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a b s t r a c t

Distributional properties of tree shape statistics under random phylogenetic tree models play an
important role in investigating the evolutionary forces underlying the observed phylogenies. In this
paper, we study two subtree counting statistics, the number of cherries and that of pitchforks for
the Ford model, the alpha model introduced by Daniel Ford. It is a one-parameter family of random
phylogenetic tree models which includes the proportional to distinguishable arrangement (PDA) and
the Yule models, two tree models commonly used in phylogenetics. Based on a non-uniform version of
the extended Pólya urn models in which negative entries are permitted for their replacement matrices,
we obtain the strong law of large numbers and the central limit theorem for the joint distribution of
these two statistics for the Ford model. Furthermore, we derive a recursive formula for computing
the exact joint distribution of these two statistics. This leads to exact formulas for their means and
higher order asymptotic expansions of their second moments, which allows us to identify a critical
parameter value for the correlation between these two statistics. That is, when the number of tree
leaves is sufficiently large, they are negatively correlated for 0 ≤ α ≤ 1/2 and positively correlated
for 1/2 < α < 1.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In many branches of biology, it is important to elucidate the
volutionary events and forces leading to the current biological
ystems, such as a group of species or strains of a virus. To this
nd, the evolutionary relationships among the biological system
nder investigation are typically represented by a phylogenetic
ree, that is, a binary tree whose leaves are labelled by the
axon units in the system. As these events and forces, such as
he rates of speciation and expansion, are often not directly
bservable (Mooers et al., 2007; Heath et al., 2008), one popular
pproach is to compare the empirical shape indices computed
rom the trees inferred from real datasets with those predicted
y a null tree growth model (Blum and François, 2006; Ha-
en et al., 2015). Furthermore, some tree shape indices are also
losely related to several fundamental statistics in population
enetics (Ferretti et al., 2017; Arbisser et al., 2018), and to certain
mportant parameters in the dynamics of virus evolution and
ropagation (Colijn and Gardy, 2014; Colijn and Plazzotta, 2017).
In phylogenetic analysis, two commonly used random tree

rowth models are the Yule model and the proportional to dis-
inguishable arrangements (PDA) model (Aldous, 1996). The PDA
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model is a uniform model on phylogenies in which each phyloge-
netic tree with the same set of leaf labels has the same probability
to be sampled. On the other hand, the Yule model, also known
as the Yule–Harding–Kingman (YHK) model, can be realized by
a uniform distribution on ranked phylogenies and is closely re-
lated to a number of important random processes in theoretical
biology, such as the Yule process of speciation and the coalescent
process (see, e.g., Steel, 2016). However, for phylogenetic trees
inferred from real datasets, it is often observed that the Yule or
the PDA model may not always provide a good fit (Aldous, 1996;
Blum and François, 2006). Partially motivated by this, several
general classes of random trees have been proposed for modelling
and analysing the observed data, two well-known ones being the
beta model by Aldous (1996) and the alpha model by Ford (2006).

The alpha model, which will be referred to as the Ford model
in this paper, is a family of random binary tree growth processes
with some desirable properties. First, indexed by a parameter α
ranging from 0 to 1, the Ford model interpolates continuously
between the Yule model (α = 0), the PDA model (α = 1/2), and
he Comb model (α = 1) which generates only most unbalanced
ress (i.e., those with precisely one cherry). Second, this model
s sampling consistent (Ford, 2006), i.e., the probability that a
iven tree with n leaves is sampled under the Ford model with a
iven parameter α is the same as randomly deleting a leaf from a
andom tree with n+1 leaves sampled by the Ford model with the

ame parameter α. Furthermore, the Ford model has been further
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Fig. 1. Contour plots of the probability density functions for the joint distribution of the numbers of cherries and pitchforks under the Ford model with 100 leaves
(left) and 200 leaves (right). The polygonal contours arise because the joint distribution is defined only on integer lattice points.
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extended by Chen et al. (2009) to a two-parameter family of tree
growth process called the alpha–gamma model for sampling trees
that are not necessary binary. As such, the Ford model and its
variants have been increasingly appreciated and studied in the
past decade, including its ability to generate trees for applications
on real datasets (e.g., Pompei et al., 2012; Coronado et al., 2018,
2019; Wirtz and Wiehe, 2019).

One commonly used family of tree shape statistics or indices
are the number of subtrees. More precisely, in this paper we
are interested in the number of cherries and the number of
pitchforks. A cherry is a fringe subtree (i.e., a subtree consisting
of an edge (u, v) and all the descendants of v) with precisely two
leaves. A pitchfork, which was introduced in Rosenberg (2006),
is a fringe subtree with three leaves. The study of the number
of fringe subtrees of a random tree can be traced back to a
paper by Aldous (1991) and has since been extended to various
random tree models (see, e.g., Holmgren and Janson, 2017). In
phylogenetics, asymptotic properties of the number of cherries
were first studied by McKenzie and Steel (2000), who showed
that the number of cherries is asymptotically normal for the Yule
and the PDA models as the number of leaves tends to infinity.
Later, similar properties of the number of cherries are extended to
the alpha model by Ford (2006, Theorem 57) and to the Crump–
Mode–Jagers branching process by Plazzotta and Colijn (2016).
For the number of pitchforks, Rosenberg (2006) obtained its mean
and variance, and Chang and Fuchs (2010) proved that the num-
ber of pitchforks is also asymptotically normal for the Yule and
the PDA models. For the joint distributions, that is, the likelihood
that a random tree has a given number of cherries and a given
number of pitchforks, Holmgren and Janson (2015) showed that
the joint distribution is asymptotically normal for the Yule model,
using a correspondence between the Yule model and a classical
tree model in computer science known as random binary search
trees. This was recently extended by Choi et al. (2021) to the PDA
model based on a version of the extended urn models in which
negative entries are permitted for their replacement matrices.

In this paper, we establish the strong law of large numbers and
the central limit theorems for the joint distribution of cherries
and pitchforks under the Ford model (Theorem 3.2) by con-
sidering an associated non-uniform urn model (Theorem 3.1).
These results are presented in Section 3, following Section 2 in
which we collect background information concerning the Ford
model and limiting theorems on uniform urn models. Further-
more, we derive a recurrence formula for computing the exact
joint distribution under the Ford model (Theorem 4.1) in Sec-
tion 4, generalizing the results by Wu and Choi (2016) for the
 t

28
Yule and the PDA models. This leads to an efficient way to
compute the joint distributions under the Ford model, see Fig. 1
for an illustration. Furthermore, it enables us to obtain recurrence
expressions for the moments of these two statistics. As an appli-
cation, we obtain the exact formula for the mean of the number
of cherries (first reported by Ford, 2006) and that of pitchforks
under the Ford model in Theorem 4.5. We also obtain higher
order expansions of the second moments of their marginal and
joint distributions (Theorem 4.6), which allows us to identify a
critical parameter value for the correlation between these two
statistics: when n is sufficiently large, these two statistics are
egatively correlated for 0 ≤ α ≤ 1/2 and positively correlated

for 1/2 < α < 1. The proofs of Theorems 4.5 and 4.6 are
resented in the appendix. We end the paper with a discussion
f open problems in Section 5.

. Ford model and urn model

In this section, we first introduce the Ford model, which is a
ne-parameter family of random phylogenetic tree models. Next
e present a non-uniform version of the extended urn models
ssociated with the Ford tree model. Finally, we recall certain
onditions on the related uniform version of the extended urn
odel under which the strong law of large numbers and the
entral limit theorem are obtained.

