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Abstract
The generalized circumradius of a set of points A ⊆ R

d with respect to a convex
body K equals the minimum value of λ ≥ 0 such that a translate of λK contains A.
Each choice of K gives a different function on the set of bounded subsets of Rd ; we
characterize which functions can arise in this way. Our characterization draws on the
theory of diversities, a recently introduced generalization of metrics from functions on
pairs to functions on finite subsets. We additionally investigate functions which arise
by restricting the generalized circumradius to a finite subset of Rd . We obtain elegant
characterizations in the case that K is a simplex or parallelotope.

Keywords Diversity · Generalized circumradius · Generalized Minkowski spaces ·
Metric geometry · Convex geometry

Mathematics Subject Classification 52A20 · 52A21 · 28A10 · 46B85 · 51F99

The circumradius of a set of points in the plane is the radius of the smallest circle
containing them. The concept is key to optimal containment and facility location
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Fig. 1 An example of the generalized circumradius. In this example R({a, b, d, g, k}, K ) = 2 since
2K is the smallest scaled version of K which can be translated to cover {a, b, d, g, k}. Similarly,
R({c, e, f }, K ) = 0.6, since 0.6 K is the smallest scaled version of K which can be translated to cover
{c, e, f }, and R({h, i}, K ) = 1

problems, including a classic problem studied by Sylvester [21, 32], since the center
of the smallest enclosing circle minimizes the maximum distance to any of the points.

The generalized circumradius replaces the plane withRd and the circle or ball with
a general convex body, that is a compact, convex set with non-empty interior. For a
convex body K in Rd and bounded A ⊆ R

d we say that the generalized circumradius
of A with respect to K is

R(A, K ) = inf {λ ≥ 0 : A ⊆ λK + x for some x ∈ R
d}.

In other words, R(A, K ) equals the minimal amount that K must be scaled so that a
translate covers A (see Fig. 1). The set K is called the kernel. See [2, 3, 16, 22] for
properties and inequalities related to the generalized circumradius and [4, 17–19] for
computational results.

Our motivation for studying the generalized circumradius comes from connections
with diversity theory. A (mathematical) diversity is an extension of the idea of a metric
space. Instead of assigning values just to pairs of objects, a diversity assigns values to
all finite sets of objects. More formally, a diversity is a pair (X , δ) where X is a set
and δ a function from finite subsets of X to R≥0 such that, for A, B,C finite,

(D1) δ(A) = 0 if and only if |A| ≤ 1;
(D2) if B �= ∅ then δ(A ∪ C) ≤ δ(A ∪ B) + δ(B ∪ C).

Diversitieswere introduced in [9].A consequence of (D1) and (D2) is that diversities
are monotonic, that is, if A ⊆ B then δ(A) ≤ δ(B). Furthermore, δ restricted to pairs
satisfies the definition of a metric; we call this the metric induced by (X , δ). We say
that a diversity (X , δ) is finite if X is finite. Note that on occasion we use the term
‘diversity’ to refer to the function δ rather than the pair (X , δ).

Many well-known functions on sets are diversities. Examples include

1. the diameter of a set,
2. the length of a shortest Steiner tree connecting a set,
3. the mean width of a set,
4. the length of the shortest traveling salesman tour through a set,
5. the L1 diversity (in R

d ),
δ(A) = δ1(A) =

d∑

i=1

max {|ai − a′
i | : a, a′ ∈ A},
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6. the circumradius of a set.

We show that the generalized circumradius is also a diversity:

Theorem 2.1 Let K be a convex body in R
d . If we define δ(A) = R(A, K ) for all

finite A then (Rd , δ) is a diversity.

In reference to the concept of a Minkowski norm we say that a diversity (Rd , δ) is
a Minkowski diversity if there is a convex body K such that δ(A) = R(A, K ) for all
finite A ⊂ R

d .
Theorem 2.1 connects the generalized circumradius to a growing and varied liter-

ature on diversity theory. The first diversity paper [9] described diversity analogs to
the metric tight span and metric hyperconvexity, leading to new results in analysis and
fixed point theory; see [23, Chapter 15] and [26, 27]. It was shown in [10] that results
of [25] and others on embedding of finite metrics in L1 can be extended to diversities,
with potential algorithmic gains. There is a direct analog of the Urysohn metric space
[7] for diversities and work on diversity theory within model theory [8, 20], lattice
theory [6, 33], image analysis [15], machine learning [24], and phylogenetics [5, 9,
30] and [31, Chapter 6].

In this paper we are mainly concerned with characterizations and embeddings for
Minkowski diversities—what characterizes these diversities and which finite diversi-
ties can be embedded into a Minkowski diversity. Such embeddings (possibly with
distortion) should in future provide valuable graphical representations of diversities
in addition to algorithmic and computational tools.

Regarding characterization we prove the following result. A real-valued function
f on subsets of Rd is said to be sublinear if

f (A + B) ≤ f (A) + f (B) for all A, B,

f (λA) = λ f (A) for all A and λ ≥ 0,

where A + B denotes the Minkowski sum.

Theorem 2.4 Let (Rd , δ) be a diversity. Then δ is a Minkowski diversity if and only if
δ is sublinear and for all finite A, B there are a, b ∈ R

d such that

δ((A + a) ∪ (B + b)) ≤ max {δ(A), δ(B)}.

We also show that the last result extends beyond diversities to functions defined on
bounded subsets of Rd .

Theorem 3.2 Let f be a function on bounded subsets of Rd . Then there is a convex
body K such that f (A) = R(A, K ) for all bounded A if and only if f is sublinear,
monotonic, and f restricted to finite subsets is a Minkowski diversity.

