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SUMMARY
The rapid production of reactive oxygen species (ROS) is a key signaling output in plant immunity. In the
angiosperm model species Arabidopsis thaliana (hereafter Arabidopsis), recognition of non- or altered-self
elicitor patterns by cell-surface immune receptors activates the receptor-like cytoplasmic kinases (RLCKs)
of the AVRPPHB SUSCEPTIBLE 1 (PBS1)-like (PBL) family, particularly BOTRYTIS-INDUCED KINASE1
(BIK1).1–3 BIK1/PBLs in turn phosphorylate the nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) to induce apoplastic ROS production.4,5 PBL
and RBOH functions in plant immunity have been extensively characterized in flowering plants. Much less is
known about the conservation of pattern-triggered ROS signaling pathways in non-flowering plants. In this
study, we show that in the liverwort Marchantia polymorpha (hereafter Marchantia), single members of the
RBOH and PBL families, namely MpRBOH1 and MpPBLa, are required for chitin-induced ROS production.
MpPBLa directly interacts with and phosphorylates MpRBOH1 at specific, conserved sites within its cyto-
solic N terminus, and this phosphorylation is essential for chitin-induced MpRBOH1-mediated ROS produc-
tion. Collectively, our work reveals the functional conservation of the PBL-RBOH module that controls
pattern-triggered ROS production in land plants.
RESULTS AND DISCUSSION

To examine the conservation of reactive oxygen species (ROS)

production mechanisms during land plant immune signaling,

we treated the wild-type Marchantia polymorpha (hereafter

Marchantia) Tak-1 with the pathogen-associated molecular pat-

terns (PAMPs) flg22 (the 22-amino-acid peptide epitope of bacte-

rial flagellin) or chitin (a major fungal cell wall component). It was

previously shown that flg22 treatment failed to inhibit Marchantia

gemmaling growth6 and, similarly, Marchantia thalli were insensi-

tive to flg22 treatment in terms of ROS production (Figure 1A),

which is in line with the absence of an ortholog of the angiosperm

flg22 receptor FLAGELLIN SENSING 2 (FLS2) in the Marchantia

genome.7 In contrast, chitin induced clear apoplastic ROS pro-

duction in this assay (Figure 1A), consistent with the presence of

lysin-motif domain-containing receptors in the Marchantia

genome.6,7,8 In angiosperm species, PAMP-induced ROS pro-

duction depends on members of the plant nicotinamide adenine

dinucleotide phosphate (NADPH) oxidaseRESPIRATORYBURST

OXIDASE HOMOLOG (RBOH) family.9–14 Notably, pre-treatment

with the NADPH oxidase inhibitor diphenyleneiodonium (DPI)

significantly reduced chitin-induced ROS production (Figure 1A),

suggesting that the RBOH-mediated ROS production machinery

is conserved in Marchantia.
Current Biology 33, 1–8,
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TheMarchantia genome encodes two RBOH family members,

Mp3g20340 (MpRBOH1) andMp7g00270 (MpRBOH2). Phyloge-

netic analysiswith RBOHs fromdifferent land plant species could

not clearly establish an orthologous relationship betweenRBOHs

from angiosperm species and those fromMarchantia (Figure 1B).

The expression of bothMpRBOH genes was detected inmultiple

tissues and development stages (Figure S1A),15 and their mRNA

levels were enhanced in response to chitin treatment, with

MpRBOH1 displaying a stronger response—similar to that of

the immune marker gene MpWRKY226 (Figure S1B). Notably,

an increase of MpRBOH1 transcript abundance was observed

during infection with the oomycete pathogen Phytophthora

palmivora (Figure S1A).15 To characterize the function of

MpRBOHs, we generated single knockout mutants for both fam-

ily members with CRISPR-Cas9-nickase.16,17 Two different al-

leles of Mprboh1 and two independent lines representing one

allele of Mprboh2 were isolated, and their genotypes were

confirmed by sequencing (Figures S1C and S1D). Although

Mprboh2 plants responded normally to chitin treatment (Fig-

ure 1C), Mprboh1 alleles were completely incompetent of

chitin-triggered ROS production (Figure 1C). ROS production in

Mprboh1was restoredby the expression of Cas9-nickase-insen-

sitive wild-type MpRBOH1 (Figures S1E and S1F). Among the

ten-member Arabidopsis thaliana (hereafter Arabidopsis) RBOH
March 27, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 1
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Figure 1. MpRBOH1 is required for chitin-induced ROS production in Marchantia

(A) Chitin (0.1 mg/mL) induces ROS production on 4-week-old Marchantia thallus discs in Tak-1. Discs were incubated with or without 10 mM DPI for 3 h before

PAMP treatments. Values correspond to the mean of 12 samples (±SE) and are expressed in relative light units (RLUs). Experiments were performed twice with

similar results.

(B) Phylogenetic analysis of RBOH family proteins from land plant species. Full-length protein sequences were aligned by MUSCLE and the unrooted

phylogenetic tree were constructed using the maximum likelihood method with a 1,000 bootstrap resampling value. At, Arabidopsis thaliana; Solyc, Solanum

lycopersicum; LOC_Os, Oryza sativa; Sm, Selaginella moellendorffii; MA, Picea abies; Sphfalx, Sphagnum fallax; CepurR40, Ceratodon purpureus R40; Pp,

Physcomitrium patens; Mp, Marchantia polymorpha; AagrBONN, Anthoceros agrestis (Bonn). Branches that did not pass bootstrap analysis are labeled with

green boxes.

