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Abstract. In this article we give elementary conditions completely charac-

terising when the theory of modules of a Prüfer domain is decidable. Using
these results, we show that the theory of modules of the ring of integer valued

polynomials is decidable.
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1. Introduction

In this article, we give a complete characterisation of when the theory of modules
of a recursive Prüfer domain is decidable.

Decidability connects algebra and computability theory in a profound way by
asking whether a given algebraic structure, or a class of algebraic structures, can
algorithmically be fully understood, at least in principle. Famous instances are
Hilbert’s 10th problem asking whether the solvability of diophantine equations can
be verified by a machine; Tarski’s ground breaking result on the decidability of the
real field and Ax’s theorem on the decidability of the class of finite fields (showing
that there is an algorithm verifying whether a first-order sentence holds in all finite
fields).

Prüfer domains are a much studied class of rings, including many classically
important rings and classes of rings. For example, they include Dedekind domains
and hence rings of integers of number fields; Bézout domains and hence the ring of
complex entire functions [Hel40, Thm. 9] and the ring of algebraic integers [Kap74,

1



2 LORNA GREGORY

Thm. 102]; the ring of integer valued polynomials with rational coefficients [CC97,
VI.1.7] and the real holomorphy rings of a formally real fields [Bec82, 2.16].

Prüfer domains have provided a rich supply of rings for which the decidability
of modules can be determined. The theory of modules of a ring R is said to be
decidable if there is an algorithm which decides whether a given first order sentence
in the language of R-modules is true in all R-modules.

The first non-trivial example of a ring with decidable theory of modules was
given by Szmielew, [Szm55], who showed that the theory of abelian groups (or
equivalently Z-modules) is decidable. This result was generalised by Eklof and
Fischer, [EF72], to some Dedekind domains, among them certain rings of integers,
and they showed that, for a (recursive) field k with a splitting algorithm, the theory
of k[x]-modules is decidable.

The most recent effort to understand decidability of theories of modules over
Prüfer domains started with a paper, [PPT07], of Puninski, Puninskaya and Tof-
falori. They showed that a recursive valuation domain with dense archimedean
value group has decidable theory of modules if and only if its set of units is re-
cursive. Proving a conjecture in [PPT07], we show in [Gre15] that an arbitrary
recursive valuation domain has decidable theory of modules if and only if the radi-
cal relation a ∈ rad bR is recursive.

The theory of modules of Bézout domains of the form D+XQ[X] ⊆ Q[X], where
D is a principal ideal domain with field of fractions Q, is shown in [PT14] to be
decidable under certain reasonable effectiveness conditions on D. In particular, it
is shown that Z+XQ[X] has decidable theory of modules. The theory of modules
of the ring of algebraic integers, along with some other Bézout domains with Krull
dimension 1, is shown to have decidable theory of modules in [LTP17].

Work towards characterising when a general Prüfer domain has decidable theory
of modules was started in the articles [GLPT18] and [GLT19], and is finished in
the present one. We will describe the results of these articles whilst describing the
main result of the present article.

First a reminder of the setup for proving decidability results for theories of
modules. Thanks to the Baur-Monk theorem, if R is a recursive ring then the theory
of R-modules is decidable if and only if there exists an algorithm which, given pairs
of pp-formulae ϕ1/ψ1, . . . , ϕl/ψl and intervals [n1,m1], . . . , [nl,ml] ⊆ N ∪ {∞} where
ni,mi ∈ N ∪ {∞}, answers whether there exists an R-module M such that, for all
1 ≤ i ≤ l, |ϕ(M)/ψ(M)| ∈ [ni,mi]. The existence of an algorithm answering this
question when [ni,mi] are either [1, 1] or [2,∞] is equivalent to the existence of an
algorithm deciding whether one Ziegler basic open set is contained in a finite union
of other Ziegler basic open sets (for the definition of the Ziegler spectrum see 2.1).

We characterise when the theory of modules of a Prüfer domain R is decidable in
terms of the recursivity of three sets: DPR(R), EPP(R) and X(R). Each of these
sets is a subset of Rn×Nk0 for some n, k ∈ N0. For the sets EPP(R) and X(R), we
postpone their definitions (see 3.2.4 and 3.3.1 respectively) to section 3 and in this
introduction we instead give some indication of their meaning.

For any commutative ring R, the set DPR(R) is defined as the set of (a, b, c, d) ∈
R4 such that for all prime ideals p, q of R with p + q 6= R, either a ∈ p, b /∈ p,
c ∈ q or d /∈ q. This set was introduced in [GLPT18] as a generalisation of the
radical relation a ∈ rad bR. For a recursive Bézout domain it is shown there that
DPR(R) is recursive if and only if there is an algorithm deciding inclusions of Ziegler
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basic open sets. For recursive Prüfer domains, analogous sufficient conditions were
given for there to exist an algorithm deciding inclusions of Ziegler basic open sets.
Building heavily on those results, we extend the equivalence given in [GLPT18] for
Bézout domains to all recursive Prüfer domains (see 3.1.8). As a consequence we
get the following theorem.

Theorem. (See 3.1.9) Let R be a recursive Prüfer domain such that R/m is infinite
for all maximal ideals m. The theory of R-modules is decidable if and only if
DPR(R) is recursive.

If R is a ring with a pair of pp-formulae ϕ/ψ and an R-module M such that
|ϕ(M)/ψ(M)| is finite but not equal to 1, in particular if R is a commutative
ring with a finite non-zero module, then we need to do more than show that there
is an algorithm deciding inclusions of Ziegler basic open sets.

For any ring R, if the theory of R-modules is decidable then the theory of modules
of size n is decidable uniformly in n. In 3.2.10, we introduce a set EPP(R), whose
recursivity, for a recursive Prüfer domain R, is equivalent to the decidability of the
theory of R-modules of size n, uniformly in n. This is proved in Theorem 7.6. The
main feature of EPP(R) is that it is often easier to check in examples that EPP(R)
is recursive than it is to check that the theory of modules of size n is decidable
uniformly in n.

The set EPP(R) is a generalisation of PP(R), which is defined in [GLT19] and
inspired by the characterisation of commutative von Neumann regular rings with
decidable theories of modules given in [PP88]. In [GLT19], for a recursive Bézout
domain R, under the condition that for each maximal ideal m, Rm has dense value
group, it is shown that the theory of R-modules is decidable if and only if DPR(R)
and PP(R) are recursive. Building heavily on [GLT19], we show, that this result
also holds for Prüfer domains.

Theorem 3.2.3. Let R be a recursive Prüfer domain such that Rm has dense value
group for all maximal ideals m. The theory of R-modules is decidable if and only if
PP(R) and DPR(R) are recursive.

It follows from this theorem that the theory of modules of a recursive Prüfer domain
with dense value groups (or infinite residue fields) is decidable if and only if there is
an algorithm deciding inclusions of Ziegler basic open sets and the theory of finite
modules of size n is decidable uniformly in n. The same result for commutative
von Neumann regular rings follows easily from [PP88]. This does not appear to be
the case for arbitrary Prüfer domains.

The third set, X(R), captures information about finite Baur-Monk invariants of
the, in some sense intrinsically infinite modules, Rp/I where p is a prime ideal of
R and I is an ideal of Rp.

Main Theorem 11.1. Let R be a recursive Prüfer domain. The theory of R-
modules is decidable if and only if the sets DPR(R), EPP(R) and X(R) are recur-
sive.

Our characterisation is such that it can be easily checked for concrete rings. We
illustrate this in section 12 by using our main theorem to show that the ring of
integer valued polynomials with rational coefficients, Int(Z), has decidable theory
of modules. In order to prove that DPR(Int(Z)), EPP(Int(Z)) and X(Int(Z)) are
recursive, we use Ax’s result, [Ax68, Thm 17], that the common theory of the p-adic
valued fields Qp as p varies, is decidable.
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The main theorem applied to the special case of a recursive Prüfer domain R of
Krull dimension 1 yields:

– The theory of R-modules is decidable if and only if EPP(R) is recursive and
the relation a ∈ rad(b1R+ b2R) is recursive, 11.2.

– If R is a Bézout domain, then the theory of R-modules is decidable if and
only if the set of units of R and EPP(R) are recursive, 11.4.

Section 1 contains background material and simple preparations for the rest of
the paper. Its main purpose is to make the article as accessible as possible. We
postpone a guide to the proof and discussion of what is contained in each section
to subsection 2.4.

When it doesn’t complicate the proofs, we state some of our intermediate results
for arithmetical rings, i.e. commutative rings whose localisations at prime ideals
are valuation rings.

2. Preliminaries

Notation: In this article N := {1, 2, 3, . . .}, N0 := N ∪ {0}, Nn := {m ∈ N | m ≥ n}
for n ∈ N and P denotes the set of prime natural numbers. For a ring R, let Mod-R
denote the category of (right) modules. For R a ring, we will write I CR to mean
I is a (right) ideal of R.

2.1. Model theory of Modules. For general background on model theory of
modules see [Pre88].

Let R be a ring. Let LR := {0,+, (·r)r∈R} be the language of (right) R-modules

and TR be the theory of (right) R-modules. A (right) pp-formula[1] is a formula
of the form

∃y1, . . . , yl

m∧
j=1

l∑
i=1

yirij + xsj = 0

where rij , sj ∈ R. For a ∈ R, we write a|x for the pp-formula ∃y x = ya.
The solution set ϕ(M) of a pp-formula ϕ in an R-module M is a subgroup of

M . For ϕ,ψ, pp-formulae and M ∈ Mod-R, we will write ψ ≤M ϕ to mean that
ψ(M) ⊆ ϕ(M). We will write ψ ≤ ϕ to mean that ψ ≤M ϕ for all M ∈ Mod-R.
After identifying equivalent pp-formulae, the set of pp-formulae, pp1

R, equipped
with the order ≤ is a lattice.

A pp-pair will simply mean a pair of pp-formulae and we will write ϕ/ψ for such
pairs. For M ∈ Mod-R, we write ϕ/ψ(M) for the quotient group ϕ(M)/ϕ(M) ∩
ψ(M). For every n ∈ N and pp-pair ϕ/ψ, there is a sentence, denoted |ϕ/ψ| ≥ n,
in the language of (right) R-modules, which expresses, in every R-module M , that
ϕ/ψ(M) has at least n elements. We write |ϕ/ψ| = n for the sentence which expresses,
in every R-module M , that ϕ/ψ(M) has exactly n elements.

Theorem 2.1.1 (Baur-Monk). Let R be a ring. Every sentence in LR is equivalent
to a boolean combination of sentences of the form |ϕ/ψ| ≥ n where ϕ/ψ is a pp-pair.

An embedding f : A → B is pure if for all pp-formulae ϕ and m ∈ A, f(m) ∈
ϕ(B) impliesm ∈ ϕ(A). A moduleN is pure-injective if for every pure-embedding
f : A → B and homomorphism g : A → N , there exists h : B → N such that

[1]This is really the definition of a pp-1-formula, i.e. a pp-formula in one variable. We only use
pp-1-formulae in this article.
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h ◦ f = g. A module is indecomposable if it cannot be written as the direct
sum of two non-zero submodules. We denote the set of isomorphism classes of
indecomposable pure-injective (right) R-modules by pinjR.

Lemma 2.1.2. [Pre88, 4.36] Let R be a ring. For all M ∈ Mod-R, there exist
indecomposable pure-injective modules Ni ∈ Mod-R for i ∈ I such that ⊕i∈INi is
elementary equivalent to M .

We say a pure-embedding i : M → N with N pure-injective is a pure-injective
hull of M if for every other pure-embedding g : M → K where K is pure-injective,
there is a pure-embedding h : N → K such that h ◦ i = g. Every module M has a
pure-injective hull and if i : M → N and i′ : M → N ′ are pure-injective hulls of M
then there exists f : N → N ′ such that fi = i′ (see [Pre09, 4.3.18]). We will write
H(M) for any module N such that the inclusion of M in N is a pure-injective hull
of M . We will also often refer to such a module as the pure-injective hull of M .
Every module is an elementary substructure of its pure-injective hull [Pre88, 2.27].
So, in particular every module is elementary equivalent to its pure-injective hull.

The (right) Ziegler spectrum of a ring R, denoted ZgR, is a topological space
whose points are isomorphism classes of indecomposable pure-injective (right) R-
modules and which has a basis of compact open sets given by

(ϕ/ψ) := {N ∈ pinjR | ϕ(N) ) ϕ(N) ∩ ψ(N)}

where ϕ/ψ range over pp-pairs.
Prest gave a lattice anti-isomorphism D : pp1

R → Rpp1 (see [Pre88, 8.21]) where

Rpp1 denotes the lattice of left pp-formulae. As is standard, we denote its inverse

Rpp1 → pp1
R also by D. We don’t recall the full definition of D here but instead

note that for all a ∈ R, D(a|x) is ax = 0 and D(xa = 0) is a|x.
Herzog extended this duality to an isomorphism between the lattice of open sets

of the right and left Ziegler spectra of a ring [Her93, 4.4], and, to a useful bijection
between the complete theories of right and left R-modules.

The following proposition is direct consequence of [Her93, 6.6].

Proposition 2.1.3. Let R be a ring. Let n,m ∈ N be such that n ≤ m and for
1 ≤ i ≤ m, let Ni ∈ N and let ϕi/ψi be a pp-pair. For

χ :=

n∧
i=1

|ϕi/ψi| = Ni ∧
m∧

i=n+1

|ϕi/ψi| ≥ Ni,

define

Dχ :=

n∧
i=1

|Dψi/Dϕi| = Ni ∧
m∧

i=n+1

|Dψi/Dϕi| ≥ Ni.

There exists a right R-module satisfying χ if and only if there exists a left R-module
satisfying Dχ.

A priori, duality may not appear particularly relevant to an article about com-
mutative rings. However, its use significantly simplifies some of the proofs in this
paper and, as in [Gre15], the fact that it exchanges formulae xb = 0 with b|x allows
us to reduce the number of calculations.
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2.2. Decidability and recursive Prüfer domains. A recursive ring is either
a finite ring or a ring R together with a bijection π : N→ R such that addition and
multiplication in R induce recursive functions on N via π.

Note that if R is a ring and π : N → R is a bijection then TR is recursively
axiomatisable with respect to π if and only if R together with π is a recursive ring.

When proving decidability results about theories of modules, it is common to
work with an “effectively given” ring rather than just a recursive one (see for in-
stance [PPT07, §3], [Gre15, 3.1], [GLPT18, §3] and [GLT19, §2]). Usually, a ring of
a particular type is called effectively given if R is a recursive ring and the bijection
π satisfies some extra conditions which are equivalent, for that particular type of
ring, to Prest’s condition (D) holding (see [Pre88, pg 334]). Recall that a recursive
ring satisfies condition (D) if there is an algorithm which, given ϕ,ψ ∈ pp1

R answers
whether ψ ≤ ϕ. So, in particular, if TR is decidable then R satisfies condition (D)
i.e. R is effectively given. For example, a recursive valuation domain V is said to
be effectively given if the preimage under π of the set of units of V is recursive.
A recursive Prüfer domain R is said to be effectively given if the preimage under
π of the set of (a, b) ∈ R2 such that a ∈ bR is recursive. By definition, every effec-
tively given ring is recursive and if TR is decidable then R is effectively given, by
which I mean Prest’s condition (D) holds. For simplicity and generality, we choose
to work with recursive rings.

We will use results from [GLPT18] and [GLT19], stated under the stronger as-
sumption that R is an effectively given Prüfer domain. It was remarked in [GLT19,
paragraph before 2.4], that the property that a ∈ bR is recursive is never used in
[GLPT18] or [GLT19]. Moreover, see [GLT19, 2.4], if R is a recursive Prüfer do-
main and the set DPR(R) ⊆ R4 is recursive then the relation a ∈ bR is recursive.
In particular, even though they are stated for effectively given Prüfer domains, the
main results in [GLPT18] and [GLT19] in fact hold for recursive Prüfer domains.

The next theorem is a well-known and easy consequence of the Baur-Monk The-
orem. Note that, since TR is recursively axiomatisable when R is recursive, given
a sentence χ in LR, we can always find, using a proof algorithm, a sentence χ′ as
in the statement of the Baur-Monk theorem which is TR-equivalent to χ.

Theorem 2.2.1. Let R be a recursive ring. The theory of R-modules is decidable
if and only if there is an algorithm which, given a sentence χ of the form

(†) χ :=

n∧
i=1

|ϕi/ψi| = Ei ∧
m∧

i=n+1

|ϕi/ψi| ≥ Ei,

where Ei ∈ N and ϕi/ψi is a pp-pair for 1 ≤ i ≤ m, answers whether there exists an
R-module satisfying χ.

As in the introduction we say “there is an algorithm deciding inclusions of Ziegler
basic open sets” to mean that there is an algorithm, which given n+1 Ziegler basic
open sets (ϕ0/ψ0), . . . , (ϕn/ψn), answers whether (ϕ0/ψ0) ⊆ (ϕ1/ψ1) ∪ . . . ∪ (ϕn/ψn), or
not.

Remark 2.2.2. Let R be a recursive ring. There is an algorithm deciding inclusions
of Ziegler basic open sets if and only if there is an algorithm which, given a sentence

χ :=

n∧
i=1

|ϕi/ψi| ≥ Ei ∧
m∧
j=1

|σj/τj| = 1,
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where ϕi/ψi, σj/τj are pp-pairs and Ei ∈ N for 1 ≤ i ≤ n and 1 ≤ j ≤ m, answers
whether there exists an R-module satisfying χ.

Proof. There is a module satisfying χ as in the statement if and only if for each
1 ≤ i ≤ n, there exists an indecomposable pure-injective module Ni such that
Ni ∈ (ϕi/ψi) \

⋃m
j=1 (σj/τj). This is a standard argument. For the forward direction

use 2.1.2. For the reverse, observe ⊕ni=1N
Ei
i satisfies χ. �

2.3. Arithmetical rings and Prüfer domains. A commutative ring is arith-
metical[2] if all its localisations at maximal ideals are valuation rings. Equivalently,
[Jen66, Thm 1], a commutative ring R is arithmetical if its lattice of ideals is dis-
tributive. A Prüfer domain is an integral domain which is arithmetical.

The following lemma is a direct consequence of [Tug03, 1.3].

Lemma 2.3.1. If R is an arithmetical ring then for all a, b ∈ R, there exist α, r, s ∈
R such that aα = br and b(α− 1) = as.

Note that if R is a recursive arithmetical ring then there is an algorithm which,
given a, b ∈ R, finds α, r, s satisfying the above equations. We will frequently use
this fact without note.

Recall that a module is called uniserial if its lattice of submodules is totally
ordered. A module is pp-uniserial if its lattice of pp-definable subgroups is to-
tally ordered. Over a commutative ring all pp-definable subgroups are submodules.
Thus, all uniserial modules over a commutative ring are pp-uniserial.

The lattice of pp-formulae of a commutative ring R is distributive if and only if
R is arithmetical [EH95, 3.1]. Thus, the following is a direct consequence of [Pun03,
3.3].

Lemma 2.3.2. Let R be a commutative ring. All indecomposable pure-injective
R-modules are pp-uniserial if and only if R is arithmetical.

The endomorphism rings of indecomposable pure-injective modules are local
[Pre09, 4.3.43]. Therefore, if R is a commutative ring and N is an indecomposable
pure-injective R-module then the set, AttN , of r ∈ R acting on N non-bijectively
form a prime ideal. The notation “Att” stands for attached prime. Thus, if N
is an indecomposable pure-injective module over a commutative ring R then N
may be equipped with the structure of an RAttN -module. Moreover, N remains
indecomposable and pure-injective as an RAttN -module. Conversely, if N is an
indecomposable pure-injective Rp-module for some prime ideal p C R then the re-
striction of N to R remains indecomposable and pure-injective.

The next lemma follows easily from the fact that indecomposable pure-injective
modules over arithmetical rings are pp-uniserial (a proof appears in [GLT19, 2.8]).

Lemma 2.3.3. Let R be an arithmetical ring and N an indecomposable pure-
injective R-module. The sets

DivN := {r ∈ R | Nr ( N}
and

AssN := {r ∈ R | there exists m ∈ N\{0} such that mr = 0}

[2]This condition is often referred to as Prüfer in papers on Model Theory of Modules. How-
ever, algebraists tend to use the term Prüfer for the weaker condition that every regular ideal is

invertible. To avoid confusion we choose the term with a unique definition.
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are prime ideals. Moreover,

AttN = DivN ∪AssN.

Here, AssN can be read as the assassinator of N . More dubiously, DivN may
be read as the “divissinator” of N .

Lemma 2.3.4. Let R be an arithmetical ring and M ∈ Mod-R.

(1) For all α ∈ R, there exist M1,M2 ∈ Mod-R such that M1 ⊕ M2 ≡
M , |xα=0/x=0(M1)| = 1, |x=x/α|x(M1)| = 1, |x(α−1)=0/x=0(M2)| = 1 and
|x=x/(α−1)|x(M2)| = 1.

(2) For all a, b ∈ R, there exist M1,M2 ∈ Mod-R such that M1 ⊕ M2 ≡ M ,
|ab|x/x=0(M1)| = 1 and |xa=0/b|x(M2)| = 1.

Proof. (1) By 2.1.2, there exist indecomposable pure-injective R-modules Ni for
i ∈ I such that M ≡ ⊕i∈INi. Since AttNi is a proper ideal for each Ni, for all
i ∈ I, either α /∈ AttNi or α − 1 /∈ AttNi. Let Iα be the set of i ∈ I such that
α /∈ AttNi and let Iα−1 = I\Iα. So, for all i ∈ Iα−1, α−1 /∈ AttNi. For each β ∈ R
and N indecomposable pure-injective, β /∈ AttN if and only if |x=x/β|x(N)| = 1 and
|xβ=0/x=0(M1)| = 1. Therefore |x=x/α|x(⊕i∈IαNi)| = 1, |xα=0/x=0(⊕i∈IαNi)| = 1,∣∣x=x/(α−1)|x(⊕i∈Iα−1Ni)

∣∣ = 1 and
∣∣x(α−1)=0/x=0(⊕i∈Iα−1Ni)

∣∣ = 1.
(2) For any L ∈ Mod-R, xb = 0 ≥L a|x if and only if ab ∈ annRL. So |ab|x/x=0(L)| =
1 if and only if xb = 0 ≥L a|x. Let N be an indecomposable pure-injective R-
module. By 2.3.2, either xb = 0 ≥N a|x or a|x ≥N xb = 0. So either |ab|x/x=0(N)| =
1 or |xb=0/a|x(N)| = 1. The proof is now as in (1). �

It is easy to see that if R is a commutative ring, p C R is a prime ideal and
M is an Rp-module then the restriction to R of the pure-injective hull of M as an
Rp-module is equal to the pure-injective hull of M as an R-module.

Theorem 2.3.5. [Zie84] Let V be a valuation domain with field of fractions Q.
Every indecomposable pure-injective V -module is the pure-injective hull of a module
J/I where I ( J ⊆ Q are submodules of Q.

So, in particular, over a valuation domain, all indecomposable pure-injective
modules are pure-injective hulls of uniserial modules. It is not known if all inde-
composable pure-injective modules over valuation rings are pure-injective hulls of
uniserial modules (see [EH95, §4]).

Lemma 2.3.6. Let R be a Prüfer domain. For any sentence χ ∈ LR, there exists
M ∈ Mod-R such that M |= χ if and only if there exist n ∈ N, prime ideals pi CR
and uniserial Rpi-modules Ui for 1 ≤ i ≤ n such that ⊕ni=1Ui |= χ.

Proof. For any ring R, there exists M ∈ Mod-R such that M |= χ if and only if
there exist n ∈ N and indecomposable pure-injective R-modules Ni for 1 ≤ i ≤ n
such that ⊕ni=1Ni |= χ. The result now follows from 2.3.5. �

We will frequently use the following easy lemma.

Lemma 2.3.7. Let V be a valuation domain, ϕ a pp-formula and U a uniserial
V -module. If |U/ϕ(U)| is finite but not equal to 1 then U ∼= V/I for some ideal
I C V .

Proof. Since U is uniserial, so is U/ϕ(U). Therefore, since U/ϕ(U) is finite, there
exists u ∈ U such that u+ϕ(U) generates U/ϕ(U) as a V -module. Since U/ϕ(U) 6=
0, uV ⊇ ϕ(U). Therefore uV = U . �
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We finish this subsection by reviewing material about ideals of valuation do-
mains.

For any commutative ring R, r ∈ R and ideal I CR, define

(I : r) := {a ∈ R | ar ∈ I}.
Note that (I : r) is an ideal of R.

Definition 2.3.8. For V a valuation domain and I C R a proper ideal, define
I# :=

⋃
a/∈I(I : a). By convention, we define V # to be the unique maximal ideal of

V .

Note that this definition agrees with the definition given in [FS01, Ch. II §4],
that is, for I 6= 0, r ∈ I# if and only if rI ( I.

Lemma 2.3.9. Let V be a valuation domain.

(i) For any ideal I C V , I# is a prime ideal.
(ii) If pC V is a prime ideal then p# = p.

(iii) If I C V and a ∈ V \{0} then (aI)# = I#.
(iv) If I C V and V/I is finite then I# is the unique maximal ideal of V .

Proof. The first 3 statements are in [FS01, II.4]. We prove (iv). If I = V then the
statement follows directly from the definition. Otherwise, I ⊆ I# and hence V/I#

is also finite. Since V/I# is a finite integral domain, it is a field. Therefore I# is
maximal. �

Lemma 2.3.10. Let R be a Prüfer domain, pCR a prime ideal and ICRp. Then,
for all δ, γ ∈ R,

(1) |xδ=0/x=0(Rp/I)| = 1 if and only if δ /∈ I# or I = Rp, and,
(2) |x=x/γ|x(Rp/I)| = 1 if and only if γ /∈ p or I = Rp.

Proof. (1) For any δ ∈ R, |xδ=0/x=0(Rp/I)| = 1 if and only if (I : δ) ⊆ I. Now (I :
δ) ⊆ I if and only if I = Rp, or, for all a /∈ I, δa /∈ I. Therefore |xδ=0/x=0(Rp/I)| = 1
if and only if δ /∈ I# or I = Rp.
(2) For any γ ∈ R, |x=x/γ|x(Rp/I)| = 1 if and only if γRp + I = Rp. This is true if
and only if γ /∈ p or I = Rp. �

Remark 2.3.11. Let R be an integral domain, b ∈ R\{0}, pCR be a prime ideal
and I CRp be an ideal. If Rp/I is finite then |I/bI| = |Rp/bRp|.

Proof. Since b 6= 0,

|Rp/I| · |I/bI| = |Rp/bI| = |Rp/bRp| · |bRp/bI| = |Rp/bRp| · |Rp/I| .
So, since |Rp/I| is non-zero, |I/bI| = |Rp/bRp|. �

We frequently use the following lemma which becomes particularly useful when
R is a valuation ring because then for all r ∈ R and I CR either r ∈ I or rR ⊇ I.

Lemma 2.3.12. Let R be a commutative ring, r ∈ R and I C R. Then rR ⊇ I if
and only if there exists J CR such that I = rJ .

Proof. The reverse direction is clear. For the forward direction, take J = (I : r). �

Lemma 2.3.13. Let V be a valuation domain, I, J C V and a ∈ R\{0}. Then
J ⊇ (I : a) if and only if aJ ⊇ I or J = V .
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Proof. (⇒) Suppose J ⊇ (I : a). Since V is a valuation domain, either a ∈ I or
aV ⊇ I. If a ∈ I then J ⊇ (I : a) = V . So J = V . Suppose aV ⊇ I. Take c ∈ I.
There exists b ∈ V such that ab = c. So b ∈ (I : a) ⊆ J . Hence c = ab ∈ aJ as
required.
(⇐) If J = V then J ⊇ (I : a). So, suppose aJ ⊇ I. Take c ∈ (I : a). Then
ac ∈ I ⊆ aJ . Since a 6= 0, c ∈ J . Therefore J ⊇ (I : a). �

2.4. Guide to the proof. The reverse direction of the main theorem is proved in
§3. That is, we show that if TR is decidable then DPR(R), EPP(R) and X(R) are
recursive (see [GLPT18, 6.4] (or 3.1.6), 3.2.9 and 3.3.3).

The proof of the forward direction of the main theorem has 3 principal ingredi-
ents.

(A) Consequences of DPR(R), EPP(R) and X(R) being recursive (§3 and §7).
(B) Syntactic reductions (§4, §5 and §9).
(C) Semantic input (§6, §8 and §10).

(A) In section 3 we introduce and analyse the sets DPR(R), EPP(R) and X(R).
These sets are chosen to be as simple as possible so that our theorem is as easy
as possible to apply to concrete rings. For this reason, work needs to be done to
obtain more elaborate consequences of them being recursive.

For each n ∈ N, a set DPRn(R) was introduced in [GLPT18]. We show that,
3.1.7, for R a recursive arithmetical ring, if DPR(R) is recursive then the sets
DPRn(R) are recursive (uniformly in n). Combining this with [GLPT18, 7.1], or
more precisely its proof, we conclude that we can effectively decide inclusions of
Ziegler basic open sets if and only if DPR(R) is recursive.

In section 7, we investigate the consequences of EPP(R) being recursive, and of
EPP(R) and the radical relation being recursive (this is primarily used in section
8). We show that for R a recursive Prüfer domain the theory of R-modules of size
n is decidable uniformly in n if and only if EPP(R) is recursive, 7.6.

In the proof of the forward direction of the main theorem, the set X(R) is only
ever used in section 10.

(B) Given a sentence χ as in (†) (from 2.2.1) we often produce a finite set S of
tuples of sentences (χ1, . . . , χn) with each χi having a “better” form than χ such
that there exists M |= χ if and only if there exist (χ1, . . . , χn) ∈ S and modules
Mi for 1 ≤ i ≤ n with Mi |= χi. This is roughly what happens in the proof of
[GLT19, 4.1]. Section 4 introduces two important formalisms (and ideas) which
used in combination are key to the proof. Essentially they allow us to “automate”
some reductions similar to those in the proof of [GLT19, 4.1] which in this article
become too complicated to perform entirely by hand.

It is shown in [GLT19, 4.1] that for arithmetical rings[3] it is enough to con-
sider sentences as in (†) where the pp-pairs involved are of the form d|x/x=0 or
xb=0/c|x. Section 5 uses the formalisms in section 4, to show that it is enough to
consider sentences as in (†) where at most one conjunct of the form |d|x/x=0| = D
or |d|x/x=0| ≥ D with D ≥ 2 occurs and where at most one conjunct of the form
|xb=0/c|x| = G or |xb=0/c|x| ≥ G with G ≥ 2 and b, c 6= 0 occurs.

[3]The result is stated there only for Prüfer domains but the same proof implies the result for
all arithmetical rings (see section 5).
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In section 9 a notion of complexity, called the extended signature, is defined on
the set W of sentences as in (†) as reduced to in section 5. The set of extended
signatures is equipped with an artinian partial order. The reduction processes in
section 9 terminate at expressions whose extended signatures are not reducible.
Some of the sentences which are not reducible are of a form for which we can
answer whether there exists a module satisfying them, because there is an algorithm
deciding inclusions of Ziegler basic open sets. The remaining sentences are of a
particular simple form and we deal with them in section 10.

(C) In section 6, for pp-pairs ϕ/ψ of the form d|x/x=0, xb=0/c|x with b, c 6= 0 and x=x/c|x
with c 6= 0, we give a description of the uniserial modules U over a valuation domain
V , such that ϕ/ψ(U) is finite but non-zero. Unlike the descriptions of such modules
in [Gre15] and [PPT07], the results we prove do not depend on whether the value
group of V is dense or not. We now describe how we use semantic input to deal
with sentences as in (†) (from 2.2.1) with a conjunct of the form |d|x/x=0| = D, or
of the form |xb=0/c|x| = G where b, c 6= 0.

For instance, if d|x/x=0(U) is finite but non-zero then it is easy to show that
U ∼= V/dI for some ideal ICV . In view of 2.3.6, for R a Prüfer domain, this means
that for χ a sentence as in (†), D ∈ N2 and d ∈ R\{0}, there exists M ∈ Mod-R
such that M |= |d|x/x=0| = D∧χ if and only if there exist h ∈ N, prime ideals piCR
and ideals Ii C Rpi for 1 ≤ i ≤ h, and, M ′ ∈ Mod-R with |d|x/x=0(M ′)| = 1 such

that
⊕h

i=1Rpi/dIi ⊕M ′ |= |d|x/x=0| = D ∧ χ.
In section 8, we show that if EPP(R) and the radical relation are recursive then

there is an algorithm which given D ∈ N, d ∈ R\{0} and a sentence χ as in (†),
answers whether there exists a direct sum ⊕hi=1Rpi/dIi satisfying |d|x/x=0| = D∧χ.
This is used in 9.1.1 to produce sentences χ1, . . . χn as in (†) such that there exists
an R-module satisfying |d|x/x=0| = D ∧ χ if and only if there exists an R-module
satisfying |d|x/x=0| = 1 ∧ χi for some 1 ≤ i ≤ n. The sentences χi are less complex
than χ in a way precisely defined in section 9.

Similar, but slightly more complicated, reductions are made for pp-pairs of the
form xb=0/c|x where b, c 6= 0.

For pp-pairs of the form x=x/c|x we need to do something different. It is easy to
see, 6.0.3, that if U is a uniserial module over a valuation domain V then x=x/c|x(U)
is finite but non-zero if and only if U ∼= V/cI for some I C V or U is finite and
c ∈ annRU . However, it does not seem possible, in this case, to make a reduction as
for |d|x/x=0| = D and sums of modules of the form Rp/dI. This is the main reason
that we need to make the syntactic reductions in section 5 and 9. In particular,
the set of sentences that are not reducible in the sense of section 9, contains only
a small number of forms of sentences with a conjunct of the form |x=x/c|x| = C.
These sentences are considered individually in section 10.