.1. Ford model

A rooted binary tree is a finite connected simple graph without
ycles that contains a unique vertex of degree 1 designated as
he root and all the remaining vertices are of degrees 3 (interior
ertices) or 1 (leaves). A phylogenetic tree T with n leaves is a
ooted binary tree whose leaves are bijectively labelled with the
lements in {1, . . . , n}. Note that all the edges in T are directed
way from the root, and edges incident with leaves are referred
o as pendant edges. Furthermore, for technical simplicity we
ssume that the root has one child, which is also referred to as
lanted phylogenetic trees in the literature (e.g. Wu and Choi,
016). A fringe subtree in T consists of an edge (u, v) and all the
dges that are included in the paths from v to all its descendants.
cherry (resp. pitchfork) is a fringe subtree with two (resp.

hree) leaves. A cherry that is not contained in a pitchfork will
e referred to as an essential cherry. Finally, we let A(T ) and C(T )
enote the number of pitchforks and the number of cherries in
he tree T , respectively.
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Fig. 2. A sample path of the Ford model and the associated trajectory under the urn model. (i) A sample path of the Ford model evolving from T2 with two leaves
o T6 with six leaves. All edges are directed away from the root r towards the leaves. The labels of the leaves are omitted for simplicity. The type of an edge is
ndicated by the number next to it. For 2 ≤ i ≤ 5, the edge ei selected in Ti to generate Ti+1 = Ti[ei] is highlighted in bold and the associated edge type of ei is
ndicated in the number above the arrow. (ii) The associated urn model with six colours, derived from the types of edges in the trees. In vector form, we have
0 = (0, 2, 0, 0, 1, 0),U1 = (2, 0, 1, 0, 0, 2),U2 = (0, 4, 0, 0, 2, 1),U3 = (2, 2, 1, 0, 1, 3), and U4 = (2, 2, 1, 1, 1, 4).
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Under the Ford model with parameter 0 ≤ α ≤ 1, a random
hylogenetic tree Tn with n leaves is constructed recursively by
dding one leaf at a time as follows (see Fig. 2 for an illustration.).
ix a random permutation (x1, . . . , xn) of {1, . . . , n}. The initial
ree T2 contains precisely two leaves (e.g. one cherry) which are
abelled as x1 and x2. For the recursive step, given a tree Tm withm
eaves constructed so far, choose a random edge e in Tm according
o weight 1 − α for each pendant edge and weight α for each
f the other edges. That is, an edge e of Tm is sampled with
robability α/(m − α) if e is an interior edge, and with probability
1 − α)/(m − α) if e is a pendant edge. The tree Tm+1 := Tm[e] is
btained by subdividing the selected edge e with a new node ve
nd attaching a new leaf labelled xm+1 to ve. That is, every single
ddition of a leaf to the tree results in an increase of the number
f edges by two. Finally, we let An = A(Tn) and Cn = C(Tn) denote
he numbers of pitchforks and cherries in the tree Tn, respectively.

.2. An urn model associated with trees

Consider an urn containing balls of d different colours where
he colours are denoted by integers {1, 2, . . . , d}. Let Un =

Un,1, . . . ,Un,d) be the configuration vector of length d such that
he ith element of Un is the number of balls of colour i at time n.
et U0 be the initial vector of colour configuration. At time n ≥ 1,
ball is selected uniformly at random from the urn, and if the
olour of the selected ball is i then the ball is replaced along with
i,j many balls of colour j, for every 1 ≤ j ≤ d. The dynamics of
he urn configuration depends on its initial configuration U0 and
he d × d replacement matrix R = (Ri,j)1≤i,j≤d.

We study the limiting properties of the numbers of cherries
nd pitchforks via an equivalent urn process. Towards this, we use
ix different colours and assign one colour to each type of edges of
tree T in the following scheme introduced by Choi et al. (2021):
olour 1 for all pendant edges of a cherry in a pitchfork; colour 2
or pendant edges of an essential cherry (i.e., cherry not contained
n any pitchforks); colour 3 for pendant edges in a pitchfork but
ot in any cherry; colour 4 for pendant edges in neither a cherry
or a pitchfork; colour 5 for the internal edge of an essential
herry (i.e., those adjacent to colour 2 edges), and colour 6 for
ll other (necessarily internal) edges. See Fig. 2 for an illustration
f the scheme. For 1 ≤ i ≤ 6, let Ei(T ) be the set of edges of colour
in T .
29
Let Un = (Un,1, . . . ,Un,6) denote the colour configuration of
he urn at time n, where Un,i denotes the number of edges of
olour i in the tree at time n. When generating a tree under the
ord model, it will have precisely n+ 2 leaves. At the initial time
tep (n = 0), the tree T2 is an essential cherry, which has two
endant edges and one interior edge (see T2 in Fig. 2), so U0 =

0, 2, 0, 0, 1, 0). Based on the colouring scheme of the edges, at
ny time n ≥ 0, we have

An+2, Cn+2) =
1
2

(
Un,1,Un,1 + Un,2

)
, (1)

where An+2 and Cn+2 are the numbers of pitchforks and cherries
in Tn+2, respectively. Under the alpha tree model, the dynamics of
the corresponding urn process evolve according to the following
replacement matrix

R =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 1 0 1
2 −2 1 0 −1 2

−2 4 −1 0 2 −1
0 2 0 −1 1 0
2 −2 1 0 −1 2
0 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎦ .

Let ei, 1 ≤ i ≤ 6, denote a 6-vector in which the ith component
is 1 and 0 elsewhere; and χn, the random vector taking value ei
if speciation happens at an edge with type i at time n. Thus, we
have the following recursion

Un = Un−1 + χnR, n ≥ 1,

where

P(χn = ei|Fn−1) ∝

{
(1 − α)Un−1,i, for i ∈ {1, 2, 3, 4},
α Un−1,i, for i ∈ {5, 6}.

(2)

Observe that the process (Un)n≥0, which describes the dynamics
of the numbers of cherries and pitchforks, is a non-uniform urn
model since the balls are not selected uniformly at random from
the urn, which is different from the classical uniform urn models
in which the balls are selected uniformly at random from the urn
(see, e.g., Hofri and Mahmoud, 2019, Chapter 7).

We end this subsection with the following observation re-
garding the edge colour scheme with the number of pitchforks
and that of cherries, which follows directly from the replacement
matrix R (see also Wu and Choi, 2016, Section 2).



G. Kaur, K.P. Choi and T. Wu Theoretical Population Biology 149 (2023) 27–38

L
l

φ

F
I
f
t

T
t

v

emma 2.1. Suppose that T is a phylogenetic tree with n ≥ 2
eaves. Then, |E3(T )| = A(T ), |E2(T ) ∪ E5(T )| = 3(C(T ) − A(T )),
|E4(T )| = n− A(T )− 2C(T ), and |E1(T ) ∪ E6(T )| = n− 1+ 3A(T )−
C(T ). Furthermore, suppose that e is an edge in T and T ′

= T [e].
Then,

A(T ′) =

⎧⎨⎩
A(T ) − 1, if e ∈ E3(T ),
A(T ) + 1, if e ∈ E2(T ) ∪ E5(T ),
A(T ), otherwise;

and

C(T ′) =

⎧⎨⎩
C(T ) + 1, if e ∈ E3(T ) ∪ E4(T ),

C(T ), otherwise.

2.3. Limiting theorems on uniform urn models

In this subsection, we review the strong law of large numbers
and the central limit theorem on a version of uniform urn models
developed by Choi et al. (2021), which will be applied to the non-
uniform urn process in Section 2.2 using the urn coupling idea
in Bandyopadhyay and Kaur (2018).

