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Abstract. Motivated by the so-called H-cell reduction theorems, we investigate certain
classes of bicategories which have only one H-cell apart from possibly the identity. We show
that H0-simple quasi fiab bicategories with unique H-cell H0 are fusion categories. We further
study two classes of non-semisimple quasi-fiab bicategories with a single H-cell apart from
the identity. The first is HA, indexed by a finite-dimensional radically graded basic Hopf
algebra A, and the second is GA, consisting of symmetric projective A-A-bimodules. We
show that HA can be viewed as a 1-full subbicategory of GA and classify simple transitive
birepresentations for GA. We point out that the number of equivalence classes of the latter
is finite, while that for HA is generally not.

1. Introduction

Since the begining of the century, tremendous progress in representation theory has been made
using ideas of categorification, see e.g. [CR, EW, W]. This has led to the development of higher
categorical versions of representation theory. One major such development here has been the
study of module categories over tensor categories, as pioneered by Etingof, Ostrik et al., see
e.g. [EGNO]. This branch of categorical representation theory studies monoidal categories
(2-categories with one object) which are generally assumed to be abelian and rigid, referring to
the existence of left and right adjoints for all objects (1-morphisms in 2-categorical language).
One particularly well-studied class of tensor categories is that of fusion categories, which are,
in addition, semisimple.

Multiple monoidal categories, and more generally 2-categories, which are of importance in
representation theory are, however, not abelian, and passing to their abelianisations, one loses
adjunctions. Motivated by this, and modelled on 2-categories appearing in relevant examples,
finitary and fiat 2-categories as well as their finitary 2-representations were defined in [MM1,
MM2]. These should be viewed as 2-categorical analogues of finite-dimensional algebras and
their finite-dimensional representations. The notion simple transitive 2-representation, which
provides an appropriate analogue for simple representations of an algebra, was introduced in
[MM5], leading to the fundamental problem of classifying these for specific classes of fiat 2-
categories, as well as of developing methods to aid such a classification for an arbitrary fiat
2-category.
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The most powerful tool for classifying simple transitive 2-representations of a general fiat 2-
category C is given by the so-called H-cell reduction results in [MMMZ] and [MMMTZ2].
These reduce the problem to the classification of simple transitive 2-representations of certain
subquotients CH of C . These subquotients have the desirable property that they have only one
object, and only a single left/right and two-sided cell (which is then an H-cell) H0 of inde-
composable 1-morphisms, apart from possibly one other such cell containing only the identity
1-morphism 1. Moreover, CH is H0-simple. Analogous results hold for fiab bicategories, which
is the approach we take in this article.

This motivates the question what shape quasi fiab bicategories with either only one H-cell H0

or precisely two H-cells {1} and H0, take and whether these can be classified in any way,
assuming they are H0-simple. The results in this paper should be seen as an initial step in this
direction.

As a first result, we show that, if 1 ∈ H0, then such an H0-simple bicategory is a fusion
category. In this case, the theory of [EGNO] applies. The remainder of this article is thus
devoted to the case of H0-simple quasi-fiab bicategories with precisely two left/right and two-
sided cells {1} and H0, which are not necessarily semisimple and whose general structure theory
is not at all well-understood yet.

We investigate two classes of such bicategories. The first such class is given by a certain subbi-
category HA of modules over a finite-dimensional radically graded Hopf algebra (under tensor
product over k), whose 1-morphisms are given by the additive closure of projective modules
and the trivial module. The second example is the bicategory GA of projective symmetric bi-
modules over a finite-dimensional self-injective basic algebra A with an action of a finite group
G, generalising the 2-categories studied in [MMZ2]. We embed both bicategories into the bi-
category CA of projective A-A-bimodules (with horizontal composition given by tensor product
over A) in Corollary 4.15 resp. Corollary 5.7 and show that, for A a finite-dimensional radically
graded Hopf algebra, HA can be viewed as a 1-full subbicategory of GA (see Theorem 5.8). We
show that GA (and hence, by 1-fullness, HA) has precisely two H-cells {1} and H0 as desired
in Proposition 5.12. Moreover, both bicategories are H0-simple (Proposition 5.13). Finally,
we give a classification of simple transitive birepresentations (extending the case considered in
[MMZ2]) of GA in Theorem 5.19, of which there are only finitely many equivalence classes. By
contrast, HA has infinitely many equivalence classes of simple transitive birepresentations in
general.

Structure of the paper. In Section 2, we recall the relevant notions from finitary birepre-
sentation theory. In Section 3, we prove that an H0-simple bicategory with a single H-cell
H0 is fusion. In Section 4, we introduce the relevant bicategories of representations of a Hopf
algebra A, and construct a pseudofunctor Γ embedding these into the appropriate bicategories
of A-A-bimodules. In Section 5, we introduce the relevant bicategories GA of symmetric A-A-
bimodules (generalising the setup from [MMZ2]) and likewise embed these into the appropriate
bicategories of A-A-bimodules via a pseudofunctor Θ. Moreover, we verify that the essential
image of HA under Γ is a 1-full subbicategory or the essential image of GA under Θ. Finally,
we classify simple transitive birepresentations of GA.
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2. Preliminaries

Here we recall some basic definitions from finitary birepresentation theory using the conventions
from [MMMTZ2].

Throughout, we let k denote an algebraically closed field. We call a k-linear, additive category
finitary if it is idempotent complete, has finite-dimensional morphism spaces and only finitely

many indecomposable objects up to isomorphism. We denote by Afk the 2-category of finitary
categories, k-linear functors and natural transformations.

We call a bicategory C multifinitary if the number of objects of C is finite, the categories C(i, j)
are finitary for all i, j ∈ C , and horizontal composition of 2-morphisms is k-bilinear. If, addi-
tionally, the identity 1-morphism on each object is indecomposable, we say C is finitary.

A bicategory C is quasi (multi)fiab if it is (multi)finitary and each 1-morphism has a left and
a right adjoint. If these are moreover isomorphic, C is (multifiab), see [MMMTZ2, Definition
2.5] for more detail.

A finitary birepresentation M of a multifinitary bicategory C is a pseudofunctor M : C → Afk .
A finitary birepresentation is called simple transitive if

∐
i∈C M(i) has no proper C-stable

ideals.

If C is a bicategory, and i ∈ C , we denote by Ci the endomorphism bicategory of i, more
precisely, the bicategory with one object i and morphism category C(i, i).

The set of isomorphism classes of indecomposable 1-morphisms of a multifinitary bicategory C

carries a left partial preorder ≤L generated by setting F ≤L G if there exists H such that G
is isomorphic to a direct summand of HF. Similarly, one defines right and two-sided partial
preorders ≤R and ≤J , respectively. Equivalence classes with respect to these are called left,
right and two-sided cells, respectively. Moreover, an H-cell is an intersection of a left and a
right cell.

By a mild generalisation of [ChMa, Subsection 3.2], every finitary birepresentation M of a
(multi)finitary bicategory has an apex, which is the unique maximal two-sided cell not annihi-
lated by M. To each left cell L, we can associate the cell birepresentation CL, which is the
quotient of the left 2-ideal generated by the 1-morphisms in L by its unique maximal C-stable
ideal. By construction, this is simple transitive and its apex is the two-sided cell containing L.
For more details on cells and cell birepresentations, see [MMMTZ2, Section 2.5].

If J is a two-sided cell in C , we say C is J -simple provided it has no proper 2-ideals which do
not contain the identities on 1-morphisms in J .
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3. A single H-cell H0 and H0-simplicity implies fusion

Throughout this section, let C be a quasi fiab 2-category with only one object • (hence denoting
the identity 1-morphism on • simply by 1), and with only one H-cell H0.

Proposition 3.1. If C is H0-simple, then C is a fusion category.

Proof. Recall (cf. [EGNO, Definition 4.1.1]) that a bicategory C is a fusion category if

(1) it has only one object •;

(2) the category C(•, •) is a k-linear, additive, with finitely many isomorphism classes of
indecomposable objects;

(3) C(•, •) is semisimple and all objects have finite length;

(4) morphism spaces in C(•, •) are finite-dimensional;

(5) horizontal composition is bilinear on 2-morphisms;

(6) 1 = 1• is indecomposable;

(7) it admits adjunctions (i.e. is rigid).

By assumption, our 2-category C is quasi fiab on one object, which takes care of (1),(2),(4),
(5), (6) and (7), and provided that C(•, •) is semisimple, all objects in C(•, •) have finite
length, so we only need to check that C(•, •) is semisimple.

By [KMMZ, Theorem 2] applied to the case where M is the cell birepresentation CH0 associated
to our (unique) cell H0, and F = 1, it follows that CH0(•) is semisimple. Thus the kernel
of the 2-functor CH0 contains all 2-morphisms which belong to the radical of CH0(•, •). By
H0-simplicity, the cell birepresentation CH0 is faithful, hence the radical of C(•, •) is zero. �

Motivated by this result, the remainder of this article investigates certain classes of quasi fiab
bicategories, which have precisely twoH-cells, namely one consisting of the identity 1-morphism
and precisely one other H-cell (which is necessarily strictly larger in the two-sided order).