(C) ROS production induction by chitin treatment (0.1 mg/mL) on 4-week-oldMarchantia thallus discs in Tak-1 and Mprboh backgrounds. Values correspond to

the mean of 12 samples (±SE) and are expressed in RLU. Experiments were performed 3 times with similar results.

(D) Developmental phenotype of Mprboh mutants. 12-day-old gemmalings of Tak-1, Mprboh1-1, Mprboh2-1 grown on half-strength Gamborg’s B5 1% agar

medium. Scale bars, 1 cm.

See also Figure S1.
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family, RBOHD is solely required for pattern-induced ROS pro-

duction.13,14 These observations suggest that in bothMarchantia

and Arabidopsis, a single RBOH protein is required for chitin-

induced ROS production.

RBOHs are involved in multiple plant processes.18 In addition

to the chitin-induced ROS phenotype, Mprboh1 mutants ex-

hibited defects in rhizoid development (Figures 1D and S1G).

In contrast, Mprboh2 mutants exhibited strong overall defects

in thallus growth, but were still able to produce rhizoids

(Figures 1D, S1G, and S1H). Notably, while Arabidopsis rbohd

mutants do not show any obvious rosette leaves or root develop-

ment phenotype,19 another Arabidopsis RBOH family member,

RBOHC, is a positive regulator of root hair growth.20 Rhizoids
2 Current Biology 33, 1–8, March 27, 2023
are functionally reminiscent of root hairs,21 and both elongate

by tip growth, implying that MpRBOH1 might also be involved

in the regulation of tip growth in Marchantia.

Asingle PBL isoform is required for chitin-triggeredROS
production in Marchantia

RBOH activation during immunity is controlled by several regula-

tory mechanisms.22 In Arabidopsis, BOTRYTIS-INDUCED KI-

NASE1 (BIK1)/PBL1-mediated phosphorylation is essential for

RBOHD activation and function during pattern-triggered immu-

nity.4,5 We thus tested whether MpRBOH1 is similarly regulated

by any of theMarchantia AVRPPHBSUSCEPTIBLE 1 (PBS1)-like

(PBL) family proteins.
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Figure 2. MpPBLa positively regulates chitin-triggered ROS production in a kinase activity-dependent manner

(A) Phylogenetic analysis of PBL family proteins from land plant species. Full-length protein sequences were aligned by MUSCLE and the unrooted phylogenetic

tree was constructed using the maximum likelihood method with a 1,000 bootstrap resampling value. Branch colors represent the sequence origins. Branches

that did not pass bootstrap analysis are labeled with green dots. Three major clades are highlighted with colored boxes. Phylogenetic tree with all gene identifiers

is provided in Figure S4.

(B) ROS production induction by 0.1 mg/mL chitin treatment on 4-week-oldMarchantia thallus discs in Tak-1 andMppbla knockout mutant backgrounds. Values

correspond to the mean of 12 samples (±SE) and are expressed in RLU. Experiments were performed 3 times with similar results.

(C) Chitin (0.1 mg/mL)-induced ROS production on 4-week-oldMarchantia thallus discs in Tak-1, Mppbla-1, and Mppbla-1 expressing wild-type or kinase-dead

versions of MpPBLa fused with a C-terminal citrine (cit) tag under the control of the 35S promoter. Scatter plots represent the total RLU (Total RLU) over a 30-min

measurement, and horizontal bars and crosses represent mean and SE, n = 12. Equal letters at the top of the panel indicate p > 0.05, one-way ANOVA and a

Kruskal-Wallis test. Experiments were performed 3 times with similar results.

See also Figure S2.
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Three PBL-encoding genes were identified in the Marchan-

tia genome: Mp3g25360 (MpPBLa), Mp3g18020 (MpPBLb),

and Mp2g14830 (MpPBLc).7 Our phylogenetic analysis of

PBL homologs among land plants identified three

major clades dividing into eight subgroups (Figure 2A). Impor-

tantly, none of the three MpPBLs falls into the same subgroup

as BIK1 or PBL1. In contrast to land plant RBOHs, MpPBLa

and MpPBLb are part of clades that are present in all

tested land plant species, wherein a single MpPBL gene is

orthologous to its bryophyte and tracheophyte homologs.

However, MpPBLc clusters together with a single PBL

paralog from Anthoceros agrestis, Selaginella moellendorffii,
and Arabidopsis, suggesting that those PBLs are more diver-

gent to other land plant PBLs. Based on the phylogeny, we

considered MpPBLa and MpPBLb to be the major PBL iso-

forms, and MpPBLc to be a divergent PBL isoform in March-

antia. We next interrogated publicly available expression

data15 and found that the two major isoforms share a

broad expression pattern across tissues and development

stages and in response to various treatments (Figure S2A).

The transcript abundance of MpPBLc is relatively low

compared to the other two MpPBLs (except in the anther-

idium), suggesting a potential role for MpPBLc in sexual

reproduction.
Current Biology 33, 1–8, March 27, 2023 3
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N-terminal phosphorylation

(A) MpPBLa directly interacts with theMpRBOH1-Nt

in vitro. Pull-down assay of His-MBP-tagged N-ter-

minal fragments of MpRBOH1-Nt with GST-tagged

MpPBLa. Free GST served as negative control.

