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Abstract: 

Quantitative detection of defects in structures is always a hot research topic in the field 

of guided wave inverse scattering. Research studies on how to effectively extract the 

defect-related information encompassed in the multi-frequency and multi-modes 

scattered wave signals for reconstructions of defects have been paid attention in recent 

decades. In this paper, a novel deep learning-based quantitative guided wave inverse 

scattering technique has been proposed to intelligently realize the end-to-end mapping 

of the multi-frequency, multi-modes scattered signals to defect profiles with high levels 

of accuracy and efficiency. Based on the manifold distribution principle, the data 

patterns of scattered SH-wave signals have been investigated, owing to leveraging the 

capability of the intelligent encoder-projection-decoder neural network. Following that, 

the manifold-learning oriented network has been trained using the data generated by 

the modified boundary element method. Several numerical examples have been 

examined to demonstrate the correctness and efficiency of the proposed reconstruction 

approach. It has been concluded that this novel data-driven technique intelligently 

enables the high-quality solution to inverse scattering problems and provides a valuable 

insight into the development of practical approaches to quantitative detection using 

multi-frequency and multi-modal acoustic data from scattered ultrasonic guided waves. 
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1. Introduction 

Ultrasonic guided wave testing (UGWT) is a specific inspection technique of long-

standing interest due to the ability of guided waves to travel long distances with little 

attenuation and the high sensitivity to structural defects[1,2]. Despite a great deal of 

progress on the subject of UGWT, many methods currently available are only capable 

of providing a qualitative assessment of structural defects[3,4]. Consequently, the inverse 

scattering problem, focusing on quantitative determination of the defect shape and size 

in the use of various reflection and transmission signals of ultrasonic guided waves, is 

always a hot research topic in the field of UGWT[5-7].  

The ultrasonic array, one of the effective quantitative UGWT technology, has 

superior features including the large scanning range and high detection accuracy[8]. In 
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earlier ultrasonic array work by Hutchins[9,10], Achenbach[11], and Degetekin[12], a 

parallel projection technique with the velocity and attenuation of Lamb waves as the 

input was developed for the tomographic reconstruction. Following that, James et al[13] 

presented a new Lamb wave array technique in which two contacted piezoelectric 

transducers were independently used for the scan along parallel lines. They applied the 

filtered back projection (FBP) algorithm to obtain defect images in plate like structures. 

Subsequently, iterative reconstruction procedures incorporated with the scattered 

guided waves of defects were extended to improve image quality by Malyarenko and 

Hinders[14]. On the other hand, the ultrasonic array used with non-contact transducers 

was studied by Hay et al[14]. The probabilistic reconstruction technique[15] used a 

damage index based on the correlation of the signals before and after damage. A series 

of ellipses that located away from the direct line of sight were weighted by the damage 

index for the construction with a rapidly decreasing probability. In[16], the guided wave 

tomography of a steel plate like structures with a corrosion defect was studied under 

the water loading conditions. Also, the omnidirectional excitation of desired guided 

wave modes by annular array transducers was discussed. Results showed that the 

defects in the structures can be easily discriminated from any artifacts in the images 

due to the liquid layer. In[17], the quantitative defect sizing and imaging was achieved 

using the variable shape factor defined in the PAPID algorithm. With a 32-transducer 

network system, the location and quantitative size of complex shape defects in plate-

like structures were evaluated. Xiang et al[18] developed a sparse array ultrasonic guided 

wave imaging technique and proposed a quantitative defect recognition method based 

on the sparse scattering information extracted from the scattering coefficient matrix. 

They also analyzed the relationship between the sparse and full scattering coefficient 

matrices. In[19], a quantitative method for evaluating the sizes of defects was proposed 

to assess multilayered bonded composites using the laser ultrasonic guided waves. 

More recently, Hashen et al[4] developed a quantitative defect inspection technique for 

the structural health monitoring of curved composite structures. Based on the fusion of 

the modified probabilistic tomography (MPT) and the damage index (DI), the defect 

zones in a curved composite structure were quantitatively detected. Although the 

techniques aforementioned have been proven as a promising tool for the quantitative 

guided wave inverse scattering problems, there are still some limitations in such single-

frequency tomography approaches. First, the ability of the transducer array-based 

techniques to fully characterize damage is weakened by the amount of defect-relate 

information that could be obtained through a sparse transducer array in a cost-effective 

manner. Second, the transducer arrangement may be not achievable in some hash 

environments including the high temperature and nuclear radiation conditions. Finally, 

these techniques mainly make use of the time of flight (TOF) of scattered wave signals, 

thus they can only identify the location of defects, but fail to depict the detail of shapes.  