3. Recursive sets

In this section we consider the sets DPR(R), EPP(R) and X(R). In each case, we
show that if TR is decidable then they are recursive.

3.1. The set DPR(R). In [GLPT18], a family of relations DPRn(R) were defined.
Although not directly stated there, see [GLPT18, 7.1], it was shown that, for R



12 LORNA GREGORY

a recursive[4] Prüfer domain, if the sets DPRn(R) are recursive (uniformly[5] in n)
then there is an algorithm deciding inclusions of Ziegler basic open sets. However, it
was not known if this condition was necessary for the existence of such an algorithm,
or even if the decidability of the theory of modules of a Prüfer domain implied that
DPRn(R) is recursive for any n > 1. It is a consequence of 3.1.6 that the existence
of an algorithm deciding inclusions of Ziegler basic open sets implies that the sets
DPRn(R) are recursive (uniformly in n).

For a recursive Bézout domain, it was shown that if DPR(R) := DPR1(R) is
recursive then there is an algorithm deciding inclusions of Ziegler basic open sets.
For Prüfer domains, it was not known if DPR1(R) being recursive is sufficient to
imply that there is an algorithm deciding inclusions of Ziegler basic open sets. We
show, 3.1.7, that, for R a Prüfer domain, DPR1(R) recursive implies DPRn(R) is
recursive uniformly in n.

Definition 3.1.1. Let R be a commutative ring.

• For each l ∈ N, let DPRl(R) be the set of 2l+2-tuples (a, b1, . . . , bl, c, d1, ·, dl) ∈
R2l+2 such that, for all prime ideals p, q C R with p + q 6= R, either a ∈ p,
c ∈ q, bi /∈ p for some 1 ≤ i ≤ l or di /∈ q for some 1 ≤ i ≤ l.
• Let DPR∗(R) be the set of 4-tuples (a,B, c,D), where a, c ∈ R and B,D CR

are finitely generated ideals, such that for all prime ideals p, qCR with p+q 6=
R, either a ∈ p, c ∈ q, B * p or D * q.

Note that (a, b1, . . . , bl, c, d1, . . . , dl) ∈ DPRl(R) if and only if

(a,

l∑
i=1

biR, c,

l∑
i=1

diR) ∈ DPR∗(R).

The relation DPR(R) is referred to as the “double prime radical” relation. This
is because we think of it as a generalisation of the radical relation a ∈ rad(bR) but
involving 2 prime ideals instead of 1 (see also 3.1.3).

For R a commutative ring, I C R an ideal and X ⊆ SpecR, let V (I) denote
the closed set, in the Zariski topology, of prime ideals p such that p ⊇ I and
X the closure of X in the Zariski topology. Note that, for any X ⊆ SpecR,
V (
⋂

p∈X p) = X.

Lemma 3.1.2. Let R be a commutative ring, a ∈ R and B CR. Then

(radB : a) =
⋂

p∈SpecR
p⊇B, a/∈p

p.

Hence,
V ((radB : a)) = V (B)\V (aR).

Proof. Suppose r ∈ (radB : a). Then (ra)n ∈ B for some n ∈ N. Let p C R be a
prime ideal with B ⊆ p and a /∈ p. Then rnan = (ra)n ∈ p. Therefore r ∈ p.

Conversely, suppose that r /∈ (radB : a) i.e. (ra)n /∈ B for all n ∈ N. A standard
argument using Zorn’s lemma produces a prime ideal p C R such that p ⊇ B and
(ra)n /∈ p for all n ∈ N. Now (ra)n /∈ p implies r /∈ p and a /∈ p. So we have proved
the first statement, and, consequently, the second. �

[4]Recall R recursive and DPR(R) recursive imply R is effectively given.
[5]Here “uniformly in n” means there is a single algorithm which given n ∈ N and a tuple a

from R of length 2n + 2 answers whether a ∈ DPRn(R) or not.
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The following statement with DPR(R) := DPR1(R) in place of DPR∗(R) is
proved in [GLPT18, 6.3] for Prüfer domains. We use 3.1.2 to further extend it to
all commutative rings.

Proposition 3.1.3. Let R be a commutative ring. The following are equivalent for
a, c ∈ R and B,D CR finitely generated ideals.

(1) (a,B, c,D) ∈ DPR∗(R).
(2) 1 ∈ (rad(B) : a) + (rad(D) : c).

Proof. We prove this proposition topologically. For all a, c ∈ R and B,D C R,
1 ∈ (rad(B) : a) + (rad(D) : c) if and only if V ((radB : a)) ∩ V ((radD : c)) = ∅.
By 3.1.2, V ((radB : a)) = V (B)\V (aR) and V ((radD : c)) = V (D)\V (cR). Thus

1 ∈ (rad(B) : a) + (rad(D) : c)

if and only if
V (B)\V (aR) ∩ V (D)\V (cR) = ∅.

Now, by [DST19, 1.5.4 (i)],

V (B)\V (aR) =
⋃

p∈V (B)\V (aR)

V (p) and V (D)\V (cR) =
⋃

q∈V (D)\V (cR)

V (q).

So 1 ∈ (rad(B) : a) + (rad(D) : c) if and only if

(††) (
⋃

p∈V (B)\V (aR)

V (p)) ∩ (
⋃

q∈V (D)\V (cR)

V (q)) = ∅.

Now (††) holds if and only if for all prime ideals p, q such that a /∈ p, B ⊆ p, c /∈ q
and D ⊆ q, we have V (p) ∩ V (q) = ∅ (i.e. p + q = R). �

Remark 3.1.4. Let R be a recursive ring. The relations DPR∗(R) and DPRn(R)
for all n ∈ N are recursively enumerable.

Proof. By proposition 3.1.3, (a,B, c,D) ∈ DPR∗(R) if and only if 1 ∈ (rad(B) :
a)+(rad(D) : c). Therefore (a,B, c,D) ∈ DPR∗(R) if and only if there exist u ∈ R
and n ∈ N such that (ua)n ∈ B and ((1− u)c)n ∈ D. If R is a recursive ring then
we can list all (a,B, c,D) ∈ DPR∗(R) by searching for u ∈ R and n ∈ N witnessing
that (a,B, c,D) ∈ DPR∗(R). �

We refer to the relation a ∈ rad bR as the radical relation.

Remark 3.1.5. Let R be a commutative ring. For a, b ∈ R, a ∈ rad bR if and
only if (a, b, a, b) ∈ DPR(R). In particular, if R is a recursive ring and DPR(R) is
recursive then the radical relation is recursive.

For R a commutative ring and B,D C R finitely generated ideals, let xB = 0
denote the pp-formula

∧n
i=1 xbi = 0 where B =

∑n
i=1 biR and let D|x denote the

pp-formula
∑n
i=1 di|x where D =

∑n
i=1 diR. Note that, up to TR equivalence, these

formulae don’t depend on the choice of generators of B and D.
The next proposition with DPR∗(R) replaced by DPR(R) = DPR1(R) is proved

in [GLPT18, 6.4] for Prüfer domains. A crucial ingredient in its proof is the fact
that if R is an arithmetical ring then for prime ideals p, qCR, the condition p+q 6= R
is equivalent to p and q being comparable by inclusion.

Proposition 3.1.6. Let R be an arithmetical ring. The following are equivalent
for a, c ∈ R and B,D CR finitely generated ideals.
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(1) (a,B, c,D) ∈ DPR∗(R).
(2) (xB=0/D|x) ⊆ (xa=0/x=0) ∪ (x=x/c|x).

Proof. (1)⇒ (2): Suppose (1) holds. By 3.1.3, 1 ∈ (radB : a) + (radD : c). Hence
there exist u ∈ R and n ∈ N such that (ua)n ∈ B and ((u− 1)c)n ∈ D.

Suppose N ∈ (xB=0/D|x). Take m ∈ N such that mb = 0 for all b ∈ B and
m /∈ ND. So munan = 0 and m /∈ N(u − 1)ncn. Since AttN is a proper ideal,
either u /∈ AttN or u − 1 /∈ AttN . Suppose u /∈ AttN . Then munan = 0 implies
man = 0 and hence N ∈ (xa

n=0/x=0) = (xa=0/x=0) as required. Now suppose
u− 1 /∈ AttN . Then N(u− 1)ncn = Ncn and hence N ∈ (x=x/cn|x) = (x=x/c|x).
(2)⇒ (1): Suppose (2) holds. Note that if (xB=0/D|x) ⊆ (xa=0/x=0)∪(x=x/c|x) then,
applying Herzog’s duality for Ziegler spectra, (xD=0/B|x) ⊆ (xc=0/x=0) ∪ (x=x/a|x).

Suppose p, q are prime ideals with p+q 6= R. Further, suppose that a /∈ p, B ⊆ p
and D ⊆ q. We need to show that c ∈ q.

Since R is an arithmetical ring, either p ⊇ q or q ⊇ p. Suppose q ⊇ p. Then,
again since R is an arithmetical ring, Rq/pRq is uniserial and its pure-injective hull
N := H(Rq/pRq) is indecomposable. Since B ⊆ p, xB = 0 is equivalent to x = x
in Rq/pRq and hence in N . Since D ⊆ q, D|x is not equivalent to x = x in Rq/pRq

and hence in N . Thus N ∈ (xB=0/D|x). Since a /∈ p, N /∈ (xa=0/x=0) and hence
N ∈ (x=x/c|x). Therefore c /∈ q, for otherwise c|x is equivalent to x = x in N . The
argument when p ⊇ q is very similar except this time N := H(Rp/qRp) and we use
that (xD=0/B|x) ⊆ (xc=0/x=0) ∪ (x=x/a|x). �

Thus, for R an arithmetical ring, if there exists an algorithm deciding inclu-
sions of Ziegler basic open sets then DPR∗(R) is recursive. Combining this with
[GLPT18, 7.1] (and its proof) we conclude that there is an algorithm deciding in-
clusions of Ziegler basic open sets if and only if DPR∗(R) is recursive. Moreover,
if R/m is infinite for every maximal ideal mCR then TR is decidable if and only if
DPR∗(R) is recursive, i.e the sufficient conditions given in [GLPT18, 7.1] are also
necessary.

Proposition 3.1.7. Let R be a recursive arithmetical ring. If DPR(R) is recursive
then DPRn(R) is recursive uniformly in n.

Proof. Let n ∈ N2 and a, c, b1, . . . , bn, d1, . . . , dn ∈ R. Suppose that α, β, r1, r2, s1,
s2 ∈ R are such that

b1α = b2r2, b2(α− 1) = b1r1,

d1β = d2s2 and d2(β − 1) = d1s1.

Claim:

(?) (a, c, b1, . . . , bn, d1, . . . , dn) ∈ DPRn(R)

if and only if

(i) (aα, cβ, b2, . . . , bn, d2, . . . , dn) ∈ DPRn−1(R),
(ii) (aα, c(β − 1), b2, . . . , bn, d1, d3, . . . , dn) ∈ DPRn−1(R),
(iii) (a(α− 1), cβ, b1, b3 . . . , bn, d2, . . . , dn) ∈ DPRn−1(R) and
(iv) (a(α− 1), c(β − 1), b1, b3, . . . , bn, d1, d3, . . . , dn) ∈ DPRn−1(R).

This claim plus the fact that we can always find appropriate α, β, r1, r2, s1, s2 ∈ R
implies the proposition.

To prove the forward direction, we show that (?) implies (i) and note that the
remaining conditions (ii), (iii), (iv) are the same as (i) but with the roles of b1 and
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b2, and of α and α− 1 interchanged (respectively of d1 and d2, and of β and β − 1
interchanged).

Let p, q be prime ideals such that p + q 6= R. Assuming (?), we need to show
that aα ∈ p, cβ ∈ q, bi /∈ p for some 2 ≤ i ≤ n or di /∈ q for some 2 ≤ i ≤ n.

Now (?) implies a ∈ p, c ∈ q, bi /∈ p for some 1 ≤ i ≤ n or di /∈ q for some
1 ≤ i ≤ n. So the only problem is when b1 /∈ p or d1 /∈ q. Suppose b1 /∈ p. If α ∈ p
then aα ∈ p as required. So suppose further that α /∈ p. Then b1α /∈ p and hence
b2r2 /∈ p. So b2 /∈ p as required. The argument when d1 /∈ q is the same with the
roles of b1 and d1, of b2 and d2, and of α and β interchanged.

We now show that if (?) is not true then one of (i), (ii), (iii), (iv) is not true. If
(?) is not true then there exist prime ideals p, q such that p+q 6= R and a /∈ p, c /∈ q,
bi ∈ p for all 1 ≤ i ≤ n and di ∈ q for all 1 ≤ i ≤ n. For any proper ideal I, either
α /∈ I or α− 1 /∈ I (respectively β /∈ I or β − 1 /∈ I). Without loss of generality, we
may assume that α /∈ p and β /∈ q. Hence aα /∈ p, cβ /∈ q, bi ∈ p for all 1 ≤ i ≤ n
and di ∈ q for all 1 ≤ i ≤ n. So (aα, cβ, b2, . . . , bn, d2, . . . , dn) /∈ DPRn−1(R) as
required. �

Combining this with the results in [GLPT18] we get the following.

Theorem 3.1.8. Let R be a recursive Prüfer domain. There is an algorithm
deciding inclusions of Ziegler basic open sets if and only if the relation DPR(R) is
recursive.

Corollary 3.1.9. Let R be a recursive Prüfer domain. The relation DPR(R) is
recursive if and only if there is an algorithm which, given a sentence

χ :=

n∧
i=1

|ϕi/ψi| ≥ Ei ∧
m∧
j=1

|σj/τj| = 1,

where ϕi/ψi, σj/τj are pp-pairs and Ei ∈ N for 1 ≤ i ≤ n and 1 ≤ j ≤ m, answers
whether there exists an R-module M with M |= χ. Moreover, if R/m is infinite for
every maximal ideal mCR then TR is decidable if and only if DPR(R) is recursive.

Proof. The first statement follows from 3.1.8 and 2.2.2.
For any R-module M and pp-pair ϕ/ψ, ϕ/ψ(M) is an R-module. By [GLT19,

3.1], if R/m is infinite for every maximal ideal mCR then the only finite R-module
is the zero module. So, the second statement follows from the first by a standard
argument using the Baur-Monk theorem. �

Question 1. It was shown in [Gre15, 3.2] that, for any commutative ring R, if TR
is recursive then the radical relation is recursive. For R an arbitrary commutative
ring, does TR decidable imply DPR(R), or more generally DPR∗(R), is recursive?

3.2. The sets PP(R) and EPP(R). In [GLT19], a family of relations PPn(R)
were introduced. It is shown, [GLT19, 3.2], that if a recursive Prüfer domain has
decidable theory of modules then PPn(R) is recursive uniformly in n. Conversely,

it was shown that if R is a recursive[6] Prüfer domain such that the value group of
each localisation of R at a maximal ideal is dense then if DPRn(R) and PPn(R)
are recursive uniformly in n then the theory of R-modules is decidable.

[6]It was stated there for effectively given Prüfer domains. However, recall, if R is a recursive
Prüfer domain with DPR(R) recursive then R is effectively given.
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The letters “PP” in these relations are chosen to honour Point and Prest who
defined similar relations for commutative von Neumann regular rings in [PP88]. In
3.2.4, we will define another family of relations EPPl(R); the letters “EPP” stand
for “extended Point-Prest”.

Definition 3.2.1. Let R be a commutative ring. For l ∈ N, let PPl(R) consist of
the tuples (p, n, c1, . . . , cl, d) ∈ P × N × Rl+1 such that there exist positive integers
s, k1, . . . , ks and maximal ideals m1, . . . ,ms of R for which there exist λ1, . . . , λs ∈
N0 with n =

∑s
t=1 λiki and for 1 ≤ i ≤ s

(1) |R/mi| = pki ,
(2) cj ∈ mi for 1 ≤ j ≤ l,
(3) d /∈ mi.

It is clear that for R a Bézout domain, if PP1(R) := PP(R) is recursive then
PPl(R) is recursive uniformly in l. This is because (p, n, c1, . . . , cl, d) ∈ PPl(R) if
and only if (p, n, gcd{c1, . . . , cl}, d) ∈ PP1(R). However, with a bit more work one
can show this is also true for Prüfer domains.

Proposition 3.2.2. Let R be a recursive Prüfer domain. If PP1(R) is recursive
then PPl(R) is recursive uniformly in l.

Proof. We skip this proof as it is very similar to the proof of 3.2.8. �

As a direct consequence of [GLT19, 6.1], [GLT19, 3.2], [GLPT18, 6.4], 3.2.2 and
3.1.7, we get the following theorem.

Theorem 3.2.3. Let R be a recursive Prüfer domain such that for all maximal
ideals m, the value group of Rm is dense. The theory of R-modules is decidable if
and only if DPR(R) and PP(R) are recursive.

We generalise PPl(R) to EPPl(R) in order to deal with Prüfer domains with
maximal ideals m such that Rm is a valuation domain with non-dense value group.

Definition 3.2.4. Let R be a commutative ring. For l ∈ N, let EPPl(R) consist
of tuples

(p, n; a1, . . . , al; γ; e,m) ∈ P× N0 ×Rl ×R×R× N0

such that there exist h ∈ N0 and, for 1 ≤ i ≤ h, prime ideals pi C R and ideals
Ii CRpi such that γ /∈ pi and a1, . . . , al ∈ Ii for 1 ≤ i ≤ h, | ⊕hi=1 Rpi/Ii| = pn and
| ⊕hi=1 Rpi/eRpi | = pm.

We say the sequence (pi, Ii)1≤i≤h witnesses (p, n; a1, . . . , al; γ; e,m) ∈ EPPl(R).
By convention, (p, 0; a1, . . . , al; γ; e, 0) ∈ EPPl(R) and the empty sequence is a wit-
ness for it. We will often write EPP(R) for EPP1(R).

Remark 3.2.5. We may replace prime ideals with maximal ideals in 3.2.4 without
changing the definition since if |Rp/eRp| is finite then either p is maximal or Rp =
eRp and if |Rp/I| is finite then either p is maximal or I = Rp.

The relation EPPl(R) is an extension of the relation PPl(R).

Lemma 3.2.6. Let p ∈ P, n ∈ N and c1, . . . , cn, d ∈ R. Then (p, n, c1, . . . , cl, d) ∈
PPl(R) if and only if (p, n; c1, . . . , cl; d; 1, 0) ∈ EPPl(R).
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Proof. Suppose (p, n, c1, . . . , cl, d) ∈ PPl(R). Let s ∈ N, k1, . . . , ks ∈ N and
m1, . . . ,ms be as in the definition of PPl(R). Let λ1, . . . , λs ∈ N0 be such that
n =

∑s
i=1 λiki. Then cj ∈ mi for 1 ≤ j ≤ l, d /∈ mi, | ⊕si=1 (Rmi/miRmi)

λi | = pn

and | ⊕si=1 (Rmi/1 ·Rmi)
λi | = p0. So (p, n; c1, . . . , cl; d; 1, 0) ∈ EPPl(R).

Suppose (mj , Ij)1≤j≤s witnesses (p, n; c1, . . . , cl; d; 1, 0) ∈ EPPl(R). For 1 ≤ i ≤
s, let λi ∈ N0 be such that |Rmi/Ii| = |R/mi|λi . If λi 6= 0 then Ii ⊆ miRmi and
so cj ∈ mi for 1 ≤ j ≤ l. For 1 ≤ i ≤ s, let ki be such that |R/mi| = pki . Now
n =

∑s
i=1, λi 6=0 λiki and hence (p, n, c1, . . . , cl, d) ∈ PPl(R). �

If the value group of Rm is dense then, for all e ∈ R, |Rm/eRm| is either 1 or
infinite. Moreover, |Rm/eRm| = 1 if and only if e /∈ m.

Remark 3.2.7. Let R be a Prüfer domain such that the value group of Rm is dense
for all maximal ideals m. Then (p, n; a1, . . . , al; γ; e,m) ∈ EPPl(R) if and only if
(p, n, a1, . . . , al, γ · e) ∈ PPl(R) and m = 0.

In particular, if R is a recursive Prüfer domain such that the value group of Rm

is dense for all maximal ideals m then EPPl(R) is recursive if and only if PPl(R)
is recursive.

Proposition 3.2.8. Let R be a recursive Prüfer domain. If EPP(R) is recursive
then EPPl(R) is recursive uniformly in l.

Proof. We show that for all p ∈ P, n,m ∈ N0, a1, . . . , al, γ, e ∈ R, if α, r, s ∈ R
are such that a1α = a2r and a2(α − 1) = a1s then (p, n; a1, . . . , al; γ; e,m) ∈
EPPl(R) if and only if there exist n1, n2 ∈ N0 and m1,m2 ∈ N0 such that
n1 + n2 = n, m1 + m2 = m, (p, n1; a2, . . . , al; γα; e,m1) ∈ EPPl−1(R) and
(p, n2, a1, a3, . . . , al, γ(α − 1); e,m2) ∈ EPPl−1(R). This is enough since we can
always effectively find appropriate α, r, s ∈ R.

Suppose that (pj , Ij)1≤j≤s witnesses (p, n; a1, . . . , al; γ; e,m) ∈ EPPl(R). For all
1 ≤ j ≤ s, either α /∈ pj or α− 1 /∈ pj . By reordering, we may assume that α /∈ pj
for 1 ≤ j ≤ t and α − 1 /∈ pj for t + 1 ≤ j ≤ s. Let n1 = logp |⊕ti=1Rpi/Ii|, n2 =

logp
∣∣⊕si=t+1Rpi/Ii

∣∣, m1 = logp |⊕ti=1Rpi/eRpi | and m2 = logp
∣∣⊕si=t+1Rpi/eRpi

∣∣.
Now αγ /∈ pj and a2, . . . , al ∈ Ij for 1 ≤ j ≤ t, |⊕ti=1Rpi/Ii| = pn1 and
|⊕ti=1Rpi/eRpi | = pm1 . So (p, n1; a2, . . . , al; γα; e,m1) ∈ EPPl−1(R). Similarly,
(p, n2, a1, a3, . . . , al, γ(α− 1); e,m2) ∈ EPPl−1(R).

Conversely, suppose that n1, n2,m1,m2 ∈ N0 are such that n1 + n2 = n, m1 +
m2 = m, (p, n1; a2, . . . , al; γα; e,m1) ∈ EPPl−1(R) and (p, n2, a1, a3, . . . , al, γ(α −
1); e,m2) ∈ EPPl−1(R). Let (pj , Ij)1≤j≤t witness (p, n1; a2, . . . , al; γα; e,m1) ∈
EPPl−1(R) and let (pj , Ij)t+1≤j≤s witness (p, n2, a1, a3, . . . , al, γ(α − 1); e,m2) ∈
EPPl−1(R). Then

|⊕si=1Rpi/Ii| =
∣∣⊕ti=1Rpi/Ii

∣∣ · ∣∣⊕si=t+1Rpi/Ii
∣∣ = pn1pn2 = pn

and

|⊕si=1Rpi/eRpi | =
∣∣⊕ti=1Rpi/eRpi

∣∣ · ∣∣⊕si=t+1Rpi/eRpi

∣∣ = pm1pm2 = pm.

For 1 ≤ j ≤ t, γα /∈ Ij and hence γ /∈ Ij and α /∈ Ij . Since a2 ∈ Ij and α /∈ pj ,
a1α = a2r ∈ Ij implies a1 ∈ Ij for 1 ≤ j ≤ t. Similarly, γ /∈ mj and a2 ∈ Ij
for t + 1 ≤ j ≤ s. Therefore (pj , Ij)1≤j≤s witnesses (p, n; a1, . . . , al; γ; e,m) ∈
EPPl(R). �
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Lemma 3.2.9. Let R be a Prüfer domain. If TR is decidable then EPP(R) (and
hence EPPl(R) is recursive uniformly in l).

Proof. For p ∈ P, n,m ∈ N0 and a, γ, e ∈ R, let Θ(p,n;a;γ;e,m) be the LR-sentence

|x=x/x=0| = p2m+n ∧ |x=x/e|x| = pm ∧ |xe=0/e|x| = 1 ∧ |x=x/γ|x| = 1 ∧
∣∣e2a|x/x=0

∣∣ = 1.

We show that, for m,n not both zero, (p, n; a; γ; e,m) ∈ EPP1(R) if and only if
there is an R-module satisfying Θ(p,n;a;γ;e,m). Hence the lemma holds.

Suppose (p, n; a; γ; e,m) ∈ EPP1(R). By definition, there exist prime ideals
p1, . . . ps C R and ideals Ii C Rpi such that γ /∈ pj and a ∈ Ij for 1 ≤ j ≤ s,
| ⊕si=1 Rpi/Ii| = pn and | ⊕si=1 Rpi/eRpi | = pm. Let M := ⊕si=1Rpi/e

2Ii. Then M
satisfies Θ(p,n;a;γ;e,m).

Conversely, suppose there exists an R-module M satisfying Θ(p,n;a;γ;e,m). Since
M is finite and non-zero, there exist maximal ideals m1, . . . ,ms C R and proper
ideals Ji C Rmi such that ⊕si=1Rmi/Ji

∼= M . Since M satisfies Θ(p,n;a;γ;e,m), for
1 ≤ i ≤ s, (Ji : e) ⊆ eRmi + Ji.

By 2.3.13, either eRm + Ji = Rmi or Ji ⊆ e2Rmi + eJi. So, either e /∈ mi,
Ji ⊆ e2Rmi or Ji ⊆ eJi. So, for each 1 ≤ i ≤ s, there exists IiCRmi with Ji = e2Ii.

Since |e2a|x/x=0(Rmi/e
2Ii)| = 1, a ∈ Ii and since |x=x/γ|x(Rmi/e

2Ii)| = 1, γ /∈ mi.
Therefore m1, . . . ,ms and Ii C Rmi are such that a ∈ Ii and γ /∈ mi for 1 ≤ i ≤ s,
and | ⊕si=1 Rmi/Ii| = pn and | ⊕si=1 Rmi/eRmi | = pm. Hence (p, n; a; γ; e,m) ∈
EPP1(R). �

It follows from the proof of 3.2.9 that if R is a recursive Prüfer domain then
EPP(R) is recursively enumerable. This is because if R is recursive then TR is
recursively axiomatisable and hence we can use a proof algorithm to search for the
sentences of the form Θ(p,n;a;γ;e,m), as defined in the proof of 3.2.9, which are true
in all R-modules.

The following corollary is a direct consequence of the proof of 3.2.9. We will
later see, 7.6, that the converse also holds.

Corollary 3.2.10. If the theory of R-modules of size n is decidable uniformly in
n then EPP1(R) is recursive.

3.3. The set X(R).

Definition 3.3.1. Let X(R) be the set of (p, n; e, γ, a, δ) ∈ P× N× (R\{0})× R3

such that there exist integers h ∈ N and prime ideals p1, . . . , ph such that∣∣⊕hi=1Rpi/eRpi

∣∣ = pn and for 1 ≤ i ≤ h, γ /∈ mi, and, there exists an ideal Ii CRpi

such that a ∈ Ii and δ /∈ (Ii)
#.

It is often easier to check that X(R) is recursive in concrete rings using the
following reformulation.

Remark 3.3.2. Let (p, n; e, γ, a, δ) ∈ P×N×(R\{0})×R3. Then (p, n; e, γ, a, δ) ∈
X(R) if and only if there exist 1 ≤ h ≤ n and maximal ideals m1, . . . ,mh such that∣∣⊕hi=1Rmi/eRmi

∣∣ = pn, and, for 1 ≤ i ≤ h
(1) γ /∈ mi, and,
(2) either δ /∈ mi, or, there exists a prime ideal qi ⊆ mi such that a ∈ qi and

δ /∈ qi.

Proof. Note that if pi in the definition of X(R) is such that |Rpi/eRpi | = 1 then we
may drop pi from the sequence of prime ideals witnessing (p, n; e, γ, a, δ) ∈ X(R).
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Therefore, we may assume each pi is maximal and that 1 ≤ h ≤ n. Now, if a ∈ Ii
and δ /∈ (Ii)

# then either Ii = Rpi and δ /∈ pi, or, Ii C Rpi is a proper ideal. If Ii
is a proper ideal then a ∈ Ii implies a ∈ (Ii)

#.
Therefore, if (p, n; e, γ, a, δ) ∈ X(R) then the conditions in the statement hold

with, mi := pi, and qi := (Ii)
# if δ ∈ mi. Conversely, if the conditions in the

statement hold for (p, n; e, γ, a, δ) then set pi := mi and, Ii := Rmi if δ /∈ mi and
Ii := qi otherwise. �

Proposition 3.3.3. Let R be a Prüfer domain. If TR is decidable then X(R) is
recursive.

Proof. Let (p, n; e, γ, a, δ) ∈ P×N× (R\{0})×R3. We show that (p, n; e, γ, a, δ) ∈
X(R) if and only if there exists an R-module satisfying χ defined as

|x=x/e|x| = pn ∧ |xe=0/e|x| = 1 ∧
∣∣e2a|x/x=0

∣∣ = 1 ∧ |x=x/γ|x| = 1 ∧ |xδ=0/x=0| = 1.

First suppose that there exist h ∈ N and prime ideals p1, . . . , ph C R such that∣∣⊕hi=1Rpi/eRpi

∣∣ = pn and for 1 ≤ i ≤ h, γ /∈ pi, and, there exists an ideal Ii CRpi

such that a ∈ Ii and δ /∈ (Ii)
#. Then ⊕hi=1Rpi/e

2Ii |= χ.
Conversely, suppose there exists an R-module satisfying χ. Then, 2.3.6, there

exists a finite direct sum of modules Ui such that ⊕hi=1Ui |= χ and each Ui is the
restriction to R of a uniserial module over Rpi for some prime ideal pi C R. We
may assume that Ui/Uie is non-zero for each Ui, for otherwise the direct sum with
Ui omitted also satisfies χ. Since Ui is uniserial as an Rpi -module and Ui/Uie is
non-zero and finite, Ui is finitely generated over Rpi . Therefore Ui ∼= Rpi/Ji for
some ideal Ji C Rpi . Since |xe=0/e|x(Ui)| = 1, (Ji : e) ⊆ Ji + eRpi . So, as in 3.2.9,
there exists Ii CRpi such that Ji = e2Ii.

Now, since ⊕hi=1Ui |= χ,
∣∣⊕hi=1Rpi/eRpi

∣∣ = pn, e2a ∈ e2I and hence a ∈ I.

Moreover, by 2.3.10, γ /∈ pi and δ /∈ I#
i . �

It follows from the proof of 3.3.3 that if R is a recursive Prüfer domain then, as
with EPP(R) and 3.2.9, X(R) is recursively enumerable.

4. Formalisms

The formalisms introduced in this section will be used throughout the paper to
allow us to make reductions in the complexity of certain sets of conditions in later
sections.

4.1. Sets of functions.
Let ∆ be a set and E a set of functions from ∆ to N ∪ {∞} such that if h1, h2 ∈ E
then h1 · h2 ∈ E and such that the function which has constant value 1 is in E . Let
n ∈ N, X,Y ⊆ ∆ be finite sets and let f : X → N and g : Y → N.

Define Ωf,g,n to be the set of all tuples of functions (f1, . . . , fn, g1, . . . , gn) where
fi : X ∪ (Y \Yi)→ N and gi : Yi → N are such that Yi ⊆ Y and

•
∏n
i=1 fi(x) = f(x) for all x ∈ X,

• fi(y) < g(y) for all y ∈ Y \Yi,
• gi(y) = g(y) for all y ∈ Yi, and
• for all y ∈ Y , ∏

i with y∈Y \Yi

fi(y) ·
∏

i with y∈Yi

gi(y)

 ≥ g(y).
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Note that Ωf,g,n may be empty. This happens if and only if there exists z ∈ X ∩Y
such that g(z) < f(z).

For E1, E2 sets of functions from ∆ to N ∪ {∞}, define E1 · E2 to be the set of
h : ∆→ N ∪ {∞} such that there exist h1 ∈ E1 and h2 ∈ E2 such that h = h1 · h2.

