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We present a model of a system of elastic fibres which exhibits complex,
coupled, nonlinear deformations via a connecting elastic spring network.
This model can capture physically observed deformations such as global
buckling, pinching and internal collapse. We explore the transitions between
these deformation modes numerically, using an energy minimization
approach, highlighting how supported environments, or stiff outer sheath
structures, favour internal structural collapse over global deformation. We
then derive a novel analytic buckling criterion for the internal collapse of
the system, a mode of structural collapse pertinent in many biological
filament bundles such as the optic nerve bundle and microtubule bundles
involved in cell abscission.
1. Introduction
Filamentary bundles (fibres embedded in an elastic matrix) are a common
biological structure. There is ample experimental evidence showing how their
elastic response is critical for their functionality. For example, collagen bundles
are composed of linked tropocollagen molecules with a range of mechanical
properties from compliant to rigid [1–3]. The optic nerve bundle is composed
of rigid bundles of myelinated neurons embedded in connective tissues, and
damage to this bundle because of pressure-induced buckling is considered a
likely cause of glaucoma [4]. Similar nerve bundle structures play a crucial
role in spinal cord injuries [5]. Microtubules are known to moderate their
flexibility and alter their load bearing capacity in muscles [6,7].

There has been significant effort to reduce these diverse and complex elastic
responses to generalizable elastic bundle models. Such models range from
isolated filaments [7–9], to exact geometrical models [10–13] andmulti-scale conti-
nuum approaches [14–17]. Their applications are diverse, including actin filaments
[18], microtubules [19,20], collagen bundles [21], optic nerves [22,23], muscle fibres
[14], fabric composites [24], carbon fibres [25] and mechanical ropes [26].

In this study, we develop a model that explicitly describes multiple filaments
whose interactions are mediated through an elasticmatrix, which wewill show to
be essential for capturing the surprising range of deformationmodes exhibited by
fibre bundles under compression. To our knowledge, there exists no fibre bundle
model which has been demonstrated to be capable of describing these modes.
In figure 1, we categorize these deformation modes into three types. Firstly, in
figure 1a, the bundle may buckle globally, as observed for isolated actin and
microtubule bundles [8,27]. Secondly, as shown in figure 1b, pinching (lateral con-
traction) may occur. This has been seen in the mouse embryonic fibroblast (MEF)
[28], where the contraction of actin fibres was shown to be crucial in controlling
nuclear shape. Finally, in figure 1c, buckling may instead occur internally, as is
the case for microtubule bundles and the optic nerve bundle [4,29,31].

We are able to rationalize these deformation modes with three key par-
ameters: the axial compression relative to the filament bending stiffness, the
pinching load normalized against the interior filament bending stiffness and
the non-dimensionalized ratio of the bending stiffness of the outer filaments
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Figure 1. Three general classes of deformation modes: (a) a globally buckled state, here compared with the buckling of actin filaments [27] (adapted with per-
mission, please be aware that this permission may not cover reuse under the OA agreement); (b) a pinched configuration, here compared with the basal organization
of the actin filament network in an MEF fibroblast [28] (adapted with permission, please be aware that this permission may not cover reuse under the OA agree-
ment); (c) internally buckled states, compared here with (left) microtubule bundle during cell abscission [29] (reproduced/adapted with permission which does not
not cover reuse under the OA agreement) and (right) ‘cupping’ of the optic nerve in an eye that has suffered glaucoma [30] (adapted with permission, please be
aware that this permission does not cover reuse under the OA agreement).
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to the inner filaments (representing, for example, the optic
nerve bundle’s stiff outer sheath).

The principal feature of our model is the explicit coupling
between filaments of fixed length via both Hookean springs
and an overlap penalty. This combination of interaction
forces is essential for two reasons. The first is so that the
model captures physical deformations. The second is so that
the buckling of one filament can potentially trigger further
buckling, and a nonlinear cascade of response for the whole
bundle. This coherent buckling is critical, in particular, for
explaining the internal collapse mode.

The internal buckling mode is of particular interest here,
in part because there appears to be no relevant buckling
criteria existing in the literature, but mainly because of
their functional role in biological bundles. As our model
will confirm, the localized pile-up type behaviour of these
deformations leads to significant spikes in local pressure.
For the optic nerve, this could be crucial and deleterious, as
external pressure can inhibit neuronal signalling action [32].
By contrast, for cell abscission this pressure is a desirable
property as it locally weakens the bundle, providing a point
for cleavage [29]. The pinching deformation modes are
shown to lead to a more uniformly distributed internal
pressure which is of a lower order of magnitude, in some
sense making it a ‘safer’ deformation. It is thus important
to know what factors will favour one mode over another.
Overall, a key outcome of our analyses is to show the mech-
anical forces relevant for mediating the transitions between
different bundle morphologies.
2. The model
2.1. Model geometry
The basic model, illustrated in figure 2, comprises a set of m
inextensible planar elastic rods ri, i∈ 1, …m. Each rod, of the
same arc length L, is represented as a discrete curve which is
itself composed of n points (typically n = 200 here). Their
Cartesian coordinates ðxij, yijÞ, j [ 1, . . .n, can be parametrized
in terms of a set of angles θij

ðxij, yijÞ ¼
Xj�1

k¼1

l cos uik, l sin uik þ iW
m� 1

� �
, l ¼ L

n
: ð2:1Þ

The parameterW is the bundle’s width. Thus uij ¼ 0, 8i, j rep-
resents a set of straight filaments directed along the x̂-axis: the
bundle’s rest state. The m discrete rods have fixed positions at
j = 0 for which xi0 = 0 and there is a vertical spacing y(i+1)0−
yi0 =W/(m− 1), as shown in figure 2a. The angles θij determine
the bending of the curves, as shown in figure 2b. In this work,
the filaments are confined to two dimensions, as already a
range of deformation modes are manifest, with their biological
relevance highlighted in figure 1. More complex three-
dimensional modes, such as torsional deformations, will be
explored in future.

