DECIDABILITY FOR THE THEORY OF MODULES OVER A
PRUFER DOMAIN

LORNA GREGORY

ABSTRACT. In this article we give elementary conditions completely charac-
terising when the theory of modules of a Priifer domain is decidable. Using
these results, we show that the theory of modules of the ring of integer valued
polynomials is decidable.
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1. INTRODUCTION

In this article, we give a complete characterisation of when the theory of modules
of a recursive Priifer domain is decidable.

Decidability connects algebra and computability theory in a profound way by
asking whether a given algebraic structure, or a class of algebraic structures, can
algorithmically be fully understood, at least in principle. Famous instances are
Hilbert’s 10th problem asking whether the solvability of diophantine equations can
be verified by a machine; Tarski’s ground breaking result on the decidability of the
real field and Ax’s theorem on the decidability of the class of finite fields (showing
that there is an algorithm verifying whether a first-order sentence holds in all finite
fields).

Priifer domains are a much studied class of rings, including many classically
important rings and classes of rings. For example, they include Dedekind domains
and hence rings of integers of number fields; Bézout domains and hence the ring of
complex entire functions [Hel40, Thm. 9] and the ring of algebraic integers [Kap74]
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2 LORNA GREGORY

Thm. 102]; the ring of integer valued polynomials with rational coefficients [CC97,
VI.1.7] and the real holomorphy rings of a formally real fields [Bec82l 2.16].

Priifer domains have provided a rich supply of rings for which the decidability
of modules can be determined. The theory of modules of a ring R is said to be
decidable if there is an algorithm which decides whether a given first order sentence
in the language of R-modules is true in all R-modules.

The first non-trivial example of a ring with decidable theory of modules was
given by Szmielew, [Szmb5], who showed that the theory of abelian groups (or
equivalently Z-modules) is decidable. This result was generalised by Eklof and
Fischer, [EF72], to some Dedekind domains, among them certain rings of integers,
and they showed that, for a (recursive) field k with a splitting algorithm, the theory
of k[z]-modules is decidable.

The most recent effort to understand decidability of theories of modules over
Priifer domains started with a paper, [PPT07], of Puninski, Puninskaya and Tof-
falori. They showed that a recursive valuation domain with dense archimedean
value group has decidable theory of modules if and only if its set of units is re-
cursive. Proving a conjecture in [PPT07], we show in [Grel5] that an arbitrary
recursive valuation domain has decidable theory of modules if and only if the radi-
cal relation a € rad bR is recursive.

The theory of modules of Bézout domains of the form D+ XQ[X] C Q[X], where
D is a principal ideal domain with field of fractions @, is shown in [PT14] to be
decidable under certain reasonable effectiveness conditions on D. In particular, it
is shown that Z + XQ[X] has decidable theory of modules. The theory of modules
of the ring of algebraic integers, along with some other Bézout domains with Krull
dimension 1, is shown to have decidable theory of modules in [LTPI7].

Work towards characterising when a general Priifer domain has decidable theory
of modules was started in the articles [GLPT18] and [GLT19], and is finished in
the present one. We will describe the results of these articles whilst describing the
main result of the present article.

First a reminder of the setup for proving decidability results for theories of
modules. Thanks to the Baur-Monk theorem, if R is a recursive ring then the theory
of R-modules is decidable if and only if there exists an algorithm which, given pairs
of pp-formulae ¢1/y,, ..., %i/y and intervals [ny,m1],..., [n, m;] C NU {co} where
n;,m; € NU {oo}, answers whether there exists an R-module M such that, for all
1<i <1, [pM)/p(M)| € [ni,m;]. The existence of an algorithm answering this
question when [n;, m;] are either [1,1] or [2, 00| is equivalent to the existence of an
algorithm deciding whether one Ziegler basic open set is contained in a finite union
of other Ziegler basic open sets (for the definition of the Ziegler spectrum see .

We characterise when the theory of modules of a Priifer domain R is decidable in
terms of the recursivity of three sets: DPR(R), EPP(R) and X (R). Each of these
sets is a subset of R™ x N& for some n, k € Ny. For the sets EPP(R) and X (R), we
postpone their definitions (see and respectively) to section [3[and in this
introduction we instead give some indication of their meaning.

For any commutative ring R, the set DPR(R) is defined as the set of (a,b,¢,d) €
R* such that for all prime ideals p,q of R with p +q # R, either a € p, b ¢ p,
c € qord¢ q. This set was introduced in [GLPTIS8] as a generalisation of the
radical relation a € rad bR. For a recursive Bézout domain it is shown there that
DPR(R) is recursive if and only if there is an algorithm deciding inclusions of Ziegler
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basic open sets. For recursive Priifer domains, analogous sufficient conditions were
given for there to exist an algorithm deciding inclusions of Ziegler basic open sets.
Building heavily on those results, we extend the equivalence given in [GLPT18] for
Bézout domains to all recursive Priifer domains (see . As a consequence we
get the following theorem.

Theorem. (See|3.1.9) Let R be a recursive Priifer domain such that R/m is infinite
for all mazimal ideals m. The theory of R-modules is decidable if and only if
DPR(R) is recursive.

If R is a ring with a pair of pp-formulae ¢/ and an R-module M such that
lo(M)/¢(M)| is finite but not equal to 1, in particular if R is a commutative
ring with a finite non-zero module, then we need to do more than show that there
is an algorithm deciding inclusions of Ziegler basic open sets.

For any ring R, if the theory of R-modules is decidable then the theory of modules
of size n is decidable uniformly in n. In we introduce a set EPP(R), whose
recursivity, for a recursive Priifer domain R, is equivalent to the decidability of the
theory of R-modules of size n, uniformly in n. This is proved in Theorem [7.6] The
main feature of EPP(R) is that it is often easier to check in examples that EPP(R)
is recursive than it is to check that the theory of modules of size n is decidable
uniformly in n.

The set EPP(R) is a generalisation of PP(R), which is defined in [GLTI19] and
inspired by the characterisation of commutative von Neumann regular rings with
decidable theories of modules given in [PP88]. In [GLTI9], for a recursive Bézout
domain R, under the condition that for each maximal ideal m, R, has dense value
group, it is shown that the theory of R-modules is decidable if and only if DPR(R)
and PP(R) are recursive. Building heavily on [GLT19], we show, that this result
also holds for Priifer domains.

Theorem Let R be a recursive Priifer domain such that Ry, has dense value
group for all mazximal ideals m. The theory of R-modules is decidable if and only if
PP(R) and DPR(R) are recursive.

It follows from this theorem that the theory of modules of a recursive Priifer domain
with dense value groups (or infinite residue fields) is decidable if and only if there is
an algorithm deciding inclusions of Ziegler basic open sets and the theory of finite
modules of size n is decidable uniformly in n. The same result for commutative
von Neumann regular rings follows easily from [PP88]. This does not appear to be
the case for arbitrary Priifer domains.

The third set, X (R), captures information about finite Baur-Monk invariants of
the, in some sense intrinsically infinite modules, R, /I where p is a prime ideal of
R and [ is an ideal of R,,.

Main Theorem Let R be a recursive Priifer domain. The theory of R-
modules is decidable if and only if the sets DPR(R), EPP(R) and X (R) are recur-

stve.

Our characterisation is such that it can be easily checked for concrete rings. We
illustrate this in section by using our main theorem to show that the ring of
integer valued polynomials with rational coefficients, Int(Z), has decidable theory
of modules. In order to prove that DPR(Int(Z)), EPP(Int(Z)) and X (Int(Z)) are
recursive, we use Ax’s result, [Ax68, Thm 17], that the common theory of the p-adic
valued fields Q, as p varies, is decidable.
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The main theorem applied to the special case of a recursive Priifer domain R of
Krull dimension 1 yields:

— The theory of R-modules is decidable if and only if EPP(R) is recursive and
the relation a € rad(b; R + b R) is recursive,

— If R is a Bézout domain, then the theory of R-modules is decidable if and
only if the set of units of R and EPP(R) are recursive, [11.4]

Section 1 contains background material and simple preparations for the rest of
the paper. Its main purpose is to make the article as accessible as possible. We
postpone a guide to the proof and discussion of what is contained in each section
to subsection 2.4

When it doesn’t complicate the proofs, we state some of our intermediate results
for arithmetical rings, i.e. commutative rings whose localisations at prime ideals
are valuation rings.

2. PRELIMINARIES

Notation: In this article N:={1,2,3,...}, Ng:=NU{0}, N, :={m e N | m >n}
for n € N and P denotes the set of prime natural numbers. For a ring R, let Mod-R
denote the category of (right) modules. For R a ring, we will write I < R to mean
I is a (right) ideal of R.

2.1. Model theory of Modules. For general background on model theory of
modules see [Pre88].

Let R be aring. Let L := {0, +, (:7)rer} be the language of (right) R-modules
and Tg be the theory of (right) R-modules. A (right) pp-formul is a formula
of the form

m 1
Fy, -y \ D wirij +as; =0

j=1i=1
where r;;,s; € R. For a € R, we write a|z for the pp-formula Jy x = ya.

The solution set (M) of a pp-formula ¢ in an R-module M is a subgroup of
M. For ¢,1, pp-formulae and M € Mod-R, we will write ¢ <p; ¢ to mean that
PY(M) C p(M). We will write ) < ¢ to mean that ¢ <p; ¢ for all M € Mod-R.
After identifying equivalent pp-formulae, the set of pp-formulae, ppk, equipped
with the order < is a lattice.

A pp-pair will simply mean a pair of pp-formulae and we will write ¢/y for such
pairs. For M € Mod-R, we write ¢/y(M) for the quotient group ¢(M)/p(M) N
Y(M). For every n € N and pp-pair ¢/y, there is a sentence, denoted |#/¢| > n,
in the language of (right) R-modules, which expresses, in every R-module M, that
¢/w(M) has at least n elements. We write |¢/y| = n for the sentence which expresses,
in every R-module M, that ¢/y¢(M) has exactly n elements.

Theorem 2.1.1 (Baur-Monk). Let R be a ring. Every sentence in Lg is equivalent
to a boolean combination of sentences of the form |¢/y| > n where ¢/y is a pp-pair.

An embedding f : A — B is pure if for all pp-formulae ¢ and m € A, f(m) €
©(B) impliesm € p(A). A module N is pure-injective if for every pure-embedding
f : A — B and homomorphism g : A — N, there exists h : B — N such that

(U This is really the definition of a pp-1-formula, i.e. a pp-formula in one variable. We only use
pp-1-formulae in this article.
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ho f = g. A module is indecomposable if it cannot be written as the direct
sum of two non-zero submodules. We denote the set of isomorphism classes of
indecomposable pure-injective (right) R-modules by pinjg.

Lemma 2.1.2. [Pre88, 4.36] Let R be a ring. For all M € Mod-R, there exist
indecomposable pure-injective modules N; € Mod-R for ¢ € I such that ®;crN; is
elementary equivalent to M.

We say a pure-embedding i : M — N with N pure-injective is a pure-injective
hull of M if for every other pure-embedding g : M — K where K is pure-injective,
there is a pure-embedding h : N — K such that h ot = g. Every module M has a
pure-injective hull and if i : M — N and i’ : M — N’ are pure-injective hulls of M
then there exists f : N — N’ such that fi =i (see [PreQ9, 4.3.18]). We will write
H(M) for any module N such that the inclusion of M in N is a pure-injective hull
of M. We will also often refer to such a module as the pure-injective hull of M.
Every module is an elementary substructure of its pure-injective hull [Pre88| 2.27].
So, in particular every module is elementary equivalent to its pure-injective hull.

The (right) Ziegler spectrum of a ring R, denoted Zgp, is a topological space
whose points are isomorphism classes of indecomposable pure-injective (right) R-
modules and which has a basis of compact open sets given by

(¢/v) :={N € pinjg | p(N) 2 ¢(N) N(N)}

where ¢/y range over pp-pairs.

Prest gave a lattice anti-isomorphism D : pp}, — rpp' (see [Pre88| 8.21]) where
rpp' denotes the lattice of left pp-formulae. As is standard, we denote its inverse
RPP' — PPk also by D. We don’t recall the full definition of D here but instead
note that for all a € R, D(a|z) is ax = 0 and D(za = 0) is alx.

Herzog extended this duality to an isomorphism between the lattice of open sets
of the right and left Ziegler spectra of a ring [Her93, 4.4], and, to a useful bijection
between the complete theories of right and left R-modules.

The following proposition is direct consequence of [Her93| 6.6].

Proposition 2.1.3. Let R be a ring. Let n,m € N be such that n < m and for
1<i<m, let N; € N and let ¥i/y; be a pp-pair. For

n

¢ifp;| = N; A /\

i=1 i=n+1

1//'1,| > NZ;

define

DX = N\ [P¥/pe.] = N; A\ [P¥i/Dei] > N;.

i=1 i=n+1

There exists a right R-module satisfying X if and only if there exists a left R-module
satisfying DX.

A priori, duality may not appear particularly relevant to an article about com-
mutative rings. However, its use significantly simplifies some of the proofs in this
paper and, as in [Grel5], the fact that it exchanges formulae xb = 0 with b|z allows
us to reduce the number of calculations.
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2.2. Decidability and recursive Priifer domains. A recursive ring is either
a finite ring or a ring R together with a bijection 7 : N — R such that addition and
multiplication in R induce recursive functions on N via 7.

Note that if R is a ring and 7 : N — R is a bijection then Tg is recursively
axiomatisable with respect to 7 if and only if R together with 7 is a recursive ring.

When proving decidability results about theories of modules, it is common to
work with an “effectively given” ring rather than just a recursive one (see for in-
stance [PPTQT, §3], [Greldl 3.1], [GLPTIS| §3] and [GLT19, §2]). Usually, a ring of
a particular type is called effectively given if R is a recursive ring and the bijection
7 satisfies some extra conditions which are equivalent, for that particular type of
ring, to Prest’s condition (D) holding (see [Pre88| pg 334]). Recall that a recursive
ring satisfies condition (D) if there is an algorithm which, given ¢, 1) € pp}k answers
whether 1) < . So, in particular, if Ty is decidable then R satisfies condition (D)
i.e. R is effectively given. For example, a recursive valuation domain V is said to
be effectively given if the preimage under 7 of the set of units of V' is recursive.
A recursive Priifer domain R is said to be effectively given if the preimage under
7 of the set of (a,b) € R? such that a € bR is recursive. By definition, every effec-
tively given ring is recursive and if T is decidable then R is effectively given, by
which I mean Prest’s condition (D) holds. For simplicity and generality, we choose
to work with recursive rings.

We will use results from [GLPT18] and [GLT19], stated under the stronger as-
sumption that R is an effectively given Priifer domain. It was remarked in [GLT19]
paragraph before 2.4], that the property that a € bR is recursive is never used in
[GLPT18] or [GLTI19]. Moreover, see [GLT19, 2.4], if R is a recursive Priifer do-
main and the set DPR(R) C R? is recursive then the relation a € bR is recursive.
In particular, even though they are stated for effectively given Priifer domains, the
main results in [GLPTI18] and [GLT19| in fact hold for recursive Priifer domains.

The next theorem is a well-known and easy consequence of the Baur-Monk The-
orem. Note that, since Ty is recursively axiomatisable when R is recursive, given
a sentence X in Lg, we can always find, using a proof algorithm, a sentence X’ as
in the statement of the Baur-Monk theorem which is Tr-equivalent to X.

Theorem 2.2.1. Let R be a recursive ring. The theory of R-modules is decidable
if and only if there is an algorithm which, given a sentence X of the form

(1) X = /\ |2i/wi| = E; A /\ |®i/ v

1=n+1

Z Ei7

where E; € N and ¥i/v; is a pp-pair for 1 <1i < m, answers whether there exists an
R-module satisfying X.

As in the introduction we say “there is an algorithm deciding inclusions of Ziegler
basic open sets” to mean that there is an algorithm, which given n+ 1 Ziegler basic
open sets (¥o/yo), ..., (Pn/y,), answers whether (o/yo) C (P1/y1) U... U (#n/y,), or
not.

Remark 2.2.2. Let R be a recursive ring. There is an algorithm deciding inclusions
of Ziegler basic open sets if and only if there is an algorithm which, given a sentence
n m
X = /\ ‘Pi/wi > El A\ /\ |Uj/7'j| = 1,

i=1 j=1
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where ¢ify;, 9i/r; are pp-pairs and E; € N for 1 <i <mn and 1 < j < m, answers
whether there exists an R-module satisfying X.

Proof. There is a module satisfying X as in the statement if and only if for each
1 < 4 < n, there exists an indecomposable pure-injective module N, such that
N; € (¢¢/9:) \ U;"Zl (¢i/7;). This is a standard argument. For the forward direction

use For the reverse, observe @f‘:lNiEi satisfies X. O

2.3. Arithmetical rings and Priifer domains. A commutative ring is arith-
metica if all its localisations at maximal ideals are valuation rings. Equivalently,
[Jen66l, Thm 1], a commutative ring R is arithmetical if its lattice of ideals is dis-
tributive. A Priifer domain is an integral domain which is arithmetical.

The following lemma is a direct consequence of [Tug03] 1.3].

Lemma 2.3.1. If R is an arithmetical ring then for all a,b € R, there exist a, 7, s €
R such that aoc = br and b(ov — 1) = as.

Note that if R is a recursive arithmetical ring then there is an algorithm which,
given a,b € R, finds a,r, s satisfying the above equations. We will frequently use
this fact without note.

Recall that a module is called uniserial if its lattice of submodules is totally
ordered. A module is pp-uniserial if its lattice of pp-definable subgroups is to-
tally ordered. Over a commutative ring all pp-definable subgroups are submodules.
Thus, all uniserial modules over a commutative ring are pp-uniserial.

The lattice of pp-formulae of a commutative ring R is distributive if and only if
R is arithmetical [EH95|, 3.1]. Thus, the following is a direct consequence of [Pun03],
3.3].

Lemma 2.3.2. Let R be a commutative ring. All indecomposable pure-injective
R-modules are pp-uniserial if and only if R is arithmetical.

The endomorphism rings of indecomposable pure-injective modules are local
[Pre09, 4.3.43]. Therefore, if R is a commutative ring and N is an indecomposable
pure-injective R-module then the set, AttN, of r € R acting on N non-bijectively
form a prime ideal. The notation “Att” stands for attached prime. Thus, if N
is an indecomposable pure-injective module over a commutative ring R then N
may be equipped with the structure of an Ragy-module. Moreover, N remains
indecomposable and pure-injective as an Ragy-module. Conversely, if N is an
indecomposable pure-injective R,-module for some prime ideal p <1 R then the re-
striction of N to R remains indecomposable and pure-injective.

The next lemma follows easily from the fact that indecomposable pure-injective
modules over arithmetical rings are pp-uniserial (a proof appears in [GLT19] 2.8]).

Lemma 2.3.3. Let R be an arithmetical ring and N an indecomposable pure-
injective R-module. The sets
DivN:={re R | Nr C N}

and

AssN :={r € R | there exists m € N\{0} such that mr = 0}

[2IThis condition is often referred to as Priifer in papers on Model Theory of Modules. How-
ever, algebraists tend to use the term Priifer for the weaker condition that every regular ideal is
invertible. To avoid confusion we choose the term with a unique definition.
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are prime ideals. Moreover,
AttN = DivN U AssN.

Here, AssN can be read as the assassinator of N. More dubiously, DivN may
be read as the “divissinator” of N.

Lemma 2.3.4. Let R be an arithmetical ring and M € Mod-R.

(1) For all « € R, there exist M1, My € Mod-R such that M; & M, =
M, |$a:0/:1::0(M1)| = ]., |x:x/a\z(M1)| = 1, |$(@_1):0/I:O(M2)| =1 and
|z=2/(a—1)|z(Mz3)| = 1.

(2) For all a,b € R, there exist My, My € Mod-R such that My & My = M,
|ab|I/x:0(M1)‘ =1 and |wa:0/b\z(M2)| =1.

Proof. (1) By there exist indecomposable pure-injective R-modules N; for
1 € I such that M = @;c;N;. Since AttN; is a proper ideal for each N;, for all
i € I, either ¢ AttN; or « — 1 ¢ AttN;. Let I, be the set of ¢ € I such that
o ¢ AttN; and let 1,1 = I\I,. So, foralli € I,_1, a—1 ¢ AttN;. For each § € R
and N indecomposable pure-injective, 8 ¢ AttN if and only if |#==/|z(N)| = 1 and
‘zﬁ:o/x=0(M1>| = 1. Therefore |z:m/a|w<@i€[QNi)| =1, |ma:0/a:=0(@i€]aNi)| =1,
’w:w/(a—l)\m(eeig%l]\hﬂ =1 and |$(a71):0/$:0(@i61a,1Ni)’ =1.

(2) For any L € Mod-R, b = 0 >, a|x if and only if ab € anng L. So |eblz/z=0(L)| =
1 if and only if b = 0 >, a|z. Let N be an indecomposable pure-injective R-
module. By[2.3.2] either 2b = 0 >y alz or alz >y b = 0. So either |ablz/z=0(N)| =
1 or |#6=0/ajz(N)| = 1. The proof is now as in (1). |

It is easy to see that if R is a commutative ring, p <t R is a prime ideal and
M is an Rp-module then the restriction to R of the pure-injective hull of M as an
R,-module is equal to the pure-injective hull of M as an R-module.

Theorem 2.3.5. [Zie84] Let V be a valuation domain with field of fractions Q.
Every indecomposable pure-injective V -module is the pure-injective hull of a module
J/I where I C J C Q are submodules of Q.

So, in particular, over a valuation domain, all indecomposable pure-injective
modules are pure-injective hulls of uniserial modules. It is not known if all inde-
composable pure-injective modules over valuation rings are pure-injective hulls of
uniserial modules (see [EH95) §4]).

Lemma 2.3.6. Let R be a Priifer domain. For any sentence X € L, there exists
M € Mod-R such that M |= X if and only if there exist n € N, prime ideals p; < R
and uniserial Ry,-modules U; for 1 < i <n such that &}, U; = X.

Proof. For any ring R, there exists M € Mod-R such that M |= X if and only if
there exist n € N and indecomposable pure-injective R-modules N; for 1 < i < n
such that @7 ; N; = X. The result now follows from O

We will frequently use the following easy lemma.

Lemma 2.3.7. Let V be a valuation domain, ¢ a pp-formula and U a uniserial
V-module. If [U/o(U)| is finite but not equal to 1 then U = V/I for some ideal
I<V.

Proof. Since U is uniserial, so is U/p(U). Therefore, since U/p(U) is finite, there
exists u € U such that u+p(U) generates U/p(U) as a V-module. Since U/p(U) #
0, uV 2 p(U). Therefore uV =U. O



DECIDABILITY FOR THE THEORY OF MODULES OVER A PRUFER DOMAIN 9

We finish this subsection by reviewing material about ideals of valuation do-
mains.
For any commutative ring R, » € R and ideal I < R, define

(I:r):={a€R|arel}
Note that (I : r) is an ideal of R.

Definition 2.3.8. For V' a waluation domain and I << R a proper ideal, define
I# .= Uagj(f :a). By convention, we define V¥ to be the unique mazimal ideal of

Note that this definition agrees with the definition given in [FS01, Ch. IT §4],
that is, for I # 0, r € I if and only if rI C I.

Lemma 2.3.9. Let V be a valuation domain.
(i) For any ideal I <V, I is a prime ideal.
(ii) If p <V is a prime ideal then p# = p.
(i) If I <V and a € V\{0} then (al)# = I?.
(iv) If I <1V and V/I is finite then I is the unique mazimal ideal of V.

Proof. The first 3 statements are in [ES01), IT1.4]. We prove (iv). If I =V then the
statement follows directly from the definition. Otherwise, I C I# and hence V/I#
is also finite. Since V/I# is a finite integral domain, it is a field. Therefore I# is
maximal. (Il

Lemma 2.3.10. Let R be a Priifer domain, p AR a prime ideal and I <R,. Then,
for all §,v € R,

(1) |#6=0/o=0(Ry/I)| = 1 if and only if § ¢ I* or I = R,, and,

(2) |z=2/y12(Ry/I)| =1 if and only if y ¢ p or I = R,,.
Proof. (1) For any ¢ € R, |[#0=0/s=0(R,/I)| = 1 if and only if (I : 6) C I. Now (I :
0) C Iifand onlyif I = Ry, or, foralla ¢ I, da ¢ I. Therefore [20=0/z=0(R,/I)| =1
if and only if § ¢ I# or I = R,.
(2) For any v € R, |*=%/4|z(R,/I)| =1 if and only if yR, + I = R,. This is true if
and only if v ¢ p or I = R,,. O

Remark 2.3.11. Let R be an integral domain, b € R\{0}, p < R be a prime ideal
and I Q Ry, be an ideal. If Ry /I is finite then |I/bI| = |R,/bR,|.

Proof. Since b # 0,
[Rp /1| - [I/bI] = |Ry /bI| = [Ry/bRy| - [bRy /01| = |Ry /bRy - [ Ry /1|.
So, since |R,/I| is non-zero, |I/bI| = |R,/bR,|. O

We frequently use the following lemma which becomes particularly useful when
R is a valuation ring because then for all € R and I <t R eitherr € T or TR D I.

Lemma 2.3.12. Let R be a commutative ring, r € R and I < R. Then rR 2 I if
and only if there exists J < R such that [ =rJ.

Proof. The reverse direction is clear. For the forward direction, take J = (I : 7). O

Lemma 2.3.13. Let V be a valuation domain, I,J <V and a € R\{0}. Then
J2O (I :a)ifand onlyifaJ 21 or J=V.
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Proof. (=) Suppose J D (I : a). Since V is a valuation domain, either a € I or
aV2OI IfaelthenJ D (I:a)=V. SoJ=1V. Suppose aV D I. Take c € I.
There exists b € V such that ab =c¢. Sob € (I : a) C J. Hence ¢ = ab € aJ as
required.

(<) If J =V then J O (I : a). So, suppose aJ D I. Take ¢ € (I : a). Then
ac €I CalJ. Since a # 0, ¢ € J. Therefore J 2 (I : a). O

2.4. Guide to the proof. The reverse direction of the main theorem is proved in
§3l That is, we show that if Tx is decidable then DPR(R), EPP(R) and X (R) are
recursive (see [GLPTTS8| 6.4] (or[3.1.6)), [3.2.9| and [3.3.3).

The proof of the forward direction of the main theorem has 3 principal ingredi-
ents.

(A) Consequences of DPR(R), EPP(R) and X (R) being recursive (§3]and §7).
(B) Syntactic reductions (§4] §5]and §9).
(C) Semantic input (§6] §5 and §10).

(A) In section [3| we introduce and analyse the sets DPR(R), EPP(R) and X (R).
These sets are chosen to be as simple as possible so that our theorem is as easy
as possible to apply to concrete rings. For this reason, work needs to be done to
obtain more elaborate consequences of them being recursive.

For each n € N, a set DPR,,(R) was introduced in [GLPT18]. We show that,
for R a recursive arithmetical ring, if DPR(R) is recursive then the sets
DPR,,(R) are recursive (uniformly in n). Combining this with [GLPTIS, 7.1], or
more precisely its proof, we conclude that we can effectively decide inclusions of
Ziegler basic open sets if and only if DPR(R) is recursive.

In section |7} we investigate the consequences of EPP(R) being recursive, and of
EPP(R) and the radical relation being recursive (this is primarily used in section
. We show that for R a recursive Priifer domain the theory of R-modules of size
n is decidable uniformly in n if and only if EPP(R) is recursive,

In the proof of the forward direction of the main theorem, the set X (R) is only
ever used in section [0l

(B) Given a sentence X as in (from [2.2.1)) we often produce a finite set S of
tuples of sentences (X1, ...,X,) with each X; having a “better” form than X such
that there exists M = X if and only if there exist (X1,...,X,) € S and modules
M; for 1 < i < n with M; | X;. This is roughly what happens in the proof of
[GLT19, 4.1]. Section {4 introduces two important formalisms (and ideas) which
used in combination are key to the proof. Essentially they allow us to “automate”
some reductions similar to those in the proof of [GLT19, 4.1] which in this article
become too complicated to perform entirely by hand.

