
Citation: Ali, J.; Zafar, M.H.;

Hewage, C.; Hassan, R.; Asif, R.

Mathematical Modeling and

Validation of Retransmission-Based

Mutant MQTT for Improving Quality

of Service in Developing Smart Cities.

Sensors 2022, 22, 9751. https://

doi.org/10.3390/s22249751

Academic Editor: Antonio Guerrieri

Received: 25 October 2022

Accepted: 5 December 2022

Published: 12 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Mathematical Modeling and Validation of
Retransmission-Based Mutant MQTT for Improving Quality of
Service in Developing Smart Cities
Jawad Ali 1, Mohammad Haseeb Zafar 2,*, Chaminda Hewage 2 , Raheel Hassan 3 and Rameez Asif 3

1 Department of Electrical Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan
2 Cybersecurity and Information Networks Centre (CINC), Cardiff School of Technologies,

Cardiff Metropolitan University, Cardiff CF5 2YB, UK
3 School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
* Correspondence: mhzafar@cardiffmet.ac.uk

Abstract: Unreliable networks often use excess bandwidth for data integration in smart cities. For
this purpose, Messaging Queuing Telemetry Transport (MQTT) with a certain quality of service (QoS)
is employed. Data integrity and data security are frequently compromised for reducing bandwidth
usage while designing integrated applications. Thus, for a reliable and secure integrated Internet
of Everything (IoE) service, a range of network parameters are conditioned to achieve the required
quality of a deliverable service. In this work, a QoS-0-based MQTT is developed in such a manner that
the transparent MQTT protocol uses Transmission Control Protocol (TCP)-based connectivity with
various rules for the retransmission of contents if the requests are not entertained for a fixed duration.
The work explores the ways to improve the overall content delivery probability. The parameters are
examined over a transparent gateway-based TCP network after developing a mathematical model
for the proposed retransmission-based mutant QoS-0. The probability model is then verified by
an actual physical network where the repeated content delivery is explored at VM-based MQTT,
local network-based broker and a remote server. The results show that the repeated transmission of
contents from the sender improves the content delivery probability over the unreliable MQTT-based
Internet of Things (IoT) for developing smart cities’ applications.

Keywords: QoS; MQTT; IoT; end-to-end service assurance; smart cities

1. Introduction

Physically separated and logically connected applications on distributed nodes are
mostly used while developing smart cities, employing the IoE [1]. Such an application
may include but is not limited to inventory and stock management, health and security,
the entertainment industry, information segregation, information exchange, information
integrity, autonomous functionality, transportation and traffic system, energy and smart
gird, industrial manufacturing and process engineering, supply chain management, etc.
The mode of communication can be Deice to Device (D2D) and Device to Server (D2S).
D2D is based on the mechanism where devices are directly exchanging information for
a certain process or service. On the other hand, in D2S or Server to Device (S2D), the
distributed nodes are communicated with a server and the information exchange is on-
demand. Integrated services often use a backbone server for an information exchange for
various reasons.

For acquiring the optimum functionality of smart cities, a server must possess the
required information or instructions that are timely needed by the connected devices [2].
Thus, for the stated purpose, abridged devices use various protocols, varying from ap-
plication to application. The majority of these protocols serve as the foundation of the
Internet of Things (IoT) and Internet of Everything (IoE). The Constrained Application

Sensors 2022, 22, 9751. https://doi.org/10.3390/s22249751 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22249751
https://doi.org/10.3390/s22249751
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7593-6661
https://doi.org/10.3390/s22249751
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22249751?type=check_update&version=2

Sensors 2022, 22, 9751 2 of 14

Protocol (CoAP) is used for Machine to Machine (M2M) communication in smart energy
and building automation. The Messaging Queuing and Telemetry Protocol (MQTT) [1] is
used in manufacturing industries due to its open-source moldable nature, petroleum and
natural gas, health, weather, home automation, smart farming, smart metering, remote, etc.
Web Socket Protocol has a variety of uses such as in social media feeds, multiplayer games,
collaborative editing/coding, clickstream data, financial tickets, media chats, location-
based apps, online education, etc. [3]. The Data Distribution Service (DDS) is used on the
top of edge devices/sensors for supervision, integration, and process control. Similarly,
the Extensible Messaging and Presenting Protocol (XMPP) is widely employed in content
syndication, collaboration tools, geolocation, file sharing, gaming, remote systems con-
trol, cloud computing, etc. These application protocols are the extensively used available
protocols in the development of smart cities [3].

While talking about MQTT-based connectivity, it is worth noting that MQTT is used
on the top of IEEE 802.15.4 and TCP/IP [4]. MQTT requires less power compared to other
employed protocols for a range of applications where the power consumption accounts
for the network performance. MQTT uses a traditional subscription and publishing-based
mechanism, hence the bandwidth efficiency is managed up to a certain level.

In this work, the mathematical models for estimating the end-to-end delay and prob-
ability of the content delivery for retransmission-based mutant MQTT with QoS-0 are
developed and then examined for their validation by analyzing the reliability of end-to-end
MQTT. The attempts of sending information on a fixed subscription are varied per simula-
tion and the results are then checked on a physical network. The emulated network nodes
are comprised of fundamental sensing and connectivity features. The end nodes consist
of Windows clients on PCs and as a Java application on handheld devices. The requests
that are generated in a simulation environment on Linux are thus checked by a physical
device for the performance consistency and validity of the mathematical model. The MQTT
server is handled on a Virtual Machine, running at the eclipse.org cloud. The end nodes
are connected to the Internet via a wired network, whereas the switches use optical fiber
connectivity with the Internet. The DNS server is used in this case as well.

1.1. Architecture

MQTT is a subscription and publishing service-based communication with a central-
ized server [1]. The MQTT-based network is comprised of three basic logical formations,
as shown in Figure 1. The transparent gateway has one node connection that is bridged
with a remote MQTT server. The aggregating gateway connects local network nodes us-
ing a singular gateway to a remote MQTT server. Hybrid gateways route packets from
multiple nodes and use mesh topology for connecting with the remote MQTT server [2].
The above-stated gateway formations are opted for various IoT scenarios. For example,
a low-density network with large bandwidth requirements may employ the transparent
gateway. This way, a single actuator–single sensor-based application may be run with a
speedy response [1].

