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a b s t r a c t

Although humans are considered to be face experts, there is a well-established reliable

variation in the degree to which neurotypical individuals are able to learn and recognise

faces. While many behavioural studies have characterised these differences, studies that

seek to relate the neuronal response to standardised behavioural measures of ability

remain relatively scarce, particularly so for the time-resolved approaches and the early

response to face stimuli. In the present study we make use of a relatively recent meth-

odological advance, multi-variate pattern analysis (MVPA), to decode the time course of the

neural response to faces compared to other object categories (inverted faces, objects).

Importantly, for the first time, we directly relate metrics of this decoding assessed at the

individual level to gold-standard measures of behavioural face processing ability assessed

in an independent task. Thirty-nine participants completed the behavioural Cambridge

Face Memory Test (CFMT), then viewed images of faces and houses (presented upright and

inverted) while their neural activity was measured via electroencephalography. Significant

decoding of both face orientation and face category were observed in all individual par-

ticipants. Decoding of face orientation, a marker of more advanced face processing, was

earlier and stronger in participants with higher levels of face expertise, while decoding of

face category information was earlier but not stronger for individuals with greater face

expertise. Taken together these results provide a marker of significant differences in the

early neuronal response to faces from around 100 ms post stimulus as a function of

behavioural expertise with faces.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC
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Although it is typically taken for granted that humans are all

‘face-experts’ who can accurately and effortlessly identify a

known individual from a brief glance, in fact large and reliable

differences exist in adult face identification ability (recogni-

tion memory as well as matching). A naturally occurring

spectrum of ability ranges from those individuals who report

severe problems in face recognition, termed developmental

prosopagnosics (Duchaine & Nakayama, 2006) through to so-

called super recognisers (Russell, Duchaine, & Nakayama,

2009), with the rest of the population falling between the ex-

tremes of this normally distributed trait (Wilmer, 2017).

Despite keen research interest in the mechanisms underlying

the neurotypical variability, much remains unclear in terms of

understanding the functional mechanisms underlying

strengths and weaknesses in face processing (Ramon, Bobak,

& White, 2019), which could be present in any or indeed all

its levels: from our earliest low-level visual responses,

through to high-level mental representations.

Characterising and classifying stable individual differences

in face identification ability has typically been the reserve of

standardised behavioural approaches. Such work has

confirmed that broader cognition and visual processing abili-

ties (e.g., IQ, object cognition, memory, processing speed)

contribute to, but cannot fully account for, outcomes on lab-

based measures such as the Cambridge Face Memory Test

(CFMT, Duchaine & Nakayama, 2006; Gignac,

Shankaralingam, Walker, & Kilpatrick, 2016; Hildebrandt,

Wilhelm, Schmiedek, Herzmann, & Sommer, 2011; Van

Gulick, McGuigin, & Gauthier, 2016; Wilhelm et al., 2010;

Wilmer, Germine, & Nakayama, 2014). Outcomes on these

tasks are influenced by factors like genetics (Shakeshaft &

Plomin, 2015), age (Germine, Duchaine, & Nakayama, 2011),

sex (Herlitz& Lov�en, 2013), personality (Bate, Parris, Haslam,&

Kay, 2010; Megreya & Bindemann, 2013) and face experience

(Balas & Saville, 2015; Meissner & Brigham, 2001).

Targeted investigations have also probed the contribution

of face-relevant cognitive mechanisms. For example, signifi-

cant (and to a degree, independent) associations have been

confirmed with holistic processing: the extent to which faces

are encoded as a unified whole, rather than a collection of

features (e.g., DeGutis, Mercado, Wilmer, & Rosenblatt, 2013;

Richler, Cheung, & Gauthier, 2011; Wang, Li, Fang, Tian, & Liu,

2012; but see also Konar, Bennett, & Sekuler, 2010; Verhallen

et al., 2017) and adaptive norm-based processing: encoding

faces as a deviation from a perceptual average at the centre of

face-space (Dennett, McKone, Edwards, & Susilo, 2012;

Engfors, Jeffery, Gignac, & Palermo, 2017; Rhodes, Jeffery,

Taylor, Hayward, & Ewing, 2014).

Given the amount of neuroscientific research that has been

conducted into face perception generally, it is perhaps sur-

prising that relatively few studies have explored the neural

markers associated with stronger vs weaker abilities in the

typical population (see Lander, Bruce,& Bindemann, 2018 for a

recent overview).We do, however, know a great deal about the

distributed neural system specialised for processing different

aspects of faces, including identity (see Gobbini&Haxby, 2007;

Haxby, Hoffman, & Gobbini, 2000). This body of work includes

insights from neuropsychological investigations of clinically

significant identification difficulties (i.e., prosopagnosia)

associated with disruption to this system (Barton, 2008;
Rossion, 2008). Thus, it seems appropriate to also consider

whether differences in neurological structure or processing

might functionally contribute to the variability in face recog-

nition abilities observed in the typical population.

The results of several imaging studies support links be-

tween individual participants’ face processing abilities and

structural features like ventricle-to-brain ratio (Schretlen,

Pearlson, Anthony, & Yates, 2001), cortical thickness in the

FFA (McGugin, Van Gulick, & Gauthier, 2016, 2020; see Meyer,

Garz�on, L€ovd�en, & Hildebrandt, 2019 for further evidence

regarding cortical thickness and general task accuracy/face

specific task accuracy) and regional grey matter volume in the

right ventral anterior lobe (though unexpectedly not right OFA

and FFA, Li et al., 2016). Additionally, functional research with

neurotypical participants has identified ability-related asso-

ciations between activity in the face processing network

(including but not limited to FFA and OFA) and face identity

recognition (e.g., Elbich & Scherf, 2017; Furl, Garrido, Dolan,

Driver, & Duchaine, 2011; Grill-Spector, Knouf, & Kanwisher,

2004; Huang et al., 2014) along with behavioural face inver-

sion effects (Aylward et al., 2005; Passarotti, Smith, DeLano, &

Huang, 2007; Yovel & Kanwisher, 2005).

