 0.40

THEOREM 5.2. Under the assumptions of Theorem 5.1 and assuming Assumption 5.2 holds,
the asymptotic absolute bias based on the leading terms is given by

BLT =
∣∣∣∣ ρ

γ 4

∣∣∣∣ ,
where ρ is the correlation between ui and εi .

REMARK 5.2. Interestingly, the asymptotic bias depends on α and the number of instruments,
only through γ 4.

The instruments will be deemed strong if they lead to a bias smaller than 10%. Given |ρ| ≤ 1,
we obtain a bias BLT ≤ 0.1 for γ 2 = √

10. This value of γ 2 is an upper bound and could be
quite a bit smaller if ρ is small. We can deduce the critical value of the FTikh with level 5% by
adding γ 2 to 1.64. If FTikh exceeds this critical value, 4.8, we can conclude that the instruments
are strong enough to lead to a reliable estimation of δ.

In the weak instrument literature, it is customary to consider the relative bias with respect to the

ordinary least-squares estimator (OLS), namely limn→∞
∣∣∣ E(δ̂JIV2)−δ

E(δ̂OLS)−δ

∣∣∣ to determine the critical value

for the F-test. However, this ratio would depend on σu/σε which is not estimable. Therefore, we
use the absolute bias instead of relative bias. Stock and Yogo (2005) mention that both measures
can be used interchangeably.

As an illustration, we performed a small simulation. The model is as in (4.1) and (4.2) with

δ = 1, (εi, ui)
iid∼ N (0, �), � =

(
σ 2

ε σεu

σεu σ 2
u

)
, with σεu = 0.2, σ 2

ε = 0.25, and σ 2
u = 0.25. zi

iid∼
N (0, IL) and π = c√

L
ιL, where ιL is an L-vector of ones and c is chosen either small (corre-

sponding to the null hypothesis) or large (corresponding to the alternative). We set the sample
size n = 500, 800, and 1,000 and show the results in Table 3 for 5,000 Monte Carlo replications.
We report the mean and standard deviation of the proposed F-test, the rejection frequency of
the proposed F-test, the absolute mean bias of the JIVE estimator and of the OLS estimator, the
parameter γ 2, and the value of c. The regularisation parameter α is set to 0.05 throughout the
simulations. We find that the rejection frequency of the F-test using our critical value is near to
5% at the 5% nominal level. Table 4 reports the same statistics for two cases where γ 2 is larger.
We observe that our F-test displays good power in these cases.
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Table 5. Estimated J statistics for the institutions’ model.

J JCorr JCHNSW JTikh

J statistic 37.10 29.89 31.74 25.44

Notes: The chi-square critical value = 37.65 (level = 5% and the degree of freedom =
25). Critical value of the JCorr= 34.85 (level = 5% and the degree of freedom = 25).
tr(P α) = 9.98, the critical value for the JTikh = 15.48.

6. EMPIRICAL APPLICATIONS

6.1. Institutions and growth

We consider the empirical work of Hall and Jones (1999). In their paper, they argue that the dif-
ference between output per worker across countries is mainly due to the differences in institution
and government policies—the so-called social infrastructure. They write, ‘Countries with corrupt
government officials, severe impediments to trade, poor contract enforcement, and government
interference in production will be unable to achieve levels of output per worker anywhere near
the norms of western Europe, northern America, and eastern Asia.’ Their linear IV model is given
as follows.

y = c + δS + ε

S = b + β ′Z + u,

where y is an n × 1 vector of log income per capita, S is n × 1 vector which is the proxy for
social infrastructure, c, b, and δ are scalars. Z is an n × L matrix of instruments. Hall and Jones
(1999) use four instruments Z = (EnL,EuL,Lt, FR), where EnL is the fraction of population
speaking English at birth, EuL is the fraction of population speaking one of the five major
European languages at birth, Lt is the distance from the equator, and the geography-predicted
trade intensity (FR). These instruments are intended to capture the influences of colonial origin
on current institutional quality. To address the issue of weak identification, we increased the
number of instruments from 4 to 26 by including interactions and power functions2.

