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A B S T R A C T   

Marine research surveys are an integral tool in understanding the marine environment. Recent technological 
advances have allowed the development of automated or semi-automated methods for the collection of marine 
data. These devices are often easily implemented on existing surveys and can collect data at finer spatiotemporal 
resolutions than traditional devices. We used two automated instruments: the Plankton Imager and FerryBox, to 
collect information on zooplankton, temperature, salinity and chlorophyll in the Celtic Sea. The resulting data 
were spatiotemporally aligned and merged to decreasing spatial resolutions to explore how distribution patterns 
and the relationship between variables change across different spatial resolutions. Relative standard deviation 
was used to describe variability of merged data within grid cells. All variables displayed large, area-wide spatial 
patterns excluding copepod size which remained consistent across the study area. Copepod biomass and abun
dance displayed high variations across small spatial scales. Decreasing the sampling resolution changed the 
description of the data where small spatial changes (those that occur over scales < 3 km) were lost and area wide 
patterns were emphasized. Furthermore, we found that the choice of resolution can affect both the statistical 
strength and significance of relationships with high variability at lower resolutions due to the mismatch between 
the scales of ecological processes and sampling. Determining the optimum sampling resolution to answer a 
specific question will be dependent upon several factors, mainly the variable measured, season, location and 
scale of process, which all drive variation. These considerations should be a key element of survey design, 
helping move towards an integrated approach for an improved understanding of ecosystem processes and 
gaining a more holistic description of the marine environment.   

1. Introduction 

Research surveys are fundamental in furthering our understanding of 
the marine environment. Motivated by providing a holistic, ecosystem 
approach to monitoring (Kupschus et al., 2016) or mandated by policy 
(European Commission, 2008; Danovaro et al., 2016), technological 
developments are helping surveys move toward increasingly interdis
ciplinary approaches (ICES, 2015; Doray et al., 2018). Installing auto
mated technologies, which allow for continuous data collection with 
little human input, are a straightforward step in achieving this goal. 
Devices such as the FerryBox, used here, collects both physical and 
biological variables continuously and reports high frequency data 
throughout a survey (Petersen and Colijn, 2017). Due to their 

continuous, automated nature, these data are readily available for (near) 
real time analysis, or retrospective, post-collection, analysis. These often 
easy to implement devices can reduce vessel costs (time, fuel or labor) 
when compared to traditional methods (deployment of nets) or towed 
imaging devices (e.g., deployment and recovery or reduced vessel speed 
while towing) and allow for an increased number of variables collected 
at no or little extra cost. Their use can help surveys stay within financial 
limitations (Bean et al., 2017; Pitois et al., 2018) and allow for optimized 
survey design (Kupschus et al., 2016) by easily increasing sampling 
coverage and intensity (Owens, 2014; Doray et al., 2018). These devices 
do not require an onboard expert, freeing up vessel space and further 
reducing costs. They can typically sample in all weather conditions, 
allowing for data collection in hard to sample locations or reduce the 
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time spent waiting for safe sampling conditions. 
In recent decades, automated technologies have become common

place in multiple marine disciplines. The FerryBox is one of many 
established options for continuous, automated sampling of physical 
parameters. Acoustic devices are used globally, commercially and 
scientifically, for fishing (Mann et al., 2008; Simmonds and MacLennan, 
2008), marine mammal research (Johnson and Tyack, 2003; Johnson 
et al., 2009) and bathymetry (de Moustier, 1986). Other purpose-built 
devices sample a single component, for example, fish eggs (Checkley 
et al., 2000) or phytoplankton (Olson et al., 2018). The continuous 
sampling of zooplankton, globally important in carbon cycles (Steinberg 
et al., 2002; Steinberg and Landry, 2017), fisheries science (Beaugrand 
et al., 2003; Heath, 2005; Lauria et al., 2013) and used as climate change 
indicators (Taylor et al., 2002), provides a unique technological chal
lenge arising from the difficulties with sampling the entire zooplankton 
component accurately. Zooplankton includes a wide range of sizes and 
behaviors and undergoes rapid, temporal and spatial changes, known as 
plankton patchiness (Mackas et al., 1985; Abraham, 1998), making 
replicable sampling difficult. These fine scales changes can be seen with 
traditional net haul data, which provide a ‘snapshot’ of the zooplankton 
but have very high replicate tow variability (Wiebe et al., 1968; Lee and 
McAlice, 1979; Skjoldal et al., 2013). Capture by netting, and analysis by 
microscopy, form the gold standard of zooplankton sampling and are 
principally responsible for our understanding of zooplankton ecology. 
Their continued use to maintain time series and use as a reliable method 
is essential to further understanding the zooplankton. Like all sampling 
devices, nets do suffer some limitations. Deploying plankton nets is time 
consuming and the collected sample is often preserved using hazardous 
chemicals for analysis on shore. These challenges have placed pressure 
on developing cost-effective methods (Danovaro et al., 2016) and in 
response, technological developments have resulted in a variety of 
newer devices (Wiebe and Benfield, 2003; Lombard et al., 2019). 