It is shown in [GLTI9, 4.1] that for arithmetical ring it is enough to con-
sider sentences as in where the pp-pairs involved are of the form dlz/z=0 or
«b=0/c|z. Section [5| uses the formalisms in section {4} to show that it is enough to
consider sentences as in ([{f) where at most one conjunct of the form |dlz/z=0| = D
or |dlz/z=0] > D with D > 2 occurs and where at most one conjunct of the form
|#6=0/c|z| = G or |#b=0/c|z| > G with G > 2 and b, ¢ # 0 occurs.

[3]The result is stated there only for Priifer domains but the same proof implies the result for
all arithmetical rings (see section .
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In section [J] a notion of complexity, called the extended signature, is defined on
the set W of sentences as in as reduced to in section The set of extended
signatures is equipped with an artinian partial order. The reduction processes in
section [J] terminate at expressions whose extended signatures are not reducible.
Some of the sentences which are not reducible are of a form for which we can
answer whether there exists a module satisfying them, because there is an algorithm
deciding inclusions of Ziegler basic open sets. The remaining sentences are of a
particular simple form and we deal with them in section

(C) In section[6] for pp-pairs ¢/ of the form dle/z=0, #=0/c|z with b, ¢ # 0 and #=2/c|a
with ¢ # 0, we give a description of the uniserial modules U over a valuation domain
V', such that #/¢(U) is finite but non-zero. Unlike the descriptions of such modules
in [Grel5] and [PPTQT7], the results we prove do not depend on whether the value
group of V is dense or not. We now describe how we use semantic input to deal
with sentences as in (from with a conjunct of the form |dlz/z=0| = D, or
of the form |#6=0/c|z| = G where b, ¢ # 0.

For instance, if dlz/z=o(U) is finite but non-zero then it is easy to show that
U = V/dI for some ideal I <V. In view of for R a Priifer domain, this means
that for X a sentence as in (), D € Ny and d € R\{0}, there exists M € Mod-R
such that M k= |dlz/z=0] = D AX if and only if there exist h € N, prime ideals p, <R
and ideals I; < Ry, for 1 <1 < h, and, M’ € Mod-R with |dlz/z=0(M")| = 1 such
that @, Ry, /dI; & M’ = |dle/a=0] = D A X.

In section 8] we show that if EPP(R) and the radical relation are recursive then
there is an algorithm which given D € N, d € R\{0} and a sentence X as in ({f]),
answers whether there exists a direct sum &7 | Ry, /dI; satisfying |dlz/z—0| = D AX.
This is used into produce sentences X1,...X, as in such that there exists
an R-module satisfying |dl#/z=0] = D A X if and only if there exists an R-module
satisfying |dlz/z=0] = 1 A X; for some 1 < i < n. The sentences X; are less complex
than X in a way precisely defined in section [9]

Similar, but slightly more complicated, reductions are made for pp-pairs of the
form *b=0/c|z where b, c # 0.

For pp-pairs of the form #=2/c|z we need to do something different. It is easy to
see, that if U is a uniserial module over a valuation domain V then #==/c|z(U)
is finite but non-zero if and only if U = V/cI for some I <V or U is finite and
c € anngpU. However, it does not seem possible, in this case, to make a reduction as
for |dlz/e=0| = D and sums of modules of the form R,/dI. This is the main reason
that we need to make the syntactic reductions in section [§] and [0} In particular,
the set of sentences that are not reducible in the sense of section [0} contains only
a small number of forms of sentences with a conjunct of the form |z=z/c|z| = C.
These sentences are considered individually in section [I0}

3. RECURSIVE SETS

In this section we consider the sets DPR(R), EPP(R) and X (R). In each case, we
show that if Tk is decidable then they are recursive.

3.1. The set DPR(R). In [GLPT1S], a family of relations DPR,,(R) were defined.
Although not directly stated there, see [GLPTIS8| 7.1], it was shown that, for R
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a recursiv Priifer domain, if the sets DPR,,(R) are recursive (uniforml in n)
then there is an algorithm deciding inclusions of Ziegler basic open sets. However, it
was not known if this condition was necessary for the existence of such an algorithm,
or even if the decidability of the theory of modules of a Priifer domain implied that
DPR,,(R) is recursive for any n > 1. It is a consequence of that the existence
of an algorithm deciding inclusions of Ziegler basic open sets implies that the sets
DPR,,(R) are recursive (uniformly in n).

For a recursive Bézout domain, it was shown that if DPR(R) := DPR4(R) is
recursive then there is an algorithm deciding inclusions of Ziegler basic open sets.
For Priifer domains, it was not known if DPR4(R) being recursive is sufficient to
imply that there is an algorithm deciding inclusions of Ziegler basic open sets. We
show, that, for R a Priifer domain, DPR; (R) recursive implies DPR,,(R) is
recursive uniformly in n.

Definition 3.1.1. Let R be a commutative ring.

e Foreachl € N, let DPR;(R) be the set of 214-2-tuples (a, by, ..., by, ¢,d1, ., d;) €
R?'%2 sych that, for all prime ideals p,q <\ R with p +q # R, either a € p,
ceq, b &p for somel <i<lord;¢q for somel <i<lI.

e Let DPRL(R) be the set of 4-tuples (a, B,c, D), where a,c € R and B,D <R
are finitely generated ideals, such that for all prime ideals p, q <t R with p+q #
R, eitheracyp,ceq, BZLp orD ¢ q.

Note that (a,by,...,b,¢,dy,...,d;) € DPR;(R) if and only if

l l
(a, biR,c.,y d;R) € DPR.(R).
=1 =1

The relation DPR(R) is referred to as the “double prime radical” relation. This
is because we think of it as a generalisation of the radical relation a € rad(bR) but
involving 2 prime ideals instead of 1 (see also 3.1.3).

For R a commutative ring, I < R an ideal and X C SpecR, let V(I) denote
the closed set, in the Zariski topology, of prime ideals p such that p O I and
X the closure of X in the Zariski topology. Note that, for any X C SpecR,

V(ﬂpeX p) =X.
Lemma 3.1.2. Let R be a commutative ring, a € R and B << R. Then

(rad B :a) = ﬂ p.
peSpecR
p2OB, agp

Hence,
V((rad B : a)) = V(B)\V(aR).

Proof. Suppose r € (rad B : a). Then (ra)™ € B for some n € N. Let p < R be a
prime ideal with B C p and a ¢ p. Then r"a"™ = (ra)™ € p. Therefore r € p.
Conversely, suppose that r ¢ (rad B : a) i.e. (ra)™ ¢ B for all n € N. A standard
argument using Zorn’s lemma produces a prime ideal p << R such that p O B and
(ra)™ ¢ p for all n € N. Now (ra)™ ¢ p implies r ¢ p and a ¢ p. So we have proved
the first statement, and, consequently, the second. ([l

[4Recall R recursive and DPR(R) recursive imply R is effectively given.
[5]Here “uniformly in n” means there is a single algorithm which given n € N and a tuple @
from R of length 2n + 2 answers whether @ € DPR,, (R) or not.
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The following statement with DPR(R) := DPR;(R) in place of DPR.(R) is
proved in [GLPTI8| 6.3] for Priifer domains. We use to further extend it to
all commutative rings.

Proposition 3.1.3. Let R be a commutative ring. The following are equivalent for
a,c € R and B,D < R finitely generated ideals.

(1) (a,B,c,D) € DPR.(R).

(2) 1€ (rad(B) : a) + (rad(D) : ¢).

Proof. We prove this proposition topologically. For all a,c € R and B,D < R,
1 € (rad(B) : a) + (rad(D) : ¢) if and only if V((rad B : a)) NV ((rad D : ¢)) = 0.
By V((rad B : a)) = V(B)\V(aR) and V((rad D : ¢)) = V(D)\V(cR). Thus

1€ (rad(B) : a) + (rad(D) : ¢)
if and only if

V(B\V(aR)NV(D\V(cR) = 0.
Now, by [DST19, 1.5.4 (i)],

V(B)\V(aR) = U V(p) and V(D)\V(cR) = U V(q).
peV(B)\V(aR) qeV(D)\V(cR)
So 1 € (rad(B) : a) + (rad(D) : ¢) if and only if
(1) ( U vemrne U v=e
peV(B)\V(aR) qeV(D)\V(cR)
Now holds if and only if for all prime ideals p, q such that a ¢ p, BCp, c ¢ q
and D C q, we have V(p) NV (q) =0 (i.e. p+q=R). O

Remark 3.1.4. Let R be a recursive ring. The relations DPR,(R) and DPR,,(R)
for all n € N are recursively enumerable.

Proof. By proposition (a,B,c,D) € DPRL(R) if and only if 1 € (rad(B) :
a)+ (rad(D) : ¢). Therefore (a, B, ¢, D) € DPR.(R) if and only if there exist u € R
and n € N such that (ua)™ € B and ((1 —u)e)™ € D. If R is a recursive ring then
we can list all (a, B, ¢, D) € DPR,(R) by searching for u € R and n € N witnessing
that (a, B, c, D) € DPR.(R). 0

‘We refer to the relation a € rad bR as the radical relation.

Remark 3.1.5. Let R be a commutative ring. For a,b € R, a € radbR if and
only if (a,b,a,b) € DPR(R). In particular, if R is a recursive ring and DPR(R) is
recursive then the radical relation is recursive.

For R a commutative ring and B, D < R finitely generated ideals, let B = 0
denote the pp-formula A, xb; = 0 where B = I, b;R and let D|z denote the
pp-formula Y7 | d;|z where D = " | d;R. Note that, up to T equivalence, these
formulae don’t depend on the choice of generators of B and D.

The next proposition with DPR., (R) replaced by DPR(R) = DPR; (R) is proved
in |[GLPTIS, 6.4] for Priifer domains. A crucial ingredient in its proof is the fact
that if R is an arithmetical ring then for prime ideals p, q<{ R, the condition p+¢q # R
is equivalent to p and q being comparable by inclusion.

Proposition 3.1.6. Let R be an arithmetical ring. The following are equivalent
fora,c € R and B, D < R finitely generated ideals.
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(1) (a,B,c,D) € DPR.(R).

(2) (vB=0/Dlz) C (ve=0/e=0) U (v=/clx).
Proof. (1) = (2): Suppose (1) holds. By[3.1.3] 1 € (rad B : a) + (rad D : ¢). Hence
there exist u € R and n € N such that (ua)™ € B and ((u — 1)e)™ € D.

Suppose N € (¢B=0/p|z). Take m € N such that mb = 0 for all b € B and
m ¢ ND. So mu™a”™ = 0 and m ¢ N(u— 1)"c". Since AttN is a proper ideal,
either v ¢ AttN or u — 1 ¢ AttN. Suppose u ¢ AttN. Then mu"a™ = 0 implies
ma™ = 0 and hence N € (za"=0/z—0) = (2a=0/3—0) as required. Now suppose
u—1¢ AttN. Then N(u—1)"c" = N¢"™ and hence N € (v=%/c"|z) = (+=7/c|a).
(2) = (1): Suppose (2) holds. Note that if (#B=0/p|z) C (2a=0/z=0) U (*=%/c|z) then,
applying Herzog’s duality for Ziegler spectra, (#P=0/B|z) C (z¢=0/z=0) U (*=%/a|z).

Suppose p, q are prime ideals with p+q # R. Further, suppose that a ¢ p, B C p
and D C q. We need to show that ¢ € q.

Since R is an arithmetical ring, either p O q or ¢ 2 p. Suppose q 2 p. Then,
again since R is an arithmetical ring, R, /p R, is uniserial and its pure-injective hull
N := H(R,/pR,) is indecomposable. Since B C p, B = 0 is equivalent to z = «
in Rq/pRq and hence in N. Since D C q, D|x is not equivalent to z = x in Ry/pR,
and hence in N. Thus N € (#B=0/p|z). Since a ¢ p, N ¢ (#a=0/z—0) and hence
N € (z=%/c|z). Therefore ¢ ¢ q, for otherwise c|x is equivalent to z = x in N. The
argument when p D q is very similar except this time N := H(R,/qR,) and we use
that (mD:O/BLJ:) - (xc:o/a::O) @] (x:$/a|a:). O

Thus, for R an arithmetical ring, if there exists an algorithm deciding inclu-
sions of Ziegler basic open sets then DPR,(R) is recursive. Combining this with
[GLPT18, 7.1] (and its proof) we conclude that there is an algorithm deciding in-
clusions of Ziegler basic open sets if and only if DPR.(R) is recursive. Moreover,
if R/m is infinite for every maximal ideal m <t R then Tg is decidable if and only if
DPR..(R) is recursive, i.e the sufficient conditions given in [GLPTI8] 7.1] are also
necessary.

Proposition 3.1.7. Let R be a recursive arithmetical ring. If DPR(R) is recursive
then DPR,,(R) is recursive uniformly in n.

Proof. Let n € Ny and a,c,by,...,b,,dq,...,d, € R. Suppose that «, 3,71, 72, s1,
S9 € R are such that

biav = bara, ba(aw — 1) = byry,
d18 = dasy and dy(f — 1) = dys;.
Claim:
(%) (a,c,b1,...,bp,d1,...,d,) € DPR,(R)

if and only if
(i) (aa,eB,bay ... by, da,...,d,) € DPR,_1(R),
(ii) (aa,c(B—1),b2,...,by,d1,ds,...,d,) € DPR,_1(R),
(iii) (a(a—1),¢B,b1,b3...,bn,da,...,dy) € DPR,_1(R) and
(IV) (a(a - 1) C(ﬁ - 1)7 bla b37 s 7bn; dla d37 s ’dn) € DPRn—l(R)
This claim plus the fact that we can always find appropriate «, 8,711,732, 81,582 € R
implies the proposition.
To prove the forward direction, we show that () implies (i) and note that the
remaining conditions (i), (iit), (iv) are the same as (¢) but with the roles of b; and
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by, and of o and « — 1 interchanged (respectively of d; and ds, and of 8 and 8 — 1
interchanged).

Let p,q be prime ideals such that p + q # R. Assuming (x), we need to show
that aa € p, ¢8 € q, b; ¢ p for some 2 < i < n or d; ¢ q for some 2 <i < n.

Now (%) implies a € p, ¢ € q, b; ¢ p for some 1 < i < n or d; ¢ q for some
1 <4 < n. So the only problem is when b; ¢ p or d; ¢ q. Suppose by ¢ p. f a € p
then aa € p as required. So suppose further that o ¢ p. Then by ¢ p and hence
bare & p. So be ¢ p as required. The argument when dy ¢ q is the same with the
roles of by and dy, of by and ds, and of « and 8 interchanged.

We now show that if (%) is not true then one of (7), (3), (¢¢), (¢v) is not true. If
(%) is not true then there exist prime ideals p, q such that p+q # Rand a ¢ p, ¢ ¢ q,
b;epforalll <i¢<nandd; €qforalll <i<mn. For any proper ideal I, either
a¢Tora—1¢I (respectively B ¢ I or §—1 ¢ I). Without loss of generality, we
may assume that o« ¢ p and § ¢ q. Hence aac ¢ p, ¢ ¢ q,b; Epforalll1 <i<n
and d; € q for all 1 < i < n. So (aa,cB,ba,...,bn,da,...,d,) ¢ DPR,_1(R) as
required. (Il

Combining this with the results in [GLPT18] we get the following.

Theorem 3.1.8. Let R be a recursive Prifer domain. There is an algorithm
deciding inclusions of Ziegler basic open sets if and only if the relation DPR(R) is
recursive.

Corollary 3.1.9. Let R be a recursive Prifer domain. The relation DPR(R) is
recursive if and only if there is an algorithm which, given a sentence

n m

vim Aol 2 Eon Rl =1,

i=1 =1

where ©ifyp;, 9i/r; are pp-pairs and E; € N for 1 <i <n and 1 < j < m, answers
whether there exists an R-module M with M |= X. Moreover, if R/m is infinite for
every mazimal ideal m < R then Tg is decidable if and only if DPR(R) is recursive.

Proof. The first statement follows from and

For any R-module M and pp-pair #/¢, ¢/v(M) is an R-module. By [GLT19,
3.1], if R/m is infinite for every maximal ideal m <t R then the only finite R-module
is the zero module. So, the second statement follows from the first by a standard
argument using the Baur-Monk theorem. (I

Question 1. It was shown in [Greldl 3.2] that, for any commutative ring R, if Tr
is recursive then the radical relation is recursive. For R an arbitrary commutative
ring, does Tr decidable imply DPR(R), or more generally DPR.(R), is recursive?

3.2. The sets PP(R) and EPP(R). In [GLT19], a family of relations PP, (R)
were introduced. It is shown, [GLT19l 3.2], that if a recursive Priifer domain has
decidable theory of modules then PP,,(R) is recursive uniformly in n. Conversely,
it was shown that if R is a recursiv@ Priifer domain such that the value group of
each localisation of R at a maximal ideal is dense then if DPR,(R) and PP, (R)
are recursive uniformly in n then the theory of R-modules is decidable.

[6]1¢ was stated there for effectively given Priifer domains. However, recall, if R is a recursive
Priifer domain with DPR(R) recursive then R is effectively given.
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The letters “PP” in these relations are chosen to honour Point and Prest who
defined similar relations for commutative von Neumann regular rings in [PP8§|. In
we will define another family of relations EPP;(R); the letters “EPP” stand
for “extended Point-Prest”.

Definition 3.2.1. Let R be a commutative ring. Forl € N, let PP;(R) consist of
the tuples (p,n,c1,...,c,d) € P x N x R such that there exist positive integers
s, k1,..., ks and mazimal ideals my, ..., ms of R for which there exist A\1,..., s €
No withn =Y ;_; Nik; and for 1 <i<s

(1) |R/mi| = p*,

(2) CjEmifO’/'lgjgl,

It is clear that for R a Bézout domain, if PP;(R) := PP(R) is recursive then
PP;(R) is recursive uniformly in [. This is because (p,n,c1,...,c,d) € PPi(R) if
and only if (p,n,ged{c1,...,c},d) € PP1(R). However, with a bit more work one
can show this is also true for Priifer domains.

Proposition 3.2.2. Let R be a recursive Prifer domain. If PP1(R) is recursive
then PPi(R) is recursive uniformly in [.

Proof. We skip this proof as it is very similar to the proof of [3.2.8] a

As a direct consequence of [GLTT9 6.1], [GLTT9l 3.2], [GLPTIS, 6.4], and
we get the following theorem.

Theorem 3.2.3. Let R be a recursive Prifer domain such that for all mazimal
ideals m, the value group of Ry, is dense. The theory of R-modules is decidable if
and only if DPR(R) and PP(R) are recursive.

We generalise PP;(R) to EPP;(R) in order to deal with Priifer domains with
maximal ideals m such that R, is a valuation domain with non-dense value group.

Definition 3.2.4. Let R be a commutative ring. Forl € N, let EPP;(R) consist
of tuples
(p,myar,...,a;57v;e,m) € P x Ny x R'x Rx R x Ny

such that there exist h € Ny and, for 1 < i < h, prime ideals p; < R and ideals
I; < Ry, such that vy & p; and a1, ...,a; € I; for 1 <i <h, |&h | Ry, /I;| = p™ and
| @y Ry, /eRy,| =p™.

We say the sequence (p;, I;)1<i<n witnesses (p,m;az,...,a;7;e,m) € EPPi(R).
By convention, (p,0;a1,...,a;;7;¢e,0) € EPP;(R) and the empty sequence is a wit-
ness for it. We will often write EPP(R) for EPP1(R).

Remark 3.2.5. We may replace prime ideals with maximal ideals in[3.2.7] without
changing the definition since if |Ry/eRy| is finite then either p is mazimal or R, =
eR, and if |Ry/I| is finite then either p is mazimal or I = R,,.

The relation EPP;(R) is an extension of the relation PP;(R).

Lemma 3.2.6. Letp e P, n €N and ¢1,...,¢n,d € R. Then (p,n,c1,...,¢,d) €
PP;(R) if and only if (p,n;c1,...,¢;d;1,0) € EPP)(R).
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Proof. Suppose (p,n,c1,...,c,d) € PP(R). Let s € N, ky,..., ks € N and
my,...,mg be as in the definition of PP;(R). Let A1,...,As € Ny be such that
n=> 7 Nki. Thenc; em; for 1 <j<I,d¢m,|®i_; (Rm/miRu,)"| =p"
and | @5_; (Rm, /1 Rm,)| =1°. So (p,n;c1,...,c;d;1,0) € EPPy(R).

Suppose (mj, [;)i1<j<s witnesses (p,n;ci,...,¢;d;1,0) € EPPy(R). For 1 <i <
s, let \; € Ny be such that |Ry,/I;| = |[R/m;|*. If \; # 0 then I; C m; Ry, and
soc; €m;for 1 <j <1 Forl<i<s, letk; besuch that |R/m;| = p*. Now
n=> 0 Niki and hence (p,n,c1, ..., ¢, d) € PPi(R). O

If the value group of Ry, is dense then, for all e € R, |Ry/eRm| is either 1 or
infinite. Moreover, |Ry/eRy| =1 if and only if e ¢ m.

Remark 3.2.7. Let R be a Priifer domain such that the value group of Ry, is dense
for all maximal ideals m. Then (p,n;a,...,a;v;e,m) € EPP|(R) if and only if
(p,m,a1,...,a;,7-¢e) € PPi(R) and m = 0.

In particular, if R is a recursive Priifer domain such that the value group of R,
is dense for all maximal ideals m then EPP;(R) is recursive if and only if PP;(R)
is recursive.

Proposition 3.2.8. Let R be a recursive Priifer domain. If EPP(R) is recursive
then EPP;(R) is recursive uniformly in I.

Proof. We show that for all p € P, n,m € Ny, ay,...,a;,7,e € R, if a,7,s € R

are such that aja = agr and as(a — 1) = ays then (p,n;aq,...,a;57v;e,m) €
EPP;(R) if and only if there exist mi1,no € Ny and mi,ms € Ny such that
ny +ne = n, my +me = m, (p,ni;as,...,a;va;e,m) € EPP;_;(R) and
(p,n2,a1,as,...,a;,v(a — 1);e,my) € EPP;_;(R). This is enough since we can

always effectively find appropriate o, r,s € R.

Suppose that (p;,I;)1<;<s witnesses (p,n;a1,...,a;;7;e,m) € EPP;(R). For all
1<j<s, either a ¢ p; or a — 1 ¢ p;. By reordering, we may assume that o ¢ p,
for1 <j<tanda—1¢p;fort+1<j<s Letn =log,|®I_ Ry, /L] ny =
logp }Gaf:tJrlRPi/Ii}v my = logp |@$:1RP;‘/€RN| and mg = logp |®’L§:t+lRPi/eRpi
Now ay ¢ p; and ag,...,a; € I; for 1 < j < ¢, |®'_ Ry, /I;| = p™ and
|Bt_ Ry, /eRy,| = p™. So (p,ni;as,...,a;;va;e,mq) € EPP;_1(R). Similarly,
(p, no,a1,a3, ..., al,fy(a - 1); €7m2) S EPPl,1<R).

Conversely, suppose that ni,ns, mi, me € Ny are such that ny +ns = n, my +
mo = m, (p,n1;az,...,a;7q;e,my) € EPPi_1(R) and (p,ns2,a1,as,...,a;,v(a —
1);e,mq) € EPP;_1(R). Let (p;,I;)i1<j<¢ witness (p,ni;as,...,a;y0;e,my) €
EPP;_1(R) and let (pj,I;)i+1<;<s Witness (p,na,a1,as,...,a;,v(a —1);e,mq) €
EPP;_1(R). Then

‘®f:1sz/Il| = |@§:1Rm/li| : |@f:t+1Rpi/Ii| = pnlan = pn

and
|@f:1Rpi/eRm = |@§:1RP1‘/6RP1’ : }@f:tJrlRPi/eRPi = pmlpm2 = pm.

For 1 < j <t, ya ¢ I; and hence v ¢ I; and o ¢ I;. Since ay € I; and a ¢ pj,
aa = agr € I; implies a1 € I; for 1 < j < ¢. Similarly, v ¢ m; and as € I;
for t +1 < j < s. Therefore (pj,I;)1<j<s witnesses (p,n;as,...,a;v;e,m) €
EPP,(R). O
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Lemma 3.2.9. Let R be a Prifer domain. If Tr is decidable then EPP(R) (and
hence EPP(R) is recursive uniformly in l).

Proof. For p € P, n,m € Ny and a,v,e € R, let ©(p n:q:v;e,m) be the Lr-sentence

35
‘z:w/z:0| = p2m+n A\ |w:$/e|.r| = pm A |$e:0/e|rc‘ =1A |‘T:$/’y|r| =1A |€2a|93/x:0’ =1.

We show that, for m,n not both zero, (p,n;a;v;e,m) € EPP{(R) if and only if
there is an R-module satisfying O, y.q;v:e,m)- Hence the lemma holds.

Suppose (p,n;a;vy;e,m) € EPPy(R). By definition, there exist prime ideals
p1,...Ps < R and ideals I; < Ry, such that v ¢ p; and a € I; for 1 < j < s,
| ®:_; Rp,/Li| = p" and | ®5_; Ry, /eRy,| = p™. Let M := &{_, Ry, /e*I;. Then M
satisfies O n:a;vie,m)-

Conversely, suppose there exists an R-module M satisfying ©, n.a;yie,m)- Since
M is finite and non-zero, there exist maximal ideals my,..., my; << R and proper
ideals J; < Ry, such that ©§_; Ry, /J; = M. Since M satisfies O, n:q5y:e,m), for
1<i<s,(J;:e) CeRy, +J;.

By either eRy + J; = R, or J; C €?Ry, + eJ;. So, either e ¢ m,,
J; C eQRmi or J; CeJ;. So, for each 1 <14 < s, there exists I; < Ry, with J; = e2;.

Since |¢*al#/a=0( Ry, /€?I;)| = 1, a € I; and since |[*=2/y|z( Ry, /e*L;)| = 1, v ¢ m,.

Therefore my,...,m; and I; < Ry, are such that a € I; and v ¢ m; for 1 < i < s,
and | @f_; Rw,/I;| = p" and | ®i_; Rm,/€Rm;,| = p™. Hence (p,n;a;vy;e,m) €
EPP,(R). O

It follows from the proof of that if R is a recursive Priifer domain then
EPP(R) is recursively enumerable. This is because if R is recursive then Tg is
recursively axiomatisable and hence we can use a proof algorithm to search for the
sentences of the form ©, ,.4:4:e,m), as defined in the proof of which are true
in all R-modules.

The following corollary is a direct consequence of the proof of We will
later see, that the converse also holds.

Corollary 3.2.10. If the theory of R-modules of size n is decidable uniformly in
n then EPPy(R) is recursive.

3.3. The set X(R).

Definition 3.3.1. Let X(R) be the set of (p,n;e,v,a,d) € P x N x (R\{0}) x R3
such that there exist integers h € N and prime ideals pi,...,pn such that
’@LlRpi/eRm‘ =p" and for 1 <1 < h, v ¢ my, and, there exists an ideal I; < Ry,
such that a € I; and § ¢ (I;)7.

It is often easier to check that X(R) is recursive in concrete rings using the
following reformulation.

Remark 3.3.2. Let (p,n;e,v,a,6) € PxNx (R\{0}) x R®. Then (p,n;e,v,a,d) €
X (R) if and only if there exist 1 < h < n and maximal ideals my, ..., my such that
|@?:1Rmi/eRmi| =p", and, for 1 <i<h

(Z) 0 ¢ m;, (md,
(2) either 6 ¢ my, or, there exists a prime ideal q; C m; such that a € q; and

6 ¢ q;.
Proof. Note that if p; in the definition of X (R) is such that | Ry, /eR,,| = 1 then we
may drop p; from the sequence of prime ideals witnessing (p,n;e,v,a,d) € X(R).
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Therefore, we may assume each p; is maximal and that 1 < h < n. Now, if a € I;
and & ¢ (I;)* then either I; = Ry, and § ¢ p;, or, I; < Ry, is a proper ideal. If I;
is a proper ideal then a € I; implies a € (I;)7.

Therefore, if (p,n;e,7v,a,d) € X(R) then the conditions in the statement hold
with, m; := p;, and q; := ([;)* if 6 € m;. Conversely, if the conditions in the
statement hold for (p,n;e,v,a,d) then set p; := m; and, I; := Ry, if 6 ¢ m; and

I; := q; otherwise. ([l
Proposition 3.3.3. Let R be a Prifer domain. If Tgr is decidable then X (R) is
Tecursive.