Electrophysiological (EEG) studies are particularly inter-

esting on this point, because of the degree to which they can

provide detailed information about neural correlates of

perception and cognition as they are occurring. Studying group

and individual profiles of EEG activity allows us to pinpoint

differences that arise at specific (i.e., informative) points in the

processing time course. Such responses are typically explored

via event related potential analysis (ERP) of the averaged

neural response time locked to presentation of a stimulus/

category. This work has identified clear markers of face pro-

cessing expertise later in the component time course, often

linked to face familiarity and face recognition (e.g., N250,

N250R, P300, P600, Belanova, Davis, & Thompson, 2018; Meyer

et al., 2021; Parketny, Towler, & Eimer, 2015; Towler, Fisher, &

Eimer, 2017). Yet there are only sparse reports of an associa-

tion between expertise and the early neural responses to

faces.

There is some debated evidence that the P100 component,

an early positivivity observed in posterior electrode sites,

might be sensitive to face information, showing an increased

amplitude to faces compared to objects or scrambled faces

(Eimer, 1998; Herrmann, Ehlis, Ellgring, & Fallgatter, 2005; Itier

& Taylor, 2004b) and to inverted faces compared to upright

(Colombatto & McCarthy, 2017; Itier & Taylor, 2004a; 2004b;

Minami, Nakajima, Changvisommid,&Nakauchi, 2015). Some

links between face expertise and the P100 component have

been suggested at the group level, with participants with

higher face expertise showing an increased P100 for faces but

not for cars (Turano,Marzi,&Viggiano, 2016). Furthermore, an

association between the P100 amplitude and face memory

ability has been found using structural equation modelling

(SEM, Kaltwasser, Hildebrandt, Recio, Wilhelm, & Sommer,

2014).

While the association between the P100 and face process-

ing remains debated, the N170, a negativity occurring

approximately 170 ms post presentation of a face, is the

component most robustly observed to respond selectively to

faces (see Eimer, 2011 for a review). Generally accepted to be a

https://doi.org/10.1016/j.cortex.2022.11.004
https://doi.org/10.1016/j.cortex.2022.11.004
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marker of the detection and encoding of perceptual face in-

formation there have been a few limited reports of a link be-

tween the N170 and face expertise. Notably, face identity

recognition accuracy has been moderately linked to N170 la-

tency, via SEM (Herzmann, Kunina, Sommer,&Wilhelm, 2010;

Kaltwasser et al., 2014; Nowparast Rostami, Sommer, Zhou,

Wilhelm, & Hildebrandt, 2017, 2020). Findings regarding the

N170 amplitude have been more mixed, but there is some

evidence linking it to both face and object memory ability

(Nowparast Rostami et al., 2017) and to face memory in men

(Nowparast Rostami, Hildebrandt, & Sommer, 2020). The N170

amplitude was further linked to expertise at the group level

(Turano et al., 2016). Further group level studies suggest in-

direct evidence of a link between the N170 component and

expertise via effects such as the other race effect (Weise,

Kaufmann, & Schweinberger, 2014) or the impact of early

exposure to a larger vs smaller pool of face exemplars, a factor

itself tied to a behavioural expertise measure (Balas & Saville,

2015).

The current study seeks to expand on these findings using

a less restrictive analysis approach (multi-variate pattern

analysis) to explore any association between individual dif-

ferences in face recognition ability (characterized using

behavioural CFMT scores) and participants’ early neural (EEG)

responses to faces. Importantly, in contrast to the traditional

component based framework, multi-variate approaches do

not pre-specify the timing and location of particular effects of

interest, rather they combine information across electrode

sites to detect differences in the pattern of neural response

that may not be obvious when only single electrodes (or

electrode pairs) are considered in isolation. Further, unlike

previous group-level ERP studies, expertise is conceptualized

as a continuous variable within our analysis. This approach

avoids the need to arbitrarily split the sample based onmean/

median values to impose an artificial good vs. bad face pro-

cessors dichotomy. Such an approach (i.e., targeting interin-

dividual differences in the relationship between decoding

metrics and face processing expertise) promises to extend

findings from group-mean studies to more clearly elucidate

neuronal as well as cognitive factors that modulate the highly

variable outcomes observed in this domain (see Rhodes et al.,

2014).

In the present task, participants view upright and inverted

faces, alongside a further comparison category of complex

visual stimuli: upright and inverted houses. Inclusion of these

four stimulus categories in the task permits investigation of

expertise-related differences in selective responding to faces

as an overall category (contrasting upright faces and houses),

and more selectively to the canonical upright configuration of

a face (contrasting upright and inverted faces). Brain behav-

iour links may be revealed in either or both contexts, though

the extent to which face orientation effects index specialist

processingmakes the latter a particularly strong candidate for

revealing differences in early neural responses as a function of

ability. Moreover, the extant preliminary evidence for links

between ability and early face-sensitive ERP components in

typical participants (Balas & Saville, 2015) and developmental

prosopagnosics (Towler, Gosling, Duchaine, & Eimer, 2012)

supports differential neural responses to face orientation,

rather than categorization (cf. chairs and houses respectively).
Notably one of the few studies to apply machine learning

classification techniques to tackle this question provided

intriguing evidence of a difference in classification of face

orientation in groupswith/without extensive early experience

with a large pool of faces (Balas & Grant, 2016). Here we will

also employmachine learning techniques to further probe the

link between face orientation effects and participants exper-

tise with faces, as directly indexed by a cognitive test of face

memory ability, the CFMT.
1. Methods

This paper follows the same methods and general analysis

pipeline as two recent studies from our team (Farran et al.,

2020; Mares, Ewing, Farran, Smith, & Smith, 2020). No part of

the study procedure or analysis was pre-registered prior to the

research being conducted. The conditions of our ethics

approval do not permit public archiving of anonymised study

data. Readers seeking access to the data should contact the

senior author MLS. Access will be granted to named in-

dividuals in accordancewith ethical procedures governing the

reuse of sensitive data.

Specifically, requestors must complete a formal data

sharing agreement and approval must be obtained from the

local ethics committee.

Averaged datasets and the experimental task2 can be

found at https://researchdata.bbk.ac.uk/id/eprint/205/. The

code underpinning our main analysis is publicly available at

https://github.com/fws252/Mares_etal_Cortex_2022. We

report how we determined our sample size, all data exclu-

sions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study.