The use of many instruments increased the concentration parameter (using the expression of
Hansen et al., 2008, p. 400) from μ̂2

n = 28.6 to μ̂2
n = 40.23. We apply our proposed F−test to

assess whether instruments are weak. We find that the regularised F−test (173.19) is larger than
the critical value 4.8, which means that the instruments are strong enough. As it is customary in
the big data literature, the instruments are standardised before applying the different methods.
We use a sample of 79 countries for which no data were imputed.3

Table 5 reports the test statistics corresponding to different J tests. We find that the conventional
J test, the JCorr, and the JCHNSW are smaller than chi-square critical value, which means that they
fail to reject the null hypothesis. However, our proposed Tikhonov J test is larger than the
chi-square critical value, then we can conclude that the model is not correctly specified.

2 The 27 instruments (including the constant) used in our regression are derived from Z and are given by
Z = [1,Z,Z.2, Z.3, Z.4, Z.5, Z(:, 1) � Z(:, 2), Z(:, 1) � Z(:, 3), Z(:, 1) � Z(:, 4), Z(:, 2) � Z(:, 3), Z(:, 2) � Z(:, 4), Z(:
, 3) � Z(:, 4)]. All the instruments (except for the constant) are standardised, which means that the instruments are divided
with their standard deviation. Such standardisations are customary whenever regularisations are used, see, for instance,
De Mol et al. (2008) and Stock and Watson (2012).

3 The data were downloaded from Charles Jones’ webpage: https://web.stanford.edu/∼chadj/HallJones400.asc.
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It may seem surprising that the JTikh rejects whereas the other J tests do not. One possible
explanation is the presence of heteroscedasticity. The errors are found to be heteroscedastic
according to the F test (p-value = 0). The J and JCorr are not robust to heteroscedasticity which
may explain the difference of conclusions. However, JCHNSW is robust to heteroscedasticity.
An explanation for the difference between JCHNSW and JTikh may be that the matrix Z′Z is
badly conditioned. The condition number,4 which is the ratio of the largest eigenvalue on the
smallest eigenvalue of Z′Z/n, is an indicator on how badly posed the matrix Z′Z/n is. The
higher the condition number, the more imprecise the inverse of Z′Z/n will be. The smallest
possible condition number is 1 (which corresponds to the identity matrix). In this application,
the condition number is equal to 7.6 1012 before standardising the instruments and 4.8 104 after
standardisation.

6.2. Elasticity of intertemporal substitution

The elasticity of intertemporal substitution (EIS) in consumption is crucial in macroeconomics
and finance. We follow the specification in Yogo (2004)5 who analyses the problem of the
estimation of the EIS using the linearised Euler equation.

The estimated model is as follows:

�ct+1 = τ + ψrf,t+1 + ξt+1 (6.1)

rf,t+1 = μ + 1

ψ
�ct+1 + ηt+1, (6.2)

where ψ is the EIS, �ct+1 is the consumption growth at time t + 1, rf,t+1 is the real return on
a risk free asset, τ and μ are constants, and ξt+1 and ηt+1 are the innovations to consumption
growth and asset return respectively.

Yogo (2004) explains how weak instruments have been the cause of the EIS empirical puzzle. He
shows that, using conventional IV methods, the estimated EIS, ψ , is significantly less than 1 but its
reciprocal is not different from 1. Carrasco and Tchuente (2015) estimate EIS using a regularised
LIML estimator. They increase the number of instruments6 from 4 to 18 by including interactions
and power functions. As a result, the concentration parameters is increased in the following way:
from μ̂2

n = 11.06 to μ̂2
n = 68.77 for model (6.1) and from μ̂2

n = 9.66 to μ̂2
n = 33.54 for model

(6.2). We apply our regularised F-test and find that its value7 is larger than the critical value 4.8
for models (6.1) and (6.2). We conclude that the instruments are strong enough. As before, the
instruments are standardised, the matrix Z′Z is badly conditioned with a condition number equal
to 108 before standardisation and 104 after.

According to Table 6, all the J statistics exceed the critical values suggesting that the model is
not correctly specified or the instruments are not exogenous.

4 The condition number is scale invariant.
5 Yogo (2004) used quarterly data from 1947.3 to 1998.4 for the United States.
6 The instruments used by Yogo (2004) are: the twice lagged, nominal interest rate (r), inflation (i), consumption

growth (c), and log dividend rate (p). We denote this bloc of instruments by Z = [r, i, c, p]. The 19 instruments (including
the constant) used in our regression are given by Z = [1, Z, Z.2, Z.3, Z(:, 1) � Z(:, 2), Z(:, 1) � Z(:, 3), Z(:, 1) � Z(:
, 4), Z(:, 2) � Z(:, 3), Z(:, 2) � Z(:, 4), Z(:, 3) � Z(:, 4)].