The most important instance of this set up in this paper is when ∆ is a set of
pp-pairs ϕ/ψ over a ring R and E is the set of R-modules M viewed as functions
on ∆ by setting M(ϕ/ψ) := |ϕ/ψ(M)|. Given finite sets X,Y ⊆ ∆ and functions
f : X → N and g : Y → N, we want to know whether there exists an R-module
M ∈ E such that M(ϕ/ψ) = f(ϕ/ψ) for all ϕ/ψ ∈ X and M(ϕ/ψ) ≥ g(ϕ/ψ) for all
ϕ/ψ ∈ Y . Now suppose that E1, . . . , En are sets of R-modules with the property that
all R-modules in E are elementary equivalent to a module of the form M1⊕ . . .⊕Mn

with Mi ∈ Ei for 1 ≤ i ≤ n. Viewing modules as functions on ∆, this gives
that E =

∏n
i=1 Ei i.e. viewed as functions on ∆ every module in E is equal to a

module of form M1 ⊕ · · · ⊕Mn where Mi ∈ Ei for 1 ≤ i ≤ n. The next lemma,
interpreted for modules, will show that there exists an R-module M ∈ E such that
M(ϕ/ψ) = f(ϕ/ψ) for all ϕ/ψ ∈ X and M(ϕ/ψ) ≥ g(ϕ/ψ) for all ϕ/ψ ∈ Y if and
only if, for some (f1, . . . , fn, g1, . . . , gn) ∈ Ωf,g,n, there exist R-modules Mi ∈ Ei for
1 ≤ i ≤ n such that for Mi(ϕ/ψ) = fi(ϕ/ψ) for all ϕ/ψ ∈ Xi and M(ϕ/ψ) ≥ gi(ϕ/ψ)
for all ϕ/ψ ∈ Yi.
Lemma 4.1.1. Let E =

∏n
i=1 Ei, X,Y ⊆ ∆ be finite sets and let f : X → N

and g : Y → N. There exists h ∈ E such that h(x) = f(x) for all x ∈ X and
h(y) ≥ g(y) for all y ∈ Y if and only if for some (f1, . . . , fn, g1, . . . , gn) ∈ Ωf,g,n
there exist hi ∈ Ei for 1 ≤ i ≤ n such that hi(x) = fi(x) for all x ∈ X ∪ (Y \Yi) and
hi(y) ≥ gi(y) for all y ∈ Yi.
Proof. Let h ∈ E be such that h(x) = f(x) for all x ∈ X and h(y) ≥ g(y) for
all y ∈ Y . Since E =

∏n
i=1 Ei, there exist hi ∈ Ei for 1 ≤ i ≤ n such that∏n

i=1 hi(x) = h(x) for all x ∈ ∆. For each 1 ≤ i ≤ n, let Yi := {y | hi(y) ≥ g(y)}, let
fi(x) = hi(x) for all x ∈ X∪(Y \Yi), and let gi(y) = g(y) for all y ∈ Yi. By definition∏n
i=1 fi(x) =

∏n
i=1 hi(x) = h(x) = f(x) for all x ∈ X, fi(y) = hi(y) < g(y) for

all y ∈ Y \Yi and gi(y) = g(y) for all y ∈ Yi. Now if y ∈ Y \Yi then fi(y) = hi(y)
and if y ∈ Yi then gi(y) = g(y). Therefore, for all y ∈ Y , either y ∈ Yi for some
1 ≤ i ≤ n and by definition, gi(y) ≥ g(y), or, y /∈ Yi for all 1 ≤ i ≤ n and so
g(y) ≤ h(y) =

∏n
i=1 hi(y) =

∏n
i=1 fi(y). In either case, the 4th condition in the

definition of Ωf,g,n holds. So (f1, . . . , fn, g1, . . . , gn) ∈ Ωf,g,n.
Conversely, suppose h1, . . . , hn : ∆ → N are such that there exists (f1, . . . , fn,

g1, . . . , gn) ∈ Ωf,g,n with hi(x) = fi(x) for all x ∈ X ∪ (Y \Yi) and hi(y) ≥ gi(y) for
all y ∈ Yi. Define h : ∆→ N by h(x) =

∏n
i=1 hi(x) for all x ∈ ∆. Then h(x) = f(x)

for all x ∈ X and h(y) ≥ g(y) for all y ∈ Y as required. �

Definition 4.1.2. Let X,Y ⊆ ∆ be finite sets and let f : X → N and g : Y → N.
Let G := max{g(y) | y ∈ Y }. Define Θf,g to be the set of pairs of functions (f ′, g′)
such that, for some Y ′ ⊆ Y , f ′ : X ∪ (Y \Y ′) → N, g′ : Y ′ → N, f ′(x) = f(x) for
all x ∈ X, g′(y) = G for all y ∈ Y ′ and g(y) ≤ f ′(y) < G for all y ∈ Y \Y ′.

As for Ωf,g,n, in the definition of Θf,g, we don’t intend that X and Y are disjoint.

Remark 4.1.3. A function h ∈ E is such that h(x) = f(x) for all x ∈ X and
h(y) ≥ g(y) for all y ∈ Y if and only if there exists (f ′, g′) ∈ Θf,g such that
h(x) = f ′(x) for all x ∈ X ∪ (Y \Y ′) and h(y) ≥ g′(y) for all y ∈ Y ′, where Y ′ is
the domain of the function g′ as in the definition of Θf,g.
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Proof. Suppose that h ∈ E is such that h(x) = f(x) for all x ∈ X and h(y) ≥ g(y)
for all y ∈ Y . Let G = max{g(y) | y ∈ Y } and let Y ′ = {y ∈ Y | h(y) ≥ G}. Set
f ′(x) = h(x) for all x ∈ X ∪ (Y \Y ′) and g′(y) = G for all y ∈ Y ′. By definition
h(x) ≥ g′(y) for all y ∈ Y ′. So, we just need to check that (f ′, g′) ∈ Θf,g. The
first 2 conditions defining Θf,g hold automatically. By definition of Y ′, if y ∈ Y \Y ′
then h(y) < G. By definition of f ′, f ′(y) = h(y) for all y ∈ Y \Y ′. Hence, for all
y ∈ Y \Y ′, f ′(y) < G and, by hypothesis on h, g(y) ≤ h(y) = f ′(y) as required.

Suppose that h ∈ E and (f ′, g′) ∈ Θf,g is such that h(x) = f ′(x) for all x ∈ X ∪
(Y \Y ′) and h(y) ≥ g′(y) for all y ∈ Y ′. Then, by definition of Θf,g, h(x) = f ′(x) =
f(x) for all x ∈ X. If y ∈ Y \Y ′ then, by definition of Θf,g, g(y) ≤ f ′(y) = h(y).
If y ∈ Y ′ then h(y) ≥ g′(y) = G ≥ g(y). Therefore, for all y ∈ Y , h(y) ≥ g(y) as
required. �

4.2. Lattices generated by conditions.
Let W be an infinite set. Let W be the free bounded distributive lattice[7] generated
by W . We use t for the supremum and u for the infimum in this lattice. Any
element of W may be expressed as

⊔
i∈I

d
j∈Ji wij where I and Ji for i ∈ I are

finite sets and wij ∈W . Moreover, for vk ∈W with k ∈ K a finite set,
l

k∈K

vk ≤
⊔
i∈I

l

j∈Ji

wij

if and only if there exists i ∈ I such that
l

k∈K

vk ≤
l

j∈Ji

wij

if and only if there exists i ∈ I such that

{vk | k ∈ K} ⊇ {wij | j ∈ Ji}.
We make the convention that the empty infimum is the largest element > and the
empty supremum is the least element ⊥.

We call an expression of the form
⊔
i∈I

d
j∈Ji wij , where wij ∈W , irredundant

if for each i ∈ I, wij1 = wij2 implies ji = j2 and the sets wi := {wij | j ∈ Ji} for i ∈ I
are pairwise incomparable by inclusion. If

⊔
i∈I

d
j∈Ji wij and

⊔
i∈I′

d
j∈J′i

w′ij are

in irredundant form then
⊔
i∈I

d
j∈Ji wij =

⊔
i∈I′

d
j∈J′i

w′ij if and only if there exist

bijections σ : I → I ′ and σi : Ji → J ′σ(i) for each i ∈ I such that wij = w′σ(i),σi(j)

for all i ∈ I and j ∈ Ii.
Given a recursive presentation of W (i.e. a bijection with N), this presentation of

W gives rise to a recursive presentation of W (i.e a presentation where the inclusion
of W in W is recursive and t and u are recursive functions).

For any V ⊆W , define V to be the filter generated by V in W. Note for wij ∈W ,⊔
i∈I

d
j∈Ji wij ∈ V if and only if there exists i ∈ I such that wij ∈ V for all j ∈ Ji.

So, in particular V is prime filter. It follows that V is a recursive subset of W if
and only if V is a recursive subset of W.

Suppose that clx : W → α where α is a partially ordered set with the descending
chain condition. Let w ∈ W and let w =

⊔
i∈I

d
j∈Ji wij be in irredundant form.

For β ∈ α, we write clxw ≤ β if wij ≤ β for all i ∈ I and j ∈ Ji and clxw < β
if clxwij < β for all i ∈ I and j ∈ Ji. Note that if w is a lattice combination

[7]See [Grä11] for the definition of a free distributive lattice and add a largest and smallest

element.
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of elements wi ∈ W for 1 ≤ i ≤ n then clxwi ≤ β (respectively clxwi < β) for
1 ≤ i ≤ n implies clxw ≤ β (respectively clxw < β).

Remark 4.2.1. Let W be an infinite recursively presented set and V ⊆W . Suppose
that α is an artinian recursive partially ordered set, clx : W → α is recursive and
W0 ⊆ W is recursive. Suppose further that there is an algorithm which given
w /∈ W0 computes w ∈ W such that clxw < clxw and such that w ∈ V if and only
if w ∈ V. Then V is a recursive subset of W if and only if V ∩W0 is a recursive
subset of W .

The precise choice of W and V varies throughout this article.

To illustrate how this setup is used, let R be a recursive ring. Let W be the set of
LR-sentences ∧

ϕ/ψ∈X

|ϕ/ψ| = f(ϕ/ψ) ∧
∧

ϕ/ψ∈Y

|ϕ/ψ| ≥ g(ϕ/ψ)

where X,Y are finite sets of pp-pairs, f : X → N and g : Y → N. Let V be the
set of w ∈ W such that there exists M ∈ Mod-R with M |= w. Then, by 2.2.1,
TR is decidable if and only if V is recursive. Working with W and V, rather than
W and V directly, allows us to talk about more than one module at a time. For
instance, for w1, . . . , wn ∈W , the condition w1 u . . .uwn ∈ V says that there exist
R-modules Mi ∈ Mod-R with Mi |= wi for 1 ≤ i ≤ n.

5. First syntactic reductions

Recall that, for a recursive ring R, in order to show that the theory of R-modules is
decidable, it is enough to show that there is an algorithm which, given a sentence
of the form

(?)

s∧
i=1

|ϕi/ψi| = Fi ∧
t∧

j=1

|σj/τj| ≥ Gj ,

where, for 1 ≤ i ≤ s and 1 ≤ j ≤ t, ϕi/ψi and σj/τj are pp-pairs and Fi, Gj ∈ N,
answers whether there exists an R-module satisfying it.

In [GLT19, 4.1], it was shown that if R is a recursive Prüfer domain then it is
enough to consider sentences where the pp-pairs in (?) are all of the form d|x/x=0

and xb=0/c|x. The proof of this statement relies on 2.3.1, [PT15, 2.2] and the fact,
which follows from 2.1.2 and 2.3.2, that every R-module is elementary equivalent
to a direct sum of pp-uniserial modules. This is also true for arithmetical rings,
and so, although not stated in [GLT19], the result, with the same proof, also holds
for arithmetical rings.

Theorem 5.1. [GLT19, 4.1] Let R be a recursive arithmetical ring. If there exists
an algorithm which, given a sentence

χ :=

m∧
i=1

|ϕi/ψi| = Gi ∧
n∧

i=m+1

|ϕi/ψi| ≥ Hi,

where Gi, Hi ∈ N and ϕi/ψi are pp-pairs of the form d|x/x=0 and xb=0/c|x for 1 ≤
i ≤ n, answers whether there exists M ∈ Mod-R satisfying χ, then TR is decidable.

We call any conjunction of sentences of the form

|d|x/x=0| = 1 or |xb=0/c|x| = 1
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an auxiliary sentence.

Convention: In the sequel, we use the symbol � as a variable denoting either =
or ≥ when talking about conjunctions of sentences like |ϕ/ψ|�N . It will be useful
for us to extend this notation so that � can also be the symbol ∅, where � being ∅
indicates that |ϕ/ψ|�N is omitted from the conjunction. For instance, when �1 is
∅ and �2 is ≥, the sentence |d|x/x=0|�1D∧ |xb=0/c|x|�2E stands for |xb=0/c|x| ≥ E.

In this section we improve [GLT19, 4.1] to prove the following.

Theorem 5.2. Let R be arithmetical ring. If there exists an algorithm which, given
a sentence χ of the form

(†) |d|x/x=0|�1D ∧ |xb=0/c|x|�2E ∧
m∧
i=1

|ϕi/ψi| = Gi ∧
n∧

i=m+1

|ϕi/ψi| ≥ Hi ∧ Ξ,

where �1,�2 ∈ {≥,=, ∅}, d, c, b ∈ R\{0}, D,E,Gi, Hi ∈ N, Ξ is an auxiliary
sentence and ϕi/ψi are pp-pairs of the form x=x/c′|x and xb′=0/x=0 for 1 ≤ i ≤ n,
answers whether there exists an R-module satisfying χ, then TR is decidable.

Definition 5.3. Let X,Y be finite subsets of pp-pairs of the form d|x/x=0 or xb=0/c|x,
and, let f : X → N and g : Y → N be functions. Define χf,g to be the sentence∧

ϕ/ψ∈X

|ϕ/ψ| = f(ϕ/ψ) ∧
∧

ϕ/ψ∈Y

|ϕ/ψ| ≥ g(ϕ/ψ).

If X and Y are both empty then χf,g should be read as the true sentence.
For the rest of this section, let W be the set of LR-sentences of the form χf,g

and let V be the set of w ∈W such that there exists M ∈ Mod-R with M |= w. As
in 4.2, W denotes the bounded distributive lattice generated by W and V denotes
the (prime) filter in W generated by V .

Define clx1χf,g to be

|{d|x/x=0 ∈ X | f(d|x/x=0) > 1}|+ |{d|x/x=0 ∈ Y | g(d|x/x=0) > 1}|
and clx2χf,g to be

|{xb=0/c|x ∈ X | f(xb=0/c|x) > 1 and b, c 6= 0}|+
|{xb=0/c|x ∈ Y | g(xb=0/c|x) > 1 and b, c 6= 0}| .

Formally, we extend clx1 and clx2 to ⊥,> ∈ W by setting clx1⊥ = clx1> = 0 and
clx2⊥ = clx2> = 0. We will use the notation clxiw ≤ clxiw and clxiw < clxiw, for
i ∈ {1, 2}, w ∈W and w ∈W as defined in subsection 4.2.

Remark 5.4. For all w1, w2 ∈W and i ∈ {1, 2},
clxi(w1 ∧ w2) ≤ clxi(w1) + clxi(w2).

For our purposes, given w ∈W , we may always assume that w is of the form

χf,g ∧ Ξ,

where f : X → N2, g : Y → N2 with X,Y finite disjoint sets of pp-pairs of the form
d|x/x=0 or xb=0/c|x, and Ξ is an auxiliary sentence. This is because any χf,g ∈ W
may be rewritten as χf ′,g ∧ Ξ where f ′ : X ′ → N2 and Ξ is an auxiliary sentence.
Moreover, for χf,g ∧ Ξ ∈ W , let Y ′ := {ϕ/ψ | g(ϕ/ψ) > 1} and g′ := g|Y ′ . Then
χf,g ∧Ξ ∈ V if and only if χf,g′ ∧Ξ ∈ V . If ϕ/ψ ∈ X ∩ Y and f(ϕ/ψ) < g(ϕ/ψ) then
TR |= ¬χf,g. If f(ϕ/ψ) ≥ g(ϕ/ψ) then χf,g ∧ Ξ ∈ V if and only if χf,g′′ ∧ Ξ ∈ V
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where g′′ := g|Y \{ϕ/ψ}. So, given w ∈ W , we can effectively decide that w /∈ V
or compute f, g and Ξ of the required form such that, clx1(χf,g ∧ Ξ) ≤ clx1w,
clx2(χf,g ∧ Ξ) ≤ clx2w, and, w ∈ V if and only if χf,g ∧ Ξ ∈ V .

Remark 5.5. Let X,Y be disjoint finite sets of pp-pairs of the form d|x/x=0 or
xb=0/c|x, f : X → N and g : Y → N functions, and Ξ an auxiliary sentence. For
each 1 ≤ j ≤ n, let θj be an auxiliary sentence. Suppose that for all M ∈ Mod-R,
there exist modules Mj |= θj such that M ≡ ⊕nj=1Mj. Then χf,g ∧ Ξ ∈ V if and
only if ⊔

(f,g)∈Ω(f,g,n)

nl

j=1

χfj ,gj ∧ θj ∧ Ξ ∈ V.

Moreover, for all (f, g) ∈ Ωf,g,n and 1 ≤ j ≤ n,

clx1(χfj ,gj ∧ θj ∧ Ξ) ≤ clx1(χf,g ∧ Ξ) and clx2(χfj ,gj ∧ θj ∧ Ξ) ≤ clx2(χf,g ∧ Ξ).

The next lemma is more precise than we need in this section. However, we will
need its full strength in 9.2.1 of section 9. The total order ≺ on the set {∅,=,≤}
is defined as ∅ ≺=≺≤.

Lemma 5.6. Let ϕ/ψ, ϕ
′
/ψ′, σ/τ be pp-pairs and let Σ be an LR-sentence. Suppose

that M |= Σ implies
|ϕ/ψ(M)| = |σ/τ(M)| · |ϕ′/ψ′(M)|

for all M ∈ Mod-R.
There is an algorithm which, given ϕ/ψ, ϕ

′
/ψ′, σ/τ, �,�′ ∈ {=,≥}, E,E′ ∈ N2

and Σ as above, either returns Ω := {⊥}, in which case

TR |= ¬(Σ ∧ |ϕ/ψ|�E ∧ |ϕ′/ψ′|�′E′),
or, returns Ω, a finite set of tuples (D1, D2,�1,�2) ∈ N2 × {=,≥}2 such that

TR |= Σ ∧ |ϕ/ψ|�E ∧ |ϕ′/ψ′|�′E′ ↔
∨

(D1,D2,�1,�2)∈Ω

Σ ∧ |σ/τ|�1D1 ∧ |ϕ′/ψ′|�2D2

and D1 ·D2 < E · E′, �1 � � and �2 � �′ for all (D1, D2,�1,�2) ∈ Ω.

Proof.
Case 1: � and �′ are both =.
Let Ω := {⊥} if E′ does not divide E, otherwise Ω := {(E/E′, E′,=,=)}. Note
(E/E′) · E′ = E < E · E′.
Case 2: � is ≥ and �′ is =.
For x ∈ R, we write dxe for the least m ∈ Z with x ≤ m. Let Ω := {(dE/E′e, E′,≥
,=)}. Note

dE/E′e · E′ < (E/E′ + 1) · E′ = E + E′ ≤ E · E′.
Case 3: � is = and �′ is ≥.
Let X := {D ∈ N | D|E and D ≥ E′}. Define Ω := {⊥} if X = ∅ and Ω :=
{(E/D,D,=,=) | D ∈ X} otherwise. Note (E/D) ·D = E < E · E′.
Case 4: � and �′ are both ≥.
If E′ ≥ E then let Ω := {(1, E′,≥,≥)}. If E > E′ then set

Ω := {(dE/De, D,≥,=) | E > D ≥ E′} ∪ {(1, E,≥,≥)}.
Note that E′ < E · E′, E < E · E′ and

dE/De ·D < (E/D + 1) ·D = E +D ≤ E · E′. �
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The following remark is easy to prove. We record it here because we will use it
frequently.

Remark 5.7. Let R be a commutative ring. For all a, b ∈ R and M ∈ Mod-R,

|a|x/ab|x(M)| = |x=x/xa=0+b|x(M)|
and

|xab=0/xa=0(M)| = |a|x∧xb=0/x=0(M)| .

Proposition 5.8. Let R be a recursive arithmetical ring. There is an algorithm
which given w ∈ W with clx1(w) > 1 outputs w ∈ W such that clx1(w) < clx1(w),
clx2(w) ≤ clx2(w), and, w ∈ V if and only if w ∈ V.

Proof. Let X,Y be disjoint finite sets of pp-pairs of the form d|x/x=0 and xb=0/c|x.
Let f : X → N2 and g : Y → N2 be functions, and let Ξ be an auxiliary sentence.
Let w be ∧

ϕ/ψ∈X

|ϕ/ψ| = f(ϕ/ψ) ∧
∧

ϕ/ψ∈Y

|ϕ/ψ| ≥ g(ϕ/ψ) ∧ Ξ.

Suppose that there exist non-equal a, b ∈ R such that a|x/x=0, b|x/x=0 ∈ X ∪ Y i.e.
clx1(w) > 1. Let α, r, s ∈ R be such that aα = br and b(α− 1) = as. Define

(1) Σ1 to be |x=x/α|x| = 1 ∧ |rb|x/x=0| = 1,
(2) Σ2 to be |x=x/α|x| = 1 ∧ |xb=0/r|x| = 1,
(3) Σ3 to be|x=x/(α−1)|x| = 1 ∧ |as|x/x=0| = 1, and
(4) Σ4 to be|x=x/(α−1)|x| = 1 ∧ |xa=0/s|x| = 1.

It follows directly from 2.3.4 that, for any M ∈ Mod-R, there are Mi |= Σi for
1 ≤ i ≤ 4 such that M ≡ M1 ⊕M2 ⊕M3 ⊕M4. Therefore, by 5.5, w ∈ V if and
only if ⊔

(f,g)∈Ωf,g,4

4l

i=1

χfi,gi ∧ Ξ ∧ Σi ∈ V.

For each (f, g) ∈ Ωf,g,4 and 1 ≤ i ≤ 4, it is enough to compute wi ∈ W such that
clx1(wi) < clx1(χf,g ∧ Ξ), clx2(wi) ≤ clx2(χf,g ∧ Ξ) and χfi,gi ∧ Ξ ∧ Σi ∈ V if and
only if wi ∈ V .

Fix (f, g) ∈ Ωf,g,4. For each 1 ≤ i ≤ 4, let Xi be the domain of fi and Yi be the
domain of gi.

Case i=1: Suppose M |= Σ1. Then Mα = M and hence Ma = Mbr = 0.
Therefore, if M |= Σ1 then |a|x/x=0(M)| = 1.

If a|x/x=0 ∈ X1 and f1(a|x/x=0) = 1 then clx1(χf1,g1 ∧ Ξ ∧ Σ1) < clx1(χf,g ∧ Ξ)
and, by 5.5, clx2(χf1,g1 ∧ Ξ ∧ Σ1) ≤ clx2(χf,g ∧ Ξ). So, wi := χf1,g1 ∧ Ξ ∧ Σ1 has
the required properties.

If a|x/x=0 ∈ X1 and f1(a|x/x=0) 6= 1 then, by the first paragraph, χf1,g1 ∧ Ξ ∧ Σ1

is not satisfied by any R-module. If a|x/x=0 /∈ X1 then a|x/x=0 ∈ Y1 since X ∪
Y = X1 ∪ Y1. Moreover g1(a|x/x=0) = g(a|x/x=0). So g1(a|x/x=0) > 1 and hence
χf1,g1 ∧Ξ∧Σ1 is not satisfied by any R-module. In either case, set wi := ⊥. Then
wi ∈ V if and only if χf1,g1 ∧ Ξ ∧ Σ1 ∈ V . By definition clx1(⊥) < clx1(χf,g ∧ Ξ)
and clx2(⊥) ≤ clx2(χf,g ∧ Ξ).

Case i=2: Suppose M |= Σ2. Then Ma = Mαa = Mbr. So, since xb = 0 ≤M r|x,
by 5.7,

|b|x/x=0(M)| = |b|x/br|x(M)| · |br|x/x=0(M)| = |x=x/r|x(M)| · |a|x/x=0(M)| .
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Let X ′ = X2\{a|x/x=0, b|x/x=0} and Y ′ = Y2\{a|x/x=0, b|x/x=0}. Let �,�′ ∈ {=,≥}
and A,B be such that χf2,g2 ∧ Ξ ∧ Σ2 is

|a|x/x=0|�A∧|b|x/x=0|�′B∧
∧

ϕ/ψ∈X′
|ϕ/ψ| = f2(ϕ/ψ)∧

∧
ϕ/ψ∈Y ′

|ϕ/ψ| ≥ g2(ϕ/ψ)∧Ξ∧Σ2.

We may assume that A,B > 1 since otherwise clx1(χf2,g2∧Ξ∧Σ2) < clx1(χf,g∧Ξ).
So, by 5.6, there is an algorithm which either returns Ω := {⊥}, in which case

TR |= ¬Σ2 ∧ |a|x/x=0|�A ∧ |b|x/x=0|�′B,

or, a set Ω ⊆ N2 × {=,≥}2 such that

Σ2 ∧ |a|x/x=0|�A ∧ |b|x/x=0|�′B

is equivalent, with respect to TR, to∨
(D1,D2,�1,�2)∈Ω

Σ2 ∧ |x=x/r|x|�1D1 ∧ |a|x/x=0|�2D2.

If Ω := {⊥} then χf2,g2 ∧Ξ∧Σ2 ∈ V if and only if ⊥ ∈ V. By definition clx1(⊥) <
clx1(χf,g ∧Ξ) and clx2(⊥) ≤ clx2(χf,g ∧Ξ). Otherwise, for each (D1, D2,�1,�2) ∈
Ω, let u(D1,D2,�1,�2) be

|x=x/r|x|�1D1∧|a|x/x=0|�2D2∧
∧

ϕ/ψ∈X′
|ϕ/ψ| = f2(ϕ/ψ)∧

∧
ϕ/ψ∈Y ′

|ϕ/ψ| ≥ g2(ϕ/ψ)∧Ξ∧Σ2.

Then χf2,g2 ∧ Ξ ∧ Σ2 is equivalent to∨
(D1,D2,�1,�2)∈Ω

u(D1,D2,�1,�2)

with respect to TR. Therefore χf2,g2 ∧ Ξ ∧ Σ2 ∈ V if and only if⊔
(D1,D2,�1,�2)∈Ω

u(D1,D2,�1,�2) ∈ V.

Moreover,

clx1(u(D1,D2,�1,�2)) ≤ 1 + (clx1(χf2,g2 ∧ Ξ ∧ Σ2)− 2) < clx1(χf2,g2 ∧ Ξ ∧ Σ2)

and clx2(u(D1,D2,�1,�2)) = clx2(χf2,g2 ∧ Ξ ∧ Σ2). So we are done, since, by 5.5,
clx1(χf2,g2 ∧ Ξ ∧ Σ2) ≤ clx1(χf,g ∧ Ξ) and clx2(χf2,g2 ∧ Ξ ∧ Σ2) ≤ clx2(χf,g ∧ Ξ).

The case i = 3 is similar to i = 1 and the case i = 4 is similar to i = 2. �

Our task now is to show that there is an algorithm which given w ∈ W with
clx2w > 1 returns w ∈W such that w ∈ V if and only if w ∈ V, clx1(w) ≤ clx1(w)
and clx2(w) < clx2(w). This uses the same ideas as for clx1 but is somewhat more
complicated.

Lemma 5.9. Let R be an arithmetical ring and let b, c, b′, c′ ∈ R. Let α, u, u′,
β, β′, s, s′, r, r′, δ, δ′, λ, λ′, µ, µ′ ∈ R be such that

cα = c′u, c′(α− 1) = cu′,
uβ = b′r, b′(β − 1) = us, u′β′ = br′, b(β′ − 1) = u′s′,
bδ = sλ, s(δ − 1) = bµ, bδ′ = s′λ′, s′(δ′ − 1) = b′µ′.

Define the sentences Λi and Λ′i for 1 ≤ i ≤ 6 and Pi and P ′i for 4 ≤ i ≤ 6 to be
the conjunction of sentences labeling the edges in the path from the root of the tree
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Λ
′ 1

Λ
1

Λ
2

Λ
′ 2

Λ
3

Λ
′ 3

Λ
′ 4

Λ
4

P
′ 4

P
4

Λ
′ 6

Λ
6

Λ
′ 5

Λ
5

P
′ 5

P
5

P
′ 6

P
6∣ ∣ ∣x=x α
|x

∣ ∣ ∣=1
∣ ∣ ∣x=

x
α
−

1
|x

∣ ∣ ∣= 1
∣ ∣ ∣c′ u|

x

x
=

0∣ ∣ ∣=
1

∣ ∣ ∣cu′ |
x

x
=

0

∣ ∣ ∣= 1
∣ ∣ ∣xu=

0
c
′ |
x

∣ ∣ ∣=1
∣ ∣ ∣xu′ =

0
c
|x

∣ ∣ ∣=1
∣ ∣ ∣x(β−

1
)=

0
x

=
0

∣ ∣ ∣=1
∣ ∣ ∣x(β′

−
1
)=

0
x

=
0

∣ ∣ ∣=1
∣ ∣ ∣xβ=

0

x
=

0∣ ∣ ∣=
1

∣ ∣ ∣xβ′ =
0

x
=

0

∣ ∣ ∣= 1
∣ ∣ ∣us|x x

=
0∣ ∣ ∣=

1

∣ ∣ ∣u′ s′
|x

x
=

0

∣ ∣ ∣= 1
∣ ∣ ∣xs=

0
u
|x

∣ ∣ ∣=1
∣ ∣ ∣xs′ =

0
u
′ |
x

∣ ∣ ∣=1
∣ ∣xδ=

0

x
=

0∣ ∣=1
∣ ∣ ∣xδ′ =

0
x
=

0

∣ ∣ ∣= 1
∣ ∣ ∣x(δ−

1
)=

0
x
=

0
∣ ∣ ∣= 1

∣ ∣ ∣x(δ′
−

1
)=

0

x
=

0

∣ ∣ ∣=
1

∣ ∣ ∣xs=
0

c′
u
|x∣ ∣ ∣=

1

∣ ∣ ∣xs′ =
0

cu
′ |x

∣ ∣ ∣= 1
∣ ∣ ∣xb=

0
c
′ u
|x
∣ ∣ ∣= 1

∣ ∣ ∣xb′ =
0

cu
′|
x∣ ∣ ∣=

1

∣ ∣ ∣c′ bu
|x

x
=

0

∣ ∣ ∣=1
∣ ∣ ∣cb′ u

′ |
x

x
=

0

∣ ∣ ∣=1
∣ ∣ ∣cu′ s

′ |
x

x
=

0

∣ ∣ ∣=1
∣ ∣ ∣c′ us

|x
x

=
0

∣ ∣ ∣=1
∣ ∣ ∣λs|x x

=
0∣ ∣ ∣=

1

∣ ∣ ∣λ′ s′
|x

x
=

0

∣ ∣ ∣= 1
∣ ∣ ∣xλ=

0
s
|x

∣ ∣ ∣=1
∣ ∣ ∣xλ′ =

0
s
′ |
x

∣ ∣ ∣=1
∣ ∣ ∣bµ|x x=0

∣ ∣ ∣= 1
∣ ∣ ∣b′ µ′

|x

x
=

0∣ ∣ ∣=
1

∣ ∣ ∣xµ=
0

b
|x

∣ ∣ ∣=1
∣ ∣ ∣xµ′ =

0
b
′ |
x

∣ ∣ ∣=1

F
ig

u
re

1



28 LORNA GREGORY

in Figure 1 to the leaf of the tree with that sentence as label. Every R-module is
elementary equivalent to an R-module of the form

(

6⊕
i=1

Mi ⊕
6⊕
i=4

Ni)⊕ (

6⊕
i=1

M ′i ⊕
6⊕
i=4

N ′i)

where Mi |= Λi and M ′i |= Λ′i for 1 ≤ i ≤ 6 and Ni |= Pi and N ′i |= P ′i for 4 ≤ i ≤ 6.

Moreover, for all M ∈ Mod-R,

(i) M |= Λ1 implies c ∈ annRM and hence |xb=0/c|x(M)| = |xb=0/x=0(M)|,
(ii) M |= Λ2 implies |xb′=0/c′|x(M)| = 1,

(iii) M |= Λ3 implies b′ ∈ annRM and hence |xb′=0/c′|x(M)| = |x=x/c′|x(M)|,
(iv) M |= Λ4 implies |xb′=0/c′|x(M)| = 1,
(v) M |= Λ5 implies b ∈ annRM and hence |xb=0/c|x(M)| = |x=x/c|x(M)|,

(vi) M |= Λ6 implies

|xb=0/c|x(M)| = |xb′=0/c′|x(M)| · |xλ=0/x=0(M)| ,
(vii) M |= P4 implies |xb=0/c|x(M)| = 1,

(viii) M |= P5 implies b′ ∈ annRM and hence |xb′=0/c′|x(M)| = |x=x/c′|x(M)| , and
(ix) M |= P6 implies

|xb′=0/c′|x(M)| = |xb=0/c|x(M)| · |xµ=0/x=0(M)| .
Similarly, the symmetry of Figure 1, gives 9 statements for Λ′i and P ′i , where c, b
and c′, b′ are interchanged and λ, µ are replaced by λ′, µ′, respectively.

Proof. There are two edges coming out of each node of the tree in Figure 1. In
each instance the two edges are either

(1) |x=x/γ|x| = 1 and |x=x/(γ−1)|x| = 1 for some γ ∈ R,
(2) |xγ=0/x=0| = 1 and |x(γ−1)=0/x=0| = 1 for some γ ∈ R, or
(3) |ab|x/x=0| = 1 and |xa=0/b|x| = 1.

By 2.3.4, in each case (1), (2) and (3), for all modules M ∈ Mod-R, there exist
M1 satisfying the first sentence and M2 satisfying the second sentence such that
M ∼= M1 ⊕M2. The first claim follows from this fact.

For any M ∈ Mod-R, α /∈ DivM implies c|x is equivalent to c′u|x in M because
cα = c′u.

(i) Suppose M |= Λ1. Since |c′u|x/x=0(M)| = 1, Mc = Mc′u = 0. So c ∈ annRM .

(ii) Suppose M |= Λ2. Then β /∈ AssM and so, since uβ = b′r, xb′r = 0 is
equivalent to xu = 0 in M . Since xu = 0 ≤M c′|x, we conclude

xb′ = 0 ≤M xb′r = 0 ≤M xu = 0 ≤M c′|x.

(iii) Suppose M |= Λ3. Then β − 1 /∈ AssM and so, since b′(β − 1) = us, xb′ = 0
is equivalent to xus = 0 in M . Since |us|x/x=0(M)| = 1, us ∈ annRM and hence
b′ ∈ annRM .

Claim: If M |= |x=x/α|x| = 1 ∧ |xu=0/c′|x| = 1 ∧ |x(β−1)=0/x=0| = 1 ∧ |xs=0/u|x| = 1
then |xb′=0/c′|x(M)| = |xs=0/c′u|x(M)|.

First note that since β − 1 /∈ AssM and b′(β − 1) = us, xb′ = 0 is equivalent to
xus = 0 in M . We show that |xus=0/c′|x(M)| = |xs=0/c′u|x(M)|.

Consider the map f : xus=0/x=0(M) → xs=0/c′u|x(M) defined by f(m) := mu +
c′u|x(M) for m ∈ M with mus = 0. Now f is surjective since |xs=0/u|x| = 1.
Suppose f(m) = m′c′u for some m′ ∈M . Then (m−m′c′)u = 0. Since |xu=0/c′|x| =
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1, m−m′c′ ∈ c′|x(M) and hence m ∈ c′|x(M). Therefore ker f = c′|x(M). So we
have proved the claim.