1.1. Participants

A total of 43 participants volunteered to participate in the

study (while no previous power analysis was conducted at the

time, we elected to recruit a similar number of participants as

previous studies, e.g., Balas & Saville, 2015; Balas & Grant,

2016). Participants were included if reporting normal, or cor-

rected to normal vision and were aged between 18 and 40

years of age (criteria decided before data collection). One

person could not be included as they did not agree to complete

the CFMT. Further, to ensure sufficient data quality only those

individuals with at least 30 non-artefact trials per experi-

mental condition in the EEG task were included for analysis,

leaving a final sample of 39 participants (23 females,

M ¼ 26.1 ± 5.1 years of age; criteria decided after data collec-

tion). Written informed consent was obtained from all par-

ticipants and this study was approved by the Ethical

Committee of the Department of Psychological Sciences,

https://researchdata.bbk.ac.uk/id/eprint/205/
https://github.com/fws252/Mares_etal_Cortex_2022
https://doi.org/10.1016/j.cortex.2022.11.004
https://doi.org/10.1016/j.cortex.2022.11.004
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Birkbeck College, University of London (Reference Number

161756/161757). Participants were compensated for their time

either with a small monetary reimbursement equivalent to

minimum wage or undergraduate Psychology course credit.

1.2. Stimuli

This study used greyscale photographs of six male identities

presented frontally with neutral facial expressions (see

Schyns and Oliva, 1999, for examples of the face stimuli).

Faces were digitally manipulated to share the same hairstyle

and outline. Similar photographs of houses (N ¼ 6) were used

as a control condition. House stimuli were masked with an

oval shape sharing the same outline as the one used for the

faces (see Eimer, 2000a for details and examples of the house

stimuli). Luminance and contrast were controlled across

stimuli using the Shine toolbox (Willenbockel et al., 2010).

Inverted versions of the upright images were created for all

stimuli.

1.3. Procedure

Participants took part in a multi-experiment session lasting

between 90 and 120 min, which included a series of face and

object perception and memory tasks associated with a larger

project.3 Participants further completed the CFMTdAustra-

lian4 at the end of the session which provides an estimate of

face identity expertise. In this recognition memory task, par-

ticipants are introduced to a series of novel target identities

shown across three different viewpoints, then asked to

discriminate them from 2 other similar-looking foils. As the

task progresses the difficulty increases and it culminates in a

final stage in which visual noise is added to the test stimuli,

making accurate discrimination particularly challenging

(further methodological details are available in McKone et al.,

2011).

The main experimental EEG task required participants to

closely observe a series of face and house images, presented in

both upright and inverted orientations. To maintain interest

and attention, participants were given the explicit task of

“spotting butterflies” that occasionally appeared to the left or

right of fixation on catch trials (20% of trials), using a keyboard

press to indicating its position (left or right). Using Eprime

software (Version 2.0), face and house stimuli were presented

centrally on a grey background (750 ms) followed by a black

fixation cross of randomly varying duration (1650e1850 ms).

Participants completed 60 trials with each category of stimuli,

for a total of 240 trials, that were fully randomised and
3 Participants also completed a second EEG task in which they
viewed images of different individuals varying in gender (male,
female) and facial expression of emotion, and took part in a
behavioural economics style paradigm in which they controlled
their viewing exposure to a range of further different facial
identities (varying in facial expressions of emotion, attractiveness
and gender). Crucially, these additional tasks were always
completed after the present task and therefore could have no
bearing on the reported findings.

4 This version of the CFMT task is not publicly available. For
visualization, different versions of the CFMT can be searched in
https://www.testable.org/library.
randomly intermixed with a further 60 trials of butterflies.

Trials were divided into 10 blocks of 30 trials with short breaks

permitted between each block. Responses on these butterfly

catch trials were rapid (Mean RT¼ 436ms) and highly accurate

(M ¼ 97%), which supports high levels of engagement with the

explicit behavioural task.

Participants were seated in a comfortable chair in an

electrically shielded and sound-proof room at a distance of

approximately 70 cm from the screen (such that stimuli sub-

tended a visual angle of approximately 4.09� width by 6.13�

height; 176 � 256 pixels).

Of note, prior to participation in the main EEG experiment,

participants completed one face related activity which

comprised a short familiarisation task in which they learned

by name three of the six presented male identities. They then

made a small number of identity categorization decisions on

sub-sampled versions of these faces (216 trials, 72 trials per

face, see Gosselin & Schyns, 2001 for the experimental para-

digm details).5 Participants were not informed about potential

face identity familiarity during the EEG task and this was not

highlighted to them, nor was it a focus for the present anal-

ysis. Our goal here was specifically to explore the existence of

an early neural correlate of face processing expertise and as

such our interest was centred around the timing of the most

widely acknowledged first reliable and robust selective neural

response to faces, the N170 component, which typically peaks

170ms following presentation of a face stimulus over occipito-

temporal brain regions (Rossion& Jacques, 2011). Reliable face

familiarity effects are relatively small in comparison to the

early critical period around the N170 (see Ramon and Gobbini,

2018 for a review), and are typically observed much later,

around 250 ms following face presentation e.g., the N250R

(e.g., Schweinberger, Pickering, Jentzsch, Burton, &

Kaufmann, 2002), a reduced response to repetition of the

same identity, and the N250 (Andrews, Burton,

Schweinberger, & Wiese, 2017; Gosling & Eimer, 2011),

observed when contrasting highly familiar/famous faces to

unfamiliar faces. As such we do not consider the familiarity of

the faces further as an independent variable of study in the

present work. See supplementary materials for confirmatory

results showing the same pattern of findings as reported

below when results are split by the factor of face familiarity.