7 The value of our proposed F-test for weak instruments is 9.48 for model (6.1) and 43.89 for model (6.2).
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Table 6. Estimated J statistics for the EIS Model.

J JCorr JCHNSW JTikh

ψ 38.72 204.00 33.93 17.54
1/ ψ 54.25 204.00 34.76 35.57

Notes: The chi-square critical value = 27.59 (level = 5% and the degree of freedom =
17). Critical value of the JCorr = 26.97 (level = 5% and the degree of freedom = 17).
tr(P α) = 9.62, the critical value for JTikh = 14.97.

7. CONCLUSION

The J test for overidentifying restrictions is a popular test to assess the correct specification of a
model. However, it exhibits important size distortions when the number of instruments is large.
This paper proposes a new J test, based on Tikhonov regularisation and studies its properties
under many possibly weak instruments and heteroscedasticity. Simulations results show that the
proposed test performs very well. Its empirical size is close to the theoretical size and its power
is greater than that of competing tests. We recommend the use of this modified J test in applied
studies because of its ease of implementation and its robustness. We also propose a regularised
F-test robust to heteroscedasticity and many instruments to assess the strength of instruments.
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APPENDIX A. PRESENTATION OF THE TIKHONOV REGULARISATION

Here we consider the general case where the estimation is based on a sequence of instruments Zi = Z(τ ; νi)
with τ ∈ N . Assume τ lies in a space � (� = {1, .., L} or � = N) and let ω be a positive measure on �.
Let K be the covariance operator of the instruments from L2(ω) to L2(ω) such that:

(Kg)(τ ) =
L∑

l=1

E(Z(τ, νi)Z(τl, νi))g(τl)ω(τl).

where L2(ω) denotes the Hilbert space of square integrable functions with respect to ω. The inner product
in L2(ω) denoted 〈v, w〉 is

∑
l vlwlω(l). K is supposed to be a nuclear operator which means that its trace

is finite. The operator can be estimated by Kn defined as:

Kn : L2(ω) → L2(ω)

(Kng)(τ ) =
L∑

l=1

1

n

n∑
i=1

(Z(τ, νi)Z(τl, νi))g(τl)ω(τl).

If the number of instruments L is large relatively to n, inverting the operator K is considered as an ill-posed
problem, which means that the inverse is not continuous. To solve this problem, we need to stabilise the
inverse of Kn using regularisation. A regularised inverse of an operator K is defined as: Rα : L2(ω) → L2(ω)
such that limα→0RαKρ = ρ,∀ρ ∈ L2(ω), where α is the regularisation parameter (see Kress, 1999; Carrasco
et al., 2007). Let λj and φj , j = 1... be respectively the eigenvalues (ordered in decreasing order) and the
orthogonal eigenfunctions of Kn.

Tikhonov regularisation
We consider the Tikhonov regularisation scheme.

(Kα
n )−1 = (K2

n + αI )
−1

Kn

(Kα
n )−1

r =
∞∑

j=1

λj

λ2
j + α

〈
r, φj

〉
φj ,

where α > 0 and I is the identity operator. The Tikhonov regularisation is related to ridge regularisation.
Ridge method was first proposed to improve the properties of the OLS estimator in regressions with many
regressors. The aim was to stabilise the inverse of XX′ by replacing XX′ by XX′ + αI . However, the
reduction of variance was obtained at the expense of a bias relative to OLS estimator. In the IV regression,
the 2SLS estimator already has a bias and the use of many instruments usually increases its bias. So, the
Tikhonov regularisation tends to reduce the bias of the IV estimator (at the expense of a larger variance).

Let (Kα
n )−1 be the regularised inverse of Kn and P α a n × n matrix as defined in Carrasco (2012) by

P α = T (Kα
n )−1T ∗, (A.1)

where T : L2(ω) → Rn with T g = (< Z1, g >, < Z2, g >′, ..., < Zn, g >′)′ and T ∗ : Rn → L2(ω) with
T ∗v = 1

n

∑n

j Zjvj such that Kn = T ∗T and T T ∗ is a n × n matrix with typical element
<Zi ,Zj >

n
.