(B) CoIP of MpPBLa-citrine after transient expres-

sion of FLAG-MpRBOH1 in Mppbla/pro35S::MpP-

BLa-cit3#. FLAG-mScarlet-Lti6b served as negative

control for MpPBLa association. CoIP was repeated

3 times with similar results.

(C) MpPBLa phosphorylates S-X-X-L motif sites

within MpRBOH1-Nt. Autoradiogram of in vitro ki-

nase assay of His-MBP-tagged N-terminal frag-

ments of MpRBOH1-Nt or MpRBOH1-Nt4A with WT

or kinase-dead MpPBLa.

(D) MpPBLa activates MpRBOH1 in HEK293T

cells. Cells were transfected with the indicated

plasmid combinations. The phosphatase inhibitor

Calyculin-A was added to the cells to stimulate PBL

induced RBOH activation. Values correspond to the

cumulative ROS production over last 5 min of

recording. Error bars represent SE. Equal letters at

the top of the panel indicate p > 0.05, one-way

ANOVA and a post hoc Tukey test. The assay was

performed 3 times with similar results.

(E) Chitin (0.1 mg/mL)-induced ROS production on

4-week-old Marchantia thallus discs in Tak-1,

Mprboh1-1, and Mprboh1-1 expressing MpRBOH1

or MpRBOH14A fused with an N-terminal FLAG tag

under the control of the 35S promoter. Values

correspond to themean of 12 samples (±SE) and are

expressed in RLU. Experiments were performed 3

times with similar results.

See also Figure S3.
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To study the function ofMpPBLs in chitin-inducedROSproduc-

tion, we tried to generate knockout mutants for the two major iso-

forms ofMpPBLs. Several alleles were obtained for MpPBLa (Fig-

ure S2B), but we failed to isolate knockout mutants for MpPBLb

despiteusingmultiplesetsofguideRNAs.Besidesplant immunity,

PBLs regulate various developmental and reproductiveprocesses

in Arabidopsis.23 It is thus possible that MpPBLb may have a crit-

ical role in the regulationofplantgrowthanddevelopment,and that

its knockoutmutants are therefore lethal. However, multiple, inde-

pendentMppbla lineswerenotable toproduceROS in response to

chitin treatment (Figure 2B), reminiscent of Mprboh1 mutants. To

testwhetherMpPBLakinaseactivity is required forchitin-triggered

ROS production, we expressed the wild-type or kinase-dead

(MpPBLa*, D228N) version of MpPBLa in Mppbla-1 background.

The lossofROSproductionofMppbla-1 in response tochitin treat-

mentwas rescuedby theexpressionofwild-typeMpPBLa, but not
4 Current Biology 33, 1–8, March 27, 2023
the kinase-dead version (Figures 2C and

S2C). Together, these data demonstrate

that MpPBLa is required for chitin-induced

ROS production in a kinase-activity-depen-

dent manner.

Previous studies in angiosperm species

revealed only quantitative defects in

pattern-triggered ROS production in single,

double, or higher-orderbik1 orpbl knockout

mutants,1,2,24,25 suggesting extensive ge-
netic redundancy within the PBL family, which is further under-

scoredby the targeting ofmultiple PBL familymembers by various

pathogen-derived effectors.2,26 Notably, the size of PBL family is

considerably small in Marchantia (3 versus 46 of Arabidopsis). In

keeping with the much less redundant MpPBL family, chitin-trig-

gered ROS was completely abolished by loss of a single MpPBL,

demonstrating the utility of Marchantia as a genetically tractable

study system for plant immune signaling.

Interestingly, Mppbla mutants show defects in thallus devel-

opment but still produce rhizoids (Figures S2D and S2E).

Notably, different PBLs regulate diverse plant growth and devel-

opmental processes in Arabidopsis, such as SCHENGEN 1

(SGN1)/PBL15 in Casparian strip formation,27 or PBL34/35/36

in root quiescent center stem cell maintenance.28 It will be of in-

terest to dissect the potential regulatory roles of MpPBLa in plant

growth and development in future studies.
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Figure 4. Conservation of PBL-RBOH module between Arabidopsis and Marchantia

(A) MpPBLa activates RBOHD in HEK293T cells.

(B) BIK1 activates MpRBOH1 in HEK293T cells. Cells were transfected with the indicated plasmid combinations. The phosphatase inhibitor Calyculin-A was

added to the cells to stimulate PBL induced RBOH activation. Values correspond to the cumulative ROS production in the cells transfected with indicated PBL-

RBOH combination normalized to the cells transfected with RBOH alone over last 5 min of recording (25 min). Error bars represent SE. Equal letters at the top of

the panel indicate p > 0.05, one-way ANOVA and a post hoc Tukey test. The assay was performed 3 times with similar results.

(C) Chitin (0.1 mg/mL)-induced ROS production on 4-week-old Arabidopsis discs in Columbia-0, bik1 pbl1, and bik1 pbl1 expressing MpPBLa fused with a

C-terminal HA tag under the control of the native BIK1 promoter. Scatter plots represent the total RLU (Total RLU) over a 30-min measurement, and horizontal

bars and crosses represent mean and SE, n = 12. Equal letters at the top of the panel indicate p > 0.05, one-way ANOVA and a post hoc Dunn’s test. Experiments

were performed 3 times with similar results.