4. Hopf algebras and projective bimodules

Let A be a finite dimensional unital associative algebra over k. Additional assumptions on A
will be specified as we need them. Write ⊕ and ⊗ for the biproduct and tensor product on the
category of A-A-bimodules.
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4.1. Bimodule conventions. Let K,M,N be A-A-bimodules. We fix the following standard
canonical isomorphisms:

(K ⊗AM)⊗A N
∼=−→ K ⊗A (M ⊗A N), (k ⊗m)⊗ n 7→ k ⊗ (m⊗ n),

A⊗AM
∼=−→M, a⊗m 7→ am,

K ⊗A (M ⊕N)
∼=−→ (K ⊗AM)⊕ (K ⊗A N), k ⊗ (m,n) 7→ (k ⊗m, k ⊗ n).

Suppose {e1, . . . , ek} is a complete set of primitive orthogonal idempotents for A. For all
i, j ∈ {1, . . . , k} we have isomorphisms

eiA⊗A Aej
∼=−→ eiAej , eia⊗ bej 7→ eiabej .

Throughout, we treat all these isomorphisms as equalities.

4.2. The bicategories BA and CA. Let BA be the bicategory of A-A-bimodules. More
precisely, BA has one object • and its morphism category BA(•, •) is the category of A-A-
bimodules with horizontal composition given by the tensor product −⊗A−, and the associator
and unitors given by the canonical isomorphisms in Section 4.1.

We define CA to be the 2-full subbicategory of BA whose 1-morphisms are those bimodules in
the additive closure of A⊕A⊗k A. Note that this is always multifinitary, quasi multifiab if A
is a Frobenius algebra, and multifiab if A is weakly symmetric. The prefix multi- is superfluous
if A is indecomposable.

Remark 4.1. Note that if A = A1 × · · · × An is a decomposition of A into indecomposable
factors, then CA is a bicategorical version of the additive closure (see [MMMTZ2, Section 2.4])
of the 2-category that is denoted by CA in e.g. [MMZ3].

4.3. Group actions and equivariant objects. Let G be a finite subgroup of the automorphism
group of A, which we interpret as acting on the left of A. We further assume that char(k) does
not divide |G|. We obtain a right action of G on the category of A-A-bimodules via M 7→Mg,
with the action of A on Mg given by

a ·m · b := g(a)mg(b), for all a, b ∈ A and m ∈M.

For the translate of a morphism ϕ under the action of g ∈ G, we will write ϕg .

Lemma 4.2. This is a well-defined action.

Proof. First note that Mg is indeed an A-A-bimodule. This follows from the fact that M is an
A-A-bimodule, hence an A⊗kA

op-module, and g defines an algebra automorphism of A⊗kA
op

for any g ∈ G.

Clearly, M ∼= M1G . Thus, we only need to check that (Mg)h ∼= Mgh as A-A-bimodules. We
write · for the action on Mg and ∗ for the action on (Mg)h.
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Then the action of A on the left hand-side is given by

a ∗m ∗ b = h(a) ·m · h(b) = g(h(a))mg(h(b)) = (gh)(a)m(gh)(b)

for a, b ∈ A, m ∈M . Thus, the action of A is the same as required. �

Lemma 4.3. Let M,N be two A-A-bimodules and g ∈ G. Then (M ⊗A N)g ∼= Mg ⊗A Ng

as A-A-bimodules via the canonical isomorphism m⊗ n 7→ m⊗ n.

Proof. The map (M ⊗A N)g → Mg ⊗A Ng, m ⊗ n 7→ m ⊗ n induces an isomorphism of k-
modules. This isomorphism extends to an isomorphism of A-A-bimodules since g ∈ Aut(A). �

For future use, we record the following lemma.

Lemma 4.4. Assume that A has a complete set of primitive orthogonal idempotents E =
{eg|g ∈ G} indexed by the group G, such that the action of G leaves E invariant and is given
by h(eg) = egh -1 . Then

(Aeg ⊗k eg′A)h ∼= Aegh ⊗k eg′hA.

Proof. We compute es · eg ⊗ eg′ · et = h(es)eg ⊗ eg′h(et) = esh -1eg ⊗ eg′eth -1 6= 0 iff sh -1 = g

and th -1 = g′, so (Aeg ⊗k eg′A)h ∼= Aegh ⊗k eg′hA in the category of A-A-bimodules. �

Recall (c.f. [Su]) that a G-equivariant object of the category BA(•, •) is a pair (M, {αMg | g ∈
G}) where αMg : M

∼=−→Mg such that the diagram

(1) M
αM
g //

αM
hg
��

Mg

(αM
h )g

��
Mhg = // (Mh)g

commutes. By slight abuse of notation, we will call the object M G-equivariant, if there exists
a G-equivariant structure on it.

A morphism ψ between two G-equivariant objects (M, {αMg | g ∈ G}) and (N, {αNg | g ∈ G}
is a morphism ψ : M → N such that the diagram

(2) M
αM
g //

ψ
��

Mg

(ψ)g

��
N

αN
g // (N)g.

commutes.
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4.4. Hopf algebra conventions. Let A be finite dimensional Hopf algebra over k with multi-
plication m, comultiplication ∆, counit ε, unit ι, and antipode S.

For A-modules M,N , we can, as usual, view M ⊗k N as an A-module using the coproduct ∆
of A via a · (m⊗ n) = ∆(a)(m⊗ n).

Let B = A ⊗ Aop. Consider the map ϕ := (id ⊗ S) ◦∆ : A → B. Since both ∆ and id ⊗ S
are injective, so is ϕ. Moreover, a direct computation shows that ϕ is a morphism of algebras,
and hence an algebra monomorphism. It thus induces a left and a right A-module structure on
B given by

a ·ϕ (b⊗ c) = ϕ(a)(b⊗ c) =
∑

a(1)b⊗ cS(a(2)),

(b⊗ c) ·ϕ a = (b⊗ c)ϕ(a) =
∑

ba(1) ⊗ S(a(2))c,
(3)

respectively. When regarding B as an A-A-bimodule with respect to these actions, we will
write A·B·A. For future use, we record the following lemma.

Lemma 4.5. Let A be a k-basis of A.

(a) A k-basis of A⊗k A is given by {
∑
a(1) ⊗ a(2)b | a, b ∈ A}. In particular, A⊗k A as a left

A-module with the action induced by the coproduct of A is free on basis {
∑

1⊗b | b ∈ A}.

(b) A k-basis of A⊗kA is given by {
∑
a(1)⊗S(a(2))b | a, b ∈ A}. In particular, B·A is free as

a right A-module with basis {
∑

1⊗ b | b ∈ A}.

(c) A k-basis of A⊗kA is given by {
∑
a(1)⊗ bS(a(2)) | a, b ∈ A}. In particular, ·AB is free as

a left A-module with basis {
∑

1⊗ b | b ∈ A}

Proof. Following the proof of [Mo, Lemma 3.1.4], we define f = (id⊗m)◦ (∆⊗ id) : A⊗A→
A⊗A. This has inverse g = (id⊗m)(id⊗ S ⊗ id)(∆⊗ id), as commutativity of the diagram

A⊗A ∆⊗id //

∆⊗id
��

A⊗A⊗A id⊗m //

∆⊗id⊗id
��

A⊗A

∆⊗id
��

A⊗A⊗A id⊗∆⊗id //

id⊗ιε⊗id

%%

A⊗A⊗A⊗A id⊗id⊗m //

id⊗S⊗id⊗id
��

A⊗A⊗A

id⊗S⊗id
��

A⊗A⊗A⊗A id⊗id⊗m //

id⊗m⊗id
��

A⊗A⊗A

id⊗m
��

A⊗A⊗A id⊗m // A⊗A,

which follows from coassociativity and associativity for the top left and bottom right square,
the interchange law for the the two top right squares, and the Hopf algebra axiom for the
bottom left square, shows.
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(a) Since {
∑
a(1) ⊗ a(2)b | a, b ∈ A} is the image of the k-basis {a ⊗ b | a, b ∈ A} under the

isomorphism f it is also a k-basis.

(b) Similarly, {
∑
a(1)⊗S(a(2))b | a, b ∈ A} is the image of the k-basis {a⊗ b | a, b ∈ A} under

the isomorphism g, it is also a k-basis, and (b) follows.

(c) Since A is finite-dimensional , the antipode is invertible and {a⊗ S -1(b) | a, b ∈ A} is also
a k-basis of A⊗A. The image of this basis under f is {

∑
a(1) ⊗ a(2)S -1(b) | a, b ∈ A}, which

under the isomorphism id⊗ S is sent to {
∑
a(1) ⊗ bS(a(2)) | a, b ∈ A}, proving that the latter

is also a k-basis.

