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The unpredictable nature of bubble 
evolution
Jack Lawless 1*, Jack Keeler 2, Antoine Gaillard 3, Andrew Hazel 1 & Anne Juel 1

Unpredictable dynamics arising from a sensitivity to initial conditions is commonly associated with 
chaos. We demonstrate how similar unpredictability manifests in a nonlinear system that possesses 
a large number of long-term outcomes, namely the propagation of an air bubble within a viscous 
fluid-filled channel. The system under investigation supports various stable states of single-bubble 
propagation. In addition, bubbles can readily break up during their propagation. Upon subjecting 
steadily-propagating bubbles to finite-amplitude perturbations in the form of localised channel 
constrictions, we identify localised regions of the driving flow rate for which the resulting evolutions 
are unpredictable. Visibly-indistinguishable bubbles are observed to evolve towards a multitude of 
long-term outcomes, including each of the stable states available to the initial bubble and various 
states of permanently-changed bubble topology. By combining high-precision experimental results 
with simulations of a depth-averaged lubrication model of the system, we determine that this 
behaviour is driven by a sensitive dependence on initial conditions within the vicinity of an unstable 
periodic orbit.

Complex systems are constructed from various interacting subsystems; they are found ubiquitously in nature and 
often exhibit collective nonlinear behaviours that appear difficult to interpret from the  outset1. However, there 
is potential for successful predictions to be made in systems as complex and chaotic as the climate, as recently 
highlighted by the award of the 2021 Nobel Prize in Physics “for groundbreaking contributions to our under-
standing of complex systems”2. A key ingredient is modern dynamical systems theory, which has recently enabled 
major advances in the understanding of the subcritical transition to turbulence in shear flows by providing the 
appropriate framework required to elucidate such  behaviour3. The core element of this approach is to determine 
the set of invariant states that are contained within a system’s phase space. The fundamental reasoning behind 
this is that these states, depending on their stability, act locally to either attract or repel trajectories and, thus, 
they can be viewed as orchestrators of the system’s time-evolution.

Similar initial states of a time-evolving system need not necessarily converge towards the same long-term 
outcome. Visibly-indistinguishable initial states of a nonlinear system have the potential to exponentially diverge 
from one another and, consequently, consecutive evolutions of the system under the same conditions may result 
in profoundly different long-term outcomes. This behaviour, henceforth referred to as practical unpredictability, 
is commonly associated with chaos. Real-world systems such as the  weather4, human  economies5 and the spread 
of infectious diseases within a  population6 readily exhibit unpredictable long-term dynamics, although many 
of these systems also exhibit stochasticity.  Furthermore, these systems are usually highly complex and evolve 
over a myriad of spatial and temporal scales. Nonetheless, practical unpredictability can occur in much simpler, 
deterministic systems. In this paper, we demonstrate how unpredictable dynamics manifest in a spatiotemporal 
system that does not exhibit chaos, neither transiently nor long-term, within the relevant parameter regime: the 
propagation of an air bubble within a viscous fluid-filled channel.

Fluid motion has long been a testbed for complex nonlinear behaviour. Turbulence, i.e. disorder in space 
and time, is a common state of large-scale  flows7, whilst temporal disorder, or chaos, is routinely observed in 
spatially-confined  flows8. In this paper, the fluids are confined to a channel much wider and longer than it is deep: 
a Hele–Shaw channel. The channel is partially occluded by a small elevation, henceforth referred to as a rail, that 
is applied along its axial centreline; see Fig. 1a. An air bubble is propagated through the channel by imposing a 
constant volume flux flow of oil; negligible inertial forces mean that nonlinearities arise exclusively at the air-oil 
interface and, hence, the dynamical state of the system is encoded in the shape of the bubble. Depending on the 
experimental parameters, the bubble is able to exhibit a rich variety of complex nonlinear behaviours, examples 
of which include multistability and time-periodic modes of  propagation9–11. We focus our study on a range 

OPEN

1Manchester Centre for Nonlinear Dynamics, University of Manchester, Oxford Road, Manchester M13 9PL, 
UK. 2School of Mathematics, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK. 3Van der 
Waals-Zeeman Institute, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands. *email: 
jack.lawless@postgrad.manchester.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-23231-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20752  | https://doi.org/10.1038/s41598-022-23231-8