See also Figure S3.
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MpRBOH1 is a bona fide substrate of MpPBLa
RBOHD isactivatedbyBIK1and relatedPBLs throughdirect inter-

actionwith andphosphorylation ofRBOHDN terminus.4,5,29Given

the shared phenotype of Mppbla and Mprboh1 mutants in chitin-

triggered ROS response, we hypothesized that MpPBLa similarly

activates MpRBOH1 via phosphorylation. In vitro pull-down

assays with recombinant maltose binding protein (MBP)-

tagged MpRBOH1 N terminus (MpRBOH1-Nt) and GST-tagged

MpPBLa also showed that MpRBOH1-Nt specifically interacted

with MpPBLa (Figures 3A and S3A). We further performed co-

immunoprecipitation (coIP) assays in Marchantia, which demon-

strate that MpPBLa-citrine associated with FLAG-MpRBOH1 but

not the plasma membrane marker Lti6b in planta (Figure 3B). We

next performed in vitro kinase assays, which confirmed that

MpPBLa can trans-phosphorylate MpRBOH1-Nt (Figure 3C). In

Arabidopsis, BIK1 specifically phosphorylates several [S/T]-X-X-

Lmotifs in theN terminusofRBOHDand thesemotifs are alsopre-

sent in RBOHD orthologs in different plant species.5 Notably,

similar motifs are conserved in the N terminus of MpRBOH1 (Fig-

ure S3B). To confirm the specificity ofMpRBOH1 phosphorylation

byMpPBLa, we performed in vitro kinase assayswithMpRBOH1-

Nt4A, an MpRBOH1-Nt variant in which four MpPBLa-mediated

phosphosites were mutated to non-phosphorylatable (alanine)

residues. MpPBLa-mediated phosphorylation was strongly

reduced when all four putative phosphosites in MpRBOH1-Nt

were mutated to non-phosphorylatable versions (Figure 3C), and

we subsequently confirmed two out of four by liquid chromatog-

raphy-tandem mass spectrometry (LC-MS/MS) (Figure S3C).

Together, these results indicate that MpPBLa directly interacts

with and phosphorylates MpRBOH1-Nt at specific sites that are

conserved among land plant RBOHs.
To test the effect of MpPBLa phosphorylation on MpRBOH1

function,we used a heterologous reconstitution system in human

HEK293T cells.30,31 The expression of MpRBOH1 alone resulted

only in minor basal ROS generation that was comparable to that

of cells transfected with an empty vector control. When

MpRBOH1 was expressed together with the wild type, but not

the kinase-dead MpPBLa, a significant increase in ROS produc-

tionwas observed (Figure 3D), confirming thatMpPBLa activates

MpRBOH1 in a kinase activity-dependent manner. To test the

biological importance of MpRBOH1 phosphorylation by

MpPBLa, we expressed in Mprboh1-1 a full-length MpRBOH1

variant harboring non-phosphorylatable (alanine) residue at

MpPBLa-mediated phosphosites (MpRBOH14A). In contrast to

wild-type MpRBOH1, MpRBOH14A failed to restore chitin-trig-

gered ROS production (Figures 3E and S1F), demonstrating the

functional importance of MpPBLa-mediated phosphorylation at

these sites. In addition to PBL-mediated phosphorylation,

RBOHD activation is regulated via phosphorylation at distinct

sites by other kinases, such as Ca2+-dependent protein ki-

nases.22 The observation that a minor ROS production could still

be detected in lines expressing MpPBLa-mediated phosphosite

mutant version of MpRBOH1 suggests additional MpRBOH1

regulatory mechanism(s) in Marchantia, which will need to be

deciphered in future studies.

To further interrogate the conservation of this module between

Marchantia and Arabidopsis, we reconstituted the reciprocal

PBL-RBOH pathway in human HEK293T cells and measured

ROS production indicative of the direct PBL-mediated activation

of RBOH enzymatic activity. Both BIK1 and MpPBLa could

activate their heterologous substrates (MpRBOH1 and RBOHD,

respectively) (Figures 4A, 4B, andS3D). In contrast, co-expression
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of PBL13, a previously identified Arabidopsis PBL family member

that negatively regulates RBOHD activity,32 did not induce

discernible ROS production compared with expression of

RBOHs alone (Figures 4A, 4B, and S3D). We next sought to

examine the functional conservation of MpPBLa and BIK1 in

planta. We transformed the Arabidopsis bik1 pbl1 mutant with

MpPBLa under the control of the native AtBIK1 promoter and

observed complementation of bik1pbl1 defective chitin-induced

ROS production (Figures 4C and S3E). These results indicate the

functional conservation of PBL family proteins in chitin-induced

ROS production across land plants.

Aside from apoplastic ROS production, mitogen-activated

protein kinase (MAPK) activation is another hallmark of early elic-

itor-induced immune signaling.33,34 We thus investigated

whether the MpPBLa-MpRBOH1 module is involved in chitin-

inducedMAPKactivation inMarchantia. Chitin treatment induces

an increase of MAPK activation in the wild-type Tak-1 plants,

which was similar in Mppbla and Mprboh1mutants (Figure S3F).