The Plankton Imager (PI) is a continuous, automated, imaging device 
used to sample zooplankton. The PI takes images of all passing particles 
in seawater pumped onboard a ship (Culverhouse et al., 2016; Pitois 
et al., 2018). An initial study evaluating the first generation of the in
strument (previously known as Plankton Image Analyzer, Pitois et al. 
2018) against traditional net sampling, found good agreement in the 
spatial distribution of zooplankton abundances, although noted a 
portion of fragile organisms (e.g., Appendicularia) were likely to be 
damaged by the system pump and consequently under-sampled. The 
study also described the overall lower capture efficiency of the PI with 
discrepancies mainly resulting from image quality, such as blurred im
ages, which made accurate classification challenging. In response, 
hardware changes have resolved these issues, resulting in much 
improved image quality. The PI has since been used to describe temporal 
changes in the mesozooplankton community (Scott et al., 2021). This 
study found that those fragile species (e.g., Appendicularia) are sampled 
in sufficient quantity to detect seasonal difference. More recently the 
application of the PI to ecological indicators has been tested (Pitois et al., 
2021). To date, all published studies have used the PI for point sampling, 
similar to a deployed ring net, as opposed to continuous sampling. Here 
we used a new data extraction method to best take advantage of the PI’s 
continuous nature. 

The PI has been used alongside the FerryBox routinely during UK 
fisheries surveys in the Celtic Sea. We use data collected in parallel from 
these devices to explore small scale changes in the zooplankton in the 
context of physical parameters and the relationships therein. As auto
mated devices and the ability to collect vast quantities of data become 
increasingly common place, a new challenge has emerged in that the 
data collection rate has become faster than the processing rate, resulting 
in data bottlenecks. It is therefore important to focus collection efforts to 
gather the correct type of information, at the required locations, times 
and scales to answer a particular question, balancing research needs 
with budget limitations. Here, we aim to explore how best to determine 
the optimal resolution appropriate for the target process or relationship 

to avoid mismatching between sampling resolution and ecological 
scales. These can be used to inform future survey design leading to an 
increasingly holistic survey description. 

2. Materials and methods 

All data were collected in the Celtic Sea from the 3rd of October to 
the 7th of November 2020 aboard the RV Cefas Endeavour as part of the 
PELTIC survey (PELagic ecosystems in the Western English Channel and 
eastern celTIC Seas) (ICES, 2015) (Fig. 1). All in situ data were collected 
using the ship’s continuous flow system sampling at 4 m below sea level. 
Zooplankton data were collected using the PI (Pitois et al., 2018). 
Temperature, salinity and fluorescence were collected using the Ferry
Box (4H-JENA, Germany). Zooplankton data were sampled at night for 
consistency and to reduce the effect of vertical migration (Lampert, 
1989; Pitois et al., 2018). 

2.1. Plankton Imager (PI) 

The PI was connected to the ship’s continuous flow pump, sampling 
at 22 L min− 1 with negligible downtime (Fig. 2). The inlet pipe and 
internal ships piping have various internal diameters larger than the 
flow cell which has an internal depth of 12.8 mm, giving a field of view 
of 10 µm × 20.48 mm. As sea water passes through the flow cell where 
all passing particles are imaged by a Basler 2048-70kc line scan camera 
with a scanning rate of 70,000 lines per second. Lines are then stitched 
together, and regions of interest (ROI) are extracted and saved as im
ages. GPS, time and particle size data (area, length and width) are saved 
in the metadata of each image. The PI worked continuously throughout 
the survey. The PI has adjustable minimum and maximum size param
eters (min. 100 µm to max. 2 cm). When using this range, the processing 
rate of the images could not keep up with their collection rate (i.e., the 
images are captured faster than they can be written to disk. For the 
survey, the size range was set from 180 µm to 2 cm. This reduced the 
number of captured images and allowed for a more manageable dataset 
for archiving, processing and analysis. Even with this reduced size 
range, a 1 month survey typically collects 1 tb of data. 

