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Abstract 
 

Nanopore sequencing technology has the potential to revolutionise metagenomics by 

providing long reads, which can improve taxonomic classification and assembly 

contiguity, near real-time analysis, enabling rapid results and improved sequencing 

efficiency, and portability, allowing sequencing in the field. However, the full potential of 

these features is largely unrealised due to the lack of available tools and methods. In this 

thesis, we report on tools and analysis methods that facilitate the use of nanopore 

sequencing technology for metagenomics and real-time analysis.  

Applying metagenomics to samples containing a mix of eukaryote species, such as bee-

collected pollen, is challenging due to lack of available reference genomes. This thesis 

presents a new method, RevMet (Reverse Metagenomics), for semi-quantitative 

characterisation of mixed eukaryote samples without the need for complete reference 

genomes. Instead, each reference species is represented by a low-cost genome skim. 

The short-read reference skims are mapped to the long nanopore query reads to 

individually classify them, which is the reverse of the standard metagenomic approach of 

mapping reads to (assembled) references. 

Recognising the need for an open-source software tool for real-time analysis and 

visualisation of metagenomic sequencing data, we developed MARTi (Metagenomic 

Analysis in Real-Time). MARTi provides a rapid, lightweight web interface that allows 

users to view community composition and identify antimicrobial resistance genes in real 

time. MARTi consists of two main parts, the Engine and the GUI, and can be configured 

in multiple ways to suit the needs of the user. We demonstrate MARTi on live nanopore 

sequencing runs - firstly, using a mock gut community and, secondly, using clinical faecal 

gut microbiome samples taken from patients suffering from liver disease. 
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1 Chapter 1 – Introduction 
1.1 Metagenomics 

Microorganisms have colonised almost every natural environment on Earth, they 

regulate global biogeochemical cycling, have a huge impact on the biosphere, 

influence host health, and are the most abundant and diverse organisms of all three 

domains of life. Until recently, only a small fraction of this diversity could be 

characterised as traditional microbiology relies on culture-based methods and the 

vast majority (>99%) of microorganisms are unculturable with current techniques 

(Amann et al. 1995). The emergence of high-throughput sequencing has led to new 

ways of studying the microbial world, revealing previously hidden diversity and 

functional ability of complex microbiomes. These methods include metabarcoding, 

which involves the amplification and sequencing of marker genes which must contain 

conserved regions (for primer design) flanking variable regions which when 

sequenced are taxonomically informative e.g. ribosomal RNA genes, and 

metagenomics, the untargeted sequencing of all genomes present in a sample 

(Driscoll et al. 2017).  

In contrast to targeted metabarcoding approaches, metagenomics uses genome-

wide shotgun sequencing to capture a wealth of genomic information from across the 

genomes of all members in complex communities. As a result, metagenomics not 

only offers taxonomic profiling with greater discriminatory power, but also functional 

insights, and potentially whole genomes. Metagenomics has a wide range of 

applications that includes facilitating the discovery of new enzymes and biomolecules 

with potential applications in industry and medicine (Wilson and Piel 2013; Ferrer et 

al. 2016), providing a better understanding of the composition and functional ecology 

of different environmental communities (Grossart et al. 2020), and identification of 

pathogens and their antimicrobial resistance genes in clinical samples (Chiu and 

Miller 2019; De 2019).  
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1.2 Third-generation sequencing 

The rapid development and expansion of the metagenomic field was largely driven 

by advances in sequencing technologies and associated computational analysis 

(Escobar-Zepeda et al. 2015). Next-generation sequencing (NGS) technologies, such 

as Illumina’s sequencing by synthesis (SBS), greatly reduced sequencing costs due 

to massive increases in throughput. Consequently, metagenomic sequencing 

projects could be carried out at a greater scale and depth than possible with Sanger 

sequencers (Karsenti et al. 2011). Nevertheless, due to the short read lengths (35 - 

300 bp) produced by Illumina’s sequencing platforms, the information contained in 

individual sequences is limited. As a result, reads can be difficult to correctly classify 

and for many applications must first be assembled into longer contiguous sequences. 

Assembly of such short sequences is computationally challenging and as they are 

unable to span intra- and intergenomic repeats, can result in highly fragmented 

metagenomic assemblies (Somerville et al. 2019; Ayling et al. 2020).  

Third-generation sequencing technologies, such as the platforms developed by 

Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), can 

produce extremely long reads, i.e., multi-kilobase and even up to multi-megabase for 

ONT. Although they have lower per base accuracy than short reads, longer reads 

contain more information per read, and can overcome many of the known problems 

associated with short-read metagenomics, especially when the sequencing depth is 

high enough to allow error correction (Koren et al. 2012; Somerville et al. 2019). Long 

reads have increased taxonomic classification accuracy and can simplify the 

challenge of metagenomic assembly (Pearman et al. 2020; Cusco et al. 2021). 

Furthermore, these platforms can sequence native molecules, thus eliminating 

amplification bias and enabling detection of base modifications (Amarasinghe et al. 

2020). Despite these advantages, long-read metagenomics is still in its infancy and 

there are fewer tools available for assembly and classification of metagenomic 
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sequences from third generation platforms (Driscoll et al. 2017; Kolmogorov et al. 

2020). 

 

1.3 Nanopore sequencing 

1.3.1 The MinION 

ONT’s MinION was the world’s first commercially available nanopore-based DNA 

sequencer. Due to its small size and ability to generate ultra-long reads, the USB-

powered device is particularly attractive for metagenomic analysis and in-field 

sequencing. Nanopore sequencing is being applied in metagenomics in a number of 

different ways, including: assembly of complete bacterial genomes from complex 

microbiomes (Moss et al. 2020), pathogen identification and clinical diagnosis 

(Charalampous et al. 2019), and using the DNA methylation data for binning 

metagenomic contigs and linking mobile genetic elements to their host genomes 

(Tourancheau et al. 2021). Furthermore, the MinION has been deployed in a number 

of different environments for in-field sequencing, including the Antarctic dry valleys 

(Johnson et al. 2017), cloud forests in Tanzania (Menegon et al. 2017), and even on 

the International Space Station (Castro-Wallace et al. 2017).  

 

1.3.2 ONT’s sequencing platforms 

Since first becoming publicly available in April 2014 when the MinION Access 

Programme (MAP) was launched, ONT have continually improved their sequencing 

chemistry and basecalling software resulting in substantial increases in throughput 

and accuracy. Early adopters of the MinION, using the first available chemistry (R6), 

reported typical flow cell yields of 100s of megabases with median accuracy of 61.6% 

to 71.5% based on mapping back to reference genomes (Ashton et al. 2015; Laver 

et al. 2015). However, with more recent chemistries and software the MinION 
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regularly produces over 10 gigabases per flow cell with median accuracy of greater 

than 90% (Urban et al. 2021; Wu et al. 2021). ONT has also expanded its range of 

sequencing hardware in order to cater for projects of various sizes and currently 

consists of the following:  

• MinION (Mk1B and Mk1C) – There are currently two versions of the MinION 

available, the base model, Mk1B, and a newer model that has integrated 

basecalling hardware and a screen, Mk1C. Both devices take a single MinION 

flow cell, which can produce up to 30 gigabases of sequencing data. 

• GridION (Mk1) – A benchtop device with integrated real-time basecalling 

hardware and capacity to run five MinION flow cells either individually or at the 

same time, producing up to 5 x 30 Gb, 150 Gb total yield.   

• PromethION (P24 and P48) – Designed for large-scale sequencing, 

PromethION comes in two models, P24 and P48, that have capacity for 24 and 

48 PromethION flow cells respectively. Each flow cell is capable of producing 

up to 200 Gb, giving total potential yields of 4.8 Tb and 9.6 Tb.  

• Flongle – A flow cell dongle, or adapter, that allows cheap, low throughput, 

Flongle flow cells to be run on a MinION or GridION. Produces up to 1.8 Gb 

per flow cell. 

 

1.3.3 Strand sequencing technology 

Unlike Illumina’s SBS technology, nanopore sequencing does not require DNA 

template amplification or the use of modified fluorescent bases. Instead, ONT’s 

technology, known as ‘Strand sequencing’, allows direct detection of native 

polynucleotides, DNA or RNA, passing through protein nanopores embedded in an 

electrically resistant membrane (Figure 1.1). A voltage is applied across the 

membrane, causing ions to flow through the embedded pores. During library 
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preparation, modified helicase enzymes, known as ‘Motor proteins’, are added to the 

ends of each DNA/RNA molecule. These proteins unzip the double helices and feed 

single stranded molecules through the pores at a steady rate. As strands pass 

through the pores, sensors detect the disruptions in ionic current across each pore 

caused by the traversing nucleotide sequences. The current measurements, referred 

to as ‘squiggles’, are computationally interpreted to produce basecalled sequences.  

 

Figure 1.1 Illustration of ONT’s strand sequencing technology. A voltage applied across the 
membrane causes ions to flow through the embedded nanopores. Single stranded DNA is fed 
through the pore at a controlled rate by the motor protein. The combination of nucleotides 
present in the pore causes characteristic disruptions in the electrical current. The ionic current 
measurements, known as squiggles, are converted into basecalled sequences. Figure from 
Kerstin Göpfrich, Science in School (https://www.scienceinschool.org/article/2018/decoding-
dna-pocket-sized-sequencer). 

 

1.3.4 Library preparation 

ONT have developed an array of different library preparation kits and protocols for a 

wide range of DNA and RNA sequencing applications. The most applicable kits for 

shotgun metagenomics are the Ligation Sequencing Kit (LSK) and the Rapid 

Sequencing Kit (RSK). These kits are amplification free and therefore allow direct 

sequencing of native DNA, eliminating the potential for PCR bias and enabling the 
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detection of base modifications. The LSK is optimised for throughput and involves 

fragmentation of DNA to desired length (optional, but can improve yield), followed by 

repair and dA-tailing of ends, and finally ligation of sequencing adapters. On the other 

hand, the RSK is optimised for simplicity and speed (i.e., can be completed in as little 

as 10 minutes), relying on transposase to randomly fragment DNA and 

simultaneously add sequencing adapters. There is also a lyophilized version of the 

RSK, called the Field Sequencing Kit, that can be stored at temperatures of up to 30 

°C for one month making it ideal for use in the field where access to cold storage may 

be limited. 

 

1.3.5 Basecalling 

The raw ionic current measurements are converted to DNA or RNA bases, and 

several types of modified bases, by ONT’s Guppy software. The tool can be run from 

the command line for post-sequencing basecalling, but is also integrated into ONT’s 

sequencing instrument software, MinKNOW, for real-time basecalling and 

demultiplexing. Real-time basecalling is made up of several processes that are 

executed one by one: First, the ionic current measurements from the sequencing 

device are collected by MinKNOW and processed into a read; the raw read signal is 

transformed into basecalls using models based on a Recurrent Neural Network 

(RNN); and finally, the basecalled reads are written into FASTQ files, with a default 

of 4000 reads per file. 

Guppy can be run on both Central Processing Units (CPUs) and Graphics Processing 

Units (GPUs). However, it is optimised for certain NVIDIA GPUs and can perform 

several orders of magnitude faster running on one of these GPUs vs a standard 

desktop CPU.  
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Guppy offers three different basecalling models: Fast model, designed to keep up 

with real-time data generation on ONT’s sequencing platforms; High accuracy (HAC) 

model, provides higher accuracy than the Fast model, but is 5 to 8 times more 

computationally intensive; and Super accurate (sup) model, that provides even higher 

read accuracy than the HAC model, but is roughly 3 times more intensive.  

 

1.3.6 Real-time analysis 

A key advantage of ONT’s sequencing platforms is their potential for real-time 

analysis. The devices stream the electrical current data from individual nanopores as 

DNA molecules pass through them, enabling basecalling and other analyses to occur 

whilst sequencing is still in progress. This capability can be exploited for time-critical 

applications, such as rapid infection diagnosis and real-time environmental 

monitoring. Proof-of-concept studies have demonstrated real-time pathogen 

identification in clinical samples including prosthetic joints and preterm baby gut 

microbiomes (Sanderson et al. 2018; Leggett et al. 2020).  

Real-time analysis also allows sequencing decisions to be made on the fly. For 

example, with the technique ONT calls ‘Run until’, sequencing can be ended early if 

enough data has been collected to meet the goal of the run, such as a certain 

sequencing depth reached for a specific region of interest, or species of interest 

(Payne et al. 2021).  

Another real-time utility of ONT’s platforms is ‘Adaptive sequencing’, which allows 

users to enrich or deplete target DNA during a run. DNA molecules are ejected by 

reversing the voltage across individual pores, freeing them up for new molecules. 

This technique has been demonstrated with varying success in both squiggle space, 

by pattern matching live ‘squiggles’ to synthesized reference squiggles of the target 
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sequence, and base space, which relies on real-time basecalling and alignment to 

reference sequences (Loose et al. 2016; Martin et al. 2021; Payne et al. 2021). 

 

1.3.7 Limitations 

With the MinION Mk1B starter pack costing just £800 (includes the sequencer, a flow 

cell, a flow cell wash kit, and a library preparation kit), nanopore sequencing is 

accessible to almost any research group in the world, enabling them to generate their 

own long-read data and access it in real-time. Nonetheless, nanopore sequencing 

currently has several limitations.  

Perhaps of most concern in many applications is the error rate. The current nanopore 

error rate (typically < 5%) is much higher than that of Illumina (~0.1%) and is enough 

to obscure differences between highly similar sequences. Nanopore error rate can be 

expected to reduce over time due to upgrades in hardware, chemistry, and software. 

Some of the ways ONT hopes to improve accuracy in the near future include 

engineering new pores with improved signal-to-noise ratio, developing a method of 

re-reading native molecules, and improving the basecalling algorithm.  

Although read length is one of nanopore sequencing’s biggest strengths, further 

increases in average read length would facilitate improved assembly and taxonomic 

classification accuracy. Recall (the ratio of correctly classified reads to all reads) for 

long nanopore reads (4000 bp) has been shown to be equal to or higher than even 

the longest Illumina reads (300 bp) regardless of kingdom or classification method. 

For animals and plants, recall improves almost three-fold as read length increases 

from 300 bp to 4000 bp (Pearman et al. 2020). Generating long metagenomic reads 

from all organisms within a community will require improved DNA extraction methods 

and library preparation protocols. Imposing a minimum read length filter before 

classification is also recommended.  
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Another potential limitation of nanopore sequencing is the relatively high input 

requirements for producing a library. As PCR amplification is unsuitable for very long 

DNA fragments and does not preserve base modifications, PCR-free library 

preparation is required for many applications. As a result, the required DNA input can 

be in the multi-microgram range for long-read libraries.  

Finally, as a newer sequencing technology, there are fewer user-friendly 

bioinformatics tools available to nanopore users. As a result, the bioinformatic and 

computational skill required to analyse the data is relatively high. New easy-to-use 

tools and methods would further increase the accessibility of nanopore sequencing. 

 

1.4 Analysis tools 

Together, the long reads and real-time analysis potential provided by nanopore 

sequencing could revolutionise metagenomics by improving classification accuracy, 

metagenomic assembly, sequencing efficiency, and by reducing the time to result. 

However, the full potential of these features is largely unrealised as the analysis tools 

and pipelines lag behind the hardware developments. As a result, metagenomic 

analysis of nanopore data often relies on methods and tools that have been optimised 

for high-quality short reads.  

 

1.4.1 Classification 

One of the main challenges in the field of metagenomics has been the development 

of computational methods to accurately classify reads to taxa. Strategies for read 

classification can be divided into two main categories: alignment-based, such as 

BLAST and minimap2; and alignment-free, which includes Kraken, Kraken2, 

Centrifuge, CLARK, MetaMaps and Bracken.  
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BLAST (basic local alignment and search tool) is one of the most popular tools for 

sequence alignment and is considered by some to be the gold standard (Altschul et 

al. 1990). Although not specifically designed for metagenomics, it is easily applied to 

this problem and remains one of the best methods available. BLAST, and other 

alignment-based tools, can be very accurate and can output useful information such 

as genomic locations and alignment qualities for individual reads. Alignment-based 

tools are computationally intensive and are typically slower than alignment-free 

methods. Efforts have been made to increase the speed of alignment tools by 

developing both more efficient algorithms and hardware-accelerated implementations 

of existing tools. For example, DIAMOND, an alternative algorithm to BLASTX, is 

capable of aligning translated nucleotide queries to protein databases at twenty-

thousand times the rate of the original tool (Buchfink et al. 2015).  

The ever-increasing throughput of sequencing technologies coupled with the 

exponential growth of the number of available microbial genomes has led to massive 

increases in the number of comparisons that need to be performed during 

classification. Alignment-free tools such as Kraken and Centrifuge have been 

developed for faster and more efficient metagenomic classification and abundance 

estimation (Wood and Salzberg 2014; Kim et al. 2016). To classify a sequence, 

Kraken searches for exact matches in a database for each k-mer in the query 

sequence. Each k-mer is mapped to the lowest common ancestor (LCA) of the 

genomes that contain that k-mer. The lowest level taxon with k-mer assignments in 

the root-to-leaf (RTL) path with the highest sum of mapped k-mers is the classification 

used for the query sequence. With short, accurate, reads, Kraken can be both 

accurate and fast, achieving low-level resolution and classifying millions of reads per 

minute (Wood and Salzberg 2014). However, Kraken’s exact k-mer matching 

algorithm requires a large index, resulting in substantial memory requirements that 
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effectively restricts its use to high-performance computing clusters and smaller 

databases.  

Centrifuge was developed to overcome the memory requirement issue faced by 

Kraken and enable rapid metagenomic classification on a personal computer. This 

was accomplished by replacing the k-mer based indexing with a method based on 

the Burrows-Wheeler transform and Ferragina-Manzini index (Kim et al. 2016). For a 

database of 4,278 complete prokaryotic genomes, Kraken requires ~100 GB of 

memory for its index, whereas Centrifuge only requires 4.2 GB. This space-efficient 

indexing makes it possible for Centrifuge to index the entire NCBI nucleotide (nt) 

database, which is a comprehensive collection of sequences from viruses, bacteria, 

archaea, and eukaryotes, making it one of only a few practical alternatives to BLAST 

for classifying sequences to nt.  

A downside to alignment-free methods is that they are more sensitive to third-

generation sequencing error profiles. The mismatches and indels prevent exact k-

mer matches, increasing the chance of misclassifications, especially when classifying 

organisms that have high sequence identity. As a result, alignment-free classification 

methods often have less discriminatory power at lower taxonomic levels compared to 

inexact alignment strategies such as the one used by BLAST.  

 

1.4.2 Data exploration 

The output from classification tools can often be complex and many tools, including 

BLAST and Centrifuge, give multiple taxonomic assignments per read by default 

rather than a single LCA assignment, as is the case for Kraken. Tools such as 

MEGAN (MEtaGenome ANalyzer) and Pavian enable exploration and visualisation of 

metagenomic classification results.  
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MEGAN works with output from alignment-based algorithms, such as BLAST, MALT, 

and DIAMOND, for taxonomic profiling and functional analysis (Huson et al. 2007). 

The tool uses an algorithm to assign each read to the lowest common ancestor of the 

set of taxa that the sequence had alignments to. MEGAN provides graphical output, 

including interactive taxonomic trees, pies, and bar charts, as well as statistical 

output. The program, written in Java for portability, runs locally on a desktop or laptop, 

but can require a lot of memory and often suffers from long response times to user 

inputs. There are two versions of MEGAN: Ultimate edition, which has all of the 

features and regular updates, but is only available by purchasing a commercial 

license; and Community edition, which is free to use, but only offers a subset of the 

features from Ultimate edition and will have no new features added.  

In contrast to the heavyweight MEGAN software, Pavian is a lightweight Shiny web 

app with a backend written in R (Breitwieser and Salzberg 2020). The app is free to 

use and enables users to visualise and explore results from certain alignment-free 

classifiers, such as Kraken, Centrifuge and MetaPhlAn. Pavian has a simple interface 

and features interactive tables, heatmaps and Sankey flow diagrams for exploring 

and comparing complex metagenomics datasets. 

Another web-based tool, One Codex, offers both k-mer based classification and 

visualisation of results on the same web platform (Minot et al. 2015). Sequencing data 

is uploaded in FASTA or FASTQ format to the platform via the GUI’s upload tool or a 

command-line tool. Once uploaded, reads are classified, and an interactive report is 

generated and linked to the user’s account. Unfortunately, the user has little control 

over classification parameters, the reference database is not customisable, and after 

a certain number of free analyses the service must be paid for. 
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1.4.3 Real-time analysis tools 

Regardless of the classification method used, overall time to analysis results for a 

metagenomic sequencing project still often takes several days as analysis only 

begins once the sequencing run has finished. This limits the utility of traditional 

sequencing approaches in settings where rapid species identification is crucial, such 

as during an outbreak of an infectious disease, or clinical diagnosis of an antibiotic 

resistant infection. None of the data exploration tools mentioned in the previous 

section (MEGAN, Pavian, and One Codex) have been specifically designed for 

nanopore data and they are all incapable of real-time analysis. ONT’s own EPI2ME 

platform is currently the only example of a real-time metagenomic analysis tool.  

Two of the most popular workflows on the EPI2ME platform are WIMP (What's In My 

Pot) and ARMA (antimicrobial resistance mapping application). WIMP classifies 

reads using Centrifuge with a database of bacterial, viral, and fungal RefSeq 

genomes and presents a taxonomic tree view of the sample (Juul et al. 2015). ARMA 

aligns reads with minimap2 against all reference sequences available in the CARD 

database, the Comprehensive Antibiotic Resistance Database (Alcock et al. 2020), 

to identify antimicrobial resistance (AMR) genes. 

The EPI2ME platform provides near real-time analysis but has limitations due to its 

closed nature. The workflows offer no flexibility or customisation, including 

classification parameters and reference database. This makes WIMP unsuitable for 

analysing some kinds of datasets – e.g.  from environments that contain microscopic 

eukaryotes, such as ocean metagenomes. Additionally, EPI2ME can only be 

accessed by ONT customers and analyses require credits, known as ‘Metricoins’, to 

run. As an online service, the user requires a fast and stable internet connection, and 

the platform can be prone to lag. Together, these limitations highlight the need for 

open-source alternatives. 
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1.5 Nanopore and hybrid approaches for metagenomics 

Nanopore sequencing has facilitated the study of complex metagenomic samples by 

providing long, information-rich, reads in real time using relatively inexpensive and 

portable hardware. The use of long reads has led to the resolution of complex 

genomic structures and simplified the task of recovering metagenome-assembled 

genomes (MAGs) (Cusco et al. 2021; Kinkar et al. 2021; Sereika et al. 2022). 

Furthermore, the low-cost and portable MinION platform together with the availability 

of rapid library preparation protocols makes nanopore technology an attractive tool 

for real-time in-field sequencing of environmental and clinical metagenomic samples. 

Nevertheless, before embarking on a nanopore metagenomic sequencing 

experiment a few considerations need to be made. These considerations include 

target read length, sequencing costs, and availability of protocols and analysis tools. 

Target read length will depend greatly on the question being asked and quality of the 

extracted DNA. If high molecular weight (HMW) DNA can be recovered from the 

sample and the goal is assembly, long or ultra-long reads (read N50 > 50 kb) can be 

generated using ONT’s Ligation Sequencing Kit or Ultra-Long DNA Sequencing Kit. 

However, the longer the target read length is, the higher the DNA input requirement 

becomes for efficient library preparation and sequencing.  

For taxonomic characterisation studies, a greater number of shorter reads with a 

more uniform read length distribution would allow for better species detection and 

abundance estimates. For greater throughput and uniformity, DNA should be 

fragmented and size selected prior to library construction with the Ligation 

Sequencing Kit. Due to the losses that occur during fragmentation and size selection, 

this approach also has a relatively high DNA input requirement.  

If it is not possible to obtain enough DNA from the sample to meet the Ligation kit 

input requirements, users could consider ONT’s PCR-free transposase-based Rapid 
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Sequencing Kit which has a lower recommended input requirement of 400 ng. 

However, the DNA still needs to be relatively high molecular weight as the kit is 

optimised for fragments greater than 30 kb. ONT’s Rapid-based kits also achieve 

lower throughput than the Ligation-based kits.  

One of the main advantages of ONT’s sequencing platforms is that there is no capital 

cost for the hardware, only the consumables need to be purchased, making the 

devices much more accessible for those who wish to do their own sequencing. 

Sequencing costs per gigabase (Gb) of data range from around £25 to 50 for the 

MinION and £17 to 35 on their largest scale platform, the PromethION P48. This 

compares favourably to the £150 per Gb for an Illumina MiSeq Reagent Kit v3 600-

cycle run, a popular choice for metagenomics due to the longer 300 bp PE reads. 

However, 250 bp PE reads can be obtained at a much lower cost, around £15 – 20 

per Gb, with Illumina’s production scale NovaSeq 6000 platform using an SP flowcell. 

To date, most metagenomic studies have relied on high-throughput short-read 

sequencing. However, these short reads limit taxonomic assignment resolution and 

result in highly fragmented assemblies. Long nanopore reads can be more 

taxonomically informative and lead to highly contiguous MAGs (Cusco et al. 2021). 

Nevertheless, due to higher error rates nanopore-only assemblies still often contain 

insertions and deletions (indels), especially in homopolymer regions, that can cause 

frameshift errors during gene calling (Watson and Warr 2019). A widely adopted 

solution has been to use a hybrid approach, assembling the long nanopore reads and 

then using short accurate reads for post-assembly error correction (Chen et al. 2021).  