Multiple PBL family members have also been shown to regulate

chitin-induced MAPK activation in Arabidopsis and rice,24,35,36

and it is possible that chitin-induced MAPK activation and ROS

production are regulated by distinct PBL family members in

Marchantia. Though Mppbla mutants had unaltered chitin-

induced MAPK activation, we observed impaired chitin-induced

expression of the immune marker gene MpWRKY226 in Mppbla

(Figure S3G), suggesting that MpPBLa positively regulates im-

mune gene expression in an MAPK-independent manner.

Our results demonstrate that MpRBOH1 is a bona fide sub-

strate of MpPBLa, which is critical for PAMP-induced ROS pro-

duction in Marchantia and highlight the striking conservation of

this key regulatory step for plant NADPH activation. As Arabi-

dopsis BIK1 controls different cellular immune outputs through

direct phosphorylation of diverse substrates,28,35,37–39 it will be

interesting to see to which extent orthologous substrates in

Marchantia are similarly regulated during immunity in this evolu-

tionary model system. Future studies will also be needed to

reveal the biological functions of MpRBOHs and MpPBLs iden-

tified in our study, in immunity and beyond.
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et al. (2020). SCHENGEN receptor module drives localized ROS produc-

tion and lignification in plant roots. EMBO J. 39, e103894. https://doi.

org/10.15252/EMBJ.2019103894.

28. DeFalco, T.A., Anne, P., James, S.R., Willoughby, A.C., Schwanke, F.,

Johanndrees, O., Genolet, Y., Derbyshire, P., Wang, Q., Rana, S., et al.

(2022). A conserved module regulates receptor kinase signalling in immu-

nity and development. Nat. Plants 8, 356–365. https://doi.org/10.1038/

s41477-022-01134-w.

29. Li, P., Zhao, L., Qi, F., Htwe, N.M.P.S., Li, Q., Zhang, D., Lin, F., Shang-

Guan, K., and Liang, Y. (2021). The receptor-like cytoplasmic kinase

RIPK regulates broad-spectrum ROS signaling in multiple layers of plant

immune system. Mol. Plant 14, 1652–1667. https://doi.org/10.1016/J.

MOLP.2021.06.010.
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50. Waadt, R., Köster, P., Andr�es, Z., Waadt, C., Bradamante, G., Lampou, K.,

Kudla, J., and Schumacher, K. (2020). Dual-reporting transcriptionally

linked genetically encoded fluorescent indicators resolve the spatiotem-

poral coordination of cytosolic abscisic acid and second messenger dy-

namics in Arabidopsis. Plant Cell 32, 2582–2601. https://doi.org/10.

1105/TPC.19.00892.

51. Iwakawa, H., Melkonian, K., Schlüter, T., Jeon, H.-W., Nishihama, R.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-GFP-HRP Miltenyi Biotec Cat#130-091-833; RRID: AB_247003

anti-HA-HRP Roche Cat#12013819001; RRID: AB_390917

anti-FLAG-HRP Sigma Cat#A8592; RRID: AB_439702

anti-MBP NEB Cat#E8032; RRID: AB_1559730

anti-GST Upstate Cat#06332

Anti-Rabbit IgG (whole molecule)–Peroxidase Sigma Cat#A0545; RRID: AB_257896

Anti-Mouse IgG (Fc specific)–Peroxidase Sigma Cat#A0168; RRID: AB_257867

anti-p44/42 MAPK (Erk1/2) Cell Signaling Cat#9102; RRID: AB_330744

Bacterial and virus strains

E. coli BL21(DE3) Rosetta pLysS Sigma Cat#70956-M

Chemicals, peptides, and recombinant proteins

6xHis-MpPBLa This paper N/A

6xHis-MpPBLa* (kinase-dead, D228N) This paper N/A

GST This paper N/A

GST-MpPBLa This paper N/A

6xHis-MBP-MpRBOH1Nt This paper N/A

6xHis-MBP-MpRBOH1Nt4A

(MpPBLa-mediated phosphor-site mutant)