Over 70 million images were collected during the survey. In the 

Fig. 1. Celtic Sea study area and spatial extent of the collected data. Red filled 
symbols represent in situ discrete chlorophyll samples. Black open symbols 
represent PI and FerryBox (temperatures, salinity, fluorescence) 10-minute 
bins. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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absence of an accurate classifier for the PI, all images required manual 
classification. A series of subsets were used to reduce the number of 
images classified to an achievable quantity. A 0.25◦ grid was transposed 
over the study area. Each grid cell typically had multiple transects 
passing through with the specific number of transects varying based on 
vessel movements. Data were extracted from the shortest nighttime 
transect within each 0.25◦ cell (min = 20 mins, mean = 136 mins, max 
= 420 mins). The transect time (and therefore water sampled) varied 
within each grid cell dependent on vessel activities (e.g., steaming be
tween stations or fishing). This extraction resulted in 17 million images 
for classification. Finally, data were temporally subsampled where 1 in 
10 images were extracted from each transect to further reduce the size of 
the dataset. This process is similar to random subsampling or ‘splitting’ 
of a physical sample and assumes the distribution of organisms within a 
subsample follows a Poisson distribution (Postel et al., 2000). The 
resultant 1.7 million images were manually classified to “copepod” or 
“other” with copepod including the adult and copepodite stages and the 
latter category comprising all non-copepod zooplankton and detritus. 
Sorting to only these categories greatly sped up the classification pro
cess. The final copepod count per grid cell was multiplied by 10 to 
resolve for subsampling. 

For statistical analysis, the selected transects were divided into 10 
min bins where each bin sampled 0.22 m3 of seawater. This totaled 853 
bins (Fig. 1). The minimum bin size was determined as a compromise 
between obtaining the smallest possible spatial resolution while sam
pling a sufficient amount of water to allow for subsampling. Sampling a 
smaller amount of water (e.g. 1 min and 0.022 m3 of water) may have 
resulted in unrealistic values when resolving for subsampling. Copepod 
density was reported as individuals per m3 (indv. m− 3). Particle lengths 
were obtained from image metadata files and used as a proxy for 
copepod size or total length. Within each 10 min bin, the geometric 
mean (geomean) size of all individuals was calculated to take into ac
count their non-normal distribution. This mean value was used to 
calculate mean copepod wet weight (i.e., individual biomass) following 
the equation from Pitois et al. 2021: 

copepod wet weight = 0.299 × total length2.8348 

This was then upscaled with copepod density to calculate biomass 
across the bin reported as mg m− 3. 

2.2. In situ chlorophyll measurements 

The FerryBox consists of a water inlet connected to the ship’s 
continuous flow (Fig. 2). It comprises a suite of sensors for measuring 
physical variables (e.g., temperature, salinity, turbidity, fluorescence 
and oxygen) and corresponding metadata (GPS, date and time). All data 
are automatically bin averaged to 1 min on collection to save storage 
space. Only temperature (◦C), salinity (psu) and fluorescence were used 
in this study. Discrete chlorophyll samples were taken from the 
continuous flow passing through the FerryBox at 22 locations within the 
study area (Fig. 1). The chlorophyll was extracted using 90 % acetone 
and measured with a Turner fluorometer (Strickland and Parsons, 
1972). A linear model was used to convert the FerryBox chlorophyll 
fluorescence to chlorophyll. The fitted regression model was: [chloro
phyll mg m− 3 = 0.72 * chlorophyll fluorescence + 0.0637]. The 
regression was statistically significant (R2 = 0.91, F = 206.1, p < 0.001). 
FerryBox data were spatiotemporally aligned to the 853, 10-minute 
copepod bins described above. This was achieved by taking the mean 
of three variables across the bin. 