Sensors 2022, 22, x FOR PEER REVIEW 3 of 15

Figure 1. Logical Formation of MQTT gateways in IoT for various applications (a) Transparent

Gateway MQTT, (b) Aggregated Gateway MQTT and (c) Hybrid Gateway MQTT

Each stated formation has its own facilities, uses and drawbacks. Aggregated gate-

ways are not employed for the applications of smart cities when the nodes are geograph-

ically dispersed. It is because several nodes might be acting as actuators and controlling

the nodes from physically separated locations, and this means that different MQTT gate-

ways are used that makes the IoT network’s formation transparent (see. Figure 1a). Ag-

gregated gateways have the limitations of poor congestion control and packet loss as well

as a single point failure issue [1], directly degrading the performance of the applications

of smart cities. On the other hand, a hybrid gateway, as in Figure 1c, uses multiple paths

for communication with the server that will lack the concept of modularity for communi-

cation with a remote server on the Internet in our case. A Virtual Machine, while generat-

ing data traffic for the experiment, can only provide transparent gateway-based commu-

nication. Thus, the work uses the IoT network formation based on the transparent gate-

way-based client to server connectivity. The rest of the rules and assumptions are listed

below.

• The MQTT subscribe/publish-based communication requests to the server are collec-

tively treated as request–acknowledge messages.

• The end node uses DNS for address resolution in case of connectivity with the remote

server that poses a constant delay.

• The SUBSCRIBER nodes as well as the PUBLISHER nodes follow an identical mech-

anism for communication with the server, thus the request flows through the same

pathway.

• The TCP-based communication “fire and forget after n attempts” strategy is consid-

ered for all the network nodes that follows retransmission-based QoS-0.

• The remote server holds two sets of request queues. The published contents’ queue

holds the data for the Tcnt interval and the subscribers’ requests are held for an in-

terval denoted by Treq. These holding intervals Thold are thus defined by the storage

capacity of the MQTT server as well as the connected nodes [2].

• QoS-1, that is based on “at least one time delivery”, and QoS-2, based on “exactly one

time delivery”, are covered in [3].

1.2. Problem Statement and System Model

The services that are provided in smart cities are categorized by latency in the infor-

mation exchange, bandwidth and packet loss. For example, the data communication net-

works that are used in a hospital environment must be in accordance with the severity of

the patient’s condition [4,5]. Moreover, it may have several levels and priorities of infor-

mation exchange w.r.t parameters that are being exchanged. For example, a single patient

may require multiple services, each having different sets of the data transmission rate and

data update rate. Similarly, the end-to-end delay for services at a normal condition may

be compromised. For example, a remote weather station may exchange weather-related

information with minimum assurance for its delivery in normal weather [1]. The reliabil-

ity parameters need an upgraded communication scheme when the situation is of an

Figure 1. Logical Formation of MQTT gateways in IoT for various applications (a) Transparent
Gateway MQTT, (b) Aggregated Gateway MQTT and (c) Hybrid Gateway MQTT.

Each stated formation has its own facilities, uses and drawbacks. Aggregated gateways
are not employed for the applications of smart cities when the nodes are geographically

Sensors 2022, 22, 9751 3 of 14

dispersed. It is because several nodes might be acting as actuators and controlling the nodes
from physically separated locations, and this means that different MQTT gateways are used
that makes the IoT network’s formation transparent (see. Figure 1a). Aggregated gateways
have the limitations of poor congestion control and packet loss as well as a single point
failure issue [1], directly degrading the performance of the applications of smart cities. On
the other hand, a hybrid gateway, as in Figure 1c, uses multiple paths for communication
with the server that will lack the concept of modularity for communication with a remote
server on the Internet in our case. A Virtual Machine, while generating data traffic for the
experiment, can only provide transparent gateway-based communication. Thus, the work
uses the IoT network formation based on the transparent gateway-based client to server
connectivity. The rest of the rules and assumptions are listed below.

• The MQTT subscribe/publish-based communication requests to the server are collec-
tively treated as request–acknowledge messages.

• The end node uses DNS for address resolution in case of connectivity with the remote
server that poses a constant delay.

• The SUBSCRIBER nodes as well as the PUBLISHER nodes follow an identical mechanism
for communication with the server, thus the request flows through the same pathway.

• The TCP-based communication “fire and forget after n attempts” strategy is considered
for all the network nodes that follows retransmission-based QoS-0.

• The remote server holds two sets of request queues. The published contents’ queue
holds the data for the Tcnt interval and the subscribers’ requests are held for an
interval denoted by Treq. These holding intervals Thold are thus defined by the
storage capacity of the MQTT server as well as the connected nodes [2].

• QoS-1, that is based on “at least one time delivery”, and QoS-2, based on “exactly one
time delivery”, are covered in [3].

1.2. Problem Statement and System Model

The services that are provided in smart cities are categorized by latency in the informa-
tion exchange, bandwidth and packet loss. For example, the data communication networks
that are used in a hospital environment must be in accordance with the severity of the
patient’s condition [4,5]. Moreover, it may have several levels and priorities of information
exchange w.r.t parameters that are being exchanged. For example, a single patient may
require multiple services, each having different sets of the data transmission rate and
data update rate. Similarly, the end-to-end delay for services at a normal condition may
be compromised. For example, a remote weather station may exchange weather-related
information with minimum assurance for its delivery in normal weather [1]. The reliability
parameters need an upgraded communication scheme when the situation is of an elevated
priority. For example, adverse weather condition may need an immediate data sharing
service for smart decision making [6].

The research aims to assure an adequate reliability in terms of the content delivery
and guaranteed end-to-end delay in the development of smart cities’ applications. Such
applications use data from multiple sources/sensors on a single topic or on a range of
topics for proper functioning that varies from application to application. The PUBLISH
requests from sensing nodes are considered unique while receiving data, irrespective of
their physical or logical situation [6]. Thus, the events are considered to have a mutually
exclusive w.r.t delivery time or bandwidth requirements. Likewise, the logging of data on
the centralized server always put a constrain on the residing time of the data as well as
the queue size. We may term this as the packet expiry time or packet replacement time on
the server. A single topic data may be required by different subscribers for a range of uses.
For example, data from traffic junctions may be used for the re-routing of vehicles or for
controlling traffic lights.

QoS-0, QoS-1 and QoS-2 are shown in Figure 2. In Figure 2, PUBLISH means post
data to the MQTT Broker, and PUBREC means Publish has been Received, confirming
the PUBLISH operation to a server in QoS-2 [3]. After receiving PUBREC, the sender

Sensors 2022, 22, 9751 4 of 14

sends a “Publish Release” request as PUBREL to tell the server that it has discarded the
sent data from a local stack. The server also stored the packet identifier at this stage
to avoid the processing of duplicate packets. The server responds with a confirmation
packet of a Publish Complete (PUBCOMP) message after PUBREL. This way, the sender
can repeat the process with new data. According to these QoS levels, either the packet is
lost, or the packet is confirmed by an acknowledgement from the MQTT Broker server.
The work proposes a one step ahead solution to improve the QoS of the MQTT-based
smart cities’ connectivity applications. The MQTT protocol-based nodes are configured
for a transparent gateway-based application. The nodes are running the simple process
of publishing and subscribing services that are identical in nature. The work considers
the number of connected nodes, the PUBLISH and SUBSCRIBE request rate, the time of
content holding by the server and gateway for the retransmission-based QoS-0 MQTT IoT,
for a system performance improvement in terms of the reliability and end-to-end delay.
Here, a mathematical formulation is provided for achieving a guaranteed QoS by a varying
number of retransmission attempts.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 15

elevated priority. For example, adverse weather condition may need an immediate data

sharing service for smart decision making [6].