2.2. Energy functional
The set of filaments is then assigned the following energy
functional:

E ¼ Eb þ Ee þ El þ Ec, ð2:2Þ
where the total energy E is the sum of the bending energy Eb,
elastic interaction potential Ee, loading potential El and geo-
metric boundary constraint potentials Ec. All parameters
used to subsequently define the energy functional components
are summarized in appendix A.

2.3. Bending energy Eb
For each rod i, the bending energy takes the following form:

EbðiÞ ¼
Xn
j¼2

Bij

2l
tan2 uij � uiðj�1Þ

2

� �
: ð2:3Þ

This curvature measure is based on the radius of a circum-
scribed circle encompassing adjacent edges of the curve,
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Figure 2. Model geometry. (a) The set of stacked filaments and the applied compressive (Nc) and pinching (Np) loads. (b) Discretization of the filaments, where l is
the segment arc length with angle θ, and with indices i labelling the filament number and j the arc length ordering along the filament. The spring distances d and
triangular areas A are shown for both ends of the bundle and a representative middle section.
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and is a standard discrete form [33]. In the limit l→ 0, it
becomes a finite difference approximation for the curvature.
The coefficients Bij represent the localized bending stiffnesses
of the filament. Here, these values will be uniform along the
filament length (Bij = Bi) and the only variation is between the
outer bending stiffness Bo = B1 = Bm and inner bending stiff-
ness Bin = Bi, i = 2, 3…m− 1. Physically the ratio Br = Bo/Bin

is used to model either surrounding support to the bundle or
a stiff outer sheath, such as the epineurium and perineurium
sheaths surrounding neuron fibre bundles [34].
2.4. Interaction energy Ee
The interaction energy Ee in (2.2) is the sum

Ee ¼ E1
e þ E1þ

e þ E1�
e þ E2

e : ð2:4Þ
The component E1

e is a set of Hookean spring potentials join-
ing neighbouring filaments, dependent on the arc length
paired distances dij between neighbouring springs (i, i + 1)
at location j along their length (figure 2b). Formally, E1

e is
the following Hookean potential:

E1
e ¼

Xm�1

i¼1

Xn
j¼0

lf ðdijÞ, ð2:5Þ

where dij = |dij| , with the vector dij expressed as

dij ¼ (xðiþ1Þj � xij, yðiþ1Þj � yij),

and the function

f ðdijÞ ¼
Kij

2
dij � d0

d0

� �2

:

Here d0 = 1/(m− 1) is the value of dij in the bundle’s rest con-
figuration (all θij = 0) and the constants Kij are the spring
stiffnesses. The model can allow Kij to vary but in this
study we choose a homogeneous connective tissue Kij =K.
The factor l in (2.5) makes K spring energy a density per
unit length.

In addition, there are diagonal spring potentials E1þ=�
e

dependent on distances d+ij between point pairs (i, j ) and
(i, j ± 1), as indicated in figure 2b. The first set of potentials,
corresponding to the distances dij, model the stretching of
connective tissue linking the filaments, while the potentials
associated with the diagonal distances d+ij model the
localized axial stretching of this tissue due to filament curva-
ture. The diagonal spring potentials E1+

e are also Hookean
potentials

E1+
e ¼

Xm�1

i¼1

Xn
j¼1

lf+ðd+ij Þ, ð2:6Þ

where dþij ¼ jdþij j and d�ij ¼ jd�ij j, with the vectors dþij and d�ij
expressed as

dþij ¼ (xðiþ1Þðjþ1Þ � xij, yðiþ1Þðjþ1Þ � yij),

d�ij ¼ (xðiþ1Þðj�1Þ � xij, yðiþ1Þðj�1Þ � yij),

and

f+ðdijÞ ¼
Ks+
ij

2

d+ij � d+0
d+0

 !2

: ð2:7Þ

Here d+0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðm� 1Þ2 þ l2

q
is the value of d+ij in the bun-

dle’s rest configuration. Note there is no d�i0 or dþin as these
distances are formally set to zero.

The second interaction potential E2
e prevents the overlap

of the filaments by penalizing each area Aðdij, dþij Þ and
Aðdiðjþ1Þ, dþij Þ, illustrated in figure 2b, if an area gets close to
zero. Aðdij, dþij Þ is defined by the triangle between the two
vectors dij and dþij , such that Aðdij, dþij Þ ¼ jdij � dþij j=2. Filament
overlap is identified by Aðdij, dþij Þ becoming zero, as for this to
occur the length dij or dþij is zero, or the angle between dij and
dþij is π. For Aðdiðjþ1Þ, dþij Þ, similar reasoning applies, with
Aðdiðjþ1Þ, dþij Þ defined as Aðdiðjþ1Þ, dþij Þ ¼ jdiðjþ1Þ � dþij j=2. The
term g(A) we choose to penalize area A getting close to
zero is

gðAÞ ¼ C1e�C2A=A0 , ð2:8Þ
where A0 = l/2(m− 1) is the size of each triangle in the rest
configuration. The parameter C1 is chosen to be C1 = 106 in
order to effectively prevent rod overlap. The parameter C2

determines the extent of compression required for the poten-
tial to become large. In most of the examples in this study, we



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220287

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 J

an
ua

ry
 2

02
3 
use C2 = 100, so that g(A) is only significant if the area of a
given triangle is reduced to less than 10% of its original
size. This means the elastic matrix between the filaments
acts like a linear material until the filaments come close to
contact. A lower C2 value would mean the potential becomes
larger for less significant compression (the value of the ratio
A/A0) making the material act more like one with pro-
nounced strain hardening. In §3.6, we briefly explore the
consequences of lowering C2 and show this does not qualitat-
ively alter our conclusions as to the nature of the system’s
phase space. The specific form we choose for E2

e is

E2
e ¼

Xm�1

i¼1

Xn�1

j¼0

gðAðdij, dþij ÞÞ þ gðAðdiðjþ1Þ, dþij ÞÞ
h i

: ð2:9Þ

We experimented with a similar overlap energy penalty,
in which a repulsive potential was applied if dij and d+ij
approached zero length. However, this was not as effective
as the area penalty, as points on the filament could fit
between two points on a neighbouring filament without the
spring distances ever becoming small. A final point to
make is that this energy does not prevent non-local self-
overlap, occurring in globally buckled states when the load
Nc≫ 1 and the bending coefficient ratio Br is of order unity.
This can be remedied by adding an additional potential
which penalizes non-local filament overlap, such as penaliz-
ing a point from approaching a line segment between two
other points. However, such a term was found to significantly
increase the computation time, and the range of forces used
in this work mean that the local treatment was sufficient
to prevent filament overlap. This allowed us to complete
a significant range of parameter sweeps in a reasonable
time frame.
2.5. Loading potentials El
The loading energy El in (2.2) is the sum of two terms:

