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Abstract

Resting functional magnetic resonance imaging (fMRI) studies have identified intrinsic

spinal cord activity, which forms organised motor (ventral) and sensory (dorsal) rest-

ing-state networks. However, to facilitate the use of spinal fMRI in, for example, clini-

cal studies, it is crucial to first assess the reliability of the method, particularly given

the unique anatomical, physiological, and methodological challenges associated with

acquiring the data. Here, we characterise functional connectivity relationships in the

cervical cord and assess their between-session test–retest reliability in 23 young

healthy volunteers. Resting-state networks were estimated in two ways (1) by esti-

mating seed-to-voxel connectivity maps and (2) by calculating seed-to-seed correla-

tions. Seed regions corresponded to the four grey matter horns (ventral/dorsal and

left/right) of C5–C8 segmental levels. Test–retest reliability was assessed using the

intraclass correlation coefficient. Spatial overlap of clusters derived from seed-to-

voxel analysis between sessions was examined using Dice coefficients. Following

seed-to-voxel analysis, we observed distinct unilateral dorsal and ventral organisation

of cervical spinal resting-state networks that was largely confined in the rostro–cau-

dal extent to each spinal segmental level, with more sparse connections observed

between segments. Additionally, strongest correlations were observed between

within-segment ipsilateral dorsal–ventral connections, followed by within-segment

dorso–dorsal and ventro–ventral connections. Test–retest reliability of these net-

works was mixed. Reliability was poor when assessed on a voxelwise level, with more

promising indications of reliability when examining the average signal within clusters.

Reliability of correlation strength between seeds was highly variable, with the highest
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reliability achieved in ipsilateral dorsal–ventral and dorso-dorsal/ventro–ventral con-

nectivity. However, the spatial overlap of networks between sessions was excellent.

We demonstrate that while test–retest reliability of cervical spinal resting-state net-

works is mixed, their spatial extent is similar across sessions, suggesting that these

networks are characterised by a consistent spatial representation over time.

K E YWORD S

reliability, resting-state fMRI, spinal fMRI, test–retest

Practitioner Points

• We studied spinal resting-state networks and their test–retest reliability.

• Dorsal and ventral networks emerged within segmental levels and strong within-segment

connections were seen across grey matter horns.

• Reliability estimates were mixed but the spatial overlap of networks was excellent.

1 | INTRODUCTION

Spinal cord functional magnetic resonance imaging (fMRI) is a novel

but rapidly developing field (Kinany, Pirondini, Micera, & Van De

Ville, 2022; Powers et al., 2018). Combined with brain fMRI, it holds

promise for investigation of information processing across all levels of

the central nervous system in both health and disease.

Like the brain, the spinal cord is characterised by spontaneous

fluctuations in the blood oxygen level dependent (BOLD) signal in the

absence of overt stimulation. This intrinsic activity of the spinal cord

has been shown to form organised resting-state networks, which can

be broadly divided into motor and sensory (Harrison et al., 2021).

Reports of strong temporal correlations between the sensory (dorsal)

horns and motor (ventral) horns within the cervical spinal cord have

dominated the spinal fMRI resting-state literature (Barry et al., 2014,

2016; Eippert et al., 2017; San Emeterio Nateras et al., 2016; Weber

et al., 2018). Furthermore, unilateral sensory networks have also been

observed in resting spinal data, which were limited in rostro–caudal

extent, corresponding to the underlying segmental anatomy of the

cord (Kong et al., 2014). Early evidence from simultaneous brain-spine

fMRI has also shown that spinal and cerebral resting-state networks

are correlated, suggesting a unified functional architecture of intrinsic

networks in the central nervous system (Vahdat et al., 2020).

Brain resting-state fMRI is frequently used as a biomarker for

identification of neurodivergent states/conditions or treatment

effects (Drysdale et al., 2017; Pfannmöller & Lotze, 2019; Taylor

et al., 2021). Reliable detection of resting-state networks in the spine

would extend this approach to information processing occurring at

the level of the cord, such as early modulation of noxious signals or

motor functioning (Kinany, Pirondini, Micera, & Van De Ville, 2022;

Tinnermann et al., 2021). Acquiring fMRI recordings from the spinal

cord, however, faces unique anatomical, physiological, and methodo-

logical challenges, including, among others, the small size of the cord,

influence of physiological noise, and reliable static magnetic field

shimming (Kinany, Pirondini, Micera, & Van De Ville, 2022; Tinner-

mann et al., 2021). These challenges can limit the quality of obtained

data and thus pose a threat to the reliability of spinal fMRI. To date,

the few studies that investigated the reliability of resting-state spinal

cord fMRI showed good test–retest reliability (intraclass correlation

coefficient [ICC] = 0.64–0.7) in network properties using graph the-

ory measures at 3 T (Liu et al., 2016) and fair reliability (ICC = 0.54–

0.56) in region-to-region connections at 7 T (Barry et al., 2016). A

recent assessment of reliability of region-to-region connections at 3 T

has further shown that reliability was fair to good for dorso–dorsal

and ventro–ventral connections but poor for within and between-

hemicord connections across the cervical cord and generally poor for

all connections within individual segmental levels (Kaptan

et al., 2022). These studies, however, assessed test–retest reliability

within the same scanning session. Given that longer lag between

scans is associated with poorer reliability in cerebral fMRI (Bennett &

Miller, 2010, 2013) and that the scanning setup for spinal cord fMRI is

considerably more complicated than for cerebral fMRI (Kinany, Piron-

dini, Micera, & Van De Ville, 2022; Powers et al., 2018; Tinnermann

et al., 2021), investigations of test–retest reliability of spinal cord fMRI

that span separate scanning sessions are warranted. Such investiga-

tions will indicate the feasibility of using spinal cord fMRI to reliably

detect the effects of experimental manipulation or clinical interven-

tions across different visits, such as perturbations related to experi-

mental pain, persistent pain (e.g., post-surgical), or treatment effects.