 Taking into account these facts, some researchers have investigated quantitative 

guided wave inverse scattering techniques using multi-frequency or multi-modal 

scattered wave signals containing the sufficient defect-relate information. With the 

integration of Green’s function and Born approximation, Wang et al proposed a new 

method for quantitative shape reconstruction of the local thinning in the use of 
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reflection coefficients of guided SH-waves[20] and Lamb waves[21]. The depth of the 

plate thinning was obtained as a function of reflection coefficients at various 

frequencies by the inverse Fourier transform. Gregory et al[22] developed a multi-wave-

mode, multi-frequency detector for guided wave interrogation of plate structures. 

Experimental results showed that a single-mode, multi-frequency detector has the best 

detection and localization performance for the tested damage scenarios. In[23], a new 

methodology based on multi-frequency local wavenumber analysis for the quantitative 

assessment of multi-ply delamination damages in carbon fiber reinforced polymer 

(CFRP) composite specimens was proposed. Simultaneously, Jennifer et al[24] utilized 

a chirp function to excite PZT transducers over a broad frequency range to acquire 

multi-modal data with a single transmission. Each received signal from a chirp 

excitation was post-processed to obtain multiple signals corresponding to different 

narrowband frequency ranges. Recently, Da et al[25] proposed a novel approach called 

as Quantitative Detection of Fourier Transform (QDFT) for efficiently detecting defects 

in pipeline structures. Daniel et al[26] introduced a multi-mode and multi-frequency 

method for the characterization of stiffener bonded lines using Semi-Analytical Finite 

Element (SAFE). Gao et al[27] presented an inspection methodology based on the multi-

frequency local wavenumber estimation for quantitative assessment of hidden 

corrosion in plates. The methodology was verified on the aluminum plates of 1 mm 

thickness with the corrosion, and the relative errors between the estimated and actual 

value of the corrosion depth were not more than 6%.  

Using information from multi-frequency and multi-wave modes to detect damage 

in structures requires the wave propagation knowledge e.g., the dispersion and mode 

conversion, in conjunction with a reconstruction algorithm that utilizes the multiple 

modal information in the presence of inevitable noise or uncertainty. In contrast to 

conventional model-based approaches, data-driven techniques, particularly Deep 

Learning (DL), are increasingly widely developed to solve the inverse scattering 

problems[6,28], such as X-ray computed tomography imaging (CT)[29], magnetic 

resonance imaging (MRI)[30], positron emission tomography (PET)[31] as well as 

ultrasonic guided wave testing (UGWT)[32]. Through data training, these techniques can 

effectively extract the defect-related information from raw noise containing the 

scattering signals and quantitatively reconstruct the details of defect shapes. 

This paper investigates the implementation of deep neural network (DNN) for 

quantitatively defect reconstruction of plate-like structures using guided SH-waves. 

Details of this research consist of three steps: First, the distribution characteristics of 

multi-wave modes, multi-frequency scattered signals in manifold space have been 

explored. Then, a novel encoder-projection-decoder neural network has been proposed 

to realize an end-to-end mapping from the scattered signals in the wavenumber field to 

the defect shapes in the spatial space. Finally, a modified boundary element method has 

been developed to generate the scattered signals, for example reflection coefficients, as 

the network input for the training purpose, leading to the reconstruction of defects with 

high levels of accuracy and reliability. Throughout several examples, the correctness 

and efficiency of the proposed quantitative inverse scattering method have been 

demonstrated.  
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2. Methodology 

2.1 Background of the guided SH-wave theory 

A shear horizontal (SH) wave propagating along a homogeneous, isotropic, elastic plate 

with the thickness of 2ℎ is considered in Fig.1, where the wave propagates along the 

𝑥1 direction and the particles in the plate vibrate in the 𝑥3 direction. The displacement 

field 𝒖  of the particle must satisfy Navier’s displacement equations of the motion 

defined in Eq.1: 

𝜇∇2𝒖 + (𝜆 + 𝜇)∇∇ ∙ 𝒖 − 𝜌
𝜕2𝒖

𝜕𝑡2 = 0                     (1) 

Also, the traction-free boundary conditions applied to solve Eq.1 are expressed as: 

𝜏23(𝑥1, 𝑥2, 𝑡)|𝑥2=±ℎ
= 𝜇

𝜕𝒖

𝜕𝑥2
|𝑥2=±ℎ

= 0                    (2) 

where 𝜌 is the mass density; 𝜆 and 𝜇 are Lame constants. As only the component  

𝑢3  of the particle displacement field 𝒖  is nonzero, a time-harmonic SH-wave is 

formulated as  

𝑢3(𝑥1, 𝑥2, 𝑡) = 𝑓(𝑥2)𝑒𝑖(𝑘𝑥1−𝜔𝑡)                      (3) 

where 𝑘  is the wavenumber of the mode and 𝜔  represents the natural circular 

frequency. Substituting Eqs.(2-3) into Eq.(1), the dispersion equation of guided SH-

waves can be deduced in a function of the wave velocity and frequency:  

𝜔2

𝑐𝑇
2 −

𝜔2

𝑐𝑝
2 = (

𝑛𝜋

2ℎ
)

2

, 𝑛 = 0, 1, 2, ⋯                      (4) 

where 𝑐𝑇 = √𝜇/𝜌  is the velocity of SH-wave and 𝑐𝑝  is the phase velocity. As an 

example, the relationship between the phase velocities and frequencies over a range of 

0-14 MHz-mm is investigated by dispersion curves for the first eight of SH waves 

modes shown in Fig.1b. 