www.nature.com/scientificreports/

of driving flow rates for which there are three stable single-bubble states, consisting of  a steady ‘on-rail’ state, 
in which the bubble propagates symmetrically about the channel centreline, and two steady ‘off-rail’ states, in 
which the bubble propagates asymmetrically about the channel centreline. It is noted that the on-rail and off-rail 
states correspond to disconnected solution branches of the governing  equations10. A simplified schematic of the 
system’s steady state structure is provided in Fig. 1b, whereas a more detailed version can be found in Keeler 
et al.10. In addition, bubbles also readily exhibit complex transient dynamics that can result in their breakup. The 
resulting post-breakup bubbles may or may not recombine during their subsequent evolution. This distinctive, 
yet rather peculiar, feature of the system allows for topological changes in its underlying phase space that are 
not described by conventional bifurcations. Bubble dynamics have previously been found to be well-modelled 
by a set of two-dimensional depth-averaged lubrication  equations9,12, which are more amenable to numerical 
analysis than the three-dimensional Navier–Stokes equations. Hence, this system acts as a suitable toy model to 
investigate fundamental nonlinear behaviour that could not easily be isolated in systems of increased complexity.

We apply controlled, finite-amplitude perturbations to bubbles that initially propagate steadily on-rail. For 
fixed perturbations, we identify localised intervals of the driving flow rate for which the subsequent evolution 
of the system is unpredictable because visibly-indistinguishable bubbles evolve towards a multitude of distinct 
long-term outcomes following a common transient oscillatory response to their perturbation. The observed 
outcomes include each of the three stable single-bubble states, as well as various states of permanently-changed 
bubble topology following bubble breakup. We contrast our experimental observations with related numerical 
simulations and employ concepts from dynamical systems theory in order to interpret the localised occurrences 
of practical unpredictability in the experiment and their relation to the amplitude of perturbation.

Interpreting the behaviour of a system in response to an external perturbation necessitates the study of its 
transient dynamics. Although they are never observed explicitly in experiments, unstable invariant states are 
able to influence a system’s transient dynamics  significantly13. In particular, weakly-unstable invariant states, 
commonly referred to as saddles, are able to orchestrate complex transient dynamics within the vicinity of their 
locally-attracting stable  manifolds14,15. This could, for instance, lead to transient chaos,  in which a system exhibits 
chaotic dynamics as it passes through certain regions of its phase space, before ultimately settling in a stable 
long-term  outcome16,17. The influence of weakly-unstable states on the subcritical transition to turbulence in 
linearly stable shear flows has also been recognised in a plethora of recent studies, widely formalising the notion 
of so-called ‘edge states’ of a dynamical  system3,18–24. An edge state is defined as a weakly-unstable invariant 
state, whose stable manifold forms part of the basin boundary that separates two distinct long-term dynamical 
outcomes. Two commonly encountered classes of edge states are saddle equilibria and unstable periodic orbits 
(UPOs), the latter of which bear a strong significance in modern theories of chaos and  turbulence25–31. In fact, 
Keeler et al.10 employed edge-tracking techniques to reveal the existence of an isolated UPO in the depth-averaged 
model of our system, emanating from a subcritical Hopf bifurcation. In this paper, we demonstrate how the influ-
ence of an isolated UPO, when combined with a large number of potential long-term outcomes, is sufficient to 
drive long-term practical unpredictability in a real-world system in the absence of any form of chaotic dynamics.

Results
Experimental results—small perturbation. The experiments that were performed in this study 
are conceptually simple:  bubbles of fixed size were generated and subsequently propagated steadily on-rail 
towards  a circular obstacle placed downstream. The relevant control parameters are given by the dimensionless 
flow rate Q and the obstacle size, which is parameterised in terms of the percentage ratio between its diameter 
and the width of the channel. We investigate the evolution of the system following the obstacle-induced defor-

Figure 1.  (a) Schematic view of the experimental Hele–Shaw channel, which features an axial-centred 
elevation, or rail, along its length. An obstacle is placed downstream of the centring device, in contact with 
one of the channel side-walls, resulting in a local constriction of the channel width. (b) Schematic of the 
system’s underlying steady state space with variation of the driving flow rate. Each state is characterised by the 
normalised lateral offset of the bubble centroid from the channel centreline. The shaded region of interest is 
bounded between a subcritical Hopf bifurcation (SH) and a supercritical pitchfork bifurcation (PF). Within this 
region, there are three stable states available to the initial bubble: steady on-rail propagation about the channel 
centreline and steady off-rail propagation, in which the lateral placement of the bubble is biased towards one of 
the channel side-walls. Snapshots of the states are shown in the associated insets.
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mation of a bubble. Bubble evolutions were filmed in top-view by a  steadily translating camera  and, in this 
paper, they are represented by a series of instantaneous snapshots of the bubble contour. Time-labels are given in 
terms of a dimensionless time t. A comprehensive description of the experimental setup and protocols used to 
reproducibly generate and propagate bubbles of prescribed size, alongside details pertaining to the nondimen-
sionalisation process, are provided in “Materials and methods”.