This paper N/A

DYKDDDDK Fab-Trap� Agarose Chromotek Cat#ffa

RevertAid Reverse Transcriptase Thermo Cat#EP0441

PowerUP SYBR Green Master Mix Thermo Cat#A25741

ATP, [g-32P]- 3000Ci/mmol 10mCi/ml EasyTide Perkin-Elmer Cat# NEG502A250UC

HisPur Cobalt Resin Thermo Cat#89965

GST-Bind Resin Millipore Cat#70541

flg22 SciLight Biotechnology LLC N/A

Peroxidase from horseradish Sigma Cat#77332

L-012 FUJIFILM Cat#120-04891

Diphenyleneiodonium chloride Sigma Cat#D2926

Dulbecco’s Modified Eagle’s Medium Sigma Cat#D6429

PEI MAX� - Transfection Grade

Linear Polyethylenimine Hydrochloride

Polysciences Cat#24765

HBSS, calcium, magnesium, no phenol red Gibco Cat#15266355

Colloidal Chitin polysaccharide Elicityl Cat#GLU411

Protease Inhibitor Cocktail Sigma Cat#P9599

Cefotaxime sodium Apollo Scientific Cat#BIC0111

Chlorosulfuron Supelco Cat#34322

Hygromycin B solution Panreac AppliChem Cat#A2175

IGEPAL CA-630 Sigma Cat#I3021

Deposited data

Mass spectrometry proteomics data This paper PRIDE: PXD038639

Experimental models: Cell lines

HEK293T Widely distributed N/A

Experimental models: Organisms/strains

M. polymorpha Tak-1 Bowman et al.7 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

M. polymorpha (Tak-1) Mppbla This paper N/A

M. polymorpha (Tak-1) Mprboh1 This paper N/A

M. polymorpha (Tak-1) Mprboh2 This paper N/A

M. polymorpha (Tak-1) Mppbla

p35S::MpPBLa-cit

This paper N/A

M. polymorpha (Tak-1) Mppbla

p35S::MpPBLa*-cit

This paper N/A

M. polymorpha (Tak-1) Mprboh1

p35S::FLAG-MpRBOH1

This paper N/A

M. polymorpha (Tak-1) Mprboh1 p35S::FLAG-MpRBOH14A This paper N/A

A. thaliana Col-0 Widely distributed N/A

A. thaliana (Col-0) bik1 pbl1 Zhang et al.2 N/A

A. thaliana (Col-0) bik1 pbl1 pBIK1::MpPBLa-HA This paper N/A

Oligonucleotides

Primers for cloning and qPCR, see Table S1 This paper N/A

Recombinant DNA

pUAP4_MpPBLa This paper N/A

pUAP4_MpPBLa* This paper N/A

pUAP4_MpRBOH1 This paper N/A

pUAP4_MpRBOH14SA This paper N/A

pGEX4T1_MpPBLa This paper N/A

pET28a_MpPBLa This paper N/A

pET28a_MpPBLa* This paper N/A

pOPINM_MpRBOH1Nt This paper N/A

pOPINM_MpRBOH1Nt4SA This paper N/A

35S:FLAG-mScarlet-Lti6b This paper N/A

35S:FLAG-MpRBOH1 This paper N/A

pMpGE018_MpPBLa This paper N/A

pMpGE018_MpRBOH1 This paper N/A

pMpGE018_MpRBOH2 This paper N/A

HyR; p35S::FLAG-MpRBOH1 This paper N/A

HyR; p35S::FLAG-MpRBOH14SA This paper N/A

HyR; p35S::MpPBLa-citrine This paper N/A

HyR; p35S::MpPBLa*-citrine This paper N/A

HyR; pAtBIK1::MpPBLa-HA This paper N/A

pGGHEK_MpPBLa-2xStrepII This paper N/A

pGGHEK_HEK293-MpPBLa*-2xStrepII This paper N/A

pGGHEK_2xStrepII-MpRBOH1 This paper N/A

pGGHEK_2xStrepII-AtRBOHD This paper N/A

pGGHEK_BIK1-2xStrepII This paper N/A

pGGHEK_PBL13-2xStrepII This paper N/A

Software and algorithms

GraphPad Prism GraphPad v8.0.1

MEGA MEGA v11

Jalview Jalview v2.11.0

MS Convert Proteowizard N/A

Scaffold Proteome Software v.5.0.0

Mascot Daemon Matrixscience N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Cyril Zipfel

(cyril.zipfel@botinst.uzh.ch).

Materials availability
Materials generated in this study are available from the lead contact without restrictions.

Data and code availability

d The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Marchantia polymorpha accession Takaragaike-1 (Tak-1; male) was used in this study as the wild-type (WT). Marchantia gemmae

were grown on half-strength Gamborg’s B5, 1 % agar medium under continuous light (50-60 mmol m-2 s-1) at 20 �C or as specified.

For ROS production assays, Marchantia gemmae were grown on half-strength Gamborg’s B5, 1 % agar with a day/night cycle of

10 h:14 h at 21 �C and 16 �C.
Arabidopsis mutants and transgenic lines were in Col-0 background. All seeds were surface sterilized, sown on MS media con-

taining 1% (w/v) sucrose, stratified for 2 days in the dark at 4�C, and moved to growth chamber with conditions 16 h day/8 h night

at respectively 22�C/18�C and 120 mmolm-2 s-1. 10-day-old seedlings were transplanted into soil and grownwith a day/night cycle of

10 h:14 h at 21 �C and 16 �C.
HEK293T cells were cultivated in Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/L Glucose, L-Glutamineglutamine and

sodium pyruvate (Lonza) enriched with 10% fetal bovine serum at 5% CO2 and 37�C.

METHOD DETAILS

Plant transformation and CRISPR–Cas9D10A nickase-mediated mutagenesis
Marchantia was transformed following the cut-thalli transformation method as described.16 Four different gRNAs (Table S1) were

cloned into the BsaI site of pMpGE_En04, pBC-GE12, pBC-GE23 or pBC-GE34. The four gRNAs cassettes cloned into pMpGE_En04

were then transferred into pMpGE018 binary vector carrying the Cas9D10A (nickase)40–42 by LR reaction (Invitrogen). The individual

destination vector was transformed into Agrobacterium tumefaciens strain GV3101. Marchantia cut-thalli (Tak-1) were transformed,

and transformants were selected on chlorsulfuron, genotyped and sequenced. The expression of fusion protein in complementation

lines of Mppbla or Mprboh1mutants were analyzed by western blot. Total proteins were extracted with 6x SDS sample buffer. Sam-

ples were separated by SDS-PAGE, transferred to PVDF, and imaged by blotting with anti-FLAG (HRP-conjugated B-2, Sigma

A8592, 1:5000 dilution) or anti-GFP (HRP-conjugated, MACS 130-091-933, 1:5000 dilution). A.tumefaciens-mediated Arabidopsis

transformation was performed as previously described.28 Transgenic lines were selected on hygromycin selection media (25 mg/L).