Having characterized which diversities on R
d are Minkowski diversities, we turn

to the more difficult problem of characterizing which diversities can be isometrically
embedded into Minkowski diversities. An isometric embedding of a diversity (X , δ1)

into a diversity (Rd , δ2) is amap φ : X → R
d such that δ1(A) = δ2(φ(A)) for all finite
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A ⊆ X . If there is an isometric embedding from a diversity (X , δ1) into a Minkowski
diversity (Rd , δK ) for some d and some convex body K ⊆ R

d then we say that (X , δ1)

isMinkowski-embeddable.
Weprovide a complete characterization ofMinkowski-embeddability for diversities

which are finite and symmetric, meaning that the diversity of a set is determined by a
function of its cardinality.

Theorem 4.3 Let (X , δ) be a finite symmetric diversity. Then (X , δ) is Minkowski-
embeddable if and only if

δ(A \ {a})
δ(A)

≥ |A| − 2

|A| − 1
(1)

for all A ⊆ X with |A| ≥ 2, a ∈ A.

A consequence of the theorem is that, even though any diversity on three elements
is Minkowski-embeddable, there exist diversities on four elements which are not.

We then investigate which finite diversities (X , δ1) can be embedded into the diver-
sity (Rd , δ2) when δ2 is a Minkowski diversity with kernel K restricted to a particular
class. A diversity (X , δ) is a diameter diversity if δ(A) = max {δ({a, a′}) : a, a′ ∈ A}
for all finite A ⊆ X , see [9]. The following characterization for when K is a cube (or
non-degenerate transform of a cube) follows from an observation of [2].

Theorem 5.1 A finite diversity (X , δ) can be embedded in a Minkowski diversity with
kernel equal to some parallelotope if and only if (X , δ) is a diameter diversity.

The case when K is a simplex is more complex. We say that a finite diversity (X , δ)

is of negative type if

∑

A �=∅

∑

B �=∅
xAxBδ(A ∪ B) ≤ 0

for all zero-sum vectors x indexed by non-empty subsets of X . Diversities of negative
type are analogous to metrics of negative type, and several of the properties of metrics
of negative type extend to diversities of negative type, see [35]. For negative-type
diversities we prove the following characterization.

Theorem 5.2 A finite diversity (X , δ) can be embedded in a Minkowski diversity with
kernel equal to some simplex if and only if (X , δ) has negative type.

Significantly, the set of diversities with negative type is quite large, with the same
dimension as the set of diversities on X . The result shows that the class of Minkow-
ski-embeddable diversities is even larger, potentially opening up possibilities for quite
general theoretical and algorithmic results.

1 The Generalized Circumradius

In this section we collect together a number of fundamental results about the gener-
alized circumradius. We begin with several observations from [21, Proposition 3.2].
Let conv(A) denote the convex hull of A.
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Proposition 1.1 Let A, A′, B be bounded subsets of Rd , let K , K ′ be convex bodies
in Rd . Then

(a) if A ⊆ A′ and K ′ ⊆ K then R(A, K ) ≤ R(A′, K ′);
(b) if conv(A) = conv(A′) then R(A, K ) = R(A′, K );
(c) R(A + B, K ) ≤ R(A, K ) + R(B, K ) with equality if B = αK for some α ≥ 0;
(d) R(A + x, K + y) = R(A, K ) for all x, y ∈ R

d ;
(e) R(αA, βK ) = (α/β)R(A, K ) for all α, β > 0.

An indirect consequence of Helly’s theorem (see e.g. [13, Sect. 6.2]) is that for
bounded A ⊆ R

d and a convex body K we can find a small subset A′ ⊆ A such that
|A′| ≤ d + 1 and R(A′, K ) = R(A, K ). The following more general result forms one
part of [2, Theorem 1.2].

Proposition 1.2 Suppose that A ⊂ R
d is bounded and K is a convex body. For all

ε ≥ 0 there exists A′ ⊆ A such that |A′| ≤ �d/(1 + ε) + 1 and

R(A′, K ) ≤ R(A, K ) ≤ (1 + ε)R(A′, K ).

Note that for particular choices of K there can be much smaller bounds on |A′|.
For example, when K is the Euclidean ball in R

d we have for all bounded A ⊂ R
d

and ε > 0 that there is a subset A′ ⊆ A such that R(A, K ) ≤ (1 + ε) R(A′, K ) and

|A′| ≤
⌈

1

2ε + ε2

⌉
+ 1.

This bound is independent of the dimension d.
We will make use of the following general property for Minkowski addition which

is established during the proof of [2, Theorem 4.1]. Let A ⊆ R
d be any set with

cardinality k + 1, k ≥ 2, and zero sum. Then

A ⊆ k

(k + 1)(k − 1)

∑

a∈A

conv (A \ {a}).

Combining this observation with (d), (b), and (c) of Proposition 1.1, we have

Proposition 1.3 Suppose A ⊂ R
d , |A| = k + 1, and K is a convex body. Then

R(A, K ) ≤ k

(k + 1)(k − 1)

∑

a∈A

R(A \ {a}, K ).

For C ⊆ R
p × R

q we define the two projection operators

π1(C) = {c1 ∈ R
p : (c1, c2) ∈ C for some c2},

π2(C) = {c2 ∈ R
q : (c1, c2) ∈ C for some c1}.

The following result will be useful for questions regarding embeddings.
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Proposition 1.4 Let A be a bounded subset of Rp ×R
q . If B and C are convex bodies

in Rp and R
q respectively, then

R(A, B × C) = max {R(π1(A), B), R(π2(A),C)}.

Proof Suppose λ = R(A, B × C) and that

A + (a1, a2) ⊆ λ(B × C).

Applying π1 and π2 to both sides gives

π1(A) + a1 ⊆ λB and π2(A) + a2 ⊆ λC .

Hence max {R(π1(A), B), R(π2(A),C)} ≤ R(A, B × C). Conversely, if λ =
max {R(π1(A), B), R(π2(A),C)}, then there are a1, a2 such that

π1(A) + a1 ⊆ λB, π2(A) + a2 ⊆ λC .