Hybrid approaches benefit from the advantages of both read types but suffer from 

increased costs and complexity. As ONT continue to make improvements to the 

hardware, software, and chemistry of their platforms, accuracy and yield are likely to 

improve further, lessening the incentive to use hybrid approaches and resulting in 

more nanopore-only metagenomic studies (Sereika et al. 2022). 



16 
 

1.6 Thesis scope 

This introduction has shown the importance of metagenomics and the growing role 

that nanopore sequencing is playing in helping to answer questions about microbial 

communities. Yet tools designed specifically for nanopore analysis are rare and the 

only user-friendly tool capable of real-time classification is the EPI2ME service 

provided by ONT, which is not open and has significant limitations. 

The overarching aim of this project was to generate analysis methods and tools that 

facilitate the use of nanopore sequencing technology in the field of metagenomics 

and for real-time applications. The work presented in this thesis leverages two key 

features of the technology, long reads and real-time data, and covers the following 

areas:   

• Development of the RevMet (Reverse Metagenomics), a hybrid sequencing 

approach that utilises long nanopore reads for semi-quantitative 

characterisation of mixed-species eukaryote samples without the need for 

complete reference genomes, instead using short-read genome skims 

(Chapter 2). 

• Development of a new software package MARTi, Metagenomic Analysis in 

Real-Time, an open-source tool that enables real-time analysis and 

visualisation of metagenomic sequencing data in a lightweight browser 

interface (Chapter 3). 

• Demonstration of MARTi’s ability to accurately profile the taxonomic 

composition of a known microbial mix and carry out real-time characterisation, 

including anti-microbial resistance gene identification, of clinical samples 

(Chapter 4). 

• A summary of the work presented in this thesis and discussion of future 

directions (Chapter 5). 
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2 Chapter 2 – Semi-quantitative characterisation of 

mixed pollen samples using MinION sequencing 

and Reverse Metagenomics 
 

This chapter is an adaptation of work that was published in Methods in Ecology and Evolution: 

Peel, N., Dicks, L.V., Clark, M.D., Heavens, D., Percival-Alwyn, L., Cooper, C., Davies, R.G., 

Leggett, R.M. and Yu, D.W. (2019). Semi-quantitative characterisation of mixed pollen 

samples using MinION sequencing and Reverse Metagenomics (RevMet). Methods in 

Ecology and Evolution, 10(10), pp.1690-1701. 

2.1 Introduction 

Pollination is a key ecosystem service; almost 90% of all flowering plant species, 

including 75% of food crops (mainly fruits, nuts, and vegetables), rely on animal 

pollination (Klein et al. 2007; Ollerton et al. 2011). The benefits of pollinators, and 

pollinator-dependent plants, also include the production of medicines, biofuels, fibres, 

and construction materials (Potts et al. 2016a). There is growing concern over the 

decline of wild and domesticated pollinators and the resulting decrease in pollination 

services and crop production (Potts et al. 2010; Burkle et al. 2013). These declines 

are thought to be caused by multiple threats acting together, including habitat loss, 

climate change, and the spread of diseases (Vanbergen et al. 2013). 

To mitigate drivers of pollinator decline, the Intergovernmental Science - Policy 

Platform for Biodiversity and Ecosystem Services (IPBES) has suggested three 

complementary strategies: (1) ecological intensification, which involves boosting 

agricultural production by increasing the provision of supporting ecological processes 

such as biotic pest regulation, nutrient cycling, and pollination (Bommarco et al. 2013; 

Tittonell 2014); (2) strengthening existing diversified farming systems, including 

gardens and agroforestry, for the generation of ecosystem functions; and (3) 
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investment in ecological infrastructure, to protect, restore, and connect natural and 

semi-natural habitats across agricultural landscapes, so that pollinator species can 

more easily disperse and find nesting and floral resources (Potts et al. 2016b). 

However, knowledge gaps limit the effectiveness of these strategies (Dicks et al. 

2013; Wood et al. 2015). For instance, it is still not clear which plant species are the 

most valuable food resources and how plant species vary in value across pollinator 

species, over time, and in different environmental conditions. It is also not well 

understood whether the addition of floral resources might draw pollinators away from 

pollinator-dependent crop plants (Morandin and Kremen 2013), or whether floral 

enhancement will alter levels of plant-target specialism, at the levels of insect species 

and of individual insects, resulting in changes in pollination efficiency (Morales and 

Traveset 2008; Lucas et al. 2018). 

Therefore, a crucial technical challenge for understanding plant-pollinator interactions 

is to develop a method to identify and quantify the species of pollen that are 

consumed by pollinators. Identifying and quantifying pollen has traditionally been 

carried out by using light microscopy to distinguish plant species by grain morphology, 

a labour-intensive technique that requires expert knowledge and lacks discriminatory 

power at lower taxonomic levels (Khansari et al. 2012; Long and Krupke 2016). In 

contrast, high-throughput DNA sequencing now allows pollen identification without 

expert knowledge of pollen morphology and taxonomy. 

The currently dominant sequence-based method is metabarcoding, which involves 

amplifying taxonomically informative marker genes from mixed samples via 

polymerase chain reaction (PCR) (Ji et al. 2013). The resulting amplification products, 

or amplicons, are sequenced, and the reads are assigned to taxonomies by matching 

against barcode databases, such as the Barcode of Life Data System (Ratnasingham 

and Hebert 2007). Notably for plants, there is no single barcode gene that matches 

the resolving power of 16S rRNA for prokaryotes and Cytochrome Oxidase (CO1) for 



19 
 

animals (Hollingsworth et al. 2016). Instead, plant-related barcoding studies rely on a 

combination of marker genes, which include plastid regions rbcL and matK and the 

internal transcribed spacer (ITS) regions of nuclear ribosomal DNA (Li et al. 2015; 

Hollingsworth et al. 2016). Metabarcoding of mixed-species pollen samples can 

reveal the presence and absence of constituent plant species (or genera), but there 

are strong reasons to doubt that metabarcoding can accurately quantify their relative 

abundances, due to PCR amplification biases and varying copy numbers of barcode 

loci (Keller et al. 2015; Richardson et al. 2015; Sickel et al. 2015; Bell et al. 2017; 

Lamb et al. 2019). 

In contrast to the targeted-sequencing approach of metabarcoding, ‘shotgun 

metagenomics’ involves randomly sequencing short stretches of genomic DNA from 

mixed samples. In standard metagenomics, these short reads (‘queries’) are mapped 

to either assembled genomes or to collections of barcode genes (‘references’), which 

creates a requirement for large numbers of reference genomes (Sharpton 2014) or 

barcodes (Zhou et al. 2013), with the latter being very inefficient (Ji et al. 2020). 

Species identification is obtained by first calculating a similarity metric between each 

short read and each reference sequence (e.g., % identity) and then using an algorithm 

to assign each short read to the most likely reference sequence. The potential key 

advantages of shotgun metagenomics are that it can avoid the PCR-induced biases 

seen with metabarcoding, especially if PCR-free library preparation protocols are 

used (Jones et al. 2015; Nayfach and Pollard 2016) and that by sampling across the 

whole genome, variation in the copy numbers of a few loci is rendered less important. 

However, the requirement for reference genomes means that most shotgun 

metagenomics studies focus on prokaryotic organisms, since large numbers of 

prokaryote reference genomes are available. In contrast, eukaryotes are not well 

represented in sequence databases due to being more expensive to sequence and 
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assemble (Gilbert and Dupont 2011). As a result, eukaryotes have mostly been 

neglected in metagenomic studies (Escobar-Zepeda et al. 2015). 

In this chapter, a new metagenomic pipeline for eukaryotes is described. The method 

avoids the need for assembled reference genomes, instead, each reference species 

is represented by a ‘genome skim’ (Straub et al. 2012), which is a low-cost, low-

coverage, shotgun dataset, i.e. simply a set of short reads. The sets of short reads 

are used to classify individual long reads from pollen that have been generated by 

sequencing mixed-species pollen loads with the MinION. The pollen reads need to 

be long reads, so that multiple reference reads map to them, this providing 

classification accuracy.  

To demonstrate the effectiveness of the method, reference genome skims were 

generated for 49 wild UK plant species and used to identify and quantify plant species 

in two kinds of query samples: mock plant DNA mixtures of known composition and 

mixed-species pollen samples collected from wild bees. Each of the long reads in the 

query samples are individually classified and the proportion of long reads assigned 

to a plant species is shown to be a reasonably accurate estimate of that species’ 

frequency in a mixed-species sample, based on relative quantities of DNA. The 

pipeline is called Reverse Metagenomics, or RevMet, because reference sequences 

are mapped to query sequences, which is the reverse of the standard metagenomic 

approach of mapping reads to (assembled) references. 

All experimental work presented in this chapter was performed by the author, except 

for the in-field sample collections, which were carried out by Lynn Dicks, Richard 

Davies, and Chris Cooper. Lawrence Percival-Alwyn provided training and assistance 

during the initial CTAB-based phenol-chloroform extractions and Darren Heavens 

provided support and guidance for the first nanopore runs.  
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2.2 Methods 

2.2.1 Sampling of bees and plant tissue 

Sample collection was carried out in the Pensthorpe Natural Park area (52°49'23''N, 

0°53'14''E) of Norfolk, UK, over the course of four days during June and July 2016. 

Leaf samples were collected from all plant species with open flowers, including 

grasses and trees, within a 100 m radius of the collection site (n = 49 species). The 

100 m radius was chosen to capture the likely area of flowering plants covered by an 

individual bee in a pollen-foraging bout. Bees actively collecting pollen are assumed 

to be on ‘exploitation flights’, defined for bumblebees by Woodgate et al. (2016) as 

single loop flights to a previously known location for the sole purpose of foraging, 

rather than ‘exploration flights’, which cover a much larger area. In the data reported 

by Woodgate et al. (2016), foraging activity on Bombus terrestris exploitation flights 

was usually constrained within a circle of radius 100m. 

Leaf tissue was preserved on dry ice in the field followed by storage at -80 °C. 

Foraging wild bees (n = 48: 9 Apis mellifera, 27 Bombus terrestris/lucorum complex, 

12 Bombus lapidarius) were collected with hand nets or into falcon tubes directly from 

flowers and euthanized in falcon tubes containing ethanol-soaked tissue paper. 

Pollen loads were scraped from bee corbiculae using a mounted needle and stored 

in absolute ethanol. The plant species on which each bee was foraging when 

collected was recorded. Leaf tissue DNA extraction, library preparation, and Illumina 

sequencing 

 

2.2.2 Leaf tissue DNA extraction, library preparation, and Illumina 

sequencing 

Leaf tissue from each of the 49 plant species was disrupted by bead-beating using a 

4-mm stainless steel bead with a Qiagen TissueLyser II running at 22.5 Hz for 4 min, 
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rotating the adapter sets after 2 min. DNA was extracted using the DNeasy Plant Kit 

(Qiagen, Hilden, Germany) following manufacturer's instructions. DNA 

concentrations were measured on a Qubit 2.0 fluorometer (Thermo Fisher, Waltham, 

USA) using the dsDNA HS assay kit, and fragment size distribution was checked with 

a Genomic DNA Analysis ScreenTape on the TapeStation 2200 (Agilent, Santa Clara, 

USA). 

The Earlham Institute (Norwich, UK) applied a modified version of Illumina’s Nextera 

protocol, known as Low Input Transposase Enabled (LITE) protocol (Perez-

Sepulveda et al. 2020), to generate a separate sequencing library for each leaf 

sample, targeting an average insert size of 500 bp. The LITE libraries were then 

pooled based on estimated genome sizes (Appendix 1), obtained from the Royal 

Botanic Gardens Kew Plant DNA C-values database (Pellicer and Leitch 2020), in 

order to achieve 0.5x coverage of each species genome. The pooled libraries were 

sequenced on one lane of Illumina HiSeq 2500 in Rapid Run mode (250 bp PE). 

 

2.2.3 Construction and sequencing of mock pollen samples 

DNA from twelve of the 49 plant species were used to construct six mock 

communities. Each mock was made using 200 ng DNA in total, with species added 

at different proportions: 0.08% to 45.25% (Table 2.1). For each mock, technical-

replicate pairs were prepared using ONT’s (Oxford, UK) Rapid Barcoding Sequencing 

Kit (SQK-RBK001), following the RBK_9031_v2_revl_09Mar2017 version of the 

manufacturer’s protocol. The 12 libraries (six mocks, duplicated) were sequenced on 

a single MinION R9.5 flow cell (FLO-MIN107). 
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 Table 2.1 DNA mock community compositions 

 

  
Knautia 
arvensis 

Galium 
verum 

Crepis 
capillaris 

Papaver 
somniferum 

Anagallis 
arvensis 

Sambucus 
nigra 

Bryonia 
dioica 

Ranunculus 
repens 

Lotus 
corniculatus 

Digitalis 
purpurea 

Leucanthemum 
vulgare 

Stachys 
sylvatica 

MM1.Ratios 100 100 100 10 10 10 1 1 1 0 0 0 

MM2.Ratios 0 0 0 1 1 1 10 10 10 100 100 100 

MM3.Ratios 0 0 0 0 0 0 10 100 0 0 0 0 

MM4.Ratios 0 0 0 1 0 1000 0 0 100 0 0 100 

MM5.Ratios 100 100 100 0 1 1 1 100 0 0 0 1 

MM6.Ratios 1 1 1 100 100 100 100 0 0 0 0 1 

MM1.DNA (ng) 60.1 60.1 60.1 6.0 6.0 6.0 0.6 0.6 0.6 0.0 0.0 0.0 

MM2.DNA (ng) 0.0 0.0 0.0 0.6 0.6 0.6 6.0 6.0 6.0 60.1 60.1 60.1 

MM3.DNA (ng) 0.0 0.0 0.0 0.0 0.0 0.0 9.1 90.5 0.0 9.1 90.5 0.9 

MM4.DNA (ng) 0.0 0.0 0.0 0.2 0.0 166.5 0.0 0.0 16.7 0.0 0.0 16.7 

MM5.DNA (ng) 49.5 49.5 49.5 0.0 0.5 0.5 0.5 49.5 0.0 0.0 0.0 0.5 

MM6.DNA (ng) 0.5 0.5 0.5 49.5 49.5 49.5 49.5 0.0 0.0 0.0 0.0 0.5 

MM1.Percentages 30.0% 30.0% 30.0% 3.0% 3.0% 3.0% 0.3% 0.3% 0.3% 0.0% 0.0% 0.0% 

MM2.Percentages 0.0% 0.0% 0.0% 0.3% 0.3% 0.3% 3.0% 3.0% 3.0% 30.0% 30.0% 30.0% 

MM3.Percentages 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.5% 45.3% 0.0% 4.5% 45.3% 0.5% 

MM4.Percentages 0.0% 0.0% 0.0% 0.1% 0.0% 83.3% 0.0% 0.0% 8.3% 0.0% 0.0% 8.3% 

MM5.Percentages 24.8% 24.8% 24.8% 0.0% 0.3% 0.3% 0.3% 24.8% 0.0% 0.0% 0.0% 0.3% 

MM6.Percentages 0.3% 0.3% 0.3% 24.8% 24.8% 24.8% 24.8% 0.0% 0.0% 0.0% 0.0% 0.3% 
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2.2.4 Bee-collected pollen DNA extraction, library preparation, and MinION 

sequencing 

After removing storage ethanol from the 48 bee-collected pollen loads, the pollen was 

disrupted with ca. five 1-mm stainless steel beads for 2 min at 22.5 Hz using a Qiagen 

TissueLyser II, rotating the adapter sets after 1 min. The pollen samples were 

resuspended in 600 μl CTAB extraction buffer (2% CTAB, 1.4 M NaCl, 20 mM EDTA, 

pH 8.0, 100 mM Tris-HCl pH 8.0), 0.5 μl of β-Mercaptoethanol, 4 μl of proteinase K, 

and vortexed for 5 s. Following a 1 hr incubation at 55 °C, the tubes were centrifuged 

for 6 min at 18,000 x g. The ≈500 μl of supernatant was extracted to a clean 1.5 ml 

tube before an equal volume of chilled (2-8 °C) Phenol:Chloroform:Isoamyl Alcohol 

(25:24:1, v/v) was added to the lysate. The samples were vortexed for 10 s (5 x 2 s 

bursts), centrifuged for 5 min at 14,000 x g, and the upper aqueous phase (≈ 420 μl) 

was extracted by pipette and transferred into a clean 1.5 ml tube. 

An equal volume of Agencourt AMPure XP beads was added to each sample, 

vortexed for 20 s (10 x 2 s bursts), and then incubated for 10 min at room temperature. 

The beads were separated solution by placing the samples onto a magnetic tube rack 

for 5 min, and the cleared supernatant was removed by aspiration. The beads were 

washed twice using the following protocol: 1 ml of 80% ethanol was added, incubated 

at room temperature for 30 s, and then removed, followed by air drying for ≈ 3 min. 

The magnetic beads were resuspended in 55 μl of EB (Elution Buffer: 10 mM Tris-

HCl) and incubated at 37 °C for 10 min. The tubes were placed back onto the 

magnetic rack to bind the beads, and the eluted DNA (≈ 50 μl) was transferred into 

fresh tubes. A 1 μl aliquot of 1-in-10 diluted Qiagen RNase A was added to each DNA 

sample before being incubated for 30 min at 37 °C. The concentration of the eluted 

DNA was assessed using the dsDNA HS assay on a Qubit 2.0 fluorometer. To check 

the DNA for degradation, fragment size distributions were checked with a TapeStation 

2200 using the Genomic DNA Analysis ScreenTape. 
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Finally, the extracted DNA was prepared and sequenced using the same protocol as 

used for the DNA mocks above, except that only one library was prepared for each 

sample. At the time of the work, only twelve samples could be multiplexed using the 

Rapid Barcoding Sequencing Kit (now 96 can be multiplexed with the Native 

Barcoding Expansion); thus, four flow cells were required. Due to continuous software 

upgrades by ONT, the specific software versions of MinKNOW varied across runs 

and is recorded in the final sequence files (fast5 format), which are available from the 

EBI’s European Nucleotide Archive (see Data availability). 

 

2.2.5 Illumina and MinION read pre-processing 

Duplicate reads were removed from the 49 plant-reference Illumina datasets using 

NextClip 1.3.2 (Leggett et al. 2014), and then cutadapt 1.10 (Martin 2011) was used 

to trim Illumina adaptors and filter out reads shorter than 100 bp. The resulting 

unmerged FASTQ files constitute the 49 reference skims. 

The MinION datasets from the 12 mocks and the 48 pollen loads were basecalled 

and demultiplexed with albacore 2.1.10 (ONT). The resulting FASTQ files were 

converted to FASTA format. Long reads deriving from plant organelles were removed 

because they are highly conserved across plant species and in pilot tests mapping to 

organellar long reads resulted in a higher rate of incorrect assignments than mapping 

to nuclear long reads (data not shown). NCBI Entrez 

(https://www.ncbi.nlm.nih.gov/sites/batchentrez) was used to download 2,583 Land 

Plant organelle genomes, 2,357 plastid and 226 mitochondrial. Organelle reads were 

identified by aligning each of the MinION datasets to the organellar genomes using 

minimap2 2.7 (Li 2018) and removed from the FASTA files. The resulting 60 (= 12 + 

48) organelle-filtered FASTA files constitute the mock and pollen query datasets, and 

in the next step, the 49 plant reference skims were used to assign a taxonomy to each 

long read in the mock and pollen query datasets (Figure 2.1c). 
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2.2.6 Taxonomic assignment of mock-sample and bee-collected pollen 

MinION reads 

Illumina reads from each of the 49 reference skims were mapped against every 

individual long read in each of the mock and bee-collected pollen datasets using bwa 

mem 0.7.17 (Li 2013). SAMtools 1.7 (Li et al. 2009) was used to remove unmapped 

reads and secondary and supplementary alignments. After SAMtools indexing, the 

depth of mapping coverage at each long-read position was calculated using the 

SAMtools depth function. A python script, percent_coverage_from_depth_file.py, was 

used to calculate the ‘percent coverage’ for each long read - defined as the fraction 

of nucleotide positions that were mapped to by one or more reference-skim Illumina 

reads. 

Each long read was assigned to the plant species that mapped with the highest 

percentage coverage, unless the highest percent coverage was <15%, in which case 

the long read’s identity was judged ambiguous and left unassigned. Additionally, for 

clarity of presentation, a 1% minimum-abundance filter was implemented, removing 

plant species represented by fewer than 1% of the total assigned long reads in each 

sample. 

All of the bioinformatic steps for taxonomic assignment can be run on a 

laptop/desktop computer, but for this study the pipeline was run in parallel on a High-

Performance Computing (HPC) cluster for greater performance. 
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2.3 Results 

2.3.1 A reference set of plant genome skims 

Low genome coverage, short-read, shotgun-sequencing datasets (‘reference skims’) 

were successfully generated for all 49 plant species (Figure 2.1a). After pre-

processing, the mean estimated coverage was 0.6x (0.1 to 1x, details in Appendix 1). 

 

2.3.2 Mock DNA mixes 

The six mock communities, each with two technical replicates, were sequenced on a 

MinION. These produced relatively short reads for nanopore sequencing, with mean 

length 1,914 bp (longest 41,058 bp), likely due to the low quantity and molecular 

weight of the input DNA (discussed later). After demultiplexing, 88.8% of the reads 

could be assigned to one of the 12 mock mixes, with the remaining reads left 

unclassified. Sequences originating from organellar genomes made up between 5.1% 

(MM4.2) to 10.2% (MM3.2) of the reads in the mocks and were removed. The 

remaining number of reads per mock ranged from 733 (MM2.1) to 2,174 (MM4.1), 

mean 1,347. 
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Figure 2.1 RevMet pipeline overview. (a) Low coverage, short-read, reference datasets were 
generated for 49 wild plant species. (b) Bee-collected pollen loads were sequenced on a MinION, 
generating long read datasets. (c) The 49 short-read reference datasets were separately mapped to 
the long-read pollen datasets, and each pollen read was assigned to the plant species that mapped 
with the highest percent coverage or left unassigned if the highest coverage was <15%. (d) Binned 
pollen reads were counted, noise was reduced by implementing a 1% minimum-abundance filter, and 
then the remaining bin counts were converted to percentages. 
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2.3.3 Taxonomic assignment of mock-sample MinION reads 

The 49 reference skims were separately mapped to each long read in each of the 12 

mock mixes, and each long read was assigned to the plant species that mapped with 

the highest percent coverage, or left unassigned if the highest coverage was <15%. 

In total, 65.5% of the mock reads were assigned to a plant species, with 94.7% of 

those reads being assigned to a species known to be present in that mock sample. 

Almost all (93.4%) of the 563 false-positive read assignments were made to one 

species, Ranunculus acris, and all these assignments occurred in the mock samples 

that contained the very closely related species Ranunculus repens. The few other 

false-positive assignments all occurred at a rate of less than 1% of the assigned long 

reads in their mixes and for presentational clarity are not shown in Figure 2.2. The full 

results are in Appendix 2. 

All of the plant species that had been added to the mock compositions at proportions 

≥1% were detected by RevMet in at least one of the two replicates, and in all cases 

the frequencies of long reads assigned to each plant species were reliably ‘semi-

quantitative’ and could differentiate low- and high-abundance plant species (Figure 

2.2). In general, the technical replicates showed a high level of repeatability, although 

in two of the mocks there was one species in each (Lotus corniculatus in MM2 and 

Digitalis purpurea in MM3) that was detected in only one of the two replicates. In two 

of the mocks, there was one species each (Lotus corniculatus in MM2 and Digitalis 

purpurea in MM3) that were detected in only one of the two replicates. In these two 

replicates, Lotus corniculatus and Digitalis purpurea were expected to be present at 

only 3.0% and 4.6%, respectively. Both species were consistently underrepresented 

across the mock data sets, which suggests that the DNA quantification may have 

been inaccurate prior to the creation of the mocks. 
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Figure 2.2 Expected versus observed mock mix compositions. Six mock plant DNA mixes, each with two technical replicates, were sequenced on a MinION and the RevMet 
method was applied. The first stacked bar of each triplet represents the expected proportions based on input DNA. The second and third bar of each triplet reflect the observed 
MinION read assignments resulting from this pipeline 
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2.3.4 Reference-skim subsampling 

To estimate a minimum recommended depth of coverage needed per reference skim, 

the Knautia arvensis genome skim, which is a major constituent species in mock 

mixes MM1 and MM2, was subsampled. The skim was randomly subsampled from 

its maximum of 0.65x down to 0.05x, in steps of 0.05x using a custom script. For each 

subsample, the whole pipeline was re-run along with the full reference skims of the 

other 48 plant species. The number of mock reads assigned to Knautia arvensis, and 

the number of unassigned reads, at each level of coverage was recorded. This 

subsampling was repeated three times (Figure 2.3). 