For the classical uniform urn models, Bai and Hu (2005)
showed that the random process Un/n, when properly adjusted
by a scalar factor, converges almost surely to the left eigenvector
of R corresponding to the maximal eigenvalue, and is asymptotic
normal with a known limiting variance matrix under certain
assumptions on R. Standard assumptions made in the urn model
theory are that the replacement matrix is irreducible with a
constant row sum and all the off-diagonal elements are non-
negative (see, e.g., Mahmoud, 2009). Choi et al. (2021) extended
this to the case when off-diagonal elements of a replacement
matrix can be negative satisfying the following set of assumptions
(A1)–(A4). Let diag(a1, . . . , ad) denote the diagonal matrix whose
diagonal elements are a1, . . . , ad.

(A1) Tenable: It is always possible to draw balls and follow the
replacement rule.

(A2) Small: All eigenvalues of R are real. The maximal eigen-
value λ1, called the principal eigenvalue, is positive with λ1 > 2λ
for all other eigenvalues λ of R.

(A3) Strictly balanced: The column vector u1 = (1, 1, . . . , 1)⊤
is a right eigenvector of R corresponding to λ1, and R has a
unique principal left eigenvector v1 that is both a left eigenvector
corresponding to λ1 and a probability vector.

(A4) Diagonalizable: There exists an invertible matrix V with
real entries such that its first row equals to v1, the first column
of V−1 is u1, and

VRV−1
= diag(λ1, λ2, . . . , λd) =: Λ, (3)

where λ1 > λ2 ≥ · · · ≥ λd are eigenvalues of R.
Let N (0, Σ) be the multivariate normal distribution with

mean vector 0 = (0, . . . , 0) and covariance matrix Σ . Then, we
have the following result from Choi et al. (2021, Theorems 1 & 2),
which also follows from Janson (2004, Theorems 3.21 and 3.22
and Remark 4.2).

Theorem 2.2. Under assumptions (A1)–(A4), we have

(nλ1)−1Un
a.s.
−→ v1 and n−1/2(Un −nλ1v1)

d
−→ N (0, Σ), (4)

where λ1 is the principal eigenvalue, v1 is the principal left eigen-
vector of R, and

Σ =

d∑
i,j=2

λ1λiλju⊤

i diag(v1)uj

λ1 − λi − λj
v⊤

i vj, (5)

where vj is the jth row of V , and uj the jth column of V−1 for
2 ≤ j ≤ d.
30
3. Limit theorems for the joint distribution

In this section, we present the strong law of large numbers and
the central limit theorems for the joint distribution of the number
of cherries and the number of pitchforks under the Ford model.

3.1. Main convergence results

We introduce the following six polynomials in α for later use:

φ1 = 8α3
− 32α2

+ 45α − 23, φ4 = 8α3
− 40α2

+ 37α + 13,
φ2 = 40α3

− 164α2
+ 221α − 97, φ5 = 40α3

− 112α2
− 31α + 181,

3 = 56α3
− 248α2

+ 367α − 181, φ6 = 8α3
+ 4α2

− 71α + 71.

(6)

or simplicity of notation, we do not indicate φi as a function of α.
t can be verified directly that φ1, φ2, φ3 < 0 and φ4, φ5, φ6 > 0
or α ∈ (0, 1). Then, we have the following asymptotic results of
he urn model process associated with the Ford model.

heorem 3.1. Suppose (Un)n≥0 is the urn process associated with
he Ford model with parameter α ∈ (0, 1). Then,
Un

n
a.s.
−→ v and

Un − nv
√
n

d
−→ N (0, Σ) , (7)

as n → ∞, where

=
1

2(3 − 2α)
(2(1 − α), 2(1 − α), 1 − α, 1 + α, 1 − α, 5 − 3α) ,

(8)

and with the polynomials φ1, . . . , φ6 defined in (6),

Σ =
1 − α

4(3 − 2α)2(5 − 4α)(7 − 4α)

×

⎡⎢⎢⎢⎢⎢⎣
−12φ1 4φ2 −6φ1 −2φ4 2φ2 −2φ2
4φ2 −4φ3 2φ2 −2φ6 −2φ3 2φ3

−6φ1 2φ2 −3φ1 −φ4 φ2 −φ2
−2φ4 −2φ6 −φ4 φ5 −φ6 φ6
2φ2 −2φ3 φ2 −φ6 −φ3 φ3

−2φ2 2φ3 −φ2 φ6 φ3 −φ3

⎤⎥⎥⎥⎥⎥⎦ . (9)

The proof of Theorem 3.1 is given at the end of this section.

Remark 1. Theorem 3.1 provides the limiting results on the
urn model using a scaling factor relating to the time n (which is
motivated by noting that the number of leaves in the tree at time
n is n + 2). However, the results can be readily rephrased using
the vector Un/(3 + 2n) of proportions of colour balls in the urn
process, in which

∑6
i=1 Un,i = 3 + 2n since two balls are added

into the urn at every time point.

Remark 2. Using the approach outlined by Choi et al. (2021),
Theorem 3.1 continues to hold for the unrooted Ford model.

With Theorem 3.1, we are ready to present one of our main
results in this paper concerning limit theorems on the joint distri-
bution of the number of cherries Cn and the number of pitchforks
An under the Ford model.

Theorem 3.2. Under the Ford model with parameter α ∈ [0, 1],
we have
1
n
(An, Cn)

a.s.
−→ (ν, µ) :=

1 − α

2(3 − 2α)
(1, 2), (10)

and
(An, Cn) − n(ν, µ)

√
d

−→ N
(
(0, 0), S

)
,

n
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=

[
τ 2 ρ

ρ σ 2

]
=

1 − α

(3 − 2α)2(5 − 4α)

×

[
−24α3

+96α2
−135α+69

4(7−4α)
−(2−α)(1−2α)

2
−(2−α)(1−2α)

2 2 − α

]
. (11)

Remark 3. We consider special cases of the Ford model, which
are commonly studied in phylogenetics. The first two have been
established by Choi et al. (2021).

1. The PDA model corresponds to α = 1/2, where all edges,
internal or leaf, are selected with equal weight and the
limit results hold with

(ν, µ) =
1
8
(1, 2) and

[
τ 2 ρ

ρ σ 2

]
=

1
64

[
3 0
0 4

]
.

2. The Yule model corresponds to α = 0, where only leaf
edges are selected with equal weight and the limit results
hold with

(ν, µ) =
1
6
(1, 2) and

[
τ 2 ρ

ρ σ 2

]
=

1
45

[
69/28 −1
−1 2

]
.

3. The Comb model corresponds to α = 1, a degenerate case.
It is easy to see that (ν, µ) = (0, 0) and τ 2

= ρ = σ 2
= 0.

roof of Theorem 3.2. First note that the case α = 1 reduces to
he degenerate case, Comb model, and therefore we only consider

∈ [0, 1). The limiting results for the case α = 0 has been
btained by Choi et al. (2021), which agree with the above results
hen α = 0. Thus, it is enough to prove the result for α ∈ (0, 1).
By (1), we have (An+2, Cn+2) = UnQ with

Q⊤
=

1
2

[
1 0 0 0 0 0
1 1 0 0 0 0

]
. (12)

ince
Un

n
a.s.
−→ v =

1
2(3 − 2α)

(
2(1 − α), 2(1 − α),

1 − α, 1 + α, 1 − α, 5 − 3α
)
, (13)

using the relation from Eq. (1) we get

1
n + 2

(An+2, Cn+2) =
n

n + 2

(
Un

n

)
Q

a.s.
−→ vQ =

1 − α

2(3 − 2α)
(1, 2).