Proof. Let (p,n;e,7,a,6) € Px N x (R\{0}) x R3. We show that (p,n;e,v,a,d) €
X (R) if and only if there exists an R-module satisfying X defined as

|x=37/e\:c| = pn A\ ‘xe:o/e\z| =1A |52a‘x/z:O| =1A |$=1/'y|:r:| =1A |w5=0/:v:0| =1.

First suppose that there exist h € N and prime ideals pi,...,pn << R such that
’@?:1Rpi/eRpi| =p"and for 1 <i < h, v ¢ p,, and, there exists an ideal I; < R,
such that a € I; and § ¢ (I;)#. Then @ | R, /e*I; = X.

Conversely, suppose there exists an R-module satisfying X. Then, there
exists a finite direct sum of modules U; such that & U; = X and each U; is the
restriction to R of a uniserial module over R, for some prime ideal p; < B. We
may assume that U;/U;e is non-zero for each U;, for otherwise the direct sum with
U; omitted also satisfies X. Since U; is uniserial as an R,,-module and U;/Use is
non-zero and finite, U; is finitely generated over R,,. Therefore U; = Ry, /J; for
some ideal J; < Ry, . Since [ze=0/ejz(U;)| = 1, (J; : €) € J; + eR,,. So, as in[3.2.9]
there exists I; <1 Ry, such that J; = €?1;.

Now, since @ U; = X, |®" Ry, /eRy,| = p", €*a € €*I and hence a € I.

Moreover, by [2.3.10, 7 ¢ p; and 8 ¢ 7. O

It follows from the proof of that if R is a recursive Priifer domain then, as
with EPP(R) and X (R) is recursively enumerable.

4. FORMALISMS

The formalisms introduced in this section will be used throughout the paper to
allow us to make reductions in the complexity of certain sets of conditions in later
sections.

4.1. Sets of functions.
Let A be a set and € a set of functions from A to NU {co} such that if hy, hy € €
then hi - ho € £ and such that the function which has constant value 1 is in £. Let
n €N, X;Y C A be finite sets and let f: X - Nand g:Y — N.

Define Q¢ 4, to be the set of all tuples of functions (fi,..., fn,91,...,9n) Where
fi : XU((Y\Y;) - Nand g; : ¥; = N are such that ¥; C Y and

o [T, fi(z) = f(z) for all z € X,

o fiy) <g(y) for all y € Y'\Y;,

* gi(y) = g(y) for all y € Y;, and

o forally ey,

II w11 9w]|=9w.

¢ with yeY'\Y; i with y€Y;
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Note that Q¢ 4, may be empty. This happens if and only if there exists z € X NY
such that g(z) < f(2).

For &1,&; sets of functions from A to N U {oo}, define &; - & to be the set of
h: A — NU{oo} such that there exist hy € & and hy € & such that h = hy - hs.

The most important instance of this set up in this paper is when A is a set of
pp-pairs #/y over a ring R and & is the set of R-modules M viewed as functions
on A by setting M(¢/y) = |¢/w(M)|. Given finite sets X,Y C A and functions
f:X —>Nand g:Y — N, we want to know whether there exists an R-module
M € & such that M(#/y) = f(¢/y) for all ¥/y € X and M (#/y) > g(¥/y) for all
¢/y € Y. Now suppose that &,. .., &, are sets of R-modules with the property that
all R-modules in £ are elementary equivalent to a module of the form M; ®...H M,
with M; € & for 1 < i < n. Viewing modules as functions on A, this gives
that & = [[;_, & ie. viewed as functions on A every module in & is equal to a
module of form M; & --- & M, where M; € &; for 1 < i < n. The next lemma,
interpreted for modules, will show that there exists an R-module M € & such that
M(#/yp) = f(#/y) for all ¢/y € X and M(¢/y) > g(¢/v) for all ¢/y € Y if and
only if, for some (f1,..., fn,91,.--,9n) € Qf g.n, there exist R-modules M; € &; for
1 < i < n such that for M;(¢/v) = fi(¢/v) for all ¢/y € X; and M(¢/y) > g;(¥/v)
for all ¢/y €Y.

Lemma 4.1.1. Let £ = [, &, X, Y C A be finite sets and let f : X — N
and g ' Y — N. There exists h € &€ such that h(z) = f(x) for all x € X and
hy) > g(y) for all y € Y if and only if for some (fi,...,fn,91,---,9n) € Qs gn
there exist h; € & for 1 <i <mn such that hy(z) = fi(z) for allx € X U(Y'\Y;) and
hi(y) = gi(y) for all y € Y;.

Proof. Let h € & be such that h(x) = f(x) for all x € X and h(y) > g(y) for
all y € Y. Since £ = H?:l &;, there exist h; € & for 1 < i < n such that
[T, hi(x) = h(z) forallz € A. Foreach 1 <i <mn,letY; :={y| hi(y) > g(y)}, let
fi(x) = hi(z) for all z € XU(Y'\Y;), and let g;(y) = g(y) for all y € Y;. By definition
[T, filz) = Ti=y hi(z) = h(z) = f(z) for all € X, fi(y) = hi(y) < g(y) for
all y € Y\Y; and ¢;(y) = g(y) for all y € ¥;. Now if y € Y'\Y] then f;(y) = hi(y)
and if y € Y; then ¢;(y) = ¢g(y). Therefore, for all y € Y, either y € Y; for some
1 < i < n and by definition, g;(y) > g(y), or, y ¢ Y; for all 1 < i < n and so
9(y) < h(y) = [Ti—; hi(y) = 1=, fi(y). In either case, the 4th condition in the
definition of Qg , holds. So (fi,..., fn,91,---,9n) € Ly g.n.

Conversely, suppose hi,...,h, : A — N are such that there exists (fi,..., fn,
915 Gn) € Qf g.n with hi(z) = fi(z) for all z € X U (Y'\Y;) and h;(y) > gi(y) for
all y € Y;. Define h : A — N by h(z) = [[_, hi(x) for all z € A. Then h(z) = f(z)
for all x € X and h(y) > g(y) for all y € Y as required. O

Definition 4.1.2. Let X, Y C A be finite sets and let f : X - N and g:Y — N.
Let G :=max{g(y) | y € Y}. Define Oy 4 to be the set of pairs of functions (f',g")
such that, for some Y CY, f/: XU(Y\Y) >N, ¢ :Y" =N, f'(z) = f(z) for
adlze X, ¢ (y) =G forallyeY' and g(y) < f'(y) <G for ally e Y\Y".

As for Q¢ 4., in the definition of O 4, we don’t intend that X and Y are disjoint.

Remark 4.1.3. A function h € & is such that h(x) = f(z) for all z € X and
h(y) > g(y) for all y € Y if and only if there exists (f',g') € O 4 such that
h(z) = f'(z) for all x € X U (Y\Y') and h(y) > ¢'(y) for all y € Y', where Y’ is
the domain of the function g’ as in the definition of Oy 4.
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Proof. Suppose that h € £ is such that h(x) = f(z) for all z € X and h(y) > g(y)
forally €Y. Let G =max{g(y) |y € Y} andlet Y = {y € Y | h(y) > G}. Set
f(x) = h(z) for all x € X U (Y\Y') and ¢'(y) = G for all y € Y'. By definition
h(z) > ¢'(y) for all y € Y'. So, we just need to check that (f',¢’) € ©5,4. The
first 2 conditions defining © 4 hold automatically. By definition of Y”, if y € Y'\Y’
then h(y) < G. By definition of f/, f'(y) = h(y) for all y € Y\Y’. Hence, for all
y € Y\Y’, f'(y) < G and, by hypothesis on h, g(y) < h(y) = f'(y) as required.
Suppose that h € £ and (f’,¢') € Oy is such that h(z) = f'(z) for all z € X U
(Y\Y’) and h(y) > ¢'(y) for all y € Y’. Then, by definition of O 4, h(z) = f'(z) =
f(x) for all z € X. If y € Y\Y' then, by definition of ©¢ 4, g(y) < f'(y) = h(y).
If y € Y/ then h(y) > ¢'(y) = G > g(y). Therefore, for all y € Y, h(y) > g(y) as
required. (I

4.2. Lattices generated by conditions.

Let W be an infinite set. Let W be the free bounded distributive lattic generated
by W. We use U for the supremum and M for the infimum in this lattice. Any
element of W may be expressed as | |;; |_|j€Ji w;; where I and J; for ¢ € I are
finite sets and w;; € W. Moreover, for v, € W with k € K a finite set,

<l ]

keK il je;
if and only if there exists ¢ € I such that
|_| v < |_| Wij
keK j€Ji
if and only if there exists ¢ € I such that

We make the convention that the empty infimum is the largest element T and the
empty supremum is the least element 1.

We call an expression of the form | |;.;[] e, Wij, where w;; € W, irredundant
if for each i € I, w;;, = w;j, implies j; = jo and the sets w; := {w;; | j € J;} fori € I
are pairwise incomparable by inclusion. If | |, [1;c;, wi; and | ;¢ HJEJ{ wy; are
in irredundant form then | |, [1;c;, wi; = L;cp HJEJ{ wi; if and only if there exist
bijections o : I — I’ and o; : J; — J(’,(i) for each i € I such that w;; = w;(i)’gi(j)
forall? €I and j € I;.

Given a recursive presentation of W (i.e. a bijection with N), this presentation of
W gives rise to a recursive presentation of W (i.e a presentation where the inclusion
of W in W is recursive and U and M are recursive functions).

For any V' C W, define V to be the filter generated by V' in W. Note for w;; € W,
Uier[jes, wiy € V if and only if there exists i € I such that w;; € V for all j € J;.
So, in particular V is prime filter. It follows that V is a recursive subset of W if
and only if V is a recursive subset of W.

Suppose that clx : W — « where « is a partially ordered set with the descending
chain condition. Let w € W and let w = |_|i€] |_|j€J7: w;; be in irredundant form.
For 8 € a, we write clxw < B if w;; < Bforalli € [ and j € J; and clxw <
if clxw;; < B for all i € I and j € J;. Note that if w is a lattice combination

[l3ee [Grall) for the definition of a free distributive lattice and add a largest and smallest
element.
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of elements w; € W for 1 < i < n then clxw; < § (respectively clxw; < ) for
1 <4 < n implies clxw < g (respectively clxw < ).

Remark 4.2.1. Let W be an infinite recursively presented set and V. C W. Suppose
that o is an artinian recursive partially ordered set, clx : W — « is recursive and
Wo C W is recursive. Suppose further that there is an algorithm which given
w & Wy computes w € W such that claw < claw and such that w € V' if and only
ifw e V. Then V is a recursive subset of W if and only if V N Wy is a recursive
subset of W.

The precise choice of W and V varies throughout this article.

To illustrate how this setup is used, let R be a recursive ring. Let W be the set of
L r-sentences
N\ el =) n )\ 19l = g(e/v)
e/pEX o/pEY

where X,Y are finite sets of pp-pairs, f : X — N and g : Y — N. Let V be the
set of w € W such that there exists M € Mod-R with M = w. Then, by
Tg is decidable if and only if V is recursive. Working with W and V, rather than
W and V directly, allows us to talk about more than one module at a time. For
instance, for wy, ..., w, € W, the condition w1 M...Mw, € V says that there exist
R-modules M; € Mod-R with M; | w; for 1 <i < n.

5. FIRST SYNTACTIC REDUCTIONS

Recall that, for a recursive ring R, in order to show that the theory of R-modules is
decidable, it is enough to show that there is an algorithm which, given a sentence
of the form

S

(*) N ledusl = Fin N loofs] = G,

i=1 j=1

where, for 1 < ¢ < sand 1 < j <t »ify; and 9i/r; are pp-pairs and F;,G; € N,
answers whether there exists an R-module satisfying it.

In [GLT19, 4.1}, it was shown that if R is a recursive Priifer domain then it is
enough to consider sentences where the pp-pairs in (x) are all of the form dlz/z=0
and #0=0/c|e. The proof of this statement relies on [2.3.1] [PT15| 2.2] and the fact,
which follows from and that every R-module is elementary equivalent
to a direct sum of pp-uniserial modules. This is also true for arithmetical rings,
and so, although not stated in [GLT19], the result, with the same proof, also holds
for arithmetical rings.

Theorem 5.1. [GLTI9l 4.1] Let R be a recursive arithmetical ring. If there exists
an algorithm which, given a sentence

m n
Xi= Nlefwl=Gin N\ |eifui] > Hi,
i=1 i=m+1

where G;, H; € N and #ify, are pp-pairs of the form dlz/z=0 and «b=0/c|z for 1 <
i < n, answers whether there exists M € Mod-R satisfying X, then T is decidable.

We call any conjunction of sentences of the form

‘d‘x/z:0| =1 or |xb=0/c|:r:| =1
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an auxiliary sentence.

Convention: In the sequel, we use the symbol [J as a variable denoting either =
or > when talking about conjunctions of sentences like |¢/»|ON. It will be useful
for us to extend this notation so that [ can also be the symbol @), where [J being ()
indicates that |#/y|ON is omitted from the conjunction. For instance, when [J; is
) and Os is >, the sentence |dlz/z=0| 01 D A |[#6=0/c|z| Oy F stands for |#0=0/c|z| > E.

In this section we improve [GLT19, 4.1] to prove the following.

Theorem 5.2. Let R be arithmetical ring. If there exists an algorithm which, given
a sentence X of the form

m n
(1) |dlefe=0| Oy D A [38=0/ciz| D2E A [\ |01/ = Gin )\

i=1 i=m+1
where 01,05 € {>,=,0}, d,c,b € R\{0}, D,E,G;,H; € N, E is an auziliary
sentence and ¥i/y; are pp-pairs of the form =z/¢|z and *¥'=0/z=0 for 1 < i < n,
answers whether there exists an R-module satisfying X, then Tg s decidable.

Lpi/ﬂ’z' 2 Hi /\E7

Definition 5.3. Let X, Y be finite subsets of pp-pairs of the form dlz/z=0 or @v=0/¢|z,
and, let f: X =+ Nand g:Y — N be functions. Define Xy 4 to be the sentence

N el = fef) A N\ 19/l = g(e/v).
e/peX e/yEY

If X and Y are both empty then Xy 4 should be read as the true sentence.

For the rest of this section, let W be the set of Lr-sentences of the form Xy 4
and let V' be the set of w € W such that there exists M € Mod-R with M = w. As
in[{-9, W denotes the bounded distributive lattice generated by W and V denotes
the (prime) filter in W generated by V.

Define clx1 Xy 4 to be
[{dlefe=0 € X | f(dle/z=0) > 1}| + [{dle/a=0 € V" | g(dlz/a=0) > 1}]
and clxaXy g4 to be
[{z0=0/c|z € X | f(26=0/c|z) > 1 and b,c # 0}| +
[{#6=0/c|z € Y | g(*=0/c|z) > 1 and b, c # 0}|.

Formally, we extend clx; and clxy to L, T € W by setting clx; L =clx; T = 0 and
clxo L = clxo T = 0. We will use the notation clx;w < clx;w and clx;w < clx;w, for
i€{1,2}, we W and w € W as defined in subsection [4.2]

Remark 5.4. For all wy,wy € W and i € {1,2},
clx;(wy A we) < elx;(wy) + clx;(wa).
For our purposes, given w € W, we may always assume that w is of the form
Xfq N,
where f: X = Ny, g: Y — Ny with X, Y finite disjoint sets of pp-pairs of the form
dle/z=0 or #b=0/c|z, and Z is an auxiliary sentence. This is because any Xf, € W
may be rewritten as Xy 4 A Z where f’: X’ — Ny and = is an auxiliary sentence.
Moreover, for Xy, A2 € W, let Y’ := {¢/y | g(¢/v) > 1} and ¢’ := g|ys. Then

XrgNE€Vifandonlyif Xy AZ€ V. If ¢/y € XNY and f(¥/v) < g(¥/v) then
Tr = =Xy,g. If f(/w) > g(¢/v) then Xy o AZ € V if and only if Xp g0 A2 €V
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where g := g|y\{e/s}- So, given w € W, we can effectively decide that w ¢ V
or compute f,g and Z of the required form such that, clx;(X; 4, A Z) < clxjw,
clxo(Xf g AE) < clxow, and, w € V if and only if Xy, AE € V.

Remark 5.5. Let X,Y be disjoint finite sets of pp-pairs of the form dlz/z=0 or
b=0/ciz, f : X = N and g : Y — N functions, and = an auziliary sentence. For
each 1 < j < n, let §; be an auziliary sentence. Suppose that for all M € Mod-R,
there exist modules M; |= 0; such that M = @©7_yM;. Then X5, NZ € V if and

only if
L] [1xpe A0AZEEV.

(?1§)€Q(f,g,n) J=1
Moreover, for all (f,g) € Qfgn and 1 < j <n,
Cle(Xfng N 9]‘ AN E) S Cle(Xf,g A E) and Cle(ijygj A\ Hj AN E) S ClXQ(Xf,g N E)

The next lemma is more precise than we need in this section. However, we will
need its full strength in of section @ The total order < on the set {0, =, <}
is defined as ) <=<<.

Lemma 5.6. Let ¢/y, ¢ [y, o/ be pp-pairs and let > be an Lg-sentence. Suppose
that M =% implies
|#/w(M)| = |o/=(M)] - |¢'/v' (M)
for all M € Mod-R.
There is an algorithm which, given ¢y, % [y’ /=, 0,00 € {=,>}, E,E' € Ny
and ¥ as above, either returns  := { L}, in which case

Tr E (A |¢/w|OE A |9 /g | E",
or, returns §), a finite set of tuples (D1, Do, [01,0s) € N2 x {=, >}? such that

Tr b= S A ofo|OE A |¢'/w |V E < \/  SAle/0iDy A | Dy
(D1,D2,0,,02)€02

and D1 - Dy < E-FE',0) 20 and Oy X O for all (D1, D2,01,0s) € Q.

Proof.
Case 1: [0 and [0’ are both =.
Let  := {1} if E’ does not divide E, otherwise Q := {(E/E',E’',=,=)}. Note
(E/E"Y-E'=E<E-E.
Case 2: [is > and [ is =.
For z € R, we write [x] for the least m € Z with x < m. Let Q := {([E/E'],E',>
,=)}. Note
[E/E'| - E' < (E/E'+1)-E'=E+E <E-E.
Case 3: is = and [ is >.
Let X :={D € N| D|[Eand D > E'}. Define Q := {1} if X = 0 and Q :=
{(E/D,D,=,=) | D € X} otherwise. Note (E/D)-D=E< E-F'.
Case 4: [ and [0’ are both >.
If E' > E then let Q:={(1,E',>,>)}. If E > E’ then set

Q:={([E/D],D,>,=) | E>D>FE}U{(1,E,>,>)}.
Note that E' < E-E', E < E - E’ and
[E/D]-D< (E/D+1) - D=E+D<E-FE. O
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The following remark is easy to prove. We record it here because we will use it
frequently.

Remark 5.7. Let R be a commutative ring. For all a,b € R and M € Mod-R,
|a‘z/ab\w(M)| = |I:m/wa:0+b\w(M)|

and
|xab=0/xa:0(M)| = |a\ac/\:cb=0/m:0(M)‘ .

Proposition 5.8. Let R be a recursive arithmetical ring. There is an algorithm
which given w € W with clxi(w) > 1 outputs w € W such that clx;(w) < clxy(w),
clxo(w) < clxa(w), and, w € V if and only if w € V.

Proof. Let X,Y be disjoint finite sets of pp-pairs of the form dlz/z=0 and #6=0/¢|s.
Let f: X — Ny and g : Y — Ny be functions, and let = be an auxiliary sentence.

Let w be
N ool = fef) AN\ l9fel = glefv) AE.
o/peX ?/pEY

Suppose that there exist non-equal a,b € R such that alz/z=0,blz/z=0 € X UY i.e.
clx;(w) > 1. Let a,r, s € R be such that ac = br and b(aw — 1) = as. Define

(1) 4 to be |[z=2/ajz| = 1 A |rblz/s=0| =1,
) Y5 to be ‘r:x/a|x| =1A |mb:0/7"\ac| =1,
) X3 to be|r=7/(a-1)|z| = 1 A |aslz/z=0| = 1, and
) Y4 to be|w:75/(a71)\z| =1A |w“:0/s|x| =1.
It follows directly from that, for any M € Mod-R, there are M; | X; for
1 < < 4 such that M = My & My ® M3 @ My. Therefore, by 5.5, w € V if and
only if

(2
(3
(4

4
|| []xnaAEASieV.
(?’g)egf,gA =1
For each (f,g) € Q44 and 1 < i < 4, it is enough to compute w; € W such that
clxq (w;) < clx1(Xj g AE), clxo(w;) < clxo(Xf g AZE) and Xy, 5, AEAY; € V if and
only if w; € V.

Fix (?, G) € Qfg4. For each 1 <14 <4, let X; be the domain of f; and Y; be the
domain of g;.

Case i=1: Suppose M = ¥;. Then Ma = M and hence Ma = Mbr = 0.
Therefore, if M = 3, then |alz/z=0(M)| = 1.

If a\z/m:() S X1 and fl(alw/z:O) =1 then Cle(thgl ANZEA 21) < Cle(Xﬁg A E)
and, by [5.5] clxa(Xf,,9, AZAE1) < clxa(Xpg AE). So, w; := Xy, 9, A2 ALy has
the required properties.

If alz/z=0 € X and f(alz/z=0) # 1 then, by the first paragraph, Xy, 5, AZ A%,
is not satisfied by any R-module. If alz/z=0 ¢ X; then alz/z=0 € Y] since X U
Y = X; UY;. Moreover g;(elz/z=0) = g(al#/z=0). So gi(alz/z=0) > 1 and hence
X 1,1 NEAX; is not satisfied by any R-module. In either case, set w, := L. Then
w; € Vif and only if X, 4, AEA X1 € V. By definition clx; (L) < clx1(Xf,4 A E)
and clxo(L) < clxo(Xfg A E).

Case i=2: Suppose M |= 3. Then Ma = Maa = Mbr. So, since b =0 <p; r|z,
by
[ble/a=0(M)| = [Pla/br|z(M)| - |Priz/e=0(M)| = |z=2/rje(M)] - |2lz/z=0(M)|.
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Let X' = XQ\{“M/z:O,b‘x/x:O} and Y/ = YQ\{“|I/1:O7b|$/x:O}. Let D,D/ S {:, Z}
and A, B be such that Xy, 4, AEAXg is

jelafz=0] DAAMe/a=o| 'BA -\ |¢/ul = fa(efs) N [\ 19/4] = ga(¢/w) AEAZs.
ofpeX’ e/peY’

We may assume that A, B > 1 since otherwise clx1 (X, 4, AEAX2) < clx1(Xf, g AE).
So, by there is an algorithm which either returns  := {L}, in which case

Tr = —Xa A |alz/z=0| OA A |bl2/z=0| ' B,
or, a set Q C N2 x {=, >}? such that
Yo A |ale/z=0| A A |blz/z=0| O’ B
is equivalent, with respect to Tg, to
\/ S A |[2=2/r|z| Oy Dy A |ale/a=0| Oy Ds.
(D1,D5,01,05)€0

If Q:={L} then Xy, o, A\EAXs € V if and only if L € V. By definition clx; (L) <
clx1 (X5, AZ) and clxo(L) < clxa(Xf g AE). Otherwise, for each (D1, Do, 0;,0s) €
Q, let u(p, p,,0,,0,) be

‘I:x/r\ﬂ |:|1D1/\|a|x/ac=0| Lo Do /\ ‘@/qﬂ = fQ(W/w)/\ /\ |LP/1/;| > gQ(W/w)/\E/\ZQ.
e/peX’ p/pEY’
Then X¢, 4, A2 A X2 is equivalent to
\/ U(Dy,Ds,0,,0z)
(D1,D2,0,,002)€Q
with respect to Tg. Therefore X¢, 4, AZE A X € V if and only if
|_| U(Dy,D2,0,,0,) € V.
(D1,D2,001,02)€Q

Moreover,
clxq (u(Dl,DQ,DLDQ)) <1+ (C].X1 (Xf2,92 ANEA 22) - 2) < clxq (Xf2,92 ANEA 22)

and clxz(u(p,,p,,0,,0,)) = clx2(Xyfy,9o A E A X32). So we are done, since, by [5.5
clxi (Xfp,90 NEAE2) <clxy(Xpg AE) and clxo(Xp,,90 AZEAE2) < clxo(Xp g A ).
The case 7 = 3 is similar to ¢ = 1 and the case 7 = 4 is similar to 7 = 2. O

Our task now is to show that there is an algorithm which given w € W with
clxow > 1 returns w € W such that w € V if and only if w € V, clx; (w) < clxg (w)
and clxg(w) < clxg(w). This uses the same ideas as for clx; but is somewhat more
complicated.

Lemma 5.9. Let R be an arithmetical ring and let b,c,b',c € R. Let a,u,u/,
8,8, 8,8, .1 8,8 NN, u 1 €R be such that
ca = cu, d(a—1) = cu,
ufB = b'r, b(B—1) = us, u'p br', b —1) = u's,
bd = s, s(6 —1) = bu, bd' =N, s —=1) = V.
Define the sentences A; and A} for 1 < i <6 and P; and P} for 4 < i <6 to be
the conjunction of sentences labeling the edges in the path from the root of the tree



27

DECIDABILITY FOR THE THEORY OF MODULES OVER A PRUFER DOMAIN

T 2In31g
N el % oy
ol 1= |2 1= o
1= |3tem 1= st ' 1= |30 1= |ams
I<
/ 7
=* <
= %/ K/ﬁ%s%
&
WV / 1= owuwn
I's /o
o
\< _ 0=r _ 0=z N<
= _3 = "ﬁ:g:
T\mﬁ%\ K/Mw\me/
Y v
I's /o, &/
\s\/qw\ a“/a/?o




28 LORNA GREGORY

in Figure 1 to the leaf of the tree with that sentence as label. FEvery R-module is
elementary equivalent to an R-module of the form

6 6 6 6
PmioPN)e @M ePN)
i=1 i=4 i=1 =4

where M; = A; and M) = Al for1 <i <6 and N; = P; and N] |= P/ for4 <i <6.
Moreover, for all M € Mod-R,
(i) M = Ay implies ¢ € anngM and hence |#v=0/c|z(M)| = |#=0/z=0(M)|,
(1) M | Ay implies |#0'=0/c'1z(M)| = 1,
(i) M = A3 implies b € anngM and hence |20'=0/c'|z(M)| = |z=2/c'|a(M)|,
(iv) M = Ay implies |2V'=0/c'|o(M)| = 1,
(v) M |= As implies b € anngM and hence |#v=0/c|a(M)| = |2=%/c|«(M)],
(vi) M |= A¢ implies

[#0=0/ee(M)| = [#¥' =0/ (M) - [A=0/=0( M)

(vii) M | Py implies |#b=0/cjo(M)| = 1,
(viti) M |= Ps implies b € anngM and hence |#6'=0/¢'|o(M)| = |[#=2/c'|o(M)|, and
(iz) M |= Py implies

o1/0/e ()| = [9=0/cta( M) - [s1=0/s=0(M)].

Similarly, the symmetry of Figure 1, gives 9 statements for A, and P}, where ¢, b
and ¢, b’ are interchanged and \, p are replaced by N, ', respectively.

Proof. There are two edges coming out of each node of the tree in Figure 1. In
each instance the two edges are either

(1) |==2/y|z| = 1 and |z==/(y—1)|z| = 1 for some 7y € R,

(2) |#7=0/z=0| =1 and |#(v=1)=0/3—0| = 1 for some v € R, or

(3) |ab|$/1::O| =1 and ‘a:a:O/b‘z| =1.
By in each case (1),(2) and (3), for all modules M € Mod-R, there exist
M, satisfying the first sentence and M satisfying the second sentence such that
M = My, @& Ms. The first claim follows from this fact.

For any M € Mod-R, o ¢ DivM implies c|x is equivalent to c'u|z in M because

ca = cu.
(7) Suppose M = A;. Since |¢vle/z=0(M)| =1, Mc = Mc'u=0. So ¢ € anngM.
(i) Suppose M | As. Then 8 ¢ AssM and so, since uf = b'r, ab'r = 0 is
equivalent to zu = 0 in M. Since zu = 0 <)y |z, we conclude

2t =0 <pr ablr =0 <prau=0 <y dlz.