Test–retest reliability is inherently tied to data quality. Acquiring

good quality spinal cord fMRI recordings is complicated by the influ-

ences of baseline physiology and susceptibility artefacts related to dif-

fering magnetic susceptibility profiles of surrounding tissues (Kinany,

Pirondini, Micera, & Van De Ville, 2022; Saritas et al., 2014; Tinner-

mann et al., 2021). Shimming procedures can minimise the effects of

these factors by reducing magnetic field inhomogeneities. A combina-

tion of high order and slice-specific z-shimming is frequently used in

spinal cord fMRI to improve signal quality (Eippert et al., 2017; Fin-

sterbusch et al., 2012; Kinany, Pirondini, Mattera, et al., 2022; Vahdat

et al., 2020). Nonetheless, while z-shimming offers large signal gains

by accounting for the off-resonance variation along the cord, imple-

menting simultaneous x, y, and z-shimming can achieve additional
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benefits by preventing signal loss caused by magnetic field gradients

in left/right and anterior/posterior directions (Alonso-Ortiz

et al., 2023; Islam et al., 2019). Furthermore, given that magnetic field

inhomogeneities can induce artefacts in traditional echo planar imag-

ing (EPI) sequences incorporating fat saturation pulses, using a spec-

tral–spatial pulse exciting only tissue water could further improve

signal quality (Bernstein et al., 2004), along with allowing for shorter

repetition time (TR) or larger number of slices acquired within the

same time.

This study assesses the test–retest reliability of cervical spinal

cord resting-state fMRI over two separate scanning sessions. Addi-

tionally, we demonstrate a novel implementation for acquiring BOLD-

sensitive resting-state spinal fMRI and characterise functional connec-

tivity relationships in the cervical cord in healthy adult volunteers. In

particular, the acquisition sequence used here operates on a General

Electric (GE) scanner platform, using second-order shimming and x, y,

and z slice-specific linear shimming, together with spectral–spatial

excitation pulses designed to excite tissue water only. This approach

reduces signal dropout and increases temporal signal-to-noise ratio

(tSNR) within the cervical spinal cord (see Tsivaka et al. (2023) for full

details of the acquisition method).

Our pre-registered hypotheses (Kowalczyk et al., 2021) are:

1. Discrete resting-state sensory and motor networks should be

observable in regions of the dorsal and ventral cervical spinal cord,

respectively, using T2*-weighted BOLD EPI.

2. Spinal responses observed during the assessments of hypothe-

sis 1 will be reliable, with ICC inter-session test–retest reliability sta-

tistics greater than 0.4.

2 | MATERIALS AND METHODS

2.1 | Participants

Data from 23 healthy right-handed (as assessed by the Edinburgh

Handedness Inventory; Oldfield, 1971) adult volunteers (13 females,

mean + SD age: 23.91 ± 3.84 years) were collected for all study visits

and survived all quality assessments. Full details of participant/data

exclusion are shown in Figure 1.

Full inclusion and exclusion criteria for this study are outlined in

the study preregistration (Kowalczyk et al., 2021). Briefly, participants

were excluded due to: (1) history of psychiatric, medical, or psycholog-

ical conditions, (2) history of substance or alcohol abuse, (3) regular

use of medications affecting the central nervous system, (4) irregular

menstrual cycle for female participants, (5) MRI-related contraindica-

tions. Additionally, participants were excluded if they were unwilling

to adhere to the following lifestyle guidelines before each visit:

(1) abstain from alcohol for 24 h, (2) limit caffeine consumption to one

caffeinated drink on each study day, (3) abstain from non-steroidal

anti-inflammatory drugs (NSAIDs) or paracetamol for 12 h, (4) abstain

from nicotine-containing products for 4 h.

Additional exclusion criteria based on data quality were used.

Subjects with incomplete functional acquisition, poor image contrast,

and low tSNR were excluded (see Section 2.5 for details).

Written informed consent was obtained. This study was approved

by the Psychiatry, Nursing, and Midwifery Research Ethics subcom-

mittee at King's College London, UK (HR-16/17-4769).

2.2 | Procedure

This study comprised three visits—a screening/familiarisation visit and

two identical MRI visits for test–retest purposes. The mean (±SD,

range) interval between each study visit was 21 (±22, 1–84) days;

mean (±SD, range) interval between scanning visits was 31 (±24, 1–

84). Additional assessments not described here, namely evoked

response pain and motor fMRI, were collected during the study visits

and are detailed in the preregistration (Kowalczyk et al., 2021).

2.2.1 | Session 0: Screening and familiarisation

Compliance with study lifestyle guidelines (see Section 2.1) was

assessed at the beginning of the session. Participants underwent

breath alcohol and urine drugs of abuse tests to check alcohol/sub-

stance use. Caffeine, nicotine, and NSAIDs/paracetamol intake were

assessed by self-report. Participants were familiarised with the scan-

ner environment by visiting a mock scanner.

2.2.2 | Sessions 1 and 2: MRI scanning

Sessions 1 and 2 were identical. The sessions began with an assess-

ment of compliance with the study lifestyle guidelines as described

above. Additionally, participants completed the state version of the

State Trait Anxiety Inventory (STAI; Spielberger et al., 1971) to assess

differences in anxiety levels between sessions. No differences were

observed (t[22] = 1.23, p = .223, d = 6.12, 95% CI [�0.67; 1.6]; Ses-

sion 1 mean ± SD = 27.61 ± 1.32; session 2 mean ± SD = 29.17

± 1.49). Subsequently, MRI data was collected in the following order:

(1) optimisation of static 0th, 1st, and 2nd order shims and linear slice-

specific shims, (2) structural data acquisition, and (3) 10 min 50 s rest-

ing-state scan (see Section 2.3). Participants were instructed to keep

their eyes open and look at the fixation cross displayed in the centre

of the screen (white cross on a black background). Respiratory and

cardiac traces were recorded with respiratory bellows and a pulse

oximeter, respectively, along with scanner triggers (at the start of each

TR), throughout the scan.

2.3 | MRI acquisition

Data were acquired using a 3 T GE MR750 System (General Electric,

Chicago, Illinois) equipped with both a 12-channel head, neck, and

spine coil and a 4-channel neurovascular array at the NIHR Wellcome

King's Clinical Research Facility, King's College London. A sagittal 3D

CUBE T2-weighted structural image was acquired at the beginning of

the scanning session over 64 slices with a coverage of the whole brain
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and cervical spinal cord to vertebral level T1 (TR = 2.5 s, echo time

[TE] = 120 ms, echo train length = 78, flip angle = 90�, field of view

[FOV] = 300 mm, acquisition matrix = 320 � 320, slice thick-

ness = 0.8 mm). This acquisition was based on Cohen-Adad et al.