All statements about A-bases with respect to the given actions follow immediately from the
definitions of the latter (see (3) for (b),(c)). �

4.5. The bicategories RepA and HA. Consider RepA, the one object bicategory with object
• and RepA(•, •) ∼= A-mod, with a fixed biproduct − ⊕ − and with horizontal composition
induced by −⊗k− and the Hopf algebra structure on A. The associator is given by the canonical

isomorphism (K ⊗k M)⊗k N
id⊗id⊗id−−−−−→ K ⊗k (M ⊗k N), which we again treat as an identity,

and the unit object is given by L1 = kv, on which A acts by the counit, i.e. av = ε(a)v. The
unitors are then given by L1 ⊗k M →M : v ⊗m 7→ m and M ⊗k L1 →M : m⊗ v 7→ m.

We define HA to be the 2-full subbicategory whose 1-morphisms are those A-modules in the
additive closure of A⊕L1. This is finitary and, given a finite-dimensional Hopf algebra is always
Frobenius, also quasi fiab.

4.6. The pseudofunctor Γ. We will now define a 2-faithful pseudofunctor Γ: RepA → BA.

Recall B = A ⊗k A
op and the left and right A-module structure on B induced by ϕ, see (3).

Identifying BA(•, •) with B-mod, consider the restriction functor Φ : BA(•, •)→ RepA(•, •),
which can equivalently be viewed as HomB(B·A,−) or as A·B ⊗B −. It therefore has a left
adjoint Γ given by B·A ⊗A −.

Lemma 4.6. Φ is a lax pseudofunctor.

Proof. Let M,N ∈ B-mod. We define a natural transformation

κ : Φ(−)⊗k Φ(−)→ Φ(−⊗A −)

by the natural projection
κM,N : M ⊗k N �M ⊗A N.

We note that this is indeed a morphism in RepA(•, •), since

κM,N (a ·ϕ (m⊗k n)) = κM,N ((a(1) ·ϕ m)⊗k (a(2) ·ϕ n))

= κM,N (a(11)mS(a(12))⊗k a
(21)nS(a(22)))

= a(11)mS(a(12))⊗A a(21)nS(a(22))

= a(1)m⊗A nS(a(2)) = a ·ϕ (m⊗A n).
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Here the fourth equality follows from commutativity of

A
∆ //

∆
��

A⊗k A

∆⊗id
��

A⊗k A
id⊗∆ //

id⊗∆
��

A⊗k A⊗k A

id⊗id⊗∆
��

A⊗k A⊗k A
id⊗∆⊗id //

id⊗ε⊗id
��

A⊗k A⊗k A⊗k A

id⊗S⊗id⊗S
��

A⊗k k⊗k A
id⊗ι⊗S

((

A⊗k A⊗k A⊗k A

id⊗m⊗iduu
A⊗k A⊗k A

which is due to coassociativity for the top two squares and the antipode axiom for the bottom
pentagon. Compatibility with the associator is encoded by the commutative diagram

(K ⊗k M)⊗k N
id⊗id⊗id //

κK,M⊗id

��

K ⊗k (M ⊗k N)

id⊗κM,N

��
(K ⊗AM)⊗k N

κK⊗AM,N

��

K ⊗k (M ⊗A N)

κK,M⊗AN

��
(K ⊗AM)⊗A N

id⊗id⊗id // K ⊗A (M ⊗A N).

Finally, consider the unit L1, and define the morphism ξ : L1 → Φ(A) by v 7→ 1A. This is indeed
a morphism in Rep(•, •), since ξ(av) = ξ(ε(a)v) = ε(a)1A while a ·ϕ 1A =

∑
a(1)1AS(a(2)) =

ε(a)1A by the antipode axiom. Moreover, the diagrams

L1 ⊗k M
ξ⊗id //

∼
��

A⊗k M

κA,M

��
M

∼ // A⊗AM

M ⊗k L1
id⊗ξ //

∼
��

M ⊗k A

κM,A

��
M

∼ // M ⊗A A

commute, hence κ and ξ equip Φ with the structure of a lax pseudofunctor. �

Since Φ is isomorphic to HomB(B·A,−), it has a left adjoint Γ given by B·A ⊗A −. Note that
this is an exact functor by Lemma 4.5(b). Denote by σ : Id → ΦΓ and τ : ΓΦ → Id the unit
and counit of the adjunction (Γ,Φ).
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Corollary 4.7. The left adjoint Γ: RepA → BA of Φ is an oplax pseudofunctor, with the
corresponding natural transformation γ : Γ(−⊗k −)→ Γ(−)⊗A Γ(−) given by the composite

γX,Y : Γ(X ⊗k Y )
Γ(σX⊗σY ) // Γ(ΦΓ(X)⊗k ΦΓ(Y ))

Γ(κΓ(X),Γ(Y )) // ΓΦ(Γ(X)⊗A Γ(Y ))

τΓ(X)⊗AΓ(Y )

��
Γ(X)⊗A Γ(Y )

and the morphism ζ : Γ(L1)→ A given as the image of ξ under the adjunction isomorphism

HomA(L1,Φ(A)) ∼= HomA−A(Γ(L1), A).

Our goal is to show that Γ is indeed a (strong) pseudofunctor, meaning γ and ζ are isomorphims.

Lemma 4.8. The morphism ζ defined in Corollary 4.7 is an isomorphism.

Proof. Recall that Φ(A) = A = HomB(B·A, A) and ζ : Γ(L1)→ A is defined as the image of
ξ : L1 → Φ(A), as defined in the proof of Lemma 4.6, under the adjunction isomorphism

HomA(L1,Φ(A)) ∼= HomA−A(Γ(L1), A).

Identifying Φ(A) with HomB(B·A, A), we see that ξ(v) : B·A → A is the unique map of
A-A-bimodules sending 1⊗ 1 7→ 1.

By Lemma 4.5(b) and the action of A on L1, a k-basis of Γ(L1) is given by 1⊗b⊗v, where b ∈ A,
for a k-basis A of A. Pulling ξ through the adjunction, we see that ζ(1⊗b⊗v) = ξ(v)(1⊗b) = b,
thus ζ produces a bijection of k-bases and is hence an isomorphism, as claimed. �

In order to show that γ is an isomorphism, we first determine the adjunction morphisms explic-
itly.

Lemma 4.9. The unit σ : Id→ ΦΓ and counit τ : ΓΦ→ Id of the adjunction (Γ,Φ) are given
by ϕ⊗A − and τ̃ ⊗A⊗Aop −, respectively, where

τ̃ : B·A ⊗A A·B → B, (a⊗ b)⊗ (c⊗ d) 7→ ac⊗ db.

Proof. In order to check that the compositions

Φ
σ◦0id // ΦΓΦ

id◦0τ // Φ and Γ
id◦0σ // ΓΦΓ

τ◦0id // Γ

are the respective identities, it suffices to check the representing maps on bimodules.

Note that the natural isomorphism A⊗A ·AB ∼= ·AB identifies a⊗A (1⊗ b) with a ·ϕ (1⊗ b) =∑
a(1) ⊗ bS(a(2)), thus the composition

A⊗A ·AB
σ̃⊗id−−−→ ·AB·A ⊗A A·B

id⊗τ̃−−−→ ·AB,

a⊗A (1⊗ b) 7−→
∑
a(1) ⊗ S(a(2))⊗ 1⊗ b 7−→

∑
a(1) ⊗ bS(a(2))

is indeed the identity.
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Similarly, since the natural isomorphism B·A⊗AA ∼= B identifies (1⊗ b)⊗a with (1⊗ b) ·ϕ a =∑
a(1) ⊗ S(a(2))b, the second composition given by

B·A ⊗A A
id◦0⊗σ̃−−−−→ B·A ⊗·A B ⊗B B·A

τ̃⊗id−−−→ B·A
(1⊗ b)⊗A a 7−→ 1⊗ b⊗A

∑
a(1) ⊗ S(a(2)) 7−→

∑
a(1) ⊗ S(a(2))b

is also the identity. �

Lemma 4.10. If γA,A is an isomorphism, then γX,Y is an isomorphism for allX,Y ∈ RepA(•, •).

Proof. Let X,Y be objects in RepA(•, •) with free presentations F1
f−→ F0 � X and G1

g−→
G0 � Y in RepA(•, •). Since the bifunctor−⊗k− giving the monoidal structure on RepA(•, •)
is exact, we obtain that

F1 ⊗k G0 ⊕ F0 ⊗k G1
(f⊗id,id⊗g) // F0 ⊗k G0

// // X ⊗k Y

is a free presentation of X ⊗k Y in RepA(•, •).