We begin with the experimental observations following the perturbation of a bubble through the use of a 
modestly-sized obstacle that constricted the channel width by 21.7% . Within a small interval of the dimension-
less driving flow rate ( 0.018 < Q < 0.019 ), visibly-indistinguishable bubbles were observed to evolve towards 
multiple distinct long-term outcomes at the same experimental parameters following their circumvention of the 
obstacle. A set of three experimental time-sequences are superimposed in Fig. 2a where, in each case, a bubble is 
propagated towards the obstacle at Q = 0.018 . The bubbles deform significantly as they circumvent the obstacle 
at t = 1.68 . Each bubble begins to oscillate transiently as it propagates away from the obstacle. At early times 
during their oscillation, e.g. at t = 2.93 and t = 3.35 , the bubbles remain indistinguishable. However, small-
scale deviations in the shapes of their interfaces become visibly apparent by t = 4.19 , which grow significantly 
by t = 5.45 . In each case, the oscillations are not sustained and each bubble proceeds to evolve directly towards 
one of the three single-bubble states at some later time.

In Fig. 2b, an additional set of three experimental time-sequences are superimposed. In each case, the early-
time transient dynamics are the same as described previously. However, each bubble proceeds to break up at 
some point during its oscillation. The resulting pairs of post-breakup bubbles are distinct in each case and evolve 
towards profoundly different long-term outcomes. The magenta-coloured bubbles settle on the same side of 
the rail and aggregate to form an off-rail compound bubble. As described in Gaillard et al.11, compound bub-
bles ultimately coalesce to form a simple bubble once the oil layer separating them has drained and, hence, this 
particular evolution can be viewed as a transient excursion towards a stable off-rail state. The orange-coloured 
post-breakup bubbles also settle on the same side of the rail. However, instead of aggregating, the two bubbles 
separate indefinitely and form a two-bubble state of permanently-changed topology. Finally, the yellow-coloured 
post-breakup bubbles also indefinitely separate, albeit on opposite sides of the rail. For each bubble shown in 
Fig. 2a,b, we plot the time-evolution of the lateral offset of its centroid from the channel centreline, denoted y , 
in Fig. 3. Here, the divergence of the bubbles is demonstrated explicitly.

Numerical results—small perturbation. The experimental observations are consistent with the tran-
sient exploration of a UPO by the bubbles following their perturbation. As mentioned previously, Keeler et al.10 
determined the existence of a UPO in the depth-averaged model, emanating from a subcritical Hopf bifurca-
tion. In this section, we compare the experimental results with simulations of the model. Descriptions of both 
the model’s implementation and the numerical methods used to solve the resulting equations are provided in 
“Materials and methods”.

We simulated the time-evolution of bubbles initially propagating steadily on-rail after applying linear pertur-
bations with the UPO eigenmode; refer to Eq. (8) in “Materials and methods”. The phase of perturbation was fixed 
arbitrarily at ϕ = 6π/12 . We note that there is a known discrepancy between the value of the subcritical Hopf 
point, denoted QH , in the experiments and the model; this is detailed in Gaillard et al.11. Hence, the simulated 
flow rate was chosen such that the absolute distance from the subcritical Hopf point ( Q − QH ) was the same as 
in the experiments. Convergence towards the UPO was achieved via an edge-tracking procedure, in which the 
perturbation strength ε was varied through interval bisection. We let εU denote the value of the perturbation 

Figure 2.  (a,b) Superimposed experimental time-sequences of bubble evolutions following their circumvention 
of an obstacle, which constricts the channel width by 21.7% . In each case, the dimensionless flow rate is 
Q = 0.018 . The bubble centroids are aligned in the streamwise direction. The time-sequences in (a) are examples 
of direct evolutions towards each of the three stable states available to the initial bubble, whereas the time-
sequences in (b) are examples of evolutions that feature bubble breakup.
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strength that resulted in a sufficient convergence towards the influencing vicinity of the UPO; refer to Eq. (8) in 
“Materials and methods”. Figure 4a shows a time-sequence of the simulated UPO dynamics for a bubble whose 
size is equal to that of the experimental bubbles. We compare the simulation directly to the mode of oscillation 
observed in the experiments in Fig. 4b. In general, there is an excellent qualitative agreement between the two. 
It is noted that the mirror-symmetry of the experimental bubble at particular points during its evolution, e.g. in 
the second and fourth panels of Fig. 4b, is also consistent with the assumed symmetry of such an orbit due to the 
symmetry of the flow domain in the y-direction. The evidence suggests that the bubbles were indeed perturbed 
within the influencing vicinity of the UPO in the experiments and, hence, that their transient evolutions cor-
respond to its exploration.