2.3. Analysis 

At the finest resolution (the 853, 10 min bins), data were plotted to 
describe the broader spatial patterns and examine small spatial scale 
changes in all variables. For copepod biomass, size and density, the 
change in value between a 10 min bin and the previous 10 min bin was 
examined to see if there was a relationship between distance or time 
between bins and change in value. For statistical analysis and to inves
tigate how changes in resolution can affect how spatial patterns are 
described and if small scale changes are omitted or accentuated, the 853 
bins were merged to decreasing resolutions. Merging was achieved by 
taking the mean value of all merged bins for each variable. To explain 
variation within each cell at each resolution, Relative Standard Devia
tion (RSD) was used as it expresses the variability of a data set as a 
percentage relative to its location. RSD is calculated as: RSD = (sample 
standard deviation / sample mean) × 100. 

Four resolutions, 0.1◦, 0.25◦, 0.5◦ and 1◦ were selected. The largest 
resolution was chosen based on the spatial extents of our study area. A 
resolution lower than 1◦ would have resulted in too few cells or a cell 
that contained the entire data. The selected resolutions were used to 
visually compare the changes in the description of spatial patterns 
associated with merging data to coarser resolutions. The relationship 
between RSD and decreasing resolution was also explored for all vari
ables at resolutions between 0.01◦ and 0.9◦ decreasing in 0.01◦ in
crements. Here the mean RSD value across all cells was used. For 
statistical analyses, the same resolution range (0.01◦ to 0.9◦, by = 0.01◦) 
was used. Spearman’s ρ coefficient was used to test for a significant 
relationship between number of stations per cell and RSD and explore 
the relationship between copepod biomass and chlorophyll at these 
resolutions. Copepod biomass, size and density were log-transformed 
(log10(x + 1)) for Figs. 3, 4 and 5 to highlight variability. 

3. Results 

3.1. Spatial distribution 

Spatial patterns across the study area for copepod density and 
biomass were closely aligned (Fig. 3A, 3B). Higher copepod densities 
(>8000 indv. m− 3) and biomass (>150 mg m− 3) were typically found in 
the middle of the study area with lower values found toward the south 
(<2000 indv. m− 3 and < 50 mg m− 3, respectively) (Fig. 3A, 3B). Density 
ranged from 45 to 8790 indv. m− 3 and biomass ranged from < 1 to 155 
mg m− 3. Copepod size had a more uniform distribution across the study 
area with no obvious spatial patterns with some localized exceptions of 
larger copepods found in the northern most extents of the study area 
(Fig. 3C). Size ranged from 199 to 2590 µm. Large fluctuations in each 

Fig. 2. Schematic of Plankton Imager (PI) and FerryBox setup aboard the RV 
Cefas Endeavor. Water is pumped onboard from 4 m below sea level (A). This 
supplies the PI (B) and FerryBox (C). Within the PI water flows through a flow 
cell (D) where passing particles are imaged by a line scan camera (E). Within 
the FerryBox water passes through a suite of sensors (F), here temperature, 
salinity and fluorescence are used. 
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variable were seen over small spatial scales (between adjacent bins, 5 
km), this was less frequent for copepod size and is most evident in the 
central study area for copepod biomass (Fig. 3A – 3C). 

Small scale changes were not present in chlorophyll concentration, 
temperature or salinity (Fig. 3D − 3F) with these variables displaying 
more gradual changes across the area. Temperature was higher toward 
the east of the study area (Fig. 3E) and salinity was higher toward the 
south (Fig. 3F). Chlorophyll concentration was consistently low (<0.6 
mg m− 3) except for the most south-westerly extents of the study area 

where the maximum value of 1.5 mg m− 3 was seen (Fig. 3D). 
The large variations across small spatial changes in all copepod 

variables are better highlighted by Fig. 4. The change in value between a 
10-minute bin and the previous 10-minute bin was explored for density 
(Fig. 4A), size (Fig. 4B) and biomass (Fig. 4C). There was no clear 
relationship between the range and distance from the previous station 
for any variable at small spatial scales (<5 km). On the contrary, the 
highest changes in density and biomass tended to be within 3 km of the 
previous bin (Fig. 3A, B). This was seen most clearly in adjacent 

Fig. 3. Overview of each variable at the finest 
spatial resolution (10 min bins, approx. 2.2 
m− 3 seawater) as point data where each point 
is the bin median latitude and longitude. Point 
data are highlighted by using Voronoi tri
angles (with a maximum radius size around 
the point of 0.1◦) which allows for a bigger 
point size, while avoiding overlap to better 
highlight small scale changes in the variable. 
For: (A) Copepod density (log10(x + 1)) (indv. 
m− 3), (B) Copepod total biomass (log10(x +
1)) (mg/m− 3(− |-)), (C) Copepod geomean size 
(µm), (D) Chlorophyll (mg/m− 3(− |-)), (E) 
Temperature (◦C) and (F) Salinity (psu). Color 
scales are consistent with Fig. 5 and Fig. 8 for 
comparison.   
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datapoints located in the middle of the study area (Fig. 3B, C). 