El ¼ E1
l þ E2

l : ð2:10Þ
The potential E1

l represents a compressive load �Ncix̂ applied
to each rod i with the potential energy associated with the
load taking the following form:

E1
l ¼

Xm
i¼1

Ncixin: ð2:11Þ

In this work, we apply a uniform load Nci =Nc for all i.
The potential E2

l applies lateral compression force, per-
pendicular to the force Nc (along the y-direction). This is
defined as

E2
l ¼

Xm
i¼1

Xn
j¼1

NpðijÞ(yij � yi0): ð2:12Þ

In this study, we prescribe a uniform compressive force on the
outer filaments, so that Np(ij) =Np if i =m, Np(ij) =−Np if i = 1
and Np(ij) = 0 otherwise. We call this a pinching load Np in
what follows, as it produces pinched geometries. The Np(ij)

can also be readily chosen to model different systems. For
example, pinching at only one end is relevant for optic
nerve bundle shown in figure 1c where the scleral wall
pinches the bundle. For other applications such as cell
nuclei models, one could pinch at the middle to simulate
the pinching of a nuclear cell.
2.6. Geometric boundary potentials Ec
The geometric potentials impose boundary conditions such
as pinned conditions (i.e. no end-to-end deflection), and
clamped boundary conditions (i.e. no end-to-end deflection
and fixed end tangents). The pinned case for which yi0 = yin is

E1
c ¼

Xm
i¼1

Hðyin � yi0Þ, ð2:13Þ

where Hð0Þ ¼ 0, HðsÞ . 0, 8s = 0. We use quadratic func-
tions in the form H(s) =C3s

2 with C3 a constant. Such a
harmonic energy penalty is well established for imposing
constraints for a wide range of systems [35,36]. In this
study, a value of C3 = 105 was used to ensure the conditions
were strongly enforced. Clamped boundary conditions
include the potential E1

c and an additional potential E2
c

which constrains the filament ends to be parallel to the
x-axis. It takes the form

E2
c ¼

Xm
i¼1

Hðui1Þ þ
Xm
i¼1

HðuinÞ: ð2:14Þ

The same quadratic form and C3 value was used for this
condition also.

With regard to the biological examples shown in figure 2,
the pinned boundary conditions applied alone would be
appropriate for the actin filament buckling (a), as buckling
is induced by compressing the filaments between two micro-
scope slides. Indeed the single filament model in the cited
study [27] used pinned boundary conditions. By contrast,
the optic nerve bundle (c) begins at the lamina cribrosa,
which is an elastically stiff porous material through which
the neuron fibres are threaded [4]. This implies the curvature
would be limited in this region, so clamped boundary con-
ditions are appropriate. In addition, the pinching of the
scleral wall restricts end movement of the filaments, so the
addition of pinned conditions would also be appropriate.
Similarly in the cell abscission example [29], there is an
additional stiff elastic matrix structure (the mid-body struc-
ture) which deforms during abscission, which would also
probably restrict curvature. We use both pinned and
pinned and clamped conditions in what follows.

2.7. Non-dimensionalization
We non-dimensionlize the system parameters with a refer-
ence length corresponding to the width of the bundle W,
and a reference bending stiffness Bs = 0.01. This yields
non-dimensionalized parameters L0 = L/W, Nc

0 =Nc/(BsW
2),

Np
0 =Np/(BsW

2) and K0 =K/(BsW
2). The length scaling

is chosen to ensure the parameter m determines the density
of packing of the filaments through the rest separation
d0 = 1/(m + 1). Hereafter, we drop the primes and all quoted
parameters are assumed non-dimensionalized unless
otherwise stated.

2.8. Locating energy minima
To find stable states, E in equation (2.2) was minimized using
the L-BFGS algorithm [37,38], a memory and computation-
ally efficient minimization algorithm that we have shown
previously to be suitable for high-dimensional buckling
models [39,40]. The explicit form of the gradients ∂E/∂θij
used to construct the gradient and approximate Hessian
matrix are given in appendix B.
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Figure 3. Model energy minima and their distribution in phase space. (a–d ) Exemplars of the four energy minima of the model, showing the undeformed, globally
buckled, pinched and internally buckled structures, respectively. (e) A representative phase space of the model’s energy minima for parameters detailed in the text.
The colours match the colours in (a–d ). Each square represents a parameter triplet (Nc, Np, Br) and squares with two colours indicate those minimum types have
energies within 1% of each other.
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3. The phase space
3.1. External and material parameters
The triplet (Nc, Np, Br) forms a set of externally acting par-
ameters. This is clear for the loads Nc, Np. The ratio Br is
classed as external as it is used to model either a surrounding
support to the bundle or a stiff outer sheath as discussed
above. The parameters K (connective medium spring stiff-
ness), number of rods m, filament length L and internal
filament bending rigidity Bin are the material parameters.