This concludes the proof of the strong law of large numbers.
We now prove the central limit theorem, and obtain the

expression for the limiting variance matrix. To this end, denoting
the (i, j)-entry in the covariance matrix Σ of (9) by σi,j for 1 ≤

i, j ≤ 6, we consider the matrix

S = Q⊤ΣQ =
1
4

[
σ1,1 σ1,1 + σ1,2

σ1,1 + σ2,1 σ1,1 + σ2,1 + σ1,2 + σ2,2

]
=

1 − α

16(3 − 2α)2(5 − 4α)(7 − 4α)

×

[
−12φ1 −12φ1 + 4φ2

−12φ1 + 4φ2 −12φ1 + 8φ2 − 4φ3

]
=

1 − α

(3 − 2α)2(5 − 4α)

[
−24α3

+96α2
−135α+69

4(7−4α)
−(2−α)(1−2α)

2
−(2−α)(1−2α)

2 2 − α

]
ince (An+2, Cn+2) = UnQ , where Q is as defined in (12), we get
(An+2, Cn+2) − n(ν, µ)

√
n

=
1

√
n

(Un − nv)Q d
−→ N

(
0,Q⊤ΣQ

)
= N 0, S .
( )

31
ince n−1/2 {(An+2, Cn+2) − n(ν, µ)}−n−1/2 {(An, Cn) − n(ν, µ)}
d

−→

, this completes the proof. □

We end this subsection with the following results on the
ehaviour of the first and second moments of the limiting joint
istribution of cherries and pitchforks in the parameter region, as
ndicated by their plots in Fig. 3.

orollary 3.3.

(i) For 0 ≤ α < 1, An/Cn
a.s.
−→ 1/2 as n → ∞. That is, the

number of pitchforks is asymptotically equal to the number of
essential cherries.

(ii) An/n
a.s.
−→ (1 − α)/(6 − 4α), this limit decreases strictly

from 1/6 to 0, as α increases from 0 to 1.
(iii) The limiting variance τ 2 of An/

√
n decreases strictly from

23/420 to 0, as α increases from 0 to 1.
(iv) The limiting variance σ 2 of Cn/

√
n increases strictly from

2/45 to 0.0695 over (0, a0) and decreases from 0.0695 to 0
over (a0, 1), where a0 = 0.7339, the unique root of 19 −

48α + 36α2
− 8α3

= 0 in (0, 1).
(v) The limiting covariance ρ of An/

√
n and Cn/

√
n changes sign

from negative to positive at α = 1/2. Specifically, it increases
from −1/45 to 0.0225 over (0, a1) and decreases from 0.0225
over (a1, 1), where a1 = 0.8688, the unique root of −24α4

+

160α3
− 370α2

+ 358α − 123 = 0 in (0, 1).

3.2. A uniform urn model derived from Un

For α ∈ (0, 1), consider the diagonal 6 × 6 matrix

Tα = diag(1 − α, 1 − α, 1 − α, 1 − α, α, α) (14)

and

Un := UnTα =
(
(1 − α)Un,1, . . . , (1 − α)Un,4, αUn,5, αUn,6

)
. (15)

Clearly, there is a one to one correspondence between Un and
Un = UnTα for α ∈ (0, 1) and therefore it is sufficient to obtain the
limiting results for the urn process Ũn. Note that the off-diagonal
elements of the replacement matrix Rα = RTα of Ũn are not all
non-negative, therefore we will use the limit results from Choi
et al. (2021) to obtain the convergence results for the urn process
Un.

Theorem 3.4. Suppose α ∈ (0, 1). Then (Ũn)n≥0 is a uniform urn
process with replacement matrix Rα = RTα and

Ũn

n
a.s.
−→ ṽ1, (16)

where

v1 =
1

2(3 − 2α)

(
2(1 − α)2, 2(1 − α)2,

(1 − α)2, 1 − α2, α(1 − α), α(5 − 3α)
)

(17)

s the normalized left eigenvector of Rα corresponding to the largest
igenvalue λ1 = 1. Furthermore,

Ũn − ñv1
√
n

d
−→ N (0, Σ̃), (18)

with the polynomials φ1, . . . , φ6 defined in (6) and β = 1 − α,

˜ =
β

4(3 − 2α)2(5 − 4α)(7 − 4α)
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Fig. 3. Plot of the variances and covariance of the limiting normalized joint distribution of cherries and pitchforks with respect to parameter α under the Ford
model. (i) The limiting variance τ 2 of the normalized pitchfork counting statistic An/

√
n decreases as the parameter α increases. (ii) The limiting variance σ 2 of the

ormalized cherry counting statistic Cn/
√
n increases over [0, α0) and then decreases over (α0, 1]. (iii) The limiting covariance ρ of An/

√
n and Cn/

√
n increases over

0, α1) and decreases over (α1, 1]. The formulas for τ 2 , σ 2 , and ρ are presented in (11) of Theorem 3.2; and the exact values of α0 and α1 are given in Corollary 3.3.
a
t

1

w
λ

ũ

˜
i

p
s

Σ

b

3

P
i

T

×

⎡⎢⎢⎢⎢⎢⎢⎣

−12β2φ1 4β2φ2 −6β2φ1 −2β2φ4 2αβφ2 −2αβφ2

4β2φ2 −4β2φ3 2β2φ2 −2β2φ6 −2αβφ3 2αβφ3

−6β2φ1 2β2φ2 −3β2φ1 −β2φ4 αβφ2 −αβφ2

−2β2φ4 −2β2φ6 −β2φ4 β2φ5 −αβφ6 αβφ6

2αβφ2 −2αβφ3 αβφ2 −αβφ6 −α2φ3 α2φ3

−2αβφ2 2αβφ3 −αβφ2 αβφ6 α2φ3 −α2φ3

⎤⎥⎥⎥⎥⎥⎥⎦ .

(19)

roof of Theorem 3.4. First, observe that at any time n, there
re n+2 pendant edges and n+1 internal edges in a rooted tree.
hat is,

n,1 + Un,2 + Un,3 + Un,4 = n + 2 and Un,5 + Un,6 = n + 1.

his gives

Ũn∥1 = (1 − α)
4∑

j=1

Un,j + α

6∑
j=5

Un,j

= (1 − α)(n + 2) + α(n + 1) = n + 2 − α.

herefore, from (2) we get,

[χn|Fn−1] =
Un−1Tα

∥Un−1Tα∥1
=

Un−1Tα

n + 1 − α
,

and

E[Un|Fn−1] = Un−1 + E[χn|Fn−1]R = Un−1 +
1

n + 1 − α
Un−1TαR.

ultiplying both sides by Tα , we get

[Ũn|Fn−1] = Ũn−1 +

(
1

∥Ũn−1∥1
Ũn−1

)
RTα.

Hence, (Ũn)n≥0 is a classical uniform urn model with replacement
matrix Rα = RTα .

Note that (A1) holds because the general Ford’s dynamics on a
ooted tree is well defined at every time n, thus the corresponding
rn model satisfies the assumption of tenability. That is, it is
lways possible to draw balls without getting stuck with the
eplacement rule. Note that Rα is diagonalizable as

VR V−1
= Λ
α

32
holds with Λ = diag
(
1, 0, 0, 0, −2(1 − α), −(3 − 2α)

)
,

V−1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
β

0 0 1 1 − α

1 0 1
β

0 1 3 − α

1 −2
β

0 3
β

−(2−α)
β

−5 + α

1 0 0 1
β

−(2−α)
β

−3 + α

1 0 −2
α

1
α

1 3 − α

1 0 0 −1
α

1 1 − α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

nd V in (21) that is given in Box I. Therefore, Rα satisfies condi-
ion (A4). Next, (A2) holds because Rα has eigenvalues

, 0, 0, 0, −2(1 − α), −(3 − 2α),

hich are all real. The maximal eigenvalue λ1 = 1 is positive with
1 > 2λ holds for all other eigenvalues λ of Rα . Furthermore, put
i = V−1e⊤

i and ṽi = eiV for 1 ≤ i ≤ 6. Then (A3) follows by
noting that ũ1 = (1, 1, 1, 1, 1, 1)⊤ is a right eigenvector, and

v1 =
1

2(3 − 2α)