Let φj , λ1 ≥ λ2 ≥ ... ≥ 0, j = 1, 2, ... be the orthonormalised eigenfunctions and eigenvalues of Kn

and ψj the eigenfunctions of T T ∗. We then have T φj = √
λjψj and T ∗ψj = √

λjφj . For v ∈ Rn,

P αv = ∑∞
j q(α, λ2

j ) < v, ψj > ψj where q(α, λ2
j ) = λ2

j

λ2
j
+α

.

Remark that the case when α = 0 corresponds to no regularisation. Thus we have q(0, λ2
j ) = 1 and

P 0 = Z(Z′Z)
+
Z′, where (.)+ represents the Moore–Penrose generalised inverse.
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APPENDIX B. PROOFS

Our proof of Theorem 3.2 follows the same steps as the proof of Theorem 1 in Chao et al. (2014).
However, our results are not a straightforward application of Chao et al. (2014). In their paper, there is no
regularisation. Instead, the number of instruments plays the role of the regularisation parameter and the matrix
P = Z (Z′Z)−1

Z′ is a projection matrix. Their results rely often on the properties of projection matrices. In
our paper, the regularisation parameter is α and the regularised matrix P α = ∑

j q(α, λ2
j ) < v, ψj > ψj is

not a projection matrix any longer. So we need to derive some properties on the elements of P α in Lemma
B.1 below which will be used in subsequent proofs. This lemma corresponds to Lemma A0 in Carrasco and
Doukali (2017).

LEMMA B.1. If Assumptions 3.1–3.3 are satisfied, then:

(i) P α
ii < 1 for α > 0,

(ii)
∑

i �=j (P α
ij )2 = O(1/α),

(iii)
∑

i �=j P α
ij = O(1/α),

(iv)
∑

i,l,k,r P α
ikP

α
klP

α
lrP

α
ri = O(1/α),

(v)
∑

i,j (P α
ij )4 = O(1/α).

Proof of Lemma B.1. The proof can be found in Carrasco and Doukali (2017). �
Let us define some notations that will be used in the following Lemmas. For random variables8

Wi , Yi , ηi , let w̄i = E[Wi], ȳi = E[Yi], η̄i = E[ηi], W̃i = Wi − w̄i , and Ỹi = Yi − ȳi , η̃i = ηi − η̄i ,
w̄n = E[(W1, ...., Wn)′], ȳn = E[(Y1, ...., Yn)′], μ̄W = maxi≤n|w̄i |, μ̄Y = maxi≤n|ȳi |, μ̄η = maxi≤n|η̄i |,
σ̄ 2

Wn
= maxi≤nvar(Wi), σ̄ 2

Yn
= maxi≤nvar(Yi), σ̄ 2

η = maxi≤nvar(ηi).

Define the norm: ||W ||2L2
= √

E[W 2], and let M, CS, T denote the Markov inequality, the Cauchy–
Schwarz inequality, and the triangle inequality, respectively. In the sequel, C denotes a constant, which may
be different from place to place, δ̂ denotes the regularised jackknife IV estimator previously denoted δ̂α (the
dependence in α is hidden for simplicity).

LEMMA B.2. Suppose the following conditions hold:

(i) P αv = Z(Z′Z + αI )−1Z′v or
∑∞

j q(α, λ2
j ) < v, ψj > ψj as defined in Appendix A.

(ii) (W1n, U1, ε1), ..., (Wnn, Un, εn) are independent, and D1,n := ∑n

i=1 E[WinW
′
in] satisfies ||D1,n|| < C,

(iii) E[W ′
in] = 0, E[Ui] = 0, E[εi] = 0, and there is a constant C such that E[||Ui ||4] ≤ C and E[ε4

i ] ≤ C,
(iv)

∑n

i=1 E[||Win||4] → 0 a.s.
(v) α → 0 as n →∝. Then for:D2,n := α

∑n

i �=j (P α
ij )2(E[UiU

′
i ]E[ε2

j ] + E[Uiεi]E[U ′
j εj ])and any se-

quences c1n and c2n with ||c1n|| ≤ C, ||c2n|| ≤ C, and
∑

n = c′
1nD1,nc1n + c′

2nD2,nc2n > 1/C,

it follows that: Ȳn = ∑
n

−1/2(c′
1n

∑n

i=1 Wi,n + √
αc′

2n

∑n

i �=j Ui(P α
ij )2εj )

d−→ N (0, 1)

Proof of Lemma B.2. This is Lemma A2 in Carrasco and Doukali (2017) when Z and ϒ are not
random. �
LEMMA B.3. If Assumptions 3.1–3.3 are satisfied then:

(i) S−1
n

∑n

i �=j XiP
α
ij X

′
j S

−1′
n = Op(1).