 

 

Fig. 1. (a) The SH wave propagation traveling along the 𝑥1 direction and particle displacement 𝑢3 in 

the axis of 𝑥3. (b) Dispersion curves of SH waves for an aluminum layer (𝑐𝑇 = 3.2 m/ms). 

 

Each mode, when excited, will produce different fields inside the layer i.e., the 

particle displacements and velocities. Also, the stress and strain fields will vary with 

the depth inside the layer for each mode. In fact, even the same mode at a different 
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frequency will cause different distributions of fields[33]. Therefore, it is desirable to 

leverage the fusion of multiple modes and multi-frequency scattering information for 

defect reconstruction as different fields including comprehensive defect-relevant 

information may exhibit the higher sensitivity to different types and orientations of 

defects. Even each point on the dispersion curve depicted in Fig.1b can be used for 

defect detection and reconstruction theoretically, the practicability of inspection should 

also be considered under the consideration of various situations. For example, a single-

mode broadband scattered signal (SH0) with the frequency range of 0 MHz  to 

11.3 MHz (highlighted in red shown in Fig.1b) may contain sufficient defect-related 

information for quantitative defect reconstruction using some algorithms such as 

Fourier transform, while the mode separation would be highly required to obtain such 

a broadband signal due to the complexity. It is noted that a multi-modes narrowband 

excitation (highlighted in blue) helps to improve the mode purity and interpretability of 

the guided wave signals, also performs in a more cost-effective manner as compared to 

a single-mode broadband scattered signal. Furthermore, the multi-modes narrowband 

signal enables the high-resolution reconstruction of defects as it naturally encompasses 

comprehensive defect-related information. However, it is challenging to solve such a 

multi-frequency, multi-mode inverse scattering problem using conventional model-

based reconstruction algorithms such as Fourier transform. Taking into account this 

situation, a data-driven based deep learning model, which have the ability to efficiently 

extract the defect features, i.e. flaw-associated information from high dimensional data 

(multi-frequency, multi-modes scattered signals) has been developed for quantitative 

defect reconstructions by the mapping of data features to defect shapes, leveraging the 

power of manifold learning for the extraction of signal distributions from the high 

dimensional space to the low one. 

 

2.2 Distribution of scattering signals in the manifold/vector space 

As discussed above, it is desirable to utilize multi-mode, narrowband scattered signals 

for quantitative defect reconstruction under the consideration of the practicability and 

cost of inspection. As the reconstruction technique used in this research establishes a 

data-driven intelligent network model, it is necessary to perform wave analysis of the 

multi-mode, narrowband signals for the generation of training datasets from the 

perspective of data structures. 

As shown in Fig.2, a thinning flaw with an arbitrary shape is located at the top 

surface of the plate. It is assumed that the incident guided wave of the SH0 mode 

propagates from the left to right side and is reflected back by the thinning part. Thus, 

the reflected wave containing multi-mode information can be observed at the far field 

and the displacement field is determined by Eq.(3). Considering the dispersion property 

of the SH-wave, displacements of the incident SH0 wave (𝑢inc) and reflected nth mode 

wave, 𝑢inc and 𝑢ref can be rewritten as 

𝑢inc = 𝐴0
inc(𝜔𝑚)𝑓0(𝑞0𝑥2)𝑒𝑖(𝑘𝑥1−𝜔𝑚𝑡)                  (5a) 

𝑢ref = 𝐴𝑛
ref(𝜔𝑚)𝑓𝑛(𝑞𝑛𝑥2)𝑒𝑖(𝑘𝑥1+𝜔𝑚𝑡)                  (5b) 

where 𝜔𝑚  means the circular frequency ( m = 1,2,3 ⋯ ); 𝐴𝑛  is the amplitude 
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coefficient of the nth mode in frequency domain, 𝑞𝑛 = √
𝜔𝑚

2

𝑐𝑇
2 − 𝑘2 , and 𝑓𝑛  is 

determined by Eq.6 

𝑓𝑛(𝑞𝑛𝑥2) = {
cos(𝑞𝑛𝑥2) for 𝑛 = 0,2,4 ⋯ 
sin(𝑞𝑛𝑥2)  for 𝑛 = 1,3,5 ⋯

             (6) 

The reflection coefficients 𝐶𝑛(𝜔𝑚) of the 𝑛th mode reflected wave are formulated by 

Eq.7 

𝐶𝑛(𝜔𝑚) = 𝐴𝑛
ref(𝜔𝑚)/𝐴0

inc(𝜔𝑚)                    (7) 