We then have

A + (a1, a2) ⊆ π1(A) × π2(A) + (a1, a2)

= (π1(A) + a1) × (π2(A) + a2) ⊆ λ(B × C),

so that R(A, B × C) ≤ max {R(π1(A), B), R(π2(A),C)}.

2 Characterization of Minkowski Diversities

We begin this section by proving the first main result connecting the theory of gener-
alized circumradii with diversity theory.

Theorem 2.1 Let K be a convex body in Rd . If δ(A) = R(A, K ) for all finite A, then
(Rd , δ) is a diversity.

Proof Clearly δ(A) ≥ 0 for all A and δ(A) = R(A, K ) = 0 if and only if |A| ≤ 1.
Hence (D1) holds. By Proposition 1.1 (a), R(A, K ) is monotonic in A. Suppose A, B
are finite subsets ofRd and x ∈ A∩B. Then A−x = (A−x)+0 ⊆ (A−x)+(B−x)
and B − x = 0 + (B − x) ⊆ (A − x) + (B − x). Hence

(A − x) ∪ (B − x) ⊆ (A − x) + (B − x),

and so by Proposition 1.1, (d) and (c),

δ(A ∪ B) = δ((A ∪ B) − x) = δ((A − x) ∪ (B − x))

≤ δ(A − x) + δ(B − x) = δ(A) + δ(B).
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This fact, together with monotonicity, implies the diversity triangle inequality (D2).

In the rest of this section we focus on characterizing which diversities on R
d can

be obtained in this way (Theorem 2.4). Let B denote the Euclidean unit ball in R
d .

The Hausdorff distance on (bounded) subsets of Rd is given by

dH(A, B) = inf {λ : A ⊆ B + λB and B ⊆ A + λB},

see [29]. We note that dH becomes a metric when restricted to compact sets.
A diversity (Rd , δ) is sublinear if δ is a sublinear function, δ(A + B) ≤ δ(A) +

δ(B) and δ(λA) = λδ(A) for all finite A, B and non-negative λ. Note that finite
sublinear diversities are closely related to set-norms [12, Definition 2.1]. The L1
diversity (Rd , δ1), as introduced earlier, is an example of a sublinear diversity. Here,

δ1(A) =
d∑

i=1

max {|ai − a′
i | : a, a′ ∈ A},

and δ1 is sublinear since, given λ ≥ 0 and finite subsets A, B ⊆ R
d we have

δ1(λA) =
d∑

i=1

max {|λai − λa′
i | : a, a′ ∈ A} = λδ1(A)

and

δ1(A + B) =
d∑

i=1

max {|ai + bi − a′
i − b′

i | : a, a′ ∈ A, b, b′ ∈ B}

≤
d∑

i=1

max {|ai − a′
i | : a, a′ ∈ A} + max {|bi − b′

i | : b, b′ ∈ B}

= δ1(A) + δ1(B).

Sublinearity has several important consequences for diversities.

Proposition 2.2 Let (Rd , δ) be a sublinear diversity. Then

(a) δ is translation invariant: δ(A + x) = δ(A) for all x;
(b) δ is determined by the convex hull: if A, B finite in R

d and conv(A) = conv(B),
then δ(A) = δ(B);

(c) δ is Lipschitz continuous with respect to the Hausdorff metric.

Proof (a) By (D1) and sublinearity we have

δ(A + x) ≤ δ(A) + δ({x}) = δ(A) and

δ(A) ≤ δ(A + x) + δ({−x}) = δ(A + x).
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(b) Let B ′ ⊆ B be a maximal subset of B such that δ(A ∪ B ′) = δ(A). Suppose that
there is b ∈ B \ B ′. As b ∈ conv(B) = conv(A) there are non-negative {λa}a∈A with
unit sum such that

b =
∑

a

λaa

and hence

b ∈
∑

a

λa A.

As

A ∪ B ′ ⊆
∑

a

λa(A ∪ B ′),

we have

δ(A ∪ B ′ ∪ {b}) ≤ δ

(
∑

a

λa(A ∪ B ′)
)

≤
∑

a

λaδ(A ∪ B ′) = δ(A ∪ B ′) = δ(A).

This contradicts the choice of B ′. Hence B ′ = B and δ(A ∪ B) = δ(A). Exchanging
A and B in this argument gives δ(A ∪ B) = δ(B). Hence δ(A) = δ(B).

(c) Let V denote any finite set with convex hull conv(V ) containing the unit ball B.
One example is V = {−1, 1}d . Let κ = δ(V ) and suppose that dH(A, B) = λ. From
the definition of dH we have A ⊆ B + λB and B ⊆ A + λB so there are finite sets
A′, B ′ ⊆ B such that

A ⊆ B + λA′ and B ⊆ A + λB ′.

As B ⊆ conv(V ), we have conv (A′ ∪ V ) = conv (B ′ ∪ V ) = conv(V ). By sublin-
earity, monotonicity of δ and part (b) we therefore have

δ(A) ≤ δ(B) + λδ(V ) and δ(B) ≤ δ(A) + λδ(V )

giving |δ(A) − δ(B)| ≤ κdH(A, B).

Our next theorem gives a complete characterization of Minkowski diversities. A
key idea in the proof of the theorem is that we can extend a sublinear diversity (Rd , δ)

to a function on convex bodies in Rd . More specifically, given a sublinear diversity δ,
define the function δ̃ on the set of convex bodies in R

d by setting

δ̃(P) = δ(Vert(P))
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for all polytopes P with vertex set Vert(P) and

δ̃(K ) = lim
n→∞ δ̃(Pn)

for any convex body K and sequence P1, P2, . . . of polytopes converging under the
Hausdorff metric to K .

Lemma 2.3 Given a sublinear diversity δ, the function δ̃ is well defined and Lipschitz
continuous.