(ii) S−1
n

∑n

i �=j XiP
α
ij εj = Op(1 + 1√

αμn
).

Proof of Lemma B.3. Consider first (i): We have S−1
n

∑n

i �=j XiP
α
ij X

′
j S

−1′
n = ∑n

i �=j fiP
α
ij f

′
j /n + op(1).

We also have
∑n

i �=j fiP
α
ij f

′
j /n = f ′P αf/n −∑n

i fif
′
i P

α
ii /n, and both f ′P αf/n ≤ f ′f/n and∑n

i fif
′
i P

α
ii /n ≤ f ′f/n are bounded, giving the first conclusion; (ii) holds by Lemma A5 in Carrasco

and Doukali (2017) and (i) of Lemma B.1. �
8 Note that here Wi and ηi are arbitrary scalar variables that will take various forms in the sequel.
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LEMMA B.4. If δ̂
p−→ δ, E[||Xi ||2] ≤ C, E[ε4

i ] ≤ C, ε1, ..., εn are mutually independent, and either α → 0
or maxi≤n P α

ii → 0 then:

α
∑n

i �=j (P α
ij )2ε̂2

i ε̂
2
j − α

∑n

i �=j (P α
ij )2σ 2

i σ 2
j

P→ 0.

Proof of Lemma B.4. By δ̂
p−→ δ we have ||δ̂ − δ||2 ≤ ||δ̂ − δ|| with probability one. Denote di =

2|εi |||Xi || + |||Xi ||2, we have:

ε̂i = yi − X′
i δ̂

= X′
i δ + εi − X′

i δ̂

= εi − X′
i(δ̂ − δ).

It follows that: ε̂2
i = ε2

i − 2εiX
′
i(δ̂ − δ) + (δ̂ − δ)′XiX

′
i(δ̂ − δ).

Then:
ε̂2
i − ε2

i = −2εiX
′
i(δ̂ − δ) + (δ̂ − δ)′XiX

′
i(δ̂ − δ).

|ε̂2
i − ε2

i | ≤ 2|εX′
i(δ̂ − δ)| + |(δ̂ − δ)′XiX

′
i(δ̂ − δ)|.

|ε̂2
i − ε2

i | ≤ 2|εi | ||Xi || ||δ̂ − δ|| + |||Xi ||2||δ̂ − δ||2 ≤ di ||δ̂ − δ||.
Also by (ii) of Lemma B.1,

∑n

i �=j (P α
ij )2 = O(1/α),

αE[
∑n

i �=j (P α
ij )2didj ] ≤ αC

∑n

i �=j P 2
ij ≤ C,

αE[
∑n

i �=j (P α
ij )2ε2

i dj ] ≤ C.
Then by M,
α
∑n

i �=j (P α
ij )2didj = Op(1) , α

∑n

i �=j (P α
ij )2ε2

i dj = Op(1) ,

Therefore, for V̂n = α
∑n

i �=j (P α
ij )2ε̂2

i ε̂
2
j , Ṽn = α

∑n

i �=j (P α
ij )2ε2

i ε
2
j , we have

|V̂n − Ṽn| ≤ α
∑n

i �=j (P α
ij )2|ε̂2

i ε̂
2
j − ε2

i ε
2
j |

|V̂n − Ṽn| ≤ α||δ̂ − δ||2 ∑n

i �=j (P α
ij )2didj + 2α||δ̂ − δ||∑n

i �=j (P α
ij )2ε2

i dj → 0.

Let Vn = α
∑n

i �=j (P α
ij )2σ 2

i σ 2
j and vi = ε2

i − σ 2
i . We have:∑n

i �=j (P α
ij )2ε2

i ε
2
j −∑n

i �=j (P α
ij )2σ 2

i σ 2
j = 2

∑n

i �=j (P α
ij )2viσ

2
j +∑n

i �=j (P α
ij )2vivj .