Since Γ(A) = B and Γ is exact

Γ(F1 ⊗k G0 ⊕ F0 ⊗k G1)
Γ(f⊗id,id⊗g) // Γ(F0 ⊗k G0) // // Γ(X ⊗k Y )

is a free presentation of Γ(X ⊗k Y ) in BA(•, •). Thus, we have a diagram

Γ(F1 ⊗k G0)⊕ Γ(F0 ⊗k G1)
(Γ(f⊗id),Γ(id⊗g)) //(

γF1,G0
0

0 γF0,G1

)
��

Γ(F0 ⊗k G0) // //

γF0,G0

��

Γ(X ⊗k Y )

γX,Y

��
Γ(F1)⊗A Γ(G0)⊕ Γ(F0)⊗A Γ(G1)

(Γ(f)⊗id,id⊗Γ(g))// Γ(F0)⊗A Γ(G0) // // Γ(X)⊗A Γ(Y )

.

Since the Γ(Fi),Γ(Gi), i = 0, 1, are free B- and in particular free A-modules, the bottom row
is a free presentation of Γ(X)⊗A Γ(Y ). By naturality of γ, the induced cokernel map is γX,Y .
As F0, F1, G0 and G1 are free A-modules, the maps γFi,Gj , where i, j ∈ {0, 1}, are direct sums
of copies of γA,A and are thus isomorphisms. Since the two vertical maps in the diagram above
are isomorphisms, it follows that so is γX,Y . �

In order to prove that γA,A is an isomorphism, we now provide basis for its domain and
codomain. To this end, let again A be a k-basis of A.

Lemma 4.11. For a, b, c ∈ A, set Yabc :=
∑
a(1)⊗kS(a(2))b⊗A1⊗kc. Then {Yabc | a, b, c ∈ A}

is a basis for Γ(A⊗k A).

Proof. Note that Γ(A ⊗k A) = B·A ⊗A (A ⊗k A), where the left action of A on A ⊗k A
is induced by the coproduct. By Lemma 4.5, both the left and the right side of the tensor
product are free as right, respectively left, A-modules on bases {1 ⊗ b | b ∈ A}, respectively
{1 ⊗ c | c ∈ A}. Thus B·A ⊗A (A ⊗k A) = B·A ⊗A A ⊗A (A ⊗k A) (where we again treat
the canonical isomorphism as an identity) has k-basis {1 ⊗ b ⊗A a ⊗A 1 ⊗k c | a, b, c ∈ A},
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and using the the definition of the action in (3), we see that 1 ⊗ b ⊗A a ⊗A 1 ⊗k c = Ya,b,c,
completing the proof. �

Lemma 4.12. For a, b, c ∈ A, set Xabc :=
∑
a(1)⊗c(1)⊗S(a(2)c(2))b. Then {Xabc | a, b, c ∈ A}

is a k-basis of A⊗k A⊗k A.

Proof. Consider the k-basis of A⊗k A⊗k A given by {a⊗ c⊗ b | a, b, c ∈ A}.

Define the maps

ϕ : A⊗k A⊗k A→ A⊗k A⊗k A, a⊗k c⊗k b 7→
∑

a(1) ⊗k c
(1) ⊗k S(a(2)c(2))b

and

ψ : A⊗k A⊗k A→ A⊗k A⊗k A, a⊗k c⊗k b 7→
∑

a(1) ⊗k c
(1) ⊗k a

(2)c(2)b.

To check that ϕ and ψ are inverse to each other, we compute

ψ(ϕ(a⊗ c⊗ b)) = ψ(
∑

a(1) ⊗ c(1) ⊗ S(a(2)c(2))b)

=
∑

a(1) ⊗ c(1) ⊗ a(2)c(2)S(a(3)c(3))b

where we have used coassociativity of the comultiplication in the indexing. Using the Hopf
algebra axiom,

∑
a(1)⊗c(1)⊗a(2)c(2)S(a(3)c(3)) = a⊗c⊗1, and hence ψ(ϕ(a⊗c⊗b)) = a⊗c⊗b.

Thus {Xabc | a, b, c ∈ A} is the image of a k-basis of A ⊗k A ⊗k A under an isomorphism,
hence also a k-basis. �

Lemma 4.13. The map γA,A is an isomorphism.

Proof. Recall from Corollary 4.7 that

γA,A = τΓA⊗AΓA ◦ Γ(κΓA,ΓA ◦ (σA ⊗ σA)) : Γ(A⊗k A)→ Γ(A)⊗A Γ(A).

By Lemma 4.11, the elements Yabc =
∑
a(1)⊗kS(a(2))b⊗A 1⊗k c, for a, b, c ∈ A, form a basis

of the domain.

Note that as a vector space Γ(A)⊗A Γ(A) = (A⊗k A)⊗A (A⊗k A), where the A action on
the left tensor factor A⊗k A is given by (3), and the action on the right tensor factor A⊗k A
is just the left action on its left tensor factor A. It follows that Γ(A)⊗A Γ(A) ∼= A⊗k A⊗k A
as a vector space, and a k-basis is given by {Xabc | a, b, c ∈ A}.

We claim that γA,A(Yabc) = Xabc.
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Indeed, first identifying Yabc with a(1) ⊗k S(a(2))b⊗A 1⊗ c ∈ Γ(A⊗k A) = B·A ⊗A (A⊗k A)
compute

γA,A(Yabc) = τΓA⊗AΓA ◦ Γ(κΓA,ΓA ◦ (σA ⊗ σA))((a(1) ⊗ S(a(2))b)⊗A (1⊗ c))

= τΓA⊗AΓA ◦ Γ(κΓA,ΓA)((a(1) ⊗ S(a(2))b)⊗A (1⊗ 1⊗ c(1) ⊗ S(c(2))))

= τΓA⊗AΓA((a(1) ⊗ S(a(2))b)⊗A (1⊗ c(1) ⊗ S(c(2))))

= a(1) ⊗ c(1) ⊗ S(c(2))S(a(2))b

= a(1) ⊗ c(1) ⊗ S(a(2)c(2))b = Xabc,

proving the claim. Thus, γA,A is bijective, and the statement follows. �

Proposition 4.14. Γ is a strong pseudofunctor.

Proof. This follows from Lemmas 4.8, 4.10 and 4.13 �

Corollary 4.15. The pseudofunctor Γ restricts to a pseudofunctor from HA to CA.

Proof. This follows immediately from the fact that Γ(A) ∼= A⊗k A and Γ(L1) ∼= A. �

4.7. Finite-dimensional radically graded basic Hopf algebras. Let G be a finite group. Let
W = (w1, . . . , wn) be a weight sequence of elements in G, i.e. a sequence invariant under
conjugation up to permutation. Following [GS], we can associate a quiver Q = QG,W , called
the covering quiver, to the pair (G,W ) as follows: its vertices are labelled by elements of G,
i.e. Q0 = {eg | g ∈ G} and its arrows are given by

Q1 = {ai,g : eg -1 → ewig -1 | i = 1, . . . , n, g ∈ G}.

The path algebra kQ is said to have an allowable kG-bimodule structure if it has a kG-bimodule
structure satisfying g · eh · g′ = eg′ -1hg -1 , and such that h · ai,g · h′ is contained in the k-linear
span of arrows from eh′ -1g -1h -1 to eh′ -1wig -1h -1 .

Let A be a radically graded basic Hopf algebra. Then, by [GS, Theorem 2.1] and [HL, Lemma
2.5], there exists a pair (G,W ) with associated covering quiver Q and allowable kG-bimodule
structure as above, such that A ∼= kQ/I for an admissible Hopf ideal I. Counit, antipode and
comultiplication are then defined on Q0 and Q1 by

ε(eg) =

{
1, for g = 1G

0 otherwise
ε(ai,g) = 0

S(eg) = eg -1 S(ai,g) = −wig -1 · ai,g · g -1

∆(eg) =
∑

h∈G egh ⊗ eh -1 ∆(ai,g) =
∑

h∈G(h · ai,g ⊗ eh + eh ⊗ ai,g · h)

and extended linearly and multiplicatively from there. Note that S(ai,g) = egS(ai,g)egw -1
i

.

For the rest of this section, let A be a radically graded basic Hopf algebra given by the data
above.
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Note that the left action of G on A induces a right action of A on BA(•, •) (see Section 4.3,
and that, in particular, we are in the situation of Lemma 4.4, i.e (Aeg⊗eg′A)h ∼= Aegh⊗eg′hA).

Lemma 4.16. For any g ∈ G, the A-A-bimodule Γ(Aeg) can be equipped with a G-equivariant
structure. Moreover, for any morphism ρ : Aeg → Aeg′ of left A-modules, Γ(ρ) is a G-
equivariant morphism.

Proof. We first construct the isomorphism α
Γ(Aeg)
k : Γ(Aeg) → Γ(Aeg)

k, writing αk for sim-
plicity. Computing

ϕ(eg) = (id⊗ S)

(∑
h∈G

egh ⊗ eh -1

)
=
∑
h∈G

egh ⊗ eh,

we see that Γ(Aeg) = (A⊗A) ·ϕ eg =
⊕

h∈H Aegh ⊗ ehA and thus

Γ(Aeg)
k = (

⊕
h∈G

Aegh ⊗ ehA)k ∼=
⊕
h∈G

Aeghk ⊗ ehkA.