Proof Since δ̃ is Lipschitz on the set of polytopes, it is uniformly continuous on the
same set, and so can be uniquely extended to a continuous function on the closure of
that set [28, Problem 13, Chap. 4], the convex bodies. An expression for δ̃ can then
be obtain for convex bodies using the limits of sequences of polytopes as above, and
this gives that the extension has the same Lipschitz constant.

Using this observation, we now prove the main theorem for this section.

Theorem 2.4 Let (Rd , δ) be a diversity. Then (Rd , δ) is a Minkowski diversity if and
only if δ is sublinear and for all finite A, B there are a, b ∈ R

d such that

δ((A + a) ∪ (B + b)) ≤ max {δ(A), δ(B)}. (2)

Proof Suppose that (Rd , δ) is a Minkowski diversity, so that there is a convex body
K ⊆ R

d such that δ(A) = R(A, K ) for all finite A ⊆ R
d . Sublinearity is given by

Proposition 1.1, parts (c) and (e). Given finite A and B, there are a, b ∈ R
d such that

A ⊆ δ(A) K − a and B ⊆ δ(B)K − b. Hence

(A + a) ∪ (B + b) ⊆ max {δ(A), δ(B)} K

and

δ((A + a) ∪ (B + b)) = R((A + a) ∪ (B + b), K )

≤ R(max {δ(A), δ(B)}K , K )

= max {δ(A), δ(B)} R(K , K ) = max {δ(A), δ(B)}.

Now suppose that (Rd , δ) is sublinear and satisfies (2) for all finite A, B. Let

ρ = max

{ ‖x‖
δ({0, x}) : x �= 0

}
= max

{
1

δ({0, x}) : ‖x‖ = 1

}
.

Then 0 < ρ < ∞ and ‖x − y‖ ≤ ρδ({x, y}) for all x, y. (Here and below we use ‖ · ‖
to denote the Euclidean norm).

We show that for any convex bodies L, K ⊆ R
d and the function δ̃ in Lemma 2.3

there is some x ∈ R
d such that

δ̃(conv(K ∪ (L + x))) ≤ max {δ̃(K ), δ̃(L)}. (3)
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Suppose that K1, K2, . . . is a sequence of finite subsets of K such that conv(Kn) → K
and L1, L2, . . . is a sequence of finite subsets of L such that conv(Ln) → L . Applying
(2) and translation invariance of δ we have that for each n ∈ N there is an xn ∈ R

d

such that

δ(Kn ∪ (Ln + xn)) ≤ max{δ(Kn), δ(Ln)}.

Hence, for all n,

δ̃(conv (Kn ∪ (Ln + xn))) ≤ max {δ̃(conv(Kn)), δ̃(conv(Ln))}. (4)

We show that the sequence xn has a convergent subsequence. First note that since K
and L are bounded, convergence of conv(Kn) and conv(Ln) to them in the Hausdorff
metric implies that the union of all these sets is bounded, and hence the sequence
max {δ(Kn), δ(Ln)} is bounded. Choose kn ∈ Kn and �n ∈ Ln for each n, which are
then bounded over all n. We then have

‖xn − (kn − �n)‖ = ‖(xn + �n) − kn‖ ≤ ρδ(Kn ∪ (Ln + xn)) ≤ max {δ(Kn), δ(Ln)}.

So the set {x1, x2, x3, . . .} is bounded. Let xi1 , xi2 , . . . be a convergence subsequence
and let x ∈ R

d be its limit. Since conv(Ln) → L and xn → x , conv (Ln+xn) → L+x .
So, conv(Kn) ∪ conv (Ln + xn) → K ∪ (L + x) and

conv (Kn ∪ (Ln + xn)) = conv (conv(Kn) ∪ conv(Ln + xn)) → conv (K ∪ (L + x)).

Taking the limit as n → ∞ of (4) and using the continuity of δ̃ gives (3), which proves
the claim.

Let C denote the set of convex bodies

C = {A ⊆ R
d : δ̃(A) ≤ 1}.

The set C is closed under the Hausdorff metric and both volume and δ̃ are continuous
with respect to the Hausdorff metric [29, Sect. 1.8]. It follows that there is some K ∈ C
such that the volume of K is at least as large as any other element in C. The convex
body K is necessarily inclusion-maximum: if K was a proper subset of some K ′ ∈ C
then the volume of K ′ would be strictly greater than the volume of K .

We claim that R(A, K ) = 1 for all finite A such that δ(A) = 1. Take such an A.
By (3) there is x ∈ R

d such that

δ̃(conv (K ∪ (conv(A) + x))) ≤ max {δ̃(K ), δ̃(conv(A))} = 1.

We therefore have conv (K ∪ (conv(A) + x)) ∈ C. As K is set inclusion-maximum
in C and K ⊆ conv (K ∪ (conv(A) + x)) we have

K = conv (K ∪ (conv(A) + x))
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Fig. 2 The sets A, B, B′ in the proof of Proposition 2.5 with (translated) kernels K and K ′

and so A + x ⊆ K and R(A, K ) ≤ 1. On the other hand, if there is some λ ≥ 0 and
z ∈ R

d such that A ⊆ λK + z then

δ(A) = δ̃(conv(A)) ≤ δ̃(λK + z) = λδ̃(K ) = λ,

showing that R(A, K ) ≥ 1. Hence R(A, K ) = 1, as claimed. It follows that δ(A) =
R(A, K ) when δ(A) = 1.

More generally, suppose δ(A) = d. The case d = 0 is straightforward, as then
|A| ≤ 1. If d > 0 then, by sublinearity, δ(A) = dδ((1/d)A) = dR((1/d)A, K ) =
R(A, K ).

We note that there are diversities on R
d which are sublinear, but do not satisfy

property (2) in Theorem 2.4 (and are hence not Minkowski diversities). For example,
consider the L1 diversity in the plane (R2, δ1). We saw above that L1 diversities are
sublinear but if

A =
{[

0
0

]
,

[
1
0

]}
and B =

{[
0
0

]
,

[
0
1

]}
,

then for any a, b ∈ R
2 we have

δ1((A + a) ∪ (B + b)) ≥ 2 > 1 = max {δ1(A), δ1(B)}.