As expected, the larger the reference-skim dataset size for Knautia arvensis, the 

more reads in the MM1 and MM2 mocks were assigned to this species and the fewer 

reads left unassigned. Importantly, the rate of increase was decelerating; over half of 

the MinION reads that were assigned to Knautia arvensis with a 0.65x genome skim 

could also be assigned with just a 0.1x skim, even though all the other reference 

skims in the mapping run were kept at their original sizes. 
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Figure 2.3 Reference skim subsampling. The Knautia arvensis genome skim, which is a major constituent species in mock mixes MM1 and MM2, was randomly subsampled 
from its maximum of 0.65x down to 0.05x, in steps of 0.05x. For each subsample, the whole RevMet pipeline was re-run along with the full reference skims of the other 48 plant 
species. The number of mock reads assigned to Knautia arvensis, and the number of unassigned reads, at each level of coverage was recorded. This subsampling was repeated 
three times. The decrease in number of unassigned reads was roughly equal to the increase in assigned Knautia arvensis reads at each genome skim size. 
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2.3.5 Taxonomic assignment of bee-collected pollen MinION reads 

The 48 bee-collected pollen loads harvested from the corbiculae of three species, 

Apis mellifera, Bombus terrestris/lucorum complex, and Bombus lapidarius, yielded 

DNA quantities ranging from 191 to 3,750 ng, and all successfully produced libraries, 

demonstrating that pollen carried by individual bees can provide sufficient DNA for 

MinION sequencing. After demultiplexing, the mean read number per pollen sample 

was 2,430, with an average length of 2,300 bp (longest 51,629 bp). 

As with the 12 mocks, each of the reference skims was aligned to each long read in 

each of the 48 pollen samples, the long reads were either assigned to the plant 

species achieving the highest percent coverage or left unassigned, and any plant 

species assigned fewer than 1% of the long reads in each bee-collected pollen 

sample was filtered out. In total, 49.7% of the long reads were assigned to one of the 

reference plant species. In 38 of the 48 bees (79.2%), pollen from the plant species 

on which each bee was captured was found to be present in that bee’s pollen load 

(Appendix 4). 

Each of the 48 pollen loads was found to contain one or two major plant species 

(defined as read frequency ≥10%) (Figure 2.4a). All nine of the Apis mellifera pollen 

loads contained a single major species, whereas 16 of 27 Bombus terrestris/lucorum 

complex and 6 of 12 Bombus lapidarius pollen loads were comprised of two major 

species (Figure 2.4a). These differences in mean number of major species were 

statistically significant (Apis mellifera versus Bombus terrestris/lucorum complex 

(Welch's t-test, t = -6.15, df = 26, p-value < 0.0001) and versus Bombus lapidarius (t 

= -3.32, df = 11, p-value < 0.01)) (Figure 2.4b). Another way of visualising the wild-

bee results is as a plant-pollinator network graph (Figure 2.4c). The diagram was 

constructed for the 48 wild-bee pollen samples, using the bipartite 2.11 package 

(Dormann et al. 2009) for the R statistical language (R Core Team 2018). For 

presentational clarity, only plant species represented by more than 10% of the 
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assigned reads in each sample are shown. Overall, 6 of the 49 reference plant 

species were identified as major components in the 48 pollen loads, and the majority 

of bee-collected pollen samples were dominated by one plant species. 

 

 

Figure 2.4 Bee-collected pollen compositions and plant–pollinator interactions. (a) The number of 
individual pollen loads sequenced from three different species of bee. The proportion of pollen loads that 
contained a single major plant species are represented by green bars, while those with two major plant 
species are shown in blue. (b) Mean number of plant species per pollen load for each of three different 
species of bee: **p < .01, ***p < .001. (c) Bipartite plant–pollinator network. The upper bars represent 
individual pollen loads from three different bee species, Apis mellifera (red), Bombus terrestris/lucorum 
complex (blue), and Bombus lapidarius (purple). The lower bars (grey) represent plant species. Link 
width indicates the MinION read proportion of each major plant species within each pollen load. 
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2.4 Discussion 

Using light microscopy to identify plant species from pollen requires expert knowledge 

and is costly when applied to many samples (Khansari et al. 2012). There is a need 

for a quick and low-cost method that can be scaled to large numbers of pollen 

samples. Metabarcoding is the current leading candidate, but there are concerns over 

its discriminatory power at lower taxonomic levels, and there is good reason to believe 

that metabarcoding is not reliably quantitative (Keller et al. 2015; Richardson et al. 

2015; Sickel et al. 2015; Bell et al. 2017; Lamb et al. 2019). A PCR-free shotgun-

metagenomics approach has greater potential for providing reliable quantitative 

analysis with high power for resolving species. However, applying shotgun 

metagenomics to eukaryotes is challenging due to the lack of reference genomes 

(Gilbert and Dupont 2011). We have developed a metagenomics method that avoids 

the need for reference genomes. Instead, each reference species is represented by 

just a low-cost genome skim, and we use a set of such skims to identify individual 

long reads from pollen samples, produced by the MinION sequencer. 

We evaluated the RevMet pipeline with mock DNA mixtures of known composition 

and then applied the pipeline to pollen collected from wild bees. The main findings 

are: 

1. RevMet can identify plant species present in mixed-species samples at 

proportions of DNA ≥1%, with few false positives and false negatives, and can 

reliably differentiate species represented by high versus low amounts of DNA 

in a sample (Figure 2.2, Appendix 2). 

2. Genome skims with sequence coverage as low as 0.05x can be used for 

detecting species presence and for estimating relative abundance in terms of 

DNA mass. Increasing skim coverage increases detection power, at a 

decelerating rate (Figure 2.3). 
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3. Individual pollen loads collected from wild Apis and Bombus bees yield enough 

DNA for MinION sequencing (Appendix 3) and generate plausible plant-

pollinator networks, as evidenced by the fact that (a) 56.3% of the plant species 

on which the bees were collected were also the dominant constituent of the 

corresponding pollen sample (and 79% of plant species on which the bees 

were collected were detected in the corresponding pollen sample) (Appendix 

4), and (b) pollen species richness and compositions were more similar within 

bee species than across bee species (Figure 2.4). 

4. The per-plant-species cost of a reference skim was £90, and the per-pollen-

sample cost was £61, including DNA extraction, library preparation, and 

sequencing. Sequencing costs will likely drop further, given the new Illumina 

NovaSeq and increases in nanopore yield. 

 

2.4.1 Semi-quantitative species compositions 

Roughly 65% of the mock-mix MinION reads and just under 50% of the pollen-load 

MinION reads could be assigned to the reference plant species. There are several 

ways that the fraction of assigned nanopore reads could be increased without 

compromising the assigned proportions or increasing the false positive rate. First, 

higher depth reference skims could be used. This increases the chance of overlap 

occurring between the long nanopore query reads and the short-read reference 

skims.  

The average length of the bee pollen reads was 2,300 bp. Generating longer 

nanopore query reads would increase the chance of overlap with Illumina skim reads 

and decrease the proportion of unassigned reads. At 2,300 bp, nanopore reads have 

almost identical recall to the longest Illumina reads (300 bp) for plants in traditional 

metagenomics (Pearman et al. 2020). However, using Illumina reads for both the 

pollen and reference skims with the RevMet approach would have led to more false 



37 
 

positives and a lower proportion of reads being assigned. If we had complete 

assembled plant reference genomes, Illumina pollen reads may have outperformed 

our nanopore read set in a traditional metagenomics study. 

During mapping, each Illumina read only maps to one nanopore read within a 

nanopore barcode dataset. Therefore, the larger the nanopore dataset, the lower the 

fraction of assigned reads becomes as the long reads “mop up” the Illumina reads. 

Subsampling nanopore datasets down increases the fraction of assigned reads (data 

not shown) and decreases analysis time. Alternatively, the nanopore read files could 

be split into individual reads and all of the skim reads could be mapped to each 

individual nanopore read. This would increase the fraction of assigned reads but also 

greatly increase analysis time. 

Importantly, the frequencies of nanopore reads that were assigned to each reference 

plant species were reliably ‘semi-quantitative’, that is, able to differentiate low- and 

high-frequency plant species, based on DNA mass (Figure 2.2). Within low- and high-

abundance categories, accuracy was lower. For example, in mock sample MM1, 

Knautia arvensis, Galium verum, and Crepis capillaris were the three high-abundance 

species (each representing 30.3% of total input DNA mass each), and Papaver 

somniferum, Anagallis arvensis, and Sambucus nigra were the three low-abundance 

species (each representing 3.0% of total input DNA mass each). The RevMet pipeline 

estimated the three high-abundance frequencies at means of 34.0%, 14.7%, and 

44.0%, and the three low-abundance species at 1.4%, 3.0%, and 3.0%, respectively 

(Appendix 2). 

There are at least three reasons for the remaining quantitative error. First, although 

0.5x per reference skim was targeted, coverage still varied across species (Appendix 

1), resulting in different powers of discrimination, as shown by the experiment with 

subsamples of Knautia arvensis (Figure 2.3). Fortunately, this study found that even 

very low-depth skims of 0.05x are useful for species detection and are probably still 
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useful for differentiating rare from abundant species (albeit with more error) (Figure 

2.3). Genome sizes are also estimated with error, so it is also helpful that the 

subsampling experiment suggests that detection power asymptotes with higher 

sequencing depth (Figure 2.3), and as sequencing costs fall further, a more robust 

protocol could be achieved by targeting 1x coverage. In cases where coverage of 

reference skims varies greatly, they should be subsampled down to a uniform level. 

Second, very closely related species can generate false positives. The reference-

skim database included six congener pairs, and two of the pairs were included 

(Papaver and Ranunculus) in the mock mixes. In the case of Papaver, there were no 

P. rhoeas false-positives greater than the 1% minimum-abundance filter in the mocks 

that contained P. somniferum (MM1 and MM6) (Appendix 2). In contrast, Ranunculus 

acris was regularly incorrectly assigned to reads in mock mixes that contained the 

closely related congener Ranunculus repens. In fact, almost all the false-positive 

assignments (93.4%) were to R. acris. In retrospect, this result is expected because 

these two species are not easily differentiated by pollen morphology (Forup and 

Memmott 2005), floral morphology, or even DNA barcodes (rbcL (99.1% similarity), 

matK (96.9%), ITS2 (95.5%)).  

Third, at the time of the experiments, MinION reads had relatively high error median 

rates of roughly 5 to 8% depending on the flow cell and kit used (Leggett and Clark 

2017). Although this is dropping over time (typically < 5% now), this error rate 

unavoidably obscures differences between species (although not enough to confound 

the two Papaver species). One of the advantages of the RevMet approach is that it 

uses percent coverage as a predictor of species presence (Figure 2.1c). Using 

mapped read counts alone, several instances of low numbers of long reads being 

given false-positive assignments were observed (data not shown). The percent-

coverage filter requires many reference-skim reads to independently identify a 

species before an assignment is made. 
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2.4.2 Reference skims 

The RevMet pipeline is relatively low cost. In this study, skims for 49 plant species 

were generated, with genome sizes ranging from roughly 290 Mb (Epilobium 

hirsutum) to just under 15 Gb (Sambucus nigra), targeting 0.5x coverage. All skims 

were produced on a single lane of Illumina HiSeq 2500 in Rapid Run mode (250 bp 

PE) at a mean coverage of 0.57x. The average cost per skim in this study was just 

under £90, which includes the DNA extraction, LITE library preparation, sequencing, 

and data QC. The per skim cost will be lower in studies with smaller eukaryotic 

genomes, and with the use of Illumina’s newer sequencer, the NovaSeq 6000, 

equivalent skims would cost ~£30 (250 PE with the SP flow cell). Genome-assembly 

campaigns are also likely to produce more skim datasets for free download in the 

future. 

It is likely that the reference-skim database missed some bee forage plants that were 

flowering within the foraging ranges of the focal bee species, which greatly exceed 

100 m (Dicks et al. 2015). For studies considering pollen collected at colony or nest 

level, rather than individual level, collecting all the flowering species within a radius 

of at least 1 km would be advisable, to increase the chance of covering all potential 

bee forage species within foraging range. As availability of skim databases increases, 

this will be a less onerous task. 

 

2.4.3 MinION sequencing 

ONT’s first iteration of the Rapid Barcoding Kit (RBK001) was used to prepare the 

nanopore sequencing libraries. This kit relies on transposase to randomly fragment 

DNA and simultaneously add barcoded adapters. Longer read lengths have an 

increased likelihood of accurate species assignment because they carry more 
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sequence information. The two main ways to obtain longer reads with transposase-

based preparations are to: (1) increase the ratio of DNA to transposase e.g., by 

increasing the input material or by heat killing a proportion of the transposase (which 

also lowers sequencing yields); and (2) use higher molecular weight input DNA. Since 

the release of RBK001, ONT’s chemistry has evolved, and their Rapid-based kits 

have seen greater sequencing yields. However, the recommended input for the latest 

iteration of the Rapid Barcoding Kit (RBK004) is now higher, 400 ng of DNA per 

sample. That said, input biomasses similar to those used in this study, 200 ng, should 

still be adequate. Also, even 400 ng is achievable, as 36 of 48 of the wild-bee pollen 

samples yielded >400 ng (Appendix 3).  

As throughput has increased since this study was carried out (a single MinION flow 

cell can now produce up to 30 gigabases of sequencing data), ONT have released 

the Native Barcoding Expansion 96 kit (EXP-NBD196) to enable PCR-free 

multiplexing of up to 96 samples. This expansion works in conjunction with the 

Ligation Sequencing Kit (SQK-LSK109) and involves ligation of unique barcodes to 

DNA ends of each sample, followed by pooling and then ligation of sequencing 

adapters. The LSK and 96 barcoding expansion combination offers higher yield 

potential, greater control over read lengths, and a lower per-sample costs compared 

to the RBK kits. Multiplexing 96 bee-collected pollen loads would reduce per-sample 

costs from the £61 in this study to ~£7. 

 

2.4.4 Application to pollen collected from wild bees 

Multiple DNA extraction methods were tested on individual pollen loads collected from 

wild Apis and Bombus bees (data not shown), including column-based kits, 

NucleoSpin Food (Macherey-Nagel, Düren, Germany) and DNeasy Plant (Qiagen, 

Hilden, Germany). Although the column-based protocols were more convenient to 
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use, we found the traditional CTAB-based phenol chloroform extraction resulted in 

improved DNA yield and molecule length. 

The RevMet pipeline detected consistent differences in the composition of pollen 

loads collected by honeybees Apis mellifera and by the two bumblebees Bombus 

terrestris/lucorum and B. lapidarius (Figure 2.4). The low number of plant species 

identified per pollen load is consistent with the flower constancy behaviour observed 

in a range of insect pollinators, in which individual pollinators almost exclusively visit 

a single flower type during a foraging trip (Grüter and Ratnieks 2011). This method 

can therefore be used to compare flower constancy at individual level between 

foraging bee species, or in different environmental or seasonal contexts. It is possible 

to collect bulk pollen samples from managed bee colonies (such as Apis mellifera or 

Bombus terrestris) using pollen traps, or pollen samples brought back to trap nests 

by foraging solitary bees (as for example in Sickel et al. 2015). This would be 

expected to reveal a much higher diversity of food plants, at least for generalist bee 

species. 

As a proof-of-concept study, only a small number of bee-collected pollen loads (n = 

48) sampled from just one site were analysed. By generating more plant reference 

skims and utilising the 96 native barcode expansion for cheaper multiplexing of pollen 

loads, RevMet could now be applied to compare pollination networks across large-

scale spatial and biogeographical gradients. The RevMet pipeline’s ability to assess 

DNA composition from read counts has been demonstrated. However, there are other 

potential sources of bias that may have affected our pollen sample proportions, such 

as the bi- or tri-cellular nature of pollen and differing ploidy levels, genome sizes, and 

DNA extraction efficiencies. The next step in this research will be to test RevMet’s 

ability to discern different quantities of pollen biomass, and to explore whether it 

performs better than standard meta-barcoding approaches at this task. 
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The RevMet pipeline can readily be applied to a wide range of research questions. 

RevMet could potentially be used to quantify the degree to which co-attraction of 

pollinators leads not to benefits of increased pollinator numbers but to loss of 

pollination service via competition (Carvalheiro et al. 2014; Pornon et al. 2016). 

Outside of pollination ecology, there is potential for semi-quantitative assessments of 

many other eukaryotic species mixtures, including herbivore diets (Kress et al. 2015; 

Bhattacharyya et al. 2019); plant-fungus interactions (Schroter et al. 2019); and 

allergenic pollen species from air samples - although this might require an additional 

whole-genome amplification (WGA) step (Kraaijeveld et al. 2015). Furthermore, due 

to the portability and real-time nature of the MinION platform, the method could be 

optimised for analysis in the field alongside sample collection. 

 

2.5 Data availability 

The Illumina and MinION datasets are available in the European Nucleotide Archive 

(http://www.ebi.ac.uk/ena) under study accession PRJEB30946. Example desktop 

RevMet scripts are available from https://github.com/nedpeel/RevMet 

(https://doi.org/10.5281/zenodo.3277268) and a tutorial using an example dataset 

can be found at https://revmet.readthedocs.io/en/latest/. 
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3 Chapter 3 – Development of MARTi 

(Metagenomic Analysis in Real Time) 
 

3.1 Introduction 

Metagenomics is transforming our understanding of the diversity and ecology of 

environmental and clinical microbial communities. Advancements in this field are 

largely driven by developments in DNA sequencing technology and the associated 

analysis tools and pipelines. Next-generation sequencing (NGS) technologies, such 

as the sequencing by synthesis platforms developed by Illumina, have dramatically 

reduced sequencing costs, which in turn has facilitated metagenomic investigation at 

a much greater scale and depth. However, low-level taxonomic assignments, highly 

contiguous metagenomic assemblies, and a rapid time to result are often not 

achievable using these platforms.  

Newer long-read sequencing platforms, such as those developed by Oxford 

Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) could overcome 

many of the known problems associated with short-read metagenomics. Significantly, 

the ONT platform is the first to enable progressive real-time analysis of data. 

Nevertheless, the full potential of nanopore sequencing remains largely unrealised 

due to the lack of open source, offline, real-time analysis tools and pipelines. As 

discussed in Chapter 1, ONT’s own EPI2ME platform provides near real-time 

analysis, but has limitations due to its closed nature. Recognising the need for an 

open, extensible platform, we developed MARTi (Metagenomic Analysis in Real-

Time), an open-source software tool that enables real-time analysis and visualisation 

of metagenomic sequencing data. MARTi provides a rapid, lightweight web interface 

that allows users to understand community composition and identify antimicrobial 

resistance (AMR) genes in real time.  
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This chapter provides an overview of the MARTi tool and its implementation, and is 

comprised of the following sections: 

3.2 Architecture - an overview of MARTi’s overall architecture, which is comprised 

of two components – the MARTi Engine and the MARTi GUI. 

3.3 MARTi Engine - a brief description of the MARTi Engine, the back end 

developed by Richard Leggett. 

3.4 MARTi GUI - a technical description of the MARTi GUI, which was the main 

focus of this thesis.  

3.5 Samples page – a breakdown of the features of the GUI’s Samples page that 

used for selecting and loading samples into MARTi’s analysis modes. 

3.6 Dashboard mode – a detailed description of MARTi GUI’s Dashboard analysis 

page, used for viewing a single sample. 

3.7 Compare mode – a description of the Compare page, which enables users to 

compare multiple samples. 

3.8 New analysis page - a description of the page used to configure and start a 

local MARTi analysis from the MARTi GUI. 

3.9 Tree methods - algorithmic descriptions are provided for some of the key 

methods used to process the Dashboard mode’s taxonomic tree. 

3.10 Summary and future work – a summary of the chapter and comments on 

further development. 

 

In the next chapter, we present results showing the use of MARTi in real sequencing 

applications. 
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3.2 Architecture 

MARTi consists of two main components: the MARTi Engine (developed by Richard 

Leggett), which is a command-line initiated Java back-end that performs pre-

processing and classification of sequence data; and the MARTi GUI (developed for 

this thesis), a lightweight browser-based front-end for visualising, exploring and 

comparing results. This modularity allows MARTi to be installed and operated in 

several different ways depending on the needs of the experiment and computational 

equipment available. The two most common configurations of MARTi, Local and 

HPC, are described in the following sections (Figure 3.1). 

 

3.2.1 Local configuration 

In local configuration, both the MARTi Engine and the MARTi GUI are installed on a 

single laptop/desktop (Figure 3.1a). This configuration does not rely on any external 

computing resources and can therefore be operated without an internet connection, 

making it suitable for analysis in-field or in-situ. A nanopore sequencing device, such 

as a MinION Mk1C or GridION, generates batches of basecalled reads. Data is 

transferred to the MARTi computer either by mapping the sequencer’s drive, or (with 

greater reliability) via an rsync process to synchronise the data to the local disc. The 

MARTi Engine analysis process can then be initiated through the command line or 

via the MARTi GUI. In this configuration, the MARTi GUI server is run on the same 

computer as MARTi Engine and provides the analysis results to any connected web 

browser. This could be a browser on the same computer or any other device on the 

same network, including tablets and mobile devices. 
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3.2.2 HPC configuration 

The HPC (High Performance Computing) configuration allows users to run more 

analysis processes in parallel by making use of an additional server or compute 

cluster to take some of the analysis load (Figure 3.1b). This reduces the gap between 

the analysis and sequencing rates and enables analysis of multiple runs 

simultaneously or facilitates queries against larger databases. In this configuration, 

the MARTi Engine runs on an HPC or separate server, whilst the MARTi GUI resides 

elsewhere, for example on a laptop/desktop. The chunks of basecalled reads 

produced by the sequencing device are synchronised to a network drive. The MARTi 

Engine analyses the data on the HPC and generates output files for the front end. 

The MARTi GUI’s server is run on a desktop/laptop that has access to the network 

location containing the output files. The server processes and serves the data to any 

connected web browsers, which could be on the same computer, or any other web 

browsing device on the same network. 
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Figure 3.1 Two main configurations of MARTi. a – In local configuration, the MARTi Engine and the MARTi GUI are installed on a single laptop/desktop. b – In 
HPC configuration, the MARTi Engine runs on an HPC or separate server, whilst the MARTi GUI resides elsewhere, for example on a laptop/desktop.  
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3.3 MARTi Engine 

The MARTi back-end, or MARTi Engine is responsible for processing and analysing 

the basecalled reads generated by the sequencing device. The MARTi Engine carries 

out the following processes:  

• Prefiltering - Basecalled reads first pass through a prefilter that removes low 

quality or short reads based on user-set thresholds. The default minimum 

length is 500 bp in order to remove short reads, which have low taxonomic 

discriminatory power, and nanopore adapter sequences, which can cause 

incorrect assignments to poor quality reference genomes that contain these 

sequences. The default minimum mean quality score is 9, equal to the pass 

read cutoff used by ONT’s Guppy basecaller when using the HAC model. 

Reads that pass filtering are batched into chunks of a specified size for further 

analysis. The division of reads into chunks permits parallelisation of the later 

stages. 

• Classification - MARTi classifies reads with a combination of BLAST and its 

own Lowest Common Ancestor (LCA) algorithm (see below) to assign reads 

to taxa based on the BLAST results. This algorithm assigns reads to the lowest 

taxonomic level consistent with “good” hits. The definition of good is 

configurable but depends on the BLAST bit score, length of match, percent 

identity of the match and the maximum number of hits to consider. 

• AMR analysis – If specified in the configuration file, the MARTi Engine will also 

BLAST the filtered reads to CARD, the Comprehensive Antibiotic Resistance 

Database (Alcock et al. 2020), to identify antimicrobial resistance (AMR) 

genes. The host species of an AMR gene hit can sometimes be identified using 

the taxonomic classification that was given to the read via the BLAST and LCA 

pipeline. This process is known as walkout analysis (Leggett et al. 2020) as it 

often relies on the flanking DNA sequences of the AMR gene for low-level 
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taxonomic assignments. If a read is not long enough to contain flanking 

regions, it is more likely have hits to multiple species and therefore be assigned 

to a higher taxonomic level by the LCA algorithm. Similarly, AMR genes based 

on plasmids can pose a challenge as the flanking regions can often have 

ambiguous taxonomic hits. 

• Generating output – The Engine writes out analysis data and output files, 

including those required for the MARTi GUI to function. 

 

3.3.1 Lowest Common Ancestor algorithm 

MARTi implements a Lowest Common Ancestor algorithm as follows: 

1. Reads are BLASTed against a user defined database. This may be, for 

example, the whole of NCBI nt, a bacteria subset, RefSeq genomes or a 

custom database. This results in a set of between 0 and many hits for each 

read. 

2. For a given read, the set of “good hits” is identified by finding the highest 

scoring hit (according to the BLAST bitscore), then finding all hits with a score 

within 90% (default value, but configurable) up to a limit (default 20 hits, but 

configurable). 

3. For each good hit, the taxonomic path is determined by referring to the NCBI 

taxonomy. For example: 

“root, cellular organisms, Bacteria, Proteobacteria, 

Gammaproteobacteria, Enterobacterales, Enterobacteriaceae, 

Klebsiella, Klebsiella pneumoniae” 

The taxonomic paths for all good hits are compared to determine the common 

ancestor. This involves starting at the root node and working downwards, comparing 

nodes (first “root”, then “cellular organisms”, then “bacteria” etc.) until paths diverge. 
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The last node in common before paths diverge is the common ancestor and the read 

is assigned to this taxon. 

Since MARTi classifies reads with a combination of BLAST and an LCA algorithm, it 

produces similar classification results and has the same taxonomic resolution as 

other tools based on this approach, such as MEGAN. When compared to the k-mer 

based classification tool Kraken2, the classification success (the ratio of correctly 

classified reads to all classified reads) of a BLAST-based approach for nanopore 

reads is superior across all kingdoms of life (Pearman et al. 2020). The MARTi Engine 

writes out MEGAN read-match archive (RMA) files, allowing MARTi’s classification 

results to be explored in MEGAN.  
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3.4 MARTi GUI 

The MARTi GUI is a lightweight browser-based frontend that allows users to view and 

interact with their results (Figure 3.2). The GUI has four pages:  

1. Dashboard – enables users to view metrics and real-time analysis results of a 

single sample (Figure 3.2a).  