(#4i) Suppose M = As. Then 8 —1 ¢ AssM and so, since b’ (8 — 1) = us, b’ =0
is equivalent to xus = 0 in M. Since [uslz/z—0(M)| = 1, us € anngM and hence
b € anngM.
Claim: If M ': |w:$/oz\:v| =1A ‘a:u:()/c/‘z| =1A |I(ﬂ_1)20/:v20| =1A ‘a:s:O/u|x| =1
then |xb/=0/c'\:c(M)| = |xs=0/c'u\w(M)|.

First note that since S — 1 ¢ AssM and V(58 — 1) = us, b’ = 0 is equivalent to
zus = 0 in M. We show that |zus=0/c/|z(M)| = |#5=0/c ulz(M)].

Consider the map f : zus=0/z—0(M) — 75=0/c'u|z(M) defined by f(m) := mu +
culz(M) for m € M with mus = 0. Now f is surjective since |#s=0/u|z| = 1.
Suppose f(m) = m/c'u for some m’ € M. Then (m—m/c¢’)u = 0. Since |zu=0/¢'|z| =
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1, m—m'd € d|x(M) and hence m € ¢/|x(M). Therefore ker f = ¢/|z(M). So we
have proved the claim.

We now prove the statements about modules satisfying A4, A5, Ag. The state-
ments for modules satisfying P,, Ps and Py follow similarly.

(iv) Suppose M = Ay. Then |[#s=0/c’u|o(M)| = 1 and by the claim [#b'=0/c'|z(M)| =
|[75=0/c"ula(M)].

(v) Suppose M |= As. Since § ¢ AssM, xb = 0 is equivalent to zsA = 0 in M.
Since |sMz/z=0(M)| = 1, sA € anngM and hence b € anngp M.

(vi) Suppose M = Ag. Since § ¢ AssM, xb = 0 is equivalent to zsA\ = 0 in M.
Since zs = 0 > culz,
=0/t (M) = [#=0/cuo(M)| = [0/ a0 (M) - |50 ais (M)
By [5.7] [#sA=0/zs=0(M)| = |sleAzA=0/s—0(M)|. So, since [+A=0/s|z| =1,
[r0=0fcle (M)| = [#9A=0/a=0 (M) -[#5=0/c s (M)| = [#=0/0 () |- |20 =0/ (M)
O

Proposition 5.10. There is an algorithm which, given w € W with clxg(w) > 1,
outputs w € W such that clxa(w) < clxa(w), clxy(w) < clxy(w), and, w € V if and
only if w e V.

Proof. We start with a special case. Let b,c,b',¢’ € R\{0}. Let Pgs, P}, Ag, Aj be
as in[5.9] Let ¥y be |clz/a=0| = 1, E5 be |btlz/a=0| = 1, 3 be |¢'|z/a=0| = 1, T4 be
‘b,|m/z:0| =1, Y5 be |wb:0/c|z| =1, ¥4 be |wb':O/c'|9c| =1, X7 be Ag, Xg be Ps, X9
be Aj and 19 be Ff.

Fix1<i<4or7<i<10. Suppose w is

|#b=0/cfz| B A [2'=0/c/|a| (Y E' A X s A S5 A E
with B, E' > 1.
Case i=1: Let w’ be

[20=0/a=0| OB A [+9=0/c1a| '’ A X7 g A S AE.

Then clxjw’ = clxjw and clxow’ < clxow. Since T | w < w', we get w € V if
and only if w’ € V.

Case i=2,3,4: The same argument as for i = 1 works.
Case i=T7: By[5.9 if M = X7(:= Ag) then
|#6=0/cla(M)| = [#V'=0/c/|2(M)| - [#A=0/a=0(M)] .
By there is an algorithm which either returns Q := {1}, in which case
T b ~(1#0=la] OB A |26 =0/1s| D'EY),
or, a set Q C N2 x {=, >}? such that
Y7 A |#0=0/c|z| OF A |2b'=0/c'1o| 0 B’
is equivalent, with respect to Tg, to
\V S7 A |#A=0/z=0| 01 Dy A |#b'=0/'z| Cg Do
(D1,D2,01,05)€Q

If Q:= {1} then w € V if and only if L € V and by definition clx; L < clxjw and
clxo L < clxow. Otherwise,

|xb=0/c|:r:| OF A |xb/=0/c'\z| OFE A Xf’g A3z ANZE



30 LORNA GREGORY

is equivalent to

\/ |$)‘:0/z:0| Dy A |mb/:0/c'\x| LoDy A Xf,g N\ Yr ANE.
(D1,D2,0;,02)€0

For each (D1, Dy,0;,0y) € Q, let
W(D,,Dy,01,0,) = |f”)‘:0/w:0‘ yDy A |$b,:0/c/|cr| LoDy A Xf,g N\ Y7 AE.
So w € V if and only if
|_| W(Dy,D,,01,02) € V.
(D1,D2,01,02)€Q
For all (D1, D2,0y,0z) € , clxyw(p,,p,,0,,0,) = clxiw and clxow(p, p,,0,,0,) <
clxqw.
Case i=8,9,10: The same argument as for i = 7 works.
We now deal with the general case. Let w be
N lefel = fefo) AN\ Nelel = glefe) NE €W
o/pEX P/pEY

where X,Y are disjoint finite sets of pp-pairs of the form dlz/z=0 and =b=0/c|x,
f: X =Ny g:Y — N, and = is an auxiliary sentence.

Suppose that #v=0/¢|z, 0'=0/'|z € X UY are distinct pp-pairs with b,c,b', ¢ €
R\{0}. Let Q C Qj,10 be such that (f,g) € Q if and only if #0=0/clz € Xj,
wb/:O/c/\m € Xg, f5(93b:0/c\m) =1, and fG(wb/zo/c'|r) = 1. Then w € V if and only if

10
L] []XpaASinEeV.
(Fpeni=l

For each (f,g) € Q and 1 <4 < 10, let w, 7 7.5 b€ Xsig: AX; AE. By definition of
Qy,g,10, for each 1 <14 <10, clxjw, 73S < clxyw, clxaw, 77 < < clzow.

By assumption #0=0/cjz € X and f(=v=0/c|z) > 1 or ®0=0/c|z € Y and g(==0/c|z) >
1. So, since #0=0/c|z € X5 and f5(#v=0/c|z) = 1, for each (f,g) € Qt.4.10, clxowy 7 <
clxow. Replacing #=0/¢|z by #b'=0/c'|z, the same argument gives clxzwﬁ,?@ < clxow.

Now suppose 1 <i <4 or 7 <i<10. If 2=0/cjz € X; (respectively #0=0/¢|z €
Y;) and fi(#0=0/c|lz) = 1 (respectively g;(#*=0/clz) = 1) then clxow,; 7. < clxow.
This argument together with the same argument with #06=0/c|z replaced by =b'=0/c'|z
means that we may assume w; 5 - is of the form of the special case considered at
the start of the proof. Thus we may replace each w; 75 by some w’ € W such that
clxjw’ < clxlwij,? and clxqw’ < clewij’g. O

Proof of By in order to show that Ty is decidable, it is enough to
show that there exists an algorithm which given w € W answers whether w € V or
not. Suppose that there is an algorithm which given a sentence X as in (}) answers
whether there exists an R-module satisfying X. We may relax the assumptions on
d to allow the case d = 0 since any instance of |0z/z—0| can always be replaced
by |#¢'=0/z=0| where b’ = 1. Therefore, by assumption, the set of w' € V with
clxjw’ <1 and clxpw’ < 1 is recursive. Thus the set of w € V with clx;w < 1 and
clxow < 1 is recursive.
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Since Ny is artinian as an order, iteratively applying [5.8] and [5.10, provides an
algorithm which given w € W with either clxjw > 1 or clxqw > 1 outputs w € W
with clxjw, clxow < 1 such that w € V if and only if w € V. [l

6. UNISERIAL MODULES WITH FINITE INVARIANTS SENTENCES

Descriptions of the uniserial (and hence indecomposable pure-injective) modules,
U, over a valuation domain which have #/4(U) finite but non-zero for a given pp-
pair #/y are given for valuation domains with dense value groups in [PPT07] and
for valuation domains with non-dense value groups in [Grel5]. However, we need
a uniform description that works for both valuation domains with dense and non-
dense value groups. This is done in Lemmas [6.0.1} [6.0.2] and [6.0.3] and used in
sections [9] and The rest of the section is about these modules in preparation for

sections [7] [§ and [I0]

Lemma 6.0.1. Let V be a valuation domain. If d € V and U is a uniserial V-
module such that dlz/z=0(U) = Ud is finite and non-zero then U = V/dI for some
ideal I <9V and Ud =2 V/I.

Proof. For any module M, z=t/cd=0(M) = dlz/fz=0(M). Thus if dle/c=0(U) =
@=2/4=0(U) is finite but not equal to the zero module then, by 2.3.7) U = V/J for
some ideal J < V. Since Ud # 0, d ¢ J and therefore dV 2 J. So J = dI for some
ideal T < V. [

Note that in the assumptions of the second clause of the next lemma we are not
excluding that I =V or consequently that #0=0/c|z(I/bcV’) = 0.

Lemma 6.0.2. Let V be a valuation domain and b,c € V\{0}. If U is a uniserial
V-module such that b,c ¢ annyU and =0=0/c|z(U) is finite but non-zero then there
exists I QV with b,c € I such that U = 1/bcV and #6=0/c|z(U) =2 V/I.

Conversely, if 0 # 1<V is an ideal and b,c € I\{0} then «0=0/c|=(I/bcV) = V/I.

Proof. Let @ be the field of fractions of V. By [Zie84, p. 168], for any non-zero
uniserial module U, there exist V-submodules K C J C @ such that U = J/K as
V-modules. Now b, ¢ ¢ anny J/K imply (K : b) C J and (K : ¢) C J respectively.
Since V is a valuation domain, (K : ¢) € J implies K C Je. Therefore, since
wb=0/cio(J/K) # 0, 2v=0/c|a(J/K) = (K : b)/cJ = K/cbJ. Since K/cbJ is a non-
zero finite uniserial module, it has the form V/I for some proper ideal I < V.
Therefore K = AV for some A € Q\{0} and A\"tebJ = 1. Thus U = J/K = 1/bcV
as required. It is easy to see that over a valuation domain there is only one uniserial
module of each finite size. Therefore #0=0/c|«(I/bcV) = V/I implies #0=0/c|z(U) =
V/I. Finally, it follows from (K :b) C J that ¢ € I and from (K : ¢) € J that
bel.

Let 0 # I <V be an ideal and b,c € I\{0}. Then #0=0/c|z(I/bcV) = ¢V /el =
V/I. O

Lemma 6.0.3. Let V be a valuation domain and ¢ € V. If U is a uniserial V -
module such that *=</cjz(U) is finite but non-zero then U =2 V/K for some ideal
K < V. Moreover, if v=2/c|«(U) is finite but non-zero then either U = V/cI for
some I 9V and V/cV =2 a=2z/c|a(U), or, ¢ € annyU and U = z=z/c|z(U).

Proof. The first claim is a consequence of If c € K then ¢ € annyV/K. If
¢ ¢ K then ¢V DO K and hence K = ¢l for some I QV. g
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We avoid dealing directly with uniserial V-modules U such that #0=0/z—0(U) is
finite but non-zero, by using duality defined in[2.1.3]

6.1. (p,I) E (r,a,7,9). For the rest of this section R will always denote a Priifer
domain.

Definition 6.1.1. Let r,a,v,d € R, p <R a prime ideal and I < Ry, an ideal. We
write (p, 1) = (r,a,7,0) ifrRy 2 I, a €1, v ¢ p and § ¢ I*.

The task of this subsection is to show that given an auxiliary sentence = and
A € R\{0}, we can compute n € N and (r;, 7;a;,7:, 6;) for 1 <7 < n such that for all
prime ideals p<{R and ideals <Ry, R, /Al |= Zif and only if (p, I) = (rs, rias, Vi, ;)
for some 1 < i < n. However, in we will additionally need that all prime ideals
p < R and ideals I < Ry, Ry/M = D= if and only if (p,I) = (i, a4, 0;,7;) for
some 1 <1 <n.

Remark 6.1.2. Let r,a,v,d,a € R. For all prime ideals p << R and ideals I < Ry,
(p, D) E (rya,7,0) if and only if (p,I) E (r,a,vya,0a) or (p,I) = (r,a,y(a —
1),0(a — 1)).

Proof. This is true because for all prime ideals p < R, either « ¢ por a —1 ¢ p
and, by definition, for all ideals I <1 R,,, I# C pR,. (]

Lemma 6.1.3. Let R be a Priifer domain and b,c,d € R with b # 0. Let p < R be
a prime ideal and I < Ry, be an ideal.
(1) Then |#=0/c|z(R,/I)| =1 if and only if b & I#, c¢ p, beR, DI or 1 € 1.
(2) Then |dz/e=0(Ry/I)| =1 if and only if d € I.
Proof. (1) For any ideal I < Ry, [#6=0/c|«(Ry/I)| = 1 if and only if cR, +1 D (I : b).
Since R, is a valuation ring, ¢R, + 1 2 (I : b) if and only if T D (I : b) or
cRy 2 (I:b). So it is enough to note that I D (I :b) if and only if b ¢ I# or 1 € I,
and, cRy O (I : b) if and only if bcR, D I or ¢ ¢ p.
(2) is obvious. O

Lemma 6.1.4. Given (r,a,v,9),(r",a’,7',8') € R* we can compute n € N and
(ri,ai,vi,0;) € R* for 1 <i < n such that
(p, 1) = (r,a,7,9) and (p,I) |= (r',d,~/,d")
if and only if
(p, 1) = (ris ai, i, i)
for some 1 <i <mn, and,
(p7 I) ': (707 a? 57 ’Y) and (p7I) ): (’r/7 a/7 5/77/)
if and only if
(p7 I) ': (/rivaiv 61772)
for some 1 <i <n.
Proof. Let v, uy,us, B,v1,v2 € R be such that ra = r'uy, r’(a—1) = rug, af = a'vy
and a’(8 — 1) = ave. Then one verifies easily that
(p, 1) = (r,a,7,0) and (p,]) = (r',a’, 7, 0")

lf and Only lf (pvl) ): (Ta Cl/,Oé,B’Y’}/,Oéﬁé(s/), (pa I) ': (’/‘, Cl,Oé(ﬁ - 1)77/a Oé(ﬁ - 1)66/)a
(pa I) ': (T/a a/a (Oé - 1)677,7 (a - 1)565,) or (pa I) }: (7’/, a, (Oé - 1)(/8 - 1)77,7 (O[ -
1)(B —1)65"). 0
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Lemma 6.1.5. Given (r,a,7,5) € R* and A\ € R\{0}, we can compute n € N and
(rj,a5,7;,0;5) for 1 < j <n such that, for all prime ideals p < R and ideals I < Ry,

e (p,A\) | (r,a,7,0) if and only if (p,I) = (rj,a;,7;,0;) for some 1 < j <n
and

o (p, M) = (r,a,6,7) if and only if (p,I) = (rj,a;,05,7;) for some 1 < j <n.

Proof. Let a, u,v, 5,u’',v" € R be such that ra = Au, A(a — 1) = rv, aff = M/ and
AMB-1) = av'. By[p.1.2 (p,\]) |= (r,a,v,6) if and only if (p, \I) = (r, a, aBy, aB6),
(pa)‘I) ': (7”, a,Oé(B - 1)’%0‘(5 - 1)6)7 (paAI) ': (Taav (a - 1)677 (a - 1)55) or
(0, M) = (rya, (@ = 1)(B — 1)7, (= 1)(B — 1)d).

It is straightforward to see that:

If ¢ p then rR, D AI if and only if uR, 2 I.

If a—1¢pthen rR, O Al

If B ¢ p then a € Al if and only if «’ € I.

If 3—1¢pthen a € A if and only if 1 € I and v’ ¢ p (and hence v’ ¢ I7).

Recall that, since A # 0, (\[)# = I#. Therefore, (p,\) = (r,a,7,d) if and
only if (p,I) = (u, v, aBy,afd), (p,I) E (u,1,a(B — 10"y, (B — 1)v'6), (p,]) =
(L', (a=1)By, (a=1)Bd) or (p,I) = (1,1, (a=1)(B—1)v"y, (a=1)(B-1)vd). O

Lemma 6.1.6. Given (r,a,v,0) € R*, we can compute n € N and (rj,rja;,7;,6;)
for 1 < j < n such that for all prime ideals p < R and ideals I < Ry,

i (pﬂI) ): (r,a,’y,(S) Zf and Only Zf (paj) ': (Tj’rjajvvjaéj) fOT somel < j<n
and

o (p,I) = (r,a,9,7) if and only if (p,I) |= (rj,75a5,05,7;) for some 1 < j <n.

Proof. It a = 0 then (r,a,7v,d) = (r,r-0,7,9) is already of the required form. So
suppose a # 0.

Let a,u,v € R be such that aoc = ru and r(a — 1) = av. By (p,I) E
(r,a,7,0) if and only if (p,I) = (r,a,va,0a) or (p,I) = (r,a,v(a — 1),0(a — 1)).
Since aa = ru, (p,I) | (r,a,y,0a) if and only if (p,I) E (r,ru,ya,da). Since
rla—1)=av, (p,I) E (r,a,y(a —1),8(a — 1)) if and only if (p,I) | (av, a,y(a —
1),6(a—1)). Now, since a # 0, avR, 2 I and a € I ifand only if v ¢ p, aR, 2 I and
a€l. So (p,I) [ (av,a,v(a—1),6(a — 1)) if and only if (p,I) = (a, a,yav, daw).

Therefore (p,I) = (r,a,v,0) if and ounly if (p,I) = (r,7v,v,da) or (p,I) |E
(a,a,v(a — 1)v,0(ax — 1)v). The same argument shows that (p,I) E (r,a,d,7) if
and only if (p,I) = (r,rv,da,va) or (p,I) E (a,a,0(a — 1)v,y(a — 1)v). O

Proposition 6.1.7. Given an auziliary sentence Z and A € R\{0}, we can compute
n € N and (r;,7;a5,7;,0;) € R* for 1 < j <n such that, for all prime ideals p < R
and ideals I < Ry,

o (0. I) = (rj,rja5,7v,0;) for some 1 < j <n if and only if Ry/A\ = E, and
o (0, I) = (rj,rja4,05,7;) for some 1 < j <n if and only if R,/\I = D=.
Proof. Let = be the sentence
l/

l
/\ di|17/1;:0| =1A /\ |zbi:0/ci|7;‘ =1.

i=1 =l

Using@and@ we can compute n; € N for 1 <14 <l and s;5,b;;, 95, hij € R
for 1 <4 <land 1< j <n,;such that for all prime ideals p << R and ideals I < R,
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e R,/I =Eif and only if (p,]) = /\Z 1\/] 1(845,bi5, gij, hiz), and

e R,/I = D= if and only if (p,]) = /\Z 1 VL (sigs bigs hig, gij)-
Therefore, for all prime ideals p << R and ideals I < Ry,

e R,/I = E if and only if

l
pDE N\ (Sic(i): bic(i): Gio(i): hio(i)), and
o:{1,...,[}—>N i=1
o(i)<n;

e R,/I |= D= if and only if

l
(p71) ): \/ /\(Sia(i)abia(i)ahio’(i)7gia(i))'

o:{1,...,[}>N =1
o(i)<n;

We can use to replace the conjunction /\i 1(Sic(i)s bio(i)s Gio (i), Mio(i)), for
each o, by a dlSJunCthH to produce and (s/,,b ;.9 ., 0/ ,) for 1 < k < m, such
that

e R,/I =Eif and only if (p,I) = (8,0 1, G0k, hly) for some 1 < k < m,, and

e R,/I = D= if and only if (p, 1) = ()4, 0., Ry g5 for some 1 <k < m,.
Applying [6.1.5( to each (s, by, hoys 9or), Wwe compute m € N and (r}, a}, v, 6%)
for 1 < j < m such that

e R,/M = Zif and only if (p,I) = (r],aj,'y’ 67) for some 1 < j < m, and

e Ry/Al |= D= if and ouly if (p,I) = (7] j,§;,'y]) for some 1 < j < m.
Finally, applying m to each (r%,af,;, (5j), we can compute n € N and
(rs,1mia4,7i,0;) for 1 <4 < n such that

o Ry/M == if and only if (p,I) = (ri, rias, Vi, 0;) for some 1 < i <n, and

e R,/ = D= if and only if (p,I) = (r;, a4, 0;,7;) for some 1 < i < n. O

6.2. Simplification of ¢/v(R,/AI) and ¢/v(I/AR;).

The results of this subsection are used in sections [7] and [§] In this subsection, we
no longer need to worry about stability under duality.

Remark 6.2.1. Let a,b € R\{0} and a,u,v € R be such that acc = bu and
b(a — 1) = av. For prime ideals p < R and ideals I < R,
o a bl if and only if (p,I) = (L,u,a,1) or (p,I) = (1,1,v(ee — 1),1), and,
e aRy, Dbl if and only if (p,I) = (v,0,a,1) or (p,I) = (1,0, —1,1).
Lemma 6.2.2. Let R be a recursive Prifer domain and A € R\{0}.
(a) Given d € R, we can compute finite sets Si,S2,95 C R*, p : U?:l S; —
{1,2,3} and s : U?:1 S; — R such that for all q € U?:1 Si, @ € Sy, and, for
all prime ideals p < R and ideals I < Ry, there exists q € Ule S; such that

(0. I) = q, and
|Ry/s()I|, if (p,1) = q and p(q) = 1;
|dle/o=0(Ry /AI)| := q [s(q)Ry/I|, if (p,1) | q and p(q) = 2;
1, if (0, 1) = q and p(q) =3

Furthermore, if (p,I) = q for some q € Ui:1 Si and p(q) = 1 (respectively
p(q) =2) then s(q) # 0 (respectively s(q)Ry, 2 I).
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(b) Given b,c € R, we can compute finite sets Si,...,S5 C R*, p : U?Zl S; —
{1,...,5} and s : U?Zl S; — R such that for all q € U?Zl Si, 4 € Sy, and,
for all prime ideals p < R and ideals I < Ry, there exists q € Ule S; such that

(p,I) Eq, and
|Rp/M[,  if (p,I) Fq and p(q) =1;
|Ry/cRyl, if (0, 1) = q and p(q) = 2;
|#0=0/c|a(Ry /AI)| := q [I/bI], if (0,1) = q and p(q) = 3;
L, if (0, 1) = q and p(q) = 4;
[I/s(q)Rpl, if (p,I) = q and p(q) = 5.

Furthermore, if (p,I) | q for some q € U?:1 S; and p(q) =5 then s(q) € I.
Moreover, if b = 0 then we may assume that S3 = Sq4 = S5 = 0.

Proof. (a) If d = 0 then dlz/z—o(N) = 0 for all R-modules N. So set S; = Sy =0,
Ss :={(1,0,1,1)}, p((1,0,1,1)) = 3 and 5((1,0,1,1)) = 1.
Suppose d # 0. Let o, u,v € R be such that da = Au and Ao — 1) = dv.
o If (p,I) Eq1 :=(1,0,a0 — 1,1) then
[ls/amo( Ry [AD)| = |dRy /dvl| = | Ry /01
o If (p,I) = ¢2 := (u,0,x, 1) then by definition uR, D I, and,
[lsamo( Ry /AD)| = [NuRp /M| = [uRy /1].
o If (p,I) = g3 := (1,u, 2, 1) then d € AI and hence |dz/z=0(R,/\])| = 1.
For all prime ideals p < R, either o ¢ p or o — 1 ¢ p, and, for all ideal I < R, either

uR, 2 I or u € I. Therefore for all prime ideals p < R and ideals I <1 R, either

D) Eaq, (0, ) Egeor (p,I) = qs3. Set S; :={¢;} for 1 <i < 3. If v =0 then
a—1 = 0. Therefore if there exists (p, ) = g1 then v # 0. So we can set s(q1) := v
if v+0and s(q1):=1if v=0. Set s(¢g2) := u and s(g3) := 1.

(b) For all prime ideals p < R and ideals I < Ry,

(AL :b)+cR,
cRy + A1
First suppose b = 0. If ¢ € AI then |[¢b=0/c|z(R, /)| = |R,/AI|, and, if cR, O AI
then [26=0/c|a(Ry /AI)| = |Ry/cR,|. We can use[6.2.1]to compute finite sets Sy, Sz C
R* such that for all prime ideals p < R and ideals I <1 Ry, there exists g € Sy such
that (p,I) = ¢ if and only if ¢ € AI, and, there exists ¢ € Sy such that (p, ) = ¢ if
and only if ¢cR, D A. Set S5 =S4 = S5 = 0.

Now suppose b # 0. If bR, D Al then

(750t Ry JAT)] = \

(M :b) +cRy| | M+ bcR,
’ cRy+ X | |beRy, +bA |’
So
|Ry /A,  ifb,ce M;
|Ry/cRy|, ifbe Al and cR, D A,
|#0=0/c|a(Ry /NI)| := ¢ |I/bI], if bR, D AI and ¢ € A,

1, if bcRy, 2 AI;
[AXI/bcRy|, if bRy, O AI, cR, O Al and bc € M.
Therefore it is enough to compute:
e Sp such that b, c € AI if and only if there exists ¢ € S7 such that (p,I) | g,
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e S, such that b € Al and cR, D Al if and only if exists ¢ € S such that

(b, 1) =4,

e S3 such that bR, D Al and ¢ € AI and if and only if exists ¢ € S3 such that
(1) Eq,

e S, such that beR, D Al if and only if there exists ¢ € Sy such that (p,I) = g,
and,

e S5 and for each ¢ € S5, s4 € R such that bR, D AI, cR, O Al and bc € A\I
if and only if there exists ¢ € S5 such that (p,I) = ¢ and such that, in this
situation [#v=0/c|z(Ry /)| = |I/sqR,]|.

It is easy to compute S,. .., Sy using and
Let €,7,s be such that bce = As and A(e — 1) = ber. By bc € AI if and
only if (p,I) = (1,s,¢,1) or (p,I) = (1,1,7(e —1),1). If bR, D AI, cR, D Al and
(b,1) = (1,56, 1) then
[#5=0/ela(Ry /AD)] = NI fbcRy | = |1/5Ry

Use and to compute S§ such that (p,I) = ¢ for some ¢ € S if and only
if bR, D A, cR, D Ml and (p,I) = (1, s,¢,1).
If (p,I) = (1,1,7(e — 1), 1) then I = R, and

|#6=0/cl(Ry /AI)| = |\I/bcRy| = [I/1R,| .

Let SY := {(1,1,r(e — 1),1)} and let S5 := SL U SY. Set s(q) := s if s € S§ and
s(q) :=1 otherwise. Note that in both cases, by definition, s(q) € I. O

Proposition 6.2.3. Let R be a recursive Priifer domain, A € R\{0} and Z a finite
subset of pp-pairs of the form =v=0/cjz and dlz/z=0 with b,c,d € R. Let

Ty ={p:Z—{1,...,5}| foralldlz/z=0€ Z, p(dlz/z=0) < 3}.

We can compute Sz a finite subset of R*, py : Sz — Ty and sy : Sz x Z — R
such that for all prime ideals p < R and ideals I < Ry,

(a) there exists ¢ € Sz such that (p,I) = g;
(b) (1) if p2(q)(@2fa=0) — 1 then [d1z/s=o(Ry/AD)| = | Ry /52 (q, ds/z=0)1;
(2) if pz(q)(dle/z=0) = 2 then |dz/e=0(R,/A])| = |sz(q, de/z=0)Ry /I|;
(3) if p2(q)(efa=0) = 3 then |dls/azo(Ry/N)| = 1;
(¢) (1) if p2(@)(#=9/ciz) = 1 then [+9=0/cls(Ry/ND)| = | Rp/A];
(2) if ngqggbeO/CII = 2 then |0=0/c|o(Ry, /AI)| = |Ry/cRy|;
(9)(
)(

) )

) )
(3) ’prZ q zbzo/chv) = 3 then |zb:o/c\z(Rp/)\I)| = |I/bI|,
(4) if pz(q)(zb=Y/c|z) = 4 then |[#6=0/c|z(R,/NI)| = 1; and

(5) if pz(q xb:o/ckc) =5 then |$b:0/c\x(Rp/)\I)| = |I/Sz(q,mb:0/c\x)Rp|.