3.2. Description at changing resolutions 

Most resolutions captured the broad spatial patterns evident in the 
smallest resolution for copepod biomass, density and size (Fig. 5, Fig. 3A 
- C). For example, the regions of low biomass toward the north and 
higher biomass toward the southwest of the study area (Fig. 3B) were 

visible at all resolutions (Fig. 5). Although, large changes in copepod 
variables over small spatial scales seen at the smallest resolution were 
partly lost at a 0.1◦ resolution and absent entirely at 1◦ (Fig. 5). This is 
true for all copepod variables where a high level of detail was lost by 
only halving the resolution. For example, the area of low biomass (7◦ W, 
49◦ N) seen at 0.5◦ resolution was lost when halving to 1◦ (Fig. 5, column 
1). This loss of small scale detail while capturing broad patterns with 
decreased resolution was mirrored by copepod density and size. RSD is 
shown spatially for the selected. 

resolutions (Fig. 5) and in increasing 0.01◦ increments in a scatter 
plot (Fig. 6) for all copepod variables. Using Spearmans ρ, copepod mean 
density RSD and number of datapoints per cell were consistently 
significantly related in cells < 0.27◦ resolution (at 0.26◦, Rs = 0.31, p <
0.05, n = 78). For mean biomass RSD, there was consistent significance 
for cells < 0.4◦ (at 0.39◦, Rs = 0.29, p = 0.05, n = 44). For mean size RSD 
there was no consistent significant relationship at any resolution. For all 
three-copepod variables, there were exceptions seen at lower resolutions 
which may result from an insufficient sample size for the Spearmans ρ 
test. Copepod sizes were consistently low in RSD (<30 %) between grid 
cells both spatially and across resolutions (Fig. 5, column 3; Supple
mentary Fig. 1). There was an increase in mean RSD, from 9.96 % to 
30.55 %, with decreasing resolution (Fig. 6; Supplementary Fig. 1), 
although marginal when compared to other variables. Biomass had the 
highest spatial variation in RSD at all resolutions (Fig. 5, column 1; 
Supplementary Fig. 1). There was a larger increase meal cell biomass, 
from 54.1 % to 140.57 %, with decreasing resolution (Fig. 6). Density 
RSD was more consistent and more closely aligned spatially with 
biomass than size and a had reduced mean cell RSD (27.59 % to 79.9 %, 
5, column 2, (Supplementary Fig. 1). 

3.3. Relationship between chlorophyll and copepod biomass at varying 
resolutions 

At the smallest resolution (10 min bins, Fig. 3) there was a weak, 
significant relationship between chlorophyll and copepod biomass (Rs 
= 0.3, p < 0.001, n = 823). The relationship between chlorophyll and 
copepod biomass was tested at resolutions ranging from 0.05◦ to 0.9◦

increasing in steps of 0.01◦. The strength of the relationship (Spearmans 
ρ) and the significance of the relationship are reported in Fig. 7. The 
relationship at the smallest spatial resolution (0.05◦ x 0.05◦) was similar 
to the ten-minute bin (p < 0.001, n = 422). When decreasing resolution 
from 0.05◦ to 0.25◦, there was little variation in the strength of the 
relationship and all relationships were significant. For lower resolutions, 
the strength and significance of the relationship between copepod 
biomass and chlorophyll became increasingly variable. For example, at a 
resolution of 0.83◦ the relationship was not significant and had weak 
positive correlation (ρ = 0.38, n = 11) while a resolution of 0.84◦ there 
was a strong positive correlation and the relationship was significant (ρ 
= 0.75, n = 11). For resolution lower than 0.9◦, there were not enough 
data points (n < 10) to perform a Spearmans rank analysis (ideally n >
25). 