In an attempt to replicate the observed experimental unpredictability, we then simulated bubble evolutions 
for marginally-different values of the perturbation strength close to εU , the results of which are shown in Fig. 5. 
For each bubble, we show the time-evolution of its centroid’s lateral offset y , in addition to a snapshot of its shape 
at the final time-step. It is noted that simulations were terminated either when the bubble reached a stable steady 
state or at the point of bubble breakup. The projection of the UPO in this reduced space is denoted by the black 
dashed curve. The curves begin almost superposed at t = 0 , with initial differences less than 0.2% of the charac-
teristic length-scale ( W∗/2 ). Each bubble proceeds to transiently explore the UPO, completing several cycles of 
oscillation with near-constant amplitude. Depending on the value of ε , divergence from the UPO occurs either 
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Figure 3.  Time-evolution of the bubble centroid lateral offset, denoted y , for each bubble in Fig. 2a,b and an 
additional (purple-coloured) bubble which evolves towards off-rail propagation on the bottom of the rail. The 
first peak and trough of each curve correspond to the bubble’s circumvention of the obstacle. Insets: final states 
of the bubbles.

Figure 4.  (a) Simulated time-sequence of the UPO dynamics for a bubble of size r = 0.54 at dimensionless flow 
rate Q = 0.032 in the depth-averaged model. The bubble is shown at equally-spaced time intervals of t = T/4 , 
where T is the computed period of the UPO. (b) Experimental time-sequence of the transient oscillations that 
were observed experimentally. The data is taken from the red-coloured bubble in Fig. 2a.
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through the monotonic decay or the monotonic growth of the oscillation amplitude. For ε < εU , the amplitude 
of oscillation decays and bubbles return to steady on-rail propagation. For ε > εU , the amplitude of oscillation 
grows and bubbles either evolve directly towards a state of steady off-rail propagation or break up. In the latter 
case, various unique pairs of post-breakup bubbles are formed. Extreme examples of breakup include the cyan-
coloured bubble, which breaks near-symmetrically, and the dark green-coloured bubble, which breaks strongly 
asymmetrically. Several intermediate examples of breakup are also shown. Based on these results, we infer that a 
continuum of size fractions between the resulting post-breakup bubbles is possible. Although we do not pursue 
the resulting post-breakup dynamics in this paper, based on a previous study of two-bubble dynamics by Keeler 
et al.32, it is expected that the simulations would capture the added multiplicity of long-term behaviours that 
were observed experimentally.

In Fig. 6a, the dimensionless radial difference between the initial shapes of the two bubbles that later evolve 
towards steady off-rail propagation on opposite sides of the rail in Fig. 5 is plotted as a function of the angular 
position θ , as measured from the axial centreline of the channel. The initial deviations at fixed θ are less than 
0.2% of the characteristic length-scale and, hence, the two bubbles appear visibly indistinguishable. In Fig. 6b, 
we superimpose the simulated evolutions of the two bubbles; here it can be seen that much of the characteristic 
behaviour that was observed experimentally also transpires in the model. This includes a close alignment of their 
interfaces early during their evolutions, followed by the emergence of small-scale deviations that later grow in 
amplitude. By defining suitable metrics of separation between neighbouring bubble trajectories, e.g. the absolute 
difference between y and similar integral measures of the difference between their shapes, it was determined 
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Figure 5.  Time-evolutions of the bubble centroid lateral offset y following a series of marginally-different initial 
perturbations applied to bubbles of size r = 0.54 at dimensionless flow rate Q = 0.032 in the depth-averaged 
model. The projection of the UPO in this space is represented by the black dashed curve. Bottom inset: bubble 
shapes at the final time-step, where the colour of each bubble corresponds to the same colour curve. Top inset: 
zoom-in on the initial values of y and after the first two time-steps.
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Figure 6.  (a) Dimensionless radial difference between the initial bubble shapes at angular position θ , as 
measured from the axial centreline of the channel, for the two bubbles which evolve towards steady asymmetric 
propagation on either side of the rail in Fig. 5. (b) The corresponding time-sequences of their evolutions.
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that this behaviour arises a direct result of the exponential separation of neighbouring trajectories in the vicinity 
of the UPO. Refer to Supplementary Fig. S1 for more details. In "Mechanisms of unpredictability" section, the 
underlying mechanisms that lead to this behaviour are discussed.