The obvious isomorphism is thus given by αk(egh⊗ eh) = egh⊗ eh = egh̃k ⊗ eh̃k for h̃ = hk -1,

that is, the identical idempotent, which now lives in the h̃ component of Γ(Aeg)
k. Given that

αk is just a relabeling but the underlying map is indeed an identity morphism, it is obvious that
the diagram in (1) commutes and this indeed defines a G-equivariant structure on Γ(Aeg).

Let now Γ(Aeg) and Γ(Aeg′), g, g′ ∈ G and let ρa : Γ(Aeg)→ Γ(Aeg′) be defined by eg 7→ eg′a,
where a = egaeg′ . Therefore, Γ(ρa) :

⊕
h∈GAegh⊗ ehA→

⊕
h′∈GAeg′h′ ⊗ eh′A is defined by

egh ⊗ eh 7→
∑
a(1) ⊗ S(a(2)). We need to show that Γ(ρa) is a G-equivariant morphism (see

(2)), i.e. that the diagram

Γ(Aeg)
αk //

Γ(ρa)

��

Γ(Aeg)
k

Γ(ρa)g

��
Γ(Aeg′)

αk // Γ(Aeg′)
k

commutes.

Again, we identify Γ(Aeg)
k with⊕
h∈G

Aeghk ⊗ ehkA =
⊕
h̃∈G

Aegh̃ ⊗ eh̃A

for and Γ(Aeg′)
k with ⊕

h′∈G
Aeg′h′k ⊗ eh′kA =

⊕
h̃′∈G

Aegh̃′ ⊗ eh̃′A

for h̃ = hk -1 and h̃′ = h′k -1. We compute the h̃′ components of both compositions applied
to the generator of the h-component egh ⊗ eh.
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On the one hand, we obtain

(αk(Γ(ρa)(egh ⊗ eh))h̃′ =
∑

egha
(1)eg′h̃′ ⊗ eh̃′S(a(2))eh.

On the other hand, we compute(
Γ(ρa)

k(αk(egh ⊗ eh))
)
h̃′

=
(

Γ(ρa)
k(egh̃k ⊗ eh̃k)

)
h̃′

=
(
k -1 · (Γ(ρa)(egh̃ ⊗ eh̃))

)
h̃′

=
(
k -1 · (

∑
egh̃a

(1) ⊗ S(a(2))eh̃)
)
h̃′

=
∑

egh(k -1 · a(1))eg′h̃′ ⊗ eh̃′(k
-1 · S(a(2)))eh

where we have used that k -1 · egh̃ = egh.

It thus suffices to verify that
∑
k · a(1) ⊗ k · S(a(2)) =

∑
a(1) ⊗ S(a(2)) for all k ∈ G, and it

suffices to do this for arrows in the quiver of A.

Let ai,g be an arrow. Then

(id⊗ S)∆(ai,g) = (id⊗ S)(
∑
h∈G

(h · ai,g ⊗ eh + eh ⊗ ai,g · h))

=
∑
h∈G

(h · ai,g ⊗ eh -1 + eh ⊗ h -1 · S(ai,g))

=
∑

a(1) ⊗ S(a(2)).

where we have used that S(x · h) = h -1 · S(x) (see [GS, Lemma 2.2]). On the other hand,∑
k · a(1) ⊗ k · S(a(2)) =

∑
h∈G

(kh · ai,g ⊗ eh -1k -1 + ehk -1 ⊗ kh -1 · S(ai,g))

=
∑
h′∈G

h′ · ai,g ⊗ eh′ -1 +
∑
h′′∈G

eh′′ ⊗ h′′ -1 · S(ai,g)

=
∑

a(1) ⊗ S(a(2)),

where we have changed the summation to h′ = kh and h′′ = hk -1. This proves our claim. �

Proposition 4.17. For allM ∈ RepA(•, •), Γ(M) carries a G-equivariant structure in BA(•, •).
Moreover for any f : M → N in RepA(•, •), the morphism Γ(f) is G-equivariant.

Proof. Let M ∈ RepA(•, •) and let

s⊕
i=1

Aehi
(ρij)
−−−→

t⊕
j=1

Aegj �M
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be a projective presentation for M . Since Γ is exact,

Γ(

s⊕
i=1

Aehi)
Γ(ρij)
−−−−→ Γ(

t⊕
j=1

Aegj ) � Γ(M)

is a projective presentation for Γ(M). Defining α
⊕Γ(Aegj )

k :
⊕t

j=1 Γ(Aegj ) →
⊕t

j=1 Γ(Aegj )
k

by applying αk to each component, we obtain the commutative diagram⊕s
i=1 Γ(Aehi)

(Γ(ρij))
//

α
⊕Γ(Aehi

)

k
��

⊕t
j=1 Γ(Aegj )

α
⊕Γ(Aegj )

k��

// // Γ(M)

��⊕s
i=1 Γ(Aehi)

k
Γ(ρij)k

//
⊕t

j=1 Γ(Aegj )
k // // Γ(M)k,

where the solid vertical arrows are isomorphisms, implying that the induced morphism on the
cokernels, which we define to be αMk , is also an isomorphism as needed. The fact that these
isomorphisms αMk , for k ∈ G, make the diagram (1) commute, follows from the same fact
for the Γ(Aeg). Moreover, for any f : M → N in RepA(•, •), one checks that Γ(f) is G-
equivariant by lifting f to a projective presentation and applying Lemma 4.16. �

5. Symmetric bimodules and their simple transitive birepresentations

5.1. Symmetric bimodules. Let now again A be any finite-dimensional algebra and assume
G is a finite subgroup of the automorphism group of A as in Section 4.3.

Recall the category BA(•, •) of A-A-bimodules. Let XA be the category whose objects are
those of BA(•, •), but in which morphism spaces between objects M and N are given by

HomXA
(M,N) :=

⊕
g∈G

HomA-A(M,Ng).

Thus, any ϕ ∈ HomXA
(M,N) is given by a tuple (ϕg)g∈G such that ϕg ∈ HomA-A(M,Ng).

Composition of ϕ ∈ HomXA
(M,N) and ψ ∈ HomXA

(N,K)is defined by

(4)

HomXA
(N,K)⊗HomXA

(M,N) → HomXA
(M,K)

(ψh)h∈G ⊗ (ϕg)g∈G 7→
(∑
g∈G

(ψsg -1)g ◦ ϕg
)
s∈G.

See [CM], where this is defined in Definition 2.3 and called a skew-category, for more details.

Denote by X̃A the idempotent completion of XA, that is, objects of X̃A are pairs (M, e) where
M ∈ XA and e = e2 ∈ EndXA

(M). For any A-A-bimodule M , we denote its associated
stabiliser subgroup by

GM := {g ∈ G |M ∼= Mg}.
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The following lemma is proved in exactly the same way as in the case of abelian G, see [MMZ2,
Lemma 2(i)].

Lemma 5.1. For indecomposable M ∈ XA, there is an isomorphism of algebras

EndXA
(M)/Rad(EndXA

(M)) ∼= k[GM ]/Rad(k[GM ]) ∼= k[GM ].

For any M , the group algebra k[GM ] is semi-simple and admits a unique decomposition into a
product of matrix rings. Let k[GM ] = SM1 ⊕ · · · ⊕ SMsM be a decomposition into a direct sum

of simple modules, and let {ε̃M1 , . . . , ε̃MsM } be the corresponding set of primitive idempotents

in k[GM ]. Assume that SM1 is the trivial module. Each ε̃Mi has the form
1

|GM |
∑
g∈GM

λMi (g)g

for some scalars λMi (g) and hence defines an idempotent εi in EndXA
(M) given by the tuple(

λM
i (g)
|GM | g

)
g∈GM

. In the special case of M = A, we omit the sub- and superscripts M , set s = sA

and also write π̃i = ε̃Ai and πi = εAi .

It immediately follows from the definitions that the indecomposable objects of X̃A are of the
form (M, εMj ), where M is indecomposable as an A-A-bimodule and j = 1, . . . , sM . Moreover,

(M, εMi ) and (M, εMj ) are isomorphic if and only if SMi
∼= SMj .

In order to arrive at a bicategory whose 1-morphisms are the objects of X̃A, we equip XA with
a tensor product by setting

• M ⊗G N =
⊕
g∈G

(
Mg ⊗A N

)
, for any M,N ∈ XA, and

• ϕ⊗G ψ =
(
(ϕgk -1)k ⊗ ψh

)
g,h,k∈G, where

(ϕgk -1)k ⊗ ψh : Mk ⊗A N → (M ′)g ⊗A (N ′)h,

for M,M ′, N,N ′ ∈ XA and ϕ ∈ HomXA
(M,M ′), ψ ∈ HomXA

(N,N ′).