3.4. Application to other variables. 

The spatial distribution of chlorophyll concentrations is presented in 
Fig. 8 to demonstrate merging of other variables to a decreasing spatial 
resolution. Chlorophyll concentrations had a broader spatial pattern, 
where changes occurred over larger distances, than all copepod vari
ables (Fig. 3A - C). These patterns are well captured in all selected res
olutions (Fig. 8; Supplementary Fig. 2). There are no small-scale changes 
in chlorophyll concentration (Fig. 5) which was reflected in a lower, 
consistent RSD both spatially and across resolutions (Fig. 8; Supple
mentary Fig. 2). The area with the highest chlorophyll concentration, 
toward the southwest of the study area, also had the highest variation 
with adjacent cells, which was in turn reflected by a higher RSD (Fig. 8; 
Supplementary Fig. 2). Temperature and salinity (Supplementary 

Fig. 4. Change in parameters value (y-axis) and time (color scales) between 
two bins as a function of their distance from each other (x-axis) for (A) copepod 
density (indv. m− 3), (B) copepod geomean size (µm) and (C) biomass (mg/ 
m− 3(− |-)). 
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Fig. 5. 10 min bins merged to decreasing resolution for (column 1) copepod biomass (mg/m− 3(− |-)) (log(x + 1)), (column 2) copepod density (indv. m− 3) (log(x +
1)) and (column 3) copepod size (µm)(log(x + 1)) for example resolutions (row 1) 0.1◦, (row 2) 0.25◦, (row 3) 0.5◦ and (row 4) 1◦. Copepod color scales are the same 
as Fig. 3 for comparison. The cell border color indicates relative standard deviation (RSD, %) for the cell. Those cells without a border contain less than 3 data points. 
RSD color scale is the same for Figs. 5 and 8. For clarity RSD is also show alone for this figure in Supplementary Fig. 1. 
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materials) displayed similar results due to the absence of small spatial 
changes and broad, slower changes across the study area (Fig. 3E, 3F). 

4. Discussion 

The use of continuous instruments allowed for data to be obtained at 
small spatial scales, which in turn captured both wider spatial patterns 
and small-scale changes in copepod size, abundance and biomass. The 
small-scale changes in the copepod abundance, indicative of plankton 
patchiness (Mackas et al., 1985; Abraham, 1998), are not seen in the 
physical variables where patterns are study area wide. The physical 
oceanography of the Celtic Sea and Western Approaches, a seasonally 
stratified area, is well documented (Pingree et al., 1976; Pingree, 1980; 
Southward et al., 2004; Smyth et al., 2015). Stratification is known to 
influence plankton abundances (Fransz et al., 1984; Hure et al., 2022) 
but the absence of vertical data in this study does not allow for discus
sion of stratification or its influence on copepod abundance. 

Neither surface temperature or salinity appeared correlated with 
copepod variables. However, the absence of a correlation between 
zooplankton and physical variables is in line with our understanding 
that small scale variations in the plankton are driven by a complex series 
of biological and physical interactions. These were reviewed by Atkin
son et. al (2018), using a single point time series (L4 buoy) located in our 
study area. Average annual densities from the Continuous Plankton 
Recorder (Richardson et al., 2006) and reported by Johns (2006) find 
the majority of copepod families in lower abundance off the North coast 
of Cornwall. Although our data only cover 1 month, we find a similar 
spatial distribution, suggesting that the structure of zooplankton com
munities, within a specific area, remain similar both in time and space. 
The area wide patterns for copepod densities also match that of a pre
vious study for the region using the PI (Pitois et al., 2021). Despite a 
lower taxonomic resolution obtained from image identification 
compared to microscope identification, another study using the PI found 
that the community structure described the PI is broadly in line with the 
L4 and CPR (Scott et al., 2021). 

As machine learning classifiers for plankton identification from im
ages collected with automated instruments improve in accuracy (The 
Turing Centre, 2021), it will be possible to discern zooplankton to 
increasing taxonomic resolution automatically. Added to the PI, this 
feature will allow for the removal of the subsampling step that is 
necessary when manually processing the images. Thus, it will be 
possible to obtain zooplankton data at higher taxonomic and spatial 
resolutions, quickly, and at a much lower cost compared to traditional 
methods. This will be a clear advantage of such systems. Although using 
the PI has the potential to yield an unprecedented spatial resolution, it 
cannot replicate the temporal resolution associated with devices such as 
CPR or longstanding time series such as L4. This is due to the PIs reliance 
on the vessel on which it’s deployed, as it is unrealistic to expect a vessel 
to survey the same area repeatedly over long periods of time. 