1.4. EEG recording and analysis

EEG recording was conducted using a fitted cap (EASYCAP)

with either 32 (N¼ 19) or 64 (N¼ 20) AgeAgCl electrodes placed

according to the international 10/10 system. The fitted cap

included two electrodes placed laterally to the eyes in order to

measure horizontal eye movements. Furthermore, an elec-

trode was placed below one of the eyes to monitor vertical eye

movements and blinks. Electrode impedance was lowered

below 10 kU. EEG was acquired at a sampling rate of 500 Hz

and referenced to FCz, with AFz as the ground. Data was

analysed using the Matlab (R2017b) toolbox EEGLAB (Version

13, Delorme & Makeig, 2004). Continuous data was band pass

filtered between .1 and 40 Hz, and epoched around stimulus
5 NB. For technical reasons three participants completed only
120 trials (40 per face).

https://www.testable.org/library
https://doi.org/10.1016/j.cortex.2022.11.004
https://doi.org/10.1016/j.cortex.2022.11.004
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onset from�200ms to 500ms. Epochswere baseline corrected

using the 200 ms previous to stimulus onset. Channels were

selected for interpolation due to noise using EEGLAB auto-

mated criteria (M ¼ 1.9 for participants with caps with 32

channels and M ¼ 5.8 for participants with caps with 64

channels). Catch trials (i.e., those including the butterfly target

images) were removed from all further analysis. The

remaining epochs were then visually inspected to remove

artefacts, namely eye blinks (large deflections observed across

all electrodes, and in the vertical EOG in particular), saccades

(identified using the two horizontal EOG electrodes), muscle

artefacts (high-frequency activity), and large amplitude noise.

A single experienced researcher, naı̈ve to participants CFMT

scores completed this pre-processing. Based on visual in-

spection, 16.93% of trials were rejected (SD ¼ 9.46%). Impor-

tantly there was no difference between higher and lower face

ability participants (based on amedian split of CFMT scores) in

number of trials (t (36) ¼ .277, p ¼ .783).

1.5. MVPA analysis

Multi-variate pattern analysis (MVPA) was employed to iden-

tify potential neural correlates of face processing expertise in

a less constrained manner than typical ERP component anal-

ysis, which focuses on only a small number of pre-specified

electrodes, and tightly constrained time-windows

(Grootswagers, Wardle, & Carlson, 2017). Instead MVPA ap-

proaches use machine learning algorithms to combine infor-

mation across a set of electrodes to differentiate the neural

response associated with distinct categories. We reasoned

that such an approach could provide greater scope to detect

expertise driven changes in the neural response to faces

complimenting more traditional analysis.

To this end, we first establish, at the individual level, when

the neural response to the canonical upright presentation of

faces differs significantly from the response to viewing other

complex visual objects (here houses), and from the response to

the same faces presented in an inverted orientation. The

former contrast (faces vs. houses) is commonly used as a

control category to analyse face selectivity (Eimer, 2000b; Itier,

Alain, Sedore,&McIntosh, 2007; Rossion et al., 1999).While the

latter contrast is considered a hallmark of face processing,

both showsomebehavioural linkswith face expertise (Busigny

& Rossion, 2010; Rezlescu, Susilo, Wilmer, & Caramazza, 2017;

Russell et al., 2009) and it has a well-known and robust early

neural correlate (Itier et al., 2007; Rossion et al., 1999). In a

second step, we then explore if this timeline of face sensitive

decoding (faces vs. houses, upright vs. inverted faces) is

modulated by an independently established measure of face

processing expertise. More specifically, we set out to establish

if the ability with which a model can predict what stimulus a

participant was viewing (e.g., an upright versus an inverted

face) differs significantly as a function of participants’ face

ability. If it does, then we can infer that the electrophysiolog-

ical data that contains information pertinent to the distinct

representation of these two categories (seeGrootswagers et al.,

2017) differs as a function of expertise.

Finally, in order to confirm that any effects of orientation

were specific to faces, we also explored the neural response to
visual objects presented in two orientations (i.e., upright vs.

inverted houses).

MVPA was conducted by training linear support vector

machine (SVM) classifiers on single trial ERPs independently

at each time sample (downsampled to 250 Hz) using a critical

set of posterior electrodes present in all the caps used (O1, O2,

P7, P8, P3, P4, Pz, TP9, TP10), for each of the three planned

binary comparisons. As in previous work, these electrodes

were chosen prior to data analysis, given that they provide

coverage of the key occipito-temporal areas critical for the

visual processing of face stimuli (Farran et al., 2020; Mares

et al., 2020; Smith & Smith, 2019). Prior to training with SVM,

the activity in each feature in the dataset was normalized to

be within a range of �1 to 1 (Smith & Smith, 2019). The test

data was similarly normalized with the same parameters in

order to optimize the classification performance (Chang& Lin,

2011).

For each of the three comparisons, the classifier was

trained (70% of trials) and tested (30% of trials) in independent

sets of data. Number of trials was equalized across experi-

mental conditions (to the condition with the minimum

number of trials by randomly removing trials from the con-

ditionwithmore trials until matched). The random split of the

data in training (70% of trials) and testing (30% of trials) sets

was repeated 20 times to form 20 cross-validation iterations.

To calculate accuracy, the trained classifier was tested against

the average of all trials per condition in the testing set. This

was done in order to better the signal to noise ratio (Smith &

Smith, 2019; Thomas et al., 2010). To increase the robustness

of this procedure, we further repeated it 100 times (Cauchoix,

Barragan-Jason, Serre, & Barbeau, 2014). A measure of chance

level was calculated by repeating the above procedure on tri-

als with permuted labels (i.e., randomly reassigning the

category label).

At the group level, significant decoding was calculated

independently for each time point. A one-tailed paired t-test

(False Discovery Rate [FDR] corrected) was used to compare

average decoding performance in each key comparison with

our measure of chance level. To limit the number of multiple

comparisons, this analysis was only conducted for the time

samples between 60 and 500 ms only (111 comparisons,

Farran et al., 2020; Mares et al., 2020).

To analyse significant decoding at the individual partici-

pant level, an individual chance level distribution was

generated by training a further 899 iterations of the classifier

using permuted labels (see also Farran et al., 2020; Mares et al.,

2020). We included a classifier trained with the true labelling

in the chance distribution of each individual, as it is one of the

possible outcomes (Pereira, Mitchell, & Botvinick, 2009),

making a total of 1000 iterations of the classifier. Significant

decoding, established at each timepoint (FDR corrected) was

considered when the average decoding performance obtained

with correct labels was greater than or equal to 95% of the null

distribution (see Pereira et al., 2009; Smith & Muckli, 2010).