Since (M ′gh
-1 ⊗A N ′)h ∼= (M ′)g ⊗A (N ′)h, we observe that (ϕgk -1)k ⊗ ψh is a component of

(ϕ ⊗G ψ)h. The following lemma is the analogue of [MMZ2, Lemma 3] and shows that the
asymmetry in the defintion of − ⊗G − is only notational. For the reader’s convenience, we
include the proof.

Lemma 5.2. There is an isomorphism⊕
g∈G

(
Mg ⊗A N

) ∼= ⊕
g∈G

(
M ⊗A Ng -1)

in XA.

Proof. By Lemma 4.3, there is a canonical isomorphism

(5) M ⊗A Ng -1 ∼= (Mg ⊗A N)g
-1
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in BA(•, •). Thus,

M ⊗A Ng -1 (ϕh)h∈G // Mg ⊗A N ,

with ϕg -1 given by (5) and the remaining components chosen as zero, defines the required
isomorphism in XA. �

The following lemma is the non-abelian version of [MMZ2, Lemma 5] and is proved analogously.

Lemma 5.3.

(i) The operation −⊗G − is bifunctorial.

(ii) If e and f are idempotents in XA, then so is e⊗G f . Hence −⊗G− extends to a bifunctor

−⊗G − : X̃A × X̃A → X̃A given by (M, e)⊗G (N, f) = (M ⊗G N, e⊗G f).

We next obtain results akin to [MMZ2, Propositions 6 and 7]. We only consider (A, π1) on
the one hand, but generalise to any bimodule M with any idempotent on the other hand. The
proofs are similar to those in loc. cit. but since our setup, notation and level of generality are
different, we include them for the reader’s convenience.

Proposition 5.4. M ∈ XA and l ∈ {1, . . . , sM}. Then

(6) (M, εMl )⊗G (A, π1) ∼= (M, εMl ) ∼= (A, π1)⊗G (M, εMl ).

Proof. We start by constructing a morphism ϕ from the right hand side of (6) to the left hand
side. Consider the morphism

ϕ := (ϕs,t)s,t∈G : M →
⊕
s,t∈G

M s ⊗A At

where ϕs,t is given by

m 7→ 1

|GM ||G|
λMl (s)(s(m)⊗ 1) ∈M s ⊗A At.

if s ∈ GM and zero otherwise.

Consider the diagram

M
εMl //

(ϕs,t)s,t∈G

��

⊕
h∈G

Mh

((ϕgh -1,kh -1 )h
gh -1,kh -1∈G

)h∈G

��⊕
s,t∈G

M s ⊗A At
((εMl ⊗

Gπ1)t)t∈G //
⊕
g,k∈G

Mg ⊗A Ak.
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By definition, the st -1, gt -1, kt -1-component of εMl ⊗G π1 sends m⊗ 1 to

1

|GM ||G|
λMl (gt -1)(gt -1(m)⊗ 1)

if gt -1 ∈ GM and zero otherwise. Now, going to the right and then down, the g, k-component
of the composition ϕ ◦ εMl sends m ∈M to

m 7→
∑
h∈GM

1

|GM |
λMl (h)h(m) 7→

∑
h∈GM

1

|GM |
λMl (h)

1

|GM |
1

|G|
λMl (gh -1)gh -1(h(m)⊗ 1)

=
∑
h∈GM

1

|G||GM |2
λMl (h)λMl (gh -1)(g(m)⊗ 1) =

1

|GM ||G|
λMl (g)(g(m)⊗ 1),

if g is in GM , and zero otherwise. Going down and then to the right, the g, k-component of
(εMl ⊗G π1) ◦ ϕ yields

m 7→
∑
s∈GM

1

|G||GM |
λMl (s)(s(m)⊗ 1) 7→

∑
s∈GM ,t∈G

1

|G|2|GM |2
λMl (s)λMl (gs -1)gs -1(s(m)⊗ 1)

=
∑
t∈G

1

|G|2|GM |
λMl (g)(g(m)⊗ 1) =

1

|G||GM |
λMl (g)(g(m)⊗ 1).

Hence, the diagram commutes.

To construct a morphism ψ from the left hand side of (6) to the right hand side, consider the
diagram ⊕

g∈G
(Mg ⊗A A)

εMl ⊗
Gπ1 //

(ψh,g)g,h∈G

��

⊕
u,k∈G

Mu ⊗A Ak(
(ψsk -1,uk -1 )k

sk -1,uk -1∈G

)
k∈G

��⊕
h∈G

Mh
(εMl )hh∈G //

⊕
s∈G

M s.

where ψh,g sends m⊗ 1 ∈ Mg ⊗A A to 1
|GM |λ

M
l (hg -1)hg -1(m) ∈ Mh, if hg -1 ∈ GM , and to

zero otherwise.

Fix g, s ∈ G. Going down and then to the right we obtain

m⊗ 1 7→
∑
h∈GM

1

|GM |
λMl (hg -1)hg -1(m) 7→

∑
h∈GM

1

|GM |2
λMl (hg -1)λMl (sh -1)sh -1(hg -1(m))

=
1

|GM |
λMl (sg -1)sg -1(m),

where the last equality follows from the fact that εl is an idempotent.

Next we calculate the composition first going right and then down:
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m⊗ 1 7→
∑

u∈GM ,k∈G

1

|GM ||G|
λMl (ug -1)(ug -1(m)⊗ 1)

7→
∑

u∈GM ,k∈G

1

|GM |2
1

|G|
λMl (ug -1)λMl (su -1)su -1(ug -1(m))

=
∑
k∈G

1

|GM |
1

|G|
λMl (sg -1)sg -1(m) =

1

|GM |
λMl (sg -1)sg -1(m).

Thus, the diagram commutes and ψ is well-defined.

Now we claim that both compositions ϕ ◦ ψ and ψ ◦ ϕ are the identities, i.e. the respective
idempotents. The k-component of the composition ψ ◦ ϕ sends m to

∑
s∈GM ,t∈G

1

|GM |2|G|
λMl (s)λMl (ks -1)ks -1(s(m)) =

1

|GM |
λMl (k)k(m).

The g, s, t-component of the composition ϕ ◦ ψ sends m⊗ 1 ∈Mg ⊗A A to

∑
sk -1,kg -1∈GM

1

|GM |2|G|
λMl (kg -1)λMl (sk -1)sk -1(kg -1 ⊗ 1)

=
1

|GM ||G|
λMl (sg -1)(sg -1 ⊗ 1)

in M s ⊗A At. The first isomorphism in (6) follows and the second is proved analogously.

�

5.2. The bicategories XA and GA. We use the data above to define a bicategory XA with

• one object •;

• XA(•, •) = X̃A;

• horizontal composition given by the tensor product −⊗G − in X̃A;

• the identity 1-morphism given by (A, π1);

• for each triple of 1-morphisms X,Y, Z an associatior αX,Y,Z : (X ⊗G Y ) ⊗G Z →
X ⊗G (Y ⊗G Z), induced by the standard associator in the category of A-A-bimodules
(see Section 4.1);

• left and right unitors λX : (A, π1)⊗G X
∼=−→ X and ρX : X ⊗G (A, π1)

∼=−→ X induced
by the isomorphisms in Proposition 5.4.
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Since (A, π1)⊕ (A⊗kA) is, up to isomorphism, invariant under the twist M 7→Mg for g ∈ G,
and its additive closure is closed under horizontal composition, we can define a bicategory GA as
the 2-full subbicategory of XA whose 1-morphisms are given by objects in the additive closure
of (A, π1)⊕ (A⊗k A) inside X̃A. This is finitary by construction.

5.3. Embedding XA into BA. Define a functor Θ: XA → BA(•, •) by M 7→
⊕

g∈GM
g

on objects and by mapping f : M → N to Θ(f) = (fg
hg -1) :

⊕
g∈GM

g →
⊕

h∈GN
h on

morphisms. Notice that Θ is faithful by construction.

Using the definition on morphisms we can extend Θ to the category X̃A. Recall that objects
of X̃A are pairs (M, e) where M is an A-A-bimodule and e is an idempotent in EndXA

(M).

Thus, we extend Θ : X̃A → BA(•, •) via (M, e) 7→ Θ(e)Θ(M).

Lemma 5.5. Θ defines a pseudofunctor from XA to BA.

Proof. Note that for M,N ∈ XA
Θ(M⊗GN) = Θ

(⊕
g∈G

Mg⊗AN
)

=
⊕
h∈G

⊕
g∈G

(Mg⊗AN)h =
⊕
g,h∈G

Mgh⊗ANh =
⊕
k,h∈G

Mk⊗ANh,

where the penultimate equality is true by Lemma 4.3.

On the other hand,

Θ(M)⊗A Θ(N) =
⊕
g∈G

Mg ⊗A
⊕
h∈G

Nh.

Thus, we have a natural isomorphism,

JM,N : Θ(M)⊗A Θ(N)→ Θ(M ⊗G N),

compatible with associativity and unitors, which, by functoriality, extends to X̃A. �

Lemma 5.6. The essential image of Θ consists of all G-equivariant bimodules.