Furthermore, for all prime ideals p < R and ideals I < Ry, if (p,I) = q and
pz(q)(dlz/z=0) = 1 (respectively pz(q)(dz/e=0) = 2) then sz(q,dl=/z=0) # 0 (re-
spectively sz(q,41e/z=0)Ry, D I), and, if (p,I) = q and pz(q)(*0=9/c|z) = 5 then
sz(q,®0=0/¢|z) € I. Moreover, if b =0 then we may assume pz(q)(**=0/c|z) € {1,2}
forallq € Sy.

Proof. We prove the proposition iteratively. Let A € R\{0} and Z be a finite set
of pp-pairs of the form #v=0/c| or dlz/z—0. If |Z| = 1 then gives the required
result. Suppose that Sz, pz and sz are as in the statement. We construct Sz, pz
and sz for Z' = Z U {¢/v} where ¢/y is either of the form dl#/z=0 or b=0/c|z and
ely & Z.
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Let S1,...,S55, s: UleSi — Rand p: U?ZlSi — {1,...,5} be as in [6.2.2] (1)
or (2), as appropriate (if ¢/y is of the form dlz/z=0 then set Sy = S5 = ). By
for each ¢ € Sz and p € S;, we can compute a finite set S, ,; C R* such that for all
prime ideals p < R and ideals I < Ry, (p,]) = q and (p,I) |= p if and only if there
exists § € Sy, such that (p,1) |= ¢. Let Sqi := Upes, Sqp.is let Sy = U7_; Sqi
and let Sz == cg, Sq-

For all prime ideals p <t R and ideals I <1 R, by assumption, there exists ¢ € Sz
such that (p,I) = ¢ and, by there exists 1 < ¢ < 5, such that (p,I) = ¢ for
some ¢’ € S;. Therefore, (p, I) |= ¢” for some ¢” € Sy; C Sz/. So (a) holds for Sz .

Define pz: : Sz — Tz by setting

(q)(o)r) = | Rtz (@) [ ¢ € S, if o/r € Z;
Pz \q : min{l <i <5 |q €S, for some q € Sz}, if o/ = ¢/u.

For o/r € Z, set sz/(q',°/r) to be sz(g,7/7) for some ¢ € Sz where ¢’ € S, and
pz () (e/r) = pz(q)(e/r). For ¢ € Sz, set sz (¢, %/v) to be s(p) for some p € S;
where j = pz/(¢')(¥/v) and ¢’ € Sy p ;.

Now, for o/r € Z, properties (b) or (c), as appropriate, are inherited from those
properties holding for pz and sz and for ¢/4, properties (b) or (c), as appropriate,
are inherited from p and s. |

Lemma 6.2.4. Let R be a recursive Prifer domain and A € R\{0}.

(a) Given b,c € R, we can compute finite sets Sy1,...,8¢ C R*, p: U?Zl S; —
{1,...,6} and s: U?:l Si = R such that for all q € U?:l Si, 4 € Sy, and,
for all prime ideals p<<R and ideals I <R, with A € I, there exists q € U?:1 Si
such that (p,I) = q, and

[T/ARp|,  if (p,I) = q and p(q) = 1;
|I/CI‘7 Z:f(pal)':qandp(Q):Z'
ob=0fia(TAR)|s= [T/ Vel ) g o) =
Is(@)Ry/I|, if (p,1) [ q and p(q) = 5;
|Ry/s(q)I|, if (p,]) = q and p(q) = 6.

Furthermore, if p(q) =5 and (p,I) = q then s(q)R, 2 1.

(b) Given d € R, we can compute finite sets S1,S2 C R*, p : Ule S, — {1,2}
and s : U?Zl S; — R such that for all q € U?Zl Si, @ € Syq), and, for all
prime ideals p <A R and ideals I < R, with X € I, there exists q € Ule S; such
that (p,I) = q, and

|dlz/e=0(I/ARy)| := { |OI,/5(Q)Rp|7 Z Egzg Eg Zzg ggg; = ;,

Furthermore, if p(q) =1 and (p,I) |= q then s(q) € I.

Proof. (a)Let a,r,s € R be such that Ao = ber and be(ov — 1) = As.
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Claim: If \ € I then

II/AR,|, if (1) bI C AR, and I C ARy;
|I/cI|, (2) bI C AR, and X € cI;
_ |Rp/bRp| (3) A € bl and ¢ C ARy;
xb=0/.|,. —
[#=0f el (I /AR )| if () Aebl,\ecl,reandadp;
|TRP/I| (B) Aebl, xecl, "R, 21 and a ¢ p;
|Ry/sI|, (6) xebl,xeclanda—1¢np.

Note that
(ARp :b)NI+cl
cl + AR,

For all a € R, a € anng(I/AR,) if and only if al C AR,. Therefore, the equalities
for conditions (1) and (2) hold. If A\ € bI C bR, then b # 0 since A # 0 and
(AR, : b)) NI/AR, = R, /bR,. So the equality for condition (3) holds.

When proving the equalities for (4), (5) and (6), we may assume b # 0 and ¢ # 0
since A # 0, A € ¢l and X\ € bl. Moreover,

|#6=0/c|z(I/ARy)| = |(ARy : b) + cI/cI| = |ARy, + bel /bl .

If a ¢ p and r € I then X € bel. So the equality for condition (4) holds.

Suppose condition (5) holds. Then « ¢ p implies AR, = berR,,. Since rR, D I,
|©6=0/c|x(Ry /AI)| = |rRy/I|. So the equality for condition (5) holds.

Suppose condition (6) holds. Since a — 1 ¢ p, bel = AsI. So (AR, + bel) /bel =
R, /sI. So the equality for condition (6) holds. So we have proved the claim.

leen a finite set of conditions of the form S ¢ p, a € AI or aR, D AI, using
and [6.2.1} - we can compute a finite set S C R* such that (p,I) satlsﬁes these
condltlons if and only if (p,I) | ¢ for some g € S. So for each conditions (i) for
1 <4 < 6 in the claim, we can compute S; C R* such that (p,I) satisfies (i) and
A € I if and only if there exists ¢ € S; with (p,I) | ¢g. Moreover, it is easy to see
that, for all prime ideals p <t R and ideals I <1 R, there exists 1 <4 < 6 such that
(p,I) satisfies (7). Let p: UZ 1Si = {1,...,6} be such that ¢ € S,(,. Finally, set
s(a) = 1if plg) < 4, s(q) = 7 if plg) = 5 and 5(q) = 5 if plq) = 6.
(b) The case d = 0 is done as in Suppose d # 0. Let a,r,s € R be such
that do = Ar and A(a — 1) = ds. If either a ¢ p, or, « —1 ¢ p and sR, D I
then AR, D dI. If « —1 ¢ p and s € I then dI D dsR, = AR,. Since d # 0,
dI/dsR, = I/sR,. Therefore

|#0=0/cla(I/ARy)| =

1 if (p,I) E(1,0,a,1);
dl + X ’ )i
iefomal /AR = | T = L i (p.1) = (5,00~ 1,1);
r [I/sRy|, if (p, 1) = (1,5, —1,1).
It is now clear how to define, S1,S2, p and s. (]

Proposition 6.2.5. Let R be a recursive Priifer domain, A\ € R\{0} and Z a finite
subset of pp-pairs of the form v=0/cjz and dlz/z=0 with b,c,d € R. Let

={u:7Z —{1,...,6} | p(dlz/z=0) < 2}.
We can compute Sz a finite subset of R*, pz Sz =Tz and sz : Sz x Z — R
such that, for all prime ideals p < R and ideals I Q R, with A € I, if (p,I) = q for
some q € Sz then A € I, and, if A € I then

(a) there exists ¢ € Sz such that (p,I) = g;
(b) (1) i pz(q)(4lzfz=0) = 1 then |dl=/s=0(I/ARy)| = |I/57(q, ¥I*/2=0) Rm|;



DECIDABILITY FOR THE THEORY OF MODULES OVER A PRUFER DOMAIN 39

(2) if p2(q)(dirfa=0) = 2 then |dls/a=o(I/ARy)| = 1;
(¢) (1) if p2(@)(#=9/cie) = 1 then [+4=0/cls(I/ARy)| = [I/ARy ;

(2) if pz(q)(#b=0/c|z) = 2 then |zb=0/c|z(I/AR,)| = |I/cI|;

(3) if p2(@)(#=0/ela) = 3 then [s=0/cta(I/ AR, )| = | Ry /bRy :

(4) Zf pZ(q)(«”b:O/qx =4 then |wb:0/c\x I//\Rp)l =1,

(5) if p2(@)(#=clz) = 5 then [v=0/cla(I/ARy)| = |3(q, #=cls) Ry /1|; and

(6) if p2(@)(#5=clz) = 6 then [+b=0/cla(I/ARy )| = |Ry/s(q, #=0/cte)1].
Furthermore, for all prime ideals p <R and ideals I ARy, if pz(q)(dz/z=0) =1 and
(p,I) = q then sz(q,d=/z=0) € I, and, if pz(q)(#0=0/c|z) =5 and (p,I) |= ¢ then
Sz(q, d|m/ac:0)Rp DI

Proof. This can be proved similarly to by replacing by The extra
condition that (p,I) = ¢ for some ¢ € Sz implies A € I can be incorporated using

since (p,I) = (1,A,1,1) if and only if A € I. O

7. FINITE MODULES

~—
PGy

In this section we investigate the consequences of EPP(R) being recursive, and of
EPP(R) and the radical relation being recursive. In particular, we show that for a
recursive Priifer domain the theory of R-modules of size n is decidable uniformly
in n if and only if EPP(R) is recursive,

Observe that finite modules over a Priifer domain R are finite direct sums of
modules of the form R,/I where p < R is a prime ideal and I < R, is an ideal.
There are many ways of seeing this. If M is finite then M is pure-injective. So, by
and there exist prime ideals p; < R and uniserial Ry,-modules U; such
that M is elementary equivalent, and hence isomorphic, to @} ;U;. The desired
result now follows from 2.3.7

Let W be the set of tuple (f,9,a,7) where
(i) f:X — N where X := XU {x}, Xp is a finite subset of R and « ¢ R,
(ii) ¢:Y — N where Y is a finite subset of R,
(iii) @ := (a1,...,ay) is a tuple of length m € N of elements of R, and v € R.
Let V be the set of (f,g,a,v) € W such that, for some h € N and for 1 < i < h,
there exist a prime ideal p; and an ideal I; <« Ry, such that a; € I; for 1 <j <m
andlgifh,7§épia
| @]y Ry, /Li| = f(),
| EB?:I Rpi/eRPi‘ = f(e) for e € X
and
| @) Ry, /eRy,| > g(e) for e€Y.
We write (p;, I;)1<i<n E (f,9,a,7). By convention, § = (f,g,a,v) if f(e) =1 for
all e € X and g(e) =1 for all e € Y and in this situation, (f,g,a,v) € V.

As in W denotes the bounded distributive lattice generated by W and V
denotes the (prime) filter in W generated by V.

Let Wy be the subset of elements of the form (f,0,a,~) with |Xo| < 1 and let
W1 be the subset of elements of the form (f,(,@,~) where, in both cases, () denotes
the function from the empty set to N. Let Wy, respectively W1, denote the lattice
generated by Wy U {T, L}, respectively W7 U{T, L}, in W.

(81 The letter “W” is chosen to match the notation in subsection 4.2.
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Lemma 7.1. Let R be a recursive Prifer domain. There is an algorithm which
giwen w € W1 returns u € Wy, such that w € V if and only if u € V.

Proof. Define clx(f,0,a,7) := (|Xo|,[[.cx, f(e)) and order Ny x N lexicographi-
cally. For any w € Wiy with |Xo| > 1, we show how to compute u € W; with
clxu < clxw such that w € V if and only if w € V. We can then apply the same
process to those components of u which are not already in Wy; since the lexico-
graphic order on Ny X N is artinian, this is sufficient to prove the lemma.

Suppose w = (f,0,a,~) where f: XoU {*} = N and | Xy| > 0. Take e1,e2 € Xp
non-equal. Let a,r,s € R be such that eya = ear and eg(a — 1) = e1s. Let Q be
the set of pairs of functions (f1, f2) such that f; : X U{r} = N, fo: XU {s} - N
and

(1) fi(e)fa2(e) = f(e) for alle € X,
(2) fl(el) = f1(€2)f1(7°), and
(3) fa(e2) = faler)f2(s)
Let u be
L (flxopngeny 0,@70) T (f2l (xUgsh\(eay 0, @ v(e — 1))
(f1,f2)€EQ
f1(e2)#1, fa(er)#1
L |_| (f1|X\{€2}7®,a, 627(1) 1 (fZ‘(XU{S})\{e2}’®7E7fY(a— 1))
(f1,f2)€Q
fi(e2)=1,fa(e1)#1
H L (fil(xugrpvdenys 0:@va) N (falx\fer}, 0, @ ery(e — 1))
(f1,f2)€Q
J1(e2)#1,f2(e1)=1
( |_| (f1|X\{e2}, 0,a, eaya) M (f2|X\{el})(2]7a’ ery(a—1)).
(f1,f2)€Q

fi(e2)=1,fa2(e1)=1

Claim: w € V if and only if u € V.
For all prime ideals p < R, o ¢ p implies e1 R, = ejaR, = earRy, and o —1 ¢ p
implies ea Ry, = ea(ov — 1)R, = e15R,. So, o ¢ p implies

|Rp/erRy| = |Ryp/e2Ry| - Ry /TRy
and o — 1 ¢ p implies

|Rp/e2Ry| = [Ryp/e1Ry| - |Ry/sRy|.
Suppose that p; << R is a prime ideal and [; < Ry, is an ideal for 1 < i < h such
that (pi, Li)i<i<n = (f,0,a,v). By reordering, we may assume that o ¢ p; for
1<i<hWanda—1¢p for " +1<i<h Let fi(x) :=|®", Ry, /L] and
fa(x) :==] @?:h,ﬂ Ry, /L;]. For each e € XoU {r}, let fi(e) = @?;1 Ry, /eR,,| and
for each e € Xo U {s}, let fao(e) = | ®l,, .y Rp,/eRy,|. It follows from the first
paragraph of the proof of this claim that (fi, f2) € Q.

If f1(e2) # 1 then
(pi, Li)r<i<n E (Filxugrp\fenys 9, @ va)

and if fo(eq) # 1 then

(pis Ii)h’+1§i§h = (f2|(XU{s})\{62}a 0,a,v(a—1)).
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We explain the first statement. By definition of fi, fi(*) := | @, Ry, /I;| and
file) = | @, Ry, /eRy,| for all e € Xo U {r}. Since (p;, L;)1<i<n = (f,0,a,7),
vé¢p;forl <i<handai,...,an, € I; for all 1 <i < h where @ = (a1,...,am)-
By definition of (p;, I;)1<i<n, o ¢ p; for 1 < i < h'. Thus ey ¢ p; for 1 <i < h'.
Therefore (p;, I;)1<i<n = (fil(xuir\ferys 9, @ va).

By definition, if fi(es) = 1, then eq ¢ p; for 1 < i < b/ and if fo(e;) = 1 then
er € p; for ¥ +1<i<h. Soif fi(ez) =1 then

(pis Ii)r1<i<n B (filx\{ez}, 0, T exvar)
and if fa(e1) =1 then
(pia Ii)h’+1§i§h ': (f2|X\{61}7 ®7a7 617(04 - 1))

So we have shown that if w € V then one of the components of the join defining u
is in V and hence u € V.
Conversely, take (f1, f2) € 2. Suppose fi(e2) # 1 and

(pis Ii)r<i<n B (fil(xuppnfeys 0, @, ya).
Since a ¢ p; for 1 < < K/,
S\ Ry fer Ry, | = S\ Ry feaRy | |©11 Ry, /rRy | = falen) - i) = faler)

by definition of Q. So (p;, I;)1<i<n’ = (f1,0,a,7).
Suppose that f2(e1) =1 and

(95, Ji)1<i<n F (f2lx\fer}, 0, @ e1y(a = 1)).

Then
(qia Ji)lﬁiﬁh” ’: (f27 (Z)vaa ’V)
because e; ¢ q; for 1 <i < h” implies

@?;Iqu/elRQi =1= fi(e1).
So, setting p; := q;_ps and I; := J;_ps for B +1<i < h' +h" = h,

(pi, Li)1<i<n = (£,0,3,7)
because fi(e)fa(e) = f(e) for all e € X. We leave the case fi(es) # 1 and fa(ey) #
1, the case fi(ez) = 1 and fa(e1) # 1 and the case fi(ea) = fa(ez2) = 1 to the
reader.
Claim: clxu < clxw
We show that each of the components, ', of the lattice combination defining u
have clxu’ < clxw. We only consider the components involving f7; the result for
those involving fo follows similarly.
If fi(ez2) = 1 then clx(f1]x\{es}, 0, @, e27) < clxw since |Xo| > |Xo\{ea}|. If

fl(eg) > 1 then

fi(r)  file2)fr(r)  filer)

fler)  filea)f(er) — filea)f(er)
since fi(e1)/f(ex) < 1. So

pee IT s@<ae) I1 f@=£5 I f@ < T s

z€Xo\{e1} z€Xo\{e1} z€Xo z€Xo

<1

Therefore clx(f1|(xuirp\{er}s 9, @ va) < clxw. O
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Lemma 7.2. Let R be a recursive Prifer domain. If EPP(R) is recursive then
there is an algorithm which given w € W1 answers whether w € V' or not.

Proof. Let w = (f,0,a,v) and suppose that Xo = {e} i.e. w € Wy. Let P be
the set of prime divisors of f(%) - f(e). If P is empty then f(x) = f(e) = 1 and
hence w € V. Otherwise, for each p € P, let n, € Ny and m, € Ny be such that
f(x) = Il,epp™ and f(e) = [[,cpp™». For any prime ideal p <9 R, e € R and
ideal I < Ry, if |Ry/eRy| (respectively |R,/I]) is finite then it is a power of |R/p|.
Thus both |R,/eR,| and |R,/I| are prime powers. Hence w € V if and only if
(p, np; @;v;e,myp) € EPP,(R) for all p € P.

If w € Wi then by we can compute w € Wy such that w € V if and only
if w € V. Therefore, by the previous paragraph there is an algorithm which, given
w € Wy answers whether w € V or not. O

Corollary 7.3. Let R be a recursive Prifer domain with EPP(R) recursive. There
is an algorithm which given r,a,v,0 € R, n €N, e; € R for1<j <n, N €N and
N; €N for1 < j <n, answers whether there exist h € No, prime ideals p; < R and
ideals I; < Ry, for 1 <1 < h such that

(1) (plajl) ': (Tvavﬁya(s) fOT’ 1<i< h7

(2) |69?:1Rpi/li| =N, and

(3) |®I Ry, /e;Ry,| = Nj for 1 <j<mn.

Proof. Applying we may reduce to the case where a = ra’. We may also
assume 1 # 0 since (p,I) = (0,b,7,6) implies I = 0 and hence |R,/I| = |R,|
which is infinite.

For any prime ideal p < R and ideal I < Ry, (p, 1) |= (r,rd’,v,6) if and only if
there exists J <9 R, such that I = rJ and (p,J) = (1,d/,7,d). Note that, because
R is a domain, |R,/rJ| = |Ry/J| - |Ry/TR,|.

Therefore, there exist h € Ny, prime ideals p; <R and ideals I; <Ry, for 1 <i < h
satisfying (1), (2) and (3) if and only if there exist N/, N” € N with N'- N” = N,
h € No, prime ideals p; << R and ideals J; << Ry, for 1 <7 < h such that

(a) (ps,Ji) E(1,a',7,0) for 1 <i < h,
(1) |6y By, /] = N', and
(c) |@f1Rp, /TRy, | = N", |} Ry, [ejRy,| = Nj for 1 < j <n.

By there is an algorithm which answers whether there exist h € Ny, prime

ideals p; < R and ideals J; < Ry, for 1 < ¢ < h satisfying (a),(b) and (c). O

Proposition 7.4. Let R be a recursive Prifer domain such that EPP(R) and the
radical relation are recursive. There is an algorithm which, given (f,g,a,v) € W,
answers whether there exist h € No, prime ideals p; and ideals I; <<R,, for1 <i < h

such that (pi, I )1<i<n = (f,9,8,7).

Proof. Suppose (f,g,a,v) € W.
Case Y = ): This is
Case |Y| = 1: Suppose that Xy := {e1,...,e,} and ¥V := {e}.

If ’YH;L:1 e; ¢ radeR then there exists a prime ideal p such that e; ¢ p for
1<j<n,vy¢pandecp. Then |R,/e;R,| =1for1<j<mnand|R,/eR,| > 1.
So (pi, Li)1<i<n E (f,0,a@,~) if and only if (p;, I;)1<i<n = (f,9,a,7) where b/ :=
h+g(e), and, p; :=p and I, := R, for h < i < g(e). So (f,g,a,v) € V if and only
if (f,0,a,v) € V. So we are now in the situation of case Y = ().
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If v [T}, e; € rad eR then there exist | € N and r € R such that (y[]_ e;)' =
er. Thus, for all prime ideals p with v ¢ p, |Ry/eRy| < [[j_, |Ry/e;Rp|'. Therefore
(0s, Li)1<i<n = (f, g,@,y) if and only if there exists f' : X U{e} — N where f'(z) =
f(z) for all w € X and g(e) < f'(e) < TIj_, f(e;)" and (ps, Li)1<i<n b= (f',0,@,7).
Since the set of f’ is finite and computable, we are now in the situation of case
Y =0.

Case |Y| > 2: We show how to reduce to the situation where |Y| < 1. By
we may assume that g is a constant function. Take e;,es € Y non-equal. Let
a,r,s € R be such that e;a = eor and ea(aw — 1) = e1s. Since for all prime ideals

p < R, either a ¢ pora—1¢p, by[d.1.1] (f,g,a,v) €V if and only if

|_| (flaglaaaav)l_l(f2792767(a_]‘)7)GV'
(f1:f2,91,92)€Qy 4,2

Note that if g is constant then g; and g are constant for all (f1, f2, 91, 92) € Qf 4.

For each (f1, f2, 91, 92) € Qy 4, either |Y1] < [Y]or e, es € Y;. In the first case we
are done. In the second, (f1,g1,a,ay) € V if and only if (f1, g1|yv,\{e,}, @ @y) € V.
This is because, for all prime ideals p with « ¢ p, |Ry/e1Ry| > |Rp/e2R,| and
hence if |Ry/eaRp| > gi1(e2) then |R,/e1Ry| > gi(e2) = gi(e1). So we may replace
(f1,91,@,a7) by (f1,91lv,\{e1}> @ @y). A similar argument shows that either |Y| <
|Y'| or we can replace (f2,g2,@, (a — 1)7) by (f2, 92|v1\fes}, @ (0 = 1)7). O

Corollary 7.5. Let R be a recursive Priifer domain with the radical relation and
EPP(R) recursive. There is an algorithm which given r,a,v,d € R, n,n’ € N,
ejERforlgjgn,e;-ERforlngn’,NEN,NjENforlngnand
NJ'- € N for 1 < j < n’, answers whether there exist h € Ny, prime ideals p; < R
and ideals I; < Ry, for 1 <i < h such that

(1) (p:, I;) E (rya,v,0) for 1 <i<h,

(2) |®?=1Rpi/‘[i| =N,

(3) |®1_ iRy, /ejRy,| = Nj for 1 <j<n, and

(4) |@ia Ry, Jej Ry, | 2 Nj for 1< j <n'.

Proof. The proof is as in [7.3] but we use [7.4] in place of O

Theorem 7.6. Let R be a recursive Prifer domain. The theory of R-modules of
size n is decidable uniformly in n if and only if EPP(R) is recursive.

Proof. The forward direction is [3.2.10

Standard arguments using the Baur-Monk theorem and the fact that Tg is re-
cursively axiomatisable imply that the theory of R-modules of size n is decidable
uniformly in n if and only if there is an algorithm which, given N € N, pp-pairs ¢i/y;
and A; € N for 1 <14 < m, answers whether there exists M € Mod-R satisfying

= A,

() [e=efo=0] = N A\ |93/,
i=1

Unfortunately, we can’t directly apply the statement of [GLT19, 4.1] to reduce to
the case that the pp-pairs »i/y; are of the form dl#/z=0 or ©0=0/c|c with b,¢,d € R.
However, the proof of [GLT19) 4.1] can be easily modified to allow us to do this.
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Roughly speaking, starting with a sentence X of the form

l
(1) A

where A; € N and ¢:/+, is an arbitrary pp-pair for 1 < ¢ < m, each step of the proof
of [GLT19, 4.1] produces a finite set S of finite tuples of sentences (X1,...,Xx) as
in , but with the form of the pp-pairs involved progressively improved, such that
there is an R-module satisfying X if and only if there exist (X1,...,Xx) € S and
R-modules M; € Mod-R with M; | X; for 1 < i < k. In order to adapt the proof
to our situation, the reader just needs to note that, for each of the steps of the
proof of [GLT19| 4.1], if the initial sentence X is as in (ED, then the sentences X; in
the finite tuples (X1,...,X%) € S are of the same form as in (ED

Let N € N, Z be a finite set of pp-pairs of the form dlz/z=0 and #6=0/c|z, and
f:Z — N. Let X be the sentence

o=afa=o| = N A N\ [¢/s] = f(¢/0).

o/vEZ

‘Pi/d)il = A; A /\

i=l+1

¢i/w'i| > Az

Recall that every finite module over a Priifer domain is isomorphic to a direct sum
of modules of the form R, /I for some prime ideal p < R and ideal I < R,,.

Let Sz, pz and sz be as inwith A := 1. Enumerate Sz := {q1,...,¢m}
and let g; := (r;, 104,77, 0;) for 1 < i < m. By definition, for all prime ideals p < R
and ideals I < R, there exists 1 < ¢ < m such that (p,I) = ¢;. Therefore, there
exists M € Mod-R satisfying X if and only if there exist N; € Nand f; : Z - N
for 1 <i < m such that N = [[["| N;, for all ¢/y € Z, f(¢/v) = [[;~, fi(¥/+) and
there exist h; € N, prime ideals p;; < R and ideals I;; < Ry, for 1 < j < h; such
that, for 1 < ¢ < m,

(a)i (pij, Lij) F gi for 1 < j < h; and
(b)i
©5Ly Ry,y /Tij = |o=2/a=0| = N A\ |9/u] = fil#/w).
eo/veZ

Fix 1 <i<m, N; € N and f; as above. If r; = 0 and (p,I) = (r, ma4,7,0;)
then R, /I = Ry, which is not finite. Hence, (a); and (b), holds if and only if h; = 0,
N; =1 and f;(¢/y) =1 for all #/y € Z. So, we may assume that r; # 0. Note, by
if Ry /I is finite then I# = p. So, (p,I) = (ri,ria;,7i, ;) if and only if
I=r;J for some J <Ry, acJ,v¢pandd¢p.