Experimental and numerical results - larger perturbations. Upon increasing the amplitude of the 
applied perturbation through the use of a larger obstacle, which constricted the channel width by 29.0% , a local-
ised region of unpredictability was identified for 0.023 < Q < 0.024 . In Fig. 7a, we present a set of superimposed 
experimental time-sequences where, in each case, a bubble is propagated towards the obstacle at Q = 0.023 . The 
onset of transient oscillations again occurs following circumvention of the obstacle at t = 1.69 and the dynamics 
are found to exhibit an excellent qualitative agreement with those of the UPO at the same value of (Q − QH ) in 
the depth-averaged model, as demonstrated in Fig. 7b. Notably, the ‘tail-like’ shape of the bubble rear at t = 2.65 
and t = 3.71 align closely with the simulations at 0T/4 and 2T/4, respectively. In both experiments and simu-
lations, the period of oscillation is determined to remain unchanged from that at the lower flow rate; refer to 
Supplementary Fig. S2 for more details. Importantly, this indicates that the UPO has not bifurcated. It is known 
that bifurcations of UPOs can result in complex dynamics. For example, period-doubling bifurcations can lead 
to chaos. However, there are no signs of this occurring and, hence, the observed oscillations are inferred to be 
an exploration of the same, albeit increased amplitude, UPO. Relative to those observed at the lower flow rate, 
the oscillations are short-lived. Namely, in each case, the bubble completes less than a single cycle of oscillation. 
The bubbles also deform more significantly, resulting in more frequent breakups. Direct evolutions towards 
either of the stable off-rail steady states were never observed and, instead, only occurred indirectly as a result of 
aggregation and coalescence following bubble breakup. Secondary breakups of post-breakup bubbles were also 
observed frequently, leading to more exotic long-term states of permanently-changed topology. For instance, the 
blue-coloured and yellow-coloured bubbles in Fig. 7a evolve towards long-term three-bubble states.

For the most extreme constriction investigated, which constricted the channel width by 33.9% , unpredictable 
dynamics did not arise at any flow rate within the region of interest. Transient oscillations were never observed 
and bubble evolutions were found to be entirely reproducible upon a succession of repeat experiments at the same 
experimental parameters. For most flow rates within the range of interest, bubbles directly evolved towards steady 
off-rail propagation on the side of the rail opposite to the placement of the obstacle following their circumven-
tion of the obstacle. For sufficiently high flow rates, bubbles were instead observed to break up following their 
circumvention of the obstacle. The occurrence of breakup may be attributed in part to the decreasing influence 
of surface tension.

Discussion
Mechanisms of unpredictability. Based on the established similarities between the experimental and 
simulated dynamics, we infer that practical unpredictability arises in the experiments as a direct result of the 
exponential separation of neighbouring trajectories in the vicinity of the UPO. In this section, we discuss the 
underlying mechanisms that lead to this behaviour.

Figure 7.  (a) Superimposed experimental time-sequences of bubble evolutions resulting from the 
circumvention of a larger obstacle that constricted the channel width by 29.0% . In each case, the dimensionless 
flow rate is Q = 0.023 . The bubble centroids are aligned in the streamwise direction. Arrows indicate long-
term separation between bubbles. We note that snapshots of the final states are not superimposed, nor do they 
represent the relative position of each bubble in the channel. (b) Simulated time-sequence of the UPO dynamics 
for a bubble of size r = 0.54 at dimensionless flow rate Q = 0.037 in the depth-averaged model. The bubble is 
shown at equally-spaced time intervals of t = T/4 , where T is the computed period of the UPO.
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The long-term outcome of any initial state of a dynamical system containing multiple co-existing attractors 
is determined solely by the basin of attraction within which the state lies. In the immediate vicinity of a basin 
boundary, long-term unpredictability can manifest in practice as a result of the inherent uncertainty that accom-
panies any initial  state33–35. The model two-dimensional phase space in Fig. 8a acts to demonstrate this concept. 
Two fixed point attractors, denoted S1 and S2 , reside within the model phase space and their associated basins of 
attraction, denoted B1 and B2 , are separated by the smooth, common basin boundary ∂B . Three arbitrary initial 
states of the system, labelled I1 , I2 and I3 , are surrounded by disks of small, yet finite radius δ , representing the 
inherent uncertainty that accompanies their experimental measurement. The entirety of the disks of uncertainty 
within which I1 and I2 lie are contained within a single basin of attraction, meaning that these two initial states 
predictably evolve towards S1 and S2 , respectively. However, the disk of uncertainty within which I3 lies simultane-
ously overlaps both B1 and B2 , meaning that there is a non-zero probability of the initial state evolving towards 
either S1 or S2 . Hence, its long-term outcome is rendered unpredictable.