In this work, the set (Nc, Np, Br) will parametrize the
phase space of configurations and we find that they govern
the transitions between the differing bundle geometries
which minimize the system’s energy. We will then see how
the material parameter set (K, m, Bin, L) alter the nature of
this phase space, in particular how they determine the critical
values of these parameters at which the transitions occur.
3.1.1. Deformation classification
Overall, four stable geometry classes are found, which are
visualized in figure 3. These classes are the unbuckled system
shown in figure 3a, and the three deformed systems (globally
buckled, pinched and internally buckled), shown in figure
3b–d, respectively. We highlight the fact the globally and
internally buckled configurations are ‘symmetrically’ buckled,
in the sense they buckle with the same mode and direction. By
contrast, in the pinched configurations, the upper and lower
filaments buckle in opposing directions. The configurations
shown in figure 3 are archetypal minima of the system,
which occur either in the absence of pinching (globally and
internally buckled configurations) or the compressive load
(asymmetrically pinched case). In general, when both loads
are present, we use these archetypal configurations to define
three characteristics of each geometry, whose relative degree
is used to categorize the configurations. They are:

(i) Br〈|κ|〉: the mean absolute moment, an average of the
curvature |tan2((θij− θi( j−1))/2)| along the filament
length, then averaged over all filaments. We multiply
by Br to account for the fact deformation is less for a
given load in the outer filament.

(ii) Br〈|κ|〉
o and Br〈|κ|〉

i, the quantity in (i) restricted,
respectively, to the outer filaments and inner filaments
only.

(iii) P: the pinching parameter. The pinched configurations
have filaments which buckle in the opposite directions
either side of the centre, whilst for the internal/global
buckling the filaments buckle in the same direction.
To measure the degree of pinching, we split the rods
into the upper half i > (m + 1)/2 and the lower half
i < (m + 1)/2 (or split around m/2 if m is odd). Then
we calculate the weighted difference in angle between
paired filaments from the upper and lower rods:

P ¼ 1
n

Xn
j¼1

Xmh

i¼1

juij � um�1jj
juijj þ jum�1jj : ð3:1Þ

mh =m/2 if m is even and mh = (m− 1)/2 if m is odd.
The average of this over all j and i is a number
between 0 and 1, A > 0.75 is classed as dominantly
asymmetric.



(c)

(b)(a)

(d )

Figure 4. Examples of model energy minimum configurations with significant compressive and pinching loads present. Panel (a) is a globally buckled configuration
with Nc = 0.5, L = 5, Br = 1, Np = 0.05. Panel (b) has a more significant pinching load Np = 0.3. Both (a) and (b) are classed as globally buckled. Panel (c) is a
configuration with Nc = 9, L = 5, Br = 100, Np = 0.3 which has mixed pinched internal buckling characteristics. This is classified as internally buckled in our system.
Panel (d ) is a configuration with Nc = 9, L = 5, Br = 100, Np = 0.35 which has mixed pinched-internal buckling characteristics. This is classified as asymmetrically
pinched.
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The mean absolute moment Br〈|κ|〉 is simply used to
discriminate unbuckled and buckled configurations. The
globally buckled configurations have particularly large
values of this parameter. If Br〈|κ|〉 is greater than 0.00001
then the configuration is classed as buckled. We must then
identify what type of buckling is present.

A large value of the ratio Br〈|κ|〉
i/Br〈|κ|〉

o indicates
structures with significant internal buckling characteristics
(we use a ratio greater than 5). Otherwise, we must establish
whether the structure is (globally) buckled or pinched, which
is done using the pinching parameter P.

Generally we find the pinching parameter P is either very
small or very close to 1, with small P indicative of systemswith
highly symmetric deformations such as global or internal
buckling. We do find examples where there is a competition
in classification due to the presence of both symmetric
and asymmetric deformation modes. For example, globally
buckled configurations with significant pinching forces are
shown in figure 4a,b. The pinching load clearly affects the con-
figuration, compared with figure 3b, but the dominant global
characteristic is clear. Similarly in figure 4c, we see a configur-
ation which is internally buckled but has some significant
pinching. With a slight increase in pinching, figure 4c trans-
forms to figure 4d and becomes classed as asymmetrically
pinched. Note that significantly mixed pinched/internally
buckled behaviour is only observed for mid-range Br values
(we consider [1, 10 000]) in our study. For higher Br (say
greater than 500) the symmetric and internally buckled
configurations are significantly pronounced.
3.2. Surveying the phase space of deformation
We survey the available deformation modes over the par-
ameter ranges Nc∈ [0.5, 10], Np∈ [0, 0.4] and Br∈ [1, 10 000]
for the phase diagram in figure 3e. In figure 3e, we have
also used L = 5, K = 2, m = 10, B = 1. This range incorporates
biologically important example bundles such as the optic
nerve, as we will demonstrate in §4. The spring constant K
is non-dimensionalized with respect to the bending coeffi-
cient. This value has the same order of magnitude as the
bending stiffness so that both effects are important to the
system’s behaviour (we vary this value shortly). We initialize
the energy minimization in each of the four archetypal states,
and then locate the local energy minima. When there are two
local minima with energies within 1% of each other, these are
marked with two colours.

We now explore the stability ranges and transitions in the
phase diagram. We begin at (Nc, Np, Br) = (0, 0, 1) in the unde-
formed geometry. This is a bundle with no external protective
support (Br = 1). As the pinching loadNp is increased, the mag-
nitude of the pinching deformation shown in figure 3c simply
increases smoothly. There is no apparent instability. By contrast,
if Nc is increased instead, a sudden transition to the globally
buckled state occurs, shown in figure 3b, governed by the classi-
cal Euler buckling criterion. Next, upon increasing the external
support parameterBr, the globally buckled configuration is sup-
pressed due to the extreme energetic penalty associated with
deforming the stiff outer rods. At large Br > 100, as Nc is
increased, both the undeformed and pinched states suddenly
collapse to an internally buckled state, such as that shown in
figure 3d, at some critical value of Nc, denoted by N�

c .
There is a tendency for domination of the pinching con-

figurations when Np = 0 at lower Nc. This is not a surprise,
as the continuum version of elastic filament models does
not have a straight equilibrium θ = 0 in the presence of a
lateral force (see [41] eqn (99)). So the presence of a load Np

should always lead to some deformation. As discussed
above, we find the degree of pinching to grow steadily
with Np (the example shown in figure 3c is one of the more
exaggerated examples). For the high Br cases, the degree of
pinching is severely restricted.