The set of diversities on R
d , and indeed the the set of sublinear diversities on R

d ,
are both convex. Condition (2) in Theorem 2.4 suggests that the set of Minkowski
diversities on R

d is not convex, as we now confirm.

Proposition 2.5 The set of Minkowski diversities on Rd , d ≥ 2, is not convex.

Proof We first establish this for d = 2. Let

A =
{[

1
0

]
,

[
0
1

]
,

[
1
1

]}
, B =

{[
1
0

]
,

[
2
0

]
,

[
1
1

]}
, B ′ =

{[
0
1

]
,

[
1
1

]
,

[
0
2

]}
.

Let K = conv (A ∪ B) and K ′ = conv (A ∪ B ′). Let (X , δ) be the diversity on R
2

given by δ(Y ) = R(Y , K )/2 + R(Y , K ′)/2. We will show that for all a, b ∈ R
2

δ((A + a) ∪ (B + b)) > max {δ(A), δ(B)},

from which it follows by Theorem 2.4 that (X , δ) is not a Minkowski diversity
(Fig. 2).
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First note that since δ is translation invariant, we can assume a = 0. Now, note that

R(A, K ) = R(A, K ′) = R(B, K ) = R(B, K ′) = 1,

so max {δ(A), δ(B)} = 1. If b = 0 then R(A ∪ (B + b), K ) = 1, otherwise R(A ∪
(B + b), K ) > 1. If

b =
[−1
1

]

then R(A ∪ (B + b), K ′) = 1, otherwise R(A ∪ (B + b), K ′) > 1. Hence we have

δ((A + a) ∪ (B + b)) = R(A ∪ (B + b), K )

2
+ R(A ∪ (B + b), K ′)

2
> 1,

even though max {δ(A), δ(B)} = 1.
For d > 2, in the above argument we replace K and K ′ with their product with the

unit hypercube in Rd−2, and append d − 2 zeros to the elements in A and B and to x .

3 Characterizing the General Circumradius

In this section, we characterize functions f for which there is a convex body K such
that f (A) = R(A, K ) for all bounded A, noting that in the previous section we
only considered finite A. The main idea behind the proof is to show that a sublinear,
monotonic function is Hausdorff continuous, after which the result follows almost
immediately from Theorem 2.4.

Lemma 3.1 Let f be a sublinear, monotonic function on bounded subsets ofRd . Then
f is Hausdorff continuous.

Proof Let B denote the Euclidean unit ball in R
d , let b = f (B) and let ε > 0. Then

for any bounded A, B such that dH(A, B) ≤ ε/b we have

f (A) ≤ f

(
B + ε

b
B

)
≤ f (B) + ε and

f (B) ≤ f

(
A + ε

b
B

)
≤ f (A) + ε.

Theorem 3.2 Let f be a function on bounded subsets of Rd . Then there is a convex
body K such that f (A) = R(A, K ) for all bounded A if and only if f is sublinear,
monotonic, and f restricted to finite subsets is a Minkowski diversity.

Proof Necessity follows from the arguments used for Theorem 2.4. Suppose that f is
sublinear and monotonic, and f restricted to finite subsets is a Minkowski diversity.
By Lemma 3.1, f is Hausdorff continuous. Let A be a bounded subset of Rd . Then
f (A) = f (A), where A denotes the topological closure of A.
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By Theorem 2.4 there is a convex body K such that f (B) = R(B, K ) for any
finite B. Given any natural number n ≥ 1 there is a finite cover of A by balls of radius
1/n. Let An denote the set of centers of those balls, so that An → A. We then have

f (A) = f (A) = lim
n→∞ f (An) = lim

n→∞ R(An, K ) = R(A, K ).

4 Embedding Finite Diversities

In this section we consider an (isometric) embedding problem: when can a given
finite diversity (X , δ) be embedded in a Minkowski diversity? There is a long history
in mathematics regarding embedding of finite metrics into standard spaces. Perhaps
best known is the characterization due to Cayley and Menger of when a finite met-
ric can be embedded into Euclidean space [1, 14]. The theory of metric embeddings
forms the basis of many methods for multi-dimensional scaling, an approximate low-
dimensional embedding designed specifically for data reduction and representation.
Approximate embeddings have proven exceptionally useful for algorithm design and
approximations (e.g. [25]), work that has a direct analog in the mathematics of diver-
sities [10].

To discuss embeddings, it is convenient to consider a slight generalization of diver-
sities. A semimetric is a bivariate, symmetric map d on X that vanishes on the diagonal
and satisfies the triangle inequality, but where we allow d(x, y) = 0 even when x �= y,
x, y ∈ X (so, in particular a metric is a semimetric). Similarly, a pair (X , δ) is a semi-
diversity if it satisfies (D2) and the following slightly weaker version of (D1),

(D1′) δ(A) = 0 if |A| ≤ 1.

We say that a (semi)diversity (X , δ) is Minkowski-embeddable if for some d there is
a map φ : X → R

d and a convex body K in Rd such that

δ(A) = R(φ(A), K )

for all finite A ⊆ X .
For the rest of this section we shall focus on the embedding problem for symmetric

diversities, where a (semi)diversity (X , δ) is symmetric if δ(A) = δ(B) whenever
|A| = |B|, A, B ⊆ X , that is, the value of δ on a set depends only upon the cardinality
of the set, see [11]. We shall characterize when a finite symmetric diversity is Min-
kowski-embeddable. As a corollary we also show that not every diversity is Minkow-
ski-embeddable.