(2021) with the FOV increased to 300 mm.

Functional data were acquired over 38 sequential slices in des-

cending order (slice thickness = 4 mm, slice gap = 1 mm), with the

inferior-most slices prescribed at vertebral level T1 and covering

the whole cervical spinal cord and the brainstem (TR = 2.5 s,

TE = 30 ms, flip angle = 90�, ASSET factor = 2, FOV = 180 mm,

acquisition matrix = 96 � 96, reconstruction matrix = 128 � 128, in-

plane voxel size = 1.875 mm � 1.875 mm). Static 0th, 1st, and 2nd

order shims were optimised. A spectral–spatial excitation pulse was

used to excite only tissue water. Slice-specific linear shims were

implemented by adding 0.6 ms duration x-, y-, and z-gradient lobes

after the excitation pulse. High-order shimming and x, y, and z-

shimming were optimised over elliptical regions of interest (ROIs) cov-

ering the brain (for slices including the brain) or cord (for slices includ-

ing the spinal cord). ROIs were drawn manually by the researcher

(OSK or SM). Altogether, shim optimisation took approximately

20 min. To maintain consistency and avoid potential systematic differ-

ences in ROI drawing affecting test–retest estimates, the same

researcher drew ROIs for both MRI sessions within participant.

Four dummy scans were acquired to enable the signal to reach

steady-state, followed by 256 volumes. Full details of the acquisition

sequence can be found in Tsivaka et al. (2023). For 13 participants,

F IGURE 1 Selection of participants
fulfilling the study eligibility criteria and
data quality assurance. MR, magnetic
resonance, tSNR, temporal signal-to-noise
ratio.
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the manufacturer's EPI internal reference option was used. The inter-

nal reference acquires four non-phase-encoded echoes before the EPI

echo train, which are used to apply a phase correction to the EPI data.

Upon further inspection of the data, this was shown to contribute to

slice misalignment in 5 of the 13 participants (anterior–posterior

direction) and thus the setting was disabled for subsequently recruited

participants. In order to keep the two MRI visits identical, however,

the internal reference was used on both MRI visits for the first 13 par-

ticipants even after the issue was discovered.

A group mean EPI image in Polytechnique Aix-Marseille Univer-

sity and Montreal Neurological Institute 50 (PAM50) template space

(De Leener et al., 2018) showing the average signal intensity

(Figure S2), as well as a representative single-subject temporal mean

EPI in native space are available for download from NeuroVault

(https://identifiers.org/neurovault.collection:13616).

2.4 | Data pre-processing

Data were processed using Spinal Cord Toolbox (SCT) version 5.4

(De Leener et al., 2017), AFNI's 3dWarpDrive (Cox, 1996; Cox &

Hyde, 1997), and FSL version 6.0.4 (Jenkinson et al., 2012; Smith

et al., 2004). Visual quality assurance was performed on raw data and

at each stage of processing. Five scans acquired with an early version

of the functional sequence using the internal reference (see above)

had several slices come out of alignment with the rest of the spinal

cord due to a shift in the anterior–posterior (EPI phase-encoding) axis.

A custom in-house Matlab version 9.5.0 (Mathworks Inc.) script was

used to move the slices back into alignment with the rest of the cord.

Briefly, for each slice, a 1D projection along the anterior/posterior

direction was calculated for each time-point by summing the voxels in

the left/right direction across the spinal cord. The anterior/posterior

shift was determined by calculating the maximum of the cross-correla-

tion of the projection at each time-point with the first time-point. The

shift was then applied to the image data in a block-circular manner.

Only shifts by an integer number of voxels were applied to avoid the

need for an extra interpolation step. This step was performed prior to

any other pre-processing.

For all functional data, brainstem structures were separated from

cervical volumes at the level of the odontoid process. Subsequently,

spinal cord functional data were motion-corrected for x- and y-trans-

lations using an in-house implementation of AFNI's 3dWarpDrive fol-

lowing the steps in the Neptune Toolbox (https://neptunetoolbox.

com/). Motion-corrected data were smoothed with an in-plane 2D

Gaussian kernel with full width at half maximum of 2 mm using a cus-

tom in-house script relying on tools from AFNI and FSL, and bandpass

filtered (0.01–0.1 Hz) using fslmaths (part of FSL).

Warping parameters for spatial normalisation were determined by

segmenting and registering the functional data to the PAM50 spinal

cord template (De Leener et al., 2018), via an intermediary subject-

specific T2-weighted 3D volume. Specifically, sct_deepseg_sc (Gros

et al., 2019) was used to segment the cord from the cerebrospinal

fluid (CSF) on motion-corrected functional data and on T2-weighted

structural image (sct_propseg (De Leener et al., 2014) was used for

one participant's T2-weighted data where sct_deepseg_sc algorithm

failed to detect the cord). Manual intervention was needed for accu-

rate segmentation of functional data and was performed in FSLeyes

(McCarthy, 2022). Warping parameters for registration of functional

data to the PAM50 template were created by combining warp param-

eters from (1) registering structural T2-weighted image to functional

data utilising manually created disc labels on both images and (2) regis-

tering the segmented cord from the T2-weighted image to the

PAM50 T2-weighted template via sct_register_to_template (De Leener

et al., 2018). These warps were applied to pre-processed and filtered

functional data via sct_register_multimodal (De Leener et al., 2018) and

all subsequently described analyses were carried out in PAM50 tem-

plate space. Inverse warp parameters obtained from these steps were

used to transform PAM50 template CSF and white matter masks to

participant functional space which were used in the physiological

denoising step described below.

The physiological noise modelling (PNM) toolbox (Brooks

et al., 2008) was used to generate 33 slice-specific regressors

accounting for physiological noise based on cardiac and respiratory

traces, and CSF signal. A bandpass filter (identical to that used on the

functional data, 0.01–0.1 Hz) was applied to nuisance regressors

(those generated by the PNM and motion regressors obtained from

motion correction as described above) to avoid reintroducing noise

into the timeseries (Bright et al., 2017). Regression of physiological

noise (cardiac and respiratory), CSF and white matter signal, and

motion parameters, along with pre-whitening using FILM were per-

formed in FEAT. The smoothed and filtered data (i.e., the residuals

from the previous step) were used for subsequent analyses.