3.3. Additional examples
We focus on the same phase space, the parameter ranges Nc-

∈ [0.5, 10], Np∈ [0, 0.4], Br∈ [1, 10 000], and consider phase
space plots for various boundary condition types, number
of filaments m and spring stiffness K.

3.3.1. Pinned boundary conditions
The minimum energy configurations for m = 10, L = 5, K = 2,
B = 1 and only the pinning constraint energy E1

c are shown
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in figure 5a. This differs from the initial case which also has
clamped constraints. For Br = 1, the globally buckled con-
figuration is the only configuration present. This contrasts
with the clamped case shown in figure 3e, where the Euler
buckling criteria ensure that global buckling is suppressed
until the Euler criterion Nc > 4π2/25 is satisfied (as B = 1).
For pinned boundary conditions, the critical criteria is
π2/25≈ 0.395 which is always met within our Nc range.
A second contrasting feature to the clamped results is that,
for Br = 1–33 (the first three layers of the plot), the globally
buckled configuration dominates for lower Nc. If we com-
pare, for example, the results for Br = 33, there is little
pinching above Nc > 3, while pinching is observed up to
loads of Nc = 7 in the clamped case. At Br = 100 (fourth
layer up) we also note that, in the pinned case, there are glob-
ally buckled configurations for high Nc, whereas there are no
such globally buckled minima in the clamped case. Hence the
extra boundary constraint is important in this regime. By



(c)(b)(a)

Figure 6. Internal interaction pressures of various states. The darker colours represent higher pressures. Panel (a) the globally buckled state, panels (b) and (c) show
these distributions for the pinched and internally buckled configurations, respectively.
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contrast, the results are largely very similar for the higher Br

regime, indicating the boundary conditions are not so
fundamental for the globally buckled deformations.

3.3.2. Twenty rods
The minimum energy configurations for m = 20, L = 5, K = 2
and B = 1 with both pinned and clamped constraints are
shown in figure 5b. These differ from the results shown in
figure 3e only by the number of rods. There is significant
similarity between the two results so there are only a
couple of features to highlight. First, we note that for inter-
mediate values of Br the pinching configurations disappear
for lower Nc, indicating a slight preference towards buckling
when the outer support is not too strong. Second, for higher
Br, while the Nc values at which internal buckling becomes a
minimal energy configuration are the same, there is a range of
Nc values over which both the pinching and global buckling
configurations are effectively bistable. This is not present in
the m = 10 case.

3.3.3. Varying matrix (spring) stiffness
The minimum energy configurations for m = 10, L = 5, K = 4
and B = 1 with both pinned and clamped constraints are
shown in figure 5c. This has twice the spring stiffness of the
results shown in figure 3e. The preferred configurations
for low Br are nearly identical in both cases and the only
significant difference manifests for high Br, where the critical
Nc value at which internal buckling becomes an energy mini-
mum is significantly increased. The variation in the curvature
of the filaments inherent to this mode will naturally lead to
significant stretching of the spring matrix, which explains
why the parameter K has a significant effect on the critical
internal buckling condition. Further evidence of this is seen
in figure 5d, which corresponds to the minimum energy con-
figurations for m = 10, L = 5, K = 1 with both pinned and
clamped constraints. The only significant difference is the
lower Nc value at which internal buckling occurs for high Br.

3.4. Forces in the system
One final aspect of these minima which we investigate is the
internal pressure caused by the spring forces, which can be
computed as the partial derivatives of the interaction energy
Ee with respect to the coordinates (xi, yi). The magnitude of
their distributions are shown in figure 6a–c. There are clear
spikes where the filaments are pressed together. The peak
pressure was found to be an order of magnitude higher for
the buckled configurations compared with the pinched case,
indicating such geometries would be particularly prone to
localized damage for individual filaments. As discussed in
the Introduction, this can be either a positive or negative fea-
ture of the bundle’s mechanical response. The more uniform
deformation of the pinch leads to more benign interactions.

3.5. Biological relevance
To further illustrate the potential biological relevance of these
results, we argue that the material parameters we consider
are relevant for the optic nerve. The optic nerve has a
width and length of 3.55 and 28mm, respectively [42], lead-
ing to the scaled length of L = 7.88 in our model. Young’s
modulus for the outer sheath has been estimated to be Eo≈
44.6 MPa and the optic nerve itself Ei≈ 5.4 MPa, respectively
[42]. These values can be translated to filament bending coeffi-
cients via πER4/2, assuming a circular cross sectionwith radius
R. For the outer sheath, Ro = 0.37 mm [42]. The optic nerve
thickness is typically around 3.55mm, covering about 15
neuron sub-bundles, which leads to a nerve’s width of Ri =
3.55/30 = 0.12 mm. Thus, Br = Bo/Bin≈ 104. Finally, the typical
inter-ocular pressures are 6.75− 33.75 × 103 MPa,which gives a
range of N∈ [6, 35] in our model. These parameters put the
bundle in the regime where internal buckling dominates,
suggesting optic nerve buckling in glaucoma can occur
depending on the density of the collagen matrix which fills
the space between the optic nerve bundles.

3.6. Elastic matrix model extensions
As discussed in §2.4, lowering the value of C2 makes the
inter-fibre matrix act more like a strain hardening material.
To explore the influence of this, we compile energy minima
for the same parameter set as in figure 3e, but with the lower
C2 value of C2 = 40. This means the potential E2

c becomes
large when the matrix material is compressed below approxi-
mately 30% of its initial area. The results shown in figure 7
show only modest differences in comparison with figure 3e:
at Br = 100 there is an increase in the dominance of pinching,
and the force required for internal buckling increases
slightly. The similarity between all phase diagrams presented
throughout suggest that our qualitative conclusions generalize
across different elastic matrix models. Furthermore, the energy
approach to ourmodelmeans that is straightforward to replace
the Hookean potential in equation (2.5) with more complex
models of biological elasticity, if specific systems are to be
investigated in the future.
4. Internal buckling
As discussed in the Introduction, the internal buckling tran-
sition is of particular biological significance. An important
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example of this is shown in figure 1c, in which asymmetric
cupping of the optic nerve is observed in glaucoma sufferers.
This is not readily explained by linear elastic models [22,43].
The extreme localized pressures in the internally buckled
state might explain the damage caused to single elements
of the whole bundle, thus leading to localized sight loss,
the defining property of glaucoma’s insult.
4.1. The internal buckling criterion
As observed in the previous section, the model suggests the
critical load at which this internal deformation occurs is con-
sistent for a sufficiently strong external support parameter
Br > 100, independent of the pinching force Np, and varies
with the model parameters. This suggests a clear buckling cri-
terion could be developed for such systems which depends
on the material parameters K, Bin, L, m. To characterize this
criterion, we chart the critical load N�

c at which the straight
configuration collapses into the internally buckled state in
figure 8a, for a variety of spring stiffnesses K, filament lengths
L, and bending stiffnesses B. We fix m = 10, Np = 0 and
Br = 10 000. The solid lines represent the following analytic
prediction for the critical load N�

c :