The research aims to assure an adequate reliability in terms of the content delivery

and guaranteed end-to-end delay in the development of smart cities’ applications. Such

applications use data from multiple sources/sensors on a single topic or on a range of

topics for proper functioning that varies from application to application. The PUBLISH

requests from sensing nodes are considered unique while receiving data, irrespective of

their physical or logical situation [6]. Thus, the events are considered to have a mutually

exclusive w.r.t delivery time or bandwidth requirements. Likewise, the logging of data on

the centralized server always put a constrain on the residing time of the data as well as

the queue size. We may term this as the packet expiry time or packet replacement time on

the server. A single topic data may be required by different subscribers for a range of uses.

For example, data from traffic junctions may be used for the re-routing of vehicles or for

controlling traffic lights.

QoS-0, QoS-1 and QoS-2 are shown in Figure 2. In Figure 2, PUBLISH means post

data to the MQTT Broker, and PUBREC means Publish has been Received, confirming the

PUBLISH operation to a server in QoS-2 [3]. After receiving PUBREC, the sender sends a

“Publish Release” request as PUBREL to tell the server that it has discarded the sent data

from a local stack. The server also stored the packet identifier at this stage to avoid the

processing of duplicate packets. The server responds with a confirmation packet of a Pub-

lish Complete (PUBCOMP) message after PUBREL. This way, the sender can repeat the

process with new data. According to these QoS levels, either the packet is lost, or the

packet is confirmed by an acknowledgement from the MQTT Broker server. The work

proposes a one step ahead solution to improve the QoS of the MQTT-based smart cities’

connectivity applications. The MQTT protocol-based nodes are configured for a transpar-

ent gateway-based application. The nodes are running the simple process of publishing

and subscribing services that are identical in nature. The work considers the number of

connected nodes, the PUBLISH and SUBSCRIBE request rate, the time of content holding

by the server and gateway for the retransmission-based QoS-0 MQTT IoT, for a system

performance improvement in terms of the reliability and end-to-end delay. Here, a math-

ematical formulation is provided for achieving a guaranteed QoS by a varying number of

retransmission attempts.

Figure 2. QoS-0-, QoS-1- and QoS-2-based MQTT broker with message delivery, duplication and

storage status on the publishing node.
Figure 2. QoS-0-, QoS-1- and QoS-2-based MQTT broker with message delivery, duplication and
storage status on the publishing node.

The rest of the work is organized as follows: Section 2 explains the basic literature and
characteristics of MQTT. Likewise, the proposed retransmission-based MQTT is explained
in the section. Section 3 is the mathematical modeling of the end-to-end delay and expres-
sions for evaluating the probability of the content delivery. The experimental setup and
system model is given in Section 4. Section 5 provides a complete insight into the obtained
simulation results and its explanation w.r.t scalability of the network. Section 6 concludes
the work and gives future perspectives on this research.

2. MQTT Characteristics

MQTT is light weight and content-oriented protocol. Locally, MQTT can be used for
the IoE and IoT, i.e., amongst IP-less as well as IP-based network nodes. The explored case
uses the wired network of IP-based nodes that are connected to a local gateway on a single
node–single gateway scheme basis. Mosquito clients are deployed on local nodes in an
emulated environment for real world connectivity by providing the NAT to LAN bridge
with the Internet. This provided real world environment, sufficient to receive effective and
authentic readings of the parameters that are under observation.

Sensors 2022, 22, 9751 5 of 14

2.1. Retransmission-Based QoS-0 MQTT Mutant Protocol

By the mechanism of retransmission in the QoS-0, the instantaneous delivery probabil-
ity, that is explored for the static network characteristics in [5], is affected. The requestee
node retransmits the TCP/IP-based request if the packet is either lost between the node
and gateway or on the Internet. Additionally, the gateway data buffer as well as the request
queue at the server are kept of a minimum size. It is for the fact that the MQTT gateways
usually have a limited cache for storing data. The queue is only handled at the server,
so the gateway limitations are traded off by retransmit protocol. This process makes the
midway delays static for usual processes and define (make constant) it instantaneously.

2.2. Proposed Asynchronous MQTT

We have assumed that one node is posting for a single topic and multiple topic-based
posting is assumed to be separate nodes and separate events. The rest of the communication
scheme between the publisher and subscriber node is explained in the following steps, as
in Figure 3.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 15

Figure 3. End-to-end delay and packet travel system model for QoS-0 retransmit Mutant MQTT.

Step 1: The end node connects with the gateway using the CONNECT/CONNACK

mechanism and then we publish the contents using the publish–retransmit mecha-

nism.

Step 2: The received data from the end node is transmitted by the gateway to the

remote MQTT server as CONNECT/CONNACK and then a publish–retransmit basis

over a reliable TCP/IP wired network.

Step 3: The end user connects to the gateway using the CONNECT/CONNACK

mechanism as in Step 1 and then the same end user registers with the gateway using

SUBSCRIBE and SUBACK for an already available topic on the server.

Step 4: The subscriber side gateway registers the end user with the server using the

connect request followed by the subscribe request that is acknowledged by the server

as the SUBACK.

Step 5: The server sends the available date of the subscribed topic to the end user

side gateway via the Internet using PUBLISH and PUBACK instructions.

Step 6: The gateway on the end user’s side fitches the data to the end user using

PUBLISH and PUBACK.

The above-stated steps pose a certain probability of failure for a send and forget

mechanism. This send–retransmit and forget mechanism is used for the asynchronous IoT

system in Figure 3. The availability of the data on the server is arguable.

Figure 3. End-to-end delay and packet travel system model for QoS-0 retransmit Mutant MQTT.

Step 1: The end node connects with the gateway using the CONNECT/CONNACK
mechanism and then we publish the contents using the publish–retransmit mechanism.

Sensors 2022, 22, 9751 6 of 14

Step 2: The received data from the end node is transmitted by the gateway to the remote
MQTT server as CONNECT/CONNACK and then a publish–retransmit basis over a
reliable TCP/IP wired network.
Step 3: The end user connects to the gateway using the CONNECT/CONNACK mecha-
nism as in Step 1 and then the same end user registers with the gateway using SUBSCRIBE
and SUBACK for an already available topic on the server.
Step 4: The subscriber side gateway registers the end user with the server using the
connect request followed by the subscribe request that is acknowledged by the server as
the SUBACK.
Step 5: The server sends the available date of the subscribed topic to the end user side
gateway via the Internet using PUBLISH and PUBACK instructions.
Step 6: The gateway on the end user’s side fitches the data to the end user using PUBLISH
and PUBACK.