Proof. Let (N, e) ∈ X̃A and set M = Θ(N) =
⊕

h∈GN
h. Thus, we have a well-defined

isomorphism αg :
⊕

h∈GN
h →

⊕
h∈GN

gh, which is given by relabelling the components.
Since this is essentially the identity map, it is clear that this produces a G-equivariant structure
on M . This commutes withe the idempotent Θ(e) and hence also defines a G equivariant
structure on Θ(N, e).

Conversely, suppose that M is a G-equivariant object of BA(•, •). Let αg : M → Mg be the
corresponding isomorphism defining the equivariant structure of M . Viewing M as an object
of XA, consider Θ(M) =

⊕
g∈GM

g and let e ∈ EndXA
(M) be defined by e = 1

|G|(αg)g∈G.

Notice that

e ◦ e =
1

|G|2
∑
s

αshs -1αs =
1

|G|
αh = e.

Thus, e is an idempotent.



22 KATERINA HRISTOVA, VANESSA MIEMIETZ

Consider the map ᾱ : M → Θ(M) given by m 7→ (αg(m))g∈G. Since e is an idempotent in
EndXA

(M), Θ(e) is an idempotent in Θ(M) so we have an embedding Θ(e)Θ(M)→ Θ(M).
We claim that ᾱ factors over Θ(e)Θ(M), i.e. (αg(m))g∈G ∈ Θ(e)Θ(M). Indeed,

Θ(e)(αg(m))g∈G =
1

|G|
(αst -1)s,t∈G(αg(m))g∈G

=
1

|G|
∑
g∈G

(αg
sg -1αg(m))s∈G = (αs(m))s∈G.

Therefore, Θ(e)(αg(m))g∈G = (αg(m))g∈G and hence (αg(m))g∈G ∈ Θ(e)Θ(M) as required.

Moreover, the map ᾱ has an inverse β̄ : Θ(M)→M given by (αg(m))g∈G 7→ m. This shows
that Θ(e)Θ(M) = Θ(M, e) ∼= M , completing the proof. �

Corollary 5.7. Θ restricts to a pseudofunctor GA → CA, whose essential image consists of all
G-equivariant 1-morphisms.

Proof. This follows from Θ(A, π1) ∼= A by the proof of Lemma 5.6, combined with the fact
that Θ maps projective objects to projective objects. �

Theorem 5.8. Let A be a finite-dimensional radically graded basic Hopf algebra and adopt
the conventions from Section 4.7. Identifying RepA and XA with their essential images in BA

under the pseudofunctors Γ and Θ, respectively, RepA can be viewed a subbicategory of XA.

Under the same identification, HA corresponds to a 1-full subbicategory of GA.

Proof. The first statement follows from Proposition 4.17, Lemma 5.5 and Lemma 5.6.

For the second statement, note that A being a finite-dimensional radically graded basic Hopf
algebra implies that the action of G on the set of idempotents is regular. Thus, the 1-morphism
Aeg⊗ehA, for g, h ∈ G, in GA are indecomposable (and isomorphic to Aegh−1⊗e1A). Now the
indecomposable 1-morphisms in the essential images of both HA and GA are those isomorphic
to the identity or to

⊕
h∈GAegh ⊗ ehA for some g ∈ G. �

5.4. The bicategory G̃A. Assume that we are in the setup of Subsection 5.1. Further, we
assume that A is basic and has a fixed complete G-invariant set E of primitive idempotents
such that G acts regularly on E. We can thus choose an idempotent e1 as a base point and
label all other idempotents by group elements, obtaining E = {eg|g ∈ G}. This labelling is
chosen such that h(eg) = egh -1 .

Write A = kQ/I for a quiver Q and admissible ideal I. Let A0 = kQ0 and define Â = A×A0.

To distinguish the idempotents in Â coming from the copies of A and A0 respectively, given
an idempotent eg in A, we denote the corresponding idempotent in A0 by ēg.
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The group action of G on A extends naturally to an action on Â by leaving the two factors
invariant and permuting the idempotents in A0, so we can consider the categories XÂ and

X̃Â of symmetric Â-Â-bimodules. Note that XA and X̃A (and similarly XA0 and X̃A0) can be

viewed as full subcategories of XÂ and X̃Â, respectively.

Lemma 5.9. For all g, g′, h ∈ G, we have isomorphisms

(Aeg ⊗k eg′A)h ∼= Aegh ⊗k eg′hA (A0ēg ⊗k ēg′A0)h ∼= A0ēgh ⊗k ēg′hA0

(Aeg ⊗k ēg′A0)h ∼= Aegh ⊗k ēg′hA0 (A0ēg ⊗k eg′A)h ∼= A0ēgh ⊗k eg′hA.

Moreover, for g, g′ ∈ G, the Â-Â-bimodules Aeg ⊗k eg′A, A0ēg ⊗k ēg′A0, Aeg ⊗k ēg′A0 and

A0ēg ⊗k eg′A are indecomposable in X̃Â.

Proof. The description of the G-action on the first two modules is given by Lemma 4.4 and
the natural inclusions of X̃A and X̃A0 into X̃Â. The third and fourth isomorphism are verified
by analogous computations. Given freeness of the action of G on the chosen set of primitive
orthogonal idempotents of Â, the statement about indecomposability follows from Lemma
5.1. �

Lemma 5.10. Let M be a projective right A × A0-module, and N a projective left A × A0-
module. Then there are canonical isomorphisms

(kē1 ⊗k ē1k)⊗G (kēg ⊗k M) ∼= kēg ⊗k M

and
(N ⊗k ēgk)⊗G (kē1 ⊗k ē1k) ∼= (N ⊗k ēgk).

Proof. We have canonical isomorphisms

(kē1 ⊗k ē1k)⊗G (kēg ⊗k M) =
⊕
h∈G

(kēh ⊗k ēhk)⊗A0 (kēg ⊗k M)

∼= kēg ⊗k ēgk⊗A0 kēg ⊗k M
∼= kēg ⊗k M

and the second isomorphism in the lemma follows similarly. �

We now define a bicategory G̃A as having

• two objects • and ∗;

• G̃A(•, •) is simply GA(•, •);

• G̃A(•, ∗) is given by bimodules in the additive closure of A0 ⊗k A inside X̃Â;

• G̃A(∗, •) is given by bimodules in the additive closure of A⊗k A0 inside X̃Â;

• G̃A(∗, ∗) is given by bimodules in the additive closure of A0 ⊗k A0 inside X̃Â;

• the identity 1-morphism on ∗ and the corresponding unitors are given by Lemma 5.10;
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• 2-morphisms and their composition are inherited from X̃Â;

• horizontal composition and associators are inherited from X̃Â.

Set

S1 := {(A, π1)}
S11 := {Aeg ⊗k e1A|g ∈ G}
S01 := {A0ēg ⊗k e1A|g ∈ G}
S10 := {Aeg ⊗k ē1A0|g ∈ G}
S00 := {A0ēg ⊗k ē1A0|g ∈ G}.

Lemma 5.11. Up to isomorphism, the indecomposable 1-morphisms in G̃A are given by bi-
modules in

S1 ∪ S11 ∪ S01 ∪ S10 ∪ S00.

Proof. First note that by Lemma 5.9 for the objects in S11∪S01∪S10∪S00 and by construction
for (A, π1), the given bimodules are indeed indecomposable 1-morphisms in G̃A.

Also by construction and Lemma 5.10, each indecomposable 1-morphism in G̃A is isomorphic
to (A, π1) or one of Aêh⊗k êh′A for h, h′ ∈ G, with êh ∈ {eh, ēh} for h ∈ G. It thus suffices to
show that each of the Aêh⊗k êh′A is isomorphic to one of the bimodules in S11∪S01∪S10∪S00

in X̃Â. This, however, is a consequence of Lemma 5.9, since (Aêh⊗k êh′A)h
′−1 ∼= Aêg ⊗k ê1A

as Â-Â-bimodules. �

5.5. Two-sided cells in GA and G̃A. We keep the assumptions from Section 5.4 and recall
the notation introduced after Lemma 5.1.

Proposition 5.12. The bicategory GA has two H-cells, which are also two-sided cells, namely

(a) H1 consisting of one element (1•);

(b) the two-sided cell H0 consisting of all isomorphism classes of 1-morphisms in S11 .

Proof. Since tensor products in which one of the factors is a projective bimodule never con-
tain a copy of the regular bimodule as a direct summand, it follows immediately that the
indecomposable 1-morphism in S1 is strictly smaller than those in S11 in the left right and
two-sided order. This shows the existence of an H-cell H1, as claimed in (b), which is a
left, right and two-sided cell. To complete the proof, it suffices to show that the indecom-
posable 1-morphisms in S11 are in the same left and the same right cell. Let Aeg ⊗k e1A
and Aeh⊗k e1A be two representatives of isomorphism classes of indecomposable 1-morphisms
in S11. Then Aeg ⊗k e1A is a direct sumand of (Aegh -1 ⊗k e1A) ⊗X̃ (Aeh ⊗k e1A), hence
Aeg ⊗k e1A ≤L Aeh ⊗k e1A. Similarly, Aeh ⊗k e1A ≤L Aeg ⊗k e1A since Aeh ⊗k e1A is a
direct sumand of (Aehg -1 ⊗k e1A)⊗X̃ (Aeg⊗k e1A), so they are in the same left cell. Similarly,
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one sees that they are in the same right, and hence in the same H-cell, which then is also a
two-sided cell. �

Recall that HA can be viewed as a 1-full subbicategory of GA and hence shares its H-cell
structure.