2. Compare - allows users to compare the results from multiple samples (Figure 

3.2b). 

3. Samples - for selecting and loading available samples into the Dashboard and 

Compare modes (Figure 3.2c).  

4. New analysis - allows users to configure and start a local MARTi analysis from 

the MARTi GUI (Figure 3.2d). 

The content and implementation of each of these pages will be discussed in detail in 

the following sections. 

Compared to traditional desktop applications, browser-based applications have 

several advantages: they can operate without installation across various operating 

systems and devices via a web browser, they can be accessed by multiple devices 

on a local network simultaneously, and the UI can be customised for various screen 

sizes by utilising responsive design. 

The GUI is written using Hypertext Markup Language (HTML), Cascading Style 

Sheets (CSS) and JavaScript (JS). HTML forms the layout and structure of the 

interface whilst CSS controls how those HTML elements are displayed. JS is used for 

generating plots ‘on the fly’ and making the UI interactive. MARTi also makes use of 

Bootstrap (Otto and Thornton 2019), an open-source web front-end framework that 

makes it easier to develop responsive web content, tailoring the experience for 

different devices.
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Figure 3.2 The four pages of the MARTi GUI. a – The Dashboard page enables users to explore real-time analysis results of a single sample. b – The Compare page 
allows users to compare results from multiple samples. c – The Samples page is for selecting available samples for Dashboard and Compare modes. d – The New 
analysis page allows users to generate a configuration file and start a local MARTi analysis. 
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3.4.1 Node.js 

The MARTi GUI is built as a Node.js application that sits between the MARTi Engine 

and the user’s browser. Node.js, is an open-source, cross-platform, runtime 

environment built on Google Chrome's V8 JavaScript engine (OpenJS Foundation 

2020). JavaScript engines were originally only found in web browsers, with all major 

browsers having their own built-in JS engines to execute JavaScript code on the client 

device. More recently, runtime environments such as Node.js have been developed 

that allow JavaScript to be executed outside of the web browser.  

Node.js was developed to facilitate the creation of real-time web applications and 

unify web application development around a single language. Servers built with 

Node.js utilise an event-driven, non-blocking I/O model. Therefore, Node.js servers, 

which run as single-threaded applications, use asynchronous function calls to 

maintain concurrency. This allows them to remain lightweight and efficient, making 

them ideal for data-intensive real-time applications. Many fast and I/O intensive real-

time applications have been developed with Node.js, including communication apps 

such as Slack and Skype, as well as MinKNOW, ONT’s own sequencing software.    

The node package manager, known as npm, is included in the Node.js installer. The 

npm tool allows users to access and distribute JavaScript modules via an online 

repository. MARTi utilises several npm modules:  

• Express.js - Express is the most popular web application framework for Node.js 

(Wilson 2018). It provides mechanisms to handle common web-development 

tasks such as handling requests to different URL paths ("routes") and serving 

static files, including images, HTML, CSS, and JavaScript files.  

• Socket.IO – enables real-time bidirectional communication between web 

servers and clients using TCP/IP socket protocols (Rauch 2018). 
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• chokidar – a lightweight and efficient cross-platform file watching library (Miller 

2020). 

• fs-extra - adds file system (fs) methods that aren't included in the native fs 

module and adds promise support to the fs methods (Richardson 2020). 

• uuid – for generating Universally Unique IDentifiers (UUIDs) (Kieffer et al. 

2020). 

A full list of packages and modules used by the MARTi GUI can be seen in Table 3.1. 

When the MARTi node server is launched it reads an options file, 

marti_server_options.txt, that is configured by the user and contains full paths to four 

directories: 

1. MinKNOWRunDirectory – The directory that contains the nanopore 

sequencing data output by MinKNOW. This is either a path to the data directory 

on the mapped sequencing device drive or the directory that sequencing data 

is being synced to. The node server monitors this directory for new runs to 

analyse. 

2.  MARTiSampleDirectory – The MARTi Engine output directory. The server 

monitors the MARTi output files for updates.  

3. BlastDatabaseDirectory – Path to directory of BLAST databases. 

4. TaxonomyDirectory – Path to directory of NCBI taxonomy databases. 
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Table 3.1 Packages used by the MARTi GUI 

Package Version Description License URL 
Bootstrap 4.3.1 Front-end web development framework MIT https://github.com/twbs/bootstrap/releases/tag/v4.3.1 

Node.js 12.14.1 Cross-platform back-end JavaScript runtime 
environment 

MIT https://github.com/nodejs/node/releases/tag/v12.14.1 

Express.js 4.16.4 A flexible web application framework for 
Node.js 

MIT https://github.com/expressjs/express/releases/tag/4.16.4 

Socket.IO 2.1.1 Enables real-time bidirectional communication 
between web servers and clients 

MIT https://github.com/socketio/socket.io/releases/tag/2.1.1 

Chokidar 3.4.2 A lightweight and efficient cross-platform file 
watching library 

MIT https://github.com/paulmillr/chokidar/releases/tag/3.4.2 

fs-extra  9.0.1 Adds additional file system methods to Node.js MIT https://github.com/jprichardson/node-fs-
extra/releases/tag/9.0.1 

uuid 8.3.2 For the creation of RFC4122-specification 
UUIDs 

MIT https://github.com/uuidjs/uuid/releases/tag/v8.3.2 

jQuery 3.3.1 JavaScript library for HTML DOM manipulation, 
event handling, CSS animation, and Ajax 

MIT https://github.com/jquery/jquery/releases/tag/3.3.1 

D3.js 3.5.17 JavaScript library for producing dynamic and 
interactive data visualisations 

BSD https://github.com/d3/d3/releases/tag/v3.5.17 

Font Awesome Free 5.8.1 Font and icon toolkit based on CSS and Less MIT, SIL OFL, 
CC 

https://github.com/FortAwesome/Font-
Awesome/releases/tag/5.8.1 

DataTables 1.10.19 A jQuery plug-in for advanced HTML table 
features 

MIT https://github.com/DataTables/DataTables/releases/tag/1.10.19 

Google Fonts (Nunito) - A sans serif typeface superfamily SIL OFL https://fonts.google.com/specimen/Nunito 
SortableJS 1.13.0 A JavaScript library for reorderable drag-and-

drop lists 
MIT https://github.com/SortableJS/Sortable/releases/tag/1.13.0 

canvg 3.0.7 JavaScript SVG parser and renderer on Canvas. MIT https://github.com/canvg/canvg/releases/tag/v3.0.7 

ResizeSensor.js 0.2.4 JavaScript library for efficient element resize 
detection. 

MIT https://github.com/procurios/ResizeSensor/releases/tag/0.2.4 
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3.4.2 Client-server communication 

The MARTi GUI consists of a set of resources, including HTML, CSS, and Javascript 

files, that must be passed to the browser client. In order to access these resources, 

the client needs to request them from the server. HTTP (Hypertext Transfer Protocol) 

is used to structure requests and responses between browsers and web servers. The 

HTTP request and response, including resources, are transferred via TCP 

(Transmission Control Protocol).  

The REST (REpresentational State Transfer) architectural style is the most common 

way of structuring a web service for requests. Web services adhering to REST 

principles are described as RESTful. In general, RESTful services use HTTP as the 

underlying communication protocol and a request-response model where the client 

requests a resource and then the server responds. For these cases, HTTP methods 

such as GET, POST, PUT, and DELETE are used to retrieve, submit, update, and 

delete respectively.  

HTTP is a stateless protocol, meaning each request is executed independently, 

without any knowledge of prior requests, even from the same client. Each time an 

HTTP request is made, a new TCP connection is opened between the server and 

client, and then terminated again after a response is received. This means that for 

every request-response cycle the HTTP header and metadata information is sent 

again. This, combined with the opening and closing of the TCP connections and 

processing of the additional information each cycle results in additional latency in 

cases of frequently repeated request-response cycles such as applications that want 

rapid responses or real time interactions or display streams of data. 

Another limitation of HTTP is that it is unidirectional, so the browser can request 

information from the server, but the server can’t send data to the browser when it 

wants to. This means that browsers have to poll the server for new information by 

repeating requests every so often to see if there is anything new.  
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A newer alternative to REST is the WebSocket protocol. WebSocket communication 

begins with an initial HTTP handshake, but then is upgraded to follow the 

WebSockets protocol. With WebSockets, a persistent connection between the client 

and server is established. This connection is full duplex, meaning it’s capable of two-

way simultaneous communication. Therefore, the server is capable of initiating 

communication and can push data to the client when new data becomes available. 

The MARTi GUI uses the Socket.IO npm module for most of the client-server 

communication, a module that primarily utilises the WebSocket protocol, but also has 

a polling fallback option. By using WebSockets, the MARTi server can immediately 

inform clients when updates become available. However, HTTP is sufficient in cases 

where a resource needs to be fetched infrequently or just once and the client doesn’t 

want or require ongoing updates. Therefore, when a client first connects to the MARTi 

server, an HTTP GET request is made for the static files. Following this a WebSocket 

connection is established and the client registers with the server. 

 

3.4.3 Output files for MARTi GUI 

The MARTi Engine generates all of the data required by the GUI. For each MARTi-

analysed sample, the Engine creates a directory of data files for the GUI comprised 

of four types of JSON file and one csv: 

1. sample – The sample JSON file contains information about the analysed 

sample such as sample ID, read and yield metrics, classification metrics, 

analysis status, and details of the analysis performed by MARTi. 

2. tree – Taxonomic classification data as a tree structure in JSON format. This 

data is used by the GUI to plot taxonomic figures on the Dashboard and 

Compare pages. The structure of this file is discussed in more detail further 

on. 
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3. accumulation – Cumulative count of unique taxa discovered per analysed read 

chunk at each taxonomic level. The accumulation file is used for plotting 

taxonomic discovery curves at different taxonomic ranks.  

4. amr – Contains the AMR gene and walkout analysis data required to plot AMR 

figures. The AMR file format is discussed in detail further on. 

5. assignments – A CSV file containing a summary of the taxonomic assignments 

made by MARTi.  

In order to reduce computational load on the GUI and improve response time to user 

input, the files based on MARTi’s taxonomic assignments, the accumulation, tree, 

and assignments files, are pre-computed at four different LCA minimum abundance 

cut-off values (0, 0.1, 1, and 2%). 

 

3.4.4 Client registration 

Clients must be individually recognised by the server in order to receive the correct 

data in cases where there are multiple clients simultaneously viewing results on the 

same MARTi server. When the MARTi GUI is served to a client’s browser, the 

browser emits a registration request to the server with the following pieces of 

information: 

• UUID – this will be set to “null” unless the client has previously been connected 

to the server. 

• Current dashboard sample name – ID of currently selected Dashboard mode 

sample, or empty string if none selected.  

• Compare sample name array – A list of samples selected for Compare mode, 

or empty array if none are selected. 

If the UUID received by the server is null, then a new random version 4 UUID will be 

generated for the client by the uuid module. A new property is then created in a client-
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side object to store information about selected samples. Following this, the client is 

subscribed to a unique socket channel to allow direct communication with that client 

and a response containing the generated UUID is returned via this channel. The client 

is now registered and will use this ID in all further requests to the server. 

 

3.4.5 AJAX content 

The MARTi GUI has a single true HTML page, the index page, that forms the overall 

structure of the interface. This page houses the ubiquitous features such as the 

header, sidebar, footer, and content area. A technique known as AJAX, short for 

Asynchronous JavaScript and XML, is used to dynamically load other HTML files into 

the content area of the index page without the need to reload the page. MARTi uses 

the jQuery AJAX methods to achieve this. jQuery is small JS library that simplifies 

manipulation of the Document Object Model (DOM), the browser-generated tree of 

HTML objects, and is frequently used for event handling, animation, and AJAX (The 

jQuery Team 2018).  

The GUI has four dynamically loaded pages that are accessed by clicking items in 

the sidebar. These are the sample selection page, two analysis mode pages, 

Dashboard and Compare, and the start new analysis page. When an item on the GUI 

sidebar receives a click, jQuery handles the event and triggers a function responsible 

for updating the page title text, loading new content via AJAX, and then scrolling to 

the top of the page.  

The content, such as plots, tables, and forms, in each of the dynamically loaded 

pages are housed in size-changing Bootstrap content containers called cards. The 

cards are used in conjunction with Bootstrap's grid system so that the proportions of 

the cards, and content within them, can be customised based on the user’s screen 

size. 
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3.4.6 D3.js 

Both of MARTi’s analysis modes feature sets of interactive real-time visualisations 

created with the D3.js (D3) library, which makes use of Scalable Vector Graphics 

(SVG), HTML, and CSS standards to facilitate the production of browser-based 

dynamic and interactive data visualisations (Bostock 2016). D3 works by 

manipulating the DOM in real-time. In order to produce visualisations, data is bound 

to graphical elements of the DOM. When new data points are introduced, D3 creates 

associated SVG elements. When data points are removed, D3 deletes the connected 

DOM elements. When data changes, the associated SVG elements are updated 

accordingly. 

 

3.5 Samples page 

The Samples page allows users to select and load available samples into Dashboard 

and Compare analysis modes. The page consists of two cards: an information card, 

which introduces the user to the Dashboard and Compare modes and explains how 

sample selection works; and the sample table card, which features a dynamically 

updated sample selection table and a “Compare samples” button. 

After the Samples page HTML has been loaded into the content area, a Samples 

page initialisation function, initialiseSamplePage(), is called. This function has three 

main roles: the first is to create a table using DataTables, a plug-in for the jQuery 

Javascript library (SpryMedia 2018); the second is to emit a request for sample data 

to the server, via the WebSocket protocol, to populate the table; and finally, to attach 

an event handler to the “Compare samples” button.  

After receiving a client’s request for sample data, the server emits a response 

specifically to the requesting client with information about the available MARTi 

samples in JSON format. Upon receiving the response, the client calls a function, 
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updateSampleTable(), to update the Sample page table with the new data. The 

function removes all existing rows, if any, from the table, before looping through the 

samples in the data and adding a new row for each. After adding all of the rows to the 

table internally, the table is redrawn for a visual update. And finally, the function 

finishes by attaching event handlers to clickable elements of the new rows including 

the checkboxes and Dashboard icons. 

The client then emits two socket requests to the server, one for the current Dashboard 

mode sample, and another for the array of selected Compare mode samples. If a 

Dashboard sample hasn’t been selected, the sever responds with an empty string 

and the Dashboard mode page remains locked. On the other hand, if the server 

returns a sample ID the colour of the Dashboard icon of the matching sample row in 

the table is changed to green and Dashboard mode is unlocked. Similarly, if no 

samples have been selected for Compare mode, then the server responds with an 

empty array and Compare mode remains locked. If the server responds with an array 

of sample IDs, then the associated sample rows in the table are highlighted, the 

checkboxes are ticked, and Compare mode is unlocked.  

When the user selects a Dashboard sample, either by clicking on the run ID or the 

neighbouring Dashboard icon, the client sends the ID of the selected sample to the 

server. When the server receives the ID, it updates the server-side client information 

object, recording the current Dashboard selection for that particular client. The server 

responds by sending a current-dashboard-sample-response message back to the 

client, unlocking the Dashboard page if previously locked. The client’s content area 

is then switched to Dashboard mode. 

When a user adds or removes a sample for comparison by clicking a rows checkbox, 

a variable containing the compare sample array is updated and then sent to the 

server. The server updates the client information object and emits current-compare-
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samples-response back to the client. If the compare sample array is empty the 

Compare mode is locked, otherwise it’s unlocked.  

If a new MARTi analysis sample is added or an existing sample is updated, the server 

will let all connected clients know that there has been an update. The client has page-

specific responses to some server messages including this one. If a client is on the 

Samples page when it receives this message then it will send a sample data request 

to the server, as it did when the Samples page was initialised. As before, the rows of 

the table are internally destroyed, rows are added based on the received data, and 

then the table is visually redrawn. From the user’s perspective, the table changes 

seamlessly. 

 

3.6 Dashboard mode 

The Dashboard page is designed for viewing analysis results of an individual MARTi 

sample. This could be a single nanopore sequencing run or an individual barcoded 

sample within a run. The sample can be one that was previously analysed by the 

MARTi Engine, or one that is currently being analysed. In the latter event, the 

information on the page will update in real time when new analysis information is 

made available by the Engine. 

The Dashboard mode content is flexible and dependent on the available analyses for 

the selected sample. When all available analyses are run for a sample, the page can 

feature up to 7 cards:  

1. Sample card – Displays information about the selected sample such as its ID, 

the analysis pipeline used, analysis status, and total number of basecalled 

reads (Figure 3.3a).  

2. Taxa table card – A table showing taxa with at least one assigned read at the 

selected LCA cut off value and taxonomic rank (Figure 3.3b).  
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3. Donut card – Interactive donut plot of classified reads at selected filter levels 

(Figure 3.3c). 

4. Tree card – Customisable tree plot representing all of the analysed reads, 

including unclassified (Figure 3.3d). 

5. Taxa accumulation card – Features a line chart showing taxa discovered over 

reads analysed, with an option to switch the x-axis to time (Figure 3.3e). 

6. AMR Table card – A table of AMR genes found in the sample (Figure 3.3f). 

7. Walkout Analysis card – Donut plot showing results from AMR gene walkout 

analysis (Figure 3.3g), which involves aligning flanking DNA sequences to 

identify the host bacteria, as described in (Leggett et al. 2020). 

The Dashboard page also features an options bar fixed to the bottom of the header 

bar. This houses three buttons: the first is for downloading a csv of taxonomic 

assignments, the second is for selecting the LCA minimum abundance cut-off value, 

and the last one is a dropdown that allows users to select a taxonomic rank. 

After the Dashboard HTML has been fully loaded into the main content area, the 

dashboard initialisation function, initialiseDashboardPage(), is called. This function 

carries out four main tasks: it emits requests to the server for sample information, 

taxonomic classification data, accumulation data, and AMR data; initialises empty 

tables in the Taxa Table and AMR Table cards using DataTables; attaches event 

handlers to search boxes and buttons; and finally, calls the initialisation functions for 

each of the D3 plots. 
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Figure 3.3 The MARTi GUI Dashboard page cards. a – Sample card - displays information about the 
selected sample. b – Taxa Table - shows taxa with at least one assigned read at the selected LCA cut 
off value and taxonomic rank. c - Donut card - features an interactive donut plot of classified reads at 
selected filter levels. d – Tree card – Contains an interactive tree plot representing all of the analysed 
reads. e - Taxa accumulation card - Features a line chart showing taxa discovered over reads 
analysed. f - AMR Table card - A table of AMR genes identified in the sample. g - Walkout Analysis 
card - Donut plot showing results from AMR gene walkout analysis. 

 
  



65 
 

 
Figure 3.3 continued. The MARTi GUI Dashboard page cards. a – Sample card - displays information 
about the selected sample. b – Taxa Table - shows taxa with at least one assigned read at the 
selected LCA cut off value and taxonomic rank. c - Donut card - features an interactive donut plot of 
classified reads at selected filter levels. d – Tree card – Contains an interactive tree plot representing 
all of the analysed reads. e - Taxa accumulation card - Features a line chart showing taxa discovered 
over reads analysed. f - AMR Table card - A table of AMR genes identified in the sample. g - Walkout 
Analysis card - Donut plot showing results from AMR gene walkout analysis.  
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3.6.1 Sample card 

When the server returns the sample information to the client, jQuery is used to select 

and update text in the Sample card and then the read breakdown donut plotting 

function is called with the received data. The donut splits basecalled reads into four 

categories:  

1. Passed filter and analysed - these are reads that have met MARTi’s filtering 

requirements, such as minimum quality score and read length, and have gone 

through a classification process. 

2. Passed filter, awaiting analysis - reads that have met MARTi’s filtering 

requirements and await further analysis. 

3. Awaiting filter - reads waiting to be filtered by the MARTi Engine. 

Failed filter - reads that have failed to meet the filtering requirements and have 

therefore been excluded from further analyses. 

3.6.2 Classification data 

Upon receipt of the taxonomic classification data from the server, functions to plot the 

taxonomic figures - the donut, tree, and table - are called. The classification data is 

generated by the MARTi Engine as a tree structure in JSON format. Each node of the 

tree has 7 properties that can be used by the GUI:  

1. name - the NCBI taxon name e.g., "name": "Gammaproteobacteria"  

2. ncbiID - the NCBI taxonomy ID e.g., "ncbiID": 41294 

3. ncbiRank - NCBI taxonomic rank e.g., "ncbiRank": “class” 

4. rank – a simplified rank system for filtering on the GUI. The 45 different NCBI 

ranks are reduced to the 8 major ranks plus sub-species and no rank (Table 

3.2). This value is an integer from 0 to 9 e.g., "rank": 4 

5. value – number of reads assigned to the node e.g., "value": 37 
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6. summedValue – the sum of the number of reads assigned to the node and 

number of reads assigned to all descendent nodes e.g., “summedValue": 589 

7. children – an array of child nodes 

A brief description of how each of these figures are generated from this data will be 

given here, but some of the key tree functions are explained in more detail in Section 

3.9.  

Table 3.2 MARTi’s simplified taxonomic rank system 

MARTi 
rank 

Rank 
no. NCBI ranks 

No rank 0 clade, no rank 
Domain 1 superkingdom 
kingdom 2 kingdom, subkingdom, superphylum 
Phylum 3 phylum, subphylum, superclass 
Class 4 class, cohort, infraclass, subclass, subcohort, superorder 
Order 5 order, infraorder, parvorder, suborder, superfamily 
Family 6 family, subfamily, subtribe, tribe 
Genus 7 genus, section, series, species group, species subgroup, 

subgenus, subsection 
Species 8 species, genotype, isolate 
Subspecies 9 subspecies, biotype, forma, forma specialis, morph, 

pathogroup, serogroup, serotype, strain, subvariety, varietas 
 

3.6.3 Taxa table and donut plot cards 

The taxa table and donut plot share a data processing function and on devices that 

Bootstrap refers to as extra large (where the width >= 1200 px), the cards sit next to 

each other on a row underneath the Sample card. In this layout, the table doubles up 

as an interactive legend for the donut. However, on smaller screens, such as tablets, 

there isn’t enough space to have the two cards side-by-side. In these cases, the 

Donut card breaks out onto a new row and two new columns are added to the card, 

one for the legend and another for the top n taxa range slider (Figure 3.4). 
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Figure 3.4 The Dashboard page of the MARTi GUI at different viewport widths. The GUI uses Bootstrap's grid system as part of its responsive design. a – On viewports 
wider than or equal to 1200px the Taxa table card and Donut card sit on the same row and table doubles up as an interactive legend for the donut. b – When the viewport 
is between 992 and 1200px, the Donut card breaks out onto a new row and two new columns are added to the Donut card, one for the legend and another for the top n taxa 
range slider. c – On smaller viewports, 768 to 992px, the third column of the Donut card is hidden. The top n taxa range slider can be accessed via the options menu. The 
sidebar can also be hidden on smaller screens. 



69 
 

The JSON data is first converted to a D3 tree object, making it easier to work with. If 

a specific taxonomic rank has been selected with the taxonomic rank dropdown, then 

only nodes at that particular rank are kept, otherwise all nodes proceed to the next 

step. The labelNewLeaves() function is used to make an array of the leaf nodes that 

can be referred to when setting the value to be plotted for each node. For non-leaf 

nodes, the value, that is the number of reads assigned directly to that node, is used 

as the plotting value for the table and donut. However, for leaf nodes, the summed 

value is used so that the reads assigned to all of the hidden descendent nodes are 

rolled back up into the nodes at the selected taxonomic level and included in the 

visualisation. The table has four columns: 

1. Name - the NCBI taxon name, which when clicked opens a new tab at the 

specific taxon page of the NCBI taxonomy browser. 

2. Rank - NCBI taxonomic rank. 

3. Read Count – summed read count for leaf nodes and node read count for all 

other nodes.  

4. Read Proportion – an SVG rectangle that allows the user to quickly assess 

each taxa’s proportion of the total reads at the selected rank. 

 

The first step in the Dashboard taxonomic table update is to calculate the proportion 

of the largest node plotting value to the sum of plotting values. This proportion will be 

used to calculate the width of SVG bars in the read proportion column of the table. 

Next, the table is cleared of any existing rows, a new row is created for each node, 

and the table is drawn. A function is then called to create, and colour, the SVG 

proportion rectangles, and add event handlers to the rows for the tooltip and row style 

changes on hover.  
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No limit has been placed on the number of rows that the taxa table can display as it 

is scrollable. The donut plot, on the other hand, is less able to display large numbers 

of taxa as the slices become very thin and difficult for the user to see and interact 

with. Therefore, the data goes through an extra step of filtering so that only the most 

abundant taxa are displayed by the donut. The returnTopTaxa() function sorts the 

nodes by their plotting value and then adds a property called threshold to each node. 

Threshold is set to the NCBI ID of the taxa if it is to be shown as its own slice or 

“Other” if not. The default number of taxa slices to be shown is ten, with the other taxa 

being rolled up into an “Other” category, but this number can be adjusted by the user 

with a range slider in the options menu on the Donut card. The value for the “Other” 

slice is calculated as the sum of the plotting values of the constituent taxa.  

The taxa donut and associated legend, which is only visible on smaller screen sizes, 

are plotted using this simplified data and D3 methods. The donut plotting function also 

adds event handlers to the slices and legend items to allow reciprocal highlighting 

and tooltip functionality. The donut also has reciprocal highlighting with the taxa table 

and the colours of the table read proportion bars are updated when the donut slices 

change colours so that taxon is colour matched between the two figures. 