The above-stated steps pose a certain probability of failure for a send and forget
mechanism. This send–retransmit and forget mechanism is used for the asynchronous IoT
system in Figure 3. The availability of the data on the server is arguable.

3. Delay Estimation

The probabilistic model uses an asynchronous mode of data transfer for the collection
and distribution of data. Contents are created at sensors using a constant request rate that
are sent to the intermediate gateway with a send–retransmission and forget manner. The
same method is followed for fetching the sensors’ data to a remote MQTT server from the
intermediate gateway. There are two cases for which an end-to-end delay may be estimated
while considering the availability of the contents on the server for the requested topic from
the end user.

The probability of one successful delivery of a data packet from the sender to receiver
is comprised of the exclusive probabilities of two event probability, i.e., the sender to
server probability and server to subscriber probability. Now that the subscriber does a
handshake in TCP/IP-based data fetching, the number of total attempts are denoted by ‘i’
for relating towards the packet probability pf, and the number of acknowledgements from
the communicating node is ‘j’ for relating the reverse packet probability pr, whereas the
number of maximum iterations from the sender to server are considered to be ‘n’ for the
sensor to the gateway and ‘m’ for the gateway to the server.

We have considered that attempts m and n are equal. The success probability is given
by (1) as:

P(i,j)= pf
j. (1 − pf). pr

i. (1 − pr) (1)

3.1. Contents Available on Topic

The iteration-based packet sending probability for n events of retransmission is given
by (2):

P(n) = ∑Pf (i ≤ n) (2)

A single transmission/retransmission is completed after the delay time td. This ‘td’
must be greater than the product of the request rate ‘σk’, where k is a unique node and the
time taken to completely send one request Tr. This shows that the total requests after the
retransmission will take time, as in (3).

Tr(n) = nσktr (3)

The point-to-point latency also includes the synchronization time Ts, that is a single
packet traversing time between the two nodes and the server on the end user’s side using
TCP. The latency of a successful packet delivery is given by (4)–(6).

Lt(i, j) = Lt(n) = unsuccess f ulattempts + success f ulattempts (4)

Sensors 2022, 22, 9751 7 of 14

Lt(n) = (n)σk·tr (5)

Lt(i, j) = RTT +

(
i−1

∑
k=1

2kTs

)
+

(
j−1

∑
l=1

2lTs

)
(6)

The overall probability of latency P[Lt(n, i, j) ≤t] on a low data rate channel for the
duration t is:

P[Lt(n, i, j) ≤ t] = ∑
Lt(i,j)

P(i, j) + ∑
Lt(n)

P(n) (7)

For the fact that two additional TCP connections are established, we assume a ε
queueing delay at the gateways. The gateway may hold sensing data to be forwarded to
the MQTT server or it may enqueue the date while sending it to the end node. The delay
posed by the MQTT server is denoted by φ. If the data are already available on the server,
two cases may arise. A sensing node will either send a publish request or an end node will
make a request for the contents. The connection request delay for a subscription service is
denoted by δ.

The content delivery time Ψ for a successful route traversal from the sensing node n
via the sensing side gateway g, through the server s and then from the server to the end
user u through another gateway g, is given by (8)

Ψ = Tconnect-ng + Tpub-ng + ε + Tconnect-gs + Tpub-gs + φ + δ +Tconnect-ug + Tsub-ug + ε

+ Tconnect-gs + Tsub-gs + φ + Tconnect-sg + Tpub-sg + ε + Tconnect-gu + Tpub-gu
(8)

By examining (7) w.r.t Figure 3, we may replace the Tconnect-p2p by RTTconnect, Tpub-ng
and Tpub-gs with 2(n)σktr, Tpub-sg and Tpub-gu with RTTpub and Tsub-p2p with RTTsub. Thus,
Equation (8) is express as:

Ψ = 6RTTconnect + 2(n)σktr + 2RTTpub + 2RTTsub + 3ε + 2 + δ (9)

Since PUBLISH requests are always of the same length. Moreover, the connection
requests are identical. So, by keeping a fixed packet size for all the TCP requests, we may
combine RTTconnect, RTTpub and RTTsub and thus receive (10) for a collectively called RTT,
the TCP Round Trip Time for each event:

Ψ = 10RTT + 2(n)σktr + 3ε + 2 + δ (10)

3.2. Contents Not Available on Topic

The constant δ in (10) represents the queueing delay experience by the subscription
request faced at the server before the content is sent to the end user. If the contents on a
requested topic are not available, the subscription request may be answered but the user
will have to wait for a δ′ duration before the request is answered by the server. We may
collectively call this queueing delay θ, and it is calculated by adding δ′ with δ, as in (11).

Ψ = 10RTT + 2(n)σktr + 3ε + 2 + θ (11)

3.3. Expressions for θ, ε, RTT

Θ may be given by a uniform distribution between the two events, i.e., the arrival
instant of content Ťcnt and the arrival time of request Ťreq, at the server. This interval is
given by (12)

θ = [Ťcnt,Ťreq] (12)

We will use the relation from [6–8], meaning the random delay from the gateway to
the gateway to the server is given by (13):

µθ = (tcnt + 2Tcnt − δ)/2] (13)

Sensors 2022, 22, 9751 8 of 14

Also, for the contents already available on the server:

θ = δ = 3 RTT + ε (14)

Also, the Smooth Round Trip Time is given by (15), thus the RTT is calculated as (16). In
(15) and (16), 0 < β < 1 and 0 < ∆ < 1 and uses β = 0.125 for a smooth RTT, as suggested by [6–8].

SRTT[i] = (1 − β)x SRTT[i − 1] + βxRTT (15)

Additionally,

RTT = RTT + ∆x Diff, . . . , Diff = SRTT − RTT (16)

3.4. Service Rate, Capacity of the Network, and Probability of Content Delivery

The queueing delays can be calculated from the virtual service rate Srate. For connected
users Nc, the service rate’s threshold is given by relation in (17):

Nc

∑
i=1

λi ≤ Srate (17)

(17) gives us the average processing time for the contents in terms of the arrival rate
λi. For the packet length L, the service duration si is calculated in (18).

si = L/µi (18)

here,

µi =
λi

∑Nc
i=1 λi

Srate (19)

The request arrival rate is given by (20):

µi
req =

σi

∑Nr
i σi

Srate (20)

The maximum queueing delay by both the content and request is given by Q[λi, σi] in
(21), as:

Q[λi, σi] =
2− ρi

cnt

2µi(1− ρi
cnt)

+
(2− ρi

req)ρi
req

2(1− ρi
req)

(21)

Here, ρi
req = σi/µi and ρi

con = λi/µi.
The probability of the content delivery for the M/D/1 fixed scheduler-based queue

model, having D = 1/µ, is given by (22), as per [9,10].