As in previous work (Farran et al., 2020; Mares, et al., 2020)

we used four measures to characterise individual level

decoding: 1) peak decoding performancedthe maximal posi-

tive peak in the key timewindowbetween 100 and 300ms, and

2) latency; 3) decoding onsetddefined as the first time-point

https://doi.org/10.1016/j.cortex.2022.11.004
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where significant decoding exceeds chance and baseline

levels and 4) percentage of significant decoding in the ana-

lysed window (60e500 ms).

Pearson correlations (IBM SPSS Statistics 26) analysed the

relationship between each decoding metric and face pro-

cessing expertise for the three key categorisations (upright vs

inverted faces, upright vs inverted houses, and faces vs

houses). To assess the relative strength of the null hypothesis,

we also ran equivalent Bayes correlations (JASP, Version .14).

The Bayes analysis provides a likelihood ratio, with a value of

1 indicating that both null and experimental hypothesis are

equally likely. Values less than 1/3 provide substantial evi-

dence towards the null hypothesis, and values over 3 indicate

substantial support of the experimental hypothesis, with

values in the middle indicating weak or anecdotal evidence

(Dienes, 2014). For completeness and to aid comparison to

existing literature, we also report the correlation between the

size and latency of the traditional face inversion effect

measured on the P100 and N170 ERP components with face

processing expertise.
2. Results

2.1. Face expertise classification

For visualisation purposes participants were separated into

low (N ¼ 19; 10 females; age, 26 ± 5.12 yrs; Mean CFMT

score ¼ 67% ± 11.81%) and high (N ¼ 19; 12 females; age,

26.21 ± 5.26 yrs; Mean CFMT score ¼ 90.07% ± 3.94%) face

expertise ability groups based on the median split of their

score in the face memory measure, the Cambridge Face

Memory Test (Med ¼ 82; t (21.95) ¼ -8.08, p < .001). Note one

participant was not included in the visualisations as they

recorded a median CFMT score (82).

2.2. Face decoding: group level

Although the primary goal of the present work was to explore

if markers of the early neural response to faces differed as a

function of face processing expertise at the individual level,

we first visualised the results on the artificially dichotomised

group level. We characterise both face orientation decoding i.e.,

classifying the neural pattern as occurring in response to an

upright or an inverted face, and face category decoding i.e.,

classifying the observed neural pattern as occurring in

response to an upright face or a house, as a function of face

processing expertise grouping (Fig. 1 A). Both present a visual

illustration of the time course of decoding accuracy, with

participants grouped as high and low performers on the

measure of face processing expertise (the CFMT).We note that

significant orientation decoding was observed clearly in both

groups, beginning around 80e90 ms after stimulus onset

(88 ms for high, 80 ms for low), with markedly different levels

of decoding, at least initially, which may be indicative of an

enhanced early differentiation in neural response for partici-

pants displaying high face expertise. Similarly, significant
category decoding was observed in both groups from around

90e100 ms (92 ms for high, 96 ms for low) but with little dif-

ference at the group level in decoding magnitude.

2.3. Face decoding: individual level

Rather than rely on observations made at the group level we

formally considered decoding at the individual level and

correlate the 4 markers of decoding profile (peak decoding

magnitude, peak decoding latency, onset of decoding, decod-

ing duration) with individual scores on the CFMT. Impor-

tantly, we observed significant decoding of both face

orientation and face category in all participants in the

considered window (60e500 ms, see Supplementary Figures 1

and 2 for results for plots of the decoding time course for each

individual participant).

There was a clear correlation between peak decoding

magnitude of face orientation and face expertise with an

increased accuracy of decoding for participants with higher

face expertise (r ¼ .51, p ¼ .001, 95% CI [.236 to .714], for

completeness also at the group level using a median split, t

(29.48) ¼ -2.07, p ¼ .047, Cohen's d ¼ .67, see Fig. 1B). This was

supported by the Bayesian correlation analysis with strong

evidence (BF10 ¼ 43.74) for the experimental hypothesis.

Importantly this sensitivity to orientation was face specific,

with no significant decoding of house orientation (upright vs.

inverted buildings) observed (see Fig. 1D), ruling out any

simple explanation at the level of pictorial orientation differ-

ences. Given that there was no significant decoding at the

group level we did not proceed to more in-depth analysis. In

marked contrast to face orientation decoding there was no

significant relationship between peak decodingmagnitude for

category decoding and face expertise (r ¼ .037, p ¼ .824 95% CI

[�.282 to .348]). Rather, the Bayesian analysis indicated evi-

dence for the null (BF10 ¼ .204).

The same profile of enhanced decoding of face orientation

with greater face expertise was observed when trials were

split as a function of potential face identity familiarity (see

Supplementary Figure 3), ruling out a possible role for this

factor in driving the response. Note that this control analysis

is shown for completeness only and no further statistical

analysis is presented due to lack of power (insufficient trial

numbers).

Furthermore, for both face orientation and face category

decoding we observed evidence that decoding began earlier

for participants showing high expertise (face orientation:

r ¼ �.33, p ¼ .038, 95% CI [�.587 to �.019]; Low CFMT

M ¼ 110.53 ± 25.59 ms; High CFMTM ¼ 104.84 ± 22.88 ms; face

category: r ¼ �.34, p ¼ .034, 95% CI [�.593 to �.029; Low CFMT

M ¼ 108.84 ± 26.08 ms; High CFMT M ¼ 102.32 ± 20.76 ms).

However, the Bayes analysis, provides only inconclusive evi-

dence towards the experimental hypothesis in both cases

(face orientation: BF10 ¼ 1.576; face category: BF10 ¼ 1.757).

For both face orientation and face category decoding the

latency of peak decoding was not associated with face

expertise (face orientation: r ¼ �.19, p ¼ .24, 95% CI [�.479 to

.130], Low CFMT M ¼ 172.00 ± 20.69 ms, High CFMT
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Fig. 1 e A. Time course of classification accuracy for face orientation (decoding the neural response to upright

compared to inverted faces) on the left-hand side, and for face categorisation (decoding the neural response to upright

faces compared to upright houses) on the right hand side. For visualisation purposes participants are grouped by

CFMT (%) performance into two groups: above median ability (in blue) and below median ability (in red). Dashed lines

represent chance performance via group level permutation tests. Coloured dots represent points at which group

decoding is significantly greater than chance (p < .05, FDR corrected).