(
2(1 − α)2, 2(1 − α)2,

(1 − α)2, 1 − α2, α(1 − α), α(5 − 3α)
)

s the principal left eigenvector.
Since all the assumptions (A1)–(A4) are satisfied by the re-

lacement matrix Rα , by Theorem 2.2, (16) holds. Furthermore,
ince

˜ =

6∑
i,j=2

λiλj̃u⊤

i diag(̃v1 )̃uj

1 − λi − λj
ṽ⊤

i ṽj, (22)

y (16), it follows that (18) holds. □

.3. Proof of Theorem 3.1

roof. Since α ∈ (0, 1), it follows that the matrix Tα defined
n (14) is invertible and its inverse is

−1
α =

1
α(1 − α)

diag(α, α, α, α, 1 − α, 1 − α),

which is also a diagonal matrix, and so (T−1
α )⊤ = T−1

α . Note that
we have U = Ũ T−1. Furthermore, consider the vector ṽ in (17)
n n α 1
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a

v

w

b

Σ

S

i

=

V =
1

2(3 − 2α)

⎡⎢⎢⎢⎢⎢⎣
2β2 2β2 β2 (1 + α)β αβ α(5 − 3α)

2β(1 + α − α2) 2β3
−(2 − α)β2 (2 − α)β2

−αβ2
−αβ(5 − 3α)

2αβ2 2α(2 − α)β αβ2
−αβ2

−α(3 − α)β −3αβ2

2α(2 − α)β 2αβ2 α(2 − α)β −α(2 − α)β α2β −3α(2 − α)β
2(2 − α)β −2β2 (2 − α)β −(4 − α)β −αβ αβ

−2β 2β −β β α −α

⎤⎥⎥⎥⎥⎥⎦ . (21)

Box I.
c
h

P

c
e

nd let

= ṽ1T−1
α

=
1

2(3 − 2α)

(
2(1 − α), 2(1 − α), 1 − α, 1 + α, 1 − α, 5 − 3α

)
.

Since Ũn/n
a.s.
−→ ṽ1 holds in view of (16) in Theorem 3.4,

Un

n
a.s.
−→ v, (23)

hich concludes the proof of the almost sure convergence in (7).
Consider the covariance matrix Σ̃ for Ũn as stated in (19), then

y straightforward calculation we have

= (T−1
α )⊤Σ̃T−1

α = T−1
α Σ̃T−1

α .

ince

Ũn − ñv1
√
n

d
−→ N (0, Σ̃),

n view of Theorem 3.4, we get

Un − nv
√
n

d
−→ N

(
0, (T−1

α )⊤Σ̃ T−1
α

)
= N (0, Σ).

This completes the proof. □

4. Exact distributions

In this section, we present recursion formulas for computing
the joint distributions of cherries and pitchforks, their means,
variances and covariance for fixed n under the Ford model.

The following result on the exact computation of the joint
probability mass function (pmf) of An and Cn can be regarded
as a generalization of the existing results on the Yule model
(e.g., when α = 0 by Wu and Choi, 2016, Theorem 1) and the
PDA model (e.g., α = 1/2 by Wu and Choi, 2016, Theorem 4). A
related result for unrooted trees is presented in Choi et al. (2020).

Theorem 4.1. Consider n ≥ 3, 0 ≤ a ≤ n/3 and 1 ≤ b ≤ n/2.
Under the Ford model with parameter α ∈ [0, 1], we have

P(An+1 = a, Cn+1 = b)
2a + α(n − a − b − 1)

n − α
P(An = a, Cn = b)

+
(1 − α)(a + 1)

n − α
P(An = a + 1, Cn = b − 1)

+
(2 − α)(b − a + 1)

n − α
P(An = a − 1, Cn = b)

+
(1 − α)(n − a − 2b + 2)

n − α
P(An = a, Cn = b − 1).

Proof of Theorem 4.1. Fix n ≥ 3, and let T2, . . . , Tn, Tn+1 be a
sequence of random trees generated by the Ford process, that is,
T contains two leaves and T = T [e ] for a random edge e in
2 i+1 i i i P

33
Ti chosen according to the Ford model for 2 ≤ i ≤ n. Then, we
have

P(An+1 = a, Cn+1 = b) = P(A(Tn+1) = a, C(Tn+1) = b)

=

∑
p,q

P(A(Tn+1) = a, C(Tn+1) = b | A(Tn) = p, C(Tn) = q)

× P(A(Tn) = p, C(Tn) = q)

=

∑
p,q

P(A(Tn+1) = a, C(Tn+1) = b | A(Tn) = p, C(Tn) = q)

× P(An = p, Cn = q), (24)

where the first and second equalities follow from the law of total
probability, and the definition of random variables An and Cn
respectively.

Let en be the edge in Tn chosen in the above Ford process for
generating Tn+1, that is, Tn+1 = Tn[en]. Since Lemma 2.1 implies
that

P(A(Tn+1) = a, C(Tn+1) = b | A(Tn) = p, C(Tn) = q) = 0 (25)

for (p, q) ̸∈ {(a, b), (a+1, b−1), (a−1, b), (a, b−1)}, it suffices to
consider the following four cases in the summation in (24): case
(i): p = a, q = b; case (ii): p = a + 1, q = b − 1; case (iii):
p = a − 1, q = b; and case (iv): p = a, q = b − 1.

First, Lemma 2.1 implies that case (i) occurs if and only if
en ∈ E1(Tn) ∪ E6(Tn), and that E1(Tn) ∪ E6(Tn) contains precisely
2A(Tn) pendent edges and (n − 1) + A(Tn) − C(Tn) interior edges.
Therefore, we have

P(A(Tn+1) = a, C(Tn+1) = b | A(Tn) = a, C(Tn) = b)

=
2A(Tn)(1 − α) + α(n − 1 + A(Tn) − C(Tn))

n − α

=
2a + α(n − a − b − 1)

n − α
. (26)

Similarly, case (ii) occurs if and only if en ∈ E3(Tn), which
ontains A(Tn) pendent edges and no interior edges. Therefore we
ave

(A(Tn+1) = a, C(Tn+1) = b | A(Tn) = a + 1, C(Tn) = b − 1)

=
(a + 1)(1 − α)

n − α
. (27)

Next, case (iii) occurs precisely when en ∈ E2(Tn) ∪ E5(Tn),
which contains 2(C(Tn) − A(Tn)) pendent edges and C(Tn) − A(Tn)
interior edges. Thus

P(A(Tn+1) = a, C(Tn+1) = b | A(Tn) = a − 1, C(Tn) = b)

=
2(1 − α)(b − a + 1) + α(b − a + 1)

n − α
=

(2 − α)(b − a + 1)
n − α

.

(28)

Finally, case (iv) occurs if and only if en is in E4(Tn), which
ontains precisely n−A(Tn)−2C(Tn) pendent edges and no interior
dges. Hence,

(A(T ) = a, C(T = b) | A(T ) = a, C(T ) = b − 1)
n+1 n+1 n n
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=
(1 − α)(n − a − 2b + 2)

n − α
. (29)

Substituting Eqs. (26)–(29) into Eq. (24) completes the proof
of the theorem. □

To study the moments of An and Cn, we present below a
functional recursion form of Theorem 4.1, whose proof is similar
to that in Wu and Choi (2016, Theorem 2) by using the recursion
in Theorem 4.1 and a bivariate indicator function, and hence
omitted here.