We start with some utility results on embeddings. For convenience, for the rest of
this section we shall assume that X is a finite set. Note that if (X , δ1) and (X , δ2) are
two semidiversities then (X , δ1 ∨ δ2) denotes the semidiversity with

(δ1 ∨ δ2)(A) = max {δ1(A), δ2(A)}
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for all A ⊆ X . To see that this is a semidiversity, note that for all A, B,C with B �= ∅
we have without loss of generality,

(δ1 ∨ δ2)(A ∪ C) = δ1(A ∪ C)

so that

(δ1 ∨ δ2)(A ∪ C) ≤ δ1(A ∪ B) + δ1(B ∪ C) ≤ (δ1 ∨ δ2)(A ∪ B) + (δ1 ∨ δ2)(B ∪ C).

Proposition 4.1 (a) Let (X , δ1)and (X , δ2)beMinkowski-embeddable semidiversities,
and λ > 0. Then both (X , λδ1) and (X , δ1 ∨ δ2) are Minkowski-embeddable.

(b) Suppose that K is a convex body in R
d and φ : Rd → R

d is a non-degenerate
affine map. Then for all A we have R(φ(A), φ(K )) = R(A, K ). Hence if there is
an isometric embedding from (X , δ) into (Rd , δK ) then there is also an isometric
embedding from (X , δ) into (Rd , δφ(K )).

(c) If (X , δ) is Minkowski-embeddable and |A| = k + 1, k ≥ 2, then

δ(A) ≤ k

(k + 1)(k − 1)

∑

a∈A

δ(A \ {a}). (5)

Proof (a) There aremapsφ1 : X → R
p andφ2 : X → R

q and convex bodies K1 ⊂ R
p

and K2 ⊂ R
q such that δ1(A) = R(φ1(A), K1) and δ2(A) = R(φ2(A), K2) for all

A ⊆ X . Then for all A ⊆ X we have

λδ1(A) = R(φ1(A), λ−1K1)

and by Proposition 1.4,

(δ1 ∨ δ2)(A) = R(φ1(A) × φ2(A), K1 × K2).

(b) If there are λ ≥ 0 and x such that A + x ⊆ λK then φ(A) + φ(x) ⊆ λφ(K ) so
R(φ(A), φ(K )) ≤ R(A, K ). Applying the inverse map gives equality.

(c) There is a map φ : X → R
d and a convex body K such that R(φ(A), K ) = δ(A).

Applying Proposition 1.3 gives the result.

We now consider Minkowski-embeddability for a few key examples of symmetric
diversities.

Proposition 4.2 (a) The diversity (X , δ) with δ(A) = 1 for all A ⊆ X with |A| > 1
is Minkowski-embeddable.

(b) The diversity (X , δ) with δ(A) = |A| − 1 for all non-empty A ⊆ X is Minkowski-
embeddable.

(c) Any diversity (X , δ) with X = {a, b, c} and δ({a, b}) = δ({a, c}) = δ({b, c}) = 1
is Minkowski-embeddable.
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Proof (a) Let n = |X |−1. Let K be the simplexwith vertex set V given by the standard
basis vectors in R

n together with 0. Then for non-singleton subset V ′ ⊆ V we have
R(V ′, K ) = 1. Hence any bijection from X to V gives an isometric embedding.

(b) Let K be the same simplex as in (a) and now let V be the vertex set of −K . The
proof of [2, Theorem 4.1] then gives R(V ′, K ) = |V ′| − 1 for all non-empty subsets
of V ′ ⊆ V . The result follows.

(c) Let x = δ({a, b, c}). As (X , δ) is a diversity, 1 ≤ x ≤ 2. Let (X , δ1) be the
diversity on X with δ1(A) = 1 for all non-singleton A ⊆ X and let (X , δ2) be the
diversity on X with δ2(A) = |A| − 1 for all non-empty A ⊆ X . Then (X , δ1) and
(X , δ2) are Minkowski-embeddable, and by Proposition 4.1 (a) so is

(X , δ) = (X , δ1 ∨ ((x/2)δ2)).

We now give an exact characterization for when a finite symmetric diversity is
Minkowski-embeddable.

Theorem 4.3 Let (X , δ) be a finite symmetric diversity. Then (X , δ) is Minkowski-
embeddable if and only if

δ(A \ {a})
δ(A)

≥ |A| − 2

|A| − 1
(6)

for all A ⊆ X with |A| ≥ 2, a ∈ A.

Proof Suppose that (X , δ) is Minkowski-embeddable, that A ⊆ X , |A| ≥ 2 and
a ∈ A. If |A| = 2 then (6) holds trivially. If |A| > 2 then by Proposition 4.1 (c),

δ(A) ≤ |A| − 1

|A|(|A| − 2)

∑

x∈A

δ(A \ {x}) = |A| − 1

|A|(|A| − 2)
|A|δ(A \ {a}),

where the identity follows since δ is symmetric. Hence (6) holds. Conversely, suppose
that (6) holds for all A ⊆ X such that |A| ≥ 2 and a ∈ A. As (X , δ) is symmetric,
δ is monotonic and there is an increasing function f : Z → R≥0 such that δ(A) =
f (|A| − 1) for all non-empty A ⊆ X . Note that for each k = 2, . . . , |X |, choosing an
A ⊆ X with |A| = k and substituting A into (6) gives

f (k − 2)

f (k − 1)
≥ k − 2

k − 1
, (7)

a fact that we shall use later on in the proof.
Let X = {x1, x2, . . . , xn} and for each m ≤ n define Xm = {x1, x2, . . . , xm}. We

will use induction on m to show that for each m ≤ n the symmetric diversity (X , δ)

restricted to Xm is Minkowski-embeddable. This is clearly the case when m ≤ 2.
Suppose that 2 < m ≤ n and that (X , δ) restricted to Xm−1 isMinkowski-embeddable.
Then there is a map φ : Xm−1 → R

d for some d and a convex body K ⊆ R
d such that

δK (φ(A)) = δ(A)

for all A ⊆ Xm−1. We now define a collection δ(i) of (semi)diversities on Xm , 1 ≤
i ≤ m.
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First, for each i = 1, 2, . . . ,m − 1 define the map φ(i) : Xm → R
d by φ(i)(x) =

φ(x) if x ∈ Xm−1 and φ(i)(xm) = φ(xi ). We then define (Xm, δ(i)) by

δ(i)(A) = δK (φ(i)(A)).