We now prove the statements about modules satisfying Λ4,Λ5,Λ6. The state-
ments for modules satisfying P4, P5 and P6 follow similarly.

(iv) Suppose M |= Λ4. Then |xs=0/c′u|x(M)| = 1 and by the claim |xb′=0/c′|x(M)| =
|xs=0/c′u|x(M)|.
(v) Suppose M |= Λ5. Since δ /∈ AssM , xb = 0 is equivalent to xsλ = 0 in M .
Since |sλ|x/x=0(M)| = 1, sλ ∈ annRM and hence b ∈ annRM .

(vi) Suppose M |= Λ6. Since δ /∈ AssM , xb = 0 is equivalent to xsλ = 0 in M .
Since xs = 0 ≥M c′u|x,

|xb=0/c|x(M)| = |xsλ=0/c′u|x(M)| = |xsλ=0/xs=0(M)| · |xs=0/c′u|x(M)| .
By 5.7, |xsλ=0/xs=0(M)| = |s|x∧xλ=0/x=0(M)|. So, since |xλ=0/s|x| = 1,

|xb=0/c|x (M)| = |xsλ=0/xs=0 (M)|·|xs=0/c′u|x (M)| = |xλ=0/x=0 (M)|·|xb′=0/c′|x (M)| .
�

Proposition 5.10. There is an algorithm which, given w ∈ W with clx2(w) > 1,
outputs w ∈W such that clx2(w) < clx2(w), clx1(w) ≤ clx1(w), and, w ∈ V if and
only if w ∈ V.

Proof. We start with a special case. Let b, c, b′, c′ ∈ R\{0}. Let P6, P
′
6,Λ6,Λ

′
6 be

as in 5.9. Let Σ1 be |c|x/x=0| = 1, Σ2 be |b|x/x=0| = 1, Σ3 be |c′|x/x=0| = 1, Σ4 be
|b′|x/x=0| = 1, Σ5 be |xb=0/c|x| = 1, Σ6 be |xb′=0/c′|x| = 1, Σ7 be Λ6, Σ8 be P6, Σ9

be Λ′6 and Σ10 be P ′6.
Fix 1 ≤ i ≤ 4 or 7 ≤ i ≤ 10. Suppose w is

|xb=0/c|x|�E ∧ |xb′=0/c′|x|�′E′ ∧ χf,g ∧ Σi ∧ Ξ

with E,E′ > 1.

Case i=1: Let w′ be

|xb=0/x=0|�E ∧ |xb′=0/c′|x|�′E′ ∧ χf,g ∧ Σi ∧ Ξ.

Then clx1w
′ = clx1w and clx2w

′ < clx2w. Since TR |= w ↔ w′, we get w ∈ V if
and only if w′ ∈ V .

Case i=2,3,4: The same argument as for i = 1 works.

Case i=7: By 5.9, if M |= Σ7(:= Λ6) then

|xb=0/c|x(M)| = |xb′=0/c′|x(M)| · |xλ=0/x=0(M)| .
By 5.6, there is an algorithm which either returns Ω := {⊥}, in which case

TR |= ¬(|xb=0/c|x|�E ∧ |xb′=0/c′|x|�′E′),
or, a set Ω ⊆ N2 × {=,≥}2 such that

Σ7 ∧ |xb=0/c|x|�E ∧ |xb′=0/c′|x|�′E′

is equivalent, with respect to TR, to∨
(D1,D2,�1,�2)∈Ω

Σ7 ∧ |xλ=0/x=0|�1D1 ∧ |xb′=0/c′|x|�2D2.

If Ω := {⊥} then w ∈ V if and only if ⊥ ∈ V and by definition clx1⊥ ≤ clx1w and
clx2⊥ < clx2w. Otherwise,

|xb=0/c|x|�E ∧ |xb′=0/c′|x|�′E′ ∧ χf,g ∧ Σ7 ∧ Ξ
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is equivalent to∨
(D1,D2,�1,�2)∈Ω

|xλ=0/x=0|�1D1 ∧ |xb′=0/c′|x|�2D2 ∧ χf,g ∧ Σ7 ∧ Ξ.

For each (D1, D2,�1,�2) ∈ Ω, let

w(D1,D2,�1,�2) := |xλ=0/x=0|�1D1 ∧ |xb′=0/c′|x|�2D2 ∧ χf,g ∧ Σ7 ∧ Ξ.

So w ∈ V if and only if ⊔
(D1,D2,�1,�2)∈Ω

w(D1,D2,�1,�2) ∈ V.

For all (D1, D2,�1,�2) ∈ Ω, clx1w(D1,D2,�1,�2) = clx1w and clx2w(D1,D2,�1,�2) <
clx2w.

Case i=8,9,10: The same argument as for i = 7 works.

We now deal with the general case. Let w be∧
ϕ/ψ∈X

|ϕ/ψ| = f(ϕ/ψ) ∧
∧

ϕ/ψ∈Y

|ϕ/ψ| ≥ g(ϕ/ψ) ∧ Ξ ∈W

where X,Y are disjoint finite sets of pp-pairs of the form d|x/x=0 and xb=0/c|x,
f : X → N2, g : Y → N2 and Ξ is an auxiliary sentence.

Suppose that xb=0/c|x, xb
′=0/c′|x ∈ X ∪ Y are distinct pp-pairs with b, c, b′, c′ ∈

R\{0}. Let Ω ⊆ Ωf,g,10 be such that (f, g) ∈ Ω if and only if xb=0/c|x ∈ X5,
xb′=0/c′|x ∈ X6, f5(xb=0/c|x) = 1, and f6(xb

′=0/c′|x) = 1. Then w ∈ V if and only if⊔
(f,g)∈Ω

10l

i=1

χfi,gi ∧ Σi ∧ Ξ ∈ V.

For each (f, g) ∈ Ω and 1 ≤ i ≤ 10, let wi,f,g be χfi,gi ∧Σi ∧Ξ. By definition of
Ωf,g,10, for each 1 ≤ i ≤ 10, clx1wi,f,g ≤ clx1w, clx2wi,f,g ≤ clx2w.

By assumption xb=0/c|x ∈ X and f(xb=0/c|x) > 1 or xb=0/c|x ∈ Y and g(xb=0/c|x) >
1. So, since xb=0/c|x ∈ X5 and f5(xb=0/c|x) = 1, for each (f, g) ∈ Ωf,g,10, clx2w5,f,g <

clx2w. Replacing xb=0/c|x by xb′=0/c′|x, the same argument gives clx2w6,f,g < clx2w.

Now suppose 1 ≤ i ≤ 4 or 7 ≤ i ≤ 10. If xb=0/c|x ∈ Xi (respectively xb=0/c|x ∈
Yi) and fi(xb=0/c|x) = 1 (respectively gi(xb=0/c|x) = 1) then clx2wi,f,g < clx2w.

This argument together with the same argument with xb=0/c|x replaced by xb′=0/c′|x
means that we may assume wi,f,g is of the form of the special case considered at

the start of the proof. Thus we may replace each wi,f,g by some w′ ∈W such that

clx1w
′ ≤ clx1wi,f,g and clx2w

′ < clx2wi,f,g. �

Proof of 5.2. By 5.1, in order to show that TR is decidable, it is enough to
show that there exists an algorithm which given w ∈W answers whether w ∈ V or
not. Suppose that there is an algorithm which given a sentence χ as in (†) answers
whether there exists an R-module satisfying χ. We may relax the assumptions on
d to allow the case d = 0 since any instance of |0|x/x=0| can always be replaced
by |xb′=0/x=0| where b′ = 1. Therefore, by assumption, the set of w′ ∈ V with
clx1w

′ ≤ 1 and clx2w
′ ≤ 1 is recursive. Thus the set of w ∈ V with clx1w ≤ 1 and

clx2w ≤ 1 is recursive.



DECIDABILITY FOR THE THEORY OF MODULES OVER A PRÜFER DOMAIN 31

Since N0 is artinian as an order, iteratively applying 5.8 and 5.10, provides an
algorithm which given w ∈ W with either clx1w > 1 or clx2w > 1 outputs w ∈ W
with clx1w, clx2w ≤ 1 such that w ∈ V if and only if w ∈ V. �

6. Uniserial modules with finite invariants sentences

Descriptions of the uniserial (and hence indecomposable pure-injective) modules,
U , over a valuation domain which have ϕ/ψ(U) finite but non-zero for a given pp-
pair ϕ/ψ are given for valuation domains with dense value groups in [PPT07] and
for valuation domains with non-dense value groups in [Gre15]. However, we need
a uniform description that works for both valuation domains with dense and non-
dense value groups. This is done in Lemmas 6.0.1, 6.0.2 and 6.0.3 and used in
sections 9 and 10. The rest of the section is about these modules in preparation for
sections 7, 8 and 10.

Lemma 6.0.1. Let V be a valuation domain. If d ∈ V and U is a uniserial V -
module such that d|x/x=0(U) = Ud is finite and non-zero then U ∼= V/dI for some
ideal I C V and Ud ∼= V/I.

Proof. For any module M , x=x/xd=0(M) ∼= d|x/x=0(M). Thus if d|x/x=0(U) ∼=
x=x/xd=0(U) is finite but not equal to the zero module then, by 2.3.7, U ∼= V/J for
some ideal J C V . Since Ud 6= 0, d /∈ J and therefore dV ⊇ J . So J = dI for some
ideal I C V . �

Note that in the assumptions of the second clause of the next lemma we are not
excluding that I = V or consequently that xb=0/c|x(I/bcV ) = 0.

Lemma 6.0.2. Let V be a valuation domain and b, c ∈ V \{0}. If U is a uniserial
V -module such that b, c /∈ annV U and xb=0/c|x(U) is finite but non-zero then there
exists I C V with b, c ∈ I such that U ≡ I/bcV and xb=0/c|x(U) ∼= V/I.

Conversely, if 0 6= ICV is an ideal and b, c ∈ I\{0} then xb=0/c|x(I/bcV ) ∼= V/I.

Proof. Let Q be the field of fractions of V . By [Zie84, p. 168], for any non-zero
uniserial module U , there exist V -submodules K ( J ⊆ Q such that U ≡ J/K as
V -modules. Now b, c /∈ annV J/K imply (K : b) ( J and (K : c) ( J respectively.
Since V is a valuation domain, (K : c) ( J implies K ( Jc. Therefore, since
xb=0/c|x(J/K) 6= 0, xb=0/c|x(J/K) = (K : b)/cJ ∼= K/cbJ . Since K/cbJ is a non-
zero finite uniserial module, it has the form V/I for some proper ideal I C V .
Therefore K = λV for some λ ∈ Q\{0} and λ−1cbJ = I. Thus U ≡ J/K ∼= I/bcV
as required. It is easy to see that over a valuation domain there is only one uniserial
module of each finite size. Therefore xb=0/c|x(I/bcV ) ∼= V/I implies xb=0/c|x(U) ∼=
V/I. Finally, it follows from (K : b) ( J that c ∈ I and from (K : c) ( J that
b ∈ I.

Let 0 6= I C V be an ideal and b, c ∈ I\{0}. Then xb=0/c|x(I/bcV ) = cV/cI ∼=
V/I. �

Lemma 6.0.3. Let V be a valuation domain and c ∈ V . If U is a uniserial V -
module such that x=x/c|x(U) is finite but non-zero then U ∼= V/K for some ideal
K C V . Moreover, if x=x/c|x(U) is finite but non-zero then either U ∼= V/cI for
some I C V and V/cV ∼= x=x/c|x(U), or, c ∈ annV U and U ∼= x=x/c|x(U).

Proof. The first claim is a consequence of 2.3.7. If c ∈ K then c ∈ annV V/K. If
c /∈ K then cV ⊇ K and hence K = cI for some I C V . �
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We avoid dealing directly with uniserial V -modules U such that xb=0/x=0(U) is
finite but non-zero, by using duality defined in 2.1.3.

6.1. (p, I) |= (r, a, γ, δ). For the rest of this section R will always denote a Prüfer
domain.

Definition 6.1.1. Let r, a, γ, δ ∈ R, pCR a prime ideal and I CRp an ideal. We
write (p, I) |= (r, a, γ, δ) if rRp ⊇ I, a ∈ I, γ /∈ p and δ /∈ I#.

The task of this subsection is to show that given an auxiliary sentence Ξ and
λ ∈ R\{0}, we can compute n ∈ N and (ri, riai, γi, δi) for 1 ≤ i ≤ n such that for all
prime ideals pCR and ideals ICRp, Rp/λI |= Ξ if and only if (p, I) |= (ri, riai, γi, δi)
for some 1 ≤ i ≤ n. However, in 10.5, we will additionally need that all prime ideals
p C R and ideals I C Rp, Rp/λI |= DΞ if and only if (p, I) |= (ri, riai, δi, γi) for
some 1 ≤ i ≤ n.

Remark 6.1.2. Let r, a, γ, δ, α ∈ R. For all prime ideals pCR and ideals I CRp,
(p, I) |= (r, a, γ, δ) if and only if (p, I) |= (r, a, γα, δα) or (p, I) |= (r, a, γ(α −
1), δ(α− 1)).

Proof. This is true because for all prime ideals p C R, either α /∈ p or α − 1 /∈ p
and, by definition, for all ideals I CRp, I# ⊆ pRp. �

Lemma 6.1.3. Let R be a Prüfer domain and b, c, d ∈ R with b 6= 0. Let pCR be
a prime ideal and I CRp be an ideal.

(1) Then |xb=0/c|x(Rp/I)| = 1 if and only if b /∈ I#, c /∈ p, bcRp ⊇ I or 1 ∈ I.
(2) Then |d|x/x=0(Rp/I)| = 1 if and only if d ∈ I.

Proof. (1) For any ideal ICRp, |xb=0/c|x(Rp/I)| = 1 if and only if cRp +I ⊇ (I : b).
Since Rp is a valuation ring, cRp + I ⊇ (I : b) if and only if I ⊇ (I : b) or
cRp ⊇ (I : b). So it is enough to note that I ⊇ (I : b) if and only if b /∈ I# or 1 ∈ I,
and, cRp ⊇ (I : b) if and only if bcRp ⊇ I or c /∈ p.
(2) is obvious. �

Lemma 6.1.4. Given (r, a, γ, δ), (r′, a′, γ′, δ′) ∈ R4 we can compute n ∈ N and
(ri, ai, γi, δi) ∈ R4 for 1 ≤ i ≤ n such that

(p, I) |= (r, a, γ, δ) and (p, I) |= (r′, a′, γ′, δ′)

if and only if
(p, I) |= (ri, ai, γi, δi)

for some 1 ≤ i ≤ n, and,

(p, I) |= (r, a, δ, γ) and (p, I) |= (r′, a′, δ′, γ′)

if and only if
(p, I) |= (ri, ai, δi, γi)

for some 1 ≤ i ≤ n.

Proof. Let α, u1, u2, β, v1, v2 ∈ R be such that rα = r′u1, r′(α−1) = ru2, aβ = a′v1

and a′(β − 1) = av2. Then one verifies easily that

(p, I) |= (r, a, γ, δ) and (p, I) |= (r′, a′, γ′, δ′)

if and only if (p, I) |= (r, a′, αβγγ′, αβδδ′), (p, I) |= (r, a, α(β − 1)γγ′, α(β − 1)δδ′),
(p, I) |= (r′, a′, (α − 1)βγγ′, (α − 1)βδδ′) or (p, I) |= (r′, a, (α − 1)(β − 1)γγ′, (α −
1)(β − 1)δδ′). �
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Lemma 6.1.5. Given (r, a, γ, δ) ∈ R4 and λ ∈ R\{0}, we can compute n ∈ N and
(rj , aj , γj , δj) for 1 ≤ j ≤ n such that, for all prime ideals pCR and ideals I CRp,

• (p, λI) |= (r, a, γ, δ) if and only if (p, I) |= (rj , aj , γj , δj) for some 1 ≤ j ≤ n
and
• (p, λI) |= (r, a, δ, γ) if and only if (p, I) |= (rj , aj , δj , γj) for some 1 ≤ j ≤ n.

Proof. Let α, u, v, β, u′, v′ ∈ R be such that rα = λu, λ(α− 1) = rv, aβ = λu′ and
λ(β−1) = av′. By 6.1.2, (p, λI) |= (r, a, γ, δ) if and only if (p, λI) |= (r, a, αβγ, αβδ),
(p, λI) |= (r, a, α(β − 1)γ, α(β − 1)δ), (p, λI) |= (r, a, (α − 1)βγ, (α − 1)βδ) or
(p, λI) |= (r, a, (α− 1)(β − 1)γ, (α− 1)(β − 1)δ).

It is straightforward to see that:

• If α /∈ p then rRp ⊇ λI if and only if uRp ⊇ I.
• If α− 1 /∈ p then rRp ⊇ λI.
• If β /∈ p then a ∈ λI if and only if u′ ∈ I.
• If β − 1 /∈ p then a ∈ λI if and only if 1 ∈ I and v′ /∈ p (and hence v′ /∈ I#).

Recall that, since λ 6= 0, (λI)# = I#. Therefore, (p, λI) |= (r, a, γ, δ) if and
only if (p, I) |= (u, u′, αβγ, αβδ), (p, I) |= (u, 1, α(β − 1)v′γ, α(β − 1)v′δ), (p, I) |=
(1, u′, (α−1)βγ, (α−1)βδ) or (p, I) |= (1, 1, (α−1)(β−1)v′γ, (α−1)(β−1)v′δ). �

Lemma 6.1.6. Given (r, a, γ, δ) ∈ R4, we can compute n ∈ N and (rj , rjaj , γj , δj)
for 1 ≤ j ≤ n such that for all prime ideals pCR and ideals I CRp,

• (p, I) |= (r, a, γ, δ) if and only if (p, I) |= (rj , rjaj , γj , δj) for some 1 ≤ j ≤ n
and

• (p, I) |= (r, a, δ, γ) if and only if (p, I) |= (rj , rjaj , δj , γj) for some 1 ≤ j ≤ n.

Proof. If a = 0 then (r, a, γ, δ) = (r, r · 0, γ, δ) is already of the required form. So
suppose a 6= 0.

Let α, u, v ∈ R be such that aα = ru and r(α − 1) = av. By 6.1.2, (p, I) |=
(r, a, γ, δ) if and only if (p, I) |= (r, a, γα, δα) or (p, I) |= (r, a, γ(α − 1), δ(α − 1)).
Since aα = ru, (p, I) |= (r, a, γα, δα) if and only if (p, I) |= (r, ru, γα, δα). Since
r(α− 1) = av, (p, I) |= (r, a, γ(α− 1), δ(α− 1)) if and only if (p, I) |= (av, a, γ(α−
1), δ(α−1)). Now, since a 6= 0, avRp ⊇ I and a ∈ I if and only if v /∈ p, aRp ⊇ I and
a ∈ I. So (p, I) |= (av, a, γ(α− 1), δ(α− 1)) if and only if (p, I) |= (a, a, γαv, δαv).

Therefore (p, I) |= (r, a, γ, δ) if and only if (p, I) |= (r, rv, γα, δα) or (p, I) |=
(a, a, γ(α − 1)v, δ(α − 1)v). The same argument shows that (p, I) |= (r, a, δ, γ) if
and only if (p, I) |= (r, rv, δα, γα) or (p, I) |= (a, a, δ(α− 1)v, γ(α− 1)v). �

Proposition 6.1.7. Given an auxiliary sentence Ξ and λ ∈ R\{0}, we can compute
n ∈ N and (rj , rjaj , γj , δj) ∈ R4 for 1 ≤ j ≤ n such that, for all prime ideals pCR
and ideals I CRp,

• (p, I) |= (rj , rjaj , γj , δj) for some 1 ≤ j ≤ n if and only if Rp/λI |= Ξ, and
• (p, I) |= (rj , rjaj , δj , γj) for some 1 ≤ j ≤ n if and only if Rp/λI |= DΞ.

Proof. Let Ξ be the sentence

l′∧
i=1

|di|x/x=0| = 1 ∧
l∧

i=l′

|xbi=0/ci|x| = 1.

Using 2.3.10 and 6.1.3, we can compute ni ∈ N for 1 ≤ i ≤ l and sij , bij , gij , hij ∈ R
for 1 ≤ i ≤ l and 1 ≤ j ≤ ni such that for all prime ideals pCR and ideals I CRp,
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• Rp/I |= Ξ if and only if (p, I) |=
∧l
i=1

∨ni
j=1(sij , bij , gij , hij), and

• Rp/I |= DΞ if and only if (p, I) |=
∧l
i=1

∨ni
j=1(sij , bij , hij , gij).

Therefore, for all prime ideals pCR and ideals I CRp,

• Rp/I |= Ξ if and only if

(p, I) |=
∨

σ:{1,...,l}→N
σ(i)≤ni

l∧
i=1

(siσ(i), biσ(i), giσ(i), hiσ(i)), and

• Rp/I |= DΞ if and only if

(p, I) |=
∨

σ:{1,...,l}→N
σ(i)≤ni

l∧
i=1

(siσ(i), biσ(i), hiσ(i), giσ(i)).

We can use 6.1.4, to replace the conjunction
∧l
i=1(siσ(i), biσ(i), giσ(i), hiσ(i)), for

each σ, by a disjunction to produce and (s′σk, b
′
σk, g

′
σk, δ

′
σk) for 1 ≤ k ≤ mσ such

that

• Rp/I |= Ξ if and only if (p, I) |= (s′σk, b
′
σk, g

′
σk, h

′
σk) for some 1 ≤ k ≤ mσ, and

• Rp/I |= DΞ if and only if (p, I) |= (s′σk, b
′
σk, h

′
σk, g

′
σk) for some 1 ≤ k ≤ mσ.

Applying 6.1.5 to each (s′σk, b
′
σk, h

′
σk, g

′
σk), we compute m ∈ N and (r′j , a

′
j , γ
′
j , δ
′
j)

for 1 ≤ j ≤ m such that

• Rp/λI |= Ξ if and only if (p, I) |= (r′j , a
′
j , γ
′
j , δ
′
j) for some 1 ≤ j ≤ m, and

• Rp/λI |= DΞ if and only if (p, I) |= (r′j , a
′
j , δ
′
j , γ
′
j) for some 1 ≤ j ≤ m.

Finally, applying 6.1.6 to each (r′j , a
′
j , γ
′
j , δ
′
j), we can compute n ∈ N and

(ri, riai, γi, δi) for 1 ≤ i ≤ n such that

• Rp/λI |= Ξ if and only if (p, I) |= (ri, riai, γi, δi) for some 1 ≤ i ≤ n, and
• Rp/λI |= DΞ if and only if (p, I) |= (ri, riai, δi, γi) for some 1 ≤ i ≤ n. �

6.2. Simplification of ϕ/ψ(Rp/λI) and ϕ/ψ(I/λRp).
The results of this subsection are used in sections 7 and 8. In this subsection, we
no longer need to worry about stability under duality.

Remark 6.2.1. Let a, b ∈ R\{0} and α, u, v ∈ R be such that aα = bu and
b(α− 1) = av. For prime ideals pCR and ideals I CRp,

• a ∈ bI if and only if (p, I) |= (1, u, α, 1) or (p, I) |= (1, 1, v(α− 1), 1), and,
• aRp ⊇ bI if and only if (p, I) |= (u, 0, α, 1) or (p, I) |= (1, 0, α− 1, 1).

Lemma 6.2.2. Let R be a recursive Prüfer domain and λ ∈ R\{0}.
(a) Given d ∈ R, we can compute finite sets S1, S2, S3 ⊆ R4, ρ :

⋃3
i=1 Si →

{1, 2, 3} and s :
⋃3
i=1 Si → R such that for all q ∈

⋃3
i=1 Si, q ∈ Sρ(q), and, for

all prime ideals p C R and ideals I C Rp, there exists q ∈
⋃3
i=1 Si such that

(p, I) |= q, and

|d|x/x=0(Rp/λI)| :=

 |Rp/s(q)I| , if (p, I) |= q and ρ(q) = 1;
|s(q)Rp/I| , if (p, I) |= q and ρ(q) = 2;
1, if (p, I) |= q and ρ(q) = 3.

Furthermore, if (p, I) |= q for some q ∈
⋃3
i=1 Si and ρ(q) = 1 (respectively

ρ(q) = 2) then s(q) 6= 0 (respectively s(q)Rp ⊇ I).
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(b) Given b, c ∈ R, we can compute finite sets S1, . . . , S5 ⊆ R4, ρ :
⋃5
i=1 Si →

{1, . . . , 5} and s :
⋃5
i=1 Si → R such that for all q ∈

⋃5
i=1 Si, q ∈ Sρ(q), and,

for all prime ideals pCR and ideals ICRp, there exists q ∈
⋃5
i=1 Si such that

(p, I) |= q, and

|xb=0/c|x(Rp/λI)| :=


|Rp/λI| , if (p, I) |= q and ρ(q) = 1;
|Rp/cRp| , if (p, I) |= q and ρ(q) = 2;
|I/bI| , if (p, I) |= q and ρ(q) = 3;
1, if (p, I) |= q and ρ(q) = 4;
|I/s(q)Rp| , if (p, I) |= q and ρ(q) = 5.

Furthermore, if (p, I) |= q for some q ∈
⋃5
i=1 Si and ρ(q) = 5 then s(q) ∈ I.

Moreover, if b = 0 then we may assume that S3 = S4 = S5 = ∅.

Proof. (a) If d = 0 then d|x/x=0(N) = 0 for all R-modules N . So set S1 = S2 = ∅,
S3 := {(1, 0, 1, 1)}, ρ((1, 0, 1, 1)) = 3 and s((1, 0, 1, 1)) = 1.

Suppose d 6= 0. Let α, u, v ∈ R be such that dα = λu and λ(α− 1) = dv.

• If (p, I) |= q1 := (1, 0, α− 1, 1) then

|d|x/x=0(Rp/λI)| = |dRp/dvI| = |Rp/vI| .
• If (p, I) |= q2 := (u, 0, α, 1) then by definition uRp ⊇ I, and,

|d|x/x=0(Rp/λI)| = |λuRp/λI| = |uRp/I| .
• If (p, I) |= q3 := (1, u, α, 1) then d ∈ λI and hence |d|x/x=0(Rp/λI)| = 1.

For all prime ideals pCR, either α /∈ p or α−1 /∈ p, and, for all ideal ICRp, either
uRp ⊇ I or u ∈ I. Therefore for all prime ideals p C R and ideals I C Rp, either
(p, I) |= q1, (p, I) |= q2 or (p, I) |= q3. Set Si := {qi} for 1 ≤ i ≤ 3. If v = 0 then
α− 1 = 0. Therefore if there exists (p, I) |= q1 then v 6= 0. So we can set s(q1) := v
if v 6= 0 and s(q1) := 1 if v = 0. Set s(q2) := u and s(q3) := 1.
(b) For all prime ideals pCR and ideals I CRp,

|xb=0/c|x(Rp/λI)| =
∣∣∣∣ (λI : b) + cRp

cRp + λI

∣∣∣∣ .
First suppose b = 0. If c ∈ λI then |xb=0/c|x(Rp/λI)| = |Rp/λI|, and, if cRp ⊇ λI
then |xb=0/c|x(Rp/λI)| = |Rp/cRp|. We can use 6.2.1 to compute finite sets S1, S2 ⊆
R4 such that for all prime ideals pCR and ideals I CRp, there exists q ∈ S1 such
that (p, I) |= q if and only if c ∈ λI, and, there exists q ∈ S2 such that (p, I) |= q if
and only if cRp ⊇ λI. Set S3 = S4 = S5 = ∅.

Now suppose b 6= 0. If bRp ⊇ λI then∣∣∣∣ (λI : b) + cRp

cRp + λI

∣∣∣∣ =

∣∣∣∣ λI + bcRp

bcRp + bλI

∣∣∣∣ .
So

|xb=0/c|x(Rp/λI)| :=


|Rp/λI| , if b, c ∈ λI;
|Rp/cRp| , if b ∈ λI and cRp ⊇ λI;
|I/bI| , if bRp ⊇ λI and c ∈ λI;
1, if bcRp ⊇ λI;
|λI/bcRp| , if bRp ⊇ λI, cRp ⊇ λI and bc ∈ λI.

Therefore it is enough to compute:

• S1 such that b, c ∈ λI if and only if there exists q ∈ S1 such that (p, I) |= q,
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• S2 such that b ∈ λI and cRp ⊇ λI if and only if exists q ∈ S2 such that
(p, I) |= q,

• S3 such that bRp ⊇ λI and c ∈ λI and if and only if exists q ∈ S3 such that
(p, I) |= q,

• S4 such that bcRp ⊇ λI if and only if there exists q ∈ S4 such that (p, I) |= q,
and,

• S5 and for each q ∈ S5, sq ∈ R such that bRp ⊇ λI, cRp ⊇ λI and bc ∈ λI
if and only if there exists q ∈ S5 such that (p, I) |= q and such that, in this
situation |xb=0/c|x(Rp/λI)| = |I/sqRp|.

It is easy to compute S1, . . . , S4 using 6.2.1 and 6.1.4.
Let ε, r, s be such that bcε = λs and λ(ε − 1) = bcr. By 6.2.1, bc ∈ λI if and

only if (p, I) |= (1, s, ε, 1) or (p, I) |= (1, 1, r(ε − 1), 1). If bRp ⊇ λI, cRp ⊇ λI and
(p, I) |= (1, s, ε, 1) then

|xb=0/c|x(Rp/λI)| = |λI/bcRp| = |I/sRp| .

Use 6.2.1 and 6.1.4 to compute S′5 such that (p, I) |= q for some q ∈ S′5 if and only
if bRp ⊇ λI, cRp ⊇ λI and (p, I) |= (1, s, ε, 1).

If (p, I) |= (1, 1, r(ε− 1), 1) then I = Rp and

|xb=0/c|x(Rp/λI)| = |λI/bcRp| = |I/1Rp| .

Let S′′5 := {(1, 1, r(ε − 1), 1)} and let S5 := S′5 ∪ S′′5 . Set s(q) := s if s ∈ S′5 and
s(q) := 1 otherwise. Note that in both cases, by definition, s(q) ∈ I. �

Proposition 6.2.3. Let R be a recursive Prüfer domain, λ ∈ R\{0} and Z a finite
subset of pp-pairs of the form xb=0/c|x and d|x/x=0 with b, c, d ∈ R. Let

TZ := {µ : Z → {1, . . . , 5} | for all d|x/x=0 ∈ Z, µ(d|x/x=0) ≤ 3}.

We can compute SZ a finite subset of R4, ρZ : SZ → TZ and sZ : SZ × Z → R
such that for all prime ideals pCR and ideals I CRp,

(a) there exists q ∈ SZ such that (p, I) |= q;
(b) (1) if ρZ(q)(d|x/x=0) = 1 then |d|x/x=0(Rp/λI)| = |Rp/sZ(q, d|x/x=0)I|;

(2) if ρZ(q)(d|x/x=0) = 2 then |d|x/x=0(Rp/λI)| = |sZ(q, d|x/x=0)Rp/I|;
(3) if ρZ(q)(d|x/x=0) = 3 then |d|x/x=0(Rp/λI)| = 1;

(c) (1) if ρZ(q)(xb=0/c|x) = 1 then |xb=0/c|x(Rp/λI)| = |Rp/λI|;
(2) if ρZ(q)(xb=0/c|x) = 2 then |xb=0/c|x(Rp/λI)| = |Rp/cRp|;
(3) if ρZ(q)(xb=0/c|x) = 3 then |xb=0/c|x(Rp/λI)| = |I/bI|;
(4) if ρZ(q)(xb=0/c|x) = 4 then |xb=0/c|x(Rp/λI)| = 1; and
(5) if ρZ(q)(xb=0/c|x) = 5 then |xb=0/c|x(Rp/λI)| = |I/sZ(q, xb=0/c|x)Rp|.

Furthermore, for all prime ideals p C R and ideals I C Rp, if (p, I) |= q and
ρZ(q)(d|x/x=0) = 1 (respectively ρZ(q)(d|x/x=0) = 2) then sZ(q, d|x/x=0) 6= 0 (re-
spectively sZ(q, d|x/x=0)Rp ⊇ I), and, if (p, I) |= q and ρZ(q)(xb=0/c|x) = 5 then
sZ(q, xb=0/c|x) ∈ I. Moreover, if b = 0 then we may assume ρZ(q)(xb=0/c|x) ∈ {1, 2}
for all q ∈ SZ .

Proof. We prove the proposition iteratively. Let λ ∈ R\{0} and Z be a finite set
of pp-pairs of the form xb=0/c|x or d|x/x=0. If |Z| = 1 then 6.2.2 gives the required
result. Suppose that SZ , ρZ and sZ are as in the statement. We construct SZ′ , ρZ′

and sZ′ for Z ′ = Z ∪ {ϕ/ψ} where ϕ/ψ is either of the form d|x/x=0 or xb=0/c|x and
ϕ/ψ /∈ Z.
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Let S1, . . . , S5, s :
⋃5
i=1 Si → R and ρ :

⋃5
i=1 Si → {1, . . . , 5} be as in 6.2.2 (1)

or (2), as appropriate (if ϕ/ψ is of the form d|x/x=0 then set S4 = S5 = ∅). By 6.1.4,
for each q ∈ SZ and p ∈ Si, we can compute a finite set Sq,p,i ⊆ R4 such that for all
prime ideals pCR and ideals I CRp, (p, I) |= q and (p, I) |= p if and only if there

exists q̂ ∈ Sq,p,i such that (p, I) |= q̂. Let Sq,i :=
⋃
p∈Si Sq,p,i, let Sq :=

⋃5
i=1 Sq,i

and let SZ′ :=
⋃
q∈SZ Sq.