Therefore h; € No, p;j < R and I;; < Ry, for 1 < j < h; satisfy (a); and (b); if
and only if for each 1 < j < hy, there exists J;; < Ry, such that I;; = r;Jij, a € Jyj,

¥6 ¢ p, |, Ry, /Iij| = Ni, and, for all dlz/a—0 € Z,

(1) if py(g:)(de/em0) = 1 then ‘ee;l;lRpij Js2(as, Aafo—0) I,
(2) if pz(g;)(dlz/z=0) = 2 then ‘@?;1Rp”/sz(qi,dlx/xzo)Rpij
(3) if p2(s)(@h5/o=0) = 3 then fi(dlefa=0) = 1:

and, for all ©0=0/c|z € Z,

(1) if p(qi)(#=0/elz) = 1 then fi(+b=0/clz) = Ni;

(2)) if pz(q:)(#0=9/c|z) = 2 then ’@?;1}3%/0}2%‘ = f;(#6=0/c|z);

= fi(dlz/z=0);
= fi(dl7/z=0) - Ny
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(3’ if pz(qi)(zbzo/da:) = 3 then ’@?1:11”/1)1”’ = fi(mb:O/Cm);
(£) IF () (=0/cte) = 4 then f,(=+=0/cts) = 1; and
(57) if pz(gi)(*0=0/clz) = 5 then ‘ F1 Ry, /52(a0)(w=0/cle) Ry, | = fi(v0=0)clz) - N;.
By definition pz(g;)(dl#/z=0) = 1 implies sz(g;,d*/z=0) # 0. So, if
pz(q;)(dz/z=0) = 1 then
‘@?;lRpij /SZ(C]i, dlm/wzo)‘[ij
= ‘@?;1Rpij /SZ (qiv dlx/wzo)RPij

hi
= ‘@jlePM /52(is d@/z:O)Rp”

@l sz (as, 2 fe=0) Ry, /52(as, Ao/e=0) 5

h;
: ’@j:IRPU/Iii

So (1) in the first list of conditions may be replaced by
(1*) if pz(ql)(tﬂf/zzo) =1 then ’@?7:1RP”/SZ(Q'L7 dlm/w:O)Rpij = fi(d|1/m:O) . Nifl.

Since Ry, /1;; is finite, by [2.3.11] if b # 0 then |I;;/bl;;| = |R,,, /bRy,,|- By
definition, pz(g;)(#v=09/c|z) = 3 implies b # 0. So (3’) in the second list of conditions
may be replaced by

(3%) if p2(a:) (+0=0/clz) = 3 then @)L, Ry,, /bRy,

= fi(;cbzo/c‘z).

= N, can be replaced by the condition

Finally, the condition that |@/%, Ry,, /Ii;

that there exist N/, N/ € N such that N, = N/N/, EB?;lRpU /riRy,;| = N{ and
@?;1Rpij/Jij = N/'. The proof can now be finished using O

8. REMOVING |dlz/z=0| = D AND |#0=0/c|z| = G.

This section uses results from sections[6]and [7] We show that there is an algorithm
which, given d € R\{0} and D € N, respectively b,c € R\{0} and G € N, answers
whether there exists a sum of modules ®? | Ry, /dI;, respectively @ ;1;/bcR,,,
satisfying a sentence as in the statement of Theorem under the assumption
that one of the conjuncts is |dl#/z=0| = D, respectively |*0=0/c|z| = G. These
results are used in section[L0| to eliminate expressions of the form |dlz/z=0| = D and
‘xb:O/c‘m| = G, where D, G > 2.

Proposition 8.1. Let R be a recursive Prifer domain such that EPP(R) and the
radical relation are recursive. There is an algorithm which, given a sentence X of
the form

diaofa=o] = DA N\ |oful = fefe) N\ 1906l = g(e/v),
v/peX o/peY
where d € R\{0}, DeN, f: X - N, g:Y = N and X,Y are disjoint finite sets
of pp-pairs of the form #0=0/c|z and elz/z—0, answers whether there exist h € Ny,
prime ideals pr < R and ideals Iy <\ Ry, for 1 <k < h such that &Y_ Ry, /dI} | X.

Proof. Let Z := XUY and let Sz, pz and sz be as in[6.2.3|with A := d. Enumerate
Sz ={q1,-.-,qm} and let q; := (r;,7a;,7:,9;). By definition, for all prime ideals
p < R and ideals I < Ry, there exists 1 < i < m such that (p,I) = ¢;.
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Therefore, there exist h € Ny, prime ideals p, << R and ideals I < Ry, for
1 < k < h such that ®F_, Ry, /dI}, = X if and only if there exist (f,7) € Qf.4m
and D; € N with H;’il D; = D such that for each 1 < ¢ < m, there exist h; € Ny,
prime ideals p;; < R and ideals I;; < Ry, for 1 < j < h; such that

(a)i (pija-[ij) ): qi for 1 < ] < hl and
(b); @?ilRpij /dI;; satisfies

jdizfo=ol = Din N\ leful = filef) AN Letel = gile/v).

o/pEeX; p/ypEY;

Fix 1 <i<m, D; € Nand (f,7) € Q¢ 4.m as above. Note that

= D,.

dlafamo(®\ Ry, /)| = Dy if and only if @04, Ry, /T

So, exactly as in we may assume 7; # 0 for 1 < ¢ < m. Moreover, by [2.3.9(iv)|
I7 = pi;. Therefore, (pij,1;;) = q; if and only if there exists J;; < Ry, such that
Lij = riJij, a; € Jij, vi € pij and 6; ¢ pyj.

Now, by h; € Ny, pi; < R and Jij < Rpij with Iij = riJij for 1 < 7 < h;
satisfy (b); if and only if there exists D}, D! € N with D,D} = D, such that

2

h;
’@jlepij /‘]1]

= D! and ’@?;1Rpw/r,RpU

for all alz/z=0 € X, (respectively alz/z=0 € Y}),
(1) if pz(qi)(alw/mzo) =1 then EB?":lRp”/sz(qi,a\w/m:O)Rp”

(respectively ’ @?":1 Ry, /$2(qi, *1#/e=0) Ry,

= fi(alfr=0) - D!
> gi(2le/a=0) - D7),
(2) if p(ae)(ele/r=0) = 2 then [&2, Ry, /57(a:, o12fa=0)Ry,,| = fi(el/a=0) - D;
(respectively ’@?i:lRpij/Sz(qi’a‘I/z:O)Rpij > gi(alz/z=0) - D;), and,
(3) if pz(q;)(dlz/z=0) = 3 then f;(¢lz/a=0) = 1 (respectively g;(alz/z=0) = 1).
and for all #6=0/c|z € X; (respectively =0=0/c|z € Y;),
(1) if pz(q;)(#¥=0/cjz) = 1 then f;(*=0/c|z) = D; (respectively D; > g;(#v=0/c|z))
(2) 1F pz(g)(#=0/cts) = 2 then |@he,Ry,, feRy,,| = [i(=0/els) (respectively
@?i:lij [cRy, ;| = gi(¥b=Y/c|z) )
(3) if p2()(0=0)c) = 3 then |, L;/bl,
‘GB?LJM/MM‘ > gi(*0=Yclz))
(4) 3 prs(gi) (+0=0/elz) = 4 then fi(#0=0/cla) = 1 (respectively g;(+#=0/efz) = 1)
() 1f p(as)(7=0/cte) = 5 then |@he, Ry, /37(as, =0/ea) Ry, | = Fi(s=0/cte) - Dy
> gi(*0=Yclz) - D;).
Exactly as in we may replace (3’) in the second list of conditions by
(3) i pzla) (0=0)elz) = 3 then |@lL, Ry, /bRy,
(@0 Ry, DRy, | = g3(50=0/cla)).
So we are now done by O

= fi(#b=0/c|z) (respectively

(respectively ’@;‘”:1ij /52(qi,*b=9cle) Ry,

= fi(20=0/c|z) (respectively
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Proposition 8.2. Let R be a recursive Prifer domain such that EPP(R) and the
radical relation are recursive. There exists an algorithm which, given a sentence X
of the form

|2b=0/cia| = G A /\ le/v| = f(#/v) A /\ [¢/v| > g(#/¥),

v/peX ?/pEY

where b,c € R\{0}, GEN, f: X - N, g:Y = N and X,Y are disjoint finite sets
of pp-pairs of the form =¥'=0/'\z and dlz/z=0, answers whether there exist h € Ny,
prime ideals p; << R and ideals I < Ry, with b,c € I; for 1 < i < h such that
®?:11i/bCRPi ': X.

Proof. The proof, which we leave to the reader, is very similar to [8.1} except we

use in place of and the fact that [#0=0/c|«(I/bcR,)| = |R,/I| in place of
dln/r=o( Ry /dT)] = | By T 0

9. FURTHER SYNTACTIC REDUCTIONS

In this section we continue work of section 5| to improve the form of the conjunction
in the statement of Some of these reductions use results in sections [7] and
which only apply to Priifer domains (i.e. they do not apply to arbitrary arithmetical
rings).
Let W be the set of Li-sentences of the form
(1) |diafz=0] DD A [#b=0fcla| CoEA -\ [¢/ul = f(efe) N\ |¢/ul = g(e/v) A2
v/peX v/peY

where 01,03 € {>,=,0}, d,c,be R\{0}, D,E€Ny, f: X >N, g: Y - N, X,V
are finite subsets of pp-pairs of the form #b'=0/z=0 and #=2/c'|z, and E an auxiliary
sentence. Let V' be the set of w € W such that there is an R-module satisfying
w. As in W denotes the bounded distributive lattice generated by W and V
denotes the (prime) filter in W generated by V.

Definition 9.0.1. Let w € W be as in . Define

21 = [{2t'=0/a=0 € X | f(2t'=0/a=0) > 1}],

2 = [{2t'=0/a=0 € Y | g(#V'=0/z=0) > 1}],

zg = |{7=2/c|« € X | f(z=2/c1z) > 1}|, and

2a = [{r=rfee €Y | gle=a/ela) > 1}].
The short signature is defined to be the tuple (v,03) and the extended signa-
ture, exsigw, is defined to be the tuple ((O1,0s), (21, 22), (23, 24)).

We equip the set {>,=,0} with a total order > by putting > = = = . We
partially order the set of short signatures {>, =, 0}? by setting (1, Ja) > (00}, %)
whenever [0y = (0] and Oy = ). Finally, we partially order on the set of extended
signatures by setting

((Dlv ‘:l?)» (21, 22)7 (237 24)) 2 ((D/la D/Z)v (Zia Zé)v (Zéa ZA/L))
if and only if (O;,0z) > (O, 05) or (O1,0z) = (O, 05) and

o 21+ 20 > 2]+ 2hor 21 + 29 = 2] + 2, and 29 > 25, and
o 23+ 24 > b+ zj or z3+ 24 = 25 + 24 and z4 > ).
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‘We now present various algorithms which, given w € W of a particular form, returns
w € W with exsigw < exsigw such that w € V if and only if w € V. By conven-
tion, we give both T € W and L € W extended signature (((, 0), (0, 0), (0, 0)).

Remark 9.0.2. The order on the set of extended signatures is artinian.
The next remark follows directly from [2.1.3]

Remark 9.0.3. If w € W has extended signature ((Oq,02), (21, 22), (23, 24)) then
Dw has extended signature (01, 0s), (23, 24), (21, 22)) where D denotes the duality

defined in[2.1.3

Asin §5] given w € W, we may always assume that w is of the form X ¢ ;A= where
X,Y are disjoint finite sets of pp-pairs of the form dlz/z=0 or #6=0/c|a, f : X — Na,
g:Y — Ny and = is an auxiliary sentence.

Remark 9.0.4. Let X,Y be disjoint finite subsets of pp-pairs, f : X — Ny, g :
Y — Ny and E an auziliary sentence such that Xy 4 NE € W. Then, for each
(fi,eo s frr 915 s9n) € Qpgn and 1 < i < n, the sentence Xy, 4, NZ is in W and
exsig Xy, 4, N2 < exsig Xy 4AE. Moreover, for each (f,g) € Q. gn and 1 <i<n,
either X = X; andY =Y, or, exsigXy, 4, NE < exsigXj 4 N E.

Proof. Fix (f,9) € Qpgn and 1 < i < n. Let ((O1,02), (21,22), (23,24)) be the
extended signature of Xy ;,AE and (3%, 05), (21, #5), (25, 2} )) the extended signature
of Xy, ¢; NE. Note that since X and Y are disjoint, so are X; = X U(Y'\Y;) and Y;.

That the short signature of Xy, 4, is less than or equal to the short signature of
X¢,g follows from the fact that ¥; CY and X; = X U (Y'\Y).

We show that z1 + 20 > 2] + 2 and 25 > z). By definition, z; + 25 is the
number of #=7/¢jz € X UY and 2z is the number of 2=2/cjz € Y. Since ¢;(*=%/c|z) =
g(z=z/c|lz) > 1 for all #=2/cj« € Y;, we see that z) is the number of *=z/clz € V.
So 25 < z3 because ¥; C Y. Since X; = X U (Y'\Y;) and Y; are disjoint, 2} + 2}
is equal to the number of *=2/cjo € X; UY; = X UY with either v=2/cjz € Y}, or,
e=z/cjp € X; and f;(v=%/cjz) > 1. So z1 + 22 > 2] + 25, since X UY = X, UY;. A
similar argument shows that z3 + z4 > 24 + 2} and z4 > zj. Therefore the extended
signature of Xy 4 is less than or equal to the extended signature of Xy, ..

We now prove the moreover. Since X,Y are disjoint, X # X, if and only if
Y #Y;. Suppose X # X;. Then there exists v/v € Y\Y;. By assumption,
9(#/v) > 1.

If #/y is dlz/z=0 then the short signature of Xy 4 is (>, ) and the short signature
of X¢,.4: 18 (=,0) or (0,'), and, by what we have already proved, ' < [J. So the
short signature of Xy, ¢, is strictly less than the short signature of X¢ 4. The case
of zb=0/c|z for b, ¢ # 0 is similar.

If ¢/y is *=2/c|z then

{==2/'1e € Yi | gi(v=/c'le) > 1}| < [{==7/c'lz € Y}
So exsigXy, 4, < exsigXy,4. The case of ¢/y equal to z6=0/z=0 is similar. O
9.1. Reducing the short signature.

Proposition 9.1.1. Let R be a recursive Prifer domain with EPP(R) recursive.
There is an algorithm which given w € W with short signature (=,0) or (O,=),
for some O € {0, =, >}, outputs w € W such that w € V if and only if w € V, and,
w is a lattice combination of elements w' € W such that the short signature of w'
is strictly less than the short signature of w.
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Proof. Suppose w has short signature (=,0). Then w is of the form

|dlz/a=0| = D A Xf 4 A E

where d € R\{0}, D € Ny, f: X - Ny, g:Y = Ny, X and Y are disjoint finite
subsets of {#=2/¢/ |z, 26'=0/z—0 | ¢/, b/ € R} U {#b=0/c|z} for some b,c € R\{0}, and =
is an auxiliary sentence.

If M E w then, by and there exist h € N, prime ideals p; < R and
ideals I; < Ry, for 1 <4 < h and M’ € Mod-R such that M = @?ZlRpi/dLv o M
and |dlz/z=0(M")| = 1.

Thus there exists M € Mod-R such that M = w if and only if there exist
(f1, f2,91,92) € Qf4.2, h € N, prime ideals p; < R and I; <9 Ry, for 1 <14 < h, such
that @7, Ry, /dI; satisfies

W(f1,f2,91,92) = |d|z/9”:0| = D/\Xf1791 ANE
and M’ which satisfies
wthfz,gl,gz) = |d‘w/m:0| =1A Xfa,g2 N\ =.

Let  C Qf 42 be the set of (fi, f2,91,92) € Qf g2, such that there exist h € Ny,
prime ideals p; < R and I; < Ry, for 1 <4 < h, such that @?lepi/dLv satisfies
W(F, fa,91,90)- 00 w € V if and only if

.f /
w-= |_| W(f1,f2,91,92) ev.
(f1,£2,91,92)€Q

By given w, we can compute €2, and, so, we can compute w. The short signature
of each w2f17f2791)gz) is (0,0') for some O’ € {0, =, <} and, by O =0 So
(=,0) > (0,0) as required.

Suppose w has short signature (O, =). Then w is of the form

|Ib:0/c|z| =FEA Xf,g =)

where b,c € R\{0}, E €Ny, f: X - Ny, g: Y — Ny, X and Y are disjoint finite
subsets of {#=2/¢/ |z, 2b'=0/z—0 | ¢, b/ € R} U {dlz/z=0} for some d € R\{0}, and Z is
an auxiliary sentence.

If M = w then, by and there exist My, My, M’ € Mod-R such that
b € anngMy, ¢ € anngMy and [#0=0/cjo(M")| = 1 and there exist h € Ny, prime
ideals p; and ideals I; <« Ry, for 1 <14 < h such that b, c € I; and

O I /bcRy, @ My & My ® M = w.

Therefore, w € V if and only if there exist F1, Fy, Fy € N with FhEsFEy = FE and
(f,39) € Q4.4 such that
— W1, By f1.9:> defined as |[#=%/cje| = Eq A Xp, gy AEA |Pl2/a=0] =1, isin V,
— W2, B, fs.g5, defined as [#0=0/o=0| = Ey A X, g, ANE A |cl2/a=0] =1, isin V,
— W3, fy,95, defined as Xy, g AEA [#0=0/cje| =1, is in V, and
— there exist h € Ny, prime ideals p; and ideals I; < Ry, for 1 <7 < h such that
b,c € I; and

@?:1Ii/bCRpi ): |xb=0/c\x| = E4 A Xf4’g4 A=,
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Let H be the set of (E1, Ea, (f,7)) € N2 x Q.4 such that there exists F; with
E,E>yEy = E and there exist h € Ny, prime ideals p; and ideals I; AR, for1 <7 < h
such that b, c € I; and

@?ZIIi/bCRPi ’: |Ib:0/c‘z| =E4 A Xf1,94 NE.
Then w € V if and only if
w:= |_| W1,Ey, f1,91 1 W2, B, f5,95 T W3, f5,9; € V.
(B1,B2,(f,9))eH

By given w, we can compute H and so we can compute w.
Now if w has short signature (O, =) then w1, g, f, g1, W2,Es, 5,95 0d W3 f, g, have
short signature (', ) and by 0 <0 So (0,0) < (O,=), as required. O

Lemma 9.1.2. Let R be an arithmetical ring. Let c,d € R and D € N. For all
C €Ny,

T b= [ 6=0/ela| = 1 A [dlzfamo] > D AJo=s/ela] = C
R ‘$CD71d=0/c\z| =1A |x=x/c\z| =C
and
Tr ': ’CDd‘x/a::0| =1A |d|x/z:0| >DA ‘x=$/c|:r‘ =C

o\ [ePdlefamo] = 1A |dle/fa=o| = E A |r=/clz| = C.
D<E<cP

Proof. Suppose M |= ’ch_ld:U/c\z| =1. Then xc'd =0 <prclr for 0 <i < D — 1.
So, by 5.7} for 0 <¢ <D —1,

’cid|z/ci+1d|I(M)| — |z:x/c‘$(M)| .
Hence
_ D
|dle/a=0(M)| = |[#=2/cla(M)|” |¢"dla/z=0(M )] .
Therefore, if C > 2 then
TR ': ’$CD71d:0/c\w‘ =1A |d|m/w:0| 2 DA |z:m/c‘$| =C&
‘child:O/ckE’ =1A |z:m/c|;v| =C.
Now suppose that ¢?d € anngM. Then ch\x is equivalent to z = 0 in M.
Therefore, by
_ _ _ D
|dle/z=0(M)| = |dIz/cP a|a(M)| = [#=2/cP|e+ad=0(M)| < |[#=2/cP|a(M)] < [#=2/c|2|~ .
Hence
Tr ': |CDd‘$/a::0| =1A |d|x/z:0| >DA ‘xe/ch‘ =C«+
\/ ’CDd‘x/m:O| =1A |d‘$/z:O| =FEA |$:Z/c\z| =C. O
D<E<CD

Proposition 9.1.3. Let R be a recursive arithmetical ring. There is an algorithm,
which given w € W with extended signature ((>,0), (21, 22), (23,24)) with z; > 1
or z3 > 1, returns w € W with exsigw < exsigw such that w € V if and only if
weV.
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Proof. Suppose w := Xyq A2 € W, where f : X — Ny, g : YV = Ny, X\ Y
are disjoint finite sets of appropriate pp-pairs and = is an auxiliary sentence, has
extended signature ((>,0), (21, 22), (23,24)) with z3 > 1. Then dlz/z=0 € Y for
some d € R\{0} because the short signature is (>,0) and #=2/c|z € X for some
¢ € R because z3 > 1. Let D = g(#=%/c|a).

Then, by 2.3:4 w € V if and only if

I_l (Xfl,gl A |ch71d:0/c\z| =1A E) M (Xf27g2 A |CDd|w/z:O| =1A E) eV.
(?7§)€Qf,g,2

For each (f,9) € Qy,4,2, we define wy _, w’ € W such that
exsigw?vg, exsigw’?@ < exsigw,
g €V if and only if Xp g, A |2eP1d=0/cje| = 1 AE €V, and,
w’_ €V if and only if Xy, g, A|c7dlo/fa=0| = 1AE € V.

Y]
Once we have done this, the proof is complete since then
R - !/
w= L wpynufy,
(f9)€Q,9.2

has the properties required by the statement.

If exsigXy, g, < exsigXyg then let wy - be Xg g, A ‘ICD_leO/c\x| =1AZE
Otherwise, by 9.0.4f X = X; and Y = Y;. Further, fi(*=%/clz) > 1 and, by
definition of Qf 49, g1(dz/e=0) = g(dlz/z=0) = D. Let Y] := Y7\ {dlz/2=0} and
g1 = gily;. Then, by

Koo Ao 00| = LAZ €V
if and only if Wy defined as
Xf1791 A ‘chfleO/c‘x| =1AZisin V.
Moreover, ws - has short signature (0,00), where, by 0’ < 0. Therefore
exsigws; ; < exsigw because (,00') < (>,0).

If exsig Xy, 4, < exsigXy,, then let w? be Xjz,.g, A ’C dlz/p— 0| =1AZ. Oth-
erwise, by [0.0.4, X = X; and Y = Y;. Further, fo(*=%/c|z) > 1 and, by definition
of Qf 4.2, g2(U7/2=0) = g(dlv/z=0) = D.

Let Xj := Xo\{#=7/cla} and Y5 := Yo\{dlz/a=0}. Let f3 := falx;, 95 = g2lv;
and C := fy(2=2/clz). Then Xy, g, A |¢”dlz/e=0| = 1 A E is

|d|z/w:O| > DA |z:I/c|;E| C/\Xfé b ANE A |C d|a7/$ O‘ =1.

Let
W= || ldle/e=0] = E Alo=2/cia] = C AXpy g5 A Je”dlofz=0] = 1A E.
7 D<E<CP
By w? € Vif and only if Xy, g, A |¢”dlz/a=0| = 1 AE € V. The short

- . PR
51gnature of each component of the join defining wh s (=,0) where, by
[’ < O. Therefore exsig@’?g < exsigw because (=,00') < (>,0).

Suppose w € W has extended signature ((>,0), (21, 22), (23, 24)) with z; > 1.
Then Dw has extended signature ((>,0), (23, 24), (21, 22)). By the previous case,
we can compute w, a lattice combination of elements of W with extended signatures
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strictly less than Dw such that Dw € V if and only if w € V. Now w € V if and
only if Dw € V and exsig Dw < exsigw. O

Lemma 9.1.4. Let R be a Priifer domain. Let a,b,c € R and E,C € Ny. Suppose
that v, s, € R are such that ca = ar and a(a — 1) = ¢s. Define

(1) 31 to be the formula |[*==/a-1|z| = 1;

(2) 3g to be the formula |#=7/ajz| = 1 A |orlz/z=0| = 1;

(3) 33 to be the formula |*=%/ajz| = 1 A |#7=0/ajz| = 1 A |rble/e=0| = 1; and

(4) 34 to be the formula |*=%/ajz| = 1 A |#7=0/a|z| = 1 A |20=0/r|z| = 1.
Then for all M € Mod-R there exist My, ..., My € Mod-R such that M; = X, for
1<i<4dand M =M, &...PH My.

(i) If i € {1,4} and C < E then
TR ': ﬁ(Ez AN |x:I/a\w| =CA |$b:0/c\w| > E),
and if i € {1,4} and E < C then
Tr ): Ei/\‘az:w/a|m| = C/\|wb:0/c\z| >F & \/ Ei/\|w:a:/a\z| = O/\|Ib:0/c|m| =F.
E<E'<C
(i) In T the following equivalence holds.
Yo A ‘z:z/a|w| =CA |mb:0/c|w| > FE < Y5 A |‘T:x/a\w| =CA ‘szo/w:O| > FE.
(iii) In Tr the following equivalence holds.
Y3 A |x:m/a|w| =CA |zb:0/c\m| >FE < Y3 A |m:I/a\x| =CA |mb:0/r\w| > [E/C—l
Proof. The first claim follows from
(i) Suppose M |= ¥;. Then
|[7=2/ala(M)| = [=2/es|e(M)| = [26=0/cl(M)].
Suppose M = %4. Then
"lz/arle(M)] = [#=t/er=0+ale(M)| = [#=/alz(M)
because |#r=0/a|z(M)| = 1 and hence zr = 0 <, alz. So
|#0=0/cla(M)| = [#4=0/ar|a(M)| < |"z/ar|2(M)| = [=2/alz(M))] .

The first equality holds because |*=%/a|z(M)| = 1 and the inequality holds because
|#6=0/r|2| = 1 and hence xb =0 <jp; r|z.

Therefore, if M = %; for i € {1,4} then [#0=0/¢|z(M)| < |#=%/a|z(M)|. The first
claim follows from this.
(ii) Suppose M = ¥s. Then c|z is equivalent to ar|z in M and ar|z is equivalent
tox =01in M. So |#6=0/c|o(M)| = |2b=0/z=0(M)].
(iii) Suppose M | 3. Then

|#0=0/ele(M)| = [=0=0/ar|a(M)| = [26=0/r|a(M)| - |"I=/ar|z(M)] .

Since [#r=0/a|z(M)| = 1, by |71%/ar|z(M)| = |#=%/ajz(M)|. The claim now
follows. O

Proposition 9.1.5. Let R be a recursive Prifer domain. There is algorithm which
given w € W with extended signature ((O, >), (21, 22), (23,24)) with z; > 1 orz3 > 1
outputs w € W with exsigw < exsigw such that w € V if and only if w € V.
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Proof. For w € W as in (see the beginning of this section), define degw = E.
Given w € W with extended signature ((J,>), (21, 22), (23, 24)) with z3 > 1, we
will show how to compute w € W, a lattice combination of w’ € W, such that for
each w', either exsigw’ < exsigw or exsigw’ = exsigw and degw’ < degw,
and, such that w € V if and only if w € V. Since deg takes values in N, by iterating
this process we will eventually compute w € W such that exsigw < exsigw.

Suppose w is X5 g AE € W, where f : X — Ng, g: Y = Ny, X,V are disjoint
finite sets of appropriate pp-pairs and Z is an auxiliary sentence, has extended
signature ((O, >), (21, 22), (23, 24)) with z3 > 1. Since w has short signature (O, >),
there exists #0=0/c|= € Y. Since w has extended signature ((OJ, >), (21, 22), (23, 24))
with z3 > 1, there exists 2=2/qjz € X.

Let ¥1,%9,%3,%4 be as in[9.1.4] Then w € V if and only if

4
L] []xnaAEASi€V.
(?7?)691‘,9,4 =1

We show that for each (f,g) € Qy 4.4, either the extended signature of Xy, 5, A =
is strictly less than the extended signature of X 4 A 2 or we will show that we can
compute Wi (Fg) € W such that W; F.9) is a lattice combination of w’ € W with
either exsigw’ < exsigw, or, exsigw’ < exsigw and degw’ < w.

Fix (f,g) € Qpgaand 1 < i < 4. By exsigXy, g, N2 < exsigXy, AN E
unless X; = X and Y; =Y. Moreover, if f;(#=%/ajz) = 1 then exsigXy, 4, AZE <
exsigXyf 4 A E. So we may assume X; = X, Y; =Y and f;(*=%/a|z) > 1.

Let X' := X\{z:x/a\x}, Y' = Y\{Ib:O/C‘X}7 le = fi|X'7 g; = gi‘yf, C =
fi(a::z/a|x) and F := gi(a:b:()/dr) = g(wb:o/dx). Then Xfi,gi A= is

|[7=2/ajz| = C'A [#0=0/c|z| > E A X1 g1 N E.
Case i =1 or i = 4: If f;(*=%/alz) < g;(*¥=0/c|z) then, by
Tr = (X0 NENY).
So set w; (7.3 = L. Now suppose fi(z==/a|z) > g;(¥v=0/c|z). Then, by
[#=2/alz| = C'A [#0=0/c|a| > EAXf1 o0 NE € V
if and only if

wi,(?,@) = |—| |T:w/a|m| =CA |Ib:0/c|az‘ =FE'A Xf{vgé AN=ZANY; € V.
E<E'<C

So we are done since the short signatures of the components of the join defining

wiv(?»g) are (D/a :) Where, by |:|/ j 0.
Case i = 2: By[P.1.4

|“":75/a\z| =CA ‘wb:o/c|z| > FEAN Xfé,gé ANENYy €V
if and only if W; (F.3) defined as
|m:m/a|w| =CA |zb:0/w:0| >FENA Xfé,gé ANZANYq,isin V.