Since (Rd , δK ) is a diversity, (Xm, δ(i)) satisfies (D1′) and (D2), and so (Xm, δ(i)) is
a Minkowski-embeddable semidiversity. Moreover, the definitions of φ and φ(i) give

δ(i)(A) =
{
f (|A| − 2) if xi , xm ∈ A,

f (|A| − 1) otherwise.

Second, let (Xm, δ(m)) be the diversity defined by setting

δ(m)(A) = |A| − 1

m − 1
f (m − 1)

for all non-empty A ⊆ Xm . This is Minkowski-embeddable by Propositions 4.2 (b)
and 4.1 (a).

We now claim that

δ(A) = max {δ(i)(A) : i = 1, . . . ,m} (8)

holds for all A ⊆ Xm . Proving this claim will complete the proof of the theorem
by induction since each (semi)diversity δ(i) is Minkowski-embeddable, and hence by
Proposition 4.1 (a), (Xm, δ) is Minkowski-embeddable.

When |A| ≤ 1, (8) holds trivially, as all relevant quantities are zero. Suppose
|A| ≥ 2. Three cases may hold:

• xi /∈ A for some i = 1, . . . ,m − 1; then δ(i)(A) = f (|A| − 1).
• xm /∈ A; then δ(i)(A) = f (|A| − 1) for all i = 1, . . . ,m − 1.
• A = Xm ; then δ(i)(A) = f (|A| − 2) for all i = 1, . . . ,m − 1.

Hence

max {δ(i)(A) : i = 1, 2, . . . ,m − 1} =
{
f (|A| − 1) if A �= Xm,

f (|A| − 2) if A = Xm .

We now consider δ(m) and A ⊆ Xm . If A = Xm then

δ(m)(A) = (|A| − 1)

(m − 1)
f (m − 1) = f (m − 1).

Otherwise suppose 1 < |A| < m and so

δ(m)(A) = (|A| − 1)

(m − 1)
f (m − 1)
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= (|A| − 1)

(m − 1)

⎛

⎝
m∏

k=|A|+1

f (k − 1)

f (k − 2)

⎞

⎠ f (|A| − 1)

≤ (|A| − 1)

(m − 1)

⎛

⎝
m∏

k=|A|+1

k − 1

k − 2

⎞

⎠ f (|A| − 1) (by (7))

= f (|A| − 1).

Hence if A �= Xm ,

max {δ(i)(A) : i = 1, 2, . . . ,m} = max { f (|A| − 1), δ(m)(A)} = f (|A| − 1),

while if A = Xm then since f is increasing

max {δ(i)(A) : i = 1, 2, . . . ,m} = max { f (|A| − 2), δ(m)(A)} = f (|A| − 1).

We conclude that δ(A) = max {δ(i)(A) : i = 1, . . . ,m} for all A ⊆ Xm which com-
pletes the proof of (8) and also the theorem.

By considering the diversity on X = {a, b, c, d} with

δ(A) =

⎧
⎪⎨

⎪⎩

2, |A| = 4,

1, 2 ≤ |A| ≤ 3,

0, otherwise,

and taking A = {b, c, d} in Theorem 4.3 we immediately obtain

Corollary 4.4 There exists a diversity a set of four elements that is not Minkowski-
embeddable.

We show later (Corollary 5.3) that every diversity on three elements is Minkowski-
embeddable.

5 Parallelotopes and Simplices

Wehave shown that not every diversity isMinkowski-embeddable, and so the question
now becomes one of characterizing which diversities are. In this section we charac-
terize when we can embed the diameter and negative-type diversities defined in the
introduction in terms of Minkowski diversities having kernels equal to parallelotopes
and simplices, respectively.

We first consider diameter diversities.

Theorem 5.1 A finite diversity (X , δ) can be embedded in a Minkowski diversity with
kernel equal to some parallelotope if and only if (X , δ) is a diameter diversity.
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Proof First note that if there is some such embedding then (X , δ) is a diameter diversity
by [2, Proposition 3.4]. Conversely, suppose that X = {x1, x2, . . . , xn} and (X , δ) is
a diameter diversity. Let φ : X → R

n be the standard Fréchet embedding

φ : X → R
n, y �→ (d(x1, y), d(x2, y), . . . , d(xn, y)),

of the metric d induced by δ. Then d(x, y) = ‖φ(x) − φ(y)‖∞ for all x, y ∈ X . Let
K be the unit cube in Rn . For all A ⊆ X we have

δ(A) = max
a,b∈A

d(a, b) = max
a,b∈A

‖φ(a) − φ(b)‖∞

= max
i

max
a,b∈A

|φ(a)i − φ(b)i | = R(φ(A), K ).

We now consider finite diversities of negative type, the diversity analog of metrics
of negative type [14]. Note that the cone of all diversities on a set X of cardinality n
has dimension 2n − (n+1), the number of subsets A ⊂ X with |A| ≥ 2, see [35]. The
set of diversities of negative type forms a cone of the same dimension, indicating that
an appropriately chosen ‘random’ diversity could have negative type with non-zero
probability.

Theorem 5.2 A finite diversity (X , δ) can be embedded in a Minkowski diversity with
kernel equal to some simplex if and only if (X , δ) has negative type.

Proof Let n = |X |. From [35, Theorem 7], (X , δ) is negative-type if and only if it can
be embedded in (Rd , δneg) for some d and

δneg(A) =
d∑

i=1

max {ai : a ∈ A} − min

{
d∑

i=1

ai : a ∈ A

}
.

Define the polytope

K = − conv (0, e1, e2, . . . , ed) =
{
x ≤ 0 :

d∑

i=1

xi ≥ −1

}
.