For all prime ideals pCR and ideals I CRp, by assumption, there exists q ∈ SZ
such that (p, I) |= q and, by 6.2.2, there exists 1 ≤ i ≤ 5, such that (p, I) |= q′ for
some q′ ∈ Si. Therefore, (p, I) |= q′′ for some q′′ ∈ Sq,i ⊆ SZ′ . So (a) holds for SZ′ .

Define ρZ′ : SZ′ → TZ′ by setting

ρZ′(q
′)(σ/τ) :=

{
min{ρZ(q)(σ/τ) | q′ ∈ Sq}, if σ/τ ∈ Z;
min{1 ≤ i ≤ 5 | q′ ∈ Sq,i for some q ∈ SZ}, if σ/τ = ϕ/ψ.

For σ/τ ∈ Z, set sZ′(q
′, σ/τ) to be sZ(q, σ/τ) for some q ∈ SZ where q′ ∈ Sq and

ρZ′(q
′)(σ/τ) = ρZ(q)(σ/τ). For q′ ∈ SZ′ , set sZ′(q

′, ϕ/ψ) to be s(p) for some p ∈ Sj
where j = ρZ′(q

′)(ϕ/ψ) and q′ ∈ Sq,p,j .
Now, for σ/τ ∈ Z, properties (b) or (c), as appropriate, are inherited from those

properties holding for ρZ and sZ and for ϕ/ψ, properties (b) or (c), as appropriate,
are inherited from ρ and s. �

Lemma 6.2.4. Let R be a recursive Prüfer domain and λ ∈ R\{0}.

(a) Given b, c ∈ R, we can compute finite sets S1, . . . , S6 ⊆ R4, ρ :
⋃6
i=1 Si →

{1, . . . , 6} and s :
⋃6
i=1 Si → R such that for all q ∈

⋃6
i=1 Si, q ∈ Sρ(q), and,

for all prime ideals pCR and ideals ICRp with λ ∈ I, there exists q ∈
⋃6
i=1 Si

such that (p, I) |= q, and

|xb=0/c|x(I/λRp)| :=



|I/λRp| , if (p, I) |= q and ρ(q) = 1;
|I/cI| , if (p, I) |= q and ρ(q) = 2;
|Rp/bRp| , if (p, I) |= q and ρ(q) = 3;
1, if (p, I) |= q and ρ(q) = 4;
|s(q)Rp/I| , if (p, I) |= q and ρ(q) = 5;
|Rp/s(q)I| , if (p, I) |= q and ρ(q) = 6.

Furthermore, if ρ(q) = 5 and (p, I) |= q then s(q)Rp ⊇ I.

(b) Given d ∈ R, we can compute finite sets S1, S2 ⊆ R4, ρ :
⋃2
i=1 Si → {1, 2}

and s :
⋃2
i=1 Si → R such that for all q ∈

⋃2
i=1 Si, q ∈ Sρ(q), and, for all

prime ideals pCR and ideals I CRp with λ ∈ I, there exists q ∈
⋃2
i=1 Si such

that (p, I) |= q, and

|d|x/x=0(I/λRp)| :=
{
|I/s(q)Rp| , if (p, I) |= q and ρ(q) = 1;
0, if (p, I) |= q and ρ(q) = 2.

Furthermore, if ρ(q) = 1 and (p, I) |= q then s(q) ∈ I.

Proof. (a)Let α, r, s ∈ R be such that λα = bcr and bc(α− 1) = λs.
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Claim: If λ ∈ I then

|xb=0/c|x(I/λRp)| :=



|I/λRp| , if (1) bI ⊆ λRp and cI ⊆ λRp;
|I/cI| , if (2) bI ⊆ λRp and λ ∈ cI;
|Rp/bRp| , if (3) λ ∈ bI and cI ⊆ λRp;
1, if (4) λ ∈ bI, λ ∈ cI, r ∈ I and α /∈ p;
|rRp/I| , if (5) λ ∈ bI, λ ∈ cI, rRp ⊇ I and α /∈ p;
|Rp/sI| , if (6) λ ∈ bI, λ ∈ cI and α− 1 /∈ p.

Note that

|xb=0/c|x(I/λRp)| =
∣∣∣∣ (λRp : b) ∩ I + cI

cI + λRp

∣∣∣∣ .
For all a ∈ R, a ∈ annR(I/λRp) if and only if aI ⊆ λRp. Therefore, the equalities
for conditions (1) and (2) hold. If λ ∈ bI ⊆ bRp then b 6= 0 since λ 6= 0 and
(λRp : b) ∩ I/λRp

∼= Rp/bRp. So the equality for condition (3) holds.
When proving the equalities for (4), (5) and (6), we may assume b 6= 0 and c 6= 0

since λ 6= 0, λ ∈ cI and λ ∈ bI. Moreover,

|xb=0/c|x(I/λRp)| = |(λRp : b) + cI/cI| = |λRp + bcI/bcI| .
If α /∈ p and r ∈ I then λ ∈ bcI. So the equality for condition (4) holds.

Suppose condition (5) holds. Then α /∈ p implies λRp = bcrRp. Since rRp ⊇ I,
|xb=0/c|x(Rp/λI)| = |rRp/I|. So the equality for condition (5) holds.

Suppose condition (6) holds. Since α− 1 /∈ p, bcI = λsI. So (λRp + bcI)/bcI ∼=
Rp/sI. So the equality for condition (6) holds. So we have proved the claim.

Given a finite set of conditions of the form β /∈ p, a ∈ λI or aRp ⊇ λI, using
6.1.4 and 6.2.1, we can compute a finite set S ⊆ R4 such that (p, I) satisfies these
conditions if and only if (p, I) |= q for some q ∈ S. So for each conditions (i) for
1 ≤ i ≤ 6 in the claim, we can compute Si ⊆ R4 such that (p, I) satisfies (i) and
λ ∈ I if and only if there exists q ∈ Si with (p, I) |= q. Moreover, it is easy to see
that, for all prime ideals pCR and ideals I CRp, there exists 1 ≤ i ≤ 6 such that

(p, I) satisfies (i). Let ρ :
⋃6
i=1 Si → {1, . . . , 6} be such that q ∈ Sρ(q). Finally, set

s(q) = 1 if ρ(q) ≤ 4, s(q) = r if ρ(q) = 5 and s(q) = s if ρ(q) = 6.

(b) The case d = 0 is done as in 6.2.2. Suppose d 6= 0. Let α, r, s ∈ R be such
that dα = λr and λ(α − 1) = ds. If either α /∈ p, or, α − 1 /∈ p and sRp ⊇ I
then λRp ⊇ dI. If α − 1 /∈ p and s ∈ I then dI ⊇ dsRp = λRp. Since d 6= 0,
dI/dsRp

∼= I/sRp. Therefore

|d|x/x=0(I/λRp)| =
∣∣∣∣dI + λRp

λRp

∣∣∣∣ =

 1, if (p, I) |= (1, 0, α, 1);
1, if (p, I) |= (s, 0, α− 1, 1);
|I/sRp| , if (p, I) |= (1, s, α− 1, 1).

It is now clear how to define, S1, S2, ρ and s. �

Proposition 6.2.5. Let R be a recursive Prüfer domain, λ ∈ R\{0} and Z a finite
subset of pp-pairs of the form xb=0/c|x and d|x/x=0 with b, c, d ∈ R. Let

TZ := {µ : Z → {1, . . . , 6} | µ(d|x/x=0) ≤ 2}.
We can compute SZ a finite subset of R4, ρZ : SZ → TZ and sZ : SZ × Z → R
such that, for all prime ideals pCR and ideals I CRp with λ ∈ I, if (p, I) |= q for
some q ∈ SZ then λ ∈ I, and, if λ ∈ I then

(a) there exists q ∈ SZ such that (p, I) |= q;
(b) (1) if ρZ(q)(d|x/x=0) = 1 then |d|x/x=0(I/λRp)| = |I/sZ(q, d|x/x=0)Rm|;
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(2) if ρZ(q)(d|x/x=0) = 2 then |d|x/x=0(I/λRp)| = 1;
(c) (1) if ρZ(q)(xb=0/c|x) = 1 then |xb=0/c|x(I/λRp)| = |I/λRp|;

(2) if ρZ(q)(xb=0/c|x) = 2 then |xb=0/c|x(I/λRp)| = |I/cI|;
(3) if ρZ(q)(xb=0/c|x) = 3 then |xb=0/c|x(I/λRp)| = |Rp/bRp|;
(4) if ρZ(q)(xb=0/c|x) = 4 then |xb=0/c|x(I/λRp)| = 1;
(5) if ρZ(q)(xb=0/c|x) = 5 then |xb=0/c|x(I/λRp)| = |s(q, xb=0/c|x)Rp/I|; and
(6) if ρZ(q)(xb=0/c|x) = 6 then |xb=0/c|x(I/λRp)| = |Rp/s(q, xb=0/c|x)I|.

Furthermore, for all prime ideals pCR and ideals ICRp, if ρZ(q)(d|x/x=0) = 1 and
(p, I) |= q then sZ(q, d|x/x=0) ∈ I, and, if ρZ(q)(xb=0/c|x) = 5 and (p, I) |= q then
sZ(q, d|x/x=0)Rp ⊇ I.

Proof. This can be proved similarly to 6.2.3 by replacing 6.2.2 by 6.2.4. The extra
condition that (p, I) |= q for some q ∈ SZ implies λ ∈ I can be incorporated using
6.1.4, since (p, I) |= (1, λ, 1, 1) if and only if λ ∈ I. �

7. Finite modules

In this section we investigate the consequences of EPP(R) being recursive, and of
EPP(R) and the radical relation being recursive. In particular, we show that for a
recursive Prüfer domain the theory of R-modules of size n is decidable uniformly
in n if and only if EPP(R) is recursive, 7.6.

Observe that finite modules over a Prüfer domain R are finite direct sums of
modules of the form Rp/I where p C R is a prime ideal and I C Rp is an ideal.
There are many ways of seeing this. If M is finite then M is pure-injective. So, by
2.1.2 and 2.3.5, there exist prime ideals pi C R and uniserial Rpi -modules Ui such
that M is elementary equivalent, and hence isomorphic, to ⊕ni=1Ui. The desired
result now follows from 2.3.7.

Let W be the set of tuples[8] (f, g, a, γ) where

(i) f : X → N where X := X0 ∪ {?}, X0 is a finite subset of R and ? /∈ R,
(ii) g : Y → N where Y is a finite subset of R,

(iii) a := (a1, . . . , am) is a tuple of length m ∈ N of elements of R, and γ ∈ R.

Let V be the set of (f, g, a, γ) ∈ W such that, for some h ∈ N and for 1 ≤ i ≤ h,
there exist a prime ideal pi and an ideal Ii C Rpi such that aj ∈ Ii for 1 ≤ j ≤ m
and 1 ≤ i ≤ h, γ /∈ pi,

| ⊕hi=1 Rpi/Ii| = f(?),

| ⊕hi=1 Rpi/eRpi | = f(e) for e ∈ X0

and

| ⊕hi=1 Rpi/eRpi | ≥ g(e) for e ∈ Y.
We write (pi, Ii)1≤i≤h |= (f, g, a, γ). By convention, ∅ |= (f, g, a, γ) if f(e) = 1 for
all e ∈ X and g(e) = 1 for all e ∈ Y and in this situation, (f, g, a, γ) ∈ V .

As in 4.2, W denotes the bounded distributive lattice generated by W and V
denotes the (prime) filter in W generated by V .

Let W0 be the subset of elements of the form (f, ∅, a, γ) with |X0| ≤ 1 and let
W1 be the subset of elements of the form (f, ∅, a, γ) where, in both cases, ∅ denotes
the function from the empty set to N. Let W0, respectively W1, denote the lattice
generated by W0 ∪ {>,⊥}, respectively W1 ∪ {>,⊥}, in W.

[8]The letter “W” is chosen to match the notation in subsection 4.2.
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Lemma 7.1. Let R be a recursive Prüfer domain. There is an algorithm which
given w ∈W1 returns u ∈W0, such that w ∈ V if and only if u ∈ V.

Proof. Define clx(f, ∅, a, γ) := (|X0|,
∏
e∈X0

f(e)) and order N0 × N lexicographi-

cally. For any w ∈ W1 with |X0| > 1, we show how to compute u ∈ W1 with
clxu < clxw such that w ∈ V if and only if u ∈ V. We can then apply the same
process to those components of u which are not already in W0; since the lexico-
graphic order on N0 × N is artinian, this is sufficient to prove the lemma.

Suppose w = (f, ∅, a, γ) where f : X0 ∪ {?} → N and |X0| > 0. Take e1, e2 ∈ X0

non-equal. Let α, r, s ∈ R be such that e1α = e2r and e2(α − 1) = e1s. Let Ω be
the set of pairs of functions (f1, f2) such that f1 : X ∪ {r} → N, f2 : X ∪ {s} → N
and

(1) f1(e)f2(e) = f(e) for all e ∈ X,
(2) f1(e1) = f1(e2)f1(r), and
(3) f2(e2) = f2(e1)f2(s).

Let u be ⊔
(f1,f2)∈Ω

f1(e2)6=1,f2(e1) 6=1

(f1|(X∪{r})\{e1}, ∅, a, γα) u (f2|(X∪{s})\{e2}, ∅, a, γ(α− 1))

t
⊔

(f1,f2)∈Ω
f1(e2)=1,f2(e1)6=1

(f1|X\{e2}, ∅, a, e2γα) u (f2|(X∪{s})\{e2}, ∅, a, γ(α− 1))

t
⊔

(f1,f2)∈Ω
f1(e2)6=1,f2(e1)=1

(f1|(X∪{r})\{e1}, ∅, a, γα) u (f2|X\{e1}, ∅, a, e1γ(α− 1))

t
⊔

(f1,f2)∈Ω
f1(e2)=1,f2(e1)=1

(f1|X\{e2}, ∅, a, e2γα) u (f2|X\{e1}, ∅, a, e1γ(α− 1)).

Claim: w ∈ V if and only if u ∈ V.
For all prime ideals p C R, α /∈ p implies e1Rp = e1αRp = e2rRp and α − 1 /∈ p
implies e2Rp = e2(α− 1)Rp = e1sRp. So, α /∈ p implies

|Rp/e1Rp| = |Rp/e2Rp| · |Rp/rRp|

and α− 1 /∈ p implies

|Rp/e2Rp| = |Rp/e1Rp| · |Rp/sRp| .

Suppose that pi C R is a prime ideal and Ii C Rpi is an ideal for 1 ≤ i ≤ h such
that (pi, Ii)1≤i≤h |= (f, ∅, a, γ). By reordering, we may assume that α /∈ pi for

1 ≤ i ≤ h′ and α − 1 /∈ pi for h′ + 1 ≤ i ≤ h. Let f1(?) := | ⊕h′i=1 Rpi/Ii| and

f2(?) := | ⊕hi=h′+1 Rpi/Ii|. For each e ∈ X0 ∪ {r}, let f1(e) = | ⊕h′i=1 Rpi/eRpi | and

for each e ∈ X0 ∪ {s}, let f2(e) = | ⊕hi=h′+1 Rpi/eRpi |. It follows from the first
paragraph of the proof of this claim that (f1, f2) ∈ Ω.

If f1(e2) 6= 1 then

(pi, Ii)1≤i≤h′ |= (f1|(X∪{r})\{e1}, ∅, a, γα)

and if f2(e1) 6= 1 then

(pi, Ii)h′+1≤i≤h |= (f2|(X∪{s})\{e2}, ∅, a, γ(α− 1)).
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We explain the first statement. By definition of f1, f1(?) := | ⊕h′i=1 Rpi/Ii| and

f1(e) = | ⊕h′i=1 Rpi/eRpi | for all e ∈ X0 ∪ {r}. Since (pi, Ii)1≤i≤h |= (f, ∅, a, γ),
γ /∈ pi for 1 ≤ i ≤ h and a1, . . . , am ∈ Ii for all 1 ≤ i ≤ h where a = (a1, . . . , am).
By definition of (pi, Ii)1≤i≤h′ , α /∈ pi for 1 ≤ i ≤ h′. Thus αγ /∈ pi for 1 ≤ i ≤ h′.
Therefore (pi, Ii)1≤i≤h′ |= (f1|(X∪{r})\{e1}, ∅, a, γα).

By definition, if f1(e2) = 1, then e2 /∈ pi for 1 ≤ i ≤ h′ and if f2(e1) = 1 then
e1 /∈ pi for h′ + 1 ≤ i ≤ h. So if f1(e2) = 1 then

(pi, Ii)1≤i≤h′ |= (f1|X\{e2}, ∅, a, e2γα)

and if f2(e1) = 1 then

(pi, Ii)h′+1≤i≤h |= (f2|X\{e1}, ∅, a, e1γ(α− 1)).

So we have shown that if w ∈ V then one of the components of the join defining u
is in V and hence u ∈ V.

Conversely, take (f1, f2) ∈ Ω. Suppose f1(e2) 6= 1 and

(pi, Ii)1≤i≤h′ |= (f1|(X∪{r})\{e1}, ∅, a, γα).

Since α /∈ pi for 1 ≤ i ≤ h′,∣∣∣⊕h′i=1Rpi/e1Rpi

∣∣∣ =
∣∣∣⊕h′i=1Rpi/e2Rpi

∣∣∣ · ∣∣∣⊕h′i=1Rpi/rRpi

∣∣∣ = f1(e2) · f1(r) = f1(e1)

by definition of Ω. So (pi, Ii)1≤i≤h′ |= (f1, ∅, a, γ).
Suppose that f2(e1) = 1 and

(qi, Ji)1≤i≤h′′ |= (f2|X\{e1}, ∅, a, e1γ(α− 1)).

Then

(qi, Ji)1≤i≤h′′ |= (f2, ∅, a, γ)

because e1 /∈ qi for 1 ≤ i ≤ h′′ implies∣∣∣⊕h′′i=1Rqi/e1Rqi

∣∣∣ = 1 = f1(e1).

So, setting pi := qi−h′ and Ii := Ji−h′ for h′ + 1 ≤ i ≤ h′ + h′′ = h,

(pi, Ii)1≤i≤h |= (f, ∅, a, γ)

because f1(e)f2(e) = f(e) for all e ∈ X. We leave the case f1(e2) 6= 1 and f2(e1) 6=
1, the case f1(e2) = 1 and f2(e1) 6= 1 and the case f1(e2) = f2(e2) = 1 to the
reader.

Claim: clxu < clxw
We show that each of the components, u′, of the lattice combination defining u
have clxu′ < clxw. We only consider the components involving f1; the result for
those involving f2 follows similarly.

If f1(e2) = 1 then clx(f1|X\{e2}, ∅, a, e2γα) < clxw since |X0| > |X0\{e2}|. If
f1(e2) > 1 then

f1(r)

f(e1)
=
f1(e2)f1(r)

f1(e2)f(e1)
=

f1(e1)

f1(e2)f(e1)
< 1

since f1(e1)/f(e1) ≤ 1. So

f1(r) ·
∏

x∈X0\{e1}

f1(x) ≤ f1(r) ·
∏

x∈X0\{e1}

f(x) =
f1(r)

f(e1)
·
∏
x∈X0

f(x) <
∏
x∈X0

f(x).

Therefore clx(f1|(X∪{r})\{e1}, ∅, a, γα) < clxw. �
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Lemma 7.2. Let R be a recursive Prüfer domain. If EPP(R) is recursive then
there is an algorithm which given w ∈W1 answers whether w ∈ V or not.

Proof. Let w = (f, ∅, a, γ) and suppose that X0 = {e} i.e. w ∈ W0. Let P be
the set of prime divisors of f(?) · f(e). If P is empty then f(?) = f(e) = 1 and
hence w ∈ V . Otherwise, for each p ∈ P , let np ∈ N0 and mp ∈ N0 be such that
f(?) =

∏
p∈P p

np and f(e) =
∏
p∈P p

mp . For any prime ideal p C R, e ∈ R and

ideal I CRp, if |Rp/eRp| (respectively |Rp/I|) is finite then it is a power of |R/p|.
Thus both |Rp/eRp| and |Rp/I| are prime powers. Hence w ∈ V if and only if
(p, np; a; γ; e,mp) ∈ EPP∗(R) for all p ∈ P .

If w ∈ W1 then by 7.1, we can compute w ∈ W0 such that w ∈ V if and only
if w ∈ V. Therefore, by the previous paragraph there is an algorithm which, given
w ∈W1 answers whether w ∈ V or not. �

Corollary 7.3. Let R be a recursive Prüfer domain with EPP(R) recursive. There
is an algorithm which given r, a, γ, δ ∈ R, n ∈ N, ej ∈ R for 1 ≤ j ≤ n, N ∈ N and
Nj ∈ N for 1 ≤ j ≤ n, answers whether there exist h ∈ N0, prime ideals piCR and
ideals Ii CRpi for 1 ≤ i ≤ h such that

(1) (pi, Ii) |= (r, a, γ, δ) for 1 ≤ i ≤ h,
(2)

∣∣⊕hi=1Rpi/Ii
∣∣ = N , and

(3)
∣∣⊕hi=1Rpi/ejRpi

∣∣ = Nj for 1 ≤ j ≤ n.

Proof. Applying 6.1.6, we may reduce to the case where a = ra′. We may also
assume r 6= 0 since (p, I) |= (0, b′, γ, δ) implies I = 0 and hence |Rp/I| = |Rp|
which is infinite.

For any prime ideal p C R and ideal I C Rp, (p, I) |= (r, ra′, γ, δ) if and only if
there exists J C Rp such that I = rJ and (p, J) |= (1, a′, γ, δ). Note that, because
R is a domain, |Rp/rJ | = |Rp/J | · |Rp/rRp|.

Therefore, there exist h ∈ N0, prime ideals piCR and ideals IiCRpi for 1 ≤ i ≤ h
satisfying (1), (2) and (3) if and only if there exist N ′, N ′′ ∈ N with N ′ ·N ′′ = N ,
h ∈ N0, prime ideals pi CR and ideals Ji CRpi for 1 ≤ i ≤ h such that

(a) (pi, Ji) |= (1, a′, γ, δ) for 1 ≤ i ≤ h,
(b)

∣∣⊕hi=1Rpi/Ji
∣∣ = N ′, and

(c)
∣∣⊕hi=1Rpi/rRpi

∣∣ = N ′′,
∣∣⊕hi=1Rpi/ejRpi

∣∣ = Nj for 1 ≤ j ≤ n.

By 7.2, there is an algorithm which answers whether there exist h ∈ N0, prime
ideals pi CR and ideals Ji CRpi for 1 ≤ i ≤ h satisfying (a),(b) and (c). �

Proposition 7.4. Let R be a recursive Prüfer domain such that EPP(R) and the
radical relation are recursive. There is an algorithm which, given (f, g, a, γ) ∈ W ,
answers whether there exist h ∈ N0, prime ideals pi and ideals IiCRpi for 1 ≤ i ≤ h
such that (pi, Ii)1≤i≤h |= (f, g, a, γ).

Proof. Suppose (f, g, a, γ) ∈W .

Case Y = ∅: This is 7.2.

Case |Y | = 1: Suppose that X0 := {e1, . . . , en} and Y := {e}.
If γ

∏n
j=1 ej /∈ rad eR then there exists a prime ideal p such that ej /∈ p for

1 ≤ j ≤ n, γ /∈ p and e ∈ p. Then |Rp/ejRp| = 1 for 1 ≤ j ≤ n and |Rp/eRp| > 1.
So (pi, Ii)1≤i≤h |= (f, ∅, a, γ) if and only if (pi, Ii)1≤i≤h′ |= (f, g, a, γ) where h′ :=
h+ g(e), and, pi := p and Ii := Rpi for h < i ≤ g(e). So (f, g, a, γ) ∈ V if and only
if (f, ∅, a, γ) ∈ V . So we are now in the situation of case Y = ∅.
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If γ
∏n
j=1 ej ∈ rad eR then there exist l ∈ N and r ∈ R such that (γ

∏n
j=1 ej)

l =

er. Thus, for all prime ideals p with γ /∈ p, |Rp/eRp| ≤
∏n
j=1 |Rp/ejRp|l. Therefore

(pi, Ii)1≤i≤h |= (f, g, a, γ) if and only if there exists f ′ : X ∪{e} → N where f ′(x) =
f(x) for all x ∈ X and g(e) ≤ f ′(e) ≤

∏n
j=1 f(ej)

l and (pi, Ii)1≤i≤h |= (f ′, ∅, a, γ).

Since the set of f ′ is finite and computable, we are now in the situation of case
Y = ∅.
Case |Y | ≥ 2: We show how to reduce to the situation where |Y | ≤ 1. By 4.1.3,
we may assume that g is a constant function. Take e1, e2 ∈ Y non-equal. Let
α, r, s ∈ R be such that e1α = e2r and e2(α − 1) = e1s. Since for all prime ideals
pCR, either α /∈ p or α− 1 /∈ p, by 4.1.1, (f, g, a, γ) ∈ V if and only if⊔

(f1,f2,g1,g2)∈Ωf,g,2

(f1, g1, a, αγ) u (f2, g2, a, (α− 1)γ) ∈ V.

Note that if g is constant then g1 and g2 are constant for all (f1, f2, g1, g2) ∈ Ωf,g.
For each (f1, f2, g1, g2) ∈ Ωf,g, either |Y1| < |Y | or e1, e2 ∈ Y1. In the first case we

are done. In the second, (f1, g1, a, αγ) ∈ V if and only if (f1, g1|Y1\{e1}, a, αγ) ∈ V .
This is because, for all prime ideals p with α /∈ p, |Rp/e1Rp| ≥ |Rp/e2Rp| and
hence if |Rp/e2Rp| ≥ g1(e2) then |Rp/e1Rp| ≥ g1(e2) = g1(e1). So we may replace
(f1, g1, a, αγ) by (f1, g1|Y1\{e1}, a, αγ). A similar argument shows that either |Y2| <
|Y | or we can replace (f2, g2, a, (α− 1)γ) by (f2, g2|Y1\{e2}, a, (α− 1)γ). �

Corollary 7.5. Let R be a recursive Prüfer domain with the radical relation and
EPP(R) recursive. There is an algorithm which given r, a, γ, δ ∈ R, n, n′ ∈ N,
ej ∈ R for 1 ≤ j ≤ n, e′j ∈ R for 1 ≤ j ≤ n′, N ∈ N, Nj ∈ N for 1 ≤ j ≤ n and
N ′j ∈ N for 1 ≤ j ≤ n′, answers whether there exist h ∈ N0, prime ideals pi C R
and ideals Ii CRpi for 1 ≤ i ≤ h such that

(1) (pi, Ii) |= (r, a, γ, δ) for 1 ≤ i ≤ h,
(2)

∣∣⊕hi=1Rpi/Ii
∣∣ = N ,

(3)
∣∣⊕hi=1Rpi/ejRpi

∣∣ = Nj for 1 ≤ j ≤ n, and

(4)
∣∣⊕hi=1Rpi/ejRpi

∣∣ ≥ N ′j for 1 ≤ j ≤ n′.

Proof. The proof is as in 7.3 but we use 7.4 in place of 7.2. �

Theorem 7.6. Let R be a recursive Prüfer domain. The theory of R-modules of
size n is decidable uniformly in n if and only if EPP(R) is recursive.

Proof. The forward direction is 3.2.10.
Standard arguments using the Baur-Monk theorem and the fact that TR is re-

cursively axiomatisable imply that the theory of R-modules of size n is decidable
uniformly in n if and only if there is an algorithm which, given N ∈ N, pp-pairs ϕi/ψi
and Ai ∈ N for 1 ≤ i ≤ m, answers whether there exists M ∈ Mod-R satisfying

(?) |x=x/x=0| = N ∧
m∧
i=1

|ϕi/ψi| = Ai.

Unfortunately, we can’t directly apply the statement of [GLT19, 4.1] to reduce to
the case that the pp-pairs ϕi/ψi are of the form d|x/x=0 or xb=0/c|x with b, c, d ∈ R.
However, the proof of [GLT19, 4.1] can be easily modified to allow us to do this.
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Roughly speaking, starting with a sentence χ of the form

(†)
l∧
i=1

|ϕi/ψi| = Ai ∧
m∧

i=l+1

|ϕi/ψi| ≥ Ai

where Ai ∈ N and ϕi/ψi is an arbitrary pp-pair for 1 ≤ i ≤ m, each step of the proof
of [GLT19, 4.1] produces a finite set S of finite tuples of sentences (χ1, . . . , χk) as
in (†), but with the form of the pp-pairs involved progressively improved, such that
there is an R-module satisfying χ if and only if there exist (χ1, . . . , χk) ∈ S and
R-modules Mi ∈ Mod-R with Mi |= χi for 1 ≤ i ≤ k. In order to adapt the proof
to our situation, the reader just needs to note that, for each of the steps of the
proof of [GLT19, 4.1], if the initial sentence χ is as in (?), then the sentences χi in
the finite tuples (χ1, . . . , χk) ∈ S are of the same form as in (?).

Let N ∈ N, Z be a finite set of pp-pairs of the form d|x/x=0 and xb=0/c|x, and
f : Z → N. Let χ be the sentence

|x=x/x=0| = N ∧
∧

ϕ/ψ∈Z

|ϕ/ψ| = f(ϕ/ψ).

Recall that every finite module over a Prüfer domain is isomorphic to a direct sum
of modules of the form Rp/I for some prime ideal pCR and ideal I CRp.

Let SZ , ρZ and sZ be as in 6.2.3 with λ := 1. Enumerate SZ := {q1, . . . , qm}
and let qi := (ri, riai, γi, δi) for 1 ≤ i ≤ m. By definition, for all prime ideals pCR
and ideals I C Rp there exists 1 ≤ i ≤ m such that (p, I) |= qi. Therefore, there
exists M ∈ Mod-R satisfying χ if and only if there exist Ni ∈ N and fi : Z → N
for 1 ≤ i ≤ m such that N =

∏m
i=1Ni, for all ϕ/ψ ∈ Z, f(ϕ/ψ) =

∏m
i=1 fi(

ϕ/ψ) and
there exist hi ∈ N0, prime ideals pij C R and ideals Iij C Rpij for 1 ≤ j ≤ hi such
that, for 1 ≤ i ≤ m,

(a)i (pij , Iij) |= qi for 1 ≤ j ≤ hi and
(b)i

⊕hjj=1Rpij/Iij |= |x=x/x=0| = Ni ∧
∧

ϕ/ψ∈Z

|ϕ/ψ| = fi(ϕ/ψ).

Fix 1 ≤ i ≤ m, Ni ∈ N and fi as above. If ri = 0 and (p, I) |= (ri, riai, γi, δi)
then Rp/I = Rp, which is not finite. Hence, (a)i and (b)i holds if and only if hi = 0,
Ni = 1 and fi(ϕ/ψ) = 1 for all ϕ/ψ ∈ Z. So, we may assume that ri 6= 0. Note, by
2.3.9(iv), if Rp/I is finite then I# = p. So, (p, I) |= (ri, riai, γi, δi) if and only if
I = riJ for some J CRp, a ∈ J , γ /∈ p and δ /∈ p.

Therefore hi ∈ N0, pij C R and Iij C Rpij for 1 ≤ j ≤ hi satisfy (a)i and (b)i if
and only if for each 1 ≤ j ≤ hi, there exists JijCRpij such that Iij = riJij , a ∈ Jij ,
γδ /∈ p,

∣∣∣⊕hi
j=1Rpij/Iij

∣∣∣ = Ni, and, for all d|x/x=0 ∈ Z,

(1) if ρZ(qi)(d|x/x=0) = 1 then
∣∣∣⊕hij=1Rpij/sZ(qi, d|x/x=0)Iij

∣∣∣ = fi(d|x/x=0);

(2) if ρZ(qi)(d|x/x=0) = 2 then
∣∣∣⊕hij=1Rpij/sZ(qi, d|x/x=0)Rpij

∣∣∣ = fi(d|x/x=0) ·Ni;
(3) if ρZ(qi)(d|x/x=0) = 3 then fi(d|x/x=0) = 1;

and, for all xb=0/c|x ∈ Z,

(1’) if ρZ(qi)(xb=0/c|x) = 1 then fi(xb=0/c|x) = Ni;

(2’) if ρZ(qi)(xb=0/c|x) = 2 then
∣∣∣⊕hij=1Rpij

/cRpij

∣∣∣ = fi(xb=0/c|x);
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(3’) if ρZ(qi)(xb=0/c|x) = 3 then
∣∣∣⊕hij=1Iij/bIij

∣∣∣ = fi(xb=0/c|x);

(4’) if ρZ(qi)(xb=0/c|x) = 4 then fi(xb=0/c|x) = 1; and

(5’) if ρZ(qi)(xb=0/c|x) = 5 then
∣∣∣⊕hij=1Rpij/sZ(qi)(xb=0/c|x)Rpij

∣∣∣ = fi(xb=0/c|x) ·Ni.

By definition ρZ(qi)(d|x/x=0) = 1 implies sZ(qi, d|x/x=0) 6= 0. So, if
ρZ(qi)(d|x/x=0) = 1 then

∣∣∣⊕hij=1Rpij/sZ(qi, d|x/x=0)Iij

∣∣∣
=
∣∣∣⊕hij=1Rpij/sZ(qi, d|x/x=0)Rpij

∣∣∣ · ∣∣∣⊕hij=1sZ(qi, d|x/x=0)Rpij/sZ(qi, d|x/x=0)Iij

∣∣∣
=
∣∣∣⊕hij=1Rpij/sZ(qi, d|x/x=0)Rpij

∣∣∣ · ∣∣∣⊕hij=1Rpij/Iij

∣∣∣ .
So (1) in the first list of conditions may be replaced by

(1*) if ρZ(qi)(d|x/x=0) = 1 then
∣∣∣⊕hij=1Rpij/sZ(qi, d|x/x=0)Rpij

∣∣∣ = fi(d|x/x=0) ·N−1
i .