We note that E[v2
i ] ≤ E[ε4

i ] ≤ C, so we have:
E[(α

∑n

i �=j (P α
ij )2viσ

2
j )2] = α2

∑
i

∑
i �=j

∑
k �=i (P α

ij )2(P α
ik)2E[v2

i ]σ 2
i σ 2

k

E[(α
∑n

i �=j (P α
ij )2viσ

2
j )2] ≤ Cα2

∑
i

∑
j (P α

ij )2 ∑
k (P α

ik)2

We note that P α
ij = P α

ji , and
∑

i

∑
j (P α

ij )2 ∑
k (P α

ik)2 = O(1/α) by Lemma B.1 (vi). So:
E[(α

∑n

i �=j (P α
ij )2viσ

2
j )2] = Cα → 0.

Also by CS, maxij(P α
ij )2 ≤ maxii(P α

ii )2, so that:
E[(α

∑n

i �=j (P α
ij )2vivj )2] = 2α2

∑n

i �=j (P α
ij )4E[v2

i ]E[v2
j ] ≤ Cα2

∑n

i �=j (P α
ij )4 ≤ Cα2O(1/α) → 0.

Because of (v) of Lemma B.1.
Then by T and M we have Ṽn − Vn

p−→ 0. The conclusion then follows by T. �

Proof of Theorem 3.2.

√
α

n∑
i �=j

ε̂iP
α
ij ε̂j = √

α

n∑
i �=j

[εi − X′
i(δ̂ − δ)]P α

ij [εj − X′
j (δ̂ − δ)]

= √
α

n∑
i �=j

εiP
α
ij εj + (δ̂ − δ)′Sn × √

α[S−1
n

n∑
i �=j

XiP
α
ij X

′
j S

′−1
n ]S ′

n(δ̂ − δ)

+ 2
√

α(δ̂ − δ)′Sn[S−1
n

n∑
i �=j

XiP
α
ij εj ].
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If 1/(αμ2
n) → C < ∞, then by Theorem 2 in Carrasco and Doukali (2017) we have S ′

n(δ̂ − δ) = Op(1).
Then by Lemma B.3 we have:

√
α

n∑
i �=j

ε̂iP
α
ij ε̂j = √

α

n∑
i �=j

εiP
α
ij εj + op(1),

Next, note that σ 2
i ≥ C by Assumption 3.3 and P α

ii ≤ C < 1 by Assumption 3.1 so that:

Vn = α

n∑
i �=j

σ 2
i (P α

ij )2
σ 2

j > C(α
n∑
i,j

(P α
ij )2 −

n∑
i

(P α
ii )2)

= Cα

n∑
i

P α
ii (1 − P α

ii ) > C(1 − C) > 0.

Moreover, E[ε4
i ] ≤ C and,

E

⎡⎣ n∑
i �=j

(εiP
α
ij εj )2

⎤⎦ = E

⎡⎣∑
i �=j

∑
k∈{i,j}

P α
ikP

α
jkεiε

′
j ε

2
k +

n∑
i �=j

P α
ij ε

2
i ε

2
j

= E

⎡⎣2
n∑

i �=j

(P α
ij ε

2
i ε

2
j )

⎤⎦ = 2
n∑

i �=j

P α
ij σ

2
i σ 2

j = 2tr(P α)Vn.

It follows from Lemma B.2 with Win = 0, c1n = 0, c2n = 1, Ui = εi that :∑n

i �=j εiP
α
ij εj√

2tr(P α)Vn

d−→ N (0, 1).

Next by Theorem 1 in Carrasco and Doukali (2017), we have δ̂
p−→ δ. Moreover by Lemma B.1(iii),

tr(P α) = O( 1
α

). Hence, by Lemma B.4, V̂n − Vn

p−→ 0. Then by Vn bounded and bounded away from zero,√
Vn

V̂n
→ 1. Therefore by Slutsky’s theorem,∑n

i �=j ε̂iP
α
ij ε̂j√

2tr(P α)V̂n

=
∑n

i �=j εiP
α
ij εj√

2tr(P α)V̂n

+ op(1)

2V̂n

=
√

Vn

V̂n

∑n

i �=j εiP
α
ij εj√

2tr(P α)Vn

+ op(1)
d−→ N (0, 1).