The matrix representation of 𝐶𝑛(𝜔𝑚) can be written as 

𝑪𝑚𝑛 = [
𝐶0(𝜔1) ⋯ 𝐶𝑛(𝜔1)

⋮ ⋱ ⋮
𝐶0(𝜔𝑚) ⋯ 𝐶𝑛(𝜔𝑚)

]                    (8) 

Fig.3 presents the absolute values of the complex-valued reflection coefficients for the 

first three modes of reflected SH waves, namely, 0th  symmetric (SH0), 1st  anti-

symmetric (SH1) and 1st  symmetric (SH2) modes. Three defects including the 

rectangular(a), V-notch(b) and Gaussian-curved(c) thinning are considered in the wave 

analysis with the frequency range of 7.5 MHz to 12.5 MHz. Results in Figs. 3d-3f 

represent the fused reflection coefficients that contain the first three order modes. 

 

Fig. 2. An incident guided SH-wave is reflected by a plate thinning at the top surface of the plate. 

 

It is worth noting that each complex-valued item 𝐶𝑛(𝜔𝑚)  in the matrix 𝑪𝑚𝑛 

defined in Eq.8 represents the interaction between the sub-waves and the defects in the 

form of amplitudes and phases of reflection coefficients, which reflect the defect-

related information and features. Hence, the procedure for defect reconstruction 

proposed in this paper is to construct a deep learning operator ℋ, which has the ability 

to extract the defect features and further realize the mapping of the reflection 

coefficients 𝑪𝑚𝑛 to the profile of defects 𝑫. It is worth noting that the operator 𝑫 is 

defined by Eq.9 

𝑫 = ℋ(𝑪𝑚𝑛)                         (9) 
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Fig. 3. The absolute value of reflection coefficients for the first three modes of reflected SH-waves. Three 

defects are considered including the rectangular(a), V-notch(b) and Gaussian-curved thinning (c). (d-f) 

depict the fused reflection coefficients that contain the first three order modes.  

 

As described in the manifold assumption[34-35], a natural high-dimensional data 

distribution concentrates close to a non-linear low-dimensional manifold, and the goal 

of deep learning aims to learn the manifold structure in data and the probability 

distribution associated with the manifold. Therefore, if the manifold represented by the 

scattered data of guided waves i.e., reflection coefficients 𝑪𝑚𝑛, has a simpler, highly 

separable structure, it would be easier for the deep learning model ℋ to learn, leading 

to the higher reconstruction accuracy. Considering this fact, it is necessary to analyze 

the manifold structure or the vector distribution of reflection coefficients 𝑪𝑚𝑛  of 

guided SH-waves prior to the construction of ℋ. The t-distributed stochastic neighbor 

embedding (t-SNE)[36] is applied to realize a flexible dimension reduction and visualize 

the high-dimensional data by a complex mapping to reveal structures of datasets at 

many different scales. In this paper, the dataset of SH-wave reflection coefficients 

which reflect three types of defect information (rectangular, V-notch and Gaussian-

curved flaws) on the manifold space, have been simulated using the modified boundary 

element method (MBEM) [37] for the generation of training data and feature extraction.  

The effects of different modes and frequency samples on the pattern of reflection 

coefficients in the reduced space for feature extractions of defects is demonstrated in 

Fig.4 by the t-SNE technique. It is noted that for the signals excited by the broadband 

frequency (Figs. 4a, 4c), the datasets of reflection coefficients in both single mode and 

multi-modes appear highly separable, that is, natural features of the data for the 

different types of defects tend to be represented into tight and wide separated clusters 

in the two dimensional space. When the number (5) of frequency samples in Figs. 4b 

and d is small and insufficient for defect reconstruction, the feature representation by 

datasets containing multi-mode defect-related information is significantly clear and 

distinguishable, as more information related to three types of defects are utilized for 

defect reconstructions. However, no separatable clusters of reflection coefficients can 
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be clearly identified using the single-mode scattered information. Taking into account 

the features shown in Fig.4 as well as the practicability and cost in the guided wave 

inspection, the following observations have been achieved as useful guidelines for 

practical applications: 

(1) Two guidelines relating to the numbers of frequency samples and wave modes 

during the guided wave inspection can be leveraged for quantitative defect 

reconstruction as substantial defect information, e.g., reflection coefficients, is 

contained in the scattered signals. 

(2) To realize a guided wave inverse scattering technique with a high level of 

accuracy, it is worth noting that the single-mode, broadband scattered signals 

containing sufficient defect-relate information is compulsory. This conclusion is 

demonstrated by the highly separable the dataset in Fig. 4a. However, the mode 

separation is extremely challenging for a signal with such broadband frequencies. 

Also, the cost of wave excitation force during the experiment test is increasingly 

expensive. 

(3) As the defect-related information is insufficient in the single mode signal with 

narrowband frequencies, the results represented in the lower-dimensional space 

indicate poorly separable in Fig. 4b. Based on this observation, it is necessary to 

utilize the multi-modes, narrowband signal that encompasses comprehensive 

defect-related information for defect reconstruction economically. 