PD
cnt =

σi
2

([
1− e−ζi/Tcnt

]
+
[
1− e−ζi/Treq

])
(22)

4. Experimental Setup

The test bed is comprised of an emulated environment for remote nodes that are
connected to the MQTT broker, as in [11]. Linux-based nodes are used for creating topic-
based data at various data rates. Mosquitto MQTT clients are deployed on Virtual Machines
for this purpose. The VMs consist of a range of clients and subscribers to approximate the
scenario for the practical results and a realistic environment. The Mosquitto MQTT broker
is used on a local server and an Eclipse IoT server. The clients from windows, android
and VMs are subscribed to various topics on this server. The setup of the nodes is given
in Figure 4.

Sensors 2022, 22, 9751 9 of 14

Sensors 2022, 22, x FOR PEER REVIEW 9 of 15

The queueing delays can be calculated from the virtual service rate Srate. For con-

nected users Nc, the service rate’s threshold is given by relation in (17):

∑𝜆𝑖

𝑁𝑐

𝑖=1

≤ 𝑆𝑟𝑎𝑡𝑒 (17)

(17) gives us the average processing time for the contents in terms of the arrival rate

λi. For the packet length L, the service duration si is calculated in (18).

si = L/μi (18)

here,

𝜇𝑖 =
𝜆𝑖

∑ 𝜆𝑖
𝑁𝑐
𝑖=1

𝑆𝑟𝑎𝑡𝑒 (19)

The request arrival rate is given by (20):

𝜇𝑖
𝑟𝑒𝑞 =

𝜎𝑖
∑ 𝜎𝑖
𝑁𝑟
𝑖

𝑆𝑟𝑎𝑡𝑒 (20)

The maximum queueing delay by both the content and request is given by Q[λi, σi]

in (21), as:

𝑄[𝜆𝑖 , 𝜎𝑖] =
2 − 𝜌𝑖

𝑐𝑛𝑡

2𝜇𝑖(1 − 𝜌𝑖
𝑐𝑛𝑡)

+
(2 − 𝜌𝑖

𝑟𝑒𝑞)𝜌𝑖
𝑟𝑒𝑞

2(1 − 𝜌𝑖
𝑟𝑒𝑞)

 (21)

Here, 𝜌𝑖
𝑟𝑒𝑞 = 𝜎𝑖 𝜇𝑖⁄ and 𝜌𝑖

𝑐𝑜𝑛 = 𝜆𝑖 𝜇𝑖⁄ .

The probability of the content delivery for the M/D/1 fixed scheduler-based queue

model, having D = 1/μ, is given by (22), as per [9,10].

𝑃𝑐𝑛𝑡
𝐷 =

𝜎𝑖
2
([1 − 𝑒−𝜁𝑖 𝑇𝑐𝑛𝑡⁄] + [1 − 𝑒−𝜁𝑖 𝑇𝑟𝑒𝑞⁄]) (22)

4. Experimental Setup

The test bed is comprised of an emulated environment for remote nodes that are con-

nected to the MQTT broker, as in [11]. Linux-based nodes are used for creating topic-based

data at various data rates. Mosquitto MQTT clients are deployed on Virtual Machines for

this purpose. The VMs consist of a range of clients and subscribers to approximate the

scenario for the practical results and a realistic environment. The Mosquitto MQTT broker

is used on a local server and an Eclipse IoT server. The clients from windows, android and

VMs are subscribed to various topics on this server. The setup of the nodes is given in

Figure 4.

Figure 4. System Model and connectivity. Figure 4. System Model and connectivity.

The paper assumes that Body Area Network (BAN) nodes are connected nodes. The
data of various patients are collected and then the subscribers’ requests for the collected
data, as in [12]. This work is not limited to a single patient or specific parameter because
MQTT supports topic-wise data and different patients can be dealt as different topics on
the server. For the purpose of the analysis, we have used a temperature sensor, heartbeat
sensor, moisture sensor and fall detection sensor data as the primary source.

The arrival rate of contents λ by the sensing nodes and requests rate for the contents
σ by the subscribers are treated as the same. Both rates are varied between 100 kbps
and 2 Mbps, with no retransmission involved. The client node traffic uses a Constant Bit
rate (CBR), which is varied using the Poisson distribution mean [13]. The RTT for TCP is
obtained by the terminal as the ping6 command, whereas for windows, the power shell is
used. These values are saved to a comma separated value (csv) file for a further analysis.
The gateway queueing delay is kept at 720 µs, as in [14]. The payload is set indirectly
by CBR [15]. The local server keeps the request for the contents and the contents on the
server for 10 ms as a fair queueing policy [14]. The M/D/1 queue is used at the local server.
Ref. [11] has used an infinite queue size but due to hardware-based servers, we are limiting
the dedicated local server capacity to 5 GB and the Mosquitto server on Eclipse.org uses an
80 GB shared capacity-based service.

5. Results and Discussion

Figure 5 is a graphical depiction of the conclusion drawn by (10). The request rate
or content arrival rates are controlled by the connected nodes in the IoT. Starting from
100 kbps, these rates are incremented with a step of 0.1 Mbps up to 2 Mbps. Moreover,
the request arrival rate σ and content arrival rates λ are kept the same for the fact that the
behavior of both the content provider and subscriber nodes is the same. The local server
gives an end-to-end delay of 1.6 ms for an arrival rate of 100 kbps. The behavior remains
linear, and the end-to-end delay increases to 2 ms for an arrival rate of 2 Mbps. The results
are satisfactory as compared to the work in [11]. The remote server poses a 7.7 ms delay for
100 kbps traffic, whereas the delay slightly increases to 8.5 ms for a 2 Mbps request rate.
Nonlinearity is seen between the 0.4 and 0.5 Mbps and the 1.0 and 1.4 Mbps request arrival
rate in Figure 5. It is for that fact that VMs share their network and processing power for
other processes. Similarly, the remote server is accessed through the Internet over a shared
broadband network that causes the unavoidable nonlinearity in the graphs.

The end-to-end delay w.r.t number of topic subscriptions or the clients’ requests is
also explored for the real time traffic that is graphed in Figure 6. The delay in the delivery
is linearly increasing while varying the number of client requests between 1 and 2800. The
arrival rate is kept at 1 Mbps. The end-to-end delay increments from 2.2 ms to 3.2 ms,
likewise for a locally deployed server. The delay steps up to 7.4 ms when remotely accessing

Sensors 2022, 22, 9751 10 of 14

the server, for which the maximum delay of 8.65 ms is experienced when 2800 requests are
handled by the remote server. This also concludes that one request is handled at 500 µs on
average on the server and a total service time (∆td) of 1.4 ms is utilized for all the requests.
The nonlinearities that are caused by shared processes on the VM and broadband network
can be seen between the number of nodes ranging from 1000 to 1200.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 15

The paper assumes that Body Area Network (BAN) nodes are connected nodes. The

data of various patients are collected and then the subscribers’ requests for the collected

data, as in [12]. This work is not limited to a single patient or specific parameter because

MQTT supports topic-wise data and different patients can be dealt as different topics on

the server. For the purpose of the analysis, we have used a temperature sensor, heartbeat

sensor, moisture sensor and fall detection sensor data as the primary source.