Next note that T̂ ≥ q(tr(Pα )−p)(1 − β) if and only if∑n

i �=j ε̂iP
α
ij ε̂j√

2tr(P α)V̂n

≥ q(tr(Pα )−p)(1 − β) − tr(P α)√
2tr(P α)

.

Using the fact that tr(P α) = O( 1
α

), we have, as α → 0, q(tr(Pα )−p)(1 − β) − (tr(P α) −
p)/

√
2(tr(P α) − p) → q(1 − β) where q(1 − β) is the 1 − β quantile of the standard normal dis-

tribution, also, we have:√
(tr(P α)) − p

tr(P α)

(
q(tr(Pα ))−p(1 − β) − (tr(P α) − p)√

2tr(P α) − p

)
− p√

2tr(P α)
→ q(1 − β).

The conclusion now follows. �
Proof of Theorem 5.1. We will use the following two limiting distributions. First, using Lemma A2 in
Chao et al. (2012) and results on P α from Carrasco and Doukali (2017), we have∑n

i=1

∑
j �=i P

α
ij uiuj√

2
∑n

i=1

∑
j �=i

(
P α

ij

)2
E
(
u2

i

)
E
(
u2

j

) d→ N (0, 1) .
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Next, using Lindeberg theorem and Lyapunov’s condition which is satisfied by Assumption 5.1(a), we have∑n

i=1

∑
j �=i P

α
ij uiϒj√∑n

i=1

(∑
j �=i P

α
ij ϒj

)2
E
(
u2

i

) d→ N (0, 1) .

Moreover, ∑
i �=j

P α
ij xixj =

∑
i �=j

P α
ij ϒiϒj +

∑
i �=j

P α
ij uiuj + 2

∑
i �=j

P α
ij uiϒj .

We have ∑
i �=j P α

ij uiϒj√
2
∑n

i=1

∑
j �=i

(
P α

ij

)2
E
(
u2

i

)
E
(
u2

j

)

=
∑

i �=j P α
ij uiϒj√∑n

i=1

(∑
j �=i P

α
ij ϒj

)2
E
(
u2

i

)
√∑n

i=1

(∑
j �=i P

α
ij ϒj

)2
E
(
u2

i

)
√

2
∑n

i=1

∑
j �=i

(
P α

ij

)2
E
(
u2

i

)
E
(
u2

j

) .
Given C > E

(
u2

i

)
> 0, it suffices to study∑n

i=1

(∑
j �=i P

α
ij ϒj

)2

2
∑

i �=j

(
P α

ij

)2 =
∑

i �=j

(
P α

ij

)2
ϒ2

j

2
∑

i �=j

(
P α

ij

)2 +
∑n

i=1

(∑
j �=i P

α
ij ϒj

) (∑
l �=i P

α
il ϒl

)
∑

i �=j

(
P α

ij

)2 (B.1)

= O

(
1

n

)
+ O

⎛⎝ γ 2√∑
i �=j

(
P α
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)2
E
(
u2

i

)
E
(
u2

j

)
⎞⎠ (B.2)

= o (1) , (B.3)

because ϒj = z′
j π̃/

√
n and the fact that

∑
i �=j

(
P α

ij

)2 = O (1/α) by Lemma B.1.
So we get

FTikh =
∑

i �=j P α
ij xixj√

2
∑

i �=j

(
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)2
E
(
u2

i

)
E
(
u2

j

)
√

2
∑

i �=j

(
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)2
E
(
u2

i

)
E
(
u2

j

)√
2
∑

i �=j

(
P α

ij

)2
û2

i û
2
j

,

where ∑
i �=j P α

ij xixj√
2
∑

i �=j

(
P α

ij

)2
E
(
u2

i

)
E
(
u2

j

) = γ 2 +
∑

i �=j P α
ij uiuj√

2
∑

i �=j

(
P α

ij

)2
E
(
u2

i

)
E
(
u2

j

) + o (1) . (B.4)

Hence, the term on the left-hand side of (B.4) minus γ 2 converges to a normal with mean 0 and variance 1.
Finally, we need to prove that ∑

i �=j

(
P α

ij

)2
û2

i û
2
j∑

i �=j

(
P α

ij

)2
E
(
u2

i

)
E
(
u2

j

) P→ 1. (B.5)