The short signature of w; 7 - is (T, 0) where, by O =<0
Case i = 3: Let r, s, € R be such that ca = ar and a(o — 1) = ¢s. By

|x=x/a\z| =CA ‘xb:o/c|z| >FEAN Xféhqé ANEANY3 €V
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if and only if w, F.5)° defined as
|w:73/a\z| =CA |wb:0/r|a:‘ > [E/C—I A\ Xfé,gé AZA 237 isin V.
Since [E/C] < E, we have degw; 7o < E =degXy 4 AE.

So we have proved the lemma for the case z3 > 1. Suppose w € W has extended
signature ((O, >), (21, 22), (23, 24)) with z; > 1. Then Dw has extended signature
(8, >), (23, 24), (21, 22)). So by the version of the lemma just proved, we can com-
pute w € W with exsigw < exsig Dw such that Dw € V if and only if w € V.
Now, w € V if and only if Dw € V and exsig Dw < exsigw, as required. O

9.2. Reducing the extended signature.

Lemma 9.2.1. Let R be an arithmetical ring. Let a,b € R and A, B € No. Suppose
that r,s,a € R are such that acc = br and b(a — 1) = as. Define

(1) ¥y to be the sentence |v=2/ajz| = 1 A |brlz/z=0| = 1 A [P*I2/2=0| = 1,

(2) ¥y to be the sentence |7=2/ajz| = 1 A |brlz/z=0] = 1 A 20" 7' =0/p)z| = 1,

(3) 33 to be the sentence |[#=%/ajz| = 1 A [#b=0/r|z| =1,

(4) X4 to be the sentence |#=/(a—1)|z| = 1 A |aslz/a=0| = 1 A |a”[2/z=0| = 1,

(5) 5 to be the sentence |*==/(a—1)|z| = 1 A |aslz/z=0| = 1 A|za”'=0/a)z| = 1, and

(6) 3¢ to be the sentence |[#=7/(a—1)|z| = 1 A |#a=0/s|a| = 1.
Then, for all M € Mod-R, there exist M; € Mod-R for 1 < i < 6 such that
M=a&% M; and for 1 <i<6, M; E%,.

Moreover, there is an algorithm which, given a,b,r,s,a, A, B as above, 1 <1i < 6

and 0,00 € {=,>}, either returns L, in which case,

Tr |= ~(|*=%/ale| DA A [#=2/bj2| ' B A ;)

or returns n € N and o1, ...,0, such that

Tgr E |*=2/alz| DA A |z=2/bj2| ' B A S; <> \”/ (0; NEy)

j=1
and each o; is either of the form
|r=2/a’|2| O; A" A [2=2/t/|a| D;B’,
where 0,05 € {0,=,>},0; 0,0, <0, a/,V € R, A',B" €N and A’'B’' < AB
or of the form
|#=2/a’|c| O; A" A |7=2/v'2| O} B’ A |7=2/z=0| = N,

where 0;, 0% € {=,>}, a/,b' € R and A", B",N € N.
Proof. Note that

Tr E |#7=%/alz| = 1 A Jorlz/z=0] = 1 = (a|z <> 2 = 0).

Case 1: ¥ € {¥1,%5} and O is =.

In this case, |#=%/ajz|0A A |z=2/pjz|0’B A ¥ is equivalent to |[#=7/z=0] = A A
|#==/bjz| ' B A ¥ as required.

Case 2: ¥ € {¥1,%3} and O is > and B > A.

In this case [*=2/ajz| JA A |#=7/5|z| ' B A ¥ is equivalent to |#=2/bjz| 'B A X.
Case 3: ¥ =X, 0is > and 0’ is =.
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If b4 € annpM and |*=z/pjz(M)| = B then B < |M| < BA. Thus |#=2/a|z| >
A N |z=z/p|z| = B A X1 is equivalent to

\/ |z:a:/z:0| = A A |J/’:93/b\'r| =BA 21-
BA>A'>A

Case 4: ¥ = Y5, is > and I’ is =.

Suppose M satisfies |20"7'=0/pjz| = 1. Then |V'l2/pi+1|2(M)| = |2=2/bj2(M)]| for i >
A—1. So [s=2/pA[2(M)| = [#=2/p|x(M)|*. Thus if |z=2/s|z(M)| > 2 then [M| > A.
Therefore [t=2/a|z| > A A |[t=2/bjz| = B A 3 is equivalent to |#=%/p|z| = B A Xa.
Case 5: ¥ € {¥1,%} and O is > and B < A.

If O is > then

|I:‘T/a\w| > AN |T:T/b\z| >BAY

is equivalent to

(l=efole] =2 ANS)V\/  (lo=tfa=0] = AA|s=t/sla] = B' AX)).
B<B'<A

So we may reduce to the case where (I is = and hence to either case 3 or 4 at the
expense of replacing B by B’ with B < B’ < A. This is not a problem since in case
3 we show that o; has the form [#=z/a|2| ;A" A [#=2/v/|o| O B' A |#=2/a=0| = N
i.e. there is no restriction on A" or B’ and in case 4 we show that |*=%/a|z| >
AN |z=z/pjz| = B’ A 3 is equivalent to |*=z/pjz| = B’ A 3 and B’ < A.

Case 6: ¥ = 3.
Suppose that M satisfies 33. Then alx is equivalent to br|z in M and

|[m=forle(M)| = [#==/ble(M)] - [Pzfor|e(M)| = [#==/ple(M)] - [#=2/r|z(M)] .
So, in this case, the result now follows from

The remaining cases follow from the cases we have already covered by exchanging
the roles of @ and o — 1, a and b, r and s, and A and B. ([

Proposition 9.2.2. Let R be a recursive Prifer domain with EPP(R) recur-
sive. There is an algorithm which, given w € W with extended signature
((O01,02), (21, 22), (23, 24)) with z1 + zo > 1 or z3 + z4 > 1, outputs w € W with
exsigw < exsigw such that w € V if and only if w € V.

Proof. For w € W, as in (see the beginning of this section), define

degywi= [ fe=sferr)- [ g(=o/elo).

”~'=’~'/c|m€X x=w/c‘mey

Given w € W with extended signature ((Oy, 0s), (21, 22), (23, 24)) with 23+ 24 > 1,
we will show how to compute w € W, a lattice combination of w’ € W, such that
w € V if and only if w € V and such that for each w’, either exsigw’ < exsigw,
or, exsigw’ < exsigw and deg; w’ < deg;w. Since deg; takes values in N,
by iterating this process, we will eventually compute w € W which is a lattice
combination of w’ € W such that exsigw’ < exsigw.

We start with a special case. Let a,b,a,r,s € R be such that aac = br and
blaw — 1) = as. Let X;, for 1 < i < 6, be as in Suppose that, for some
1<4<6,wis

|7=2/ale| DA A [z=2/oja| ' BAXf g AS; ANEEW
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where A, B € No, 0,0 € {=,>}, X and Y are finite sets of appropriate pp-pairs,
f:X =N g:Y — Nand = is an auxiliary sentence.
We will compute u = |_|;l:1 u; such that for each 1 < j < n, either exsigu; <
exsigw, or, exsigu; < exsigw and deg; u; < deg; w.
If the algorithm from returns L, then
Tr ): —|(|$:I/a\z| OA A |z:I/b|a:| OB A Xf,g N i A E)

In this case, set v := L. Otherwise, let o1,...0, be, as in such that

T = |o=o/aje] DA A |o=2/pz| D' B A S; ¢+ \/ (05 A 55).
j=1

Therefore

Tr = [o=2/ale| DA A [o=2/bjz| ' BAX; g ASi AZ 4 \/ (0 AXpg AT AE).
j=1

So w € V if and only if

n
| J(e; AXsg ASiAE) € V.
j=1

If o; is of the form
|I:m/a/|z||:|jz4.l AN ‘m:af/b/|w|[];-B/ A |m:z/w:0| = ]\f7

where 0;,005 € {0,=,>}, o',/ € Rand A, B’,N € Nthen 0; AX;, AX; AEis a

sentence about an R-module of fixed finite size. So, since EPP(R) is recursive, by

we can effectively decide whether o; A Xy 4 A 3; A E holds in some R-module.

Set uj := T if 05 A Xy 4 A X; AZ is true in some R-module and u; := L otherwise.
If 0; is of the form

= /|| A A Jo = /|2l O B

where 0;,00% € {0,=,>}, a’,b' € R and A", B’ € N with O; < 0O, OO < [
and A'B’ < AB then set u; := 0 A Xy 4 A X; AZ. The condition that 0; < O
and D; = [0 ensures that exsigu; < exsigw. The condition that A’'B" < AB
implies that deg, u; < deg;w. So w € V if and only if u := |_];L:1 u; € V and
deg; u; < deg; w for 1 < j < n as required.

We now consider the general case. Suppose w is Xf4 A 2, where X and Y
are disjoint finite sets of appropriate pp-pairs, f : X — Ns, g : ¥ — Ny and
= is an auxiliary sentence, has extended signature (({Jq1, ), (21, 22), (23, 24)) with
z3 + 24 > 1. There exist a,b € R with a # b such that *=2/q|z,2=2/pz € X U Y.
Then w € V if and only if

6
L] []ZiAxpe AEEV.
(F9)€Q 9.6 =1

Claim: For all (f,7) € Q46 and 1 < i <6, either
exsig Xy, g, N 2i N2 < exsigXy g, AE, or, deg Xy,,q, N 23 A2 < degy Xy,g,

or, X; =X,Y;, =Y, fz(z:a:/cu) = f($:$/c|x) for all I:w/dd? € X and gz(z:a:/dm) =
g(z=2/c|z) for all v=2/cjz € Y.
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By[0.0.4] if X; # X or Y; # Y then the extended signature of Xy, ,, is strictly less
that the extended signature of Xf 4. So suppose that X = X;, Y =Y;. By definition,
g(T:T/cL'E) = gl(m:r/c\z) for all m:m/c\z cyY = Y; and fl(x:T/c\z) S f('r:r/ch:) for all
v=z/cje € X = X;. So, if fi(v=%/c|z) < f(¥=%/c|z), for some *=7/c|z € X, then
deg; Xy,.9, N 2; N2 < degy Xs,4. So we have proved the claim.

Therefore for each (f,g) € Q.46 and 1 < i < 6, either exsigXy, o, A X AE <
exsig Xy AT, degy Xj,,g, AL AE < degy Xy gAZ or Xy, 4, AX;AZ is of the form of the
special case. Since, by[9.0.4} we always have exsig Xy, 5, AX; AE < exsigXj,AE,
we are done.

The version of the lemma with z; + zo > 1 follows from the one we have just
proved by applying duality as in the proof of O

Say w € W is reducible if w has

— short signature (=,0) or (O, =), or

— extended signature ((>,0), (21, 22), (23, 24)) or ((3,>), (21, 22), (23, 24)) with
z1>1lorzz>1,or

— extended signature ((O,00'), (21, 22), (23, 24)) with 21 + 20 > 1 or 23 + 24 > 1.

Remark 9.2.3. If w € W is reducible then w is of the form required by either
9.1.1,[9.1.3,[9.1.5 or[9.2.3
Thus w € W is not reducible if and only if w has extended signature
- ((@, Q})v (2’1, 22)7 (237 24)) with (Zla 22)3 (237 24) € {(17 0)7 (Ov 1)’ (07 0)} or
- ((D7 D/), (217 22)7 (237 24)) with (Dv DI) € {(27 ®)7 (®7 2)7 (27 2)} and
(21, 2:2), (23, 2’4) S {(0, 1), (0, 0)}
The next remark follows directly from [3.1.9] because the condition on the extended

signature of w implies that w is a conjunction of sentences of the form |¢/y| = 1
and |¢/y| > E for pp-pairs #/y and E € N.

Remark 9.2.4. Let R be a Prifer domain. There is an algorithm which,
given w € W with extended signature ((Oq,0z), (21, 22), (23, 24)) with (O1,09) €
{(=,0),(0,>),(>,2),(0,0)} and (21, 22), (23, 24) € {(0,1),(0,0)}, answers whether
w €V or not.

10. ALGORITHMS FOR SENTENCES WHICH ARE NOT REDUCIBLE

Lemma 10.1. Let R be a recursive Prifer domain with X (R) recursive. There is
an algorithm which, given X € R, C € N and (r,ra,~,5) € R*, answers whether
there exist h € Ny, prime ideals p; < R and ideals I; < Ry, for 1 <1 < h such that
(piv Ii) ): (’1", ra,”, 6) and ‘@?:IRPI‘/)‘RPJ =C.

Proof. If C' =1 then the condition is always satisfied by taking h = 0, so suppose
that C # 1. Let p1,...,p; € P be distinct primes and nq,...,n; € N be such
that C = H;:l p;"". For each prime ideal p <t R, if |R,/AR,| is finite then it is
a prime power. Therefore, there exist prime ideals p; < R and ideals I; < R, for
1 <i < h such that (p;,1;) = (r,ra,v,0) and |®" Ry, /AR,,| = C if and only if
for each 1 < j <, there exist h; € Np, prime ideals p;; < R and ideals I;; < Ry,
for 1 < ¢ < h; such that (p;;, I;;) = (r,7a,7,0) and ‘@ZﬁlRp”/)\RM = p"i. Thus
we may reduce to the case that C' = p” for some p € P and n € N.
We consider the cases 7 = 0 and r # 0 separately.
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Case r = 0: For p < R prime and I < Ry, (p,I) = (0,0,7,6) if and only if I = 0,
v ¢ pand § # 0. So, there exist h € Ny, prime ideals p; < R and ideals I; < Ry,
for 1 <i < h such that (p;,1;) = (0,0,7,6) and |®_| Ry, /ARy, | = p™ if and only
if (p,n; A,7,0,1) € X(R) and § # 0.

Case r # 0: If r # 0 then (p, I) |= (r,7a,7,9) if and only if I = rJ for some J < R,
and (p,J) E (1,a,7,d). So, there exist h € Ny, prime ideals p, < R and ideals
I; < Ry, for 1 <i < hsuch that (p;,1;) = (r,7a,7,6) and |®_ Ry, /AR, | = p™ if
and only if there exist h € Ny, prime ideals p; < R and ideals J; < R, for 1 << h
such that (p;,J;) = (1,a,7,0) and |G Ry, /ARy, | = p". The last statement is
equivalent to (p,n; A, v,a,9) € X(R). ]

Proposition 10.2. Let R be a recursive Prifer domain with EPP(R) and X(R)
recursive. There is an algorithm which, given ¢ € R, C € N and = an auziliary
sentence, answers whether there exists M € Mod-R such that

Proof. Let X be the sentence |*=/c|z|] = C A Z. By there exists M = X
if and only if there exist prime ideals p; < R and uniserial R,,-modules U; for
1 <i <l such that ®'_,U; = X. Moreover, we may assume that U; /U;c # 0 for all
1 <4 <. By[6.0.3} for each 1 <i <, either ¢ € anngU; or, for some ideal I; <R,
U; = Ry, /cl;. Thus, there exists M |= X if and only if there exist A, B € N with
AB = C, F € Mod-R such that

F ': |m:z/z:0| =ANA |C‘$/a::0| =1AE

and h € Ny, prime ideals p; < R and ideals I; < Ry, for 1 < ¢ < h such that
|®"_ Ry, /cRy,| = B and Ry, /cl; = E for 1 < i < h. So, since EPP(R) is recursive,
by it is enough to show that there is an algorithm which, given B € N and
¢ € R, answers whether there exist h € Ny, prime ideals p; < R and ideals I; < Ry,
for 1 <i < h such that |®"_ Ry, /cR,,| = B and R, /cl; |= 2 for 1 <i < h.

By we can compute (r;,rja;,7v;,9;) for 1 < j < n such that for all prime
ideals p < R and ideals I < Ry, (p,I) = (r5,7ja5,7;,0;) for some 1 < j < n if and
only if R, /cI = Z. Thus there exist h € N, prime ideals p; < R and ideals I; < Ry,
for 1 < < h such that |®!_ Ry, /cR,,| = B and Ry, /cl; = Z for 1 < i < h if and
only if there exist B; € N for 1 < j < n such that B = H?Il Bj and for 1 < j < n,
there exist h; € Ny, prime ideals p;; < R and ideals I;; < Ry, for 1 <14 < h; such

that ’EBZ'ZIRM]‘/CRW_;” = Bj and (pija-[ij) ): (rj,rjaj,’yj,dj) for1 <i< hj. The
result now follows from [I0.1] O

Corollary 10.3. Let R be a recursive Prifer domain with EPP(R) and X(R)
recursive. There is an algorithm which, given b € R, B € N and = an auxiliary
sentence, answers whether there exists M € Mod-R such that

M | |#b=0/z—0| = B A E.
Proof. Apply to O

Proposition 10.4. Let R be a recursive Prifer domain with EPP(R) and X(R)
recursive. There is an algorithm which, given c,b € R, C; B € N and Z an auxiliary
sentence, answers whether there exists M € Mod-R such that

M [ |z=2/c|z| = C A |#0=0/z=0| = B A E.
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Proof. For o € R, we write a ¢ Att for the sentence |[ra=0/z=0| = 1 A |z=2/a|a| = 1.
Recall, that for all M € Mod-R, there are My, My € Mod-R such that M;
satisfies o ¢ Att, My satisfies « — 1 ¢ Att and M = M; & Mo, .

Let a,u,v € R be such that ca = bu and b(aw — 1) = cv. There exists an R-
module which satisfies |#=%/c|z| = C' A |[#0=0/z=0] = B A E if and only if there exist
Cy,Csy,By,By; € N with C = C1Cy and B = B B> and there exists an R-module
satisfying

|I:$/bu|rc| =C1 A |zb:0/rc:()| =B AN« ¢ Att ANE

and an R-module satisfying

|x:x/c|:v| = CQ AN |$C”:O/z:O| = By A (O[ — 1) ¢ Att A E.
By there exists an R-module satisfying

|E:$/c|m| =Cy A ‘a:c’u:O/z:O| =ByANa—1 ¢ Att A E

if and only if there exists an R-module satisfying

|wc:0/x=0| =Cy A |x:m/cv|x| =By ANa—-1 ¢ Att A DZ.
Thus, in order to prove the proposition, it is enough to show that there is an

algorithm which, given b,u € R, C,B € N and = an auxiliary sentence, answers
whether there exists an R-module satisfying the sentence X defined as

‘mzw/bu\ﬂ =CA ‘zb:O/Z:0| =BAE.
We may assume that bu # 0, for otherwise X is a sentence about an R-module of
fixed finite size and since EPP(R) is recursive, we can decide whether there exist
R-modules satisfying such sentences.
By[2.3.6]and there exists an R-module satisfying X if and only if there exists

F € Mod-R with bu € anngF', h € Ny, prime ideals p; < R and ideals I; < R,,; for
1<i<hand M € Mod-R with Mbu = M such that F @ @}, Ry, /bul; & M
satisfies X. Now, this happens if and only if there exist C1,Cy € N and By, Bo, B3 €
N with C = C1C5 and B = B;B5Bs3 such that

F ': |‘T:Z/x:O‘ =C1 A |wb:0/$20‘ =B A |bu\w/x:0| =1AZ,

@?lepi/buIi ': |$:I/bu|x| = Cg A |mb:0/3:=0| =By A E, and

M ': ‘mb:o/w:O| = Bg A |m:z/bu|a:| =1ANE.

In view of and it is therefore enough to show that there is an algorithm

which answers whether there exists h € Ny, prime ideals p; << R and ideals I; <1 Ry,
for 1 < i < h such that

@f;lRpl/buL ': |$=x/bu\w| = CQ A ‘xb:O/w:()| =By ANZ.
By [6.1.7, we can compute n € N and (7;,rja;5,7;,0;) for 1 < j < n such that
R,/bul = Z if and only if (p,I) = (rj,7ja5,7;,6;) for some 1 < j < n. It
is therefore enough to show that there is an algorithm which, given (r,ra,~,J),

b,u € R and C,B € N, answers whether there exist h € Ny, prime ideals p; for
1 <i < handideals I; < Ry, for 1 <i < h such that (p;, ;) = (r,7a,7,0) and

EB?:lRpl/buIZ ': |z:x/bu\w| =CA |$b:0/w:0‘ =B.

Case r = 0: In this case (p,I) = (r,ra,7,6) implies I = 0. Moreover (p,0) |=
(r,ra,v,0) if and only if v ¢ p and 6 # 0. Thus, there exist prime ideals p; for 1 <
i < h such that (p;,0) = (r,7a,v,d) and | Ry, | |*=%/bujz| = C A|#6=0/z—=0| = B
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if and only if § # 0, B = 1 and there exist prime ideals p; for 1 < i < h such
that v ¢ p; and | &7 Ry, /buR,,| = C. Such an algorithm exists since EPP(R) is
recursive.

Case r # 0: For all prime ideals p and ideals I < R, since bu # 0,
|#0=0/2=0(Ry, /bul)| = |(bul : b)/bul| = |I/bI].

Now, if |I/bI| is finite but not equal to 1 then I = AR, for some A # 0 and
|I/bI| = |Ry/bR,|. Since b # 0, |I/bI| =1 if and only if b ¢ I#.

Therefore, there exist prime ideals p; and ideals I; < R, for 1 < i < h such
that @, Ry, /bul; = |*=%/bulc| = C A |#v=0/z=0| = B A Z if and only if there exist
C',C" € N with C’'C" = C such that the following conditions hold.

(i) There exist prime ideals p; < R and A; € R\{0} for 1 < ¢ < h such that

(pis NiRp,) [ (r,7a,7,0), |®]_1 Ry, /buRy,| = C" and |®_ Ry, /bRy, | = B.
(ii) There exist prime ideals p; < R and ideals I; < Ry, for 1 < ¢ < h such that
(pi, ;) = (r,ra,7,6b) and |®l Ry, /buRy, | = C”.
Note that, if (p,AR,) = (r,7a,7,d) then (p,7Ry) = (r,ra,v,0). Since (rRy)# =
pRy, (p,7Ry) = (r,ra,v,0) if and only if v§ ¢ p. So (i) holds if and only if there

exist prime ideals p; for 1 <4 < A/ such that vé ¢ p; and ’@ﬁilRpi/buRm‘ = C" and

’@ﬁilRpi/bRpi’ = B. So, since EPP(R) is recursive, by there is an algorithm
which answers whether (i) holds or not.

By since X (R) is recursive, there is an algorithm which answers whether
(ii) holds or not. O

The rest of this section is spent proving the following proposition.

Proposition 10.5. Let R be a recursive Prifer domain with EPP(R) and DPR(R)
recursive. There is an algorithm which, given c¢,b € R, C; B € N and = an auxiliary
sentence, answers whether there exists M € Mod-R such that

M ': ‘x:x/c|x| =CA |35b=0/z:0| > BAE.

We could choose the module in the following definition uniquely. For instance,
one can show that when q 2 p the uniserial module [qRq : ApR4]/qRq has the
required theory where [qRq : ApRg] is the set of elements a € @, the fraction field
of R, such that aA\qR, C qRy. However, we are only ever interested in modules up
to elementary equivalence.

Definition 10.6. Let A € R\{0} and let p,q < R be comparable prime ideals. If
p D q then define M(p,q,\) to be Ry/A\qR,. If q D p then let M(p,q,\) be any
module with theory dual to the theory of Rq/A\pRq in the sense of [Her93, 6.6], i.e.
for sentences X as in M(p,q,\) = X if and only if Rq/ApRq = DX.

Note that [#=/c|a(M (p,q,A))| = 1 if and only if ¢ ¢ p, and, |=0=0/z—0(M (p, q, \))|
=1if and only if b ¢ q.

Lemma 10.7. Let R be a Prifer domain. Suppose that A\,a,7v,d € R with A # 0
are such that if (p,I) = (X, Aa,v,9d) then R, /I = E and if (p,I) = (X, Aa, d,y) then
R,/I =D=. Theny ¢p, 6 ¢ q and a € pNq implies M(p,q,\) = E.

Proof. Let (A, Aa,7v,d) be as in the statement. Suppose that v ¢ p,
a€png. Ifp 2 qthen (p,A\qRy) = (A Aa,7,9). So M(p,q,7)

e



DECIDABILITY FOR THE THEORY OF MODULES OVER A PRUFER DOMAIN 61

suppose that g 2 p. Then (q, \ApRy) = (X, Aa,d,7). So Rq/ApRy = DZ=. Hence, by
definition, M(p,q,A) | E. O

Lemma 10.8. Let R be a recursive Prifer domain with EPP(R) and the radical
relation recursive. There is an algorithm which, given r,c € R\{0}, a,b,7,d € R
and A, B,C € N, answers whether there exist h € Ny, prime ideals p; < R and ideals
I; < Ry, for 1 <i < h such that (p;, ;) = (1,a,7,0), |® Ry, /I;| = A and
@1 Ry, /cl; [ |[7=7/cla| = C N\ |#6=0/u=0| > B.
Proof. Let p << R be a prime ideal and I << R, be an ideal. Then a € I if and only if
rea € rel. So a € I if and only if |realz/e=0(Ry, /rcl)| = 1. If Ry /rel # 0 theny ¢ p
if and only if |#=2/y|z(Ry /rcI)| = 1, and, & ¢ I* if and only if [#6=0/a=0(R,, /rcl)| =
1. Note that
|relefa=0(®/_y Ry, /reli)| = |y Ry, /1] -
Therefore, there exist h € Ny, prime ideals p; < R and ideals I; < R, for 1 <7 < h

as in the statement if and only if there exist h € Ny, prime ideals p; <t R and ideals
I; < Ry, for 1 <4 < h such that @?:lRpi/rcIi satisfies X, defined as

|rc|m/w:0| =ANA |x:m/c\w| =CA |$b:0/w:0‘ > B
AN |rca|:1:/x=0| =1A |x:x/'y|x| =1A |m5:0/x=0| =1.

By [8.1} there is an algorithm answering whether there exists ®" ; Ry, /rcl; sat-
isfying X. O

Recall that when R is a Priifer domain, for prime ideals p, q < R, the condition
that p + q # R is equivalent to p and q being comparable. So M (p,q,r), as in the
next proposition, is defined whenever p 4+ q # R and r # 0.

Proposition 10.9. Let R be a recursive Priifer domain with EPP(R), DPR(R)
and X (R) recursive. There is an algorithm which, given C,B € N, ¢,b € R with
c# 0 and r,a,v,0 € R with r # 0, answers whether there exists M € Mod-R
satisfying
|"17:93/c\:c| =CA |wb:0/x:0‘ > B,

such that M is a direct sum of

— modules of the form Ry /rcl where p < R is a prime ideal, I < R, is an ideal

and (p,I) = (1,a,7,9), and,
— modules of the form M(p,q,r) where p,q<AR are prime ideals such that p+q #
Rycyédp,0¢q,a€p andacq.

Proof. Recall that, if DPR(R) is recursive then so is DPRa(R).
Case 1: (¢y,a,a,0,a,b) ¢ DPR2(R).
There exist prime ideals p,q <t R with p+q # R such that ¢y ¢ p, 6 ¢ q, a € p and
a,b € q. So, |#=/c|a(M(p,q,7))| = 1, since ¢ ¢ p, and, |[#0=0/a—0(M (p,q,r))| > 1,
since b € q.

Therefore, there exists M € Mod-R as in the statement if and only if there exists
h € Ny, prime ideals p; < R and ideals I; < Ry, such that (p, ;) = (1,a,,6) for
1 <17 < h and such that

’®?=1Rm/CRm = |w:w/c‘m(®?=lRPi/TCIi)| =C.

Since X (R) is recursive, we are done by
Case 2: (¢y,a,a,0,a,b) € DPRy(R).
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For all prime ideals p,q < R such that p+q# R, cy ¢ p, d ¢ q, a € pand a € q,
by definition of M (p,q,r) and DPRy(R), we have |#0=0/z=o(M (p,q,r))| = 1 and
|[=/cla(M (p, q,7))| = 1.