The arrival rate of contents λ by the sensing nodes and requests rate for the contents

σ by the subscribers are treated as the same. Both rates are varied between 100 kbps and

2 Mbps, with no retransmission involved. The client node traffic uses a Constant Bit rate

(CBR), which is varied using the Poisson distribution mean [13]. The RTT for TCP is ob-

tained by the terminal as the ping6 command, whereas for windows, the power shell is

used. These values are saved to a comma separated value (csv) file for a further analysis.

The gateway queueing delay is kept at 720 µs, as in [14]. The payload is set indirectly by

CBR [15]. The local server keeps the request for the contents and the contents on the server

for 10 ms as a fair queueing policy [14]. The M/D/1 queue is used at the local server. Ref.

[11] has used an infinite queue size but due to hardware-based servers, we are limiting

the dedicated local server capacity to 5 GB and the Mosquitto server on Eclipse.org uses

an 80 GB shared capacity-based service.

5. Results and Discussion

Figure 5 is a graphical depiction of the conclusion drawn by (10). The request rate or

content arrival rates are controlled by the connected nodes in the IoT. Starting from 100

kbps, these rates are incremented with a step of 0.1 Mbps up to 2 Mbps. Moreover, the

request arrival rate σ and content arrival rates λ are kept the same for the fact that the

behavior of both the content provider and subscriber nodes is the same. The local server

gives an end-to-end delay of 1.6 ms for an arrival rate of 100 kbps. The behavior remains

linear, and the end-to-end delay increases to 2 ms for an arrival rate of 2 Mbps. The results

are satisfactory as compared to the work in [11]. The remote server poses a 7.7 ms delay

for 100 kbps traffic, whereas the delay slightly increases to 8.5 ms for a 2 Mbps request

rate. Nonlinearity is seen between the 0.4 and 0.5 Mbps and the 1.0 and 1.4 Mbps request

arrival rate in Figure 5. It is for that fact that VMs share their network and processing

power for other processes. Similarly, the remote server is accessed through the Internet

over a shared broadband network that causes the unavoidable nonlinearity in the graphs.

Figure 5. End-to-end delay for request and content arrival.

The end-to-end delay w.r.t number of topic subscriptions or the clients’ requests is

also explored for the real time traffic that is graphed in Figure 6. The delay in the delivery

Figure 5. End-to-end delay for request and content arrival.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 15

is linearly increasing while varying the number of client requests between 1 and 2800. The

arrival rate is kept at 1 Mbps. The end-to-end delay increments from 2.2 ms to 3.2 ms,

likewise for a locally deployed server. The delay steps up to 7.4 ms when remotely access-

ing the server, for which the maximum delay of 8.65 ms is experienced when 2800 requests

are handled by the remote server. This also concludes that one request is handled at 500μs

 on average on the server and a total service time (Δtd) of 1.4 ms is utilized for all the

requests. The nonlinearities that are caused by shared processes on the VM and broad-

band network can be seen between the number of nodes ranging from 1000 to 1200.

Figure 6. End-to-end delay w.r.t number of client request from connected IoT nodes.

Figure 7 explores the content holding time and gives a notion about the end-to-end

delay w.r.t Tcnt, and the delay increases drastically with the request hold time on the

server. An average of a 300μs delay is introduced by increasing the hold time by 50 ms.

The slope of the line increases with an increase in the round-trip path through the net-

work.

Figure 7. End-to-end delay w.r.t variation in content request time and content holding time.

The analysis probability of the content delivery PDcnt is analyzed; w.r.t content re-

transmissions n and σ is given by Figures 8 and 9. Both figures can be directly used as a

benchmark for the scalability of smart cities’ services. The request duration is incremented

from 1 µs to 20 µs with a 4–5 µs step, likewise. It is worth noting that PDcnt linearly

Figure 6. End-to-end delay w.r.t number of client request from connected IoT nodes.

Figure 7 explores the content holding time and gives a notion about the end-to-end
delay w.r.t Tcnt, and the delay increases drastically with the request hold time on the server.
An average of a 300µs delay is introduced by increasing the hold time by 50 ms. The slope
of the line increases with an increase in the round-trip path through the network.

Sensors 2022, 22, 9751 11 of 14

Sensors 2022, 22, x FOR PEER REVIEW 11 of 15

is linearly increasing while varying the number of client requests between 1 and 2800. The

arrival rate is kept at 1 Mbps. The end-to-end delay increments from 2.2 ms to 3.2 ms,

likewise for a locally deployed server. The delay steps up to 7.4 ms when remotely access-

ing the server, for which the maximum delay of 8.65 ms is experienced when 2800 requests

are handled by the remote server. This also concludes that one request is handled at 500μs

 on average on the server and a total service time (Δtd) of 1.4 ms is utilized for all the

requests. The nonlinearities that are caused by shared processes on the VM and broad-

band network can be seen between the number of nodes ranging from 1000 to 1200.

Figure 6. End-to-end delay w.r.t number of client request from connected IoT nodes.

Figure 7 explores the content holding time and gives a notion about the end-to-end

delay w.r.t Tcnt, and the delay increases drastically with the request hold time on the

server. An average of a 300μs delay is introduced by increasing the hold time by 50 ms.

The slope of the line increases with an increase in the round-trip path through the net-

work.

Figure 7. End-to-end delay w.r.t variation in content request time and content holding time.

The analysis probability of the content delivery PDcnt is analyzed; w.r.t content re-

transmissions n and σ is given by Figures 8 and 9. Both figures can be directly used as a

benchmark for the scalability of smart cities’ services. The request duration is incremented

from 1 µs to 20 µs with a 4–5 µs step, likewise. It is worth noting that PDcnt linearly

Figure 7. End-to-end delay w.r.t variation in content request time and content holding time.