4.1. Optimizing survey design 

Survey demands often result in ad-hoc, last minute changes reducing 
assurances of sampling the same spot at a consistent temporal resolu
tion. Thus, a multi-method approach would yield the most complete 
description of the zooplankton. On the one hand, deploying plankton 
nets on vessels can help understand the vertical distribution of the 
plankton, whilst time series are invaluable to understand seasonal and 
long-term changes (Pitois and Yebra, 2022). On the other hand, un
derstanding the small-scale fluctuations in the plankton, and what drives 
the high variation between neighboring water parcels, can be better 
understood using continuous data. Although here, data were sub
sampled and manually classified which limited the minimum achievable 
spatial resolution, the findings demonstrate the potential for these in
struments to resolve these fine scale interactions driving variation. 
Furthermore, they demonstrate how the choice of resolution can affect 

Fig. 6. Mean cell Relative Standard Deviation (RSD, %) for (green) copepod 
biomass (mg/m− 3(− |-)), (red) copepod density (indv. m− 3) and (blue) Size 
(µm), at all resolutions between 0.05◦ and 0.9◦ (increments = 0.01◦). (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 7. The correlation between copepod biomass and chlorophyll using 
Spearmans ρ against decreasing spatial resolution. Resolutions decrease from 
0.05◦ to 0.9◦ in increments of 0.01◦. The number of grids (grid count) per 
resolution is indicated by the color scale. The significance of Spearmans cor
relation (p value < 0.05) is indicated by filled points where non-significant 
relationships are not filled, and significant relationships are filled. 
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Fig. 8. 10 min bins merged to decreasing resolution for (column 1) chlorophyll (mg/m− 3(− |-)), (column 2) sea surface temperature (◦C) and (column 3) salinity 
(psu) for example resolutions (row 1) 0.1◦, (row 2) 0.25◦, (row 3) 0.5◦ and (row 4) 1◦. Variable color scales are the same as Fig. 3 for comparison. The cell border 
color indicates relative standard deviation (RSD, %) for the cell. Those cells without a border contain less than 3 data points. RSD color scale is the same for Fig. 5. For 
clarity RSD is also shown alone for this figure in Supplementary Fig. 2. 
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the perceived picture of the plankton as well as relationships between 
plankton and related variables. Decreasing resolution can result in pat
terns being emphasized (e.g., chlorophyll) or small-scale changes being 
lost (e.g., copepod biomass). This demonstrates the ‘risk’ of a decreased 
sampling resolution in misrepresenting or incorrectly capturing trends. 
The variability within cells when merged to a decreasing resolution is 
not seen by an increased RSD, suggesting RSD is not sensitive to extreme 
values if the remainder of the merged cells are consistent. We can expect 
the changes in the data representation with decreased resolution to be 
reflected in statistical relationships between variables. Here, we chose to 
look at copepod biomass and chlorophyll concentrations. Chlorophyll 
data are readily available as a remote sensing package (Aumont et al., 
2015) and many large-scale models rely on these data, inferring prey or 
carbon from chlorophyll (Landry, 1976; Carlotti and Poggiale, 2010). 
The relationships between chlorophyll and zooplankton are complex 
and reported relationships are inconsistent in the literature (Casini et al., 
2008; Llope et al., 2012; Schultes et al., 2013; Giering et al., 2019). This 
variation partly stems from the different types of data and spatial tem
poral scales used between authors (Pitois et al., 2021). In our study, we 
find high variation in the strength and statistical significance of the 
relationship resulting only from changing spatial sampling resolution. 
Although all correlations are positive, we find both inconsistency in the 
significance and strength of the correlation at lower resolutions. It is 
likely that even finer resolution data, achieved through removal of 
subsampling, will yield the most accurate description of these 
relationships. 

Sampling to the finest possible resolution may not be necessary or 
relevant to the survey’s aim, but rather the choice of resolution, whether 
in space or time, should match the process studied. A sampling resolu
tion too fine could incur unnecessary costs (in data storage and pro
cessing) and not be needed to accurately capture large-scale ecological 
patterns. For example, a coarser resolution than presented here (2◦

cells), has been used to successfully capture changes in copepod abun
dances over time as well investigate their relationship with various 
physical variables (Bedford et al., 2020). Conversely, too coarse a res
olution may miss ecological processes that occur on scales finer than the 
selected sampling resolution. For example, collecting samples at a spe
cific location once a year (temporal resolution) will not allow to capture 
seasonal variability. 