Since Rpij/Iij is finite, by 2.3.11, if b 6= 0 then |Iij/bIij | =
∣∣Rpij/bRpij

∣∣. By
definition, ρZ(qi)(xb=0/c|x) = 3 implies b 6= 0. So (3’) in the second list of conditions
may be replaced by

(3’*) if ρZ(qi)(xb=0/c|x) = 3 then
∣∣∣⊕hij=1Rpij/bRpij

∣∣∣ = fi(xb=0/c|x).

Finally, the condition that
∣∣∣⊕hij=1Rpij/Iij

∣∣∣ = Ni can be replaced by the condition

that there exist N ′i , N
′′
i ∈ N such that Ni = N ′iN

′′
i ,
∣∣∣⊕hij=1Rpij/riRpij

∣∣∣ = N ′i and∣∣∣⊕hij=1Rpij/Jij

∣∣∣ = N ′′i . The proof can now be finished using 7.3. �

8. Removing |d|x/x=0| = D and |xb=0/c|x| = G.

This section uses results from sections 6 and 7. We show that there is an algorithm
which, given d ∈ R\{0} and D ∈ N, respectively b, c ∈ R\{0} and G ∈ N, answers
whether there exists a sum of modules ⊕hi=1Rpi/dIi, respectively ⊕hi=1Ii/bcRpi ,
satisfying a sentence as in the statement of Theorem 5.1 under the assumption
that one of the conjuncts is |d|x/x=0| = D, respectively |xb=0/c|x| = G. These
results are used in section 10 to eliminate expressions of the form |d|x/x=0| = D and
|xb=0/c|x| = G, where D,G ≥ 2.

Proposition 8.1. Let R be a recursive Prüfer domain such that EPP(R) and the
radical relation are recursive. There is an algorithm which, given a sentence χ of
the form

|d|x/x=0| = D ∧
∧

ϕ/ψ∈X

|ϕ/ψ| = f(ϕ/ψ) ∧
∧

ϕ/ψ∈Y

|ϕ/ψ| ≥ g(ϕ/ψ),

where d ∈ R\{0}, D ∈ N, f : X → N, g : Y → N and X,Y are disjoint finite sets
of pp-pairs of the form xb=0/c|x and a|x/x=0, answers whether there exist h ∈ N0,
prime ideals pkCR and ideals IkCRpk for 1 ≤ k ≤ h such that ⊕hk=1Rpk/dIk |= χ.

Proof. Let Z := X∪Y and let SZ , ρZ and sZ be as in 6.2.3 with λ := d. Enumerate
SZ := {q1, . . . , qm} and let qi := (ri, riai, γi, δi). By definition, for all prime ideals
pCR and ideals I CRp, there exists 1 ≤ i ≤ m such that (p, I) |= qi.



46 LORNA GREGORY

Therefore, there exist h ∈ N0, prime ideals pk C R and ideals Ik C Rpk for

1 ≤ k ≤ h such that ⊕hk=1Rpk/dIk |= χ if and only if there exist (f, g) ∈ Ωf,g,m
and Di ∈ N with

∏m
i=1Di = D such that for each 1 ≤ i ≤ m, there exist hi ∈ N0,

prime ideals pij CR and ideals Iij CRpij for 1 ≤ j ≤ hi such that

(a)i (pij , Iij) |= qi for 1 ≤ j ≤ hi and

(b)i ⊕
hj
j=1Rpij/dIij satisfies

|d|x/x=0| = Di ∧
∧

ϕ/ψ∈Xi

|ϕ/ψ| = fi(ϕ/ψ) ∧
∧

ϕ/ψ∈Yi

|ϕ/ψ| ≥ gi(ϕ/ψ).

Fix 1 ≤ i ≤ m, Di ∈ N and (f, g) ∈ Ωf,g,m as above. Note that∣∣∣d|x/x=0(⊕hij=1Rpij/dIij)
∣∣∣ = Di if and only if

∣∣∣⊕hij=1Rpij/Iij

∣∣∣ = Di.

So, exactly as in 7.6, we may assume ri 6= 0 for 1 ≤ i ≤ m. Moreover, by 2.3.9(iv),

I#
ij = pij . Therefore, (pij , Iij) |= qi if and only if there exists Jij C Rpi such that

Iij = riJij , ai ∈ Jij , γi /∈ pij and δi /∈ pij .
Now, by 6.2.3, hi ∈ N0, pij C R and Jij C Rpij with Iij := riJij for 1 ≤ j ≤ hi

satisfy (b)i if and only if there exists D′i, D
′′
i ∈ N with D′iD

′′
i = Di such that∣∣∣⊕hij=1Rpij/Jij

∣∣∣ = D′i and
∣∣∣⊕hij=1Rpij/riRpij

∣∣∣ = D′′i ,

for all a|x/x=0 ∈ Xi (respectively a|x/x=0 ∈ Yi),

(1) if ρZ(qi)(a|x/x=0) = 1 then
∣∣∣⊕hij=1Rpij/sZ(qi, a|x/x=0)Rpij

∣∣∣ = fi(a|x/x=0) ·D−1
i

(respectively
∣∣∣⊕hij=1Rpij/sZ(qi, a|x/x=0)Rpij

∣∣∣ ≥ gi(a|x/x=0) ·D−1
i ),

(2) if ρZ(qi)(a|x/x=0) = 2 then
∣∣∣⊕hij=1Rpij/sZ(qi, a|x/x=0)Rpij

∣∣∣ = fi(a|x/x=0) · Di

(respectively
∣∣∣⊕hij=1Rpij/sZ(qi, a|x/x=0)Rpij

∣∣∣ ≥ gi(a|x/x=0) ·Di), and,

(3) if ρZ(qi)(d|x/x=0) = 3 then fi(a|x/x=0) = 1 (respectively gi(a|x/x=0) = 1).

and for all xb=0/c|x ∈ Xi (respectively xb=0/c|x ∈ Yi),
(1’) if ρZ(qi)(xb=0/c|x) = 1 then fi(xb=0/c|x) = Di (respectively Di ≥ gi(xb=0/c|x))

(2’) if ρZ(qi)(xb=0/c|x) = 2 then
∣∣∣⊕hij=1Rpij/cRpij

∣∣∣ = fi(xb=0/c|x) (respectively∣∣∣⊕hij=1Rpij/cRpij

∣∣∣ ≥ gi(xb=0/c|x) )

(3’) if ρZ(qi)(xb=0/c|x) = 3 then
∣∣∣⊕hij=1Iij/bIij

∣∣∣ = fi(xb=0/c|x) (respectively∣∣∣⊕hij=1Iij/bIij

∣∣∣ ≥ gi(xb=0/c|x))

(4’) if ρZ(qi)(xb=0/c|x) = 4 then fi(xb=0/c|x) = 1 (respectively gi(xb=0/c|x) = 1)

(5’) if ρZ(qi)(xb=0/c|x) = 5 then
∣∣∣⊕hij=1Rpij/sZ(qi, xb=0/c|x)Rpij

∣∣∣ = fi(xb=0/c|x) ·Di

(respectively
∣∣∣⊕hij=1Rpij/sZ(qi, xb=0/c|x)Rpij

∣∣∣ ≥ gi(xb=0/c|x) ·Di).

Exactly as in 7.6, we may replace (3’) in the second list of conditions by

(3”) if ρZ(qi)(xb=0/c|x) = 3 then
∣∣∣⊕hij=1Rpij/bRpij

∣∣∣ = fi(xb=0/c|x) (respectively∣∣∣⊕hij=1Rpij/bRpij

∣∣∣ ≥ gi(xb=0/c|x)).

So we are now done by 7.5. �
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Proposition 8.2. Let R be a recursive Prüfer domain such that EPP(R) and the
radical relation are recursive. There exists an algorithm which, given a sentence χ

of the form

|xb=0/c|x| = G ∧
∧

ϕ/ψ∈X

|ϕ/ψ| = f(ϕ/ψ) ∧
∧

ϕ/ψ∈Y

|ϕ/ψ| ≥ g(ϕ/ψ),

where b, c ∈ R\{0}, G ∈ N, f : X → N, g : Y → N and X,Y are disjoint finite sets
of pp-pairs of the form xb′=0/c′|x and d|x/x=0, answers whether there exist h ∈ N0,
prime ideals pi C R and ideals I C Rpi with b, c ∈ Ii for 1 ≤ i ≤ h such that
⊕hi=1Ii/bcRpi |= χ.

Proof. The proof, which we leave to the reader, is very similar to 8.1, except we
use 6.2.5 in place of 6.2.3 and the fact that |xb=0/c|x(I/bcRp)| = |Rp/I| in place of
|d|x/x=0(Rp/dI)| = |Rp/I|. �

9. Further syntactic reductions

In this section we continue work of section 5 to improve the form of the conjunction
in the statement of 5.1. Some of these reductions use results in sections 7 and 8,
which only apply to Prüfer domains (i.e. they do not apply to arbitrary arithmetical
rings).

Let W be the set of LR-sentences of the form

(†) |d|x/x=0|�1D ∧ |xb=0/c|x|�2E ∧
∧

ϕ/ψ∈X

|ϕ/ψ| = f(ϕ/ψ)∧
∧

ϕ/ψ∈Y

|ϕ/ψ| ≥ g(ϕ/ψ)∧Ξ

where �1,�2 ∈ {≥,=, ∅}, d, c, b ∈ R\{0}, D,E ∈ N2, f : X → N, g : Y → N, X,Y
are finite subsets of pp-pairs of the form xb′=0/x=0 and x=x/c′|x, and Ξ an auxiliary
sentence. Let V be the set of w ∈ W such that there is an R-module satisfying
w. As in 4.2, W denotes the bounded distributive lattice generated by W and V
denotes the (prime) filter in W generated by V .

Definition 9.0.1. Let w ∈W be as in (†). Define

z1 := |{xb′=0/x=0 ∈ X | f(xb
′=0/x=0) > 1}| ,

z2 := |{xb′=0/x=0 ∈ Y | g(xb
′=0/x=0) > 1}| ,

z3 := |{x=x/c′|x ∈ X | f(x=x/c′|x) > 1}| , and

z4 := |{x=x/c′|x ∈ Y | g(x=x/c′|x) > 1}| .

The short signature is defined to be the tuple (�1,�2) and the extended signa-
ture, exsigw, is defined to be the tuple ((�1,�2), (z1, z2), (z3, z4)).

We equip the set {≥,=, ∅} with a total order � by putting ≥ � = � ∅. We
partially order the set of short signatures {≥,=, ∅}2 by setting (�1,�2) ≥ (�′1,�

′
2)

whenever �1 � �′1 and �2 � �′2. Finally, we partially order on the set of extended
signatures by setting

((�1,�2), (z1, z2), (z3, z4)) ≥ ((�′1,�
′
2), (z′1, z

′
2), (z′3, z

′
4))

if and only if (�1,�2) > (�′1,�
′
2) or (�1,�2) = (�′1,�

′
2) and

• z1 + z2 > z′1 + z′2 or z1 + z2 = z′1 + z′2 and z2 ≥ z′2, and
• z3 + z4 > z′3 + z′4 or z3 + z4 = z′3 + z′4 and z4 ≥ z′4.
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We now present various algorithms which, given w ∈W of a particular form, returns
w ∈W with exsigw < exsigw such that w ∈ V if and only if w ∈ V. By conven-
tion, we give both > ∈W and ⊥ ∈W extended signature ((∅, ∅), (0, 0), (0, 0)).

Remark 9.0.2. The order on the set of extended signatures is artinian.

The next remark follows directly from 2.1.3.

Remark 9.0.3. If w ∈ W has extended signature ((�1,�2), (z1, z2), (z3, z4)) then
Dw has extended signature ((�1,�2), (z3, z4), (z1, z2)) where D denotes the duality
defined in 2.1.3.

As in §5, given w ∈W , we may always assume that w is of the form χf,g∧Ξ where
X,Y are disjoint finite sets of pp-pairs of the form d|x/x=0 or xb=0/c|x, f : X → N2,
g : Y → N2 and Ξ is an auxiliary sentence.

Remark 9.0.4. Let X,Y be disjoint finite subsets of pp-pairs, f : X → N2, g :
Y → N2 and Ξ an auxiliary sentence such that χf,g ∧ Ξ ∈ W . Then, for each
(f1, . . . , fn, g1, . . . , gn) ∈ Ωf,g,n and 1 ≤ i ≤ n, the sentence χfi,gi ∧ Ξ is in W and

exsigχfi,gi ∧Ξ ≤ exsigχf,g∧Ξ. Moreover, for each (f, g) ∈ Ωf,g,n and 1 ≤ i ≤ n,
either X = Xi and Y = Yi, or, exsigχfi,gi ∧ Ξ < exsigχf,g ∧ Ξ.

Proof. Fix (f, g) ∈ Ωf,g,n and 1 ≤ i ≤ n. Let ((�1,�2), (z1, z2), (z3, z4)) be the
extended signature of χf,g∧Ξ and ((�′1,�

′
2), (z′1, z

′
2), (z′3, z

′
4)) the extended signature

of χfi,gi ∧Ξ. Note that since X and Y are disjoint, so are Xi = X ∪ (Y \Yi) and Yi.
That the short signature of χfi,gi is less than or equal to the short signature of

χf,g follows from the fact that Yi ⊆ Y and Xi = X ∪ (Y \Yi).
We show that z1 + z2 ≥ z′1 + z′2 and z2 ≥ z′2. By definition, z1 + z2 is the

number of x=x/c|x ∈ X ∪Y and z2 is the number of x=x/c|x ∈ Y . Since gi(x=x/c|x) =
g(x=x/c|x) > 1 for all x=x/c|x ∈ Yi, we see that z′2 is the number of x=x/c|x ∈ Yi.
So z′2 ≤ z2 because Yi ⊆ Y . Since Xi = X ∪ (Y \Yi) and Yi are disjoint, z′1 + z′2
is equal to the number of x=x/c|x ∈ Xi ∪ Yi = X ∪ Y with either x=x/c|x ∈ Yi, or,
x=x/c|x ∈ Xi and fi(x=x/c|x) > 1. So z1 + z2 ≥ z′1 + z′2, since X ∪ Y = Xi ∪ Yi. A
similar argument shows that z3 + z4 ≥ z′3 + z′4 and z4 ≥ z′4. Therefore the extended
signature of χf,g is less than or equal to the extended signature of χfi,gi .

We now prove the moreover. Since X,Y are disjoint, X 6= Xi if and only if
Y 6= Yi. Suppose X 6= Xi. Then there exists ϕ/ψ ∈ Y \Yi. By assumption,
g(ϕ/ψ) > 1.

If ϕ/ψ is d|x/x=0 then the short signature of χf,g is (≥,�) and the short signature
of χfi,gi is (=,�′) or (∅,�′), and, by what we have already proved, �′ ≤ �. So the
short signature of χfi,gi is strictly less than the short signature of χf,g. The case
of xb=0/c|x for b, c 6= 0 is similar.

If ϕ/ψ is x=x/c|x then

|{x=x/c′|x ∈ Yi | gi(x=x/c′|x) > 1}| < |{x=x/c′|x ∈ Y }| .
So exsigχfi,gi < exsigχf,g. The case of ϕ/ψ equal to xb=0/x=0 is similar. �

9.1. Reducing the short signature.

Proposition 9.1.1. Let R be a recursive Prüfer domain with EPP(R) recursive.
There is an algorithm which given w ∈ W with short signature (=,�) or (�,=),
for some � ∈ {∅,=,≥}, outputs w ∈W such that w ∈ V if and only if w ∈ V, and,
w is a lattice combination of elements w′ ∈ W such that the short signature of w′

is strictly less than the short signature of w.
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Proof. Suppose w has short signature (=,�). Then w is of the form

|d|x/x=0| = D ∧ χf,g ∧ Ξ

where d ∈ R\{0}, D ∈ N2, f : X → N2, g : Y → N2, X and Y are disjoint finite
subsets of {x=x/c′|x, xb

′=0/x=0 | c′, b′ ∈ R} ∪ {xb=0/c|x} for some b, c ∈ R\{0}, and Ξ
is an auxiliary sentence.

If M |= w then, by 2.3.6 and 6.0.1, there exist h ∈ N, prime ideals pi C R and
ideals Ii C Rpi for 1 ≤ i ≤ h and M ′ ∈ Mod-R such that M ≡ ⊕hi=1Rpi/dIi ⊕M ′
and |d|x/x=0(M ′)| = 1.

Thus there exists M ∈ Mod-R such that M |= w if and only if there exist
(f1, f2, g1, g2) ∈ Ωf,g,2, h ∈ N, prime ideals pi CR and Ii CRpi for 1 ≤ i ≤ h, such
that ⊕hi=1Rpi/dIi satisfies

w(f1,f2,g1,g2) := |d|x/x=0| = D ∧ χf1,g1 ∧ Ξ

and M ′ which satisfies

w′(f1,f2,g1,g2) := |d|x/x=0| = 1 ∧ χf2,g2 ∧ Ξ.

Let Ω ⊆ Ωf,g,2 be the set of (f1, f2, g1, g2) ∈ Ωf,g,2, such that there exist h ∈ N0,
prime ideals pi C R and Ii C Rpi for 1 ≤ i ≤ h, such that ⊕hi=1Rpi/dIi satisfies
w(f1,f2,g1,g2). So w ∈ V if and only if

w :=
⊔

(f1,f2,g1,g2)∈Ω

w′(f1,f2,g1,g2) ∈ V.

By 8.1, given w, we can compute Ω, and, so, we can compute w. The short signature
of each w′(f1,f2,g1,g2) is (∅,�′) for some �′ ∈ {∅,=,≤} and, by 9.0.4, � � �′. So

(=,�) > (∅,�′) as required.
Suppose w has short signature (�,=). Then w is of the form

|xb=0/c|x| = E ∧ χf,g ∧ Ξ

where b, c ∈ R\{0}, E ∈ N2, f : X → N2, g : Y → N2, X and Y are disjoint finite
subsets of {x=x/c′|x, xb

′=0/x=0 | c′, b′ ∈ R} ∪ {d|x/x=0} for some d ∈ R\{0}, and Ξ is
an auxiliary sentence.

If M |= w then, by 2.3.6 and 6.0.2, there exist M1,M2,M
′ ∈ Mod-R such that

b ∈ annRM1, c ∈ annRM2 and |xb=0/c|x(M ′)| = 1 and there exist h ∈ N0, prime
ideals pi and ideals Ii CRpi for 1 ≤ i ≤ h such that b, c ∈ Ii and

⊕hi=1Ii/bcRpi ⊕M1 ⊕M2 ⊕M ′ |= w.

Therefore, w ∈ V if and only if there exist E1, E2, E4 ∈ N with E1E2E4 = E and
(f, g) ∈ Ωf,g,4 such that

– w1,E1,f1,g1 , defined as |x=x/c|x| = E1 ∧ χf1,g1 ∧ Ξ ∧ |b|x/x=0| = 1, is in V,
– w2,E2,f2,g2 , defined as |xb=0/x=0| = E2 ∧ χf2,g2 ∧ Ξ ∧ |c|x/x=0| = 1, is in V,
– w3,f3,g3 , defined as χf3,g3 ∧ Ξ ∧ |xb=0/c|x| = 1, is in V, and
– there exist h ∈ N0, prime ideals pi and ideals Ii CRpi for 1 ≤ i ≤ h such that
b, c ∈ Ii and

⊕hi=1Ii/bcRpi |= |xb=0/c|x| = E4 ∧ χf4,g4 ∧ Ξ.
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Let H be the set of (E1, E2, (f, g)) ∈ N2 × Ωf,g,4 such that there exists E4 with
E1E2E4 = E and there exist h ∈ N0, prime ideals pi and ideals IiCRpi for 1 ≤ i ≤ h
such that b, c ∈ Ii and

⊕hi=1Ii/bcRpi |= |xb=0/c|x| = E4 ∧ χf4,g4 ∧ Ξ.

Then w ∈ V if and only if

w :=
⊔

(E1,E2,(f,g))∈H

w1,E1,f1,g1 u w2,E2,f3,g3 u w3,f3,g3 ∈ V.

By 8.2, given w, we can compute H and so we can compute w.
Now if w has short signature (�,=) then w1,E1,f1,g1 , w2,E2,f3,g3 and w3,f3,g3 have

short signature (�′, ∅) and by 9.0.4, �′ � �. So (�′, ∅) < (�,=), as required. �

Lemma 9.1.2. Let R be an arithmetical ring. Let c, d ∈ R and D ∈ N. For all
C ∈ N2,

TR |=
∣∣xcD−1d=0/c|x

∣∣ = 1 ∧ |d|x/x=0| ≥ D ∧ |x=x/c|x| = C

↔
∣∣xcD−1d=0/c|x

∣∣ = 1 ∧ |x=x/c|x| = C

and

TR |=
∣∣cDd|x/x=0

∣∣ = 1 ∧ |d|x/x=0| ≥ D ∧ |x=x/c|x| = C

↔
∨

D≤E≤CD

∣∣cDd|x/x=0
∣∣ = 1 ∧ |d|x/x=0| = E ∧ |x=x/c|x| = C.

Proof. Suppose M |=
∣∣xcD−1d=0/c|x

∣∣ = 1. Then xcid = 0 ≤M c|x for 0 ≤ i ≤ D − 1.
So, by 5.7, for 0 ≤ i ≤ D − 1,∣∣cid|x/ci+1d|x(M)

∣∣ = |x=x/c|x(M)| .

Hence

|d|x/x=0(M)| = |x=x/c|x(M)|D
∣∣cDd|x/x=0(M)

∣∣ .
Therefore, if C ≥ 2 then

TR |=
∣∣xcD−1d=0/c|x

∣∣ = 1 ∧ |d|x/x=0| ≥ D ∧ |x=x/c|x| = C ↔∣∣xcD−1d=0/c|x
∣∣ = 1 ∧ |x=x/c|x| = C.

Now suppose that cDd ∈ annRM . Then cDd|x is equivalent to x = 0 in M .
Therefore, by 5.7,

|d|x/x=0(M)| = |d|x/cDd|x(M)| = |x=x/cD|x+xd=0(M)| ≤ |x=x/cD|x(M)| ≤ |x=x/c|x|D .

Hence

TR |=
∣∣cDd|x/x=0

∣∣ = 1 ∧ |d|x/x=0| ≥ D ∧ |x=x/c|x| = C ↔∨
D≤E≤CD

∣∣cDd|x/x=0
∣∣ = 1 ∧ |d|x/x=0| = E ∧ |x=x/c|x| = C. �

Proposition 9.1.3. Let R be a recursive arithmetical ring. There is an algorithm,
which given w ∈ W with extended signature ((≥,�), (z1, z2), (z3, z4)) with z1 ≥ 1
or z3 ≥ 1, returns w ∈ W with exsigw < exsigw such that w ∈ V if and only if
w ∈ V.
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Proof. Suppose w := χf,g ∧ Ξ ∈ W , where f : X → N2, g : Y → N2, X,Y
are disjoint finite sets of appropriate pp-pairs and Ξ is an auxiliary sentence, has
extended signature ((≥,�), (z1, z2), (z3, z4)) with z3 ≥ 1. Then d|x/x=0 ∈ Y for
some d ∈ R\{0} because the short signature is (≥,�) and x=x/c|x ∈ X for some
c ∈ R because z3 ≥ 1. Let D = g(x=x/c|x).

Then, by 2.3.4, w ∈ V if and only if⊔
(f,g)∈Ωf,g,2

(
χf1,g1 ∧

∣∣xcD−1d=0/c|x
∣∣ = 1 ∧ Ξ

)
u
(
χf2,g2 ∧

∣∣cDd|x/x=0
∣∣ = 1 ∧ Ξ

)
∈ V.

For each (f, g) ∈ Ωf,g,2, we define wf,g, w
′
f,g
∈W such that

exsigwf,g, exsigw
′
f,g

< exsigw,

wf,g ∈ V if and only if χf1,g1 ∧
∣∣xcD−1d=0/c|x

∣∣ = 1 ∧ Ξ ∈ V, and,

w′
f,g
∈ V if and only if χf2,g2 ∧

∣∣cDd|x/x=0
∣∣ = 1 ∧ Ξ ∈ V.

Once we have done this, the proof is complete since then

w :=
⊔

(f,g)∈Ωf,g,2

wf,g u w
′
f,g

has the properties required by the statement.
If exsigχf1,g1 < exsigχf,g then let wf,g be χf1,g1 ∧

∣∣xcD−1d=0/c|x
∣∣ = 1 ∧ Ξ.

Otherwise, by 9.0.4, X = X1 and Y = Y1. Further, f1(x=x/c|x) > 1 and, by
definition of Ωf,g,2, g1(d|x/x=0) = g(d|x/x=0) = D. Let Y ′1 := Y1\{d|x/x=0} and
g′1 := g1|Y ′1 . Then, by 9.1.2,

χf1,g1 ∧
∣∣xcD−1d=0/c|x

∣∣ = 1 ∧ Ξ ∈ V
if and only if wf,g defined as

χf1,g′1 ∧
∣∣xcD−1d=0/c|x

∣∣ = 1 ∧ Ξ is in V.

Moreover, wf,g has short signature (∅,�′), where, by 9.0.4, �′ � �. Therefore

exsigwf,g < exsigw because (∅,�′) < (≥,�).

If exsigχf2,g2 < exsigχf,g then let w′
f,g

be χf2,g2 ∧
∣∣cDd|x/x=0

∣∣ = 1 ∧ Ξ. Oth-

erwise, by 9.0.4, X = X1 and Y = Y1. Further, f2(x=x/c|x) > 1 and, by definition
of Ωf,g,2, g2(d|x/x=0) = g(d|x/x=0) = D.

Let X ′2 := X2\{x=x/c|x} and Y ′2 := Y2\{d|x/x=0}. Let f ′2 := f2|X′2 , g′2 := g2|Y ′2
and C := f2(x=x/c|x). Then χf2,g2 ∧

∣∣cDd|x/x=0
∣∣ = 1 ∧ Ξ is

|d|x/x=0| ≥ D ∧ |x=x/c|x| = C ∧ χf ′2,g′2 ∧ Ξ ∧
∣∣cDd|x/x=0

∣∣ = 1.

Let

w′
f,g

:=
⊔

D≤E≤CD
|d|x/x=0| = E ∧ |x=x/c|x| = C ∧ χf ′2,g′2 ∧

∣∣cDd|x/x=0
∣∣ = 1 ∧ Ξ.

By 9.1.2, w′
f,g
∈ V if and only if χf2,g2 ∧

∣∣cDd|x/x=0
∣∣ = 1 ∧ Ξ ∈ V . The short

signature of each component of the join defining w′
f,g

is (=,�′) where, by 9.0.4,

�′ � �. Therefore exsigw′
f,g

< exsigw because (=,�′) < (≥,�).

Suppose w ∈ W has extended signature ((≥,�), (z1, z2), (z3, z4)) with z1 ≥ 1.
Then Dw has extended signature ((≥,�), (z3, z4), (z1, z2)). By the previous case,
we can compute w, a lattice combination of elements of W with extended signatures



52 LORNA GREGORY

strictly less than Dw such that Dw ∈ V if and only if w ∈ V. Now w ∈ V if and
only if Dw ∈ V and exsigDw < exsigw. �

Lemma 9.1.4. Let R be a Prüfer domain. Let a, b, c ∈ R and E,C ∈ N2. Suppose
that r, s, α ∈ R are such that cα = ar and a(α− 1) = cs. Define

(1) Σ1 to be the formula |x=x/α−1|x| = 1;
(2) Σ2 to be the formula |x=x/α|x| = 1 ∧ |ar|x/x=0| = 1;
(3) Σ3 to be the formula |x=x/α|x| = 1 ∧ |xr=0/a|x| = 1 ∧ |rb|x/x=0| = 1; and
(4) Σ4 to be the formula |x=x/α|x| = 1 ∧ |xr=0/a|x| = 1 ∧ |xb=0/r|x| = 1.

Then for all M ∈ Mod-R there exist M1, . . . ,M4 ∈ Mod-R such that Mi |= Σi for
1 ≤ i ≤ 4 and M ≡M1 ⊕ . . .⊕M4.

(i) If i ∈ {1, 4} and C < E then

TR |= ¬(Σi ∧ |x=x/a|x| = C ∧ |xb=0/c|x| ≥ E),

and if i ∈ {1, 4} and E ≤ C then

TR |= Σi∧|x=x/a|x| = C∧|xb=0/c|x| ≥ E ↔
∨

E≤E′≤C

Σi∧|x=x/a|x| = C∧|xb=0/c|x| = E′.

(ii) In TR the following equivalence holds.

Σ2 ∧ |x=x/a|x| = C ∧ |xb=0/c|x| ≥ E ↔ Σ2 ∧ |x=x/a|x| = C ∧ |xb=0/x=0| ≥ E.

(iii) In TR the following equivalence holds.

Σ3 ∧ |x=x/a|x| = C ∧ |xb=0/c|x| ≥ E ↔ Σ3 ∧ |x=x/a|x| = C ∧ |xb=0/r|x| ≥ dE/Ce.

Proof. The first claim follows from 2.3.4.
(i) Suppose M |= Σ1. Then

|x=x/a|x(M)| = |x=x/cs|x(M)| ≥ |xb=0/c|x(M)| .

Suppose M |= Σ4. Then

|r|x/ar|x(M)| = |x=x/xr=0+a|x(M)| = |x=x/a|x(M)|

because |xr=0/a|x(M)| = 1 and hence xr = 0 ≤M a|x. So

|xb=0/c|x(M)| = |xb=0/ar|x(M)| ≤ |r|x/ar|x(M)| = |x=x/a|x(M)| .

The first equality holds because |x=x/α|x(M)| = 1 and the inequality holds because
|xb=0/r|x| = 1 and hence xb = 0 ≤M r|x.

Therefore, if M |= Σi for i ∈ {1, 4} then |xb=0/c|x(M)| ≤ |x=x/a|x(M)|. The first
claim follows from this.
(ii) Suppose M |= Σ2. Then c|x is equivalent to ar|x in M and ar|x is equivalent
to x = 0 in M . So |xb=0/c|x(M)| = |xb=0/x=0(M)|.
(iii) Suppose M |= Σ3. Then

|xb=0/c|x(M)| = |xb=0/ar|x(M)| = |xb=0/r|x(M)| · |r|x/ar|x(M)| .

Since |xr=0/a|x(M)| = 1, by 5.7, |r|x/ar|x(M)| = |x=x/a|x(M)|. The claim now
follows. �

Proposition 9.1.5. Let R be a recursive Prüfer domain. There is algorithm which
given w ∈W with extended signature ((�,≥), (z1, z2), (z3, z4)) with z1 ≥ 1 or z3 ≥ 1
outputs w ∈W with exsigw < exsigw such that w ∈ V if and only if w ∈ V.
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Proof. For w ∈ W as in (†) (see the beginning of this section), define degw = E.
Given w ∈ W with extended signature ((�,≥), (z1, z2), (z3, z4)) with z3 ≥ 1, we
will show how to compute w ∈ W, a lattice combination of w′ ∈ W , such that for
each w′, either exsigw′ < exsigw or exsigw′ = exsigw and degw′ < degw,
and, such that w ∈ V if and only if w ∈ V. Since deg takes values in N, by iterating
this process we will eventually compute w ∈W such that exsigw < exsigw.

Suppose w is χf,g ∧ Ξ ∈ W , where f : X → N2, g : Y → N2, X,Y are disjoint
finite sets of appropriate pp-pairs and Ξ is an auxiliary sentence, has extended
signature ((�,≥), (z1, z2), (z3, z4)) with z3 ≥ 1. Since w has short signature (�,≥),
there exists xb=0/c|x ∈ Y . Since w has extended signature ((�,≥), (z1, z2), (z3, z4))
with z3 ≥ 1, there exists x=x/a|x ∈ X.

Let Σ1,Σ2,Σ3,Σ4 be as in 9.1.4. Then w ∈ V if and only if⊔
(f,g)∈Ωf,g,4

4l

i=1

χfi,gi ∧ Ξ ∧ Σi ∈ V.

We show that for each (f, g) ∈ Ωf,g,4, either the extended signature of χfi,gi ∧ Ξ
is strictly less than the extended signature of χf,g ∧ Ξ or we will show that we can
compute wi,(f,g) ∈ W such that wi,(f,g) is a lattice combination of w′ ∈ W with

either exsigw′ < exsigw, or, exsigw′ ≤ exsigw and degw′ < w.
Fix (f, g) ∈ Ωf,g,4 and 1 ≤ i ≤ 4. By 9.0.4, exsigχfi,gi ∧ Ξ < exsigχf,g ∧ Ξ

unless Xi = X and Yi = Y . Moreover, if fi(x=x/a|x) = 1 then exsigχfi,gi ∧ Ξ <
exsigχf,g ∧ Ξ. So we may assume Xi = X, Yi = Y and fi(x=x/a|x) > 1.

Let X ′ := X\{x=x/a|x}, Y ′ := Y \{xb=0/c|X}, f ′i := fi|X′ , g′i := gi|Y ′ , C :=
fi(x=x/a|x) and E := gi(xb=0/c|x) = g(xb=0/c|x). Then χfi,gi ∧ Ξ is

|x=x/a|x| = C ∧ |xb=0/c|x| ≥ E ∧ χf ′i ,g′i ∧ Ξ.

Case i = 1 or i = 4: If fi(x=x/a|x) < gi(xb=0/c|x) then, by 9.1.4,

TR |= ¬(χfi,gi ∧ Ξ ∧ Σi).

So set wi,(f,g) := ⊥. Now suppose fi(x=x/a|x) ≥ gi(xb=0/c|x). Then, by 9.1.4,

|x=x/a|x| = C ∧ |xb=0/c|x| ≥ E ∧ χf ′i ,g′i ∧ Ξ ∈ V

if and only if

wi,(f,g) :=
⊔

E≤E′≤C

|x=x/a|x| = C ∧ |xb=0/c|x| = E′ ∧ χf ′i ,g′i ∧ Ξ ∧ Σi ∈ V.