The analysis probability of the content delivery PD
cnt is analyzed; w.r.t content re-

transmissions n and σ is given by Figures 8 and 9. Both figures can be directly used as a
benchmark for the scalability of smart cities’ services. The request duration is incremented
from 1 µs to 20 µs with a 4–5 µs step, likewise. It is worth noting that PD

cnt linearly im-
proves by increasing the n or Treq on the server. Additionally, the maximum achievable
PD

cnt can be directly calculated for the various set of retransmission attempts n. While
keeping Tcnt constant, increasing the arrival rate of the contents also improves the delivery
probability, as depicted by Figure 9. The results show an improvement in the achieved
maximum probability of the delivery for a 2 Mbps arrival rate in [11] by 4%. The results
show that the behavior of the developed scheme exponentially converges the performance
of the scalable IoT.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 15

improves by increasing the n or Treq on the server. Additionally, the maximum achievable

PDcnt can be directly calculated for the various set of retransmission attempts n. While

keeping Tcnt constant, increasing the arrival rate of the contents also improves the deliv-

ery probability, as depicted by Figure 9. The results show an improvement in the achieved

maximum probability of the delivery for a 2 Mbps arrival rate in [11] by 4%. The results

show that the behavior of the developed scheme exponentially converges the performance

of the scalable IoT.

Figure 8. Probability of content delivery on localhost MQTT server over Virtual Machine for content

interval (Tcnt).

Figure 9. Effect of content arrival rate on probability of content delivery for n = 1.

Figure 10 is a broad picture of the developed scheme where the number of connected

nodes is varied between 1000 and 11,000. The figure is a depiction of the real time content

delivery and service degradation matrix. The remote services are degraded by 13%,

whereas a 4% degradation is noted for the locally hosted MQTT server.

Figure 8. Probability of content delivery on localhost MQTT server over Virtual Machine for con-
tent interval (Tcnt).

Sensors 2022, 22, 9751 12 of 14

Sensors 2022, 22, x FOR PEER REVIEW 12 of 15

improves by increasing the n or Treq on the server. Additionally, the maximum achievable

PDcnt can be directly calculated for the various set of retransmission attempts n. While

keeping Tcnt constant, increasing the arrival rate of the contents also improves the deliv-

ery probability, as depicted by Figure 9. The results show an improvement in the achieved

maximum probability of the delivery for a 2 Mbps arrival rate in [11] by 4%. The results

show that the behavior of the developed scheme exponentially converges the performance

of the scalable IoT.

Figure 8. Probability of content delivery on localhost MQTT server over Virtual Machine for content

interval (Tcnt).

Figure 9. Effect of content arrival rate on probability of content delivery for n = 1.

Figure 10 is a broad picture of the developed scheme where the number of connected

nodes is varied between 1000 and 11,000. The figure is a depiction of the real time content

delivery and service degradation matrix. The remote services are degraded by 13%,

whereas a 4% degradation is noted for the locally hosted MQTT server.

Figure 9. Effect of content arrival rate on probability of content delivery for n = 1.

Figure 10 is a broad picture of the developed scheme where the number of connected
nodes is varied between 1000 and 11,000. The figure is a depiction of the real time content
delivery and service degradation matrix. The remote services are degraded by 13%, whereas
a 4% degradation is noted for the locally hosted MQTT server.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 15

Figure 10. Mean absolute content delivery for collective topic IDs w.r.t connected hosts at fixed

arrival rate for n = 1, 2, 4, 6, 8, 10.

The portrayed image of the mean absolute content delivery for all the topic IDs is

thus conformation that the degradation is practically tolerable for the massively de-

ployed–re-motely accessed server with a retransmission-based mutant MQTT scheme.

6. Conclusions and Future Perspectives

The paper has proposed a mutant QoS-0-based model that examines the retransmis-

sion of a guaranteed end-to-end service, the probability of the content delivery and the

mean absolute content delivery w.r.t number of the connected nodes (Nc and Nr), arrival

rates (λ and σ), content hold time (Tcnt) and content retransmission n. The parameters are

first used in the modeling system performance equations and then examined in a real time

environment. Figure 10 bears more importance of all because it directly gives us a clear

picture about the scalability of the IoT. Thus, smart cities can use the concept directly from

this graph. A lower Round trip time RTT can be achieved with a lesser means absolute

content delivery while keeping the value of n at the minimum. Likewise, a guaranteed

packet loss is only possible when certain λ and σ are used in this regard.

Table 1 gives a comparative analysis of the proposed model, i.e., QoS-0 retransmis-

sion (for n = 1 and n = 10) with the currently employed MQTT service models. The CPU

usage and transmission latency clearly state that the developed mechanism of mutant

QoS-0 retransmission MQTT outperforms both in terms of the scalability as well as the

guaranteed QoS with the bare minimum usage of the extra CPU power. The developed

QoS-0 retransmission MQTT gives an improved packet delivery with the minimum repe-

tition of the publishing process. Although the JoramMQ is promising for a lossless net-

work for utilizing 3% of CPU power, it is a single transmission and discard-based protocol

that degrades the packet delivery drastically over a lossy network. The work is a modified

version of the Mosquitto Server scheme and reduces the CPU usage by more than 50% for

an “at most once” MQTT mechanism, as in Figure 2.

Table 1. Comparison of the improved MQTT protocol with Benchmark MQTT, JoramMQ [16],

Apollo servers [16], and RabbitMQ [17],

Service Parameter Apollo JoramMQ RabbitMQ
Mosquitto

Server

QoS-0

Retransmission

MQTT (n = 1)

QoS-0

Retransmission

MQTT (n = 10)

QoS-0

CPU Usage 6% 3% 38% 24% 11% 15%

Message

Transmission

Latency

5 ms 1.5 ms 10 ms 10 ms 2 ms 3.4 ms

Figure 10. Mean absolute content delivery for collective topic IDs w.r.t connected hosts at fixed arrival
rate for n = 1, 2, 4, 6, 8, 10.

The portrayed image of the mean absolute content delivery for all the topic IDs is thus
conformation that the degradation is practically tolerable for the massively deployed–re-
motely accessed server with a retransmission-based mutant MQTT scheme.

6. Conclusions and Future Perspectives

The paper has proposed a mutant QoS-0-based model that examines the retransmission
of a guaranteed end-to-end service, the probability of the content delivery and the mean
absolute content delivery w.r.t number of the connected nodes (Nc and Nr), arrival rates
(λ and σ), content hold time (Tcnt) and content retransmission n. The parameters are first
used in the modeling system performance equations and then examined in a real time
environment. Figure 10 bears more importance of all because it directly gives us a clear

Sensors 2022, 22, 9751 13 of 14

picture about the scalability of the IoT. Thus, smart cities can use the concept directly from
this graph. A lower Round trip time RTT can be achieved with a lesser means absolute
content delivery while keeping the value of n at the minimum. Likewise, a guaranteed
packet loss is only possible when certain λ and σ are used in this regard.

Table 1 gives a comparative analysis of the proposed model, i.e., QoS-0 retransmission
(for n = 1 and n = 10) with the currently employed MQTT service models. The CPU
usage and transmission latency clearly state that the developed mechanism of mutant
QoS-0 retransmission MQTT outperforms both in terms of the scalability as well as the
guaranteed QoS with the bare minimum usage of the extra CPU power. The developed QoS-
0 retransmission MQTT gives an improved packet delivery with the minimum repetition
of the publishing process. Although the JoramMQ is promising for a lossless network
for utilizing 3% of CPU power, it is a single transmission and discard-based protocol that
degrades the packet delivery drastically over a lossy network. The work is a modified
version of the Mosquitto Server scheme and reduces the CPU usage by more than 50% for
an “at most once” MQTT mechanism, as in Figure 2.