Figure 8b demonstrates a related, two-dimensional model of a route to unpredictability that arises if multiple 
attractors co-exist in either of the two regions of phase space that are separated by the basin boundary formed by 
a UPO. Three fixed-point attractors reside within the phase space; both S1 and S2 are situated within the ‘exterior’ 
region, whilst S3 is situated within the ‘interior’ region. Because there is only a single attractor contained within 
the interior region, all trajectories that emanate inwards from the UPO must evolve towards S3 . Trajectories 
that emanate outwards from the UPO must evolve towards either S1 or S2 ; this leads to the formation of finely-
structured, alternating ‘mosquito coil’-shaped basins of attraction that originate and spiral outwards from the 
 UPO34. As the phase space separation from the UPO decreases, so must the ‘width’ of the alternating coils. 
Beyond a sufficiently small separation, the width of the coils becomes less than that of the system’s intrinsic 
uncertainty. Consequently, it becomes possible for visibly-indistinguishable states situated sufficiently close to 
the UPO to evolve towards any of the three attractors as a result of the aforementioned unpredictability within 
the vicinity of a basin boundary. It is remarked that this formalism is generic and, hence, can be extended to an 
arbitrary number of both internal and external attractors.

In Fig. 9a, the simulated bubble trajectories of Fig. 5 are projected onto the (y, ẏ) plane; it is noted that the 
apparent intersection of trajectories occurs due to the projection of a higher-dimensional space onto a reduced-
dimensional space. The structure of the system’s phase space in this projection is qualitatively consistent with 
the two-dimensional schematic outlined in Fig. 8b. Here, the on-rail state and two off-rail states are analogous 
to the interior and two exterior attractors, respectively. However, in addition to the two exterior off-rail states, 
the propensity of a bubble to break up provides the system with a continuum of additional exterior breakup 
states. This means that the set of outwardly-emanating trajectories encompasses, effectively, an infinite number 
of potential long-term outcomes. The spiralling of the system’s trajectories, as further highlighted in Fig. 9b, 
provides a sensitive dependence on initial conditions in the vicinity of the UPO and, hence, allows for the evolu-
tion of visibly-identical bubbles towards any of these potential long-term outcomes. An analogous phase space 
projection of the experimental trajectories of Fig. 3 is provided in Fig. 9c, where many qualitative similarities to 
its simulated counterpart can be observed. The simulated phase space projection is found to remain qualitatively 
unchanged at the higher flow rate investigated; see Fig. 9d.

Conclusion. In this paper, we have showcased how unpredictable dynamics can arise in the two-phase flow 
of a bubble propagated within a viscous fluid-filled Hele–Shaw channel. This complex phenomenon was eluci-
dated by employing concepts from modern dynamical systems theory. In particular, synthesis of experimental 
results with related simulations of a depth-averaged lubrication model of the system allowed us to determine 
that the localised regions of unpredictability that were observed in experiments are driven by a sensitive depend-
ence on initial conditions within the vicinity of a UPO. The ability of a bubble to break up was found to further 
enhance its extent of unpredictability, with both experiments and simulations indicating that there are, effec-

Figure 8.  (a) Two-dimensional schematic, demonstrating how unpredictability can arise at a smooth basin 
boundary ∂B . The basins of attraction, denoted by B1 and B2 , are the sets of initial conditions that evolve towards 
the fixed point attractors S1 and S2 , respectively. The initial conditions I1 , I2 and I3 are uncertain within precision 
δ . (b) Two-dimensional schematic demonstrating how a UPO (denoted by the black dashed circle), in the 
presence of multiple co-existing attractors, can give rise to unpredictability. Two attractors, S1 and S2 , lie within 
the exterior region and a single attractor, S3 , lies within the interior region. Three arbitrary trajectories emanate 
from the UPO, each of which evolve towards one of the attractors.
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tively, an infinite number of potential long-term outcomes for a bubble perturbed within its vicinity. This unique 
attribute of the system distinguishes it from other systems that exhibit unpredictability in the form of a small 
number of potential long-term outcomes and, in fact, may also be a key reason as to why unpredictability is 
observed so readily in the experiments.

Although unpredictable dynamics are confined to a small, localised region of flow rate for a fixed perturbation 
in the experiments, the underlying mechanism is generic. Hence, we expect that unpredictability will be present 
throughout the entirety of the range of flow rates for which the UPO exists, provided that the system is perturbed 
appropriately. As such, a large proportion of its parameter space becomes susceptible to unpredictability and this 
is demonstrated schematically in Fig. 10. It is remarkable that this pervasive manifestation of unpredictability 
can be generated by the presence of a single UPO in a parameter regime where the system is otherwise ordered. 
We expect that the findings of this paper can be extended generally to other nonlinear systems.