So we are done since the short signatures of the components of the join defining
wi,(f,g) are (�′,=) where, by 9.0.4, �′ � �.

Case i = 2: By 9.1.4,

|x=x/a|x| = C ∧ |xb=0/c|x| ≥ E ∧ χf ′2,g′2 ∧ Ξ ∧ Σ2 ∈ V

if and only if wi,(f,g), defined as

|x=x/a|x| = C ∧ |xb=0/x=0| ≥ E ∧ χf ′2,g′2 ∧ Ξ ∧ Σ2, is in V.

The short signature of wi,(f,g) is (�′, ∅) where, by 9.0.4, �′ � �.

Case i = 3: Let r, s, α ∈ R be such that cα = ar and a(α− 1) = cs. By 9.1.4,

|x=x/a|x| = C ∧ |xb=0/c|x| ≥ E ∧ χf ′2,g′2 ∧ Ξ ∧ Σ3 ∈ V
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if and only if wi,(f,g), defined as

|x=x/a|x| = C ∧ |xb=0/r|x| ≥ dE/Ce ∧ χf ′2,g′2 ∧ Ξ ∧ Σ3, is in V.

Since dE/Ce < E, we have degwi,(f,g) < E = degχf,g ∧ Ξ.

So we have proved the lemma for the case z3 ≥ 1. Suppose w ∈W has extended
signature ((�,≥), (z1, z2), (z3, z4)) with z1 ≥ 1. Then Dw has extended signature
((�,≥), (z3, z4), (z1, z2)). So by the version of the lemma just proved, we can com-
pute w ∈ W with exsigw < exsigDw such that Dw ∈ V if and only if w ∈ V.
Now, w ∈ V if and only if Dw ∈ V and exsigDw < exsigw, as required. �

9.2. Reducing the extended signature.

Lemma 9.2.1. Let R be an arithmetical ring. Let a, b ∈ R and A,B ∈ N2. Suppose
that r, s, α ∈ R are such that aα = br and b(α− 1) = as. Define

(1) Σ1 to be the sentence |x=x/α|x| = 1 ∧ |br|x/x=0| = 1 ∧ |bA|x/x=0| = 1,
(2) Σ2 to be the sentence |x=x/α|x| = 1 ∧ |br|x/x=0| = 1 ∧ |xbA−1=0/b|x| = 1,
(3) Σ3 to be the sentence |x=x/α|x| = 1 ∧ |xb=0/r|x| = 1,
(4) Σ4 to be the sentence |x=x/(α−1)|x| = 1 ∧ |as|x/x=0| = 1 ∧ |aB |x/x=0| = 1,
(5) Σ5 to be the sentence |x=x/(α−1)|x| = 1∧ |as|x/x=0| = 1∧ |xaB−1=0/a|x| = 1, and
(6) Σ6 to be the sentence |x=x/(α−1)|x| = 1 ∧ |xa=0/s|x| = 1.

Then, for all M ∈ Mod-R, there exist Mi ∈ Mod-R for 1 ≤ i ≤ 6 such that
M ≡ ⊕6

i=1Mi and for 1 ≤ i ≤ 6, Mi |= Σi.
Moreover, there is an algorithm which, given a, b, r, s, α,A,B as above, 1 ≤ i ≤ 6

and �,�′ ∈ {=,≥}, either returns ⊥, in which case,

TR |= ¬(|x=x/a|x|�A ∧ |x=x/b|x|�′B ∧ Σi)

or returns n ∈ N and σ1, . . . , σn such that

TR |= |x=x/a|x|�A ∧ |x=x/b|x|�′B ∧ Σi ↔
n∨
j=1

(σj ∧ Σi)

and each σj is either of the form

|x=x/a′|x|�jA′ ∧ |x=x/b′|x|�′jB′,

where �j ,�′j ∈ {∅,=,≥}, �j � �, �′j � �′, a′, b′ ∈ R, A′, B′ ∈ N and A′B′ < AB
or of the form

|x=x/a′|x|�jA′ ∧ |x=x/b′|x|�′jB′ ∧ |x=x/x=0| = N,

where �j ,�′j ∈ {=,≥}, a′, b′ ∈ R and A′′, B′′, N ∈ N.

Proof. Note that

TR |= |x=x/α|x| = 1 ∧ |br|x/x=0| = 1→ (a|x↔ x = 0).

Case 1: Σ ∈ {Σ1,Σ2} and � is =.
In this case, |x=x/a|x|�A ∧ |x=x/b|x|�′B ∧ Σ is equivalent to |x=x/x=0| = A ∧
|x=x/b|x|�′B ∧ Σ as required.
Case 2: Σ ∈ {Σ1,Σ2} and � is ≥ and B ≥ A.
In this case |x=x/a|x|�A ∧ |x=x/b|x|�′B ∧ Σ is equivalent to |x=x/b|x|�′B ∧ Σ.
Case 3: Σ = Σ1, � is ≥ and �′ is =.
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If bA ∈ annRM and |x=x/b|x(M)| = B then B ≤ |M | ≤ BA. Thus |x=x/a|x| ≥
A ∧ |x=x/b|x| = B ∧ Σ1 is equivalent to∨

BA≥A′≥A

|x=x/x=0| = A′ ∧ |x=x/b|x| = B ∧ Σ1.

Case 4: Σ = Σ2, � is ≥ and �′ is =.
Suppose M satisfies

∣∣xbA−1=0/b|x
∣∣ = 1. Then

∣∣bi|x/bi+1|x(M)
∣∣ = |x=x/b|x(M)| for i ≥

A− 1. So |x=x/bA|x(M)| = |x=x/b|x(M)|A. Thus if |x=x/b|x(M)| ≥ 2 then |M | ≥ A.
Therefore |x=x/a|x| ≥ A ∧ |x=x/b|x| = B ∧ Σ2 is equivalent to |x=x/b|x| = B ∧ Σ2.
Case 5: Σ ∈ {Σ1,Σ2} and � is ≥ and B < A.
If �′ is ≥ then

|x=x/a|x| ≥ A ∧ |x=x/b|x| ≥ B ∧ Σ

is equivalent to

(|x=x/b|x| ≥ A ∧ Σ) ∨
∨

B≤B′<A

(|x=x/x=0| ≥ A ∧ |x=x/b|x| = B′ ∧ Σ).

So we may reduce to the case where �′ is = and hence to either case 3 or 4 at the
expense of replacing B by B′ with B ≤ B′ < A. This is not a problem since in case
3 we show that σj has the form |x=x/a′|x|�jA′ ∧ |x=x/b′|x|�′jB′ ∧ |x=x/x=0| = N
i.e. there is no restriction on A′ or B′ and in case 4 we show that |x=x/a|x| ≥
A ∧ |x=x/b|x| = B′ ∧ Σ2 is equivalent to |x=x/b|x| = B′ ∧ Σ2 and B′ ≤ A.
Case 6: Σ = Σ3.
Suppose that M satisfies Σ3. Then a|x is equivalent to br|x in M and

|x=x/br|x(M)| = |x=x/b|x(M)| · |b|x/br|x(M)| = |x=x/b|x(M)| · |x=x/r|x(M)| .

So, in this case, the result now follows from 5.6.

The remaining cases follow from the cases we have already covered by exchanging
the roles of α and α− 1, a and b, r and s, and A and B. �

Proposition 9.2.2. Let R be a recursive Prüfer domain with EPP(R) recur-
sive. There is an algorithm which, given w ∈ W with extended signature
((�1,�2), (z1, z2), (z3, z4)) with z1 + z2 > 1 or z3 + z4 > 1, outputs w ∈ W with
exsigw < exsigw such that w ∈ V if and only if w ∈ V.

Proof. For w ∈W , as in (†) (see the beginning of this section), define

deg1 w :=
∏

x=x/c|x∈X

f(x=x/c|x) ·
∏

x=x/c|x∈Y

g(x=x/c|x).

Given w ∈W with extended signature ((�1,�2), (z1, z2), (z3, z4)) with z3 + z4 > 1,
we will show how to compute w ∈ W, a lattice combination of w′ ∈ W , such that
w ∈ V if and only if w ∈ V and such that for each w′, either exsigw′ < exsigw,
or, exsigw′ ≤ exsigw and deg1 w

′ < deg1 w. Since deg1 takes values in N,
by iterating this process, we will eventually compute w ∈ W which is a lattice
combination of w′ ∈W such that exsigw′ < exsigw.

We start with a special case. Let a, b, α, r, s ∈ R be such that aα = br and
b(α − 1) = as. Let Σi, for 1 ≤ i ≤ 6, be as in 9.2.1. Suppose that, for some
1 ≤ i ≤ 6, w is

|x=x/a|x|�A ∧ |x=x/b|x|�′B ∧ χf,g ∧ Σi ∧ Ξ ∈W
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where A,B ∈ N2, �,�′ ∈ {=,≥}, X and Y are finite sets of appropriate pp-pairs,
f : X → N, g : Y → N and Ξ is an auxiliary sentence.

We will compute u =
⊔n
j=1 uj such that for each 1 ≤ j ≤ n, either exsiguj <

exsigw, or, exsiguj ≤ exsigw and deg1 uj < deg1 w.
If the algorithm from 9.2.1 returns ⊥, then

TR |= ¬(|x=x/a|x|�A ∧ |x=x/b|x|�′B ∧ χf,g ∧ Σi ∧ Ξ).

In this case, set u := ⊥. Otherwise, let σ1, . . . σn be, as in 9.2.1, such that

TR |= |x=x/a|x|�A ∧ |x=x/b|x|�′B ∧ Σi ↔
n∨
j=1

(σj ∧ Σi).

Therefore

TR |= |x=x/a|x|�A ∧ |x=x/b|x|�′B ∧ χf,g ∧ Σi ∧ Ξ↔
n∨
j=1

(σj ∧ χf,g ∧ Σi ∧ Ξ).

So w ∈ V if and only if
n⊔
j=1

(σj ∧ χf,g ∧ Σi ∧ Ξ) ∈ V.

If σj is of the form

|x=x/a′|x|�jA′ ∧ |x=x/b′|x|�′jB′ ∧ |x=x/x=0| = N,

where �j ,�′j ∈ {∅,=,≥}, a′, b′ ∈ R and A′, B′, N ∈ N then σj ∧ χf,g ∧ Σi ∧ Ξ is a
sentence about an R-module of fixed finite size. So, since EPP(R) is recursive, by
7.6, we can effectively decide whether σj ∧ χf,g ∧ Σi ∧ Ξ holds in some R-module.
Set uj := > if σj ∧ χf,g ∧ Σi ∧ Ξ is true in some R-module and uj := ⊥ otherwise.

If σj is of the form

|x = x/a′|x|�jA′ ∧ |x = x/b′|x|�′jB′,

where �j ,�′j ∈ {∅,=,≥}, a′, b′ ∈ R and A′, B′ ∈ N with �j � �, �′j � �′
and A′B′ < AB then set uj := σj ∧ χf,g ∧ Σi ∧ Ξ. The condition that �j � �
and �′j � �′ ensures that exsiguj ≤ exsigw. The condition that A′B′ < AB

implies that deg1 uj < deg1 w. So w ∈ V if and only if u :=
⊔n
j=1 uj ∈ V and

deg1 uj < deg1 w for 1 ≤ j ≤ n as required.
We now consider the general case. Suppose w is χf,g ∧ Ξ, where X and Y

are disjoint finite sets of appropriate pp-pairs, f : X → N2, g : Y → N2 and
Ξ is an auxiliary sentence, has extended signature ((�1,�2), (z1, z2), (z3, z4)) with
z3 + z4 > 1. There exist a, b ∈ R with a 6= b such that x=x/a|x, x=x/b|x ∈ X ∪ Y .
Then w ∈ V if and only if ⊔

(f,g)∈Ωf,g,6

6l

i=1

Σi ∧ χfi,gi ∧ Ξ ∈ V.

Claim: For all (f, g) ∈ Ωf,g,6 and 1 ≤ i ≤ 6, either

exsigχfi,gi ∧ Σi ∧ Ξ < exsigχf,g ∧ Ξ, or, deg1
χfi,gi ∧ Σi ∧ Ξ < deg1

χf,g,

or, Xi = X, Yi = Y , fi(x=x/c|x) = f(x=x/c|x) for all x=x/c|x ∈ X and gi(x=x/c|x) =
g(x=x/c|x) for all x=x/c|x ∈ Y .
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By 9.0.4, if Xi 6= X or Yi 6= Y then the extended signature of χfi,gi is strictly less
that the extended signature of χf,g. So suppose thatX = Xi, Y = Yi. By definition,
g(x=x/c|x) = gi(x=x/c|x) for all x=x/c|x ∈ Y = Yi and fi(x=x/c|x) ≤ f(x=x/c|x) for all
x=x/c|x ∈ X = Xi. So, if fi(x=x/c|x) < f(x=x/c|x), for some x=x/c|x ∈ X, then
deg1

χfi,gi ∧ Σi ∧ Ξ < deg1
χf,g. So we have proved the claim.

Therefore for each (f, g) ∈ Ωf,g,6 and 1 ≤ i ≤ 6, either exsigχfi,gi ∧ Σi ∧ Ξ <
exsigχf,g∧Ξ, deg1

χfi,gi∧Σi∧Ξ < deg1
χf,g∧Ξ or χfi,gi∧Σi∧Ξ is of the form of the

special case. Since, by 9.0.4, we always have exsigχfi,gi ∧Σi ∧Ξ ≤ exsigχf,g ∧Ξ,
we are done.

The version of the lemma with z1 + z2 > 1 follows from the one we have just
proved by applying duality as in the proof of 9.1.5. �

Say w ∈W is reducible if w has

– short signature (=,�) or (�,=), or
– extended signature ((≥,�), (z1, z2), (z3, z4)) or ((�,≥), (z1, z2), (z3, z4)) with
z1 ≥ 1 or z3 ≥ 1, or

– extended signature ((�,�′), (z1, z2), (z3, z4)) with z1 + z2 > 1 or z3 + z4 > 1.

Remark 9.2.3. If w ∈ W is reducible then w is of the form required by either
9.1.1, 9.1.3, 9.1.5 or 9.2.2.

Thus w ∈W is not reducible if and only if w has extended signature

– ((∅, ∅), (z1, z2), (z3, z4)) with (z1, z2), (z3, z4) ∈ {(1, 0), (0, 1), (0, 0)} or
– ((�,�′), (z1, z2), (z3, z4)) with (�,�′) ∈ {(≥, ∅), (∅,≥), (≥,≥)} and

(z1, z2), (z3, z4) ∈ {(0, 1), (0, 0)}.
The next remark follows directly from 3.1.9 because the condition on the extended
signature of w implies that w is a conjunction of sentences of the form |ϕ/ψ| = 1
and |ϕ/ψ| ≥ E for pp-pairs ϕ/ψ and E ∈ N.

Remark 9.2.4. Let R be a Prüfer domain. There is an algorithm which,
given w ∈ W with extended signature ((�1,�2), (z1, z2), (z3, z4)) with (�1,�2) ∈
{(≥, ∅), (∅,≥), (≥,≥), (∅, ∅)} and (z1, z2), (z3, z4) ∈ {(0, 1), (0, 0)}, answers whether
w ∈ V or not.

10. Algorithms for sentences which are not reducible

Lemma 10.1. Let R be a recursive Prüfer domain with X(R) recursive. There is
an algorithm which, given λ ∈ R, C ∈ N and (r, ra, γ, δ) ∈ R4, answers whether
there exist h ∈ N0, prime ideals pi CR and ideals Ii CRpi for 1 ≤ i ≤ h such that
(pi, Ii) |= (r, ra, γ, δ) and

∣∣⊕hi=1Rpi/λRpi

∣∣ = C.

Proof. If C = 1 then the condition is always satisfied by taking h = 0, so suppose
that C 6= 1. Let p1, . . . , pl ∈ P be distinct primes and n1, . . . , nl ∈ N be such

that C =
∏l
j=1 p

nj
j . For each prime ideal p C R, if |Rp/λRp| is finite then it is

a prime power. Therefore, there exist prime ideals pi C R and ideals Ii C Rpi for
1 ≤ i ≤ h such that (pi, Ii) |= (r, ra, γ, δ) and

∣∣⊕hi=1Rpi/λRpi

∣∣ = C if and only if
for each 1 ≤ j ≤ l, there exist hj ∈ N0, prime ideals pij C R and ideals Iij C Rpij

for 1 ≤ i ≤ hj such that (pij , Iij) |= (r, ra, γ, δ) and
∣∣∣⊕hji=1Rpij/λRpij

∣∣∣ = pnj . Thus

we may reduce to the case that C = pn for some p ∈ P and n ∈ N.
We consider the cases r = 0 and r 6= 0 separately.
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Case r = 0: For pC R prime and I C Rp, (p, I) |= (0, 0, γ, δ) if and only if I = 0,
γ /∈ p and δ 6= 0. So, there exist h ∈ N0, prime ideals pi C R and ideals Ii C Rpi

for 1 ≤ i ≤ h such that (pi, Ii) |= (0, 0, γ, δ) and
∣∣⊕hi=1Rpi/λRpi

∣∣ = pn if and only
if (p, n;λ, γ, 0, 1) ∈ X(R) and δ 6= 0.
Case r 6= 0: If r 6= 0 then (p, I) |= (r, ra, γ, δ) if and only if I = rJ for some JCRp

and (p, J) |= (1, a, γ, δ). So, there exist h ∈ N0, prime ideals pi C R and ideals
Ii C Rpi for 1 ≤ i ≤ h such that (pi, Ii) |= (r, ra, γ, δ) and

∣∣⊕hi=1Rpi/λRpi

∣∣ = pn if
and only if there exist h ∈ N0, prime ideals piCR and ideals JiCRpi for 1 ≤ i ≤ h
such that (pi, Ji) |= (1, a, γ, δ) and

∣∣⊕hi=1Rpi/λRpi

∣∣ = pn. The last statement is
equivalent to (p, n;λ, γ, a, δ) ∈ X(R). �

Proposition 10.2. Let R be a recursive Prüfer domain with EPP(R) and X(R)
recursive. There is an algorithm which, given c ∈ R, C ∈ N and Ξ an auxiliary
sentence, answers whether there exists M ∈ Mod-R such that

M |= |x=x/c|x| = C ∧ Ξ.

Proof. Let χ be the sentence |x=x/c|x| = C ∧ Ξ. By 2.3.6, there exists M |= χ

if and only if there exist prime ideals pi C R and uniserial Rpi-modules Ui for
1 ≤ i ≤ l such that ⊕li=1Ui |= χ. Moreover, we may assume that Ui/Uic 6= 0 for all
1 ≤ i ≤ l. By 6.0.3, for each 1 ≤ i ≤ l, either c ∈ annRUi or, for some ideal IiCRpi ,
Ui ∼= Rpi/cIi. Thus, there exists M |= χ if and only if there exist A,B ∈ N with
AB = C, F ∈ Mod-R such that

F |= |x=x/x=0| = A ∧ |c|x/x=0| = 1 ∧ Ξ

and h ∈ N0, prime ideals pi C R and ideals Ii C Rpi for 1 ≤ i ≤ h such that∣∣⊕hi=1Rpi/cRpi

∣∣ = B and Rpi/cIi |= Ξ for 1 ≤ i ≤ h. So, since EPP(R) is recursive,
by 7.6, it is enough to show that there is an algorithm which, given B ∈ N and
c ∈ R, answers whether there exist h ∈ N0, prime ideals pi CR and ideals Ii CRpi

for 1 ≤ i ≤ h such that
∣∣⊕hi=1Rpi/cRpi

∣∣ = B and Rpi/cIi |= Ξ for 1 ≤ i ≤ h.
By 6.1.7, we can compute (rj , rjaj , γj , δj) for 1 ≤ j ≤ n such that for all prime

ideals pC R and ideals I C Rp, (p, I) |= (rj , rjaj , γj , δj) for some 1 ≤ j ≤ n if and
only if Rp/cI |= Ξ. Thus there exist h ∈ N0, prime ideals piCR and ideals IiCRpi

for 1 ≤ i ≤ h such that
∣∣⊕hi=1Rpi/cRpi

∣∣ = B and Rpi/cIi |= Ξ for 1 ≤ i ≤ h if and

only if there exist Bj ∈ N for 1 ≤ j ≤ n such that B =
∏n
j=1Bj and for 1 ≤ j ≤ n,

there exist hj ∈ N0, prime ideals pij C R and ideals Iij C Rpij for 1 ≤ i ≤ hj such

that
∣∣∣⊕hji=1Rpij/cRpij

∣∣∣ = Bj and (pij , Iij) |= (rj , rjaj , γj , δj) for 1 ≤ i ≤ hj . The

result now follows from 10.1. �

Corollary 10.3. Let R be a recursive Prüfer domain with EPP(R) and X(R)
recursive. There is an algorithm which, given b ∈ R, B ∈ N and Ξ an auxiliary
sentence, answers whether there exists M ∈ Mod-R such that

M |= |xb=0/x=0| = B ∧ Ξ.

Proof. Apply 2.1.3 to 10.2. �

Proposition 10.4. Let R be a recursive Prüfer domain with EPP(R) and X(R)
recursive. There is an algorithm which, given c, b ∈ R, C,B ∈ N and Ξ an auxiliary
sentence, answers whether there exists M ∈ Mod-R such that

M |= |x=x/c|x| = C ∧ |xb=0/x=0| = B ∧ Ξ.
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Proof. For α ∈ R, we write α /∈ Att for the sentence |xα=0/x=0| = 1∧ |x=x/α|x| = 1.
Recall, 2.3.4, that for all M ∈ Mod-R, there are M1,M2 ∈ Mod-R such that M1

satisfies α /∈ Att, M2 satisfies α− 1 /∈ Att and M ≡M1 ⊕M2, .
Let α, u, v ∈ R be such that cα = bu and b(α − 1) = cv. There exists an R-

module which satisfies |x=x/c|x| = C ∧ |xb=0/x=0| = B ∧ Ξ if and only if there exist
C1, C2, B1, B2 ∈ N with C = C1C2 and B = B1B2 and there exists an R-module
satisfying

|x=x/bu|x| = C1 ∧ |xb=0/x=0| = B1 ∧ α /∈ Att ∧ Ξ

and an R-module satisfying

|x=x/c|x| = C2 ∧ |xcv=0/x=0| = B2 ∧ (α− 1) /∈ Att ∧ Ξ.

By 2.1.3, there exists an R-module satisfying

|x=x/c|x| = C2 ∧ |xcv=0/x=0| = B2 ∧ α− 1 /∈ Att ∧ Ξ

if and only if there exists an R-module satisfying

|xc=0/x=0| = C2 ∧ |x=x/cv|x| = B2 ∧ α− 1 /∈ Att ∧DΞ.

Thus, in order to prove the proposition, it is enough to show that there is an
algorithm which, given b, u ∈ R, C,B ∈ N and Ξ an auxiliary sentence, answers
whether there exists an R-module satisfying the sentence χ defined as

|x=x/bu|x| = C ∧ |xb=0/x=0| = B ∧ Ξ.

We may assume that bu 6= 0, for otherwise χ is a sentence about an R-module of
fixed finite size and since EPP(R) is recursive, we can decide whether there exist
R-modules satisfying such sentences.

By 2.3.6 and 6.0.3, there exists an R-module satisfying χ if and only if there exists
F ∈ Mod-R with bu ∈ annRF , h ∈ N0, prime ideals pi C R and ideals Ii C Rpi for

1 ≤ i ≤ h and M ∈ Mod-R with Mbu = M such that F ⊕
⊕h

i=1Rpi/buIi ⊕M
satisfies χ. Now, this happens if and only if there exist C1, C2 ∈ N and B1, B2, B3 ∈
N with C = C1C2 and B = B1B2B3 such that

F |= |x=x/x=0| = C1 ∧ |xb=0/x=0| = B1 ∧ |bu|x/x=0| = 1 ∧ Ξ,

⊕hi=1Rpi/buIi |= |x=x/bu|x| = C2 ∧ |xb=0/x=0| = B2 ∧ Ξ, and

M |= |xb=0/x=0| = B3 ∧ |x=x/bu|x| = 1 ∧ Ξ.

In view of 7.6 and 10.3, it is therefore enough to show that there is an algorithm
which answers whether there exists h ∈ N0, prime ideals pi CR and ideals Ii CRpi

for 1 ≤ i ≤ h such that

⊕hi=1Rpi/buIi |= |x=x/bu|x| = C2 ∧ |xb=0/x=0| = B2 ∧ Ξ.

By 6.1.7, we can compute n ∈ N and (rj , rjaj , γj , δj) for 1 ≤ j ≤ n such that
Rp/buI |= Ξ if and only if (p, I) |= (rj , rjaj , γj , δj) for some 1 ≤ j ≤ n. It
is therefore enough to show that there is an algorithm which, given (r, ra, γ, δ),
b, u ∈ R and C,B ∈ N, answers whether there exist h ∈ N0, prime ideals pi for
1 ≤ i ≤ h and ideals Ii CRpi for 1 ≤ i ≤ h such that (pi, Ii) |= (r, ra, γ, δ) and

⊕hi=1Rpi/buIi |= |x=x/bu|x| = C ∧ |xb=0/x=0| = B.

Case r = 0: In this case (p, I) |= (r, ra, γ, δ) implies I = 0. Moreover (p, 0) |=
(r, ra, γ, δ) if and only if γ /∈ p and δ 6= 0. Thus, there exist prime ideals pi for 1 ≤
i ≤ h such that (pi, 0) |= (r, ra, γ, δ) and ⊕hi=1Rpi |= |x=x/bu|x| = C∧|xb=0/x=0| = B
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if and only if δ 6= 0, B = 1 and there exist prime ideals pi for 1 ≤ i ≤ h such
that γ /∈ pi and | ⊕hi=1 Rpi/buRpi | = C. Such an algorithm exists since EPP(R) is
recursive.

Case r 6= 0: For all prime ideals p and ideals I CRp, since bu 6= 0,

|xb=0/x=0(Rp/buI)| = |(buI : b)/buI| = |I/bI| .
Now, if |I/bI| is finite but not equal to 1 then I = λRp for some λ 6= 0 and
|I/bI| = |Rp/bRp|. Since b 6= 0, |I/bI| = 1 if and only if b /∈ I#.

Therefore, there exist prime ideals pi and ideals Ii C Rpi for 1 ≤ i ≤ h such
that ⊕hi=1Rpi/buIi |= |x=x/bu|x| = C ∧ |xb=0/x=0| = B ∧ Ξ if and only if there exist
C ′, C ′′ ∈ N with C ′C ′′ = C such that the following conditions hold.

(i) There exist prime ideals pi C R and λi ∈ R\{0} for 1 ≤ i ≤ h such that
(pi, λiRpi) |= (r, ra, γ, δ),

∣∣⊕hi=1Rpi/buRpi

∣∣ = C ′ and
∣∣⊕hi=1Rpi/bRpi

∣∣ = B.
(ii) There exist prime ideals pi C R and ideals Ii C Rpi for 1 ≤ i ≤ h such that

(pi, Ii) |= (r, ra, γ, δb) and
∣∣⊕hi=1Rpi/buRpi

∣∣ = C ′′.

Note that, if (p, λRp) |= (r, ra, γ, δ) then (p, rRp) |= (r, ra, γ, δ). Since (rRp)# =
pRp, (p, rRp) |= (r, ra, γ, δ) if and only if γδ /∈ p. So (i) holds if and only if there

exist prime ideals pi for 1 ≤ i ≤ h′ such that γδ /∈ pi and
∣∣∣⊕h′i=1Rpi/buRpi

∣∣∣ = C ′ and∣∣∣⊕h′i=1Rpi/bRpi

∣∣∣ = B. So, since EPP(R) is recursive, by 7.2, there is an algorithm

which answers whether (i) holds or not.
By 10.1, since X(R) is recursive, there is an algorithm which answers whether

(ii) holds or not. �

The rest of this section is spent proving the following proposition.

Proposition 10.5. Let R be a recursive Prüfer domain with EPP(R) and DPR(R)
recursive. There is an algorithm which, given c, b ∈ R, C,B ∈ N and Ξ an auxiliary
sentence, answers whether there exists M ∈ Mod-R such that

M |= |x=x/c|x| = C ∧ |xb=0/x=0| ≥ B ∧ Ξ.

We could choose the module in the following definition uniquely. For instance,
one can show that when q ) p the uniserial module [qRq : λpRq]/qRq has the
required theory where [qRq : λpRq] is the set of elements a ∈ Q, the fraction field
of R, such that aλqRq ⊆ qRq. However, we are only ever interested in modules up
to elementary equivalence.

Definition 10.6. Let λ ∈ R\{0} and let p, q C R be comparable prime ideals. If
p ⊇ q then define M(p, q, λ) to be Rp/λqRp. If q ) p then let M(p, q, λ) be any
module with theory dual to the theory of Rq/λpRq in the sense of [Her93, 6.6], i.e.
for sentences χ as in 2.1.3, M(p, q, λ) |= χ if and only if Rq/λpRq |= Dχ.

Note that |x=x/c|x(M(p, q, λ))| = 1 if and only if c /∈ p, and, |xb=0/x=0(M(p, q, λ))|
= 1 if and only if b /∈ q.

Lemma 10.7. Let R be a Prüfer domain. Suppose that λ, a, γ, δ ∈ R with λ 6= 0
are such that if (p, I) |= (λ, λa, γ, δ) then Rp/I |= Ξ and if (p, I) |= (λ, λa, δ, γ) then
Rp/I |= DΞ. Then γ /∈ p, δ /∈ q and a ∈ p ∩ q implies M(p, q, λ) |= Ξ.

Proof. Let (λ, λa, γ, δ) be as in the statement. Suppose that γ /∈ p, δ /∈ q and
a ∈ p ∩ q. If p ⊇ q then (p, λqRp) |= (λ, λa, γ, δ). So M(p, q, λ) |= Ξ. Now
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suppose that q ) p. Then (q, λpRq) |= (λ, λa, δ, γ). So Rq/λpRq |= DΞ. Hence, by
definition, M(p, q, λ) |= Ξ. �

Lemma 10.8. Let R be a recursive Prüfer domain with EPP(R) and the radical
relation recursive. There is an algorithm which, given r, c ∈ R\{0}, a, b, γ, δ ∈ R
and A,B,C ∈ N, answers whether there exist h ∈ N0, prime ideals piCR and ideals
Ii CRpi for 1 ≤ i ≤ h such that (pi, Ii) |= (1, a, γ, δ),

∣∣⊕hi=1Rpi/Ii
∣∣ = A and

⊕hi=1Rpi/cIi |= |x=x/c|x| = C ∧ |xb=0/x=0| ≥ B.

Proof. Let pCR be a prime ideal and ICRp be an ideal. Then a ∈ I if and only if
rca ∈ rcI. So a ∈ I if and only if |rca|x/x=0(Rp/rcI)| = 1. If Rp/rcI 6= 0 then γ /∈ p
if and only if |x=x/γ|x(Rp/rcI)| = 1, and, δ /∈ I# if and only if |xδ=0/x=0(Rp/rcI)| =
1. Note that ∣∣rc|x/x=0(⊕hi=1Rpi/rcIi)

∣∣ =
∣∣⊕hi=1Rpi/Ii

∣∣ .
Therefore, there exist h ∈ N0, prime ideals pi CR and ideals Ii CRpi for 1 ≤ i ≤ h
as in the statement if and only if there exist h ∈ N0, prime ideals piCR and ideals
Ii CRpi for 1 ≤ i ≤ h such that ⊕hi=1Rpi/rcIi satisfies χ, defined as

|rc|x/x=0| = A ∧ |x=x/c|x| = C ∧ |xb=0/x=0| ≥ B
∧ |rca|x/x=0| = 1 ∧ |x=x/γ|x| = 1 ∧ |xδ=0/x=0| = 1.

By 8.1, there is an algorithm answering whether there exists ⊕hi=1Rpi/rcIi sat-
isfying χ. �

Recall that when R is a Prüfer domain, for prime ideals p, qC R, the condition
that p + q 6= R is equivalent to p and q being comparable. So M(p, q, r), as in the
next proposition, is defined whenever p + q 6= R and r 6= 0.

Proposition 10.9. Let R be a recursive Prüfer domain with EPP(R), DPR(R)
and X(R) recursive. There is an algorithm which, given C,B ∈ N, c, b ∈ R with
c 6= 0 and r, a, γ, δ ∈ R with r 6= 0, answers whether there exists M ∈ Mod-R
satisfying

|x=x/c|x| = C ∧ |xb=0/x=0| ≥ B,
such that M is a direct sum of

– modules of the form Rp/rcI where pCR is a prime ideal, I CRp is an ideal
and (p, I) |= (1, a, γ, δ), and,

– modules of the form M(p, q, r) where p, qCR are prime ideals such that p+q 6=
R, cγ /∈ p, δ /∈ q, a ∈ p and a ∈ q.

Proof. Recall that, 3.1.7, if DPR(R) is recursive then so is DPR2(R).

Case 1: (cγ, a, a, δ, a, b) /∈ DPR2(R).
There exist prime ideals p, qCR with p+ q 6= R such that cγ /∈ p, δ /∈ q, a ∈ p and
a, b ∈ q. So, |x=x/c|x(M(p, q, r))| = 1, since c /∈ p, and, |xb=0/x=0(M(p, q, r))| > 1,
since b ∈ q.

Therefore, there exists M ∈ Mod-R as in the statement if and only if there exists
h ∈ N0, prime ideals pi C R and ideals Ii C Rpi such that (p, Ii) |= (1, a, γ, δ) for
1 ≤ i ≤ h and such that∣∣⊕hi=1Rpi/cRpi

∣∣ =
∣∣x=x/c|x(⊕hi=1Rpi/rcIi)

∣∣ = C.

Since X(R) is recursive, we are done by 10.1.