2.5 | Temporal signal-to-noise ratio

tSNR was calculated on minimally processed resting-state data to

avoid artificially inflating the measure. The data had undergone

motion correction only (as described above), to remove the time-

course variability associated with in-scan motion and enable creating

subject-specific spinal cord masks (see detailed description of steps

taken in generating cord masks above). tSNR maps were created by

dividing the mean functional image by its standard deviation. Mean

tSNR was extracted for all cervical segmental levels (C1–C8) using

subject-specific cord masks and for segmental levels C5–C8

using probabilistic segmental masks from the PAM50 atlas (De Leener

et al., 2018) warped to subject-space (binarised and thresholded at

30% likelihood of belonging to that spinal level).

tSNR was extracted for all complete datasets (complete resting-

state acquisition on both MRI sessions, that is, 28 participants/56

resting-state acquisitions) that passed all other quality assurance steps

(see Figure 1 for details). Since there are no established guidelines on

cut-offs for inclusion based on data quality in spinal fMRI and given

that poor tSNR was associated with signal dropout, high level of

KOWALCZYK ET AL. 5 of 16
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motion, and geometric distortions, we opted for a minimum tSNR

of 20 to ensure reliability estimates were not affected by poor data

quality (see Figure S1). Consequently, five participants (i.e., 10 resting-

state acquisitions) were excluded from all further analyses due to low

mean tSNR across the whole cervical cord (<20) on at least one study

session.

2.6 | Assessment of resting-state networks

2.6.1 | Definition of seed regions

Seed regions were derived from the PAM50 atlas (De Leener

et al., 2018) and corresponded to the four grey matter horns (ventral/

dorsal and left/right) of fifth, sixth, seventh, and eighth segmental

levels. We focus on segmental levels C5–C8 given the dermatome

projections to the upper limbs and thus their importance in sensori-

motor investigations. To obtain these masks we: (1) thresholded the

mask of each horn (left/right, dorsal/ventral) at 50% likelihood of

belonging to that grey matter horn and binarised it, (2) thresholded

probabilistic segmental level (spinal levels C5–C8) masks at 30% to

avoid overlap between segments, (3) multiplied each horn mask by

each segmental level mask. This resulted in 16 individual masks for

seed regions reflecting left/right and dorsal/ventral horns at segmen-

tal levels C5, C6, C7, and C8 (Figure 2).

2.6.2 | Seed-to-voxel connectivity

Mean timecourses extracted from these seed regions were used to

estimate functional connectivity maps between the seed and each

voxel in the cervical cord. For each subject, to assess both within- and

between-segment connectivity all four seeds' mean timecourses (left

dorsal horn [L DH], right dorsal horn [R DH], left ventral horn [L VH],

right ventral horn [R VH]) for a given segmental level (C5, C6, C7, and

C8) were included in a single model estimated by FEAT (Z = 3.1,

p < .05). Consequently, a total of four models per subject, per session

were run. Contrast of parameter estimates (COPE) images from this

stage was registered to PAM50 space using warp parameters gener-

ated during pre-processing (see above).

Spatial extent of resting-state networks at group level was

assessed using randomise (Winkler et al., 2014) with threshold-free

cluster enhancement (5000 permutations, p < .003 [p = .05, Bonfer-

roni corrected for 16 individual seed regions]) and a cord mask

obtained from the PAM50 atlas. Permutation-based approach was

chosen for this analysis given that spinal cord fMRI data do not fulfil

the assumptions necessary for the implementation of random field

theory, due to the anisometric shape of the cord. This analysis was

performed separately for each session.

2.6.3 | Seed-to-seed connectivity

In addition to the above preregistered seed-to-voxel analysis, a more

focused seed-to-seed correlation analysis was performed to assess

the strength of connections between regions using Python 3.8.4.

Pearson correlations were computed between each pair of seed

regions at subject level using numpy.corrcoef function (Harris

et al., 2020). The resultant correlation coefficients were Z-

transformed using numpy.arctanh (Harris et al., 2020). Statistical signif-

icance at group-level was assessed using a one-sample t-test calcu-

lated using scipy.stats.ttest_1samp (Virtanen et al., 2020). A positive

false discovery rate (FDR) was used to account for multiple compari-

sons (thresholded at p < .05, implemented with statsmodels.stats.mul-

titest.fdrcorrection; Seabold & Perktold, 2010). FDR correction was

chosen following convention used in network-based analyses and to

avoid excessively conservative thresholding. The analysis presented in

the main text of the manuscript used data acquired on Session 1 (see

Supplementary Material S1 for corresponding analysis of data

acquired on Session 2).

2.7 | Test–retest reliability

2.7.1 | Intraclass correlation coefficient

To systematically evaluate the test–retest performance, inter-session

reliability was estimated using:

ICC 3,1ð Þ¼ BMS�EMSð Þ= BMSþ k�1ð ÞEMSð Þ

where BMS is the between-target mean squares, EMS is the error

mean squares, and k is the number of repeated sessions (as described

in Caceres et al., 2009).

ICC values were calculated for each voxel (i.e., voxelwise) using

the locally developed ICC toolbox (Caceres et al., 2009) running in

Matlab version 9.5.0 (Mathworks Inc.). Reliability was calculated for

the whole cord and the complete activation network. The activation

F IGURE 2 Seed regions used in assessments of spinal cord
resting-state networks. A total of 16 seeds were derived from the
PAM50 atlas, corresponding to the four grey matter horns of the cord
at spinal segmental levels C5 (red), C6 (blue), C7 (green), and C8
(yellow).
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network was obtained using a one-sample t-test of the first session

with a voxelwise t-statistic threshold of 3.5 (equivalent to p = .001)

conducted in SPM8 as per the original manuscript describing this

approach (Caceres et al., 2009). ICC(3,1) was calculated for each

COPE separately. Median ICC values are reported, defined as the

reliability measure obtained from the median of the ICC distribu-

tions within regions. In addition to this pre-registered approach,

additional ICC values were also computed to provide a more

detailed understanding of the test–retest reliability of spinal resting-

state data.