B. Relation of face orientation classification metrics to behavioural face expertise (%) for decoding onset (left), peak

decoding (middle) and decoding sustainability (right).

C. Relation of face categorisation classification metrics to behavioural face expertise (%) for decoding onset.

D. As in A, time course of decoding accuracy for house orientation.
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6 The same pattern was observed when using only the typical
O1 and O2 channels, with a significant correlation between the
FIE as measured with the P100 amplitude and face expertise
(CFMT, r ¼ .42, p ¼ .008) in the absence of any other significant
effect in this component (r < �.265, p > .102).

7 To confirm these findings we ran the same analysis for the
right hemisphere only. Similarly, the FIE was not associated with
face expertise for amplitude (CFMT scores; r ¼ .07, p ¼ .68, 95% CI
[-.253 to .376], BF10 ¼ .216) nor latency (CFMT scores; r ¼ .13, p ¼ .
448, 95% CI [-.201 to .429], BF10 ¼ .267). Further, when looking only
at electrode P7 and P8 FIE was not associated with face expertise
for amplitude (CFMT scores; r ¼ .09, p ¼ .57, 95% CI [-.229 to .397],
BF10 ¼ .233) nor latency (CFMT scores; r ¼ .027, p ¼ .869, 95% CI
[-.291 to .340], BF10 ¼ .202).

8 The same pattern of results is observed for the key compo-
nent N170 when analysing only the more standard P7 and P8 (r < .
119, p > .472).
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M ¼ 183.58 ± 30.98 ms; face category: r ¼ .012, p ¼ .944, 95% CI

[�.305 to .326], Low CFMT M ¼ 177.05 ± 45.70 ms, High CFMT

M ¼ 178.11 ± 51.46 ms) which was supported by the Bayesian

analysis with inconclusive or no evidence towards the

experimental hypothesis (face orientation: BF10 ¼ .389, face

category: BF10 ¼ .200).

Finally, we observed weak evidence of a pattern of more

sustained orientation decoding (longer lasting across the time

course) for participants with higher face processing ability

(r ¼ .32, p ¼ .045, 95% CI [.008 to .579]; Low CFMT

M ¼ 54.48 ± 21.65%; High CFMT M ¼ 66.52 ± 18.2%), that was

not present for face category decoding (r ¼ �.131, p ¼ .43 95%

CI [�.429 to .192], Low CFMT M ¼ 73.54 ± 15.78%; High CFMT

M ¼ 60.83%.±19.26%). Bayesian statistics provided inconclu-

sive evidence towards a relation between expertise and sus-

tainability of face orientation decoding (BF10 ¼ 1.383), and

clear evidence towards no relationship with sustainability of

category decoding (BF10 ¼ .271).

2.4. ERP effects and expertise

In parallel to the multivariate analysis, we explored the rela-

tionship between face expertise as measured on the CFMT,

with the face inversion effect as measured on the P100 and

N170 components (both amplitude and latency).

Channels for ERP analysis were selected based on the

maximum peak amplitude for the P100 (O1/2, P7/8) and N170

components (O1/2, P7/8 and TP9/10) from the average of all

conditions over parieto-occipital channels. The ERP face

inversion effect (FIE) was measured at the P100 and N170

components by subtracting the amplitude measured at the

selected electrodes (bilaterally) for inverted faces, from the

amplitude from the same electrodes for upright faces. JASP

(version .16.3) was employed for subsequent statistical

analysis.

2.4.1. P100
Mean amplitude was calculated for the P100 ERP component

in a 20 ms window centered around the latency of the grand

average peak (100 ms). Individual P100 peaks were identified

for latency analysis as themaximum positive peaks occurring

between 70 ms and 180 ms after stimulus onset in each indi-

vidual. One participant was removed from the FIE latency

analysis due to the lack of a peak in the consideredwindow for

inverted faces.

There was a significant correlation between the FIE and

participants face expertise (CFMT scores; r ¼ �.38, p ¼ .016,

95% CI [.076 to .623], BF10 ¼ 3.207, see Fig. 2, panel A). Given the

potential issues of limited variance resulting from using ERP

difference scores (Meyer, Lerner, De Los Reyes, Laird, &

Hajcak, 2017), we also analysed separately the correlations

for the P100 amplitude for upright and inverted faces and the

CFMT (see Fig. 2, panel B and C). In this case there was no

correlation between the P100 amplitude for upright faces and

CFMT scores (r¼�.24, p¼ .149, 95%CI [�.513 .086], BF10¼ .545),

nor for inverted faces and CFMT scores (r¼ .04, p¼ .789, 95%CI

[�.275 .355], BF10 ¼ .206).

Regarding the P100 latency no correlation was found be-

tween the FIE effect on latencies and participants face

expertise (r ¼ �.17, p ¼ .30, 95% CI [�.467 to .156], BF10 ¼ .339).
As beforewe also show that there is no correlation for the P100

latency for upright faces (CFMT score, r ¼ .104, p¼ .527, 95% CI

[�.218 .406], BF10 ¼ .242), nor for inverted faces (CFMT scores,

r ¼ .06, p ¼ .731, 95% CI [�.267 .371], BF10 ¼ .214).

Finally, to allow for comparison with past research

(Herrmann et al., 2005), we also analysed the differential face

response compared to houses (by subtracting the amplitude

for upright houses, from the amplitude for upright faces).

There were no significant correlations of this measure on the

P100 amplitude/latency and the CFMT (amplitude, r ¼ �.235,

p ¼ .150, 95% CI [�.512 .087], BF10 ¼ .541; latency: r ¼ .146,

p ¼ .377, 95% CI [�.178 .441], BF10 ¼ .291).6

2.4.2. N170
For the N170 component mean amplitude was calculated in a

40mswindow centred around the average peak (160ms). N170

peaks were identified for latency analysis as the maximum

negative peak between 150 ms and 240 ms after stimulus

onset. One participant was removed from the FIE latency

analysis, and two from the category difference (upright face-

sdupright houses) latency analysis due to lack of relevant

peaks in the considered window.