Gene identification and phylogenetic analyses
Sequences of Marchantia gene and protein were obtained fromwww.marchantia.info. Sequences of proteins used for analysis were

retrieved fromPhytozome, except forPicea abies from https://evorepro.sbs.ntu.edu.sg/.43 All sequenceswere alignedwithMUSCLE

or T-COFFEE.44,45 The phylogenetic analysis was performed by IQ-TREE or MEGA46 based on PhyML47 with a bootstrap analysis of

1000 replicates.

ROS production assays
For assays withMarchantia thalli, 12 thalli discs (approximately 4-mmdiameter) from 4-week-oldMarchantia plants growing in a KKD

Hiroschamber (Clitec)withaday/night cycleof 10h:14hat 21 �Cand16 �Cwere sampledwith abiopsypunchand incubatedovernight

in sterilewater. Thewaterwas replacedwith the solutioncontaining 0.5mML-012, 10mg/mLhorseradishperoxidase (HRP), 0.1mg/mL

chitin (Colloidal Chitin polysaccharide, Elicityl) or 100 nM flg22 (SciLight Biotechnology LLC). DPI treatment was performed as previ-

ously described27withmodifications accordingly. The overnight incubationwater was replacedwith the 10 mMDPI solution (Sigma) or

sterile water, and discs were incubated for 3 h before replacing with the elicitor solution. For the preparation of chitin solution, the

desired amount of Colloidal Chitin polysaccharide was weighted, and sterile water was added to achieve the working concertation.

The chitin solution was mixed by vortexing before adding L-012 and HRP. Luminescence was captured over 30 min in 20-s intervals

with a Photek camera (East Sussex). ROS production assays in Arabidopsis leave discs were conducted as previously described.5
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Molecular cloning
The coding sequence of MpPBLa andMpRBOH1were amplified from Tak-1 cDNA, and cloned into pUAP4 as described. Site-direct

mutagenesis was performed with the primers provided in Table S1 to generate the Cas9-resistant version of MpPBLa and

MpRBOH1, the kinase-dead version of MpPBLa, and the phospho-dead version of MpRBOH1. MpPBLa or MpRBOH1 variants

were cloned into the level 0 vector pUAP4, and further subcloned into level 1 or 2 binary constructs.48 Sequences encoding

MpPBLa and the N terminus of MpRBOH1 were cloned into pOPINM using InFusion (Takara). MpPBLa was cloned into EcoRI/

NotI-digested pGEX4T1 using the primers provided in Table S1. For expression in HEK293T cells, coding regions of MpRBOH1

and MpPBLa were cloned into GreenGate entry vector pGGC49 and assembled with either N-terminal (for MpRBOH1) or C-terminal

(for MpPBLa) 2xStrepII tag into the destination vector pGGHEK.50

Transient expression
Agrobacterium-mediated transient expression of Marchantia was performed as previously described.51 Thalli of 3-week-old

Mppbla-1/pro35S::MpPBLa-cit were infiltrated with A. tumefaciens carrying constructs as indicated in figure captions.

Protein extraction and co-immunoprecipitation
For co-IP,Marchantia thalli were harvested 3 days post-infiltration. Tissuewas frozen and ground in liquid nitrogen. Protein extraction

and immunoprecipitation were performed as described previously37 using DYKDDDDK Fab-Trap� Agarose (Chromotek). Proteins

were separated by SDS-PAGE and blotted onto PVDF membrane. Membranes were blocked and probed in TBST-5 % non-fat milk

using blotting with anti-FLAG (HRP-conjugated B-2, Sigma A8592, 1:5000 dilution) or anti-GFP (HRP-conjugated, MACS 130-091-

933, 1:5000 dilution).

Recombinant protein expression and purification
All recombinant proteins used in this study were expressed in Escherichia coli strain BL21(DE3) Rosetta pLysS. MpPBLa, MpPBLa*

(kinase-dead, D228N), the N-terminus, and the C-terminus of MpRBOHa were all expressed as 6xHis-MBP fusions. MpPBLa was

also expressed as a GST fusion protein. Recombinant proteins were affinity-purified using HisPur Cobalt Resin (Thermo) or GST-

Bind Resin (Millipore) for 6xHis-MBP, and GST fusions, respectively.