ICC(3,1) of the mean activation within a network was also com-

puted. Mean signal was extracted from group-level maps obtained

from randomise (as described above) using a binarized mask defined

from the activation map of Session 1.

Additionally, ICC(3,1) values were calculated on the subject-level

Z-scores describing each of the connections in the seed-to-seed

analysis.

Finally, ICC(3,1) was calculated for tSNR values extracted from

the whole cord and from segmental levels C5–C8 (see below). SPSS

v28.0.1.1 with Python3 integration was used to calculate ICC values

for mean activation within the network, seed-to-seed connectivities,

and tSNR.

Following previous recommendations (Fleiss et al., 2013), ICC

values will be categorised accordingly: <0.4 as poor, 0.4–0.59 as fair,

0.6–0.74 as good, and >0.75 as excellent. While a value of 1 indicates

near-perfect agreement between the values of the test and retest ses-

sions, a value of 0 would indicate that there was no agreement

between the values of the test and retest sessions. Negative ICC

values, which typically reflect a combination of low between-subject

variance and high within-subject variance, are set to zero to signify

lack of reliability.

2.7.2 | Dice similarity coefficient

Spatial consistency of spinal cord resting-state networks was evalu-

ated using Dice similarity coefficient (DSC; Dice, 1945) calculated

with AFNI's 3ddot function. DSC was calculated separately for group-

level (5000 permutations, p < .003) and subject-level (Z = 3.1, p < .05)

thresholded maps derived from seed-to-voxel analysis described

above. Mean DSC values for subject-level maps are reported.

DSC ranges from 0 to 1 with higher values indicating better over-

lap between two sets/maps. A value of 1 would thus correspond to

perfect overlap, while a value of 0 would correspond to no overlap.

3 | RESULTS

3.1 | Temporal signal-to-noise ratio

To assess signal quality, tSNR was extracted from minimally processed

data (motion correction only) for all complete datasets (i.e., prior to

excluding participants with mean tSNR across the whole cord <20).

Mean tSNR for the whole cord and segmental levels C5-C6 across

sessions are given in Table 1.

tSNR was stable across sessions both within the whole spinal

cord (t[27] = �0.58, p = .568, Cohen's d = 0.1, 95% CI [�2.17, 1.22])

and across segmental levels C5–C8 (F[1, 27] = 0, p = .989). Slightly

higher tSNR was observed in lower segments (C7 and C8) than in

higher segments (C5 and C6); however, this difference was not statis-

tically significant (F[1.93, 51.99] = 2.7, p = .078).

3.2 | Assessment of resting-state networks

3.2.1 | Seed-to-voxel connectivity

To assess the spatial extent of cervical spinal resting-state networks,

we estimated seed-to-voxel connectivity maps for each subject and

session. This section describes the results of the analysis of data from

Session 1 (the corresponding analysis of session 2 data is provided in

the Supplementary Material S1). For each seed and segmental level,

we observed a statistically significant organisation of spinal resting-

state networks (p < .003). Each seed gave rise to a connectivity pat-

tern that was largely confined to the segment, with sparser between-

segment connections (Figure 3, full spatial maps can be accessed on

https://identifiers.org/neurovault.collection:13616). While the spatial

extent of clusters was similar across the four quadrants of each seg-

ment, we qualitatively observed a dorsal bias in functional connectiv-

ity of dorsal seeds and a ventral bias in functional connectivity of

ventral seeds. Qualitatively, clusters estimated from Session 2 data

had highly similar spatial extent (see Supplementary Material S1 for

results of Session 2 data analysis and Figure S2 for overlap between

Sessions 1 and 2 maps).

3.2.2 | Seed-to-seed connectivity

To assess the strength of functional connections between horns of

the cervical spinal cord, we conducted seed-to-seed correlations

TABLE 1 Temporal signal-to-noise
ratio (tSNR) across whole cord and within
spinal segmental levels C5–C8 for data
acquired on magnetic resonance imaging
(MRI) Sessions 1 and 2.

Whole cord Segment C5 Segment C6 Segment C7 Segment C8

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

MRI Session 1 25.75 (5.32) 25.95 (8.67) 25.59 (8.1) 27.33 (6.7) 27.76 (7.94)

MRI Session 2 26.22 (5.04) 25.18 (9.2) 25.96 (6.2) 27.75 (5.61) 27.79 (6.87)

Note: Data reported for N = 28, that is, all complete datasets prior to excluding participants with

tSNR <20.
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between each pair of seed regions on data acquired during Session

1 (for results of the same analysis performed on Session 2 data, see

Supplementary Material S1). A correlation matrix depicting cervical

spinal cord connections is shown in Figure 4. On average, within seg-

ment, the strongest statistically significant positive correlations were

observed within hemicord (i.e., left DH–VH and right DH–VH), fol-

lowed by VH–VH and DH–DH connections, and DH–VH connections

between hemicords (i.e., left DH–right VH, right DH–left VH). Weaker

but statistically significant positive correlations were also observed

between neighbouring segments, including DH–DH, VH–VH, as well

as within and between hemicords. Finally, negative correlations were

observed between the right VH of segment C8 and both left and right

DH of segment C6. A similar pattern of results was observed in the

analysis of data acquired during Session 2. We further investigated

whether these findings were produced by mixing of seed timecourses

due to spatial smoothing, repeating our analysis on unsmoothed data.

F IGURE 3 Resting-state networks were obtained from seed-to-voxel connectivity analysis for each of the four horns (ventral/dorsal and left/
right) of segmental levels C5–C8 (data acquired on MRI Session 1). Axial slices are marked with the z MNI coordinate. Each resting-state map was
thresholded at p < .003 (p = .05, Bonferroni corrected for 16 individual seed regions).

F IGURE 4 Seed-to-seed correlation
matrix displaying z-transformed Pearson r.
DH, dorsal horn; L, left; VH, ventral

horn; R, right. *p < .05, **p < .001.
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The resultant correlation matrices (detailed in Supplementary

Material S1) largely resembled those obtained from the analysis of

smoothed data.

3.3 | Test–retest reliability

3.3.1 | Intraclass correlation coefficient

ICC(3,1) was used to examine the test–retest reliability of cervical

resting-state networks. ICC values for each resting-state network

derived from seed-to-voxel connectivity analysis are given in Table 2

and for each of the seed-to-seed connectivities in Figure 5.