(4) Constructing defects in use of multi-mode, narrowband signals indeed 

demonstrates the superior performance as the dataset appears highly separable in 

Fig. 4d, leading to the development of a more practical and cost-effective defect 

reconstruction technique. Therefore, deep learning models have to be developed to 

solve such a multi-frequency, multi-modes problem which is challenging for 

conventional model-based reconstruction algorithm. 

 
Fig. 4. t-SNE visualization of scattered signals (reflection coefficients) under different cases of wave 

modes and frequency band. 
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2.3 The proposed encoder-projection-decoder architecture 

To intelligently realize the end-to-end mapping between the multi-frequency, multi-

mode guided wave scattered signals and defect profiles with high levels of accuracy 

and efficiency, a novel encoder-projection-decoder neural network has been proposed 

to leverage the mechanism of the manifold distribution principle, leading to the 

facilitation of defect feature extractions in the low-dimensional space. The overall 

architecture of the proposed neural network is depicted in Fig. 5. As the developed 

computational framework operates on real-valued inputs, it is noted that the reflection 

coefficients or experimental data must be divided into two groups storing the real and 

imaginary components concatenated into the input vector. For example, a 𝑚 × 𝑛 

complex-valued reflection coefficient matrix should be reshaped to a 2𝑚𝑛 × 1 real-

valued vector (𝑚 means the number of frequency samples and 𝑛 depicts the number 

of modes). In this study, the size of 144 × 1  for the output in spatial space is 

predefined. Following that, the encoder part converts the input into the data represented 

in a squeezed dimension in a manner similar to general CNNs. This process consists of 

sequential blocks of convolutions with a stride of 2 and a factor of 2, leading to the 

increase of the number of feature layers. Then, the batch normalization (BN) and 

activation by a rectified linear unit (ReLU) are applied before the projection part. It is 

worth noting that the convolution filter size of 3 × 1 is used throughout the encoder, 

in which there are 32 feature maps with the dimension of 𝑚𝑛 × 1  included. Each 

feature is represented by a non-linear function of an extensive portion of the input 

reflection coefficients.  

To facilitate the feature extraction related to the input data, i.e., reflection 

coefficients from a high-dimensional space to a homeomorphic representation, the 

latent projection is implemented as an operator to highlight the features of defect 

profiles. As schematically illustrated in Fig. 5, the first layer of the projection is fully 

connected to an 72 × 1 -dimensional hidden layer with the hyperbolic tangent 

activation. Once the features are projected into a manifold space, the decoder part 

upsamples the main defect features represented by the latent projection to finalize the 

profiles of defects as the output in a spacial space. In the decoder process, each step 

along the path increasing the data interpretability consists of a 3 × 1 deconvolution 

layer that halves the number of feature layers and a BN layer followed by a ReLU 

activation. The total number of convolutional layers in the whole encoder-projection-

decoder network is set to 8.  

 

 

Fig. 5. The overall schematic architecture of the proposed encoder-projection-decoder neural network 

for quantitative structural defect reconstruction. 
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2.4 Dataset generation 

To obtain the training data for the proposed network, reconstructions of surface thinning 

flaws in a 2-dimensional steel plate shown in Fig. 2 using guided SH-wave is performed. 

The capability of the proposed encoder-projection-decoder neural network to 

quantitatively reconstruct defect profiles is demonstrated with the fusion of multi-

frequency, multi-mode information encompassed in scattered signals throughout the 

examples. The material properties of the steel plate is listed in Table 1.   

 

Table 1 The material properties of the steel plate. 

Material Young modulus 

(Gpa) 

Poisson Density  

(kg/m3) 

Plate thickness 

(mm) 

Steel 207.18 0.2949 7800 1 

 

In order to efficiently generate sufficient data for the exploration of defect features 

via the powerful data-mining capability of the Deep-guide framework, the modified 

boundary element method (MBEM)[37] is applied to calculate reflection coefficients of 

guided waves propagating through the plate with thinning defects. The implementation 

of MBEM not only aims at obtaining the input data by performing the ultrasonic guided 

wave analysis, but provides an insight to the development of physics-informed network 

by the fusion of numerical results or experimental data containing multi-frequency, 

multi-wave-mode information and the data-driven manifold learning technique for 

quantitatively solving the guided wave inverse scattering problems in the field of 

nondestructive evaluation.  

 In this research, a dataset of 4000 scattered signals (reflection coefficients) from 

four typical shapes of surface defects including the rectangular, V-notch, Gaussian-

curved and double rectangular flaws in plates, have been obtained using MBEM. 

Numerical simulations of 4000  plate thinning defects using the SH0 guided wave 

mode have been performed to obtain reflection coefficients, which are used as the 

inputs for training the proposed network. Results in these 4000  cases have been 

treated as the ground truth. The circular frequency 𝜔 takes the value from the range 

of 0.1 MHz  to 14.0 MHz  with the increment of 0.1 , and therefore a total of 140 

frequency samples have been considered. The amplitude coefficients of the first five 

SH-wave modes have been obtained at each frequency sample. The use of the training 

data for the reconstruction of defects by the proposed method is discussed with more 

details in Section 3.  