Figure 9.  (a) Projection of the numerically-computed trajectories in the (y, ẏ) plane at Q = 0.032 . The UPO 
is indicated by the black dashed trajectory. (b) Close-up of the highlighted region, emphasising the spiralling 
nature of the outwardly-emanating trajectories in the vicinity of the UPO. (c) Projection of the experimental 
trajectories in the (y, ẏ) plane at Q = 0.018 . The black dashed trajectory corresponds to the first cycle of 
oscillation completed by the red-coloured bubble. (d) Projection of the numerically-computed trajectories in the 
the (y, ẏ) plane at Q = 0.037.
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Materials and methods
Experimental methods. The experiments throughout this paper were performed in the same Hele-Shaw 
channel as described in Gaillard et al.11, where a comprehensive description of both the experimental setup and 
bubble-generation procedure can be found. A schematic diagram of the setup is shown in Fig. 1a, for which we 
will outline the important features. The channel consisted of two horizontally-levelled float-glass plates, sepa-
rated by two parallel strips of stainless steel shim which were bonded to the bottom glass plate. The thickness 
of these steel shims was H∗ = 1.00± 0.001 mm and they were separated by a distance W∗ = 40.0± 0.1 mm , 
resulting in a cross-sectional aspect ratio α = W∗/H∗ = 40 . An axially-centred, uniform depth-perturbation, 
henceforth referred to as a ‘rail’, was added to the bottom glass plate in the form of a strip of translucent adhesive 
tape. The rail had width w∗ = 10.0± 0.1 mm , thickness h∗ = 24± 1µm and spanned the entirety of the chan-
nel length.

The channel was filled with silicone oil (Basildon Chemicals Ltd) of dynamic viscosity µ = 0.019 Pa s , density 
ρ = 951 kgm−3 and surface tension σ = 21mNm−1 . Experiments were performed at the ambient laboratory 
temperature of 21±1 ◦C . The flow of silicone oil was controlled via a network of syringe pumps and solenoid 
valves; a three-way solenoid valve was used to link the network of injection syringes, the channel inlet and the 
oil reservoir and a two-way solenoid valve was used to link the channel outlet and the oil reservoir. Depending 
on the configuration of the valves, oil could be injected into or withdrawn from the channel at a constant volu-
metric flow rate Q∗ or withdrawn from the oil reservoir to fill the injection syringes. Air bubbles were generated 
by opening an air valve situated a short distance downstream of the channel inlet, whilst slowly withdrawing a 
prescribed volume of oil at the channel outlet through a syringe.

Following their detachment from the air injection port, bubbles were initially centred on the rail by their 
propagation through a centring device, consisting of a localised symmetric channel constriction followed by a 
linear expansion region. They were then propagated through the channel by imposing a constant dimensionless 
driving flow rate Q = µU∗

0 /σ , where U∗
0 = Q∗/W∗H∗ is the average velocity of oil in an equivalent unperturbed 

channel. The bubbles were filmed in top-view by a CMOS camera mounted onto a motorised translation stage, 
which moved at a constant velocity based on an empirical relationship between the bubble propagation velocity 
and the driving flow rate as determined in Gaillard et al.11, ensuring that the bubbles remained in the field of 
view of the camera for the duration of the experiment. Control of the syringe pumps, valves and camera were 
interfaced to a computer and controlled via a custom-built LabVIEW code.

In order to perturb a steadily-propagating bubble, a circular steel washer, henceforth referred to as an ‘obsta-
cle’, was placed in contact with one of the channel side-walls and fixed in place by a N52-grade neodymium 
magnet situated below the bottom glass plate. The three obstacle sizes which we used constricted the width of 
the channel by a maximum of 21.7% , 29.0% and 33.9% , as measured along their circumferences.

The raw data obtained by the camera was treated by a series of image-processing filters and bubble contours 
were identified through the application of a Canny edge-detection algorithm. We present all experimental fig-
ures in a frame of reference moving with the bubble centroid. Length scales are non-dimensionalised by the 
channel half-width W∗/2 in the ‘in-plane’ directions and by the channel height H∗ in the transverse direction. 
We parameterise bubble size by defining a non-dimensional radius r = 2r∗/W∗ , where r∗ = √

A∗/π  and A∗ 
is the projected area of the bubble. Throughout this paper, the bubble size is fixed at r = 0.54 . We choose the 
characteristic time-scale t = 2U∗

0 t
∗/W∗ , based on the average time taken for oil to propagate a distance equal 

to one channel half-width at flow rate Q∗ in an equivalent unperturbed channel.