On average, voxelwise assessments of ICC in the entire cord

(mean across networks ICC = <0.1 ± <0.1) and within the activation

network defined based on MRI session 1 (mean across networks

ICC = 0.1 ± <0.1) showed poor reliability across resting-state net-

works. ICCs for mean activation within each resting-state network

showed better but still poor reliability (mean across networks

ICC = 0.3 ± 0.2). Nonetheless, more variability in ICC values was

observed, with some networks reaching fair (left and right DH net-

works at level C5 and right VH networks at levels C7 and C8) and

good reliability (left VH networks at levels C5 and C6).

ICCs for connection strength across pairs of seed regions were

variable. ICCs for a large portion of seed pairs (84%) were poor, how-

ever some reached fair (14%) and good (2%) levels. Fair and good ICCs

were observed for connections both within and between spinal seg-

mental levels and largely reflected either within (i.e., left DH–VH or

right DH–VH) or between hemicord connectivity (i.e., left DH–right

VH or right DH–left VH).

Finally, to assess the test–retest reliability of signal quality, ICC

values were calculated for tSNR. Across the whole cervical spinal cord

captured by our data, tSNR reliability was good (ICC = 0.7). Within

segmental levels, tSNR reliability was good for segments C6

(ICC = 0.7), C7 (ICC = 0.6), and C8 (ICC = 0.7), and fair for segment

C5 (ICC = 0.5).

3.3.2 | Dice similarity coefficient

DSC assessed the spatial agreement of group- and subject-level rest-

ing-state maps between the two sessions. DSC for each network at

group and subject level is given in Table 3.

Near-perfect agreement was observed in group-level maps (mean

DSC = 0.88 ± 0.03) and good agreement was seen in subject-level

maps (mean DSC = 0.67 ± 0.11).

4 | DISCUSSION

This study investigated cervical spinal cord resting-state networks and

their test–retest reliability using a novel acquisition method. In

TABLE 2 ICC(3,1) for each resting-state network.

Abbreviations: DH, dorsal horn; ICC, intraclass correlation coefficient; L, left; R, right; VH, ventral horn.
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mapping the spatial representation of resting-state networks, we

observed distinct unilateral dorsal (sensory) and ventral (motor) orga-

nisation that was largely confined in the rostro–caudal extent to each

spinal segmental level, with more sparse connections between seg-

ments. By investigating connection strength between the horns of the

cervical spinal cord, we observed that the strongest connectivity was

present within the hemicord (i.e., ipsilateral dorsal–ventral), followed

by ventro–ventral and dorso–dorsal connections, and finally dorsal–

ventral connections between the hemicords. Similar but weaker con-

nectivity was also observed between segmental levels. The results of

test–retest reliability of these networks were mixed. Reliability was

poor when assessed on a voxelwise level, with more promising but

inconsistent indications of reliability when examining the average

signal within networks and connection strength. However, assess-

ments of the spatial overlap of resting-state network maps between

sessions showed near-perfect agreement, suggesting that these net-

works are characterised by a consistent spatial representation

over time.

The first aim of this study was to quantify the spatial extent of

spinal cervical resting-state networks. Our findings of dorsal and ven-

tral bias in the spatial representations of resting-state networks in the

cervical spinal cord are in line with our predictions and complement

previous investigations characterising the intrinsic activity of the spi-

nal cord (Barry et al., 2014, 2016; Eippert et al., 2017; Kong

et al., 2014; Vahdat et al., 2020). In fact, the emergence of distinct

sensory (dorsal) and motor (ventral) networks within the cervical

F IGURE 5 (a) Matrix displaying ICC(3,
1) for each pair of seed regions.
(b) Average ICC between each type of
region pair (DH–DH, VH–VH, and DH–
VH) grouped by distance between spinal
segmental levels (within level: C5–C5,
C6–C6, C7–C7, and C8–C8, between
neighbouring levels: C5–C6, C6–C7, and
C7–C8, and between distant levels: C5–
C7, C5–C8, and C6–C8). DH, dorsal horn;
ICC, intraclass correlation coefficient; L,
left; R, right; VH, ventral horn.
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spinal cord has been demonstrated with several different analytical

approaches, including data-driven independent component analysis

(Kong et al., 2014; San Emeterio Nateras et al., 2016) and hypothesis-

driven temporal correlation between ROIs (Barry et al., 2014, 2016;

Eippert et al., 2017). Further, these networks have been observed

both at conventional MR field strength (3 T; Eippert et al., 2017; Kong

et al., 2014; Liu et al., 2016; San Emeterio Nateras et al., 2016; Vahdat

et al., 2020) and at ultra-high field (7 T; Barry et al., 2014, 2016). Here,

we further confirm the presence of the previously reported dorso–

dorsal and ventro–ventral cross-talk (Barry et al., 2014, 2016; Eippert

et al., 2017) with seed-to-seed correlations and further show the

emergence of unilateral dorsal and ventral networks (Kong

et al., 2014) with seed-to-voxel analyses. Our findings support the

notion that these networks reflect intrinsic spinal activity, which mir-

rors the functional neuroanatomy of the spinal cord.

In addition to the distinct dorsal and ventral networks, we

observed a strong within-hemicord (i.e., ipsilateral) connectivity

between dorsal and ventral horns of the cervical spinal cord. This is in

contrast to previous reports of weak dorsal–ventral connectivity

within the hemicord (Barry et al., 2014; Eippert et al., 2017). Nonethe-

less, strong within-hemicord connectivity between dorsal and ventral

horns was observed in non-human primates (Chen et al., 2015) and in

one study of a small group of healthy adult volunteers (Weber

et al., 2018). Furthermore, dorsal–ventral connectivity was also

observed in some participants at ultra-high field, however, these

results were not consistent and did not emerge at group level (Barry

et al., 2014). Dorsal–ventral connectivity may represent a distinct sen-

sory-motor spinal network, which could support motor reflexes and

other more lateralised processing (Chen et al., 2015; Harrison

et al., 2021). Indeed, anatomical spinal circuits that connect ipsilateral

dorsal and ventral horns, including the monosynaptic stretch reflex

and nociceptive withdrawal reflex, are well documented (Pierrot-

Deseilligny & Burke, 2012). Nonetheless, given the close proximity of

ipsilateral dorsal and ventral horn seeds (�1 mm), relatively large in-

plane voxel size (1.875 mm � 1.875 mm), and data processing steps

on the detectability of within-hemicord connectivity, further study is

needed to establish whether these anatomical circuits contribute to a

tertiary spinal resting-state network. Consequently, the current study

alone should not be used to support the existence of dorsal–ventral

functional connectivity in the human cervical spinal cord.