By there exist n € N, €,t, 51, s2 € R such that

(eve) = at and ((e —1)§)" = asy + bsa.
For all prime ideals p <0 R, either € ¢ p or e — 1 ¢ p. Thus, for all prime ideals
p < R and ideals I < Ry, (p,I) = (1,a,7,9) if and only if (p,I) = (1,a,€v,0)
or (p,I) E (1,a,(e — 1)v,9). Therefore, it is enough to be able to effectively
answer whether there exist Cy,Cs, By, By € N with Cy - Co = C, By - By > B and
B1, B, < B, such that
(1) there is a sum of modules of the form R, /rcl where (p,I) = (1, a, €y, 6) which
satisfy ‘xzw/dx‘ =Ci A |wb:0/z:O‘ > By, and
(2) there is a sum of modules of the form Ry, /rcI where (p,I) = (1,a, (e —1)v,9)
which satisfy |x=x/c|x| = C2 AN ‘xb:O/w:0| > Bs.
Suppose that (p,I) = (1,a,€ey,0) and |[#=2/c|z(Ry /rcl)| < Ci. Then
[Rp/I| < |Rp/atRy| = |Ry/(evc)"Ry| = |Ry/c"Ry| < |Ry/cRy|"
because a € I and ey ¢ p. So, |R,/cRy| = [*=2/c|a(R, /rcl)| < Cy implies |R, /1| <
C7. Therefore, there exists a sum of modules as in (1) if and only if there is A < C}
such that there exist h € Ny, prime ideals p; < R and ideals I; < Ry, for 1 <i < h
with (pulz) ': (1,&,6’}/,5), |@?:1RP1/IZ| = A and
O\ Ry, Jrcl; | |r=2/c)z] = Cy A |#=0/z=0| > B.
Therefore, by [10.8] there is an algorithm which answers whether (1) holds or not.

Suppose that (p,I) = (1,a,(e — 1)v,6). Since a € I, either ¢ ¢ p and I = R,
or, a € I*. If a € I then, since (¢ — 1)d ¢ I#, bsy = ((e — 1)6)" —asy ¢ I*. So
b ¢ I and hence |[#v=0/z—0(Ry/rcl)| = 1.

Thus, there exists a sum of modules as required in (2) if and only if there exist
C},CY € N with Cy = C4CY such that

(i) there exist h € Ny, prime ideals p; < R and ideals I; < Ry, for 1 < i < h such

that (p’ia Iz) ': (17 a, (6 - 1)61)7 'Y) and
O\ Ry, [rel; | |7=2/cla| = C%, and
(ii) there exist h € Ny and prime ideals p, < R for 1 < ¢ < h such that a ¢ p;,
v & p;, 6 ¢p; and
@iy Ry, [reRy, | [#=2/cla| = O N [#6=0/s=0| > Bs.
Since for p <t R prime and I < Ry, [#=%/c|z(R,/rcl)| = |Ry/cRy|, by there is
an algorithm which answers whether (i) holds.

To conclude the proof we need to show that we can effectively answer whether
(ii) holds or not. Let a,u,v € R be such that bae = rcu and re(a — 1) = bv. If
a ¢ p then

|e=2/c|z(Rp/crRy)| = |Rp/cRy| and  [#6=0/z=0(Ry/crRy)| = |Rp/crR,]|.
If  — 1 ¢ p then
|#=2/c|a(Ry/crRy)| = |Rp/cRy| and  [#0=0/2=0(R,/crRy)| = |Rp/bRy| .

Since for all prime ideals p < R, either o ¢ p or « — 1 ¢ p, by there is an
algorithm which answers whether (ii) holds or not. O
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Lemma 10.10. Let R be a recursive Prifer domain with EPP(R) and DPR(R)
recursive. There is an algorithm which, given b,c,y € R and B,C € N, answers
whether there exist h € Ny and prime ideals p; < R with v ¢ p; for 1 <i < h such
that
O, Ry, b= [e=t/ele] = C A [20=0/a0]| > B.
Proof. We split the proof into 3 cases. Let X be the sentence
|T:T/c\w| =CA |"Eb:0/w:0‘ Z B.

Case b # 0: Then |+0=0/s—0(R,)| = 1 for all prime ideals p < R. So & | R,, = X
if and only if B =1 and |®"_ Ry, /cR,,| = C. Since EPP(R) is recursive, we are

done by [7-3]
Case b = 0 and C > 1: Then [#0=0/p—0(®)_ R,,)| = |®/ Rp|. So

(@ Ry, /cRy,| = C > 1 implies |#0=0/z=0(®!'_, Ry, )| is infinite. So & Ry, | X
if and only if |®"_| Ry, /cR,,| = C. So, since EPP(R) is recursive, we are done by

Case b = 0 and C = 1: If B = 1 then the zero module satisfies X i.e. h = 0.
Otherwise, if ® Ry, = X and v ¢ p; for 1 < i < h then h > 1 and ¢y ¢ p; for
all 1 <4 < h. So there exists a prime ideal p << R such that vc¢ ¢ p. Conversely, if
p < R is a prime ideal such that ¢y ¢ p then R, |= X. There exists a prime ideal
p < R such that ye ¢ p if and only if (ye, 1,0,0) ¢ DPR(R). O

Proof of We may assume that ¢ # 0 since if ¢ = 0 then |[z=7/¢|z| =
C A |#b=0/3—0| > B A Z is a statement about an R-module of a fixed finite size and
in this case we know such an algorithm exists, by since EPP(R) is recursive.
By we can compute n € N and (r;,7;a;,7;,0;) € R* for 1 < j < n such
that R, /cl =2 if and only if (p,I) = (r;,rja;,7;,0;) for some 1 < j <n and such
that R,/cl = DZ if and only if (p,I) = (rj,7;a;,9;,7;) for some 1 < j <mn.
Claim: There exists M € Mod-R such that
M ': |$:w/c|ac| =CA |mb:0/3c=0| >BAZE
if and only if there exist C; € Nfor 0 < j<nand B; €N, B; < Bfor0<j <n+1
with [[j_, C; = C and H;L;rol B; > B, satisfying the following conditions.
(1) There exists F' € Mod-R such that
F = |o=a/z=0| = Co A |#=0/z=0| > By A |ele/a=0| = 1 A E.
(2) There exists M’ € Mod-R such that
M’ ): |x:$/c\z| =1A |$b:0/93:0‘ > Bn+1 AZ.
(3) For 1 <j <n,
(a); if r; = 0 then there exist h; € Ny and prime ideals p;; <R for 1 < i < h;
such that Y4 ¢ Pij, 5]‘ 7é 0 and
Mj = @Zlep” ': ‘m:$/0|w‘ = Cj A\ |zb:0/w:O| > B]', and
(b)J if T 75 0 then there exist hj, ]{}j € Np, prime ideals P, q;,pi; < R and
ideals Iij < Rpij for 1 <i< h,j such that (pij,Iij) ': (l,aj,*yj,5j) for
1§i§hj77j ¢pja5j¢qjaa€pj’a€qjaand
h;
M; = M(pj,q;,7)% & @D Ry, /riclij |= [a=/cla| = C; N |#b=0/a=0| > B;.

i=1
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Proof of claim. (=) By|6.0.3] if U is a uniserial module with #=2/c|2(U) finite but
non-zero then either ¢ € anngU or U = R, /cl for some prime ideal p <t R and ideal
I < Ry,. Therefore, by there exists

M = [s=¢/cla] = C A\ [10=0/am0] > B AE

if and only if there exists F© € Mod-R with ¢ € anngF', prime ideals p; < R and
ideals J; < Ry, for 1 <i < h and M’ € Mod-R with |#=2/c|«(M")| = 1 such that
h
FoM &Ry, /c)i | [#=/cla] = C A [#=0/z=0| > B A E.

i=1
Since Ry/cJ = Z if and only if (p,J) = (rj,7rja;5,7;,9;) for some 1 < j < n, we
may rewrite @?:1Rpi/0c]i as @7, @i-zl Ry, /cJij where (pij, Jij) = (r5,7505,7;,0;)
for1<j<mnand1<i<h;.

If Ty = 0 then (pij7jij) }: (’I”j,’f‘j(lj,’Yj,(Sj) if and only if Jij =0, 5]' 7é 0 and
v; & pij. If r; % 0 then (pij,Ji;) = (r5,7505,7;,6;) if and only if there exists
Iij < Rpij such that Jij = ’I’L;j and (pija-[ij) ': (l,aj,'yj,éj).

Let Cy := |#=%/cja(F)| = |F| and By := min{|#>=0/z=0(F)|, B}. Let B, =
min{[#0=0/z=0(M")|, B}. If r; = 0 then let C; := ‘$=x/c|x(€B:-Z1Rpij)’ and Bj :=

atb:o/w:O(@?ilRpij) ,B} If T 7& 0 then let Cj = z:x/c|a:(®;lepij/’l"jCIij)‘
fb:O/m:o(@?ilRpij Jricli;)|, B}. Now, setting k; = 0for 1 < j <n,

min{

and Bj := min{

we are done.
(<) Fix 1 < j < n. Suppose r; = 0. Then (p;;,0) = (r;,7;a;,7;,0;) for each 1 <
i < hj and hence Ry, = ZE. Suppose r; # 0. Then (p;j,7;1;;) = (rj,75a5,7;,06;)
for each 1 <4 < h; and hence Ry, /ricl; |= E.

By|10.7, v; ¢ pj, 0; € q;, a € p; and a € q; implies that M (p;, q;,7;) = =. Thus

FoM oM =z

j=1
Therefore
n n n+1
FeM o @Mj ): |x:x/c\ac| = H Ci A |Ib:0/ac=0‘ > H B, NE.
j=1 j=0 j=0

Since C' = [];_, C; and H;liol B; > B, we are done.

The set of C; € Nfor 0 < j <nand B; € Nwith B > B; for 0 < j <n+1such
that C' = H?:o C; and H;Liol B; > B is finite. Therefore it is enough to show that
for fixed C; € Nfor 0 < j <nand B; € N for 0 < j <n+ 1, there are algorithms
answering whether (1), (2) and (3) hold. By [7.6] since EPP(R) is recursive, there is
an algorithm which answers whether (1) holds. By [3.1.9] since DPR(R) is recursive
there is an algorithm which answers whether (2) holds. Since DPR(R), EPP(R)
and X (R) are recursive, by if 7; # 0 then there is an algorithm which answers
whether (b); holds. Since DPR(R) and EPP(R) are recursive, by ifr; =0
then there is an algorithm which answers whether (a); holds. Thus, there is an
algorithm which answers whether (3) holds. O
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11. THE MAIN THEOREM

Theorem 11.1. Let R be a Priifer domain. The theory of R-modules is decidable
if and only if DPR(R), EPP(R) and X (R) are recursive.

Proof. The forward direction follows from [GLPT18] 6.4] (or|3.1.6)),3.2.9(and 3.3.3}
By in order to show that T is decidable, it is enough to show that there is
an algorithm which, given a sentence X of the form

|d\z/x=0| hDA |zb:0/c\z| o AXygAE,

where 0y,0, € {>,=,0}, d,c,b€ R\{0}, D,FEN, f: X - N, g:Y >N, X,V
are finite sets of pp-pairs of the form #b'=0/3=0 or #=2/c’|z and = is an auxiliary
sentence, answers whether there exists an R-module which satisfies X or not.

Let W and V be as in By [0.1.1] [0.1.3] 9.1.5| and [9.2.2] there is an algorithm
which, given w € W reducible, returns w € W such that w € V if and only if w € V,
and, exsigw < exsigw. Since the set of extended signatures is artinian, by
it is enough to show that there is an algorithm which, given w € W not reducible,
answers whether w € V or not. By [0.2.4) and the statement just before that, it
is enough to show that there is an algorithm which, given w € W with extended
signature in

{((0,0), (21, 22), (23,24)) | 21 + 22 <1 and 23 4+ 24 < 1},
answers whether w € V or not. Now, w € V if and only if Dw € V. So, by
we can reduce the set of extended signatures we need to consider further to
S ={((0,0),(1,0),(1,0)), (0, 9), (1,0),(0,0)), ((9,0), (1,0), (0, 1)),
((0,9),(0,1),(0,1))}-
By [9.2.4] [10.2] [10.4] and [10.5] for each w € S such an algorithm exists. O

‘We now consider the consequences of our theorem for Priifer and Bézout domains
of Krull dimension 1.

Corollary 11.2. Let R be a recursive Prifer domain of Krull dimension 1. The
theory of R-modules is decidable if and only if EPP(R) is recursive and the relation
a € rad(b1 R + baR) is recursive.

Proof. 1t is easy to see, using [3.1.3] that (a, by, b2,1,0,0) € DPRy(R) if and only if
a € rad(biR + b2R). So, since DPR(R) recursive implies DPRy(R) recursive, the
forward direction follows from The reverse direction is a direct consequence
of [T and claims 1 and 2 below.

Claim 1: (a,b,c,d) € DPR(R) if and only if the following 3 conditions hold:
(i) ac € rad(bR + dR).
(ii) ¢ € rad(dR) or a =0 or b # 0.
(iii) a € rad(bR) or c=0or d # 0.
Since R has Krull dimension 1, if p,q <« R are prime ideals with p + q # R then
either p = q, p = 0 or q = 0. Therefore (a,b,c,d) € DPR(R) if and only if
(i) for all prime ideals p, either a € p, c€p, b ¢ p or d ¢ p;
(ii’) for all prime ideals p, either a =0, c € p, b # 0 or d ¢ p; and
(ii”) for all prime ideals ¢, either a € q, c=0, b ¢ q or d # 0.
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The claim now follows since (i) is equivalent to (i), (ii) is equivalent to (ii’) and
(iii) is equivalent to (iii’).
Claim 2:
(1) (p,n;e,v,0,0) € X(R) if and only if § # 0 and (p,0;0;7;e,n) € EPP(R).
(2) If a # 0 then (p,n;e,v,a,d) € X(R) if and only if (p,0;0;vd;e,n) € EPP(R).

Note that, by and the definition of EPP(R), for p € P, n € N and ~,e € R,
(p,0;0;v;e,n) € EPP(R) if and only if there exist A € N and maximal ideals m; <R
with 7 ¢ m; for 1 < i < h such that | ®"_, Ry,/eRm,| = p". The equivalence (1)
now follows from B3.3.2

Now consider (2). Since R has Krull dimension 1, if ¢ < R is a prime ideal
and a € q for some a # 0 then g is maximal. Thus, by B:3:2] if a # 0 then
(p,m;e,vy,a,0) € X(R) if and only if there exists h € N and maximal ideals m; < R
for 1 < i < h such that | ®7_ | Ry, /eRum,| = p" and for 1 < i < h, v ¢ m; and
d ¢ m;. So (2) now follows from the characterisation of (p,0;0;+d;e,n) € EPP(R)
given in the previous paragraph. O

The next lemma is essentially taken from [LTP17].

Lemma 11.3. Let R be a Bézout domain with Krull dimension 1. For all a,b € R
with b # 0, a ¢ rad bR if and only if there exists ¢ € R such that 1 € aR + cR and
1 ¢ bR+ cR. Moreover, if R is recursive and the set of units of R is recursive then
the radical relation is recursive.

Proof. The first statement is contained in the proof of [LTP17, 3.3]. The second
statement is part of [LTP17, 3.3] but our assumptions are a priori weaker than the
assumptions there.

If a € rad(bR) then a™ = br for some n € N and r € R. Therefore, since R is
recursive, we can effectively list the pairs (a,b) € R? such that a € rad(bR).

Since R is a recursive Bézout domain, given a,c € R, we can effectively find
d € R such that dR = aR + cR. Therefore we can effectively list the pairs (a, c¢)
such that 1 € aR+ cR and since the set of units of R is recursive, we can effectively
list the pairs (b,c) € R? such that 1 ¢ bR + cR. Thus, by the first statement, we
can effectively list the pairs (a,b) € R? such that a ¢ rad(bR). O

The next corollary generalises [GLPT18|, 6.7], which in turn generalised the main
theorem of [LTPI17] (i.e. 3.4 therein).

Corollary 11.4. Let R be a recursive Bézout domain with Krull dimension 1. The
theory of R-modules is decidable if and only if the set of units of R and EPP(R)

are recursive.

Proof. For any ring R, if Tg is decidable then the set of units of R is recursive
because r € R is a unit if and only if [*=¢/rjz] = 1 holds in all R-modules. The
forward direction now follows from [[1.11

For any recursive Bézout domain R, given b;,bs € R we can effectively find
b € R such that bR = by R+ by R. Thus, the reverse direction follows from and
oT3 O

12. INTEGER-VALUED POLYNOMIALS

We use our main theorem, [[1.1] to show that the theory of modules over the ring
of integer valued polynomials with rational valued coefficients, Int(Z), is decidable.
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First we fix some notation: For all p € P, Z(,) denotes Z localised at the ideal
generated by p, Q, denotes the field of p-adic numbers, v, : Q, — ZU{co} denotes
the p-adic valuation on Q, and Zp denotes the p-adic integers.

The ring Int(Z) is the subring of Q[z] consisting of all polynomials a € Q[z] such
that a(Z) C Z. Recall, [CC97, 1.1.1], that the polynomials

(a; ) _ z(z—1)...(x — (n—1))

n n!

are a basis for Int(Z) as a Z-module. This readily gives us a recursive presentation
of Int(Z). The ring Int(Z) is a Priifer domain [CC97, VI.1.7].

Note, [CC97, 1.2.1], that, for all p € P, if f € Q[z] and f(Z) C Z then f(Z,))
Zpy- Further, for any p € P, by continuity of polynomials over Q,, f(Z,)) € Z(y)
implies f(Z;) - i;

The prime spectrum of Int(Z) is described in [CCI7, V.2.7]. We recall the
information we need.

e For any p € P, the prime ideals of Int(Z) containing p are in bijective corre-
spondence with the elements of Z, by mapping o € Zj, to

Myo = {f € Int(Z) | f(a) € pL,}.

The prime ideals m,, o, are exactly the maximal ideals of Int(Z) and the quo-
tient Int(Z)/m, o has size p.

e The non-zero prime ideals p of Int(Z) such that Z Np = {0} are in bijec-
tive correspondence with the monic irreducible polynomials ¢ € Q[z] via the
mapping

g+ pq = qQ[z] NInt(Z).
Note that p, C m,, o if and only if ¢(a) = 0 in Q,.
It will sometimes be useful to have an alternate notation for the non-maximal prime
ideals. For a € Zy, let

Py 1= pg, if o is algebraic and ¢ € Q[z] is its monic minimal polynomial;
e {0}, if « is transcendental.

This notation has the disadvantage that p, = pg does not imply « = 5. However,
it allows us to work with a € Z; algebraic and transcendental uniformly in the
following ways: Firstly, for a € Int(Z) and « € i; a € P, if and only if a(a) = 0.
Secondly, for ¢ < R a prime ideal and o € Z;, q C mp if and only if g = m, 4,
q=pa or q={0}

By we need to show that DPR(Int(Z)), EPP(Int(Z)) and X (Int(Z)) are
recursive. In order to do this, we use the fact, [Ax68, Thm 17], that the common
theory Thgic of the valued fields @, as p varies, is decidable. We shall work in a
two-sorted language L, of valued fields with a sort for the field K, a sort I" for the
value group extended by oo and a function symbol v : K — I" which is interpreted
as vp in each Q. For convenience, we add a constant symbol 1 to the value group
sort I', which for each valued field Q,, is interpreted as the least strictly positive
element of the value group.

Let Egal be the set of sentences in L,4;. The sets

Togic :={p € L2, | forallpeP, Qp v}



68 LORNA GREGORY

and
{p e L8, | there exists p € P such that Q, &= ¢}

are recursive. Hence, since Q, = ¢ if and only if Q; = v(p) =0V ¢ for all ¢ € P,
the set

{(p7 90) ePx E?}al | QP >: (P}
is recursive.
Proposition 12.1. The set DPR(Int(Z)) is recursive.
Proof. Let a,b,c,d € Int(Z). Then (a,b, c,d) € DPR(Int(Z)) if and only if
(1) forallpe P and a € Z;, a€EmMy o, b m, o, ceEmy, ordégm,,;
2) forallpePand o € Zp, a €my o, b my o, ¢ € po or d € pa;
3) forallpePand a € Zy, a €myq, b my,, c=0o0rd#0;
4) forallpePand o € Zp, a € pa, b ¢ pa, c €My, o or d ¢ my, o
) forallpePanda€Z,, a=0,b#0,cem,, ord¢my,,;
) for all ¢ € Q[z] irreducible and monic, a € pg, b & pg, ¢ € pg or d & py;
) for all ¢ € Q[z] irreducible and monic, a € pg, b ¢ pg, ¢ =0 or d # 0;
) for all ¢ € Q[z] irreducible and monic, a =0, b # 0, ¢ € pg or d ¢ pg; and
(9) a=0o0rb#0o0rc=0o0rd#0.
One sees this by considering all possible pairs of comparable prime ideals of Int(Z).
The case where one of the prime ideals is maximal is discussed just under the
definition of p,. If p is a non-maximal non-zero prime ideal then p = p, for some
monic irreducible ¢ € Q[z]. Now, if p, D p,s for monic and irreducible ¢, ¢’ € Q[z]
then ¢ € ¢’Q[z]. Hence g = ¢’ and so py = pgy.
Define X1, X2, X3, X4, X5 € ﬁgal to be
X1 :=Vz (v(z) < 0Vola(z)) >1Vobx)) =0Vu(c(x)) >
X2 :=Vz (v(z) < 0Vo(a(z)) >1Volb(z)) =0V c(z)
X3 :=Vz (v(z) < 0Vola(x)) >1Vulb(z)) =
\%
)

(
(
(
(
(
(
(

5
6
7
8

Xy :=Vz (v(x) <0Valr) =0Vb(z)#0Vu(c(r)) >1
X5 :=Vz (v(z) < 0Vole(x)) >1Vo(d(x)
Claim: (a,b,c,d) € DPR(Int(Z)) if and only if
(1) X1,X2,Xa € Tadic,
(ii) either ¢ =0, d # 0 or X3 € Tyaiec,
(iii) either a =0, b # 0 or X5 € Tudic,
(iv) ac € radgy,) (bQ[z] + dQ[z]),
(v) a € radg,) (bQ[z]) or ¢ =0 or d # 0,
(vi) either ¢ =0, d # 0 or ¢ € radg,](dQ[z]), and
(vii) either a =0,b# 0, c=0or d # 0.
Recall that a € m,, , if and only if v,(a(a)) > 1 and a € p, if and only if a(a) = 0.
Therefore, for j € {1,2,4}, (j) holds if and only if X; € Ty4;c, (3) holds if and only
if X3 € Taaic, c=0o0r d # 0, and, (5) holds if and only if X5 € Ty4ic, a =0 or b # 0.
The statement that, for all prime ideals p <Int(Z) with either p = 0 or p = p, for
some monic irreducible ¢ € Q|x], either a € p, c € p, b ¢ p or d ¢ p is equivalent to
ac € radg,) (bQ[z] +dQ[x]). So (6) and (9) hold if and only if (iv) holds. Similarly,
(7) and (9) holds if and only if (v) holds and, (8) and (9) holds if and only if (vi)
holds. Finally (9) holds if and only if (vii) holds. So the claim holds.
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Since T,q:c is decidable, we can effectively decide whether (7), (i¢) and (#i7) hold.
If a,b1,be € Q[z] then a € radg,)(b1Q[x] + b2Q[z]) if and only if for all ¢ € Q[x]
irreducible, ¢ divides b; and ¢ divides by implies g divides a. Since Q has a splitting
algorithm, there is an algorithm which, given a,by,bs € Qz], decides whether
a € radgy] (b1Q[z] + b2Q[z]). Therefore, we can effectively decide whether (iv)-(vi)
holds. It is obvious that we can effectively decide whether (vii) holds. O

In order to analyse EPP(Int(Z)), we need to understand the valuation overrings
of Int(Z).

e For each p e P and o € i\ transcendental, define v, o : Q(z) — Z U {oo} by
setting vp.o(f/g) = vp(f(a 0/9().

e Foreachp e Pand a € Z algebraic with monic minimal polynomial ¢ € Q[x],
deﬁne Up o Qx) = ZxZU{oo} by setting vy, o (h) = (k, v,(f(a)/g(a))) where
q"- /g, f(@) # 0 and g(a) # 0.
By [CC97 VL.1.9], Int(Z)w, , is the valuation ring of v, . Let e € Int(Z) and
N € Np.

e ForpePand o € Z; transcendental, v, o(€) = v,(e(a)) = N if and only if
It (Z)m, ., /eInt(Z)m, .| = .
e ForpePand a € z; algebraic, v,(e(e)) = N if and only if v, o(e) = (0, N)
if and only if
Int(Z)wm, ., /eInt(Z)m, .| = V.
For the first equivalence of the second bullet point, note that the minimal poly-
nomial ¢ of « divides e € Int(Z) if and only if v,(e(a)) = oco. Thus v,(e(a)) = N

implies v, o(e) = (0,N). Conversely, if v, 4(e) = (0, N) then e = ¢° - e and
ople(a) = N.

Proposition 12.2. The set EPP(Int(Z)) is recursive.

Proof. Claim: (p,M;a;v;e,N) € EPP(Int(Z)) if and only if there exist h €
{1,...,N + M}, N;, M; € Ny for 1 <i < h with ¥/ | N; = N and Y1 | M; = M
such that for each 1 <1 < h,

() Qb= 3z (v(x) 2 0Av(e(z) = Ni Av(a(z)) = M; Ao(y(2)) = 0).

Suppose (p, M;a;v;e,N) € EPP(Int(Z)). There exists aq,...,ap and ly,...,1; €
No such that v ¢ m, o, a € mb |

:pM

h R .
Xl = H [t (Z)m, ., /00
i=1

and
h

pz?:l vp(e(ay)) — H |Int(Z)mP,ui /eInt(Z)mp,ui |= pN.

i=1
We may assume that h < N + M since the size of the set of 1 <4 h such that
vple(a;)) > 0 or l; > 01is at most N + M. Set N; := v,(e(a l)) = ;.

Then N = ZZ y Nioand M = Zl 1 M. Slnceaempav vp(a(ag)) > M andsmce
v & mya,, vp(v(e;)) =0, as required.
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For the converse, suppose that for each 1 < i < h, a; witness the truth of the
sentence (1). Set p; :=m, o, and I; := m%;’li for 1 <+ < h. Then v,(a(ey)) > M;
implies a € m) . Since v,(y(a;)) = 0, v € My o, and vp(e(e;)) = N; implies

Int(Z)m, ., /et(Z)m,, ., | = plVi.

So (p, M;a;v;e,N) € EPP(Int(Z)) as required.
The proposition now follows from the claim since the set of (p,¢) € P x £9
such that Q, = ¢ is recursive. O

Proposition 12.3. The set X (Int(Z)) is recursive.

Proof. Recall, (p,m;e,7v,a,0) € X(Int(Z)) if and only if there exist h € N
and maximal ideals m,, ,, for 1 <7 < h such that

piz vple(ed) — | @t nt(Z)w,,, /eI0t(Z)m, , | =",

v ¢ m, ,, and for each 1 < ¢ < h, either § ¢ m, o, or there exists q; a prime ideal
such that q; C m, ,, a € q; and 0 ¢ q;. As in we may assume that 1 < h < n.

If q is a prime ideal strictly contained in m, . then q = p, or ¢ = {0}. Thus
there exists g C m, o such that a € qand § ¢ q if and only if a(«) = 0 and d(«) # 0,

or,a =0and § #0. For a € Zp, v ¢ m,, if and only if v,(y(a)) = 0. Therefore,
(p,m;e,y,a,0) € X(Int(Z)) if and only if there exist 1 < h < n and N; € N for
1 < ¢ < n such that Z?ZlNi:nand for 1 <i<h,

Qp =3z (v(z) > 0Av(y(z)) =0Av(e(z)) = N;
Aw((z) =0V (alz) =0Ad(x) #0)V (a=0A3d #0))]).

So, since the set of (p, ¢) € Px LY, such that Q, = ¢ is recursive, we are done. [

Theorem 12.4. The theory of modules of the ring of integer valued polynomials
with rational coefficients is decidable.

Proof. This follows from [[1.1], [12.1] [12.2] and [12.3] (I
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