Besides the highlighting and tooltips, the table and donut feature other interactive 

elements. For the table, each column can be sorted alphanumerically by clicking on 

the header cells. Rows can be filtered using a search box, with the table being 

redrawn on every keyup event. The table also features an export to csv option as well 

as copy to clipboard. The donut features a top n taxa range slider and three export 

options, SVG, PNG and JPG. 
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3.6.4 Taxonomic tree card 

The next card down on the Dashboard page is the Tree card, which houses an 

interactive taxonomic tree. The plot allows users to easily visualise the distribution of 

assigned reads across the taxonomic tree and provides options for customisation. 

Radio buttons in the card’s options dropdown allow the user to select between 

different algorithms for tree type, link type, node size, and node colour. The tree also 

features click-collapsible nodes, responsive internodal lengths, a filtering range slider 

to show only the top n taxa, and export options. 

As with the donut plot, the tree plotting function is triggered by the receipt of the 

classification tree JSON data from the server or when the user selects a different 

taxonomic rank or changes the number of top taxa to show. However, unlike the donut 

plot, the pre-processing of the data differs depending on how the tree plot update 

function is triggered.  

If new data is received from the server or the user has selected a different taxonomic 

rank for existing data, then the data is first processed by three important functions: 

resetTreeBranches(), taxonomicRankFilt(), and topNLeaves().  

The resetTreeBranches() function resets the tree branches and prepares it for filtering 

and pruning by uncollapsing any click-collapsed nodes, restoring any branches that 

had been pruned, and setting the “keep” property of all nodes to false.  

The taxonomicRankFilt() function collapses the tree to the selected taxonomic rank. 

For nodes at a higher taxonomic rank than selected, any ranks hidden by previous 

taxonomic rank filtering are unhidden. Nodes at the selected rank have their children 

hidden in a taxonomic filter specific property. In rare cases a tree path might not 

contain the selected taxonomic rank but will contain nodes at lower levels than 

selected, and in these cases the nodes are pruned at their parents using the 
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hideSpecificBranch() function. The taxonomicRankFilt() function also keeps count of 

leaf nodes and calls a function to update the max value of the top leaves range slider.  

The third function, topNLeaves(), is responsible for trimming the tree so that it only 

features the number of leaves specified by the user. A description of how this function 

works can be seen in the Tree methods section. 

When the top n leaves value is changed by the user, only resetTreeBranches() and 

topNLeaves() need to be called as the taxonomic rank remains the same. If new tree 

data is received from the server, and it’s not the first time the tree has been drawn, 

then the click-collapse status of the nodes must be copied from the old tree and 

applied to the new one with the copyCollapseState() function. 

Subsequently, the pre-processed data is converted to either a D3 tree object or D3 

dendrogram object depending on which option is selected. The D3’s tree layout 

implements the Reingold-Tilford “tidy” algorithm for constructing hierarchical node-

link diagrams, whereas the dendrogram cluster layout produces a node-link diagram 

that places leaf nodes of the tree at the same depth. The tidy trees are generally more 

compact than the dendrogram equivalents and can make it easier to see the 

taxonomic ranks of assigned reads at a glance. However, the cluster layout can 

improve the view of the leaf nodes as it eliminates the possibility of overlapping labels. 

The tree is then plotted using D3 methods to handle how new data points are added, 

existing ones updated, and how SVGs no longer needed are removed. Event 

handlers are then added to the nodes to create a tooltip on mouse over. The tree 

update function ends by recording the collapse status of each node in a JS object that 

can be used by the copyCollapseState() function when new data arrives to re-

collapse any user collapsed nodes. 
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3.6.5 Taxa accumulation card 

The taxa accumulation card sits underneath the tree card and features a line chart 

showing the number of taxa discovered per read chunk analysed, or over time if 

selected by the user. These plots typically resemble a logarithmic growth curve, with 

lots of new taxa being discovered early on in a sequencing run, but then the discovery 

rate slows and levels off. The plot gives the user an idea of how much diversity there 

might be left in the sample to capture and how much more sequencing effort it would 

take to discover it. With nanopore sequencing, it is therefore possible to conclude that 

a sample’s diversity has been captured and to stop sequencing, preserving the flow 

cell’s life for other samples. 

The MARTi Engine outputs the data required for the accumulation card in JSON 

format, one file per LCA setting. Each file has a property for each taxonomic rank, as 

well as one for all levels combined. Nested within the taxonomic rank properties are 

two arrays of coordinates, one for number of taxa per read chunk and the other for 

taxa per time. As with the taxonomic assignment data (the tree JSON files), the server 

monitors for the addition, update, and removal of accumulation JSON files. Rather 

than receiving the whole file, which could be quite large, each client request for 

accumulation data is at a specific taxonomic rank and LCA cutoff.  

The dashboard page emits requests for accumulation data in five circumstances: 

during initialisation of the dashboard page, when the accumulation plot is unhidden if 

previously closed, on taxonomic rank change, LCA abundance cutoff change, and in 

response to an accumulation update available message from the server. When the 

server responds with the requested data, the client calls the accumulation plot update 

function, or if this is the first time accumulation data has been received for this 

particular instance of the Dashboard page, the accumulation plot initialisation function 

is called followed by the update function.  
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The accumulation chart has two plotting options, x-axis and curve, as well as export 

options for SVG, PNG and JPG. The x-axis option allows the user to select whether 

they want to view the discovered taxa per read chunk sequenced or over time 

analysed. The curve radio toggle input is used to pick the line plotting algorithm, either 

linear, which connects the points with straight line segments, or monotone, which 

attempt to create a smoother curve with monotone cubic interpolation.  

The accumulation initialisation function creates the main SVG with a viewBox 

attribute, to define its position and dimensions, and then draws the axes. The 

accumulation plot update function is responsible for the rest of the content and uses 

D3 methods. First, the user’s x-axis and curve selections are retrieved, and relevant 

variables are set. The x and y-axis labels are updated, with the former being set to 

the selected x-axis option, and the latter set to the selected taxonomic rank. The data 

is used to generate an object that includes the name of the sample and the values, 

which are the coordinates for the points to be plotted based on the x-axis selection. 

The legend, lines, and axis ticks are created based on the input data. The final step 

of the update function is to add mouse event handlers to the plot. On mouseover 

events the closest point on the line is highlighted with a circle, the taxa value at that 

point is added next to the point, and a vertical line is plotted so the user can see where 

the point intersects with the x-axis. 

 

3.6.6 AMR cards 

The next two cards on the dashboard page, the AMR table card and AMR walkout 

analysis card, only appear if AMR data is available for the sample. If specified in the 

configuration file, the MARTi Engine will BLAST reads to CARD (Alcock et al. 2020) 

to identify antimicrobial resistance genes. The AMR JSON file produced by the 

MARTi Engine contains all of the information required to plot both of the AMR cards. 

The file contains timestamps for each read chunk analysed, the total number count 
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of AMR hits, and most importantly an array of AMR genes that have been detected 

in the sample. Each of the genes has six properties associated with them: 

1. cardId – the AMR genes CARD accession number.  

2. name – name of the gene. 

3. description – a short description of the gene obtained from CARD. 

4. count – key-value pairs of the cumulative number of reads that have been 

matched to the gene at each chunk. Only includes a key-value pair when the 

number of hits changes rather adding one every chunk.  

5. averageAccuracy – average accuracy of the AMR hits for each chunk that the 

hit count changed. 

6. species - an object containing species identified during walkout analysis. Each 

species property houses key-value pairs representing the number of assigned 

reads to the species at each chunk where a change in number has occurred. 

 

The client requests the AMR JSON file from the server in three circumstances: on 

initialisation of the dashboard page, when either of the AMR cards is unhidden, and 

in response to an update available message from the server. After receiving the data, 

the client calls the AMR table update function and the AMR walkout analysis donut 

plotting function.  

The first time the AMR update functions are called, an initiation function is also called, 

adding event handlers to the chunk selection range sliders. These sliders are at the 

top of each of the AMR cards and allow the user to view the cumulative AMR results 

as they were at a particular read chunk, which is useful for determining the timepoint 

when a particular resistance was detected. As the user drags the range slider, input 

events are triggered and text on the card is updated so that the user can see what 
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chunk is about to be selected. When the slider is released a change event is triggered, 

resulting in the table and AMR donut update functions being called. 

To reduce the size of the AMR data, the count, average accuracy and species 

properties do not have values for every chunk. Instead, new data points are only 

added if the cumulative count has changed. Therefore, the AMR table update function 

has to identify the values to plot at a particular chunk selection. If there are values at 

the selected chunk then those will be used, otherwise the highest chunk that is less 

than the selected chunk will be used.  

The table is plotted in the same way as the taxa and sample selection tables. First 

the table is cleared of all rows, new rows are added, and finally the table is drawn. 

The table has five columns:  

1. name - the name of resistance gene with an HREF attribute featuring the URL 

of the gene on the CARD website.  

2. count – total number of reads that have hits to that gene at the selected chunk  

3. average accuracy – chunk specific average accuracy of the AMR hits.  

4. walkout species – a coma separated list of the identified host species with the 

number of hits in brackets.  

5. description - a short description of the gene obtained from CARD.  

As well as the chunk range slider, the AMR walkout analysis card features a top taxa 

slider for specifying the maximum number of taxa to show in the donut and a 

dropdown for AMR gene selection. The AMR walkout analysis plotting function 

populates the gene selection dropdown with the names of resistance genes that were 

identified at or before the selected chunk, and then calls the topTaxaAmr() function 

on the species hits of either a selected gene or all genes.  

The topTaxaAmr() function takes an array of resistance gene objects and outputs 

data in a format ready to be plotted as a D3 donut. The code iterates through each 
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identified host taxon for each gene and builds a new array of objects, each containing 

the name of the taxon and the sum of AMR gene hits. The top taxa range slider value, 

which by default is 10, is then used to filter the array, keeping the taxa with the top n 

AMR hits and rolling up all of the other taxa into an “Other” category with a summed 

count. The output data is then used to build an interactive legend and donut plot using 

D3 methods. 

 

3.7 Compare mode 

The Compare mode page allows users to explore multiple samples at once, including 

samples currently being analysed. This page features four cards:  

1. Samples card – Allows the user to sort the selected comparison samples by 

ID, sequencing date, yield, reads analysed, and by manually dragging them in 

place (Figure 3.5a).  

2. Stacked bar card – A stacked bar chart for viewing the taxonomic composition 

of the selected samples side-by-side (Figure 3.5b).  

3. Multi-donut card – A multi-donut plot for comparing the composition of 

assigned reads between samples (Figure 3.5c). 

4. Taxa accumulation card – A multi-line chart representing taxa discovery rates 

of each sample over the course of analysis, with the x-axis showing either 

reads sampled or time analysed (Figure 3.5d). 

 

As with the Dashboard page, the Compare page also has an options bar fixed to the 

bottom of the header bar. However, the Compare version of this bar only houses two 

buttons, an LCA minimum abundance cutoff selector, and a taxonomic rank 

dropdown. 
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Figure 3.5 The MARTi GUI Compare page cards. a – Samples card – allows users to order the selected samples. b – Stacked bar card - A stacked bar chart for viewing the 

taxonomic composition of the selected samples side-by-side. c - Donut card - A multi-donut plot for comparing the composition of assigned reads between samples. d – Taxa 

accumulation – A multi-line chart representing taxa discovery rates of each sample over the course of analysis. 
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After the Compare page has been loaded into the main content area, the compare 

page initialisation function, initialiseComparePage(), is called. This function carries 

out several important tasks: it adds event handlers to the options bar buttons, 

Samples card dropdown, and export buttons; calls initialisation functions for the 

stacked bar and donut compare plots; and emits requests to the server for taxonomic 

classification and accumulation data.  

On receiving a request for taxonomic classification data, the server joins the tree 

JSON data for all of the selected Compare mode samples together and responds with 

a single object. When the client receives this taxonomic data, it calls the 

updateComparePlots() function, a function that prepares the input data and then calls 

the plotting functions for the two taxonomic compare plots.  

The updateComparePlots() function carries out a number of tasks for each of the 

selected samples: first, the taxa are filtered based on the selection made on the 

taxonomic rank dropdown in the Compare page options bar; then, the 

labelNewLeaves() function identifies leaf nodes and a plotting value is set for each 

node, either as the summed read count for leaf nodes, or read count for all other 

nodes; the topTaxaCompare() function creates two objects, one for each taxonomic 

plot, of filtered taxa based on the top n taxa value selected for each plot, and also 

generates an array of taxa names to be included in the plot’s legend. 

The updateComparePlots() function proceeds by creating an array of the selected 

sample names and sorting it with a relevant algorithm depending on which option is 

selected in the Samples card order dropdown. The array of sorted sample names is 

then used to reorder the draggable sample names in the Samples card to match the 

dropdown options selected. Finally, the plotStackedBar() and plotCompareDonut() 

are called with the filtered data and legend arrays. 
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3.7.1 Stacked bar card 

The stacked bar card sits underneath the Samples card and features a stacked bar 

plot to facilitate taxonomic composition comparisons between samples. The card’s 

options menu features a top n taxa per sample range slider, a y-axis radio button for 

switching between read count and percent, and chart export buttons. When the 

plotting and update function, plotStackedBar(), is called, D3 methods, including 

d3.stack(), are used to calculate the position of each taxon on the y-axis for each 

sample and then create sets of stacked rectangles. 

 

3.7.2 Multi-donut card 

The next card present on the Compare page is the Donut card that features an 

interactive donut for each sample selected for comparison. As with the stacked bar 

plot, this plot allows the user to compare taxonomic composition between samples. 

The options menu of the Donut card features four inputs:  

1. A top n taxa per sample range slider - allows the user to specify the maximum 

number of different taxa to show in each donut. 

2. Donut radius slider - for specifying the max radius of the donuts.  

3. Donut area radio buttons - for switching between equal size donuts to area 

based on the number of assigned reads. 

4. Read count radio buttons - for toggling on and off a read count label in the 

centre of the donut.  

The plotCompareDonut() function, which is triggered at the end of the 

updateComparePlots() function, is used to plot and update the donuts and legend. 

The function starts by formatting the input data specifically for donut plotting. The user 

inputs for donut radius and donut area are retrieved and the value of the former is 

used in the calculation of the latter. D3 methods are then used to plot the legend and 
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donuts, as well as add mouse related event listeners to the legend items and donut 

slices for reciprocal highlighting. To prevent the donut labels from overlapping, a text 

wrapping function was developed and is called when the donut name SVG text labels 

are created.  

 

3.7.3 Taxonomic plot updates 

When changes are detected in the tree JSON files for any sample that the MARTi 

server is watching, the server emits a tree-update-available message to all clients 

that have the updated sample selected for Dashboard or Compare mode. If the client 

is on the Compare page, then the client emits a request, compare-tree-request, to the 

server for the latest Compare mode combined tree data.  

 

3.7.4 Accumulation card 

The final HTML card on the Compare page is the Taxa accumulation card that hosts 

a multi-line chart showing the cumulative number of taxa discovered per read chunk, 

or over time. This plot is generated using the same function, 

plotRarefactionCompare(), as the accumulation plot on the Dashboard page and 

features the same options.  

Requests for the Compare page taxa accumulation data are sent to the server in four 

cases: during the initialisation of the Compare page by the initialiseComparePage() 

function, when the minimum LCA abundance cutoff is changed, if a different 

taxonomic rank is selected, and in response to an update available message from the 

sever. The data returned by server is a single object containing the accumulation 

JSON data at the specific LCA cutoff and taxonomic rank selected for each of the 

samples selected for comparison. 
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3.8 New analysis page 

The MARTi Engine requires a configuration file in order to start a new analysis of a 

run or barcoded sample. The config file provides all the details for the analysis to be 

performed by the MARTi Engine. A config file can be generated manually by editing 

a template config file for running on a cluster/HPC environment, or by using the 

MARTi GUI’s new analysis form for running MARTi locally. 

The new analysis page allows users to generate a config file and start a local MARTi 

analysis from the MARTi GUI. The page is comprised of just one HTML card, the Start 

new analysis card, that houses all of the input fields and buttons required to produce 

and submit the data required for the server to generate the config file.  

When the New analysis page is loaded into the content area, the page’s initialisation 

function, initialiseNewPage(), is called. This function is responsible for four main 

tasks: 

1. Requesting data from the server – During initialisation, the New analysis page 

requests the server options and the IDs of the available MinKNOW runs from 

the server by emitting the default-server-options-request message.  

2. Generating HTML inputs – As the Max jobs and Select barcodes inputs have 

many options, 16 and 96 respectively, it is easier to generate these options 

with JS rather than creating bloated hard-coded HTML.  

3. Attaching event handlers – the “more information” icons and many of the 

inputs, including some of the text boxes, checkboxes, dropdown menus, range 

sliders and buttons, need to react to the user’s input immediately. For example, 

when the Process barcodes checkbox is ticked, the Select barcodes input 

needs to be revealed. Therefore, the initialisation function adds relevant event 

handlers to these elements.  
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4. Handle form validation and submission – the final task of the initialisation 

function is to define how form validation occurs, which prevents the form from 

being submitted if the form is incomplete or inputs have values outside of their 

ranges, and control form submission, which will be discussed in more detail 

later.   

Upon receiving the default-server-options-request from the client, the server scans 

the MinKNOW run directory (via an additional function written by Samuel Martin) 

specified in the marti_server_options.txt file for runs to analyse and responds with a 

serverOptions object. This object contains the four directories from the server options 

text file, MinKNOWRunDirectory, MARTiSampleDirectory, BlastDatabaseDirectory, 

and TaxonomyDirectory, as well as an array of any available MinKNOW runs for 

analysis.  

When the client receives the response from the server, the default-server-options-

response message, it carries out several updates to the page. First, the MinKNOW 

run ID dropdown is populated with sample names from the minKNOWSampleNames 

array. Then, the MARTi analysis ID text input field is filled with the name of the first 

run ID in the dropdown. The un-editable MARTi output path field is updated using the 

base path from the MARTiSampleDirectory property of the data in addition to the 

contents of the MARTi analysis ID field. Finally, the client updates the barcode name 

text fields of all of the unselected barcodes to the MARTi analysis ID and the barcode 

ID joined with an underscore. 

As analysis requirements vary for different users, the MARTi analysis pipeline is 

customisable. If a user wants to BLAST their sample to the entire NCBI Nucleotide 

database, then they can click on the BLAST vs nt button in the Analysis processes 

section of the form. In response, a BLAST process card will be added and prefilled 

with recommended settings for BLASTing to nt. If a user wants to classify their reads 

using a different database, they can click BLAST vs other and specify the database 
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and BLAST settings. Multiple BLAST processes can be added but only one can be 

used for the LCA classification, signified to the Engine by ticking the Use this BLAST 

to classify checkbox. There is also a BLAST vs CARD button that creates a 

preconfigured analysis process for aligning reads to CARD in order to identify AMR 

genes. 

The form also features buttons to load default settings for the most common MARTi 

pipelines, BlastLCA and BlastLCA-CARD. The standard BlastLCA pipeline loads 

default settings for BLASTing to nt followed by MARTi’s LCA classification. The 

BlastLCA-CARD pipeline is for users that also want to identify AMR genes in the 

sample by an additional BLAST to CARD followed by MARTi’s walkout analysis to 

identify the host organisms of the resistance genes.  

A Reset button is included in the Pipeline default settings section of the form, allowing 

users to quickly revert all inputs back to default without the need to reload the form 

page. Having the button next to the pipeline loading buttons makes it easy to revert 

after browsing different pipeline settings and it is also less likely that a user will 

accidentally reset the form instead of submitting as can be the case if the reset button 

is included at the end of the form next to the submit button. When clicked, the reset 

button calls the resetForm() function that uses jQuery statements to set input element 

values back to their default values, trigger change and input events if necessary, and 

remove all analysis process cards.  

When the form submission button, Start analysis, is clicked, the client checks the 

validity of form, making sure each element satisfies their constraints. If the form fails 

validation, then further propagation of the submission event is prevented, an alert 

pops up to tell the user that form submission has failed, and CSS is used to highlight 

which form elements passed or failed validation. If the form is valid then the jQuery 

ajax function is used to submit the form data to the server via an HTTP POST request 
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without reloading the page. When form submission is successful, the user is notified 

via an alert and then redirected to the samples page. 

The data is submitted to the server as a URL-encoded text string where it is converted 

to JSON by a built-in middleware function of Express that parses all incoming 

requests with URL-encoded bodies. Server-side code written by Samuel Martin 

creates a new directory in the MARTi output location with the MARTi analysis ID as 

its name, writes out a config file using the values from the form data, and then spawns 

a local MARTi Engine process. 
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3.9 Tree methods 

In this section, algorithmic descriptions are provided for some of the key methods 

used to process the taxonomic tree that were mentioned in earlier sections. 

3.9.1 Collapse tree to selected taxonomic rank 

The taxonomicRankFilt() function collapses the tree to the selected taxonomic rank 

as follows: 

1. Set leaf count to 0. 

2. Recurse down tree from root towards leaves. For each node: 

1. If taxonomic rank is less than the selected rank: 

1. Unhide any hidden child nodes.  

2. Add 1 to leaf count if node has no children. 

2. If taxonomic rank is equal to the selected rank: 

1. Hide any child nodes. 

2. Add 1 to leaf count. 

3. If rank is greater than the selected taxonomic rank: 

1. Add node to a hide branch list. 

3. For each node in the hide branch list: 

1. Hide node and all of its descendants from parent node with the 

hideSpecificBranch() function. 

4. Set maximum value of the top n leaves range slider to leaf count. 

  



87 
 

3.9.2 Prune specific branch 

The hideSpecificBranch() function prunes a specific branch from a node when given 

the name of the child to prune: 

1. Create undefined splice index variable. 

2. For each of the node’s children: 

1. If child’s name matches name of node to prune: 

1. Create property to store pruned branches unless it already 

exists. 

2. Add child node to pruned branch property. 

3. Set splice index to index of child. 

3. Remove child from splice index position of children array. 

 

3.9.3 Trim tree to show top n leaves 

The topNLeaves() function is responsible for trimming the taxonomic tree so that it 

only features the number of leaves specified by the user. If N is the number of leaf 

nodes to show in the taxonomic tree, the function carries out the following: 

1. Build a list of leaf nodes (i.e., nodes with no children). 

2. Sort leaf node list by summed read count. 

3. Mark first N leaf nodes as “keep” and add to a keep list. 

4. Add rest of leaf nodes to remove list. 

5. For each node in the keep list: 

1. Recurse up tree to root, marking each successive parent as “keep”. 

6. For each node in the remove list: 

1. Recurse up the tree and find first ancestor marked as “keep”. 

2. Hide branch from first “keep” ancestor down with the 

hideSpecificBranch() function. 



88 
 

3.9.4 Reset tree 

The resetTreeBranches() function resets the tree branches and prepares it for filtering 

and pruning by expanding any click-collapsed nodes and restoring any branches that 

had been pruned as follows: 

1. Recurse down tree from root towards leaves. For each node: 

1. Set “keep” property to false. 

2. If node has been click-collapsed: 

1. Unhide children. 

3. If node has pruned branches: 

1. Add pruned child nodes to property of visible children. 

2. Remove property that stored pruned children. 
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3.10 Summary and future work 

MARTi addresses the need for an open-source software tool that enables real-time 

analysis and visualisation of metagenomic sequencing data. The tool consists of two 

main parts, the Engine and GUI, and can be configured in many ways to suit the 

needs of the user. In local configuration, both the back and front end are run on the 

same device, typically a desktop or laptop, without the requirement of an internet 

connection. Combined with a minimalist in-field laboratory setup, MARTi makes it 

possible to carry out real-time analysis at the site of sample collection. With HPC 

configuration, analysis processes can be parallelised to a greater extent making it 

less likely for analysis to fall behind sequencing, enabling larger databases and 

allowing multiple real-time runs to be analysed simultaneously.  

The MARTi GUI features two main analysis modes: Dashboard, for analysing a single 

sample; and Compare, which allows multiple samples to be viewed side by side. 

Currently, the majority of plots available on the GUI are for exploring the taxonomic 

composition of samples, with the AMR table and AMR walkout analysis donut plot 

being the only forms of functional analysis. One area of future development for MARTi 

will be to expand its functional analysis offering, mapping reads to databases of gene 

groups such as KEGG to identify genes with known and annotated functions. 

Other areas of future developments for MARTi include: improvements to existing 

plots, such as added options and features; addition of new plots, such as a treemap 

plot (Shneiderman 1992), comparison tree, comparison heatmap, and functional 

analysis plots; developing support for alternative classification methods to the current 

BLAST LCA pipeline such as Centrifuge, allowing taxonomic analysis to be carried 

out more quickly and on devices with less memory; addition of multivariate analyses, 

such as principal component analysis and principal coordinates analysis; and addition 

of richness and evenness indices, such as the Shannon–Wiener index and Simpson 

’s index. 
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Although MARTi was primarily developed for metagenomic data, the tool could also 

be used with metabarcoding data such as 16S rRNA for prokaryotes, 18S rRNA for 

microbial eukaryotes, and Cytochrome Oxidase (CO1) for animals. Barcode 

databases represent a greater number of species than databases of complete 

genomes and therefore could reveal a more complete picture of the diversity in a 

sample. Barcode databases are much smaller than those containing whole 

references, meaning MARTi Engine could make classifications at a much greater 

rate. However, the short metabarcoding reads have reduced discriminatory power 

and lower taxonomic resolution. Furthermore, metabarcoding is less suitable for 

quantifying relative abundances, due to PCR amplification biases and varying copy 

numbers of barcode loci, and functional analysis is not possible.  