Similar to previous studies (Kinany et al., 2020; Kong et al., 2014;

San Emeterio Nateras et al., 2016), we observed that spinal resting-

state networks were largely limited in the rostro–caudal extent, mir-

roring the segmental organisation of the spinal cord. However, we

also observed sparse between-segment connections. Intersegmental

connectivity has been reported previously (Eippert et al., 2017;

TABLE 3 Group-level and mean subject-level DSC for each resting-state network.

Abbreviations: DH, dorsal horn; DSC, dice similarity coefficient; L, left; R, right; VH, ventral horn.
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Harita & Stroman, 2017; Ioachim et al., 2019; San Emeterio Nateras

et al., 2016; Vahdat et al., 2020) and is thought to reflect ascending

sensory and descending motor pathways. In line with our findings,

others have reported a decrease of connectivity beyond one vertebral

level (Harita & Stroman, 2017; Liu et al., 2016; San Emeterio Nateras

et al., 2016; Weber et al., 2018) and, in some cases, weak anti-correla-

tion between regions of different segmental levels (Kinany

et al., 2020; Kong et al., 2014). This pattern of results was also

observed in this study, with an anti-correlation between right ventral

horn at C8 and both ipsilateral and contralateral dorsal horn of seg-

ment C6. Such negative relationships may reflect processes related to

intersegmental inhibition, perhaps contributing to reflexive actions,

proprioception, and nociception (Friesen & Cang, 2001; McBain

et al., 2016).

Our second aim was to assess whether cervical spinal resting-

state networks could be reliably detected across different scanning

sessions. The mixed findings observed in our reliability analysis are in

contrast to our predictions and previous reports of good and fair reli-

ability of resting-state connections in the cervical spinal cord, albeit

when tested within the same scanning session (Barry et al., 2016;

Kaptan et al., 2022; Liu et al., 2016). Test–retest reliability is known to

reduce with longer lag between sessions across various contexts

(Calamia et al., 2013; Duff, 2012), including brain fMRI (Bennett &

Miller, 2010, 2013) and specifically resting-state paradigms (Niu

et al., 2020; Yang et al., 2022). Changes related to development, aging,

learning, and attention, along with other neuroplastic processes likely

underpin the biological reasons for poorer reliability in the long term

(Bennett & Miller, 2010, 2013). Furthermore, in cerebral fMRI, the

highest reliability is usually achieved in data collected within the same

scanning session (Shehzad et al., 2009; Wang et al., 2013), which likely

reflects additional impact of scanner characteristics (An et al., 2017).

Given that spinal cord fMRI acquisition is considerably more challeng-

ing than brain fMRI, with greater impact of baseline physiology and

field inhomogeneities related to surrounding tissues, lower interses-

sion test–retest estimates are to be expected.

In recent years, the reliability and reproducibility of neuroimaging

results more broadly has been brought into question (Botvinik-Nezer

et al., 2020; Poldrack et al., 2017), with largely mixed evidence of reli-

ability across both tasks (Elliott et al., 2020; Kragel et al., 2021) and

resting-state brain fMRI (Noble et al., 2019; Noble, Spann,

et al., 2017). In fact, many estimates of brain resting-state connectivity

achieve ICC values within the poor range (<0.4) across different rest-

ing-state metrics, including voxelwise and region-to-region connectiv-

ity (Noble et al., 2019; Noble, Scheinost, et al., 2017). Consequently,

the test–retest estimates observed here for spinal cord resting-state

networks are similar to those routinely observed in the brain. Further-

more, the spatial extents of these networks were similar across ses-

sions. This suggests that while intensity changes in individual voxels

and clusters may differ between sessions, the networks are charac-

terised by a consistent spatial representation over time.

Aside from psychological influences, several factors have been

identified, that contribute to low fMRI reliability, including poor tSNR

(Bennett & Miller, 2010; Raemaekers et al., 2007), sub-optimal data

processing choices (Barry et al., 2016), and confounding effects of

motion and/or other non-specific signal changes (Gorgolewski

et al., 2013; Noble et al., 2019). The inherent challenges of acquiring

spinal cord fMRI recordings, likely result in a compound effect of

these factors, which may lead to somewhat lower test–retest reliabil-

ity estimates than those of brain fMRI (Barry et al., 2016). The contin-

ued efforts to improve the quality of spinal cord recordings and

finetune pre-processing pipelines will likely help to increase the reli-

ability of spinal fMRI.

Nonetheless, it is important to recognise that high reliability does

not always reflect data validity. For instance, it has been observed

that correction for artefactual signal, such as motion and physiological

noise, can lower test–retest reliability in the brain (Birn et al., 2014;

Lipp et al., 2014; Noble et al., 2019; Noble, Spann, et al., 2017) and

spinal cord (Kaptan et al., 2022). This likely represents more system-

atic properties of noise within the data (e.g., regular repetition of car-

diac and/or respiratory processes, CSF pulsation leading to cord

motion) compared with intrinsic activity within the cord, which may

be characterised by more dynamic processes (Kinany et al., 2020).

This is further supported by our observation of good reliability of the

average tSNR of minimally processed data contrasting with the lower

reliability of resting-state networks estimated from the same data.

Consequently, it is vital to consider data reliability and validity

together and avoid data processing choices which, while boosting reli-

ability, might have an undue effect on validity.

Most spinal cord fMRI studies use z-shimming alone (Eippert

et al., 2017; Kong et al., 2014; Vahdat et al., 2020). While not a pri-

mary intention of our study, we did observe that the y-shimming (and

to a lesser extent x-shimming) gradients did provide additional signal

recovery (Tsivaka et al., 2023). One previous study has also reported

dynamic x-, y-, and z-shimming (Islam et al., 2019), which differed

from our implementation by applying the linear shimming gradients

throughout the EPI acquisition for each slice rather than as gradient

lobes. Additionally, we used spectral–spatial excitation pulses for our

fMRI acquisition. Since these are designed to only excite water, no

additional fat saturation pulses were required, which would have

increased the TR needed to acquire images from 38 slices

(or reduced the number of slices that could be acquired with the

same TR). To date, spinal fMRI has been predominately implemented

on Siemens scanners with only few exceptions (e.g., Islam

et al., 2019). Our acquisition sequence uses a GE scanner platform

and thus provides an alternative to the typically used Siemens-based

methods.