N�
c ¼ a

ffiffiffiffiffiffiffiffiffiffi
KBin

L

r
þ n2ep

2Bin

L2
, ð4:1Þ

where ne is minimum Euler buckling mode, ne = 1 for pinned
boundary conditions and ne = 2 for clamped conditions,
and α = 10.61 (we will shortly discuss the relevance of
this value). Given the complexity of the model and the
deformations involved, this is a remarkably simple formula
and, as indicated in figure 8a, it is also highly accurate.
We now discuss its derivation in some detail as it provides
significant insight into the nature of the instability and the
factors which determine it.

4.2. A discrete model
We make an energy estimation of the internally buckled state
by assuming a triangular shape for the buckled filaments, as
indicated in figure 8b, with the amplitude of buckling decay-
ing laterally to zero, as in the numerically obtained minima
shown in figure 8c. The indicated angle θt dictates both the
buckling frequency and, through the fixed length criteria,
the amplitude of buckling D. Both are functions of the dis-
tance Δ through which the force Nc does work. This allows
us to explicitly calculate the energy in equation (2.2) and
minimize it via a two-step process: first we find the load at
which the system becomes unstable when Δ = 0, then we
minimize the energy at this load for the wavemode n at
which this occurs. We begin by only assuming m = 3 so that
only the middle filament actually deforms. The general m
formula is then a straightforward extension of this.

With reference to the undeformed state, the energy of the
simple internally buckled state is

Eint ¼ El þ Ee þ Eb, El ¼ �NeD: ð4:2Þ
Here El is the work done by the load Ne bending the middle
filament. All parameters used to define the components of
Eint are summarized in appendix A. Note that in this simpli-
fied model we are not including the boundary constraints. It
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is clear in the full nonlinear solutions that there is a decay in
amplitude towards the end of the filaments, see figure 8c,
owing to the need to satisfy the boundary conditions. So
we are assuming this load Ne is the excess load over the
Euler result.

4.3. The interaction energy Ee
With three rods, d0 = 1/(m− 1) = 1/2, and the total spring
energy is:

Ee ¼ 12n
ððL�DÞ=2n

0

K
2
ðdðxÞ � d0Þ2

Ld20
dx: ð4:3Þ

Here, the integral is the elastic deformation energy associated
with the shaded triangle shown in figure 3a, which takes into
account both the energy of compressing the springs below
the triangle, and extending the springs above. The factor of
1/L is used to ensure that as we vary L, there are the same
number of springs per unit length to match our simulation
set-up. The prefactor of n accounts for the total deformation
energy of the 2n copies of the shaded triangle and the fact
that there are six spring connections for each point in our
model (four diagonal, two direct, so that in our earlier
notation this is the sum E1

e þ E1þ
e þ E1�

e ). We deduce

dðxÞ ¼ x
2nD
L� D

þ d0, where D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

4n2
ð2L� DÞ

r
, ð4:4Þ

and we can therefore evaluate equation (4.3) to give

Ee ¼ K
Ln2

DðL� DÞð2L� DÞ: ð4:5Þ

Finally we note that, as we seek to derive an instability cri-
terion, we can assume the overlap potential would be
negligible and hence equation (4.5) represents the total inter-
action energy of the system.

4.4. The energy Eb
To derive Eb, we take a similar approach as in the derivation
of the discretized simulation bending energy. The acute angle
θt of the shaded triangle is

ut ¼ arctan
2nD
L� D

� �
: ð4:6Þ

We approximate the curvature energy as the difference
between the two angles of the triangle as marked in
figure 8a. Using the arctan formula of our model, we define
the curvature κt of each triangle as

kt ¼ 1
lt
tan2 2 arctan

D
lt

� �� �
, lt ¼ L� D

2n
: ð4:7Þ

Thus the curvature energy, averaged over the 2n triangles is

Eb ¼ 2nBin

2lt
tan2 2 arctan

D
lt

� �� �

¼ 2n2Bin

L� D
tan2 2 arctan

2nD
L� D

� �� �
: ð4:8Þ

4.5. Instability as a balance between bending and
matrix stretching

We take the derivative of equation (4.2) with respect to Δ
(using equations (4.5) and (4.8)) and find the critical excess
force Ne when Δ = 0 to be

Ne ¼ KL
n2

þ 16n2Bin

L2
: ð4:9Þ

The first term represents the energy due to spring stretching. It
decreases with n as the fixed length of the filaments means
higher mode deformations have lower amplitude and hence
less stretching of the elastic matrix joining them. The second
term represents the bending energy which increases with n.
Thus,we see theminimumof this functionwill be intermediate
in n. An optimal n, denoted by n*, is found by minimizing Ne

with respect to n. Substitution of this lowest-load mode n*
into equation (4.1) returns the critical buckling load