Table 1. Comparison of the improved MQTT protocol with Benchmark MQTT, JoramMQ [16], Apollo
servers [16], and RabbitMQ [17].

Service Parameter Apollo JoramMQ RabbitMQ Mosquitto
Server

QoS-0
Retransmission
MQTT (n = 1)

QoS-0
Retransmission
MQTT (n = 10)

QoS-0

CPU Usage 6% 3% 38% 24% 11% 15%

Message
Transmission

Latency
5 ms 1.5 ms 10 ms 10 ms 2 ms 3.4 ms

The future of this work may go in three directions. One can include the re-transmission
and acknowledged scheme in QoS-1 services with a fixed rule for the retransmission and
for checking the improvement in the availability of the contents at the remote server. The
CPU usage, that is not dealt due to the availability of a continuous power source in this
work, is also debatable. A lower content delivery using a UDP-based network can be
improved by applying same mathematical model of calculating the end-to-end delay of the
network; this way MQTT-SN can be merged with retransmission-based mutant MQTT to
reduce the network overheads, as in [4].

Author Contributions: Conceptualization, J.A., C.H. and M.H.Z.; methodology, J.A.; software, J.A.;
validation, J.A., C.H. and M.H.Z.; formal analysis, J.A.; investigation, J.A.; resources, R.H., R.A.; data
curation, J.A.; writing—original draft preparation, J.A., C.H.; writing—review and editing, J.A., C.H.,
R.A., R.H. and M.H.Z.; visualization, J.A.; supervision, C.H., M.H.Z.; project administration, M.H.Z.;
R.H. and R.A.; funding acquisition, R.A. All authors have read and agreed to the published version
of the manuscript.

Funding: The authors acknowledge the internal research start-up funding, reference: 1012606FA1,
from University of East Anglia (UEA), Norwich, UK.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khriji, S.; Benbelgacem, Y.; Chéour, R.; Houssaini, D.E.; Kanoun, O. Design and implementation of a cloud-based event-driven

architecture for real-time data processing in wireless sensor networks. J. Super Comput. 2022, 78, 3374–3401. [CrossRef]
2. Andrew, B.; Rahul, G. OASIS MQTT Version. Available online: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html/

(accessed on 1 July 2021).

http://doi.org/10.1007/s11227-021-03955-6
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html/

Sensors 2022, 22, 9751 14 of 14

3. Handosa, M.; Gračanin, D.; Elmongui, H.G. Performance evaluation of MQTT-based internet of things systems. In Proceedings of
the Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017; pp. 4544–4545.

4. Kavitha, K.; Suseendran, G. Priority based Adaptive Scheduling Algorithm for IoT Sensor Systems. In Proceedings of the
International Conference on Automation, Computational and Technology Management (ICACTM), London, UK, 24–26 April 2019;
pp. 361–366.

5. Pham, C.; Bounceur, A.; Clavier, L.; Noreen, U.; Ehsan, M. Radio channel access challenges in LoRa low-power wide-area
networks. In LPWAN Technologies for IoT and M2M Applications; Academic Press: Cambridge, MA, USA, 2020; Volume 1,
pp. 65–102.

6. Govindan, K.; Azad, A.P. End-to-end service assurance in IoT MQTT-SN. In Proceedings of the 12th Annual IEEE Consumer
Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2015; pp. 290–296.

7. Chang, H.-L.; Wang, C.-G.; Wu, M.-T.; Tsai, M.-H.; Lin, C.Y. Gateway-Assisted Retransmission for Lightweight and Reliable IoT
Communications. Sensors 2016, 16, 1560. [CrossRef] [PubMed]

8. Strowes, S.D.; Boundary Inc. Passively Measuring TCP Round-trip Times—A close look at RTT measurements with TCP. ACM
Queue 2013, 11, 478–491. [CrossRef]

9. Günther, A.; Hoene, C. Measuring Round Trip Times to Determine the Distance Between WLAN Nodes. In NETWORKING
2005: Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless
Communications Systems; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume 3462,
pp. 768–779.

10. Jiang, N.; Deng, Y.; Kang, X.; Nallanathan, A. Random Access Analysis for Massive IoT Networks Under a New Spatio-Temporal
Model: A Stochastic Geometry Approach. IEEE Trans. Commun. 2018, 66, 5788–5803. [CrossRef]

11. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32.
[CrossRef]

12. Hasan, H.; Aqeel, S. IoT Protocols for Health Care Systems: A Comparative Study. Int. J. Comput. Sci. Mob. Comput. 2018, 7, 38–45.
13. Zeng, Z.; Che, H.; Miao, W.; Huang, J.; Tang, H.; Zhang, M.; Zhang, S. Towards secure and network state aware bitrate adaptation

at IoT edge. J. Cloud Comp. 2020, 9, 38. [CrossRef]
14. Standard Draft IEEE 802.15.4; Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate

Wireless Personal Area Networks WPANs. IEEE: New York, NY, USA, 2006.
15. MQTT Client Library for C. Available online: https://www.eclipse.org/paho/ (accessed on 1 October 2020).
16. Comparison of Server’s Processing Power and Transmission Rate. Available online: http://www.scalagent.com/IMG/pdf/

Benchmark_MQTT_servers-v1-1.pdf (accessed on 1 October 2020).
17. Rabbit MQTT Message Broker. Available online: https://www.rabbitmq.com/mqtt.html (accessed on 1 July 2021).

http://doi.org/10.3390/s16101560
http://www.ncbi.nlm.nih.gov/pubmed/27669243
http://doi.org/10.1145/2523426.2539132
http://doi.org/10.1109/TCOMM.2018.2854275
http://doi.org/10.1109/JIOT.2014.2306328
http://doi.org/10.1186/s13677-020-00189-4
https://www.eclipse.org/paho/
http://www.scalagent.com/IMG/pdf/Benchmark_MQTT_servers-v1-1.pdf
http://www.scalagent.com/IMG/pdf/Benchmark_MQTT_servers-v1-1.pdf
https://www.rabbitmq.com/mqtt.html

	Introduction
	Architecture
	Problem Statement and System Model

	MQTT Characteristics
	Retransmission-Based QoS-0 MQTT Mutant Protocol
	Proposed Asynchronous MQTT

	Delay Estimation
	Contents Available on Topic
	Contents Not Available on Topic
	Expressions for , , RTT
	Service Rate, Capacity of the Network, and Probability of Content Delivery

	Experimental Setup
	Results and Discussion
	Conclusions and Future Perspectives
	References