The acquisition method described here achieved superior signal

quality in comparison to reports describing other sequences used in

the field to date, reaching an average tSNR of 26 across scanning ses-

sions. This represents large gains over previously described methods,

where average tSNR of spinal EPI data at 3 T typically ranges from

5 to 20 (Barry et al., 2018; Eippert et al., 2017; Kinany, Pirondini, Mat-

tera, et al., 2022; Oliva et al., 2022; Powers et al., 2018). This boost in

signal quality may be partly due to the larger in-plane voxel size used

in this study (1.875 mm � 1.875 mm compared with 1 mm � 1 mm

typically used elsewhere; Eippert et al., 2017; Harita & Stroman, 2017;

12 of 16 KOWALCZYK ET AL.

 10970193, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26600 by U
niversity O

f E
ast A

nglia, W
iley O

nline L
ibrary on [14/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Kong et al., 2014; Liu et al., 2016; San Emeterio Nateras et al., 2016).

Aside from differences in voxel sizes, compared with brain fMRI, the

low tSNR of spinal fMRI data is additionally driven by baseline physi-

ology inducing spinal cord motion and CSF pulsation (Piché

et al., 2009), and susceptibility artefacts arising from the distinct mag-

netic susceptibility profiles of surrounding tissues, resulting in signal

dropout and image distortions (Saritas et al., 2014). While the tSNR

achieved by our acquisition sequence remains lower than that of a

typical brain EPI (tSNR of �50 when calculated on minimally pro-

cessed data; Murphy et al., 2007; Oliva et al., 2022), it marks a step

towards improving the quality of spinal fMRI recordings.

Several limitations are important to note in this study. It needs to

be noted that the small size of the spinal cord (�10 mm in diameter

with grey matter regions �2–4 mm2 in-plane; Harrison et al., 2021)

calls for finer spatial resolution in future studies. Although larger voxel

size can improve SNR, it can also lead to sampling signal from differ-

ent structures within the same voxels. Similar issues arise from spa-

tially smoothing the functional data. While smoothing increases tSNR

and minimises variability in individual anatomy, it can lead to mixing of

signal from distinct anatomical regions. This is particularly important

to consider when investigating regions in close proximity (see above

in relation to ipsilateral dorsal–ventral connectivity). Nonetheless, the

correspondence of our findings and those of investigations conducted

at higher field strength with smaller voxel size (0.91 mm � 0.91 mm

in-plane; Barry et al., 2014, 2016) and those not including spatial

smoothing (Eippert et al., 2017; Kong et al., 2014), including in this

study (Supplementary Material S1), suggests that these were unlikely

confounds in our data.

It is also important to consider that current best practices for spi-

nal cord fMRI data modelling rely on assumptions that have been vali-

dated for cerebral fMRI but not studied in detail in the cord. For

instance, early evidence suggests that frequencies higher than the

conventional 0.08 Hz cut-off used for brain fMRI (Biswal et al., 1995),

may be important drivers of spinal cord signalling (Barry et al., 2016).

Here, we used bandpass filtering of 0.01–0.1 Hz to allow for those

higher frequencies, while keeping within the bounds of BOLD-vali-

dated frequency distribution. Nevertheless, the neurophysiological

mechanisms underpinning assumptions crucial for fMRI data model-

ling, such as BOLD frequency distribution and haemodynamic

response, require further study and validation in the cord.

Although we aimed to obtain 30 complete datasets, and while

37 participants completed one scanning session and 32 completed

both sessions, the challenges associated with spinal cord fMRI acquisi-

tion and resultant data quality concerns meant that our final sample

size was reduced to 23. Longer scanning time due to shimming opti-

misation, an additional anterior array coil resting on the participant's

neck and chest, head and neck positioning minimising neck curvature,

and the use of external physiology monitoring equipment likely con-

tributed to the discomfort associated with scanning, increased attri-

tion rate, and led to higher in-scan motion. Further data exclusion was

related to low tSNR and signal dropout, some of which may be a result

of individual differences in the anatomy of surrounding tissues. High

data attrition may be an inevitable attribute of spinal cord fMRI

studies and needs to be accounted for during study design and

recruitment.

Finally, our study investigated the test–retest reliability of cervical

spinal resting-state networks across two separate sessions separated

by several days or weeks, while previous studies looked at within-ses-

sion reliability (Barry et al., 2016; Kaptan et al., 2022; Liu et al., 2016).

The inter-scan interval was variable across participants (1–84 days)

due to scanner availability and synchronising the sessions with female

participants' menstrual cycles for the purposes of pain-related assess-

ments performed as part of other aims of this study (Kowalczyk

et al., 2021). Consequently, while participants adhered to systematic

pre-scanning lifestyle guidelines (see Section 2) and the time of the

day of the sessions was consistent for each individual to minimised

external sources of variability, we cannot ascertain that the variability

in the inter-scan interval did not act as a confound. A full characterisa-

tion of spinal cord fMRI reliability demands acquiring recordings from

the same participants within the same session, as well as over days,

weeks, months, and possibly years. Furthermore, combining record-

ings from the same subject across several sessions has been hypothe-

sised to improve reliability alongside validity (Noble, Spann,

et al., 2017). Such efforts in spinal cord fMRI may help to better

understand the neurofunctional characteristics of spinal cord resting-

state networks.

5 | CONCLUSIONS

In this study, we demonstrate functional connectivity relationships in

dorsal and ventral regions of the cervical cord using a novel, custom

acquisition method implemented on a GE platform. Importantly, our

findings are in agreement with the known neuroanatomical and neu-

rofunctional organisation of the spinal cord. Although the test–retest

reliability of these networks was mixed, their spatial extent was highly

reproducible across sessions, suggesting that these networks are char-

acterised by a consistent spatial representation over time.
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