Case 2: (cγ, a, a, δ, a, b) ∈ DPR2(R).
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For all prime ideals p, q C R such that p + q 6= R, cγ /∈ p, δ /∈ q, a ∈ p and a ∈ q,
by definition of M(p, q, r) and DPR2(R), we have |xb=0/x=0(M(p, q, r))| = 1 and
|x=x/c|x(M(p, q, r))| = 1.

By 3.1.3, there exist n ∈ N, ε, t, s1, s2 ∈ R such that

(εγc)n = at and ((ε− 1)δ)n = as1 + bs2.

For all prime ideals p C R, either ε /∈ p or ε − 1 /∈ p. Thus, for all prime ideals
p C R and ideals I C Rp, (p, I) |= (1, a, γ, δ) if and only if (p, I) |= (1, a, εγ, δ)
or (p, I) |= (1, a, (ε − 1)γ, δ). Therefore, it is enough to be able to effectively
answer whether there exist C1, C2, B1, B2 ∈ N with C1 · C2 = C, B1 · B2 ≥ B and
B1, B2 ≤ B, such that

(1) there is a sum of modules of the form Rp/rcI where (p, I) |= (1, a, εγ, δ) which
satisfy |x=x/c|x| = C1 ∧ |xb=0/x=0| ≥ B1, and

(2) there is a sum of modules of the form Rp/rcI where (p, I) |= (1, a, (ε− 1)γ, δ)
which satisfy |x=x/c|x| = C2 ∧ |xb=0/x=0| ≥ B2.

Suppose that (p, I) |= (1, a, εγ, δ) and |x=x/c|x(Rp/rcI)| ≤ C1. Then

|Rp/I| ≤ |Rp/atRp| = |Rp/(εγc)
nRp| = |Rp/c

nRp| ≤ |Rp/cRp|n

because a ∈ I and εγ /∈ p. So, |Rp/cRp| = |x=x/c|x(Rp/rcI)| ≤ C1 implies |Rp/I| ≤
Cn1 . Therefore, there exists a sum of modules as in (1) if and only if there is A ≤ Cn1
such that there exist h ∈ N0, prime ideals pi CR and ideals Ii CRpi for 1 ≤ i ≤ h
with (pi, Ii) |= (1, a, εγ, δ),

∣∣⊕hi=1Rpi/Ii
∣∣ = A and

⊕hi=1Rpi/rcIi |= |x=x/c|x| = C1 ∧ |xb=0/x=0| ≥ B1.

Therefore, by 10.8, there is an algorithm which answers whether (1) holds or not.
Suppose that (p, I) |= (1, a, (ε − 1)γ, δ). Since a ∈ I, either a /∈ p and I = Rp,

or, a ∈ I#. If a ∈ I# then, since (ε − 1)δ /∈ I#, bs2 = ((ε − 1)δ)n − as1 /∈ I#. So
b /∈ I# and hence |xb=0/x=0(Rp/rcI)| = 1.

Thus, there exists a sum of modules as required in (2) if and only if there exist
C ′2, C

′′
2 ∈ N with C2 = C ′2C

′′
2 such that

(i) there exist h ∈ N0, prime ideals pi CR and ideals Ii CRpi for 1 ≤ i ≤ h such
that (pi, Ii) |= (1, a, (ε− 1)δb, γ) and

⊕hi=1Rpi/rcIi |= |x=x/c|x| = C ′2, and

(ii) there exist h ∈ N0 and prime ideals pi C R for 1 ≤ i ≤ h such that a /∈ pi,
γ /∈ pi, δ /∈ pi and

⊕hi=1Rpi/rcRpi |= |x=x/c|x| = C ′′2 ∧ |xb=0/x=0| ≥ B2.

Since for p C R prime and I C Rp, |x=x/c|x(Rp/rcI)| = |Rp/cRp|, by 10.1, there is
an algorithm which answers whether (i) holds.

To conclude the proof we need to show that we can effectively answer whether
(ii) holds or not. Let α, u, v ∈ R be such that bα = rcu and rc(α − 1) = bv. If
α /∈ p then

|x=x/c|x(Rp/crRp)| = |Rp/cRp| and |xb=0/x=0(Rp/crRp)| = |Rp/crRp| .
If α− 1 /∈ p then

|x=x/c|x(Rp/crRp)| = |Rp/cRp| and |xb=0/x=0(Rp/crRp)| = |Rp/bRp| .
Since for all prime ideals p C R, either α /∈ p or α − 1 /∈ p, by 7.3, there is an
algorithm which answers whether (ii) holds or not. �
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Lemma 10.10. Let R be a recursive Prüfer domain with EPP(R) and DPR(R)
recursive. There is an algorithm which, given b, c, γ ∈ R and B,C ∈ N, answers
whether there exist h ∈ N0 and prime ideals pi C R with γ /∈ pi for 1 ≤ i ≤ h such
that

⊕hi=1Rpi |= |x=x/c|x| = C ∧ |xb=0/x=0| ≥ B.

Proof. We split the proof into 3 cases. Let χ be the sentence

|x=x/c|x| = C ∧ |xb=0/x=0| ≥ B.
Case b 6= 0: Then |xb=0/x=0(Rp)| = 1 for all prime ideals pC R. So ⊕hi=1Rpi |= χ

if and only if B = 1 and
∣∣⊕hi=1Rpi/cRpi

∣∣ = C. Since EPP(R) is recursive, we are
done by 7.3.
Case b = 0 and C > 1: Then

∣∣xb=0/x=0(⊕hi=1Rpi)
∣∣ =

∣∣⊕hi=1Rpi

∣∣. So∣∣⊕hi=1Rpi/cRpi

∣∣ = C > 1 implies
∣∣xb=0/x=0(⊕hi=1Rpi)

∣∣ is infinite. So ⊕hi=1Rpi |= χ

if and only if
∣∣⊕hi=1Rpi/cRpi

∣∣ = C. So, since EPP(R) is recursive, we are done by
7.3.
Case b = 0 and C = 1: If B = 1 then the zero module satisfies χ i.e. h = 0.
Otherwise, if ⊕hi=1Rpi |= χ and γ /∈ pi for 1 ≤ i ≤ h then h ≥ 1 and cγ /∈ pi for
all 1 ≤ i ≤ h. So there exists a prime ideal p C R such that γc /∈ p. Conversely, if
p C R is a prime ideal such that cγ /∈ p then Rp |= χ. There exists a prime ideal
pCR such that γc /∈ p if and only if (γc, 1, 0, 0) /∈ DPR(R). �

Proof of 10.5. We may assume that c 6= 0 since if c = 0 then |x=x/c|x| =
C ∧ |xb=0/x=0| ≥ B ∧ Ξ is a statement about an R-module of a fixed finite size and
in this case we know such an algorithm exists, by 7.6, since EPP(R) is recursive.

By 6.1.7, we can compute n ∈ N and (rj , rjaj , γj , δj) ∈ R4 for 1 ≤ j ≤ n such
that Rp/cI |= Ξ if and only if (p, I) |= (rj , rjaj , γj , δj) for some 1 ≤ j ≤ n and such
that Rp/cI |= DΞ if and only if (p, I) |= (rj , rjaj , δj , γj) for some 1 ≤ j ≤ n.

Claim: There exists M ∈ Mod-R such that

M |= |x=x/c|x| = C ∧ |xb=0/x=0| ≥ B ∧ Ξ

if and only if there exist Cj ∈ N for 0 ≤ j ≤ n and Bj ∈ N, Bj ≤ B for 0 ≤ j ≤ n+1

with
∏n
j=0 Cj = C and

∏n+1
j=0 Bj ≥ B, satisfying the following conditions.

(1) There exists F ∈ Mod-R such that

F |= |x=x/x=0| = C0 ∧ |xb=0/x=0| ≥ B0 ∧ |c|x/x=0| = 1 ∧ Ξ.

(2) There exists M ′ ∈ Mod-R such that

M ′ |= |x=x/c|x| = 1 ∧ |xb=0/x=0| ≥ Bn+1 ∧ Ξ.

(3) For 1 ≤ j ≤ n,
(a)j if rj = 0 then there exist hj ∈ N0 and prime ideals pijCR for 1 ≤ i ≤ hj

such that γj /∈ pij , δj 6= 0 and

Mj := ⊕hji=1Rpij |= |x=x/c|x| = Cj ∧ |xb=0/x=0| ≥ Bj , and

(b)j if rj 6= 0 then there exist hj , kj ∈ N0, prime ideals pj , qj , pij C R and
ideals Iij C Rpij for 1 ≤ i ≤ hj such that (pij , Iij) |= (1, aj , γj , δj) for
1 ≤ i ≤ hj , γj /∈ pj , δj /∈ qj , a ∈ pj , a ∈ qj , and

Mj := M(pj , qj , rj)
kj ⊕

hj⊕
i=1

Rpij/rjcIij |= |x=x/c|x| = Cj ∧ |xb=0/x=0| ≥ Bj .
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Proof of claim. (⇒) By 6.0.3, if U is a uniserial module with x=x/c|x(U) finite but
non-zero then either c ∈ annRU or U ∼= Rp/cI for some prime ideal pCR and ideal
I CRp. Therefore, by 2.3.6, there exists

M |= |x=x/c|x| = C ∧ |xb=0/x=0| ≥ B ∧ Ξ

if and only if there exists F ∈ Mod-R with c ∈ annRF , prime ideals pi C R and
ideals Ji CRpi for 1 ≤ i ≤ h and M ′ ∈ Mod-R with |x=x/c|x(M ′)| = 1 such that

F ⊕M ′ ⊕
h⊕
i=1

Rpi/cJi |= |x=x/c|x| = C ∧ |xb=0/x=0| ≥ B ∧ Ξ.

Since Rp/cJ |= Ξ if and only if (p, J) |= (rj , rjaj , γj , δj) for some 1 ≤ j ≤ n, we

may rewrite ⊕hi=1Rpi/cJi as ⊕nj=1⊕
hj
i=1Rpij/cJij where (pij , Jij) |= (rj , rjaj , γj , δj)

for 1 ≤ j ≤ n and 1 ≤ i ≤ hj .
If rj = 0 then (pij , Jij) |= (rj , rjaj , γj , δj) if and only if Jij = 0, δj 6= 0 and

γj /∈ pij . If rj 6= 0 then (pij , Jij) |= (rj , rjaj , γj , δj) if and only if there exists
Iij CRpij such that Jij = rIij and (pij , Iij) |= (1, aj , γj , δj).

Let C0 := |x=x/c|x(F )| = |F | and B0 := min{|xb=0/x=0(F )| , B}. Let Bn+1 :=

min{|xb=0/x=0(M ′)| , B}. If rj = 0 then let Cj :=
∣∣∣x=x/c|x(⊕hji=1Rpij )

∣∣∣ and Bj :=

min{
∣∣∣xb=0/x=0(⊕hji=1Rpij )

∣∣∣ , B}. If rj 6= 0 then let Cj :=
∣∣∣x=x/c|x(⊕hji=1Rpij/rjcIij)

∣∣∣
and Bj := min{

∣∣∣xb=0/x=0(⊕hji=1Rpij/rjcIij)
∣∣∣ , B}. Now, setting kj = 0 for 1 ≤ j ≤ n,

we are done.

(⇐) Fix 1 ≤ j ≤ n. Suppose rj = 0. Then (pij , 0) |= (rj , rjaj , γj , δj) for each 1 ≤
i ≤ hj and hence Rpij |= Ξ. Suppose rj 6= 0. Then (pij , rjIij) |= (rj , rjaj , γj , δj)
for each 1 ≤ i ≤ hj and hence Rpij/rjcIij |= Ξ.

By 10.7, γj /∈ pj , δj /∈ qj , a ∈ pj and a ∈ qj implies that M(pj , qj , rj) |= Ξ. Thus

F ⊕M ′ ⊕
n⊕
j=1

Mj |= Ξ.

Therefore

F ⊕M ′ ⊕
n⊕
j=1

Mj |= |x=x/c|x| =
n∏
j=0

Ci ∧ |xb=0/x=0| ≥
n+1∏
j=0

Bi ∧ Ξ.

Since C =
∏n
j=0 Ci and

∏n+1
j=0 Bi ≥ B, we are done.

The set of Cj ∈ N for 0 ≤ j ≤ n and Bj ∈ N with B ≥ Bj for 0 ≤ j ≤ n+ 1 such

that C =
∏n
j=0 Cj and

∏n+1
j=0 Bi ≥ B is finite. Therefore it is enough to show that

for fixed Cj ∈ N for 0 ≤ j ≤ n and Bj ∈ N for 0 ≤ j ≤ n+ 1, there are algorithms
answering whether (1), (2) and (3) hold. By 7.6, since EPP(R) is recursive, there is
an algorithm which answers whether (1) holds. By 3.1.9, since DPR(R) is recursive
there is an algorithm which answers whether (2) holds. Since DPR(R),EPP(R)
and X(R) are recursive, by 10.9, if rj 6= 0 then there is an algorithm which answers
whether (b)j holds. Since DPR(R) and EPP(R) are recursive, by 10.10, if rj = 0
then there is an algorithm which answers whether (a)j holds. Thus, there is an
algorithm which answers whether (3) holds. �



DECIDABILITY FOR THE THEORY OF MODULES OVER A PRÜFER DOMAIN 65

11. The main theorem

Theorem 11.1. Let R be a Prüfer domain. The theory of R-modules is decidable
if and only if DPR(R), EPP(R) and X(R) are recursive.

Proof. The forward direction follows from [GLPT18, 6.4] (or 3.1.6), 3.2.9 and 3.3.3.
By 5.2, in order to show that TR is decidable, it is enough to show that there is

an algorithm which, given a sentence χ of the form

|d|x/x=0|�1D ∧ |xb=0/c|x|�2E ∧ χf,g ∧ Ξ,

where �1,�2 ∈ {≥,=, ∅}, d, c, b ∈ R\{0}, D,E ∈ N, f : X → N, g : Y → N, X,Y
are finite sets of pp-pairs of the form xb′=0/x=0 or x=x/c′|x and Ξ is an auxiliary
sentence, answers whether there exists an R-module which satisfies χ or not.

Let W and V be as in §9. By 9.1.1, 9.1.3, 9.1.5 and 9.2.2, there is an algorithm
which, given w ∈W reducible, returns w ∈W such that w ∈ V if and only if w ∈ V,
and, exsigw < exsigw. Since the set of extended signatures is artinian, by 4.2.1,
it is enough to show that there is an algorithm which, given w ∈W not reducible,
answers whether w ∈ V or not. By 9.2.4 and the statement just before that, it
is enough to show that there is an algorithm which, given w ∈ W with extended
signature in

{((∅, ∅), (z1, z2), (z3, z4)) | z1 + z2 ≤ 1 and z3 + z4 ≤ 1},

answers whether w ∈ V or not. Now, w ∈ V if and only if Dw ∈ V . So, by 9.0.3,
we can reduce the set of extended signatures we need to consider further to

S := {((∅, ∅), (1, 0), (1, 0)), ((∅, ∅), (1, 0), (0, 0)), ((∅, ∅), (1, 0), (0, 1)),

((∅, ∅), (0, 1), (0, 1))}.

By 9.2.4, 10.2, 10.4 and 10.5, for each w ∈ S such an algorithm exists. �

We now consider the consequences of our theorem for Prüfer and Bézout domains
of Krull dimension 1.

Corollary 11.2. Let R be a recursive Prüfer domain of Krull dimension 1. The
theory of R-modules is decidable if and only if EPP(R) is recursive and the relation
a ∈ rad(b1R+ b2R) is recursive.

Proof. It is easy to see, using 3.1.3, that (a, b1, b2, 1, 0, 0) ∈ DPR2(R) if and only if
a ∈ rad(b1R + b2R). So, since DPR(R) recursive implies DPR2(R) recursive, the
forward direction follows from 11.1. The reverse direction is a direct consequence
of 11.1 and claims 1 and 2 below.

Claim 1: (a, b, c, d) ∈ DPR(R) if and only if the following 3 conditions hold:

(i) ac ∈ rad(bR+ dR).
(ii) c ∈ rad(dR) or a = 0 or b 6= 0.
(iii) a ∈ rad(bR) or c = 0 or d 6= 0.

Since R has Krull dimension 1, if p, q C R are prime ideals with p + q 6= R then
either p = q, p = 0 or q = 0. Therefore (a, b, c, d) ∈ DPR(R) if and only if

(i’) for all prime ideals p, either a ∈ p, c ∈ p, b /∈ p or d /∈ p;
(ii’) for all prime ideals p, either a = 0, c ∈ p, b 6= 0 or d /∈ p; and

(iii’) for all prime ideals q, either a ∈ q, c = 0, b /∈ q or d 6= 0.
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The claim now follows since (i) is equivalent to (i’), (ii) is equivalent to (ii’) and
(iii) is equivalent to (iii’).

Claim 2:

(1) (p, n; e, γ, 0, δ) ∈ X(R) if and only if δ 6= 0 and (p, 0; 0; γ; e, n) ∈ EPP(R).
(2) If a 6= 0 then (p, n; e, γ, a, δ) ∈ X(R) if and only if (p, 0; 0; γδ; e, n) ∈ EPP(R).

Note that, by 3.2.5 and the definition of EPP(R), for p ∈ P, n ∈ N and γ, e ∈ R,
(p, 0; 0; γ; e, n) ∈ EPP(R) if and only if there exist h ∈ N and maximal ideals miCR
with γ /∈ mi for 1 ≤ i ≤ h such that | ⊕hi=1 Rmi/eRmi | = pn. The equivalence (1)
now follows from 3.3.2.

Now consider (2). Since R has Krull dimension 1, if q C R is a prime ideal
and a ∈ q for some a 6= 0 then q is maximal. Thus, by 3.3.2, if a 6= 0 then
(p, n; e, γ, a, δ) ∈ X(R) if and only if there exists h ∈ N and maximal ideals mi CR
for 1 ≤ i ≤ h such that | ⊕hi=1 Rmi/eRmi | = pn and for 1 ≤ i ≤ h, γ /∈ mi and
δ /∈ mi. So (2) now follows from the characterisation of (p, 0; 0; γδ; e, n) ∈ EPP(R)
given in the previous paragraph. �

The next lemma is essentially taken from [LTP17].

Lemma 11.3. Let R be a Bézout domain with Krull dimension 1. For all a, b ∈ R
with b 6= 0, a /∈ rad bR if and only if there exists c ∈ R such that 1 ∈ aR + cR and
1 /∈ bR+ cR. Moreover, if R is recursive and the set of units of R is recursive then
the radical relation is recursive.

Proof. The first statement is contained in the proof of [LTP17, 3.3]. The second
statement is part of [LTP17, 3.3] but our assumptions are a priori weaker than the
assumptions there.

If a ∈ rad(bR) then an = br for some n ∈ N and r ∈ R. Therefore, since R is
recursive, we can effectively list the pairs (a, b) ∈ R2 such that a ∈ rad(bR).

Since R is a recursive Bézout domain, given a, c ∈ R, we can effectively find
d ∈ R such that dR = aR + cR. Therefore we can effectively list the pairs (a, c)
such that 1 ∈ aR+ cR and since the set of units of R is recursive, we can effectively
list the pairs (b, c) ∈ R2 such that 1 /∈ bR + cR. Thus, by the first statement, we
can effectively list the pairs (a, b) ∈ R2 such that a /∈ rad(bR). �

The next corollary generalises [GLPT18, 6.7], which in turn generalised the main
theorem of [LTP17] (i.e. 3.4 therein).

Corollary 11.4. Let R be a recursive Bézout domain with Krull dimension 1. The
theory of R-modules is decidable if and only if the set of units of R and EPP(R)
are recursive.

Proof. For any ring R, if TR is decidable then the set of units of R is recursive
because r ∈ R is a unit if and only if |x=x/r|x| = 1 holds in all R-modules. The
forward direction now follows from 11.1.

For any recursive Bézout domain R, given b1, b2 ∈ R we can effectively find
b ∈ R such that bR = b1R+ b2R. Thus, the reverse direction follows from 11.2 and
11.3. �

12. Integer-valued polynomials

We use our main theorem, 11.1, to show that the theory of modules over the ring
of integer valued polynomials with rational valued coefficients, Int(Z), is decidable.
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First we fix some notation: For all p ∈ P, Z(p) denotes Z localised at the ideal
generated by p, Qp denotes the field of p-adic numbers, vp : Qp → Z∪{∞} denotes

the p-adic valuation on Qp and Ẑp denotes the p-adic integers.
The ring Int(Z) is the subring of Q[x] consisting of all polynomials a ∈ Q[x] such

that a(Z) ⊆ Z. Recall, [CC97, I.1.1], that the polynomials(
x
n

)
:=

x(x− 1) . . . (x− (n− 1))

n!

are a basis for Int(Z) as a Z-module. This readily gives us a recursive presentation
of Int(Z). The ring Int(Z) is a Prüfer domain [CC97, VI.1.7].

Note, [CC97, I.2.1], that, for all p ∈ P, if f ∈ Q[x] and f(Z) ⊆ Z then f(Z(p)) ⊆
Z(p). Further, for any p ∈ P, by continuity of polynomials over Qp, f(Z(p)) ⊆ Z(p)

implies f(Ẑp) ⊆ Ẑp.
The prime spectrum of Int(Z) is described in [CC97, V.2.7]. We recall the

information we need.

• For any p ∈ P, the prime ideals of Int(Z) containing p are in bijective corre-

spondence with the elements of Ẑp by mapping α ∈ Ẑp to

mp,α := {f ∈ Int(Z) | f(α) ∈ pẐp}.

The prime ideals mp,α are exactly the maximal ideals of Int(Z) and the quo-
tient Int(Z)/mp,α has size p.
• The non-zero prime ideals p of Int(Z) such that Z ∩ p = {0} are in bijec-

tive correspondence with the monic irreducible polynomials q ∈ Q[x] via the
mapping

q 7→ pq := qQ[x] ∩ Int(Z).

Note that pq ⊆ mp,α if and only if q(α) = 0 in Qp.
It will sometimes be useful to have an alternate notation for the non-maximal prime

ideals. For α ∈ Ẑp, let

pα :=

{
pq, if α is algebraic and q ∈ Q[x] is its monic minimal polynomial;
{0}, if α is transcendental.

This notation has the disadvantage that pα = pβ does not imply α = β. However,

it allows us to work with α ∈ Ẑp algebraic and transcendental uniformly in the

following ways: Firstly, for a ∈ Int(Z) and α ∈ Ẑp, a ∈ pα if and only if a(α) = 0.

Secondly, for q C R a prime ideal and α ∈ Ẑp, q ⊆ mp,α if and only if q = mp,α,
q = pα or q = {0}

By 11.1, we need to show that DPR(Int(Z)), EPP(Int(Z)) and X(Int(Z)) are
recursive. In order to do this, we use the fact, [Ax68, Thm 17], that the common
theory Tadic of the valued fields Qp, as p varies, is decidable. We shall work in a
two-sorted language Lval of valued fields with a sort for the field K, a sort Γ for the
value group extended by ∞ and a function symbol v : K → Γ which is interpreted
as vp in each Qp. For convenience, we add a constant symbol 1 to the value group
sort Γ, which for each valued field Qp, is interpreted as the least strictly positive
element of the value group.

Let L0
val be the set of sentences in Lval. The sets

Tadic := {ϕ ∈ L0
val | for all p ∈ P, Qp |= ϕ}
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and
{ϕ ∈ L0

val | there exists p ∈ P such that Qp |= ϕ}
are recursive. Hence, since Qp |= ϕ if and only if Qq |= v(p) = 0 ∨ ϕ for all q ∈ P,
the set

{(p, ϕ) ∈ P× L0
val | Qp |= ϕ}

is recursive.

Proposition 12.1. The set DPR(Int(Z)) is recursive.

Proof. Let a, b, c, d ∈ Int(Z). Then (a, b, c, d) ∈ DPR(Int(Z)) if and only if

(1) for all p ∈ P and α ∈ Ẑp, a ∈ mp,α, b /∈ mp,α, c ∈ mp,α or d /∈ mp,α;

(2) for all p ∈ P and α ∈ Ẑp, a ∈ mp,α, b /∈ mp,α, c ∈ pα or d /∈ pα;

(3) for all p ∈ P and α ∈ Ẑp, a ∈ mp,α, b /∈ mp,α, c = 0 or d 6= 0;

(4) for all p ∈ P and α ∈ Ẑp, a ∈ pα, b /∈ pα, c ∈ mp,α or d /∈ mp,α;

(5) for all p ∈ P and α ∈ Ẑp, a = 0, b 6= 0, c ∈ mp,α or d /∈ mp,α;
(6) for all q ∈ Q[x] irreducible and monic, a ∈ pq, b /∈ pq, c ∈ pq or d /∈ pq;
(7) for all q ∈ Q[x] irreducible and monic, a ∈ pq, b /∈ pq, c = 0 or d 6= 0;
(8) for all q ∈ Q[x] irreducible and monic, a = 0, b 6= 0, c ∈ pq or d /∈ pq; and
(9) a = 0 or b 6= 0 or c = 0 or d 6= 0.

One sees this by considering all possible pairs of comparable prime ideals of Int(Z).
The case where one of the prime ideals is maximal is discussed just under the
definition of pα. If p is a non-maximal non-zero prime ideal then p = pq for some
monic irreducible q ∈ Q[x]. Now, if pq ⊇ pq′ for monic and irreducible q, q′ ∈ Q[x]
then q ∈ q′Q[x]. Hence q = q′ and so pq = pq′ .

Define χ1, χ2, χ3, χ4, χ5 ∈ L0
val to be

χ1 := ∀x (v(x) < 0 ∨ v(a(x)) ≥ 1 ∨ v(b(x)) = 0 ∨ v(c(x)) ≥ 1 ∨ v(d(x)) = 0),

χ2 := ∀x (v(x) < 0 ∨ v(a(x)) ≥ 1 ∨ v(b(x)) = 0 ∨ c(x) = 0 ∨ d(x) 6= 0),

χ3 := ∀x (v(x) < 0 ∨ v(a(x)) ≥ 1 ∨ v(b(x)) = 0),

χ4 := ∀x (v(x) < 0 ∨ a(x) = 0 ∨ b(x) 6= 0 ∨ v(c(x)) ≥ 1 ∨ v(d(x)) = 0), and

χ5 := ∀x (v(x) < 0 ∨ v(c(x)) ≥ 1 ∨ v(d(x)) = 0).

Claim: (a, b, c, d) ∈ DPR(Int(Z)) if and only if

(i) χ1, χ2, χ4 ∈ Tadic,
(ii) either c = 0, d 6= 0 or χ3 ∈ Tadic,
(iii) either a = 0, b 6= 0 or χ5 ∈ Tadic,
(iv) ac ∈ radQ[x](bQ[x] + dQ[x]),
(v) a ∈ radQ[x](bQ[x]) or c = 0 or d 6= 0,
(vi) either c = 0, d 6= 0 or c ∈ radQ[x](dQ[x]), and

(vii) either a = 0, b 6= 0, c = 0 or d 6= 0.

Recall that a ∈ mp,α if and only if vp(a(α)) ≥ 1 and a ∈ pα if and only if a(α) = 0.
Therefore, for j ∈ {1, 2, 4}, (j) holds if and only if χj ∈ Tadic, (3) holds if and only
if χ3 ∈ Tadic, c = 0 or d 6= 0, and, (5) holds if and only if χ5 ∈ Tadic, a = 0 or b 6= 0.

The statement that, for all prime ideals pCInt(Z) with either p = 0 or p = pq for
some monic irreducible q ∈ Q[x], either a ∈ p, c ∈ p, b /∈ p or d /∈ p is equivalent to
ac ∈ radQ[x](bQ[x] + dQ[x]). So (6) and (9) hold if and only if (iv) holds. Similarly,
(7) and (9) holds if and only if (v) holds and, (8) and (9) holds if and only if (vi)
holds. Finally (9) holds if and only if (vii) holds. So the claim holds.
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Since Tadic is decidable, we can effectively decide whether (i), (ii) and (iii) hold.
If a, b1, b2 ∈ Q[x] then a ∈ radQ[x](b1Q[x] + b2Q[x]) if and only if for all q ∈ Q[x]
irreducible, q divides b1 and q divides b2 implies q divides a. Since Q has a splitting
algorithm, there is an algorithm which, given a, b1, b2 ∈ Q[x], decides whether
a ∈ radQ[x](b1Q[x] + b2Q[x]). Therefore, we can effectively decide whether (iv)-(vi)
holds. It is obvious that we can effectively decide whether (vii) holds. �

In order to analyse EPP(Int(Z)), we need to understand the valuation overrings
of Int(Z).

• For each p ∈ P and α ∈ Ẑp transcendental, define vp,α : Q(x) → Z ∪ {∞} by
setting vp,α(f/g) = vp(f(α)/g(α)).

• For each p ∈ P and α ∈ Ẑp algebraic with monic minimal polynomial q ∈ Q[x],
define vp,α : Q(x)→ Z×Z∪{∞} by setting vp,α(h) = (k, vp(f(α)/g(α))) where
h = qk · f/g, f(α) 6= 0 and g(α) 6= 0.

By [CC97, VI.1.9], Int(Z)mp,α is the valuation ring of vp,α. Let e ∈ Int(Z) and
N ∈ N0.

• For p ∈ P and α ∈ Ẑp transcendental, vp,α(e) = vp(e(α)) = N if and only if

|Int(Z)mp,α/eInt(Z)mp,α | = pN .

• For p ∈ P and α ∈ Ẑp algebraic, vp(e(α)) = N if and only if vp,α(e) = (0, N)
if and only if

|Int(Z)mp,α/eInt(Z)mp,α | = pN .

For the first equivalence of the second bullet point, note that the minimal poly-
nomial q of α divides e ∈ Int(Z) if and only if vp(e(α)) = ∞. Thus vp(e(α)) = N
implies vp,α(e) = (0, N). Conversely, if vp,α(e) = (0, N) then e = q0 · e and
vp(e(α)) = N .

Proposition 12.2. The set EPP(Int(Z)) is recursive.

Proof. Claim: (p,M ; a; γ; e,N) ∈ EPP(Int(Z)) if and only if there exist h ∈
{1, . . . , N +M}, Ni,Mi ∈ N0 for 1 ≤ i ≤ h with

∑h
i=1Ni = N and

∑h
i=1Mi = M

such that for each 1 ≤ i ≤ h,

(†) Qp |= ∃x (v(x) ≥ 0 ∧ v(e(x)) = Ni ∧ v(a(x)) ≥Mi ∧ v(γ(x)) = 0).

Suppose (p,M ; a; γ; e,N) ∈ EPP(Int(Z)). There exists α1, . . . , αh and l1, . . . , lh ∈
N0 such that γ /∈ mp,αi , a ∈ mlip,αi ,

p
∑h
i=1 li =

h∏
i=1

|Int(Z)mp,αi/m
li
p,αi | = pM

and

p
∑h
i=1 vp(e(αi)) =

h∏
i=1

|Int(Z)mp,αi/eInt(Z)mp,αi | = pN .

We may assume that h ≤ N + M since the size of the set of 1 ≤ i ≤ h such that
vp(e(αi)) > 0 or li > 0 is at most N + M . Set Ni := vp(e(αi)) and Mi := li.

Then N =
∑h
i=1Ni and M =

∑h
i=1Mi. Since a ∈ mMi

p,αi , vp(a(αi)) ≥Mi and since
γ /∈ mp,αi , vp(γ(αi)) = 0, as required.
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For the converse, suppose that for each 1 ≤ i ≤ h, αi witness the truth of the
sentence (†). Set pi := mp,αi and Ii := mMi

p,αi for 1 ≤ i ≤ h. Then vp(a(αi)) ≥ Mi

implies a ∈ mMi
p,αi . Since vp(γ(αi)) = 0, γ /∈ mp,αi and vp(e(αi)) = Ni implies

|Int(Z)mp,αi/eInt(Z)mp,αi | = pNi .

So (p,M ; a; γ; e,N) ∈ EPP(Int(Z)) as required.
The proposition now follows from the claim since the set of (p, ϕ) ∈ P × L0

val

such that Qp |= ϕ is recursive. �

Proposition 12.3. The set X(Int(Z)) is recursive.

Proof. Recall, 3.3.2, (p, n; e, γ, a, δ) ∈ X(Int(Z)) if and only if there exist h ∈ N
and maximal ideals mp,αi for 1 ≤ i ≤ h such that

p
∑h
i=1 vp(e(αi)) = | ⊕hi=1 Int(Z)mp,αi/eInt(Z)mp,αi | = pn,

γ /∈ mp,αi and for each 1 ≤ i ≤ h, either δ /∈ mp,αi or there exists qi a prime ideal
such that qi ( mp,αi , a ∈ qi and δ /∈ qi. As in 12.2, we may assume that 1 ≤ h ≤ n.

If q is a prime ideal strictly contained in mp,α then q = pα or q = {0}. Thus
there exists q ( mp,α such that a ∈ q and δ /∈ q if and only if a(α) = 0 and δ(α) 6= 0,

or, a = 0 and δ 6= 0. For α ∈ Ẑp, γ /∈ mp,α if and only if vp(γ(α)) = 0. Therefore,
(p, n; e, γ, a, δ) ∈ X(Int(Z)) if and only if there exist 1 ≤ h ≤ n and Ni ∈ N for

1 ≤ i ≤ n such that
∑h
i=1Ni = n and for 1 ≤ i ≤ h,

Qp |= ∃x (v(x) ≥ 0 ∧ v(γ(x)) = 0 ∧ v(e(x)) = Ni

∧ [v(δ(x)) = 0 ∨ (a(x) = 0 ∧ δ(x) 6= 0) ∨ (a = 0 ∧ δ 6= 0)]).

So, since the set of (p, ϕ) ∈ P×L0
val such that Qp |= ϕ is recursive, we are done. �

Theorem 12.4. The theory of modules of the ring of integer valued polynomials
with rational coefficients is decidable.

Proof. This follows from 11.1, 12.1, 12.2 and 12.3. �
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