This chapter provided an overview of the MARTi tool and described the structure and 

methods behind the front end. The next chapter will focus on the application of 

MARTi, demonstrating the tool in action on a pre-sequenced mock microbial mix and 

then in real-time on clinical faecal samples. 
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4 Chapter 4 – Demonstration of MARTi on mock 

and clinical metagenomic samples 
 

4.1 Introduction 

Chapter 3 provided an overview of the MARTi tool and its implementation, including 

descriptions of key analysis and visualisation algorithms. In this chapter, the results 

from using MARTi to analyse real experiments are reported – firstly, using a mock gut 

community and, secondly, using clinical faecal gut microbiome samples taken from 

both patients suffering from liver disease and healthy individuals. 

As metagenomic sequencing studies can suffer from bias and errors at every step of 

the workflow, from DNA extraction to computational analysis, evaluation on reference 

communities with known compositions is critical. The ZymoBIOMICS Gut Microbiome 

Standard (Zymo Research, Irvine, USA), a cell-level pool of 21 microbial strains (18 

bacterial, 2 fungal, and 1 archaeal) in staggered abundances was chosen for the first 

demonstration of MARTi. The mock was designed to mimic a human gut microbiome 

and provides multiple challenges for metagenomic pipelines, such as difficult-to-lyse 

Gram-positive bacteria (e.g., Roseburia hominis) for testing lysis efficiency, low-

abundance organisms for assessing detection limit, and five different strains of E. coli 

for testing taxonomic resolution.  

Following the gut mock analysis, MARTi was run on clinical faecal samples from 

patients with advanced liver cirrhosis (severe scarring of the liver) and from healthy 

individuals for comparison. Samples from the cirrhosis patients can be divided into 

three categories:  

1. Decompensated cirrhotic - from patients that have developed at least one 

major complication including ascites, infection, gastrointestinal haemorrhage, 

and hepatic encephalopathy.  
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2. Acute-on-chronic liver failure (ACLF) – characterised by sudden worsening of 

liver function in patients with chronic liver disease and is associated with one 

or more organ failures and increased mortality.  

3. Stable cirrhotic – decompensated cirrhosis patients that rarely require hospital 

admission and have a much lower mortality risk.  

 

Advanced liver cirrhosis is associated with compositional changes of the gut 

microbiota, known as dysbiosis, that results in higher levels of pathogens and higher 

abundances of AMR genes, which are related to an increase in hospitalisations and 

death independent of cirrhosis severity (Arroyo et al. 2016; Shamsaddini et al. 2021). 

Identification of AMR genes in the gut microbiome of cirrhosis patients could be used 

for predicting outcomes and targeting them for therapy (Shamsaddini et al. 2021). 

Therefore, these samples represent an ideal biological test case for the full range of 

MARTi functionality. MARTi was used to analyse data from three live sequencing 

runs: 

1. Clinical F3 M – A single sample, F3, that originated from a patient with 

decompensated cirrhosis was sequenced on a MinION Mk1C. MARTi was run 

in local configuration, with the Engine and GUI running on a laptop, accessing 

the MinKNOW pass reads from the mapped drive of the MinION Mk1C.  

2. Clinical F3 G – Same sample as previous run, F3, but with this run sequencing 

was carried out on a GridION and MARTi was run in the HPC configuration.   

3. Clinical pool – A pool of 12 faecal samples from patients with cirrhosis, one 

stable cirrhotic, five decompensated cirrhotic and six ACLF. The barcoded 

library was sequenced on a GridION and MARTi was run in HPC 

configuration. 
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All experimental work in this chapter was performed by the author, except for the DNA 

extractions and two of the nanopore libraries. The Zymo gut mock DNA extraction 

nanopore libraries for the Clinical pool and Zymo gut mock were performed by Darren 

Heavens, and the clinical faecal sample DNA extractions were carried out by 

Raymond Kiu, based at the Quadram Institute. 

 

4.2 Methods 

4.2.1 Mock gut microbiome DNA extraction 

DNA was extracted from the ZymoBIOMICS Gut Microbiome Standard (Zymo 

Research, Irvine, USA) using an adapted version of the manufacturer’s protocol for 

the Zymo Research Quick-DNA HMW Magbead Kit (Zymo Research). A 200 μl 

aliquot of the Zymo gut mock cell suspension was centrifuged at 5,000 x g for 5 min 

at 4 °C. The supernatant was removed and stored in a new 1.5 ml tube. The cell pellet 

was resuspended in 200 μl of PBS and 10 μl of metapolyzyme solution (10 mg/ml in 

PBS) then incubated for 2 h at 35 °C in an Eppendorf Thermomixer C (Eppendorf, 

Hamburg, Germany) operating at 1,000 rpm. The 200 μl of retained supernatant, 20 

μl 10% SDS, and 20 μl of Proteinase K were added to the mixture before another 

incubation at 55 °C for 30 min at 1,000 rpm. The tube was spun at 5,000 x g for 5 min 

at 4 °C and then 400 μl of the supernatant was transferred to a new 1.5 ml tube. 

To precipitate the DNA onto beads, 800 μl of Quick-DNA MagBinding buffer and 50μl 

of MagBinding beads were added to the tube before a 10 min incubation at room 

temperature with gentle shaking at 600 rpm. The beads were pelleted on a 

Dynabeads Magnetic Particle Concentrator (MPC, Thermo Fisher Scientific, 

Waltham, USA), the supernatant was discarded and then 500 μl of MagBinding buffer 

was added. The tube was incubated for 10 min at room temperature with mixing at 

1,000 rpm. The beads were pelleted on an MPC, the supernatant discarded and then 
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900 μl of DNA Pre-wash buffer was added. After resuspension of the beads, the tube 

was returned to the MPC until the beads separated from the solution, then the 

supernatant discarded. The beads were washed twice using the following protocol: 

900 μl of g-DNA Wash buffer was added, the beads were gently resuspended in the 

buffer by pipetting with a wide-bore tip, the bead solution was transferred to a new 

1.5 ml tube, the tube was placed on an MPC until the beads separated from solution, 

and then the supernatant was discarded. A single 900 μl elution buffer wash was 

performed whilst the beads remained on the MPC, removing the buffer gently 

immediately after it was added. The beads were resuspended in 75μl of elution buffer 

and incubated for 10 min at room temperature with shaking at 400 rpm. The sample 

was returned to the MPC for a final time until the beads separated from solution, then 

the eluted DNA was transferred to a new tube. The concentration of the eluted DNA 

was determined using the dsDNA BR assay for Qubit (Thermo Fisher Scientific). 

 

4.2.2 DNA extraction from clinical and healthy faecal samples 

The FastDNA SPIN Kit for Soil (MP Biomedicals, Irvine, USA) was used to extract 

DNA from ~50-100 mg of faeces per sample following the manufacturer's instructions 

with one exception, bead-beating was performed twice for a total time of 80s (40s x 

2) on a FastPrep 24 (MP Biomedicals) homogeniser. 

The concentration of the eluted DNA was assessed on a Qubit fluorometer with the 

dsDNA BR assay kit. DNA fragment size distributions were checked using the 

Genomic DNA Analysis ScreenTape on an Agilent TapeStation 2200 (Agilent, Santa 

Clara, USA). 
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4.2.3 Library preparation and sequencing of mock gut microbiome 

A nanopore sequencing library was prepared from the ZymoBIOMICS Gut 

Microbiome Standard DNA extract using the SQK-LSK109 kit (Oxford Nanopore 

Technologies, Oxford, UK) according to the GDE_9063_v109_revAB_14Aug2019 

version of the manufacturer’s protocol. Sequencing was performed on a GridION 

using a FLO-MIN106D flow cell and the MinKNOW (v21.05.12) software’s standard 

72 hour run script. Reads were basecalled live by the Guppy v5.0.12 GPU basecaller 

with the High accuracy (HAC) model and a minimum pass read Q score of 9. 

 

4.2.4 Library preparation and sequencing of clinical faecal samples 

A pooled library of 12 clinical faecal samples was generated with the SQK-LSK109 

kit and Native Barcoding Expansion kit (EXP-NBD104) according to the 

manufacturer’s instructions (NBE_9065_v109_revAD_14Aug2019) except that input 

DNA varied between 40 and 400 ng as some samples contained low amounts of 

extracted DNA. For pooling ahead of adapter ligation, up to 60 ng of each barcoded 

sample was combined in a total volume of 65 μl. The pooled library was sequenced 

on a GridION using a FLO-MIN106D flow cell with the standard 72 hour run script 

(MinKNOW v21.05.12). Reads were basecalled on-instrument by Guppy (v5.0.12) 

with the High Accuracy (HAC) model and a minimum pass read Q score of 9. 

The individual sample 3 (F3) library was generated with the SQK-LSK109 kit 

according to the GDE_9063_v109_revAB_14Aug2019 version of the manufacturer’s 

protocol. Two FLO-MIN106D flow cells were loaded with ~30 fmol of the prepared 

library. One of them was sequenced on a MinION Mk1C for 72 hours with live 

basecalling using the Fast basecalling model and a minimum pass read Q score of 

8. The other flow cell was sequenced on a GridION for the same length of time with 
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HAC basecalling and a higher minimum pass Q score of 9. Both platforms were using 

the same versions of MinKNOW (v21.05.12) and Guppy (v5.0.12). 

 

4.2.5 Library preparation and sequencing of healthy control faecal samples 

A library of 12 healthy control faecal samples was generated with the Ligation 

Sequencing kit (SQK-LSK109) and Native Barcoding Expansion kit (EXP-NBD104) 

according to the manufacturer’s instructions (NBE_9065_v109_revAD_14Aug2019). 

The pooled library was sequenced on a GridION using a FLO-MIN106D flow cell with 

the standard 72 hour run script (MinKNOW v21.11.7). Reads were basecalled on-

instrument by Guppy (v5.1.13) with the High Accuracy (HAC) model and a minimum 

pass read Q score of 9. 

 

4.2.6 Taxonomic assignment of mock gut microbiome data 

The MinKNOW pass read data from the Zymo gut mock sequencing run were 

analysed by the MARTi Engine (v0.9.2). Reads passing the Engine’s default prefilter, 

minimum length of 500 bp and minimum Qscore of 9, were aligned to sequences of 

the nucleotide database (nt) using BLAST’s megablast algorithm. The Engine 

assigned reads to taxa using MARTi’s LCA algorithm with the default parameters set. 

Taxonomic assignment results were explored and analysed with the MARTi GUI. 

 

4.2.7 Assessing the effect of chunk size on MARTi analysis rate  

To quantify the effect of chunk size on analysis speed, the first 80k pass reads from 

the Zymo gut mock sequencing run were analysed by the MARTi Engine (v0.9.2) in 

local configuration on a MacBook Pro (2021 2.3Ghz i9 8-core with 64GB of DDR4 

memory) with chunk sizes ranging from 1,000 to 10,000 reads. Reads passing the 
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Engine’s default prefilter were aligned to a database of prokaryotic RefSeq genomes 

using BLAST’s megablast algorithm. For each chunk size, four BLAST jobs were run 

in parallel, each given four threads. 

 

4.2.8 MARTi analysis of multiplexed clinical samples 

Reads of the barcoded clinical faecal samples were demultiplexed in real time by 

Guppy (v5.0.12) running as part of MinKNOW (v21.05.12) on a GridION. The pass 

reads of each sample were analysed live by the MARTi Engine during the sequencing 

run. The Engine aligned reads to prokaryotic RefSeq genomes, using the megablast 

algorithm, for taxonomic assignments and the CARD database, with blastn, for AMR 

analysis. The MARTi GUI was used to view and explore the taxonomic compositions 

and AMR results of the clinical samples. 

 

4.2.9 MARTi analysis of the healthy control pool 

Demultiplexed pass reads of each sample were analysed by the MARTi Engine post 

sequencing. The Engine aligned reads to prokaryotic RefSeq genomes, using the 

megablast algorithm, for taxonomic assignments and the CARD database, with 

blastn, for AMR analysis. The MARTi GUI was used to view and explore the 

taxonomic compositions of the healthy control samples and compare them to the 

previously sequenced clinical samples. 
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4.3 Results 

4.3.1 Sequencing metrics 

A total of 98.7 gigabases (Gb) was generated from the five nanopore flow cells (Table 

4.1). The number of reads produced per flow cell ranged from 1.3 M for the gut mock 

run to 8.2 M for the pool of 12 clinical faecal samples. The gut mock run had the 

highest read length N50, 19.57 kb, for reads passing the basecaller’s quality filter, 

whilst the pass read N50’s of the four faecal sample runs ranged from 5.09 to 6.40 

kb. The mean pass read Q scores were higher for the runs basecalled with the HAC 

model, 20.11 – 20.93, in comparison to the run basecalled with the Fast model, 19.15, 

which also had the highest percentage of pass reads, 78.3%
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Table 4.1 Summary of data obtained from mock and clinical metagenomic nanopore sequencing runs 

Run Clinical 
sample 
ID 

Barcode Sequencer Yield 
(Gb) 

Reads 
(M) 

Qscore 
filter 

Basecall 
model 

Pass 
yield 
(Gb) 

Pass 
reads 
(M) 

Pass 
N50 
(kb) 

Pass 
Quality 
(mean base 
Q) 

Zymo gut mock - - GridION 12.79 1.30 9 HAC 9.74 0.94 19.57 20.11 
Clinical F3 M F3 - MinION Mk1C 24.70 6.55 8 Fast 20.06 5.12 5.67 19.15 
Clinical F3 G F3 - GridION 23.51 5.32 9 HAC 18.00 3.91 6.40 20.80 

Clinical pool 

Pool Combined GridION 20.58 8.24 9 HAC 16.11 6.19 5.46 20.48 
F6 01      2.47 0.84 5.84 20.16 
F17 02      1.95 0.54 6.61 20.76 
F18 03      1.58 0.62 5.81 20.22 
F40 04      1.50 0.30 6.98 21.08 
F52B 05      1.14 0.25 6.81 20.60 
F57 06      0.74 0.39 4.18 21.11 
F58 07      1.41 0.61 4.81 20.44 
F82 08      1.32 0.61 3.86 20.30 
F129 09      0.07 0.02 5.87 20.58 
F137 10      1.12 0.70 3.10 20.13 
F139 11      0.47 0.26 4.50 20.84 
F140 12      0.62 0.36 3.70 20.23 
- Unclassified      1.73 0.69 5.36 20.37 
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Table 4.1 continued… 

Run Clinical 
sample ID Barcode Sequencer Yield 

(Gb) 
Reads 
(M) 

Qscore 
filter 

Basecall 
model 

Pass 
yield 
(Gb) 

Pass 
reads 
(M) 

Pass 
N50 
(kb) 

Pass Quality 
(mean base 
Q) 

Healthy pool 

Pool Combined GridION 17.12 7.62 9 HAC 12.05 5.41 5.09 20.93 
HC2R 01      0.89 0.51 4.32 21.01 
HC76 02      0.78 0.36 4.95 20.97 
HC77 03      0.92 0.35 5.22 21.00 
HC79 04      1.14 0.34 5.84 21.06 
HC80 05      1.19 0.31 5.79 20.98 
HC89 06      1.11 0.53 4.52 20.86 
HC86 07      0.88 0.30 6.14 21.00 
HC65 08      0.74 0.47 4.30 20.86 
HC61 09      1.00 0.50 5.21 20.96 
HC59 10      0.81 0.42 4.95 20.96 
HC44 11      1.00 0.56 4.36 21.00 
HC51 12      1.03 0.55 3.92 21.00 
- Unclassified           0.57 0.21 5.68 20.10 
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4.3.2 Expected composition of mock mix vs MARTi assignments 

The pass reads from the Zymo gut mock run were analysed by the MARTi Engine. In 

total, 905,235 (95.9%) of the Zymo gut mock pass reads made it through MARTi’s 

default prefiltering. Of those passing filter, 882,571 (97.5%) could be assigned to a 

taxon by the Engine’s BLAST-LCA pipeline. 

With no minimum abundance cutoff set for the LCA algorithm, 86.5% of reads 

assigned at the species level were assigned to species known to be present in the 

mock (Table 4.2). Only one out of the 17 species in the mock, Veillonella rogosae, 

was unable to be detected at species level. Most (90.3%) of the reads assigned to 

“Other” species were assigned to congeners of species present in the mock, with the 

majority being assigned to members of the Veillonella (56.0%) and Prevotella (30.1%) 

genera. Assigned read proportions to species present in the mock community 

positively correlate with the theoretical abundances (Figure 4.1a, log-transformed 

Pearson’s r = 0.66). 
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Table 4.2 Summary of reads assigned by MARTi at the species level for the Zymo gut mock run 

Species Assigned 
reads 

Theoretical 
abundance 
(%) 

MARTi 
proportions 
(%) 

Bacteroides fragilis 103,386 14 13.55 
Escherichia coli 86,681 14 11.36 
Faecalibacterium prausnitzii 207,965 14 27.26 
Roseburia hominis 58,161 14 7.63 
Veillonella rogosae 0 14 0.00 
Bifidobacterium adolescentis 1,048 6 0.14 
Fusobacterium nucleatum 46,918 6 6.15 
Lactobacillus fermentum 110,609 6 14.50 
Prevotella corporis 294 6 0.04 
Akkermansia muciniphila 17,164 1.5 2.25 
Candida albicans 5,158 1.5 0.68 
Clostridioides difficile 17,364 1.5 2.28 
Saccharomyces cerevisiae 4,386 1.4 0.58 
Methanobrevibacter smithii 189 0.1 0.02 
Salmonella enterica 136 0.01 0.02 
Enterococcus faecalis 5 0.001 0.001 
Clostridium perfringens 2 0.0001 0.0003 
Other 103,296 0 13.54 

 

All of the reads classified at the genus level using a 0.1% minimum abundance cutoff 

for the LCA algorithm were assigned to genera present in the gut mock with no false-

positive genera detected (Table 4.3). Furthermore, all of the gut mock genera with 

theoretical abundances greater than the 0.1% cutoff (13 out of the 17 genera) were 

detected. The proportions of reads classified by MARTi at the genus level correlate 

with the expected proportions of genera in the mock (Figure 4.1b, log-transformed 

Pearson’s r = 0.77). 
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Table 4.3 Summary of reads assigned by MARTi with a 0.1% minimum abundance cutoff at the genus 
level for the Zymo gut mock run 

Genus Assigned 
reads 

Theoretical 
abundance 
(%) 

MARTi 
proportions 
(%) 

Bacteroides 105,952 14 13.02 
Escherichia 86,832 14 10.67 
Faecalibacterium 208,136 14 25.58 
Roseburia 59,403 14 7.30 
Veillonella 92,526 14 11.37 
Bifidobacterium 1,087 6 0.13 
Fusobacterium 50,440 6 6.20 
Lactobacillus 125,895 6 15.47 
Prevotella 39,300 6 4.83 
Akkermansia 17,164 1.5 2.11 
Candida 5,161 1.5 0.63 
Clostridioides 17,364 1.5 2.13 
Saccharomyces 4,408 1.4 0.54 
Methanobrevibacter 0 0.1 0.0 
Salmonella 0 0.01 0.00 
Enterococcus 0 0.001 0.000 
Clostridium 0 0.0001 0.0000 
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Figure 4.1 Correlation plots comparing the expected proportions of Zymo gut mock community taxa 
with proportions obtained from MARTi analysis of nanopore sequencing reads. a – Correlation at 
species level with no LCA minimum abundance cutoff (log-transformed Pearson’s r = 0.66). b – 
Genus-level correlation with a minimum abundance threshold of 0.1% (log-transformed Pearson’s 
r = 0.77). The grey region either side of the fit line represents the 95% Confidence Intervals. 
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4.3.3 The effect of chunk size on MARTi analysis rate 

To quantify the effect of chunk size on analysis speed, the first 80k pass reads from 

the Zymo gut mock sequencing run were analysed by the MARTi Engine in local 

configuration with chunk sizes ranging from 1,000 to 10,000 reads (Figure 4.2). The 

mean time to complete the first four BLAST jobs gives an indication of how long the 

GUI would be waiting to display the first results. The mean time to first result ranged 

from ~10.5 min for 4x1,000 read chunks to ~99 min for 4x10,000 read chunks, with 

average time per chunk increasing linearly for chunk sizes in between (Figure 4.2). 

Analysis of all 80k reads completed in a similar time for all chunk sizes, with a mean 

time of ~3.19 h (Figure 4.2). Over the course of analysis, parallel jobs become out of 

sync meaning that GUI updates happen more frequently. The mean analysis time per 

chunk gives an insight into how often the GUI would update taking this into account. 

With this particular local configuration, mean time between GUI updates ranged from 

~2.5 min, for 1,000 read chunks, to ~23.25 for 10,000 reads (Figure 4.2). 
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Figure 4.2 MARTi analysis rates using different read chunk sizes, ranging from 1k to 10k. Running in 
local configuration, MARTi analysed the first 80k gut mock microbiome reads. a – Mean time, in 
minutes, to analyse first four parallel read chunks. b – Total time, in hours, to analyse 80k reads. c – 
Mean wait, in minutes, between read chunks finishing.  
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4.3.4 Real-time analysis of clinical samples 

The different configurations of MARTi were tested in real time during three 

sequencing runs. For the first run, a single clinical faecal sample, F3, was sequenced 

on a MinION Mk1C (Figure 4.3a). MARTi was configured for local analysis, with the 

Engine and GUI running on the same laptop. Basecalled pass reads were accessed 

via the mapped MinION drive. The second run was loaded with the same clinical 

sample, F3, but was sequenced on a GridION and MARTi was set up in the HPC 

configuration (Figure 4.3b). The third run was also sequenced on a GridION with real-

time HPC analysis, but this run had 12 faecal samples multiplexed onto a single flow 

cell. This was to test the ability of MARTi to process multiplexed samples. 

The MARTi GUI was successfully used to explore the taxonomic composition and 

AMR gene content of the clinical samples in real time. The Dashboard page enabled 

real-time monitoring of individual samples (Figure 4.3c) and the Compare page was 

used to view the taxonomic compositions of the multiplexed clinical samples side-by-

side (Figure 4.3d). 
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Figure 4.3 Real-time analysis of clinical samples using MARTi. a – The local configuration of MARTi, 
with the Engine and GUI running on a single laptop, was tested on a live MinION Mk1C sequencing run 
of a clinical faecal sample (F3). b – MARTi analysed two GridION runs, a single clinical sample (F3) 
and a pool of clinical samples, in real time running in the HPC configuration. c – A screenshot of the 
Dashboard page of the MARTi GUI during live analysis of a clinical faecal sample. d – The Compare 
page during real-time metagenomic analysis of a pool of 12 faecal samples.  
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4.3.5 MARTi HPC configuration analysis rate during a live sequencing run 

The Clinical F3 G run on the GridION produced 2.24 million basecalled pass reads in 

the first 24 hours of sequencing, at an average rate of 1,556 pass reads per minute 

(Figure 4.4). Analysing in real-time on an HPC, MARTi BLASTed batches of filtered 

reads in chunks of 4,000 to prokaryotic RefSeq genomes for taxonomic classification 

and CARD for AMR identification. Up to six chunks of reads were analysed in parallel. 

Within 24 hours, MARTi had analysed just over 1.83 million reads at an average rate 

of 1,273 reads per minute. 
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Figure 4.4 Basecalled pass read production from a clinical faecal sample on the GridION (red 
line) and reads analysed by MARTi running in HPC configuration (blue line) during the first 24 
hours of sequencing. 
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4.3.6 Characterisation of barcoded clinical samples 

The Clinical pool run generated a total of 20.6 gigabases of data with 6.19 million 

reads passing MinKNOW’s minimum quality score filter (Table 4.1). Reads were 

demultiplexed in real time and 88.9% were successfully assigned to a barcode. The 

pass reads from each of the barcoded samples were analysed live by the MARTi 

Engine during the sequencing run. MARTi GUI’s Compare page was used to view the 

taxonomic compositions of the 12 clinical samples side-by-side. At the phylum level, 

it was observed that the majority of the samples (11/12) contained the three bacterial 

phyla that are usually dominant in stable adult microbiota: Firmicutes, Bacteroidetes, 

and Actinobacteria (Figure 4.5). At the family level, many of the patients have high 

levels of Enterococcaceae, up to 96.8% for F40 (Figure 4.6). Enterococcus is 

associated with complications in patients with end-stage liver disease (Llorente et al. 

2017). 
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Figure 4.5 Phylum-level composition of clinical faecal samples from patients with liver disease. The barcoded samples were analysed by the MARTi Engine in real-time and 
the results were monitored and explored using the MARTi GUI. This figure was exported from the stacked bar card on the GUI’s Compare page as an SVG and then 
annotated using Adobe Illustrator. 