Ne ¼ 8

ffiffiffiffiffiffiffiffiffiffi
KBin

L

r
and n� ¼ K1=4L3=4

2(Bin)1=4
: ð4:10Þ

This also predicts (approximately) the expected wavemode of
the buckling, which is increased by both length and matrix
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stiffness. Reflecting on this, the coefficient 8 is entirely deter-

mined by our approximation of the shape of the buckled
configuration as a series of triangular kinks, and so cannot be
expected to accurately represent the true minimum energy
buckled configuration. It is reasonable therefore to treat the
pre-factor as a fitting parameter α. As mentioned above, we
add on the critical Euler load which accounts for the boundary
conditions to give equation (4.1).
4.6. Accounting for neighbouring deformations
To account for the decay in buckling amplitude from the cen-
tral of the bundle when m > 3 (seen in figure 8c), we assume
neighbouring rods are also buckled, as in the red curves
shown in figure 8b. This leads to a lower effective stretching
d* which will be less than the value d used in the three-rod
case described above. We should expect the variation in
neighbouring rod curvature to vary as a function of the unde-
formed separation 1/(m− 1), the equilibrium separation of
the rods. Thus, we propose that the stretching d* takes
the form

d�ðxÞ ¼ x
a

m� 1
2nD
L� D

þ d0, ð4:11Þ

for some constant α. Since d0 = 1/(m− 1), the factor of 1/(m− 1)
cancels in the ratio d*/d0 used in equation (4.3). Hence, work-
ing through the same steps as in the above section, we obtain
the same critical buckling criterion in equation (4.1), but now
we recognize the parameter α is additionally accounting for
the variation in curvature across the filaments in the bundle.
4.7. The constant α
For the results in figure 8b, a value of α = 10.61 provides an
excellent fit to the data across a wide variety of parameter
sets (Bin, K, L) for a bundle with m = 10. Our simple assump-
tion in equation (4.1) is that α is independent of all the system
parameters. We now further test the variation in the value of
α with the bundle number m. To do so we locate the critical
buckling N�

c numerically by steadily increasing Nc until a per-
turbation about the undistorted bundle state is found to
develop internal buckling. We then use the predicted internal
buckling formula in equation (4.1) to calculate the value of α
for each set (K, Bin, L, m). The results for a range of par-
ameters are shown in figure 9. For lower length filaments
the parameter is approximately constant with m, whereas
for the longer filaments there is some weak decay with m.
This implies that the simple first-order model misses some
of the more subtle aspects of the general nonlinear model.
For instance in the general model, the deformation shape is
more complex relative to the triangular approximation, the
deformation magnitude is suppressed at either end of the fila-
ment by the boundary conditions, the end displacement at
the unpinned end is not uniform, and the outer rods may
deform slightly. However, all values of α are of the same
order of magnitude as the value of 8 in equation (4.10), indi-
cating the model is predicting the correct scaling, resulting
from balancing the elastic and bending energies.

4.8. A note on confinement and wavemode
It is well known that filaments in embedded media buckle at
higher wavemodes than the free filament model (see [7–9,41]),
with the mode determined by the stiffness of the embedding/
constraining medium. In this case, the stiff outer filaments/
sheath act to confine the filaments. The formula for the critical
mode n* in equation (4.10) indicates that the spring stiffness K
and bundle length towidth ratio L promote highermode buck-
ling. The confinement means that the peak buckling amplitude
experienced by the central filaments must decay in the fila-
ments to the outer edge of the bundle and this differential
deformation leads to stretching of the spring medium, which,
as discussed above, is lower for high wavemodes. Increasing
Kmeans the benefit of adopting high wavemodes and decreas-
ing this differential stretching is increased, thus promoting
higher modes. One can also see from equation (4.3) that
increasing the length L leads to an increase in the elastic
energy for a given mode n, thus the energy can be lowered
by increasing the mode n. Once again this energy is only
important because of the confinement leading to differential
deformation of the filaments and hence spring stretching. By
contrast, it is unsurprising that increasing the stiffness of the
filaments Bin promotes lower wavemodes, a factor not directly
related to the confinement.
5. Conclusion
We have developed a constitutively simple (in terms of its
material parameters) model for interactive elastic filament
bundles via an energy functional, equation (2.2), which
accounts for: the filament bending, the filament interaction
and non-overlapping constraints, bundle loading and bound-
ary conditions. This minimal model exhibits a diverse range
of free energy minima, which we categorized into four dis-
tinct classes: unbuckled, globally buckled, pinched and
internally buckled. Importantly, these follow many biologi-
cally observed buckling phenomena, such as those shown
in figure 1. These numerical experiments were shown to
mimic biologically observed buckling responses.

The model is detailed in §2. A key feature we highlighted,
to ensure numerical and physical reliability, was the non-local
overlapping potential. This was critical to mediate the com-
plex nonlinear interaction inherent to the model. We believe
this insight could be of significant benefit to researchers
developing similar theoretical models.

A common feature of many biological filament bundles is
the embedding of the system in a stiff matrix or sheath. Inter-
estingly, for sufficiently stiff outer sheaths, the buckling mode
was observed to change dramatically from a Euler-like global
buckling to an internal buckling mode. We derived both the



Table 1. Summary of model parameters with dimensional analysis prior to
non-dimensionalization. M, L and T, are mass, length and time units,
respectively.

parameter description dimensions

L filament length (L)

l segment length (L)

W bundle width (L)

θ segment angle ()

Np vertical pinching load (ML T−2)

Nc horizontal compressive load (ML T−2)

d spring length (L)

A triangular area of matrix (L2)

B bending stiffness (ML3 T−2)

K spring stiffness (ML T−2)

d vertical point displacement (L)

Δ horizontal point displacement (L)
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scaling and analytical formula to predict the critical compres-
sive load leading to this internal buckling transition. As
internal buckling leads to large, highly localized pressures
(relative to a simple pinching mode), we predict internal
collapse may describe catastrophic mechanical failure in
biological systems.

Furthermore, the derived critical compressive load, given
in equation (4.1), is remarkably straightforward. We highlight
that the relevant parameters of this prediction should be rela-
tively uncomplicated to estimate. The bending stiffness Bin

can be derived from the filament’s Young’s modulus and
Poisson ratio, while the spring/matrix stiffness K is a
measure of the resistance to deformation of the material/
bonds connecting the filaments. Thus, we believe it has sig-
nificant predictive potential for applications of biological
filament bundles in supported environments, where internal
filament collapse plays a key role.