Proposition 4.2. Let ϕ : N×N → R be an arbitrary function. For
n ≥ 3, under the Ford model with parameter α ∈ [0, 1], we have

n − α)Eϕ(An+1, Cn+1) = E
[{

α(n − An − Cn − 1) + 2An
}
ϕ(An, Cn)

+ (1 − α)Anϕ(An − 1, Cn + 1)
+ (2 − α)(Cn − An)ϕ(An + 1, Cn)

+ (1 − α)(n − An − 2Cn)ϕ(An, Cn + 1)
]
.

For a fix integer k, consider the indicator function Ik(y) that
equals to 1 if y = k, and 0 otherwise. Then, applying Proposi-
tion 4.2 with ϕ(x, y) = Ik(x) leads to the following result on the
distribution of cherries.

Corollary 4.3. For integers n ≥ 3 and 0 ≤ k ≤ n/2, under the
ord model with parameter α ∈ [0, 1] we have

n − α)P(Cn+1 = k) = [(n − 1)α + 2(1 − α)k]P(Cn = k)
+ (1 − α)(n − 2k + 2)P(Cn = k − 1).

Similarly, applying Proposition 4.2 with appropriate functions
leads to the following recurrence relation on the moments of

he joint distributions. The proofs are similar to those in Wu and
hoi (2016, Corollary 4 & Proposition 5) and hence omitted here.

orollary 4.4. For n ≥ 3, under the Ford model with parameter
∈ [0, 1], we have

n − α)E[Cn+1] − (n − 2 + α)E[Cn] = n(1 − α), (30)
n − α)E[An+1] − (n − 3 + α)E[An] = (2 − α)E[Cn], (31)
(n − α)E[C2

n+1] − (n − 4 + 3α)E[C2
n ]

= 2(n − 1)(1 − α)E[Cn] + n(1 − α), (32)
(n − α)E[An+1Cn+1] − (n − 5 + 3α)E[AnCn]

= (n − 1)(1 − α)E[An] + (2 − α)E[C2
n ], (33)

n − α)E[A2
n+1] − (n − 6 + 3α)E[A2

n] = 2(2 − α)E[AnCn]

+ (2 − α)E[Cn] − E[An], (34)

with initial conditions E[A3] = E[C3] = E[A2
3] = E[C2

3 ] =

E[A3C3] = 1.

Remark 4. Let µn = E[Cn] and σ 2
n = var(Cn). Substituting

E[C2
n ] = σ 2

n + µ2
n into (32) and applying (30), we obtain below

a recurrence relation of the σ 2
n , which was also obtained by Ford

(2006, Theorem 60):

(n − α)σ 2
n+1 − (n − 4 + 3α)σ 2

n = −
4(1 − α)2

n − α
µ2

n

+
2(1 − α)[(1 − 2α)n + α]

n − α
µn +

α(1 − α)n(n − 1)
n − α

.

As an application of Corollary 4.4, we obtain the formulas
or the mean of An and that of Cn under the Ford model in
he next theorem. This theorem extends existing results on the
ule and the PDA models (see, e.g., Wu and Choi, 2016 and
34
the references therein). Note that the mean of Cn as stated in
heorem 4.5(i) was first obtained by Ford (2006) and is included
ere for completeness.

heorem 4.5. Under the Ford model with parameter α ∈ [0, 1],
or n ≥ 3 we have

(i) E[Cn] =
1 − α

3 − 2α
n +

α

2(3 − 2α)
+ xn, where x3 =

α
2(3−2α)

and for n ≥ 4,

xn =
α

2(3 − 2α)

n−1∏
i=3

i − 2 + α

i − α

=
αΓ (3 − α)

2(3 − 2α)Γ (1 + α)
n−2(1−α) (1 + o(1)) ; (35)

(ii) E[An] =
1 − α

2(3 − 2α)
n +

α

2(3 − 2α)
+ yn, where y3 =

1
2 ,

y4 =
α(5−3α)

2(3−α)(3−2α) , and for n ≥ 5,

yn =
α(2n − 3 + α − nα)
2(3 − 2α)(3 − α)

n−1∏
j=4

j − 3 + α

j − α

=
α(2 − α)
2(3 − 2α)

Γ (3 − α)
Γ (1 + α)

n−2(1−α) (1 + o(1)) . (36)

The proof of Theorem 4.5 and that of Theorem 4.6, which
oncerns higher order expansions of the second moments, are
resented in the Appendix.

heorem 4.6. Under the Ford model with parameter α ∈ [0, 1],
e have

(i) var(Cn) =
(1−α)(2−α)

(3−2α)2(5−4α)
n −

α(1−α)(2−α)
(3−2α)2(5−4α)

+ O(n−2(1−α)),
(ii) cov(An, Cn) =

−(1−α)(2−α)(1−2α)
2(3−2α)2(5−4α)

n− α(1−α)(2−α)
(3−2α)2(5−4α)

+O(n−2(1−α)),
and

(iii) var(An) =
(1−α)(69−135α+96α2

−24α3)
4(3−2α)2(5−4α)(7−4α)

n +
3α(1−α)(1−2α)(5−3α)
4(3−2α)2(5−4α)(7−4α)

+

O(n−2(1−α)).

Let ρα(An, Cn) be the correlation of An and Cn under the Ford
odel with parameter α ∈ [0, 1), which is not defined for α = 1
ecause An and Cn are both degenerate random variables in this
ase. It is shown by Wu and Choi (2016, Corollaries 3 & 5) that
or the Yule model ρ0(An, Cn) = −

√
14/69 holds for n ≥ 7,

nd for the PDA model {ρ1/2(An, Cn)}n≥4 is an increasing sequence
onverging to 0. Together with Theorem 4.6(ii), this leads directly
o the following result which shows that α = 1/2 is a critical
alue for ρα(An, Cn): when n is large, An and Cn are negatively
orrelated for α ∈ [0, 1/2], which is expected; and positively
correlated for α ∈ (1/2, 1), which is less expected.

Corollary 4.7. Under the Ford model, for each 0 ≤ α ≤ 1/2, there
exists a constant n0(α) such that ρα(An, Cn) < 0 for all n > n0(α).
Furthermore, for each 1/2 < α < 1, there exists a constant n0(α)
such that ρα(An, Cn) > 0 for all n > n0(α).

5. Discussion

Motivated by developing a unified approach to subtree statis-
tics for the Yule and the PDA models as outlined in Wu and
Choi (2016) and Choi et al. (2020, 2021), we study the joint
distribution of the number of cherries and that of pitchforks for
the Ford model in this paper. Our results include formulas for
computing the exact joint distribution (Theorem 4.1), their means
and higher order asymptotic expansions of their second moments
(Theorems 4.5 and 4.6), the strong law of large numbers and
the central limit theorems (Theorem 3.2). As a consequence, in
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orollary 4.7, we show that 1/2 is a critical model parameter
alue for their correlation, that is, for sufficiently large n, they are
egatively correlated for 0 ≤ α ≤ 1/2 and positively correlated
or 1/2 < α < 1.

The results obtained in this paper also naturally lead to several
road questions for future work. First, suppose that we observe a
ooted binary tree of n leaves with a pitchforks and b cherries. A
atural question arises as to which α under the Ford model best
its the observed tree. We can employ the maximum likelihood
rinciple to estimate α: that is α̂MLE = argmax0≤α≤1Pα(An =

, Cn = b), where Pα(An = a, Cn = b) denotes the joint probability
ass function at (a, b) parametrized by α. We can apply Theorem
.1 to compute Pα(An = a, Cn = b) for α belongs to a grid of the
nterval between 0 and 1, from which we can approximate α̂MLE.
hether there exists a computationally more effective algorithm

han this brute force grid search will be left for future work.
ne can also possibly use a statistic in the form of a function
f a convex combination of An and Cn (i.e., λAn + (1 − λ)Cn

where 0 ≤ λ ≤ 1) for estimating the parameter α in the Ford
model. A systematic study of which λ to use and which functional
form of this convex combination, in our opinion, is an interesting
question to address.