112 
 

 

F18 F40 F57 F52B
F82 F129

F139
F6 F17 F58 F137

F140

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cl
as

si
fie

d 
re

ad
s

Lachnospiraceae Other Bacteroidaceae Enterococcaceae Bifidobacteriaceae

Tannerellaceae Mycobacteriaceae Corynebacteriaceae Staphylococcaceae

Ruminococcaceae Streptococcaceae Lactobacillaceae Veillonellaceae

Pseudomonadaceae Enterobacteriaceae Thermomonosporaceae Erysipelotrichaceae

Stable cirrhotic Acute-on-chronic liver failure (ACLF) Decompensated cirrhotic

Figure 4.6 Family-level composition of clinical faecal samples from patients with liver disease. The samples were analysed in real time using MARTi. This figure was generated 
by the Compare page of the GUI and shows the top 4 taxa at family level for each sample. Annotation was added to the MARTi-exported SVG using Adobe Illustrator. 
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4.3.7 Comparison of F3 taxonomic composition between run configurations 

The nanopore sequencing library for clinical faecal sample F3 was loaded onto two 

MinION flow cells, one of which was sequenced on a GridION and the other on a 

MinION Mk1C. Both runs had live basecalling enabled. The more computationally 

demanding HAC basecalling model was used on the GridION and the Fast model 

was used on the MinION. MARTi was used to analyse the runs in real time, running 

on the HPC for the GridION experiment and on a laptop for the MinION. At species 

level, with a 1% minimum abundance cutoff for the LCA algorithm, 15 different 

species could be detected in the sample on both runs (Table 4.4). The proportions of 

MARTi-classified reads at species level between the two F3 sequencing runs are very 

similar and show strong positive correlation (Figure 4.7, Pearson’s r = 0.99). 

 

Table 4.4 Summary of reads assigned by MARTi at the species level with a 1% LCA minimum 
abundance cutoff for each F3 sequencing run.  

Species 
Clinical (F3) G Clinical (F3) M 

Assigned 
reads 

Proportion 
(%) 

Assigned 
reads 

Proportion 
(%) 

Bacteroides vulgatus 297,904 18.31 378,430 19.57 
Gemmiger formicilis 163,837 10.07 179,013 9.26 
Blautia obeum 159,907 9.83 176,703 9.14 
Bacteroides fragilis 143,445 8.82 182,130 9.42 
Bacteroides xylanisolvens 127,901 7.86 162,080 8.38 
Anaerobutyricum hallii 124,707 7.67 141,273 7.30 
Faecalibacterium prausnitzii 107,983 6.64 118,571 6.13 
Klebsiella variicola 88,117 5.42 110,764 5.73 
Alistipes finegoldii 83,765 5.15 104,915 5.42 
Enterococcus faecium 77,539 4.77 84,061 4.35 
Barnesiella intestinihominis 70,429 4.33 91,017 4.71 
Bifidobacterium longum 54,553 3.35 58,643 3.03 
Blautia faecis 45,755 2.81 51,036 2.64 
Bacteroides dorei 41,956 2.58 50,973 2.64 
Blautia wexlerae 39,012 2.40 44,315 2.29 
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4.3.8 AMR analysis of clinical faecal samples in real time 

The MARTi Engine aligned reads to prokaryotic RefSeq genomes and to the CARD 

database as they were generated. The Engine also carried out walkout analysis from 

AMR genes into the flanking DNA to identify host organisms. The MARTi GUI 

provided a graphical user interface to view ARO (Antibiotic Resistance Ontology) hits 

and walkout analysis results during the live sequencing run. The number of unique 

AROs detected in the first 100k reads of each clinical faecal sample ranged from 24 

to 104, whilst the total number of ARO hits ranged from 223 to 3321 (Table 4.5). 

MARTi’s walkout analysis assigned 98.5% of the ARO hits to taxonomies, with 41.1% 

of those being assigned at the species or strain level. 
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Figure 4.7 Correlation plot of MARTi’s species-level read assignments for a clinical faecal sample (F3) 
sequenced on the GridION and MinION  Mk1C (Pearson’s r = 0.99). A 1% minimum abundance cutoff was 
used for MARTi Engine’s LCA binning. The grey region either side of the fit line represents the 95% 
Confidence Intervals. 
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The sample that had the fewest number of unique AROs, F40, also had the highest 

number of ARO hits. The microbiome of F40 was almost entirely dominated by the 

Enterococcaceae family (Figure 4.6) and the walkout analysis showed its AROs were 

primarily associated with pathobionts belonging to Enterococcus, mostly 

Enterococcus faecium (Figure 4.8). When analysing the first 100k reads, the 

pathobiont Enterococcus faecium was found in the top 10 walkout taxa for 7 of the 

clinical samples, and in the top 20 taxa for 9 of the 11 samples that had at least 100k 

reads. However, when all available reads were analysed for each sample, E. faecium 

was present in the top 20 for all samples except F18, the microbiome from the stable 

cirrhotic patient, and in the top 10 walkout taxa for 8 out of 11 samples.  

 

Table 4.5 Antibiotic Resistance Ontology (ARO) results from the first 100k reads of clinical microbiome 
samples analysed by MARTi 

Sample Cirrhosis 
condition 

No. unique 
AROs 

Total ARO hits Proportion 
of reads (%) 

F18 Stable 90 536 0.54 
F40 ACLF 24 3321 3.32 
F57 ACLF 56 540 0.54 
F52B ACLF 104 3274 3.27 
F82 ACLF 101 695 0.70 
F139 ACLF 60 1143 1.14 
F6 Decompensated 89 937 0.94 
F17 Decompensated 30 704 0.70 
F58 Decompensated 64 415 0.42 
F137 Decompensated 57 223 0.22 
F140 Decompensated 39 301 0.30 
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Figure 4.8 AMR walkout analysis donut plots exported from the MARTi GUI. Each donut represents 
walkout hits from the first 100k reads of clinical faecal samples.  
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4.3.9 Comparison of gut microbiome species richness between cirrhosis 

patients and healthy controls 

The Healthy pool run generated a total of 17.12 gigabases of data with 7.62 million 

reads passing MinKNOW’s minimum quality score filter (Table 4.1). The MARTi 

Engine was used to analyse the pass reads from each of the barcoded samples and 

then the MARTi GUI was used to view the taxonomic compositions and species 

accumulation curves of the 12 healthy sample and the 12 clinical samples (Figure 

4.9). An unequal variances t-test was conducted to compare species richness 

between the healthy and clinical pools after the first 100k reads were analysed by 

MARTi. There was a significant difference in species richness for the healthy pool 

(M=1506.75, SD=413.57) and cirrhotic clinical pool (M=334.27, SD=212.57); t=8.653, 

df=16.726, p<0.001.  

 

 

Figure 4.9 Species accumulation plot generated by the MARTi GUI representing all of the samples from 
the Healthy pool and the Clinical pool. The line colours and legend were altered using Adobe Illustrator. 
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4.4 Discussion 

ONT’s long-read sequencing platforms are the first to enable progressive real-time 

analysis of data and have the potential to revolutionise metagenomics by improving 

classification accuracy, metagenomic assembly, sequencing efficiency, and by 

reducing the time to result. However, the full potential of nanopore sequencing 

remains largely unrealised due to the lack of open source, offline, real-time analysis 

tools and pipelines. ONT’s own EPI2ME platform provides near real-time analysis but 

has limitations due to its closed nature. Recognising the need for an open, extensible 

platform, we developed MARTi, an open-source software tool that enables real-time 

analysis and visualisation of metagenomic sequencing data. MARTi provides a rapid, 

lightweight web interface that allows users to understand community composition and 

identify antimicrobial resistance (AMR) genes in real time. In this chapter, we reported 

on the use of MARTi in laboratory conditions and demonstrated a number of possible 

configurations of sequencer and software. All of the nanopore runs covered in this 

chapter were successful on the first attempt and the data generated for the clinical 

samples will be used as part of a wider study with greater sample numbers. 

 

4.4.1 Testing MARTi on a mock microbiome 

We tested MARTi on data from a sequencing run of the ZymoBIOMICS Gut 

Microbiome Standard, a cell-level pool constructed from quantified pure cultures of 

21 microbial strains (18 bacterial, 2 fungal, and 1 archaeal). The mix provides multiple 

challenges for a metagenomic pipeline, including: the presence of difficult-to-lyse 

Gram-positive bacteria for testing lysis efficiency; low-abundance organisms, down 

to a ten-thousandth of a percent, for assessing detection limit; and multiple strains of 

E. coli for testing taxonomic resolution. 
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Using the default LCA values, MARTi only assigned three reads at the strain level 

and therefore the five E. coli strains could not be distinguished from one another. This 

is not too surprising as MARTi’s default LCA parameter values are tuned towards 

minimising false positive results rather than low-level taxonomic assignment. For a 

given read, a set of “good hits” was identified by finding the highest scoring hit 

(according to the BLAST bitscore), then finding all hits, up to a limit of 20, with a score 

within 90%. Better strain level resolution could be achieved by opting for a more 

stringent score percent and by decreasing the number of “good hits” to be considered 

by the LCA. However, it’s likely that this approach would also increase the number of 

false positive low-level assignments. 

MARTi detected almost all of the mock mix species, including the four species present 

at less than or equal to 0.1%, with just a single species missing (Veillonella rogosae, 

Table 4.2). The missing species can be explained by looking at the reads grouped 

into the “Other” category. Most (90.3%) of the falsely classified reads were assigned 

to congeners of species in the mock, with the majority of those assigned to congeners 

of the two most underrepresented species, Veillonella rogosae and Prevotella 

corporis. Although the median nanopore error rates are dropping over time, and are 

typically 5% or below now, this level of error obscures differences between closely 

related species such as those from the Veillonella and Prevotella genera. This also 

results in some reads being assigned at a higher taxonomic level than species. 

A stronger correlation between the proportions of summed read counts and expected 

mock mix proportions was achieved at the genus level (Figure 4.1). Furthermore, 

there were no false-positive genera as all of the reads classified at the genus level 

using a 0.1% minimum abundance cutoff for the LCA algorithm were assigned to 

genera present in the gut mock (Table 4.3). There were also no false negatives as all 

of the gut mock genera with theoretical abundances greater than the 0.1% cutoff were 

detected. 
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Although a stronger correlation was achieved between the expected and observed 

summed read counts at genus level compared to species level (Figure 4.1, log-

transformed Pearson’s r = 0.77 and r = 0.66 respectively), several sources of 

quantitative error in the method remain. First, DNA extraction efficiency varies across 

species as some cells are easier to lyse than others. More aggressive extraction 

methods, such as physical bead beating, could be implemented to achieve better 

extraction efficiency across the species in the mix, but this would lead to a decrease 

in DNA fragment length and therefore a decrease in taxonomic assignment 

resolution. One potential method for reducing DNA extraction bias whilst maintaining 

the necessary DNA fragment length is the 'Three Peaks' faecal DNA extraction, where 

the supernatant is kept after each of three successive extraction methods, chemical, 

enzymatic, and physical, and then pooled before a clean-up step (Quick et al. 2019). 

This allows more aggressive DNA extraction methods to be used without further 

fragmenting the DNA of the easier to lyse species. 

A second potential source of quantitative error comes from the read length variation 

between species as this influences the count-based abundances. Average read 

lengths for species in the mock varied greatly, from 2,090 bp to 46,824 bp. The two 

most overrepresented species, Lactobacillus fermentum (expected 6% abundance, 

observed 14.5%) and Faecalibacterium prausnitzii (expected 14% abundance, 

observed 27.3%), had the shortest mean read lengths, 2090 bp and 6412 bp 

respectively. Where read lengths vary greatly between species in a mix, better 

abundance estimates might be achieved using the sequence yield for each species 

instead of read count. In common with other metagenomic tools such as MEGAN, all 

of the taxonomic abundance plots on the MARTi GUI rely on assigned read counts, 

but with further development future versions could allow the user to switch between 

read counts and yield.  
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A third cause is the nanopore error rate. Despite the reduction in error rate over time 

due to upgrades in hardware, chemistry, and basecalling, the current nanopore error 

rate (typically < 5%) is still high enough to obscure differences between closely 

related species. By default, when reads have hits to multiple species in the top 20 

hits, which can happen more frequently with higher error rates, MARTi will assign the 

read to a higher taxonomic level, the lowest common ancestor of those species. When 

this occurs, the abundance profiles at lower taxonomic levels becomes less accurate. 

Pearman et al. (2020) observed that recall (defined as the ratio of correctly classified 

reads to all reads) for long nanopore reads was equal to or higher than the longest 

Illumina reads (300 bp) and suggested that a simple way to improve classification 

accuracy of error-prone nanopore reads is to implement minimum read lengths.  

 

4.4.2 The effect of chunk size on MARTi analysis rate 

The first 80k pass reads from the gut mock sequencing run were analysed by the 

MARTi Engine in local configuration with chunk sizes ranging from 1,000 to 10,000 

reads (Figure 4.2). The results give potential users an idea of the timings involved for 

MARTi analysis using different read chunk sizes. On a 2021 MacBook Pro, with four 

parallel 4-thread BLAST jobs, all chunk sizes had similar rates of analysis with a mean 

of ~395 reads per minute. The mean time to first result ranged from ~10.5 min for 

1,000 read chunks (4,000 reads total) to ~99 min for 10,000 read chunks (40,000 

reads), with average time per chunk increasing linearly for chunk sizes in between 

(Figure 4.2a). The mean time between GUI updates ranged from ~2.5 min for 1,000 

read chunks to ~23.25 for 10,000 reads (Figure 4.2c). In a time-critical situation the 

user should opt for a smaller chunk size as more frequent updates are likely to be 

more important in terms of time to result than a potentially very slight analysis rate 

gain from using larger chunk sizes. 
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4.4.3 Real-time analysis of clinical samples 

MARTi was successfully used to analyse the taxonomic composition and AMR gene 

content of clinical microbiome samples in real time (Figure 4.3). The main 

configurations of the tool, HPC and Local, were demonstrated on live sequencing 

runs on the GridION and MinION Mk1C. The MARTi GUI was used to explore the 

results in real time.  

For the Clinical F3 M run, a single clinical faecal sample (F3) was sequenced on the 

MinION Mk1C and MARTi was run in local configuration on the MacBook Pro 

described in the previous section. The same library was also sequenced on the 

GridION during the Clinical F3 G run, which was analysed by MARTi in the HPC 

configuration. For both runs, reads were BLASTed to CARD and a database of 

prokaryotic RefSeq genomes. MARTi running in the HPC configuration was able to 

analyse reads at a faster rate (1,273 reads per min) than in local configuration (~740 

reads per min) due to greater parallelisation of analysis jobs. For local analysis, four 

concurrent analysis jobs were run, whereas on the HPC six jobs were running in 

parallel. Despite the similar configuration, this local run was analysing reads ~87% 

faster than the average rate from the varying chunk size experiment described 

previously. This is partly due to the much shorter read length N50 of the Clinical F3 

M run (5.67 kb) vs the Zymo gut mock run used for the chunk size experiment (19.57 

kb). Analysis in HPC configuration lagged slightly behind the rate at which the 

GridION was producing basecalled pass reads (1,556 pass reads per min, Figure 

4.4). However, the HPC configuration is easily scalable and matching the rate of 

production could be achieved by increasing the number of parallel jobs and total 

compute resources. 

Despite the use of different basecalling models for the two runs, High Accuracy (HAC) 

on the GridION and Fast model on the MinION, the proportions of assigned reads at 

the species level produced by MARTi were extremely similar and showed very strong 
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correlation (Pearson’s r = 0.99, Figure 4.7). As the Fast model produces less accurate 

reads, the default read quality score filter in MinKNOW is slightly lower, 8 rather than 

9. Regardless of Qscore filter applied by MinKNOW, MARTi allows users to configure 

their own pre-filter based on Qscore and read length. Both of the F3 sequencing runs 

used MARTi’s default filter, minimum Qscore of 9 and minimum read length of 500 

bp. 

Real-time analysis with MARTi was also demonstrated on barcoded pool of 12 clinical 

faecal samples. The pool was sequenced on a GridION with a single MinION flow 

cell. Reads were basecalled and demultiplexed in real time and then analysed by the 

MARTi Engine running on an HPC. The taxonomic compositions of each of the 12 

samples were successfully explored and compared during the sequencing run (Figure 

4.6). The Samples card on the Compare page allowed samples to easily be ordered 

by disease classification before SVGs were exported from the stacked bar card. 

Currently, the MARTi GUI uses a palette of 11 colours for taxonomic plots. When 

using the GUI, reciprocal highlighting and tooltips make the plots easier to interpret. 

However, clarity of exported plots could be increased by adopting a larger colour 

palette. 

 

4.4.4 Real-time AMR analysis of multiplexed clinical samples 

MARTi’s AMR walkout analysis identified a particular pathobiont, Enterococcus 

faecium, as a major contributor of AROs for many of the samples in the clinical faecal 

pool (Figure 4.8). E. faecium is a clinically important pathogen associated with 

opportunistic infection and is a known predictor of poor short-term survival in patients 

with decompensated cirrhosis and ACLF (Solé et al. 2021). The presence of this 

species resulted in a greater abundance of resistance ontologies focused on 

tetracycline, aminoglycoside, macrolide and diaminopyrimidine resistance. These 
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results are similar to the resistance patterns described by Shamsaddini et al. (2021) 

for cirrhosis patients. 

Only two of the clinical faecal samples did not have E. faecium in their top 20 walkout 

taxa after the first 100k reads were analysed, F18, a sample from the only stable 

cirrhotic patient in the pool, and F137, a sample taken from a patient with 

decompensated cirrhosis. The F137 sample had the fewest hits to AROs, with only 

223 of the first 100k reads being assigned to an ARO. However, when analysis is 

expanded to all ~464k of the F137 reads that passed MARTi’s filter, E. faecium was 

found to be amongst the top 10 walkout taxa. MARTi allows users to see when certain 

taxa or AMR genes were first detectable by dragging the chunk slider on either of the 

AMR cards. E. faecium only entered the top 20 walkout taxa for F137 after 148k reads 

were analysed, of which only 0.22% had hits to AROs. After analysing all of the reads 

(~444k ) from the stable cirrhotic patient sample, F18, only 9 of the 2,386 ARO hits 

were assigned to E. faecium through walkout analysis, making it the only sample 

where E. faecium wasn’t in the top 20 walkout taxa after all of the reads were 

analysed.  

The AMR walkout donuts in Figure 4.8 were individually exported as SVGs from 

MARTi’s Dashboard page for each sample in the pool and then assembled as one 

figure in Adobe Illustrator. This manual process highlighted the need for plots and 

export options for ARO hit and walkout results to be developed for the MARTi GUI’s 

Compare page. 
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5 Chapter 5 – Discussion 
Microorganisms have colonised almost every natural environment on Earth, and they 

play vital roles in both the biosphere and human health. However, only a small fraction 

of the microbial world, <1%, can be characterised with standard culture-based 

methods (Amann et al. 1995). High-throughput sequencing and associated 

computational methods have led to the development of shotgun metagenomics, 

which has revealed previously hidden diversity and function of complex communities. 

Nevertheless, accurate metagenomic classification and assembly remain challenging 

due to the limited information contained in individual sequences from the predominant 

short-read NGS technologies.  

Long reads from third-generation sequencing technologies, such as ONT’s nanopore-

based platforms, have the potential to overcome many of the known problems 

associated with short-read metagenomics. Furthermore, ONT’s technology offers the 

capability for both in-field and real-time metagenomics. Combined, the features of this 

new technology could lead to a better understanding of the composition and 

functional ecology of different microbial communities, facilitate the discovery of new 

species, enzymes, and biomolecules with potential applications in industry and 

medicine, and enable real-time analysis in time-critical situations, such as rapid 

infection diagnosis.  

Yet, as the field is still in its infancy there is a lack of tools and methods available to 

make full use of the advantageous features of nanopore sequencing for 

metagenomics. In this project, two key features of this new technology (long reads 

and real-time data streaming) were drawn on to develop new analysis methods and 

tools for nanopore sequencing based metagenomics. 
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5.1 Reverse metagenomics 

Chapter 2 described the development and testing of the RevMet (Reverse 

Metagenomics) method, which utilises long nanopore reads for semi-quantitative 

characterisation of samples containing a mixture of eukaryote species, which in this 

instance was mixed pollen species, without the need for complete reference 

genomes. The method was developed to address a crucial technical challenge for 

understanding plant-pollinator interactions, the identification and quantification of 

pollen species consumed by pollinators. Traditionally, this has been carried out using 

light microscopy to distinguish pollen based on grain morphology, a labour-intensive 

technique that requires expert knowledge. However, prior to this study, 

metabarcoding was the leading candidate for a low-cost, high-throughput, pollen 

characterisation method, but it has been shown to suffer from a lack of discriminatory 

power and is not fully quantitative due to PCR bias. In our pilot study, which as far as 

we know represents the first time nanopore sequencing was applied to bee-collected 

pollen, we demonstrated that RevMet can identify plant species present in mixed-

species samples at proportions of DNA ≥1%, with both low false positives and false 

negatives, and was reliably ‘semi-quantitative’, that is, able to differentiate low- and 

high-frequency plant species, based on their DNA mass.  

One of the known causes of quantitative errors in the study was variation in genome 

skim depths that were our flowering plant species database. Although 0.5x per 

reference was targeted, coverage varied across species, resulting in different powers 

of discrimination. Fortunately, we found that even very low-depth skims of 0.05x are 

useful for species detection and are probably still useful for differentiating rare from 

abundant species. As sequencing costs fall further, using higher coverage genome 

skims would be advisable for a more robust protocol. In cases where coverage for 

the reference skims varies greatly, they should be normalised to a uniform level.  
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RevMet is currently being developed further and applied at a much greater scale to 

study plant-pollinator interactions on commercial fruit farms (Kent et al. unpublished, 

see also engagement video on same project at https://royalsociety.org/science-

events-and-lectures/2021/07/bees-favourite-flower/). Beyond mixed pollen samples, 

RevMet could have many other applications involving eukaryote species mixes, 

including the following:  

• Herbivore diet analysis – RevMet could be used to characterise the diets of 

herbivores by applying the method to DNA extracted from their faeces. As a 

result, we could develop a better understanding of plant-herbivore 

interactions, which is essential for producing accurate trophic webs. 

• Plant-fungal interactions - Arbuscular mycorrhizal fungi (AMF) are plant root 

symbionts associated with the roots of over 90% of plant species. 

Traditionally, studies on mycorrhizal diversity have relied on morphology and 

other phenotypic characteristics, which is time-consuming, expensive, and 

can be inaccurate due to similarities between AMF species. RevMet could be 

used as a cost-effective method to better understand plant-AMF interactions 

at a lower taxonomic level. This knowledge could lead to the ability to harness 

the symbiotic association for enhanced crop growth and yield. 

• Airborne pollen monitoring – Characterising the presence and abundance of 

allergenic pollen in the air provides important information for hay fever suffers. 

As with bee-collected pollen identification, this task was traditionally carried 

out using light microscopy. Potentially, RevMet could be used as an 

alternative to morphological pollen identification to characterise pollen species 

filtered from the air.  
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Due to the lack of eukaryote reference data sets available at present, adopters of 

RevMet will likely need to create their own genome skims. With Illumina’s highest 

throughput sequencer, the NovaSeq 6000, the average 1x coverage 3Gb genome 

skim, almost twice the depth used in the RevMet study, would cost ~£50 each (250 

bp PE reads from the SP flow cell). The genome sizes of plants used in this study 

ranged from to ~290 Mb to ~14.9 Gb. The per skim cost will be considerably lower 

for projects focussing on eukaryotes with smaller genomes such as Fungi, which have 

an average genome size of ~44 Mb (Ramos et al. 2015). Furthermore, the Earth 

BioGenome Project (EBP) aims to sequence all known eukaryote species before the 

end of 2028, and therefore more genomes should become freely available soon e.g., 

2000 new UK species by end of 2022 from the Darwin Tree of Life project (part of 

EBP). 
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5.2 Development of MARTi 

Currently, the only user-friendly tool capable of real-time classification is the EPI2ME 

service provided by ONT, which is not open and has significant limitations. 

Recognising the need for an open, extensible platform, we developed MARTi 

(Metagenomic Analysis in Real-Time), an open-source software tool that enables 

real-time analysis and visualisation of metagenomic sequencing data. MARTi 

provides a rapid, lightweight web interface that allows users to understand community 

composition and identify antimicrobial resistance (AMR) genes in real time. Chapter 

3 provided an overview of the MARTi tool and its implementation, including 

descriptions of key analysis and visualisation algorithms.  

MARTi consists of two main parts, the Engine and the GUI, and can be configured in 

multiple ways to suit the needs of the user. In HPC configuration, the MARTi Engine 

runs on a HPC server, whilst the MARTi GUI resides elsewhere. Analysis processes 

can be parallelised to a greater extent across a HPC making it less likely for analysis 

to fall behind sequencing, enabling larger databases to be used, and allowing multiple 

runs to be analysed simultaneously. In the local configuration, both the back and front 

end are run on the same device, typically a desktop or laptop, without the requirement 

of an internet connection. Combined with a minimalist in-field laboratory setup, MARTi 

enables real-time analysis at the site of sample collection. This was recently 

demonstrated by the Leggett group on Cromer pier, where all steps of the experiment, 

known as “Pier-seq”, including sampling, library preparation, sequencing and real-

time analysis with MARTi, were carried out in-situ on the pier using battery power 

(Figure 5.1).   
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The MARTi GUI features two main analysis modes: Dashboard, for analysing a single 

sample; and Compare, which allows multiple samples to be viewed side by side. 