For our descriptive study we find a spatial resolution of 0.25◦ to be a 
good compromise between capturing small scales changes and broader 
spatial patterns for copepod abundance and biomass. This resolution 
was the larger end of those resolutions that had consistency in the sta
tistical relationship between copepod biomass and chlorophyll. Addi
tionally, this resolution can be easily matched to existing products for 
modelling. For example, a remote sensing ecosystem model output has 
spatial resolution 0.25◦ x 0.25◦ (Aumont et al., 2015). Although each 
study will likely demand a different resolution dependent on the scale of 
the processes involved. Let’s take, for example, a survey designed to 
study the timing and location of a specific fish spawning and the 
ecological processes affecting this (assuming both phyto- and zoo- 
plankton are variables measured). Prior knowledge will be used to select 
the overall location and timing of this survey as well as the parameters to 
measure. At this point, resolution of the measured processes and vari
ables should be taken into consideration. If the survey occurs during the 
winter months when there is little activity in the plankton ecosystem, 
sampling these components at very fine temporal and / or spatial res
olution is unlikely to be necessary. If, however, that survey occurs 
during the phytoplankton bloom, a time of fast change within the 
plankton ecosystem, then a finer resolution that matches the scale of 
these processes will need to be selected to accurately capture the 
changes. Similarly, sampling intensity can be adjusted during the course 
of the survey when and if changes are noticed. 

Surveys tend to be designed to collect chosen parameters at pre
selected locations, usually as many as possible as can be covered by the 
survey based on time and budget available. In future, as automated tools 

become common place, optimizing survey design will need to combine 
different instruments that collect information complementarily to each 
other. For example, automated devices, such as the PI to collect surface 
data, alongside plankton nets to collect vertical data, would allow a 
more comprehensive description of the ecosystem studied. Automated 
tools, and the resolution they yield, may also help to quantify the vari
ability associated with replicate tows resultant from plankton patchiness 
and be used to better understand its drivers (Wiebe et al., 1968; Lee and 
McAlice, 1979; Skjoldal et al., 2013). In theory, this could be achieved 
with the data presented here, by using a linear regression on the rela
tionship between RSD and Resolution (Fig. 6). Although, it would be 
specific to this area and season, a ‘survey snapshot’ (Huret et al., 2018). 

The small-scale resolution presented here, and the future potential 
for even finer resolution of biological parameters, achieved by reducing 
or eliminating subsampling, has only become recently possible with 
devices such as the PI. For this study, the time constraints associated 
with manually sorting images and the choice to subset the data to the 
study area meant only a small portion entire survey data were used 
(~2.4 %). This constraint does not apply for other variables, such as 
physical parameters, where no or little sample processing is required, 
and all data are instantly available. Recent improvement in classification 
algorithms (The Turing Centre, 2021) will bring the PI up to speed. 
Machine learning can eliminate the need for manual classification and 
thus the PI will be capable of providing continuous data at very fine 
resolutions (meters and minutes) where data do not need subsampling. 
Before these solutions can be implemented there are however several 
challenges that must be overcome, mainly related to the inability of the 
PI (and other similar systems) to process data as fast as they can collect 
it. These devices entail a phenomenal data collection rate. For example, 
if we were to use the full-size range the PI can image, we would collect 
up to 1 tb of data in<10 min. This currently not feasible as the tech
nology or protocols to write images this fast does not yet exist. These 
devices clearly entail a phenomenal data collection rate. While the 
survey data totaled 2 tb for this study, we have made provision for 10 tb 
of data for the same survey to take place in 2023. The cost of storage and 
of compute is reducing but these must also form part of survey planning. 

5. Conclusion 

We demonstrate the importance of sampling resolution, in the 
context of pelagic studies, and how it affects relationships between 
selected measured parameters and their perceived resulting picture. The 
increasing use of automated and semi-automated technologies allows us 
to sample at a much finer resolution than previously possible across 
much larger spatial scales. This is especially true for zooplankton where 
the PI has the potential to provide unprecedented fine spatial data at 
moderate taxonomic resolution. Sampling resolution for each measured 
process will therefore need to be considered as part of optimum survey 
design. This is to ensure that sampling matches the resolution of the 
measured process at a specific place and time, and that only necessary 
data is collected to remain within the survey budgetary constraints. 
Integrating data collected from various instruments (both traditional 
and novel) will help to optimize sampling resolution for an improved 
understanding of ecosystem processes and ultimately, a more holistic 
view of marine ecosystems in all dimensions. 
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