Second, in this paper we focused on rooted trees under the
Ford model, and it would be interesting to extend them to un-
rooted trees as well. For instance, subtree structures under the
PDA model are utilized recently in Pouryahya and Sankoff (2022)
to study the evolution of polyploids, and it would be interesting
to see whether the unrooted Ford model could provide a more
powerful statistical model. Furthermore, Choi et al. (2020) proved
that the mean number of cherries and that of pitchforks for
unrooted trees converge respectively to those for rooted trees
when α = 0 (i.e., under the Yule model) while there exists a
limiting gap of 1/4 for α = 1/2 (i.e., under the PDA model).
Clearly, for the case α = 1, this gap is 1, but other cases remain
open.

Next, in addition to cherry and pitchfork statistics, one may
study other subtree statistics such as k-pronged nodes and k-
caterpillars, for which some analytical results are obtained by
Rosenberg (2006) for the Yule model and by Chang and Fuchs
(2010) for the PDA model. Other than subtree counts, a number
of indices such as Colless’ index, Sackin’s index (see, e.g., Fischer
et al., 2021 and the references therein) are used to measure tree
balance or the lack of it. It would be interesting to investigate
their properties under the Ford model.

Finally, it would be interesting to investigate shape statistics
for several recently proposed graphical structures in evolutionary
biology, which include the distribution of branch lengths in Fer-
retti et al. (2017) and Arbisser et al. (2018), relatively ranked
tree shapes by Kim et al. (2020), and also shape statistics in
phylogenetic networks, in which events such as lateral gene
transfer and viral recombinations are better accommodated (see,
e.g., Bienvenu et al., 2022 and Fuchs et al., 2022 for some recent
results).
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Appendix. Proofs of Theorems 4.5 and 4.6

In the appendix we present the proofs of Theorems 4.5 and
4.6. To this end, we start with the two lemmas below.

Lemma 5.1. Let a, b and c be three positive real numbers with
a > b − 1. Given an integer n0 ≥ 2, suppose that {Xn}n≥n0 is a
sequence of real numbers satisfying the recursion

Xn+1 = fnXn + gn, n ≥ n0,

where {fn}n≥n0 and {gn}n≥n0 are two sequences with
∏n−1

i=ℓ |fi| ≤

c(n/ℓ)−a and |gℓ| ≤ cℓ−b for every ℓ ≥ n0. Then, there exists a
positive number C such that |Xn| ≤ Cn1−b for all n ≥ n0.

roof of Lemma 5.1. Since the solution to the given recursion is
iven by

n = Xn0

n−1∏
i=n0

fi +
n−1∑
i=n0

gi
n−1∏
j=i+1

fj

for n > n0, we have

|Xn| ≤ |Xn0 |

n−1∏
i=n0

|fi| +

n−1∑
i=n0

|gi|
n−1∏
j=i+1

⏐⏐fj⏐⏐ .
Considering C = 2max{c(n0)a|Xn0 |, (c

2 2a)/(a − b + 1)}, then the
lemma follows by noticing that

|Xn0 |

n−1∏
i=n0

|fi| ≤ cn0
a
|Xn0 |n

−a
≤ Cn−a/2 ≤ Cn1−b/2,

and
n−1∑
i=n0

|gi|
n−1∏
j=i+1

⏐⏐fj⏐⏐ ≤ c
n−1∑
i=n0

|gi|
(
i + 1
n

)a

≤
c2 2a

na

n−1∑
i=n0

i a−b
≤

c2 2a na−b+1

na(a − b + 1)
≤

C
2
n1−b. □

Lemma 5.2. For α ∈ [0, 1] and three finite non-negative integers
ℓ, k,m such that ℓ ≥ k and m ≥ 1, there exists a positive constant
K = K (α,m) such that

n−1∏
i=ℓ

⏐⏐⏐⏐ i − k + mα

i − α

⏐⏐⏐⏐ ≤ K
(n

ℓ

)−k+(m+1)α
for all 1 ≤ ℓ ≤ n − 1. (37)

Furthermore, as n → ∞ we have
n−1∏ i − k + mα

i − α
=

Γ (ℓ − α)
Γ (ℓ − k + mα)

n−k+(m+1)α (1 + o(1)) . (38)

i=ℓ
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roof of Lemma 5.2. First, (37) follows from Choi et al. (2021,
emma 2). To prove (38), note that

n−1

i=ℓ

i − k + mα

i − α
=

n−1∏
i=ℓ

Γ (i + 1 − k + mα)Γ (i − α)
Γ (i − k + mα)Γ (i + 1 − α)

=
Γ (n − k + mα)
Γ (ℓ − k + mα)

Γ (ℓ − α)
Γ (n − α)

=
Γ (ℓ − α)

Γ (ℓ − k + mα)
Γ (n + mα)
Γ (n − α)

k∏
j=1

1
n − j + mα

.

(39)

y Stirling’s approximation formula, Γ (x) =
√
2π xx−1/2e−x

(1 + o(1)), we have the following well-known approximation:

Γ (n + mα)
Γ (n − α)

= n(m+1)α (1 + o(1)) . (40)

ombining (40) and
k

j=1

1
n − j + mα

= n−k (1 + o(1)) ,

e get (38). □

Next, we present the proof of Theorem 4.5. Intuitively, from
ur asymptotic result, we notice that for a fixed parameter α,
he value E[Cn] can be decomposed into the sum of a linear
erm (1 − α)n/(3 − 2α) (where the coefficient (1 − α)/(3 − 2α)
s given by (10)) and a remaining term for which a recurrence
elation can be derived from the recurrence of E[Cn] in Corol-
ary 4.4. A similar method is utilized for computing E[An] in the
proof below.

Proof of Theorem 4.5. To prove part (i), we consider

xn = E[Cn] −
1 − α

3 − 2α
n −

α

2(3 − 2α)
, n ≥ 3. (41)

ince E[C3] = 1, we get x3 = α/(6 − 4α). Furthermore,
ubstituting (41) into (30) leads to

n − α)xn+1 − (n − 2 + α)xn = 0, n ≥ 3,

and hence

xn = x3
n−1∏
i=3

i − 2 + α

i − α
= x3

Γ (3 − α)
Γ (1 + α)

Γ (n − 2 + α)
Γ (n − α)

, n ≥ 4.

Together with Lemma 5.2, this establishes (35), and hence com-
pletes the proof of part (i).

To prove part (ii), we consider

yn = E[An] −
1 − α

2(3 − 2α)
n −

α

2(3 − 2α)
(42)

or n ≥ 3. Then, y3 = 1/2. Furthermore, substituting (42) and
(41) into (31) leads to

yn+1 =
n − 3 + α

n − α
yn +

2 − α

n − α
xn, n ≥ 3.