 

2.5 Network training and quality evaluation of defect reconstruction   

To effectively train the proposed network, the dataset has been randomly divided into 

three splits. Out of the total 4000 samples, 2800 data have been used for network 

training (70%), 600 for the validation (15%), and 600 for testing (15%). 

 The proposed network has been initially implemented in Tensorflow[38] , and then 

trained and tested on a NVIDIA 3080 graphics processing units (GPUs). The mean 

squared error (MSE) between the network output and ground truth data has been used 
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as the loss function defined by Eq.9 

MSE =
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑛
𝑖=1                       (10) 

where 𝑥 is the reconstructed defect, 𝑦 is the ground truth, and 𝑛 is the number of 

defect pixels. The Adam optimization method has been selected to achieve the 

converged results. Once the network training followed by the validation process is 

completed, the correctness and robustness of the network model with optimal 

performances will be evaluated by the test set. 

 For the quality evaluation of defect reconstruction, two metrics have been 

considered to assess the superior performance of the proposed network over the other 

existing methods The first criterion is the root mean square error (RMSE) formulated 

as:  

RMSE =  √∑ (𝑥𝑖−�̂�𝑖)2𝑁
𝑖=1

𝑁
                       (11) 

where N is the number of pixels; 𝑥𝑖 is the pixel value of the ground truth and �̂�𝑖 is 

the pixel value of the reconstructed defect. The lower RMSE value means the better 

accuracy of the reconstructed defect profiles. 

The second metrics used for the defect quality evaluation is the peak signal-to-noise 

ratio (PSNR) defined by Eq.11: 

PSNR = 20 ∙ log10 (
𝑥max

RMSE
)                    (12) 

where 𝑥max is the maximal pixel value of the ground truth 𝒙. A higher value of PSNR 

represents the better defect quality. 

 

3. Numerical validation 

3.1 Validation of the proposed method  

To validate the correctness and effectiveness of the proposed deep learning-based 

quantitative inverse scattering method, the novel encoder-projection-decoder neural 

network enabling the manifold learning capability has been trained using the multi-

frequency, multi-modes scattered signals, which have been obtained by MBEM 

simulations[36]. It should be noted that frequencies of the scattered signals used in this 

study has been in the range of 7MHz to 12MHz with the increment of 0.1, a total of 

50 frequency samples. Following that, the unknown defects in the test set have been 

reconstructed using the trained network. It is worth noting that the same network 

architecture and hyper-parameters have been kept intact during the process of defect 

reconstructions for different inputs so that the generalization of the developed deep 

learning network can be evaluated.  

The reconstructed defects with three types of profiles (Rectangular, V-notch and 

Gaussian-curved defects) using different modes of SH-waves (SH0, SH1, SH2, the 

fusion of first 3 modes and the fusion of first 5 modes) have been provided in Fig.6. It 

can be observed that main features of the defects have been successfully reconstructed 

in all three cases, where the remarkable capability of the proposed data-driven method 

for defect reconstruction using multiple modes, multi-frequency scattered signals has 

been demonstrated. Moreover, the advantage of the proposed deep learning network 
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has been evidenced by less than 0.1  seconds of computational time for defect 

reconstruction as the framework has only requires one pass to execute calculations. 

 
Fig. 6. Reconstruction results of plate surface defects using the encoder-projection-decoder neural 

network (plate thickness ℎ = 1𝑚𝑚).  

 

 Furthermore, the quantitative evaluations on the quality of reconstructions by the 

average RMSE and PSNR over the entire test set (600 samples) have been provided 

in Tables 2. It has been observed that the lowest average RMSE (0.0166) among the 

reconstruction results in all three cases has been achieved using the fusion of first 5 

modes, as compared with 0.0212 by the fusion of first 3 modes (27.71% higher), 

0.0252  by the SH0 mode (51.82%  higher), 0.0298  by the SH1 mode (79.52% 

higher) and 0.0485  by the SH2 mode (175.90% ). The similar conclusion can be 

drawn for the quality evaluation of reconstruction results by the average PSNR, that is 

to say, the best result of 28.95dB by the fusion of first 5 modes can be identified, 

whilst 26.84dB  (2.11dB  lower) the fusion of first 3  modes, 25.30dB  (3.65dB 

lower) for the SH0 mode, 23.39dB (5.56dB lower) for the SH1 mode and 19.39dB 

(9.56dB lower) for the SH2 mode.  