In vitro pulldown assays
Approximately 6 mg of bait and 10 mg of prey proteins were mixed to 100 mL final volume in the binding buffer (25 mM Tris-Cl pH 7.4,

100 mM NaCl, 0.2 % Triton-X100, 1 mM DTT). Thirty microliters were taken out as ‘input’. Fifty microliters of GST-Bind Resin (Milli-

pore) were added to the tube with the binding buffer topping up to a final volume of 500 mL. Samples were mixed on a rotator at room

temperature (RT) for 30 min. The enriched proteins were eluted with 50 mL SDS-loading dye (‘pulldown’) from the resin after washing

four times with the binding buffer. Samples were separated by SDS-PAGE, transferred to PVDF, and imaged by blotting with anti-

GST (Upstate 06332, 1:5000 dilution), or anti-MBP (NEB E8032, 1:2000 dilution) antibodies following by anti-Rabbit (Sigma

A0168, 1:10000 dilution), or anti-Mouse (Sigma A0545, 1:10000 dilution) secondary antibodies.

In vitro kinase assays
Approximately 1 mg of kinase and was incubated with approximately 2 mg of substrate protein in kinase buffer (25 mM Tris-Cl pH 7.4,

5 mMMnCl2, 5 mMMgCl2, 1 mMDTT). Five micromolar of ATP plus 0.5 mCi 32P-g-ATP in a final reaction volume of 30 mL were added

to the tube to initiate the reaction. Reactionswere incubated at RT for 30min and terminated by addition of SDS-loading dye following

by heating at 70 �C for 10 min. Proteins were resolved by SDS-PAGE, transferred to PVDF membrane, and stained with Coomassie

brilliant blue G-250. Autoradiographs were imaged using an Amersham Typhoon phosphorimager (GE Healthcare).

ROS production assay in HEK293T cells
Activity of MpRBOH1 in HEK293T cells was assessed as described previously.27 In brief, before transfection, cells were seeded into

white, tissue-culture treated 96well plates (Greiner). Individual wells were transformedwith the indicated expression constructs using

50 ng of MpRBOH1 plasmids and 30 ng ofMpPBLa plasmids, respectively, using the PEI-MAX� (Polysciences) transfection reagent.

Forty-eight hours after transfection, cultivation media was aspirated, and cells were washed with Hank’s Balanced Salt Solution

(HBSS) (Gibco). Afterwards, 100 mL of a measurement buffer consisting of HBSS with 62 mM L-012 and 60 mg/ml HRP was added

to each well. Cells were stimulated with 0.1 mM of the phosphatase inhibitor Calyculin-A and ROS production was measured using

a Spark� multimode microplate reader (TECAN) over a 25-min measurement.

RNA extraction and real-time (RT) quantitative PCR analysis
Total RNA was extracted from target tissues by FavorPrep Plant Total RNA Purification Mini Kit (Favorgen) following the manufac-

turer’s instruction. First-strand cDNA synthesis was performed by using 1 mg of DNA-free RNA sample with RevertAid First Strand

cDNA Synthesis Kit (Thermo Fisher Scientific) according to the manufacturer’s protocol. For RT-qPCR analysis, diluted cDNA was

used as the template for PowerUpSYBRGreen (Applied biosystems) with the primers provided in Table S1. Datawere analyzed using

the DDCT method and normalized against the expression level of MpUBOX.6 For each sample, three biological replicates were per-

formed, and each biological replicate contained three technical replications.
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MAPK activation assay in Marchantia thalli
Two-week-old Marchantia thalli grown on half-strength Gamborg’s B5, 1 % agar medium were transferred to liquid medium 24 h

before treatment. Individual thalli were vacuum infiltrated with 0.1 mg/mL chitin (Colloidal Chitin polysaccharide, Elicityl) and

harvested at each time point as indicated in figure captions. Total proteins were extracted and analyzed by SDS-PAGE and immu-

noblotting as described above with p44/42 MAPK (Erk1/2) antibody (Cell Signaling).

LC-MS/MS Analysis
LC-MS/MS analysis was performed as previously described28 with minor differences. Approximately 35% of each sample was an-

alysed using an Orbitrap Fusion Tribrid Mass Spectrometer (Thermo Fisher Scientific) coupled to a U3000 nano-UPLC (Thermo

Fisher Scientific). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the

PRIDE52 partner repository with the dataset identifier PRIDE: PXD038639.

Data processing and peptide identification
Peak lists in the form ofMascot generic files were prepared from raw data files usingMSConvert (Proteowizard) and sent to a peptide

search on Mascot server v.2.8.0 using Mascot Daemon (Matrix Science) against an in-house constructs and contaminants database

and the E. coli K12 protein database. Tryptic peptides with up to one possible mis-cleavage and charge states +2 and +3 were

allowed in the search. The following peptide modifications were included in the search: carbamidomethylated cysteine (fixed),

oxidizedmethionine (variable) and phosphorylated serine, threonine and tyrosine (variable). Data were searched with amonoisotopic

precursor and fragment ionmass tolerance 10 ppm and 0.8 Da respectively. Decoy database was used to validate peptide sequence

matches. Mascot results were combined in Scaffold v.5.0.0 (Proteome Software) and filtered to show only phospho-peptides.

Peptide and protein identifications were accepted if peptide probability and protein threshold was R80.0% and 95% respectively.

Phospho-site specificity was then confirmed by eye. Data were then exported to Excel (Microsoft) for further processing. For each

phospho-peptide, spectral counts from all biological replicates were summed. Spectral counts frommis-cleaved peptides identifying

the same phosphorylation site were then summed to give final spectral counts for each site.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were visualized using GraphPad and Jalview programs as described in method details. Statistical tests, n values, and signifi-

cance cutoffs are described in figure legends and/or method details.
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