Proposition 5.13. GA and HA are H0-simple.

Proof. Assume I is a nonzero 2-ideal in GA, identified with a subbicategory of CA under Θ,
and let f : M → N be a morphism in I(•, •). Note that A ⊗k A is a 1-morphism in the
essential image of GA under Θ. Then idA⊗kA ⊗ f ⊗ idA⊗kA contains an identity component
on a 1-morphism in GA, as required.

The proof for HA is analogous. �

Proposition 5.14. The bicategory G̃A has two two-sided cells, namely

(a) J1 consisting of one element (1•);

(b) the two-sided cell J̃0 consisting of all isomorphism classes of indecomposable 1-morphisms

in S11 ∪ S01 ∪ S10 ∪ S00. Furthermore, the two-sided cell J̃0 consists of two left cells
L0 = S10∪S00 and L1 = S11∪S01 and two right cells R0 = S01∪S00 and R1 = S11∪S10.
Hence, the H-cells are Hij = Sij for i, j ∈ {0, 1}.

Proof. Part (a) follows as in Proposition 5.12 (a), since tensor products involving projective
A×A0 bimodules never contain direct summands isomorphic to the regular A-A-bimodule.

To prove part (b), let Ai ∈ {A,A0} for i = 1, · · · , 3, and let êh ∈ {eh, ēh}, for h ∈ G, as
appropriate. Then A1êg⊗k ê1A2 is a direct summand of (A1êgh -1⊗k ê1A3)⊗X̃Â

(A3êh⊗k ê1A2),

so A1êg ⊗k ê1A2 ≤L A3êh ⊗k ê1A2 for any A3. This shows that all 1-morphisms in S10 ∪ S00

are in the same left cell and all 1-morphisms in S11 ∪ S01 are in the same left cell. Given that
tensoring A1êg ⊗k ê1A2 on the left does not change A2, it is clear that L0 = S10 ∪ S00 and
L1 = S11 ∪ S01 are two different left cells. Similarly, ones proves the statement about right
cells. The statement about H-cells and the two-sided cell J̃0 follows immediately. �

Lemma 5.15. The endomorphism bicategory G̃A∗ of the object ∗ in G̃A has a unique left, right
and two-sided cell H00 and is biequivalent to VecG.

Proof. Given that the indecomposable 1-morphisms in G̃A∗ are precisely those in H00, the first
statement follows from Lemma 5.14. Now

(A0ēg ⊗k ē1A0)⊗G (A0ēh ⊗k ē1A0) =
⊕
k∈G

(A0ēgk ⊗k ēkA0)⊗A (A0ēh ⊗k ē1A0)

∼= A0ēgh ⊗k ē1A0.
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Therefore G̃A∗ is a semi-simple bicategory with one object, which decategorifies to ZG. More-
over, the associator is induced by the associator on bimodules given in Section 4.1 which corre-
sponds to the trivial 3-cocycle and thus G̃A∗ is biequivalent to VecG, c.f. [EGNO, Proposition
4.10.3]. �

5.6. Adjunctions. We keep the setup of Section 5.4 and additionally assume that A is self-
injective. We denote by ν the bijection on E which is induced by the Nakayama automorphism
of A given by

Homk(eA, k) ∼= Aν(e), for e ∈ E.

Note that given our labelling of idempotents by elements of G, this induces and action of ν on
G and we define ν(g) by ν(eg) = eν(g).

Lemma 5.16. For any g ∈ G, we have ν(g) = ν(1)g.

Proof. By definition, Aeν(1)g
∼= (Aeν(1))

g ∼= Homk(e1A,k)g is the indecomposable injective
A-module whose socle element e∗1 satisfies eh · (e1)∗ = g(eh)(e1)∗ = ehg -1(e1)∗ 6= 0 if and only
if g = h. It is hence isomorphic to the injective A-module with socle (eg)

∗, which is Aeν(g). �

Proposition 5.17. We have adjunctions

(a) (Aeg ⊗k e1A,Aeν(1)g -1 ⊗k e1A);

(b) (A0ēg ⊗k e1A,Aeν(1)g -1 ⊗k ē1A0);

(c) (Aeg ⊗k ē1A0, A0ēg -1 ⊗k e1A);

(d) (A0ēg ⊗k ē1A0, A0ēg -1 ⊗k ē1A0).

Proof. By [CM, Theorem 4.3], there is an equivalence of categories between the projective

objects in X̃Â and the G-invariant objects in the category of projective Â-Â-bimodules. Under
this equivalence Aeg ⊗k e1A corresponds to

⊕
h∈GAegh ⊗k ehA. Hence its adjoint corre-

sponds to the adjoint of
⊕

h∈GAegh ⊗k ehA, which is given by
⊕

h∈H Aeν(h) ⊗k eghA ∼=⊕
h∈H Aeν(g -1h) ⊗k ehA. Under the equivalence, this corresponds to Aeν(g -1) ⊗k e1A which is

isomorphic to Aeν(1)g -1⊗ke1A by Lemma 5.16. The other adjunctions are checked similarly. �

5.7. Simple transitive birepresentations of GA. We keep the notation and assumptions from
Section 5.6. In particular, we assume that A is basic, self-injective and has a fixed complete
G-invariant set E of primitive idempotents on which G acts regularly. It follows immediately
from Proposition 5.17 that, under these assumptions, GA and G̃A are quasi fiab, and fiab if
and only if A is weakly symmetric.

In order to classify simple transitive birepresentations for GA, we will need a slight generalisation
of [MMMZ, Theorem 15].
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Theorem 5.18. Let C be a quasi multifiab bicategory, J a maximal two-sided cell in C and H
an H-cell in J such that H∗ = H. Let i be such that, for all F ∈ H, we have F ∈ C(i, i) and
let CH be the 2-full subbicategory of C on object i with 1-morphisms in add{1i,F | F ∈ H}.
Then there is a bijection between simple transitive birepresentations of C with apex J and
those of CH with apex H.

Proof. The proof is analogous to that of Theorem 4.32 in [MMMTZ2], noting that the only
place where C being fiab is crucially used there is to obtain H = H?. �

We thus obtain the analogous classification of simple transitive birepresentations to the one
given in [MMZ2] in the case where G is abelian.

Theorem 5.19. We retain the above assumptions on A. Let M be a simple transitive birep-
resentation of GA.

(1) If the apex of M is J1, then M is the trivial birepresentation associated to 1•, meaning
M(•) is equivalent to k-mod, the identity 1-morphism (A1, π1) acts as the identity
functor, and all other indecomposable 1-morphisms annihilate.

(2) If the apex of M is J0, there is a natural bijection between equivalence classes of
simple transitive birepresentations of GA with apex J0 and pairs (K,ω), where K is a
subgroup of G and ω ∈ H2(K,k∗).

Proof. For J = J1, the statement is immediate, as the J1-simple quotient of GA is biequivalent
to Ck.

For J = J0, consider G̃A. Then we can realize GA as a both 1- and 2-full subbicategory of
G̃A given by the endomorphism category G̃A• of •. Moreover, J0 corresponds to H11 under
this identification. By Theorem 5.18 there is a bijection between equivalence classes of simple
transitive birepresentations of GA with apex J0, and equivalence classes of simple transitive
birepresentations of G̃A with apex J̃0.

On the other hand, again, by Theorem 5.18, there is a bijection between equivalence classes
of simple transitive birepresentations of G̃A with apex J̃0 and equivalence classes of simple
transitive birepresentations of G̃A∗ with apex the unique two-sided cell H00. However, by
Lemma 5.15, the latter is biequivalent to VecG and its simple transitive birepresentations are
in bijection with pairs (K,ω), where K is a subgroup of G and ω ∈ H2(K,k∗) by [Os,
Theorem 2]. �

Remark 5.20. Observe that Theorem 5.19 implies that for a finite-dimensional radically graded
basic Hopf algebra A, the associated bicategory of symmetric bimodules GA only has finitely
many simple transitive birepresentations up to equivalence. By contrast, the bicategory HA,
which by Theorem 5.8 can be viewed as a 1-full subbicategory of GA, generally has infinitely
many non-equivalent simple transitive birepresentations, see e.g. [EO, Theorem 4.10]. It
would be interesting to investigate 1-full subbicategories of GA which contain HA and try to
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determine where the jump from finitely to infinitely many equivalence classes of simple transitive
birepresentations occurs.
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