It is also worth noting that the V-notch defect reconstruction has been realized for 

the best precision with the average RMSE of 0.0229, which has been improved by 

34.06% and 28.82% from 0.0307 and 0.0295 for the rectangular and Gaussian-

curved reconstructions, respectively. This can be interpreted from the perspective of 

manifold analysis illustrated in Section 2.2: the higher separable pattern represented by 

green dots in Fig. 4 indicates the manifold of scattered signals by V-notch defects, as 

compared with the manifolds by the other two types of defects. 

 

Table 2 RMSE and PSNR of reconstructed defect shapes. 

Defects 

Case 

 Rectangular  V-notch  

 

Gaussian-

curved 

Average 

SH0 
RMSE 0.0279 0.0224 0.0253 0.0252 

PSNR(dB) 24.07 26.73 25.09 25.30 

SH1 RMSE 0.0284 0.0229 0.0381 0.0298 
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PSNR(dB) 23.84 25.52 20.83 23.39 

SH2 
RMSE 0.0571 0.0332 0.0471 0.0458 

PSNR(dB) 16.92 22.51 18.75 19.39 

Fusion of first 3 

modes 

RMSE 0.0221 0.0213 0.0201 0.0212 

PSNR(dB) 25.54 27.29 27.68 26.84 

Fusion of first 5 

modes 

RMSE 

PSNR(dB) 

0.0182 

26.82 

0.0149 

31.59 

0.0167 

28.45 

0.0166 

28.95 

Average 
RMSE 

PSNR(dB) 

0.0307 

23.44 

0.0229 

26.73 

0.0295 

24.16 

 

 

 

In Fig. 7, boxplots of reconstruction results using multiple modes information of 

the scattered SH-waves have been presented to demonstrate the high precision of the 

proposed technique. It can be observed that the deep learning-based quantitative guided 

wave inverse scattering approach leveraging the multi-modes information has the 

ability to achieve a high level of stability, leading to a relatively narrower distribution 

of RMSE over the entire test dataset, whereas results reflecting the poorer stability on 

a wider range of RMSE can be identified given the information from single-mode 

scattered signals for reconstructions. The minimum median value ( 0.0139 ) has 

indicated the superiority of the proposed approach to defect reconstructions using the 

fusion of the first 5  modes over one single mode or few fused modes in terms of 

accuracy, for example, the reconstruction RMSE of 0.0204 (46.76% higher) by the 

single SH0 mode. 

 

 

Fig. 7. Quantitative evaluations on the quality of reconstruction with RMSE over the entire 600 

test data which include three types of unknown defects. The x axis represents the wave modes used 

for reconstruction. The y axis denotes the values of RMSE between the reconstructed defects and 

the ground truth. Each box shows the interquartile range (IQR between Q1 and Q3) of the test results. 

The central mark (the horizontal line in each box) shows the median value Q2. The upper whisker 

extends from the hinge to the largest value no further than Q3+1.5×IQR and the lower whisker 

extends from the hinge to the smallest value at most Q1-1.5×IQR. For each box, 150  values 

randomly selected from the 600 test results are shown as dots. 
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3.2 Defect reconstruction by narrowband signals 

As described in Section 2.2, it is extremely challenging to achieve the mode separation 

for a scattered signal in broadband frequencies and also increasingly expensive to excite 

ultrasonic guided waves at different frequencies. Therefore, the motivation of this 

research is to investigate the reconstruction performance of the proposed technique 

using the scattered signals that occupy the narrowband frequencies. Fig. 10 has shown 

the comparison of the reconstructed results using different numbers of frequency 

samples with the real defects. As the defect-related information is insufficient for defect 

reconstruction by the single mode signal in narrowband frequencies, it has been 

concluded that the fewer the number of frequency samples for defect reconstruction is, 

the poorer the quality of reconstruction by a single mode of SH0 performs.  

 

 

Fig.8. Defect reconstruction using different numbers of frequency samples. 

 

 Moreover, the quantitative evaluations on the quality of reconstructions using 

different numbers of frequency samples have been provided in Table 3. It can be 

observed that as the number of frequency samples has decreased, results of defect 

reconstructions using the single mode and multi-modes scattered signals have become 

poorer. However, the overall performance of reconstruction using the multi-modes 

signals is relatively better and more stable as compared with the reconstructions by the 

single mode signal. For example, the reconstruction using the fusion of the first 5 

modes with 50 frequency samples has demonstrated the best accuracy with the lowest 

average RMSE (0.0225) and the highest average PSNR (28.65dB). Furthermore, for 

the defect reconstruction using only one frequency sample, the result obtained by the 

fusion of first 5 modes signals still has more trustworthy accuracy with the average 

RMSE value of 0.0389, as compared with 0.1062 (173.01% lower) predicted by 

the model using the SH0 signal.  
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Table 3 The quantitative evaluation of reconstruction results using models trained with different 

numbers of frequency samples. 