There was no correlation between the N170 FIE and par-

ticipants face expertise (CFMT scores; r ¼ .06, p ¼ .734, 95% CI

[�.264 to .365], BF10 ¼ .211) nor between the N170 amplitude

for upright faces and CFMT scores (r ¼ .13, p ¼ .422, 95% CI

[�.191 .430], BF10 ¼ .272), or between inverted faces and CFMT

scores (r ¼ .08, p ¼ .628, 95% CI [�.242 .386], BF10 ¼ .223).

Similarly, for latencies, a difference between the N170 la-

tency was calculated between upright and inverted faces.

Again, no correlation was found between the N170 FIE effect

on latencies and participants face expertise (r ¼ .06, p ¼ .708,

95% CI [�.262 to .375], BF10 ¼ .216).7 As before we also show

that there is no correlation for the N170 latency for upright

faces (CFMT score, r ¼ .05, p ¼ .752, 95% CI [�.271 .367],

BF10 ¼ .212), nor for inverted faces (CFMT scores, r ¼ �.05,

p ¼ .774, 95% CI [�.358 .272], BF10 ¼ .208).8

Finally, as for the P100, for completeness we analysed the

differential face category response (cf. houses) in an explor-

atory manner. No significant relationship with CFMT scores

was observed for amplitude (r ¼ .075, p ¼ .65, 95% CI [�.246

.382], BF10 ¼ .220) nor latency (r ¼ �.03, p ¼ .876, 95% CI [�.348

.300], BF10 ¼ .207).
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Fig. 2 e Relation of the P100 amplitude for the FIE (A; amplitude for upright faces-amplitude for inverted faces), upright faces

(B), and inverted faces (C) with behavioural face expertise score (%).
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3. Discussion

The current study set out to explore if the early neural

response to faces differs as a function of typical variability in

the level of face expertise, asmeasured by the Cambridge Face

Memory Test. Using multi-variate pattern analysis, at the in-

dividual level, we observe a clear association between face

expertise and the extent to which face orientation informa-

tion could be decoded from the ongoing neural response

(decoding upright compared to inverted faces). Notably this

relationshipwas specific to faces and face orientation, no such

decoding was possible for a control object category (upright

and inverted houses) indicating that the decoding was not

simply that of pictorial orientation cues. Furthermore, no such

relationship was observed between the behavioural face

expertise measure and the decoding of faces as an object

category (decoding upright faces compared to upright houses).

An increased magnitude of decoding of face orientation in

participants with high face expertise indicates a greater dif-

ference in the pattern of neural response to upright compared

to inverted faces in these participants. It is tempting to

interpret this as suggestive of an enhanced neural represen-

tation of the upright face configuration in face experts, but

unlike traditional analysis approaches where the absolute

magnitude of neural response can be visualised and compared

across conditions and groups, due to the nature of the

decoding approach this is not possible. One could equally

conclude that it is in fact a poorer representation of inverted

faces in participants with low face expertise that drives this

difference.

Moderate links were also observed between the onset of

significant decoding both of faces as an object category (up-

right faces compared to houses) and the canonical orientation

of faces (upright faces compared to inverted) with face

expertise as measured via the CFMT. These findings are sug-

gestive of an earlier activation of face specific neuronal
populations in face experts. Differences in onset were small

(~6 ms on average between low and high ability groupings),

with both face orientation and face category decoding signif-

icantly different from chance from around 100 ms post stim-

ulus onset.

While the timing of peak multivariate decoding is more in

linewith theN170 component, it is in fact earlier in thedecoding

timeline that parallel results were found in the complementary

ERP analysis. Here, analysis of the P100 component provides

further support for an early neural link between the differential

response to upright and inverted faces and face expertise, i.e.,

larger face inversioneffectsasmeasuredbytheamplitudeof the

P100 component were directly associated with increased face

expertise score. This association is in linewith extant literature

suggesting that the P100 is sensitive to face orientation

(Colombatto & McCarthy, 2017; Itier & Taylor, 2004a; 2004b;

Minami et al., 2015). Further, early significant decoding of the

neural response to faces as an object category (cf. houses) is in

line past findings indicating face category effects over the P100

(Eimer, 1998; Herrmann et al., 2005; Itier & Taylor, 2004b) in

addition to the more typical low-level stimulus properties

modulating this early neural response.

Unlike the multivariate analysis, with the standard ERP

approach, one can observe the neural response to upright and

inverted faces separately. Despite no significant association of

the response to either category alone with expertise, the

pattern of results provides a tentative indication that it is in

the response to upright faces where the variation is greatest

with respect to face expertise score, appearing to fall as

expertise increases, whereas the response to inverted faces

remains more stable.

We note, however, that the current P100 results are

partially at odds with previous literature where an increased

P100 amplitude to upright faces has been associated with

better face processing ability (Kaltwasser et al., 2014; Turano

et al., 2016). The variability in the response encompased by

this component to face information and expertise (including

https://doi.org/10.1016/j.cortex.2022.11.004
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studies where no effect is found in the P100 component, e. g.

Herzmann et al., 2010) suggests the need for further targeted

investigation to understand the mechanisms driving the dif-

ferential response.

It is interesting to note the absence of any relationship

between decoding or ERP difference measures and expertise

grouping for the comparison of upright faces and houses. This

suggests an effect that is specific to the expert face mecha-

nisms involved in the face inversion effect. Previous accounts

have suggested that the neural correlates of the FIE may be

driven by a violation of expectations generated through a

lifetime of experience with upright faces (Allen-Davidian

et al., 2021; Brodski, Paasch, Helbling, & Wibral, 2015). Devel-

opmental findings seem to support this account, with children

improving their memory ability with upright faces between 8-

9 years and 12e13 years, a timeframe where children start to

show a clear shift in their N170 FIE (Itier & Taylor, 2004c).