Possible future investigations using this model might also
address what happens if the filaments are of different types
(they have variable bending stiffness), or have structural
weakness (bending stiffness varying with arclength). One
can also consider variations on the pinching force such as
pinching at multiple points or the pinching/pulling of indi-
vidual filaments (plucking). In each case, one would have
access to a richer variety of geometries than presented here,
but we believe the principle of competition between elastic
matrix stretching and filament bending highlighted here
would still play a key role in determining these geometries.

The model presented here is two-dimensional, but has rel-
evance to three-dimensional bundles under the condition
that there are no torsional stresses. Under such conditions,
the pinching modes presented here could represent a cross-
section of an axially symmetric bundle pinching with
uniformly applied pinching pressure. This would be relevant
for the optic nerve where the hoop stress in the scleral wall
applies a uniform pressure to the lamina cribosa [4]. The
global buckling mode represents a planar buckling of a three-
dimensional bundle, this behaviour has been observed in
related global buckling models [19]. Some caution can be
found in results in a related model of a filament connected to
a fixed surface found in [41]. In this case, there is some indi-
cation that the spring connection can lead to a competition
between non-planar and planar buckling modes for the
lowest-load collapse, although both have similar wavelengths.
Similar considerations would apply to the internal buckling
modes. However, it remains the case that the internal buckling
wavelength would still be determined by the balance between
the elastic stiffness penalizing higherwavemodes and the inter-
action force promoting them. This is a critical principle
underlying internal buckling modes in such systems.
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Appendix A. Dimensional unit summary
In table 1, we summarize the parameters used throughout in
the filament bundle model and internal buckling model. We
also indicate the dimensions of each of these parameters,
prior to the non-dimensionalization procedure in §2.7.
Appendix B. Gradient expressions
In this appendix, we detail the gradient expressions to the
various terms in our energy functional. They are employed
in our L-BGFS minimization algorithm.

We leave the interaction energy until last as it is by far the
most complex.
B.1. Bending energy Eb
The explicit gradient terms for the bending energy are

@Eb
@uij

¼ Bij

2l tan
uij�uiðj�1Þ

2

� �
sec2 uij�uiðj�1Þ

2

� �
and � Biðjþ1Þ

2l tan uiðjþ1Þ�uij
2

� �
sec2 uiðjþ1Þ�uij

2

� �
:

9=
; (B 1Þ
B.2. Loading potentials El
For the loading potentials,

@E1
l

@uij
¼ �Ncil sin uij (B 2Þ

and

@E1
l

@uij
¼
Xm
i¼1

l cos uij
Xm
k¼j

NpðikÞ

0
@

1
A

2
4

3
5: (B 3Þ
B.3. Constraint potentials Ec
For the constraint potentials,

@E1
c

@uij
¼ @H

@yin

@yin
@uij

¼ �l
@H
@yin

sin uij (B 4Þ
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and

@E2
c

@uij
¼

@H
@ui1

if j ¼ 1,
@H
@uin

if j ¼ n,
0 otherwise:

8><
>: (B 5Þ

B.4. Interaction potentials Ein
Note that each angle θij affects not only all dik and d+ik for j≤ k
but also all d(i−1)k and d+ði�1Þk (again for for j≤ k). Here,

@E1
in

@uij

Xn
k¼j

l
@ f
@dik

@dik
@uij

þ
Xn
k¼j

l
@ f

@dði�1Þk

@dði�1Þk
@uij

: (B 6Þ

The diagonal spring terms are similar

@E1þ
in

@uij
¼
Xn�1

k¼j

l
@ f
@dþik

@dþik
@uij

þ
Xn�1

k¼j�1

l
@ f

@dþði�1Þk

@dði�1Þkþ
@uij

: (B 7Þ

(Note the i− 1 spring term starts at k = j− 1 not k = j and there
is no + diagonal spring at n.) Similarly

@E1�
in

@uij
¼
Xn
k¼j

l
@ f
@d�ik

@d�ik
@uij

þ
Xn
k¼jþ1

l
@ f

@d�ði�1Þk

@dði�1Þkþ
@uij

: (B 8Þ

These are completed with the following expressions for
derivatives of the spring lengths:

@dik
@uij

¼
l
dik
[xdik sin uij � ydik cos uij] if k . jþ 1,

0 otherwise

(

@d+ik
@uij

¼
l

d+ik
[xd+ik sin uij � yd+ik cos uij] if k . jþ 1,

0 otherwise

(

xdik ¼ xðiþ1Þk � xik, ydik ¼ yðiþ1Þk � yik

and xd+ik ¼ xðiþ1Þðk+1Þ � xik, yd+ik ¼ yðiþ1Þðk+1Þ � yik:
To get the derivatives of d(i−1)k, we simply replace (xi+1k− xik)
with −(xik− x(i−1)k) and similarly for the y difference. This
same adjustment applies to the derivatives of d+ði�1Þk.

Finally, we calculate the derivatives of the non-overlap
potential E2

in. Rather than list each derivative we give an
example based on the term Aðdij, dþij Þ. One term involved in
the derivative of this contribution will be

@gðAðdik, dþikÞÞ
@uij

¼ @g
@A

@A
@xik

@xik
@uij

, (B 9Þ

where,

@g
@A

¼ �C1C2

A0
e�C2A=A0 , (B 10Þ
@A
@xik

¼ �=frac12ðyðiþ1Þðkþ1Þ � yikÞ, (B 11Þ

and

@xik
@uij

¼ � sin uij if k � j:
0 otherwise:

�
(B 12Þ

This derivative would feature in all @Aðdik, dþikÞ=@uij of k≥ j.
There will also be terms including partial derivatives of A
with respect to x(i+1)k, x(i+1)(k+1), y(i+1)k, yik, and y(i+1)(k+1). The
total derivative is then a matter of straightforward if tedious
book-keeping by applying this to all Aðdik, dþikÞ, Aðdik, d�ikÞ,
Aðdiðkþ1Þ, dþikÞ and Aðdiðk�1Þ, d�ikÞ.
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