   50 40  30 20 10 1 

 SH0 

RMSE 0.0376 0.0303 0.0402 0.0409 0.0601 0.1062 

PSNR(d

B) 

24.19 26.07 23.62 23.48 20.12 15.19 

Fusion of first 

5 modes 

RMSE 0.0225 0.0284 0.0352 0.0324 0.0320 0.0389 

PSNR(d

B) 

28.65 26.63 24.77 25.49 25.60 23.91 

 

A more direct quantitative comparison of the reconstruction qualities using the 

single-mode and multi-modes scattered signals has been shown in Fig.9. It is worth 

noting that the reconstruction using the multi-modes scattered signals, e.g., the green 

line and blue line, can still achieve high levels of precision by models trained with a 

few of frequency samples. For example, the reconstruction using the SH0 mode 

requires 50 frequency samples to achieve the RMSE value of 0.024 or PSNR value 

of 24.83dB, while only about 25 frequency samples are used for the reconstruction 

by the fusion of the first 5  modes for the same level of accuracy. Also, for 

reconstruction using a single mode scattered signal, the precision decreases rapidly as 

the number of frequency samples decreases, while the accuracy is reduced slightly for 

the reconstruction by the fuse of multi-modes information. 

 

 
Fig.9. Comparison of the reconstruction precision on the entire test set from models trained with 

different numbers of frequency samples in different scenarios. 

 

3.3 Comparison with the Fourier transform reconstruction 

In this section, a state-of-art conventional knowledge-driven reconstruction method, 

which is called Born approximation-based Fourier transform (BFT) has been compared 

against the proposed data-driven deep learning method (DDDL) in terms of defect 

reconstruction performance. The double-notch defect reconstruction results have been 

shown in Fig. 10 and the quantitative evaluation on the quality have been provided in 

Table 4. It has been noted that the frequency range of the scattered signals used in the 

BFT reconstruction has been set from 0MHz  to 14MHz  including 140  frequency 
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samples, while only 32 frequency samples in the range of 6.3MHz to 7.9MHz have 

been used in DDDL. It can be observed that the defect reconstruction by DDDL with 

the fusion of the first 5 SH-waves modes has shown better quality with the lowest 

average value (0.0475) of RMSE and the highest average value (22.84dB) of PSNR, 

as compared with 0.0547 (15.16% higher) and 19.63dB (3.21dB lower) by BFT, 

0.0725 (52.63% higher) and 9.77dB (13.07dB lower) by DDDL using the single 

mode (SH0) scattered signal. As sufficient frequency samples have been provided in 

the comparison study, the FT method could also produce results with a relatively 

trustworthy reconstruction quality. The reason for this observation has been provided 

in Section 2.2. Considering the challenge of the mode separation for such a broadband 

frequencies signals and the increasingly expensive cost of wave excitation, the 

proposed deep learning-based method has the ability to efficiently achieve the high-

quality defect reconstructions using fewer frequency samples, enabling the 

development of practical techniques for quantitative ultrasonic guided wave inspection 

using multi-frequency and multi-mode acoustic data. 

 

 

Fig.10. Comparison of reconstruction results from different techniques. 

 

Table 4 The quantitative evaluation of reconstruction results from different techniques. 

 DDDL (Fusion of 5 modes) DDDL (Single SH0 mode) Fourier transform(FT) 

RMSE 0.0475 0.0725 0.0547 

PSNR(dB) 22.84 9.77 19.63 

 

4. Conclusion 

In this paper, a novel deep learning-based guided wave inverse scattering technique for 

quantitative structural defect reconstructions has been proposed to automatically realize 

the end-to-end mapping of the multi-frequency, multi-modes scattered ultrasonic 

guided wave signals to defect profiles with high levels of accuracy and efficiency. 

Based on the manifold distribution principle of the acoustic data, the encoder-
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projection-decoder network has been trained by multi-frequency, multi-modes scattered 

signals to enhance the manifold-learning capability. To further demonstrate the 

correctness and effectiveness of the proposed defect reconstruction technique, 

numerical validations in different scenarios have been performed with the main 

conclusions as follows: 

(1) Defect reconstruction using the scattered ultrasonic signals with the fusion of 

different wave modes has achieved high levels of accuracy and efficiency, for 

example, the RMSE values of reconstruction results by the fusion of first 5 

modes, the fusion of first 3 modes, the SH0 mode, the SH1 mode and the SH2 

mode have been obtained as 0.0166, 0.0212, 0.0252, 0.0298 and 0.0485, 

respectively. 

(2) Multi-modes narrowband scattered signals have enabled the higher resolution 

reconstruction of defects and also performed in a more practical and cost-

effective manner as compared with the results by broadband scattered signals. 

(3) The superiority of the proposed data-driven technique over traditional 

knowledge-driven reconstruction approaches has been clearly demonstrated by 

the effective defect reconstructs using fewer frequency samples.  

Summarily, using the fusion of multi-modes and multi-frequency defect-related 

information has enabled defect reconstructions with high levels of accuracy and 

reliability, and also provided a useful insight into the development of practical 

quantitative end-to-end inverse scattering techniques for the inspection and 

reconstruction of complex defects using ultrasonic guided waves. 
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