While children between 6 and 10 show an increased N170

amplitude for upright faces compared to inverted, this pattern

shifts around 10e11 years of age to the typical N170 FIE with

increased amplitudes for inverted faces from 12 years of age

onwards (Taylor, Batty, & Itier, 2004). This pattern would be

compatible with an experience based development of face

expectations, and the notion that an increase in the N170 for

inverted faces reflects an increase in prediction error, associ-

ated with the violation of expectations. Stronger support for

this account is given by findings in adults where the N170 face

inversion effect increases with multiple violations of viewer's
expectations (e.g., orientation, illumination from above or

gravitational pull; Allen-Davidian et al., 2021). In line with this

account, participants with increased face expertise, might be

able to construct stronger expectations for upright faces, and

thus be more sensitive to violation of expectations in inverted

faces as translated in their neural responses.

In the present study, the main association between expert

face processing and early neural response was observed in

relation to face orientation, both in the decoding of the neural

signal and the P100 amplitude. The behavioural face inversion

effect has a longstanding history (Yin, 1969) and is often

considered a hallmark of expert face processing, alongside

e.g., the composite face effect (Farah,Wilson, Drain,& Tanaka,

1998) in highlighting specialised processes for (upright) faces

(Valentine, 1988). In interpreting the current findings, it is

worth considering the functionality likely to be driving this

difference in decoding. Distinct profiles of neural responses to

upright vs inverted faces could reflect quantitative and/or

qualitative differences in the underlying processes. ERP the-

orists are divided on whether observed signal enhancement

for inverted (cf. upright) faces is best understood as a reflec-

tion of the relatively increased difficulty of processing the

non-canonical view (i.e., the same mechanisms utilized in

both cases), or additional processing resources are recruited

for inverted stimuli (e.g., object-general encoding systems),

which complement those used for upright faces (see Sadeh &

Yovel, 2010 for discussion). Here, although the selective links

observed between orientation effects and face recognition

ability make it tempting to conclude that our findings high-

light the importance of finely-tuned face-selective neurons for

expertise, our MVPA and ERP results are actually consistent

with either of these possibilities. It is interesting to note that
relatively attenuated face inversion effects have also been

reported in ERP studies with individuals with developmental

prosopagnosia (e.g., Towler et al., 2012). There, researchers

remain similarly agnostic regarding whether the reduced

differentiation of neural activity associated with upright and

inverted faces reflects quantitative or qualitative differences

in the encoding of upright vs inverted faces in this clinically

impaired group (Towler et al., 2017).

Here we chose to use the Cambridge Face Memory Test as a

measure of face expertise in our participants. This behavioural

task, with a considerable cognitive andmemory demand, is not

the most likely candidate to correlate directly with early neural

responses that are driven largely by early perceptual processing

(e.g., see discussion by Xu, Liu-Shuang, Rossion, & Tanaka,

2017). That there is such a clear association speaks to the

importance of considering the earlier, likely more perceptual

aspects, of face processing when trying to understand typical

variability in face-expertise. Further, as highlighted by Rossion

and colleagues (Rossion, Retter, & Liu-Shuang, 2020) it is

important to keep in mind that face processing at the behav-

ioural level and the neural response to faces are comprised of a

myriad of different factors and neither reflects a “true” baseline

marker of face processing per se. In all instances the particulars

of the task employed will necessarily drive differences in the

extent to which different mechanisms are employed. Here, we

choose to use an explicit task unrelated to face processing

(detection of butterflies on discarded catch trials) while

recording brain response to images of faces and houses. The

absence of a specific concurrent face-related behavioral task is

important to the extent that it removes any potential biases

driven by associated differences in performance/strategy that

our differentially skilledparticipantsmighthave. Future studies

could explore howexplicit face processing tasks,which tap into

different aspects of face processing (e.g., tasks with perceptual

vs. a memory component) modify these associations. A poten-

tial limitation of the current study is the use of the standard

version of the CFMT to index participants’ face expertise. This

measure is likely to have a more limited range of scores

compared to the harder, extended form of the task that is being

used increasingly in individual differences research (Russell

et al., 2009). Indeed, we observed very high performance on

this task inseveral subjects (Fig. 1),whichmighthavesomewhat

constrainedour ability to identify associationswith the targeted

neural markers.

A clear strength of the current analysis approach is in the

use of machine learning tools, complimenting traditional ERP

approaches, to tease apart differences in themeasured neural

response. In particular, using a multi-variate pattern classifi-

cation algorithm which inputs data from across a wide region

of the scalp (here all occipital and parietal channels) neces-

sarily permits a more diffuse pattern of response to be eval-

uated and contrasted between conditions. Where traditional

ERP analysis tend to be restricted to a small subset of elec-

trodes (in some cases only one or two per hemisphere) and

around the peak of the component of interest, MVPA uses

information from across the electrodes at each time sample.

Importantly, rather than rely on overall group statistics to

highlight when classification is possible at greater than

chance levels as is often the case with such classifier ap-

proaches (e.g., Barragan-jason, Cauchoix,& Barbeau, 2015), we
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extended our approach to classify the response at the indi-

vidual participant level. It is noteworthy that such classifica-

tion was possible in each and every participant tested,

allowing us to draw out clear metrics of classification (peak

decoding accuracy, latency of onset of significant decoding,

latency of peak decoding and overall decoding across our

epoch of interest) and apply standard inferential statistical

approaches alongside Bayesian analysis to directly compare

performance in a continuous manner. This represents a clear

extension of previous applications of pattern classification to

dynamic brain signals and to this topic in particular (e.g., Balas

& Grant, 2016) providing a considerably more nuanced ac-

count of the topic under investigation. Such an approach

where we explore decoding at the individual rather than

group level is especially important in studies such as ours,

where there is no established principled means to separate

participants into dichotomous groups (a CFMT score may be

considered to be high in one study and low in another based

simply on the specifics of the sample).

In conclusion, we show that differentiation of the early

neural response to upright and inverted faces is significantly

associated with an independent explicit behavioural measure

of face processing ability. Compared to individuals who

perform less well on the behavioural task, individuals who

perform better exhibit a pattern of neural response to upright

faces that is significantly more distinct from their response to

inverted faces, as evidenced both by MVPA and by more

traditional ERP analyses. Further this classification of upright

faces (vs. inverted faces or objects) begins earlier in the pro-

cessing time course for individuals with better scores on the

behavioural task. As results continue to emerge of clear indi-

vidual differences in the behavioural and neural response to

faces within the typical population it is becoming clear that

researchers must consider this natural variation in cognitive

and neuro-cognitive models of face processing.
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