The proof of (B.5) is done in two steps. First, we establish∑
i �=j

(
P α

ij

)2
û2

i û
2
j∑

i �=j

(
P α

ij

)2 −
∑

i �=j

(
P α

ij

)2
u2

i u
2
j∑

i �=j

(
P α

ij

)2

P→ 0. (B.6)
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Second, we show that

∑
i �=j

(
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ij

)2
u2

i u
2
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i �=j

(
P α

ij

)2 −
∑
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(
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)2
E
(
u2

i

)
E
(
u2

j

)∑
i �=j

(
P α

ij

)2

P→ 0. (B.7)

Using P α
ij = P α

ji , we have

∑
i �=j

(
P α

ij

)2
û2

i û
2
j −

∑
i �=j

(
P α

ij

)2
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i u
2
j = 4

∑
i �=j

(
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)2
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(
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i

)
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j
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+
∑
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(
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)2 (
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i

)2 (
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j
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∑
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(
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)
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∑
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(
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Consider the first term on the right-hand side:

∣∣∣∑i �=j

(
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ij

)2
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(
ϒi − ϒ̂α

i

)
uj

(
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(
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(
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because of Assumption 5.1(b) and the fact that E |ui | < C, so that

E

[∑
i �=j

(
P α
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)2 |ui |
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∣∣∑
i �=j

(
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< C,

and hence
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i �=j

(
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ij

)2|ui ||uj |∑
i �=j

(
Pα

ij

)2 = Op (1) by Markov inequality. Handling the other terms in the same fashion

yields the result (B.6).
Now, we turn our attention towards (B.7). Let vi = u2

i − E
(
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i

)
. We have
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Then, using E
(
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i

) ≤ E
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)
< C,
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as α → 0 because
∑

i �=j

(
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)4 = O (1/α) and
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(
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)2 = O (1/α) from Lemma B.1. Moreover,
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(
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which goes to 0 as α goes to 0. Then, by the triangle inequality and Markov inequality, the result (B.7)
follows. This completes the proof of Theorem 5.1. �

Proof of Theorem 5.2. Let �n =
√

2
∑

i �=j

(
P α

ij

)2
E
(
u2

i

)
E
(
u2

j

)
.

δ̂JIV2 − δ =
∑

i �=j P α
ij (ϒi + ui) εj∑
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(
ϒj + uj
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= �−1

n

∑
i �=j P α

ij ϒiεj + �−1
n

∑
i �=j P α

ij uiεj

γ 2 + 2�−1
n

∑
i �=j P α

ij uiϒj + �−1
n

∑
i �=j P α

ij uiuj

.

It follows that

γ 2
(
δ̂JIV2 − δ

) = A + B

1 + D

γ 2 + E

γ 2

,

where A = �−1
n

∑
i �=j P α

ij ϒiεj , B = �−1
n

∑
i �=j P α

ij uiεj , D = 2�−1
n

∑
i �=j P α

ij uiϒj , and E =
�−1

n

∑
i �=j P α

ij uiuj . Instead of doing an expansion for n large, we do the expansion for γ 2 large.
When γ 2 is large enough, we can use the following expansion:

γ 2
(
δ̂JIV2 − δ

) = (A + B)

(
1 − D

γ 2
− E

γ 2
+ 1

γ 4
(D + E)2

)
+ R

γ 6

where R is a polynomial of normal distributions and hence satisfies condition (3.8) in Rothenberg (1984)
with γ 2 replacing 1/n and can be neglected.

Moreover, we observe that, because of the independence assumption, E (A) = E (B) = E (BD) =
E (AE) = E((A + B) D2) = E((A + B) E2) = E(BDE) = 0. Therefore, γ 2E

(
δ̂JIV2 − δ

)
can be approxi-

mated by

−E (AD)

γ 2
− E (BE)

γ 2
+ 2E (ADE)

γ 4
.
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using E
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εjuj

) = ρE
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)
which follows from the joint normality assumption. This term will be the

dominant term as we will show below.
We have
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by Assumption 5.2 and equations (B.1), (B.2), and (B.3).
We have
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using the fact that E
(
u2

i

)
< C. For α small, the matrix P α is almost idempotent and the term E(ADE)

γ 4 can be

approximated by 2ρC2

γ 2�2
n

which is negligible compared to ρ

γ 2 .

So the bias of the dominant term is simply − ρ

γ 4 . This completes the proof of Theorem 5.2. �
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