Solving this recurrence relation gives us y4 = α(5 − 3α)/[2(3 −

α)(3 − 2α)] and for n ≥ 5,

yn = y3
n−1∏
i=3

i − 3 + α

i − α
+

n−1∑
i=3

2 − α

i − α
xi

n−1∏
j=i+1

j − 3 + α

j − α

=
1
2

n−1∏ i − 3 + α

i − α
+

(2 − α)α
2(3 − 2α)

n−1∑ n−1∏ j − 3 + α

j − α

i=3 i=3 j=i+1

36
×
1

i − α
×

i−1∏
j=3

j − 2 + α

j − α

=
1
2

n−1∏
i=3

i − 3 + α

i − α
+

(2 − α)α
2(3 − 2α)

n−1∑
i=3

1
3 − α

n−1∏
j=4

j − 3 + α

j − α

=
1
2

n−1∏
i=3

i − 3 + α

i − α
+

(2 − α)α
2(3 − 2α)

(n − 3)
(3 − α)

n−1∏
j=4

j − 3 + α

j − α

=
α(2n − 3 + α − nα)
2(3 − 2α)(3 − α)

n−1∏
j=4

j − 3 + α

j − α
.

y Lemma 5.2,

n =
α(2n − 3 + α − nα)
2(3 − 2α)(3 − α)

Γ (4 − α)
Γ (1 + α)

n−3+2α (1 + o(1))

=
α(2 − α)
2(3 − 2α)

Γ (3 − α)
Γ (1 + α)

n−2+2α (1 + o(1)) ,

as n → ∞. This completes the proof of part (ii) and hence the
theorem. □

In the remainder of this section we present the proof of
Theorem 4.6. Theorem 3.2 indicates that for a fixed parameter
α, we have var(Cn) = E[C2

n ] − (E[Cn])2 = O(n). Therefore,
[C2

n ] can be decomposed into the sum of a quadratic term (1 −

)2n2/(3 − 2α)2 whose coefficient is derived from Theorem 4.5,
linear term derived from (41) and Theorem 3.2 and a remaining
erm for which a recurrence relation can be derived from Corol-
ary 4.4. A similar method is utilized for computing E[AnCn] and
[A2

n] in the proof below.

roof of Theorem 4.6.
Since the theorem clearly holds for α = 1, we shall assume

hat α ∈ [0, 1) in the remainder of the proof. Furthermore, we
ill use the same xn and yn as defined in Theorem 4.5, and the

act that xn = O(n−2(1−α)) and yn = O(n−2(1−α)) as n → ∞. We
tart with the proof of part (i). To this end, we let

n = E[C2
n ] −

(1 − α)2

(3 − 2α)2
n2

−
2(1 − α)(1 + 2α − 2α2)

(5 − 4α)(3 − 2α)2
n

+
α(8 − 17α + 8α2)
4(5 − 4α)(3 − 2α)2

, n ≥ 3. (43)

Since E[C2
3 ] = 1, we get

z3 =
88α3

− 213α2
+ 152α − 24

4(3 − 2α)2(5 − 4α)
.

ext, substituting (43) into (32) leads to

n − α)zn+1 − (n − 4 + 3α)zn = 2(1 − α)(n − 1)xn, n ≥ 3.

urthermore, using Theorem 4.5(i) we have

ar(Cn) = E[C2
n ] − (E[Cn])2 =

(1 − α)(2 − α)
(5 − 4α)(3 − 2α)2

n

−
α(1 − α)(2 − α)
(5 − 4α)(3 − 2α)2

+ vn − x2n, (44)

here

n = zn −
2(1 − α)
3 − 2α

nxn −
α

3 − 2α
xn = zn −

[2(1 − α)n + α]

3 − 2α
xn.

Then, for n ≥ 3, we have

(n − α)vn+1 = (n − α)zn+1 −
[2(1 − α)(n + 1) + α]

3 − 2α
(n − α)xn+1

= (n − 4 + 3α)vn −
2(1 − α)

xn
3 − 2α
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nd hence also

n+1 =
n − 4 + 3α

n − α
vn −

2(1 − α)
(3 − 2α)

xn
(n − α)

. (45)

onsider

n =
n − 4 + 3α

n − α
and gn = −

2(1 − α)xn
(3 − 2α)(n − α)

or n ≥ 3, and let a = 4−4α and b = 3−2α. Then, by Lemma 5.2,
t follows that there exists a constant K1 such that

n−1∏
i=ℓ

|fi| =

n−1∏
i=ℓ

i − 4 + 3α
i − α

≤ K1

(n
ℓ

)−4+4α
= K1

(n
ℓ

)−a

for all 3 ≤ ℓ ≤ n − 1,

and by Theorem 4.5 there exists a constant K2 such that

|gn| =
2(1 − α)xn

(3 − 2α)(n − α)
<

4(1 − α)
(3 − 2α)

xn
n

≤ K2 n−3+2α
= K2n−b

for n ≥ 3.

Since a − b + 1 = 2(1 − α) > 0 for α ∈ [0, 1), an application
of Lemma 5.1 on the recursion (45) with the above fn, gn, a,
b, and c = max{K1, K2} leads to vn = O(n−2+2α), and hence
vn−x2n = O(n−2+2α). This, together with (44), completes the proof
of (i).

To prove part (ii), we consider

tn = E[AnCn] −
(1 − α)2

2(3 − 2α)2
n2

+
(1 − α)(4 − 25α + 16α2)

4(5 − 4α)(3 − 2α)2
n

+
α(8 − 17α + 8α2)
4(5 − 4α)(3 − 2α)2

(46)

or n ≥ 3. Combining (33) and (46) leads to

n−α)tn+1−(n−5+3α)tn = (2−α)zn+(1−α)(n−1)yn, n ≥ 3.

Since cov(An, Cn) = E[AnCn] − E[An]E[Cn], by (41), (42) and (46),
we have

cov(An, Cn) =
−(1 − α)(2 − α)(1 − 2α)

2(5 − 4α)(3 − 2α)2
n

−
α(1 − α)(2 − α)
(5 − 4α)(3 − 2α)2

+ wn − xnyn, (47)

here

n = tn −
[(1 − α)n + α]xn + [2(1 − α)n + α]yn

2(3 − 2α)
.

sing straightforward but tedious algebraic simplification steps,
e can show that

n − α)wn+1 − (n − 5 + 3α)wn = (2 − α)vn −
1 − α

3 − 2α
xn

olds for n ≥ 3, and hence

wn+1 =
n − 5 + 3α

n − α
wn + (2 − α)

vn

n − α
−

(1 − α)
(3 − 2α)

xn
(n − α)

. (48)

imilarly to the proof of part (i), applying Lemma 5.1 to the
ecursion (48) with a = 5 − 4α, b = 3 − 2α,

fn =
n − 5 + 3α

n − α
and gn = (2 − α)

vn

n − α
−

(1 − α)
(3 − 2α)

xn
(n − α)

,

e get wn = O(n−2+2α), and hence wn − xnyn = O(n−2+2α). This
roves part (ii) in view of (47).
37
To prove part (iii), we consider

sn = E[A2
n] −

(1 − α)2

4(3 − 2α)2
n2

−
2(1 − α)(1 + 2α + 2α2)

(5 − 4α)(3 − 2α)2
n

−
α(5 − 3α + α2)

4(3 − 2α)(5 − 4α)(7 − 4α)

for n ≥ 3. Let

un = sn −
[(1 − α)n + α]yn

3 − 2α
.

Then by straightforward simplification steps, we have

un+1 =
n − 6 + 3α

n − α
un +

α(2 − α)
(3 − 2α)

yn
(n − α)

+
(2 − α)2

(3 − 2α)
xn

(n − α)
, n ≥ 3. (49)

Furthermore, by var(An) = E[A2
n] − (E[An])2 and Theorem 4.5(ii),

we have

var(An) =
(1 − α)(69 − 135α + 96α2

− 24α3)
4(3 − 2α)2(5 − 4α)(7 − 4α)

n

+
3α(1 − α)(1 − 2α)(5 − 3α)
4(3 − 2α)2(5 − 4α)(7 − 4α)

+ un − y2n.

imilarly to the proof of part (i), applying Lemma 5.1 on the
ecursion (49) with a = 6 − 4α, b = 3 − 2α,

n =
n − 6 + 3α

n − α
, and

gn =

[
α(2 − α)
(3 − 2α)

yn
(n − α)

+
(2 − α)2

(3 − 2α)
xn

(n − α)

]
,

e get un = O(n−2+2α) and hence also un − y2n = O(n−2+2α),
hich completes the proof of (iii) and hence the theorem. □
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