Numerical methods. Simulations of bubble propagation were carried out using a depth-averaged lubrica-
tion model, as detailed in Thompson et al.12. The validity of this model in describing the dynamics of single air 
bubbles has been verified in Franco-Gomez et al.9,36 and Keeler et al.10. Multiple-bubble interactions have also 
recently been studied in both Gaillard et al.11 and Keeler et al.32. Here, we recall the important details.  We imple-
ment the same nondimensionalisation procedure as outlined above. The rail is modelled by a piecewise-smooth, 
axial-centred channel depth profile of the form

(1)b(y) = 1− h

2

[

tanh
(

s(y + w)
)

− tanh
(

s(y − w)
)

]

,

Figure 10.  Schematic of the region of parameter space that is susceptible to unpredictable dynamics; this region 
persists from the birth of the UPO at QH until the UPO is destroyed. As Q increases beyond QH , larger finite-
amplitude perturbations are required in order to provoke unpredictability due to the growing amplitude of the 
UPO. For a fixed perturbation, unpredictable dynamics transpire within a localised region of Q.
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where h = 0.024 and w = 0.25 are the dimensionless height and width of the rail, respectively, and s = 40 is a 
parameter which controls the sharpness of the rail edges, chosen in accordance with Thompson et al.12. For large 
channel aspect ratios and low Reynolds number, upon applying a lubrication approximation and depth-averaging, 
the Navier–Stokes equations reduce to a single equation in terms of the non-dimensional fluid pressure p,

We impose no-penetration conditions on the channel side-walls, i.e. py = 0 at y = ± 1 . At the bubble interface, 
we impose both a kinematic and dynamic boundary condition. We work in a co-moving frame of reference 
which translates at velocity U(t) = (Ub(t), 0) . Here, Ub(t) is the speed of the bubble’s centroid in the streamwise 
direction and is obtained by requiring that the streamwise component of its centroid remains fixed at zero. The 
kinematic condition at the interface is then given by

where R denotes a point on the interface and n̂ is the associated outward-pointing unit normal vector. It is noted 
that all time-dependence is contained within Eq. (3). The dynamic condition at the interface reduces to the 
Young–Laplace equation. The in-plane curvature of the interface is denoted by κ . In the transverse direction, we 
assume that the bubble fills the entirety of the channel height, i.e. neglecting the presence of wetting films, and 
that the bubble is semi-circular with radius b(y)/2. Hence, the dynamic condition is given by

where the internal pressure of the bubble is obtained by requiring that the dimensionless volume of the bubble 
remains fixed to its initial value. The injection of fluid into the channel at constant flux is modelled by imposing 
a favourable pressure gradient in the streamwise direction, chosen such that the resulting dimensionless volume 
flux is equal to Q. The resulting system was then discretised and solved using a combination of finite-element 
and parameter-continuation methods contained within the open-source finite-element library oomph-lib37.

We impose systematic linear perturbations to a steady solution of the governing equations by applying the 
same eigenmode perturbation method described comprehensively in Keeler et al.10. Here, we will recall the 
important details of this method. We denote an arbitrary state of the system by the high-dimensional state vari-
able u, which contains all of the problem unknowns, with associated time-derivative u̇ . The system of equations 
that we solve can be written in residual form as

where R is a nonlinear operator that acts on the state variable and its time-derivative. It is assumed that R can 
be separated into two terms, consisting of a linear mass operator M that acts only on the time-derivative of the 
state variable and a nonlinear operator F  that acts only on the state variable. Denoting a steady solution of Eq. (5) 
by us , we form a perturbed state up

where |δ| ≪ 1 is a small perturbation parameter, v is a spatially-dependent eigenmode of the system and � is the 
corresponding growth rate of the perturbation. Insertion of the perturbed state into Eq. (5) and the application 
of a Taylor expansion about us yields

at first-order in δ , where J  is a Jacobian operator. This is a generalised eigenvalue problem, which we solve 
numerically using the Trilinos  library38 in order to determine the set of complex eigenmodes v and correspond-
ing eigenvalues � . An initial-value problem (IVP) is formulated using the least-stable eigenmode v̂

where the strength and phase of the perturbation are controlled by the parameters ε and ϕ respectively. Depend-
ing on the values of these parameters, different initial perturbations are able to be imposed onto a bubble. The 
resulting unsteady time-evolution of the bubble was simulated using the implicit BDF2 timestepper. The time-
step was chosen as �t = 0.01 and the validity of the solution was confirmed through a series of convergence 
tests carried out at each time-step. Simulations were terminated either when the bubble reached a state of steady 
propagation or broke up, the latter of which is indicated by the self-intersection of its boundary. The dynamics 
of multiple interacting bubbles are non-trivial and are not pursued in this paper. Instead, a comprehensive study 
can be found in Keeler et al.32.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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(2)∇ ·
[

(b(y)3 ∇p
]

= 0.

(3)
∂R

∂t
· n̂ =

[

− b(y)2 ∇p− U(t)
]

· n̂,

(4)�p�bubblefluid = 1

3αQ

[

κ

α
+ 1

b(y)

]

,

(5)R(u, u̇) ≡ M(u̇)+ F(u) = 0,

(6)up = us + δve�t ,

(7)�M(us)v + J (us)v = 0,

(8)u(t = 0) = us + εv̂eiϕ + c.c.
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