Suppose λ = R(A, K ), so there is z such that A ⊆ λK + z. Then for all a ∈ A and
all i we have ai − zi ≤ 0. Hence

zi ≥ max {ai : a ∈ A}.

Let a∗ ∈ A minimize
∑d

i=1 a
∗
i . Then a

∗ ∈ λK + z implies
∑d

i=1(a
∗
i − zi ) ≥ −λ and

so

λ ≥
d∑

i=1

zi −
d∑

i=1

a∗
i ≥

d∑

i=1

max {ai : a ∈ A} − min
a∈A

d∑

i=1

ai = δneg(A).
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Now suppose λ = δneg(A). Let zi = max {ai : a ∈ A} so that ai − zi ≤ 0 for all a ∈ A
and all i = 1, . . . , d. Furthermore,

−λ = −
d∑

i=1

zi + min

{
d∑

i=1

ai : a ∈ A

}
≤ −

d∑

i=1

zi +
d∑

i=1

ai

for all a ∈ A, so that
∑d

i=1(ai − zi ) ≥ −λ and a − z ∈ λK for all a ∈ A. Hence
R(A, K ) ≤ δneg(A).

We have shown that (X , δ) is of negative type if and only if it can be embedded into
a Minkowski diversity with kernel equal to the particular simplex K . The theorem
now follows from Proposition 4.1 (b) and the fact that every simplex in R

d can be
transformed into another by a non-degenerate affine map.

The last theorem immediately implies that two further classes of diversity are Min-
kowski-embeddable.

Corollary 5.3 If δ is diversity on three elements or a finite diversity that can be embed-
ded in L1, then δ is Minkowski-embeddable.

Proof All three-element diversities and L1-embeddable diversities have negative type
[35].

6 Open Problems

We have characterized diversities and functions defined by the generalized circumra-
dius R(A, K ), and established preliminary results on embedding finite diversities into
these diversities. Our results suggest several avenues for further investigation.

First, is there a complete characterization of when a finite diversity is Minkowski-
embeddable? Indeed it is not even obvious which finite diversities can be embedded
into sublinear diversities in R

d .
A second related question is algorithmic in nature: Are there efficient algorithms

for determining whether or not a finite diversity can be embedded in some dimension?
Interestingly, we note that for the classical case of a circumradius, even though we
do not know a characterization for Minkowski-embeddability, we are able to give an
efficient algorithm for deciding embeddability (for bounded dimension):

Proposition 6.1 Let (X , δ) be a finite diversity such that δ(A) = max{δ(A′) : A′ ⊆ A,

|A′| ≤ d+1} for all A ⊆ X. For fixed d, there is an algorithmwhich runs in polynomial
time in n = |X | to determine if (X , δ) is Minkowski-embeddable in R

d with kernel
equal to the unit ball B.

Proof We begin with a useful observation. Suppose that there is an (unknown) embed-
ding φ : X → R

d such that δ(A) = δB(φ(A)) for all A ⊆ X . Note that since the
metric induced by δB is Euclidean so is the one induced by δ. Let ψ : X → R

d be
any map which preserves the metrics induced by δ and δB. In addition, let f be the
(unknown) isometry from ψ(X) to φ(X) given by f (ψ(x)) = φ(x) for all x ∈ X .
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As Rd is a finite dimensional Hilbert space, f can be extended to an isometry on the
whole space Rd (see, e.g., [34, Theorem 11.4]). Moreover, for any A ⊆ X we have

δB(ψ(A)) = inf {sup {‖ψ(a) − x‖2 : a ∈ A} : x ∈ R
d}

= inf {sup {‖ f (ψ(a)) − f (x)‖2 : a ∈ A} : x ∈ R
d}

= inf {sup {‖φ(a) − y‖2 : a ∈ A} : y ∈ R
d}

= δB(φ(A)) = δ(A).

Hence, if (X , δ) is Minkowski embeddable into (Rd , δB), then the map ψ gives one
embedding.

We now present an algorithm for deciding whether or not (X , δ) is embeddable in
(Rd , δB):

1. Decide whether or not the metric induced by δ on X is Euclidean. If not, then
(X , δ) cannot be embedded in (Rd , δB). Else, compute a (metric) embedding ψ

of X in Rd which preserves the induced metrics.
2. If δB(ψ(A)) = δ(A) for all A with |A| ≤ d + 1 then (X , δ) can be embedded in

(Rd , δB), otherwise (X , δ) cannot be embedded in (Rd , δB).

The correctness of this algorithm follows by the observation above. To see that it
also runs in polynomial time in n (for fixed d), note that step 1. can be computed in
polynomial time in n by the results in e.g. [14, Sect. 6.2] or [34, Theorem 2.1], and
that for step 2. the definition of δ and Proposition 1.2 imply that to determine whether
δB(ψ(A)) = δ(A) for all A ⊆ X we need only check subsets A with |A| ≤ d + 1.

Another question is how to extend the embedding results to include distortion. Let
(X1, δ1) and (X2, δ2) be two diversities.We say that amapφ : X1 → X2 has distortion
c if there are c1, c2 > 0 such that c = c1c2 and

δ1(A)

c1
≤ δ2(φ(A)) ≤ c2δ1(A)

for all finite A ⊆ X . Continuing the program of [25], it is shown in [10] that bounds
on the distortion of embeddings from diversities into L1-diversities provide approx-
imation algorithms for hypergraph generalizations of sparsest cut. It was shown in
[35] that there are finite diversities of metric type which cannot be embedded into L1
without at least (

√
log |X |) distortion. This bound therefore holds for Minkowski-

embeddable diversities. In general, questions concerning distortion seem intricately
connected with core sets of the generalized circumradius [2].

Apart from potential algorithmic gains it would be good to explore embeddings
with distortion for diversities into Minkowski diversities with low dimension, simply
for their use in visualization and modelling of diversity type data.
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