Currently, the majority of plots available on the GUI are for exploring the taxonomic 

composition of samples, with the AMR table and AMR walkout analysis donut plot 

being the only forms of functional analysis. One area of future development for MARTi 

will be to expand its functional analysis offering, mapping reads to databases of gene 

groups such as KEGG to identify genes with known and annotated functions, and 

adding interactive functional analysis plots to explore the results. Other areas for 

future development include:  

Figure 5.1 Combined with a minimalist in-field laboratory setup, MARTi enables real-time analysis in-
situ. For the Pier-seq experiment, pictured here, all steps of the experiment from sampling to real-time 
analysis with MARTi, were carried out on Cromer pier. The MinION Mk1C produced chunks of 
basecalled reads that were synced to a laptop running MARTi in local configuration, where both the 
Engine and GUI were running on the same device. 
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1. Improving existing plots by adding more options and features. For instance, a 

predictive curve could be added to the taxa accumulation plot to give the user 

an idea of how much more sequencing needs to be carried out in order to 

capture the species diversity within the sample. A larger colour palette could 

be introduced to increase the clarity of exported plots, especially the Compare 

page taxonomic plots. 

2. Adding new comparison plots, for example, a comparison tree plot. This would 

allow multiple samples to be represented on a single tree for side-by-side 

comparisons on each node. A comparison heat map could also be developed, 

showing taxa on the y-axis and samples on the x-axis. 

3. Support for alternative classification methods. MARTi classifies reads with a 

combination of BLAST and its own Lowest Common Ancestor (LCA) 

algorithm, producing similar classification results to other tools based on a 

BLAST-LCA approach such as MEGAN. The MARTi engine could be updated 

to support Centrifuge as an alternative to the current BLAST-LCA pipeline, 

allowing taxonomic analysis to be carried out more quickly and on devices 

with less memory.  

4. Richness and evenness indices. MARTi could calculate and display metrics 

such as the Shannon–Wiener index and Simpson’s index. 

5. Clustering and correlation of samples. Support could be added for calculating 

and visualising multivariate analyses, such as principal component analysis 

and principal coordinates analysis, and correlations, such as Pearson’s 

correlation coefficient.  

With sufficient development effort, the ultimate vision is to provide a “plugin” interface 

to both the back-end and the front-end, which would enable third parties to simply 

develop new analysis pipelines and visualisations, accessible through the MARTi 

interface. 
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5.3 Demonstration of MARTi 

Chapter 4 presented the results from testing MARTi during real experiments. Firstly, 

using a mock gut community of known composition, secondly, using clinical faecal 

samples from patients with advanced liver cirrhosis, and finally, faecal samples from 

healthy controls. A total of 98.7 gigabases of sequencing data was generated from 

five nanopore flow cells, giving an average yield of 19.7 Gb per flow cell. This is 

remarkable considering that typical MinION flow cell yields were in the region of 100s 

of megabases just six years ago (Ashton et al. 2015; Laver et al. 2015). The 

substantial increases in throughput and accuracy are a result of improvements ONT 

has made to their sequencing chemistry and analysis software. 

MARTi was successfully used to analyse the taxonomic composition and AMR gene 

content of clinical microbiome samples in real time (Figure 4.3). Three live 

sequencing experiments were run to test different configurations of MARTi: 

1. Clinical pool - a pool of 12 faecal samples from patients with cirrhosis, one 

stable cirrhotic, five decompensated cirrhotic and six acute-on-chronic liver 

failure (ACLF). The barcoded library was sequenced on a GridION with live 

High Accuracy (HAC) basecalling and demultiplexing. MARTi was run in HPC 

configuration. 

2. Clinical F3 M - a single clinical faecal sample (F3), which originated from a 

patient with decompensated cirrhosis, was sequenced on the MinION Mk1C 

with live Fast model basecalling. MARTi was run in local configuration, with 

the Engine and GUI running on a single laptop.  

3. Clinical F3 G run - the same F3 library from Clinical F3 M was also sequenced 

on the GridION with live HAC basecalling. Real-time analysis was carried out 

by MARTi in HPC configuration. 
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MARTi revealed that many of the patients exhibited gut microbiome dysbiosis with 

high proportions of Enterococcaceae, up to 96.8% for F40 (Figure 4.6). The 

Enterococcus genus is associated with complications in patients with end-stage liver 

disease (Llorente et al. 2017). The pathobiont Enterococcus faecium was identified 

as a major contributor of Antibiotic Resistance Ontologies in all of the clinical faecal 

samples except one (F18), the only stable cirrhotic patient sample (Figure 4.8). The 

presence of this species resulted in greater abundance of resistance ontologies 

focused on tetracycline, aminoglycoside, macrolide and diaminopyrimidine 

resistance. These results are similar to the resistance patterns observed by 

Shamsaddini et al. (2021) in patients with cirrhosis. 

MARTi’s walkout analysis assigned 98.5% of the ARO hits to taxonomies, with 41.1% 

of those being assigned at the species or strain level. Currently, MARTi relies on the 

uniqueness of the AMR gene sequence and flanking regions for low-level taxonomic 

assignments. If a read is not long enough to contain flanking regions, it is more likely 

have hits to multiple species and therefore be assigned to a higher taxonomic level 

by the LCA algorithm. Similarly, AMR genes based on plasmids can pose a challenge 

as the flanking regions can often have ambiguous taxonomic hits. However, as 

nanopore sequencing can capture base modifications, it might be possible in the 

future to use these modification patterns to assign a higher proportion of the AMR 

genes to species or strain level, including those on plasmids. This approach would 

require a database of AMR gene sequences with base modification data. 

The Clinical F3 G run produced 2.24 million basecalled pass reads in the first 24 

hours of GridION sequencing, an average rate of 1,556 pass reads per minute (Figure 

4.4). Analysing in real-time on an HPC, MARTi BLAST searched batches of filtered 

reads in chunks of 4,000 to prokaryotic RefSeq genomes for taxonomic classification 

and also to CARD for AMR identification. Up to six chunks of reads were analysed in 
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parallel. Within 24 hours, MARTi had analysed just over 1.83 million reads at an 

average rate of 1,273 reads per minute. Although the analysis rate lagged slightly 

behind the rate at which the GridION was producing basecalled pass reads, the HPC 

configuration is easily scalable and matching the rate of production could be achieved 

by increasing the number of parallel jobs and total compute resources. 

Running in local configuration, MARTi analysed the Clinical F3 M run at ~740 reads 

per min with four concurrent jobs running on a 2021 2.3Ghz i9 8-core MacBook Pro. 

Although the rate of analysis was roughly half the rate of basecalled pass read 

production by the MinION Mk1C, analysis was fast enough for rapid taxonomic 

profiling with frequent GUI updates. Adding support for a memory efficient alignment-

free classification tool such as Centrifuge to the MARTi engine as an alternative to 

the current BLAST-LCA pipeline would allow taxonomic analysis to be carried out 

more quickly and on lower-specification devices. 

Increases in DNA sequencing throughput coupled with exponential growth of 

available reference genomes has already led to massive increases in the number of 

comparisons that need to be performed during analysis. The increase in demand on 

computational resources is very likely to outpace computer hardware development 

(Muir et al. 2016). Therefore, in order for real-time metagenomics to remain viable, 

particularly on PCs, analysis must become more efficient. One way of improving the 

analysis rate of MARTi on PC would be to adopt GPU-based analysis. Zhao and Chu 

(2014) demonstrated that GPU-accelerated (Nvidia GTX780) blastn and megablast 

algorithms run 1.56x and 7.15x faster respectively than multi-threaded NCBI BLAST 

running on 4 CPU cores (Intel Core i7-3820).  

For in-field analysis, it might be possible to optimise MARTi to run on a compact, low-

cost, high-performance, system such as the Jetson Xavier NX, which has 384 NVIDIA 

CUDA GPU Cores. It might also be possible to utilise some of the basecalling 

compute resources of a MinION Mk1C, which has 256 GPU cores, for MARTi 



135 
 

analysis. This would enable sequencing, basecalling, and real-time metagenomic 

analysis on a single portable device. 

Further acceleration could be achieved with FPGA-based (Field-Programmable Gate 

Array) analysis. For example, using a single TimeLogic J-series FPGA card, Tera-

BLAST (an FPGA-accelerated implementation of the BLAST) runs up to 283.6x faster 

than NCBI BLAST+ running on a single core and up to 26.9x faster than NCBI 

BLAST+ running on 32 processor cores (TimeLogic 2013). 

A pool of 12 faecal samples from healthy individuals was sequenced on a GridION 

and then analysed post-run by the MARTi Engine. The GUI was used to compare the 

clinical samples with the healthy samples. The species accumulation plot showed a 

pattern in species richness, with all of the healthy samples having a greater number 

of species detected within the first 100k reads than the cirrhotic clinical samples 

(Figure 4.9). An unequal variances t-test confirmed a significant difference in species 

richness between the healthy and clinical pools. This result is consistent with the 

observations from Solé et al. (2021), that cirrhosis is associated with a significant 

reduction in gene and metagenomic species richness and correlated with disease 

stages.  

 

5.4 Future of nanopore sequencing 

Nanopore sequencing technology is developing at an impressive rate and has seen 

massive increases in both accuracy and yield since first becoming publicly available 

in 2014. ONT continue to make improvements to the hardware, software, and 

chemistry of existing products, and are also developing new ones. New ASICs 

(application-specific integrated circuit) are in development to support new product 

lines such as Plongle and SmidgION.  
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The Plongle, “Plate dongle”, is a 96-well plate compatible sequencing device, with 96 

individual, disposable flow cells. The device will enable users to carry out larger 

numbers of small sequencing runs in parallel, achieving a low cost-per-sample 

without the need for multiplexing. The device is designed to interface with liquid 

handling robots and multichannel pipettes for high-throughput, and even automated, 

preparation and loading of samples.  

Unlike the bulky optical sensing approach adopted by PacBio, base detection based 

on ionic current measurements allows ONT to build extremely compact DNA 

sequencing platforms. The MinION is currently the only portable DNA sequencing 

platform available. However, ONT are developing an even smaller device, the 

SmidgION, designed for use with smartphones or other low power devices. This 

device could enable a broad range of in-field analyses including the following: real-

time species ID, for authentication of food, drink, and timber; on-site analysis of 

environmental samples, such as water and soil; rapid clinical diagnosis of infectious 

disease; and pathogen monitoring during outbreaks.  

It is likely that the SmidgION will be coupled with ONT’s cloud-based EPI2ME service 

for analysis. However, there is potential to develop an open-source MARTi mobile 

app that enables users to perform real-time, offline, analysis using the mobile device 

hardware. Samarakoon et al. (2020) recently developed the first ever smartphone 

application, Genopo, for nanopore sequencing analysis. The Android application was 

demonstrated on overlapping amplicon sequences, generating a complete 

consensus genome for SARS-CoV-2 in under 30 minutes on a range of popular 

smartphones.  

In order to realise the full potential of portable sequencing devices, in-field library 

preparation methods also need to be developed. ONT have created a portable multi-

purpose device, the VolTRAX V2, for automating laboratory processes upstream of 

nanopore sequencing, reducing hands-on time and enabling consistent library quality 
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even in non-laboratory environments. The device includes heating elements for 

incubations, magnetic elements for bead-based clean-ups and a fluorescence 

detector for DNA quantitation. Currently, the small, USB-powered, device is restricted 

to PCR-free transposase-based library preparation protocols and does not carry out 

quantification or QC. In the future, the device will be capable of PCR, sample 

quantification, and running custom, user-programmed, protocols. 

ONT currently relies on protein nanopores, but future generations of nanopore 

sequencing devices are likely to use more robust pores fabricated from synthetic 

materials (i.e., solid-state pores). Currently, ONT’s flow cells are stable at ambient 

temperatures for 30 days, or up to 12 weeks if refrigerated. During sequencing pores 

can become damaged or even dislodged with aggressive unblocking. However, the 

superior mechanical and chemical stability of solid-state pores will enable flow cells 

to last much longer. These flow cells will also be more tolerant to washing and reuse. 

At present, each nanopore has its own electrode connected to a channel in the sensor 

array chip and ionic current measurements are collected ten thousand times per 

second. This is more than sufficient for the current rate of DNA translocation across 

the pore (~420 bp/s), but proposed alternatives, such as graphene-based nano-gap 

or edge state detectors, could enable detection at much greater rates.  

A combination of solid-state pores and improved sensing could enable sequencing of 

unmodified nucleotide molecules (i.e., no added sequencing adaptors and motor 

protein) at a rate of hundreds of thousands to millions of base pairs per second. This 

library-prep free, solid-state, sequencing technology would enable the development 

of sequencing sensors that could be coupled with real-time analysis for continuous 

environmental monitoring. 
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7 Appendices 
 

Appendix 1 Estimated genome sizes and genome coverage for the plant reference skims 

Plant species Estimated 
genome 
size (Mbp) 

Raw PE read 
counts 

Post-
processing 
PE read 
counts 

Post-
processing 
estimated 
coverage 
(x) 

Achillea millefolium 7,482 9,501,046 6,580,562 0.44 
Anagallis arvensis 1,712 2,085,605 1,934,932 0.57 
Ballota nigra 2,425 2,636,800 2,242,563 0.46 
Bromus commutatus 10,636 9,459,893 7,033,860 0.33 
Bryonia dioica 1,614 1,873,028 1,741,086 0.54 
Centaurea nigra 1,760 2,561,721 2,320,727 0.66 
Chaerophyllum temulum 4,144 4,977,454 4,374,009 0.53 
Cirsium arvense 1,389 1,778,262 1,636,918 0.59 
Conium maculatum 4,144 4,622,584 4,117,236 0.5 
Convolvulus arvensis 1,736 2,313,746 2,161,875 0.62 
Crepis capillaris 2,054 2,421,660 2,192,821 0.53 
Digitalis purpurea 1,198 1,386,853 1,293,554 0.54 
Elymus caninus 8,362 8,149,150 5,874,468 0.35 
Epilobium hirsutum 293 526,202 507,820 0.87 
Galium verum 1,845 2,662,086 2,358,137 0.64 
Geranium dissectum 1,283 1,509,064 1,427,315 0.56 
Geranium robertianum 1,283 1,381,657 1,301,665 0.51 
Holcus lanatus 1,663 1,962,801 1,794,155 0.54 
Hypericum perforatum 766 947,958 909,325 0.59 
Hypochaeris radicata 1,311 1,608,816 1,488,521 0.57 
Knautia arvensis 3,608 5,949,258 5,017,209 0.7 
Lamium purpureum 1,076 1,578,244 1,467,433 0.68 
Leucanthemum vulgare 10,416 13,659,663 9,380,813 0.45 
Lolium perenne 2,695 4,091,361 3,682,633 0.68 
Lotus corniculatus 465 801,112 771,072 0.83 
Malva moschata 978 1,616,874 1,532,383 0.78 
Malva sylvestris 1,443 2,265,762 2,041,940 0.71 
Matricaria discoidea 2,396 2,841,144 2,473,876 0.52 
Medicago lupulina 856 147,000 144,281 0.08 
Mimulus guttatus 362 790,364 755,424 1.04 
Papaver rhoeas 2,567 3,370,392 2,881,427 0.56 
Papaver somniferum 3,716 3,872,190 3,433,193 0.46 
Phleum pratense 4,059 3,037,303 2,683,763 0.33 
Plantago lanceolata 1,174 1,262,280 1,108,797 0.47 
Ranunculus acris 4,352 6,180,375 4,843,466 0.56 
Ranunculus repens 10,954 11,943,182 8,548,304 0.39 
Reseda luteola 499 175,178 170,678 0.17 
Rubus fruticosus 365 643,495 619,240 0.85 
Rumex obtusifolius 1,491 2,353,697 2,183,865 0.73 
Sambucus nigra 14,915 21,185,013 14,060,492 0.47 
Senecio jacobaea 2,201 3,279,071 2,895,207 0.66 
Silene vulgaris 1,100 1,528,890 1,425,326 0.65 
Stachys sylvatica 1,252 1,491,740 1,410,094 0.56 
Trifolium campestre 363 540,421 520,995 0.72 
Trifolium repens 1,093 701,115 665,450 0.3 
Tripleurospermum maritimum 2,567 4,086,612 3,411,478 0.66 
Urtica dioica 1,540 2,028,712 1,835,738 0.6 
Veronica agrestis 714 827,108 780,506 0.55 
Veronica persica 758 1,487,257 1,392,396 0.92 
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Appendix 2 Expected vs observed RevMet taxonomic assignments of mock-sample MinION reads 

Species MM1.E MM1.1 MM1.2 MM2.E MM2.1 MM2.2 MM3.E MM3.1 MM3.2 MM4.E MM4.1 MM4.2 MM5.E MM5.1 MM5.2 MM6.E MM6.1 MM6.2 

Knautia arvensis 30 32.8 34.6 0 0 0 0 0.1 0 0 0 0 24.8 22.3 24.2 0.2 0.3 0.1 

Galium verum 30 16.2 12.9 0 0.2 0.1 0 0 0 0 0.1 0 24.8 9.4 9.9 0.2 0.1 0.1 

Crepis capillaris 30 42.8 44.4 0 0 0 0 0.1 0 0 0.1 0 24.8 29.7 27.4 0.2 0.1 0.6 

Papaver somniferum 3 1.6 1.2 0.3 0 0 0 0 0 0.1 0.1 0.1 0 0 0 24.8 11.2 10.2 

Anagallis arvensis 3 2.5 3.4 0.3 0.4 0.1 0 0.1 0 0 0.1 0 0.2 0.2 0.2 24.8 35.7 36.2 

Sambucus nigra 3 3.1 2.8 0.3 0.2 0.8 0 0.1 0.5 83.3 80.8 81.9 0.2 0.2 0.4 24.8 35.1 36.3 

Bryonia dioica 0.3 0.1 0 3 1.4 2 4.5 4.4 2.4 0 0 0 0.2 0 0 24.8 16.9 15.9 

Ranunculus repens 0.3 0.4 0.3 3 3.2 3 45.2 50.8 54.2 0 0.1 0.1 24.8 28.2 26.8 0 0.1 0.1 

Lotus corniculatus 0.3 0 0 3 0.6 1.5 0 0 0 8.3 3.2 3.2 0 0 0 0 0 0 

Digitalis purpurea 0 0 0 30 8.8 8.3 4.5 1.7 0.9 0 0 0 0 0 0 0 0 0 

Leucanthemum vulgare 0 0 0 30 18.9 17.3 45.2 22.4 23 0 0 0 0 0 0 0 0 0 

Stachys sylvatica 0 0 0.1 30 65.1 65.5 0.5 0.9 0.6 8.3 15.4 14.8 0.2 0.8 0.7 0.2 0.4 0.2 

Cirsium arvense 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 

Centaurea nigra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Reseda luteola 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trifolium repens 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 

Papaver rhoeas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.2 

Tripleurospermum maritimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rubus fruticosus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Urtica dioica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Medicago lupulina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trifolium campestre 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ranunculus acris 0 0.1 0.3 0 1 1.3 0 19.3 18.2 0 0.1 0 0 9.1 10.2 0 0 0 

Plantago lanceolata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Holcus lanatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Matricaria discoidea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix 2 continued… 

Species MM1.E MM1.1 MM1.2 MM2.E MM2.1 MM2.2 MM3.E MM3.1 MM3.2 MM4.E MM4.1 MM4.2 MM5.E MM5.1 MM5.2 MM6.E MM6.1 MM6.2 

Senecio jacobaea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Silene vulgaris 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ballota nigra 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Elymus caninus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mimulus guttatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Veronica persica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Veronica agrestis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lolium perenne 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Geranium dissectum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Conium maculatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Malva moschata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Convolvulus arvensis 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Achillea millefolium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Bromus commutatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Geranium robertianum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Malva sylvestris 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Phleum pratense 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hypericum perforatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rumex obtusifolius 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Epilobium hirsutum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chaerophyllum temulum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lamium purpureum 0 0 0 0 0 0.1 0 0 0 0 0.1 0 0 0 0 0 0 0 

Hypochaeris radicata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix 3 Bee-collected pollen sample information 

Bee 
pollen 
ID 

Bee species Date 
collected Plant captured on 

Total 
DNA 
(ng) 

MinION 
run 

MinION 
barcode 

Am_01 Apis mellifera 01/07/2016 Papaver somniferum 259 1 4 
Am_02 Apis mellifera 01/07/2016 Reseda luteola 247 1 7 
Am_03 Apis mellifera 01/07/2016 Papaver somniferum 1540 2 4 
Am_04 Apis mellifera 01/07/2016 Papaver somniferum 1040 2 7 
Am_05 Apis mellifera 01/07/2016 Papaver somniferum 820 2 11 
Am_06 Apis mellifera 01/07/2016 Papaver somniferum 720 3 6 
Am_07 Apis mellifera 28/06/2016 Reseda luteola 655 3 11 
Am_08 Apis mellifera 01/07/2016 Papaver somniferum 625 4 2 
Am_09 Apis mellifera 01/07/2016 Papaver somniferum 545 4 7 
Bl_01 Bombus lapidarius 20/07/2016 Trifolium repens 274 1 1 
Bl_02 Bombus lapidarius 06/07/2016 Trifolium repens 265 1 3 
Bl_03 Bombus lapidarius 06/07/2016 Trifolium repens 253 1 5 
Bl_04 Bombus lapidarius 06/07/2016 Centaurea nigra 248 1 6 
Bl_05 Bombus lapidarius 06/07/2016 Centaurea nigra 232 1 9 
Bl_06 Bombus lapidarius 06/07/2016 Centaurea nigra 229 1 10 
Bl_07 Bombus lapidarius 06/07/2016 Trifolium repens 227 1 11 
Bl_08 Bombus lapidarius 28/06/2016 Trifolium repens 3750 2 1 
Bl_09 Bombus lapidarius 28/06/2016 Trifolium repens 2760 2 2 
Bl_10 Bombus lapidarius 20/07/2016 Centaurea nigra 1560 2 3 
Bl_11 Bombus lapidarius 28/06/2016 Trifolium repens 1350 2 5 
Bl_12 Bombus lapidarius 06/07/2016 Trifolium repens 1120 2 6 
Bl_13 Bombus lapidarius 20/07/2016 Lotus corniculatus 1010 2 8 
Bl_14 Bombus lapidarius 06/07/2016 Trifolium repens 985 2 9 
Bl_15 Bombus lapidarius 06/07/2016 Trifolium repens 820 2 12 
Bl_16 Bombus lapidarius 28/06/2016 Lotus corniculatus 815 3 1 
Bl_17 Bombus lapidarius 01/07/2016 Trifolium repens 735 3 3 
Bl_18 Bombus lapidarius 28/06/2016 Reseda luteola 730 3 4 
Bl_19 Bombus lapidarius 06/07/2016 Trifolium repens 725 3 5 
Bl_20 Bombus lapidarius 06/07/2016 Trifolium repens 700 3 8 
Bl_21 Bombus lapidarius 06/07/2016 Trifolium repens 690 3 9 
Bl_22 Bombus lapidarius 06/07/2016 Trifolium repens 660 3 10 
Bl_23 Bombus lapidarius 06/07/2016 Centaurea nigra 615 4 3 
Bl_24 Bombus lapidarius 06/07/2016 Trifolium repens 590 4 4 
Bl_25 Bombus lapidarius 28/06/2016 Lotus corniculatus 560 4 6 
Bl_26 Bombus lapidarius 01/07/2016 Trifolium repens 505 4 10 
Bl_27 Bombus lapidarius 06/07/2016 Centaurea nigra 428 4 12 
Bt_lc_01 Bombus terrestris/lucorum complex 06/07/2016 Trifolium repens 271 1 2 
Bt_lc_02 Bombus terrestris/lucorum complex 06/07/2016 Centaurea nigra 236 1 8 
Bt_lc_03 Bombus terrestris/lucorum complex 01/07/2016 Reseda luteola 191 1 12 
Bt_lc_04 Bombus terrestris/lucorum complex 06/07/2016 Trifolium repens 870 2 10 
Bt_lc_05 Bombus terrestris/lucorum complex 06/07/2016 Trifolium repens 815 3 2 
Bt_lc_06 Bombus terrestris/lucorum complex 01/07/2016 Trifolium repens 705 3 7 
Bt_lc_07 Bombus terrestris/lucorum complex 01/07/2016 Reseda luteola 640 3 12 
Bt_lc_08 Bombus terrestris/lucorum complex 28/06/2016 Reseda luteola 630 4 1 
Bt_lc_09 Bombus terrestris/lucorum complex 06/07/2016 Trifolium repens 580 4 5 
Bt_lc_10 Bombus terrestris/lucorum complex 28/06/2016 Reseda luteola 515 4 8 
Bt_lc_11 Bombus terrestris/lucorum complex 28/06/2016 Trifolium repens 515 4 9 
Bt_lc_12 Bombus terrestris/lucorum complex 28/06/2016 Reseda luteola 496 4 11 
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Appendix 4 RevMet taxonomic assignments for Bee-collected pollen samples 

Bee pollen 
ID 

Achillea 
millefolium 

Ballota 
nigra 

Centaurea 
nigra 

Elymus 
caninus 

Holcus 
lanatus 

Hypochaeris 
radicata 

Lotus 
corniculatus 

Papaver 
rhoeas 

Papaver 
somniferum 

Reseda 
luteola 

Rubus 
fruticosus 

Trifolium 
campestre 

Trifolium 
repens 

Urtica 
dioica 

Am_01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 96.9 0.0 0.0 0.0 1.6 0.0 
Am_02 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 93.2 0.0 0.0 2.9 1.9 
Am_03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 97.3 0.0 0.0 0.0 0.0 0.0 
Am_04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 97.1 0.0 0.0 0.0 0.0 0.0 
Am_05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 98.5 0.0 0.0 0.0 0.0 0.0 
Am_06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 96.8 0.0 0.0 0.0 0.0 0.0 
Am_07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 
Am_08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 97.8 0.0 0.0 0.0 0.0 0.0 
Am_09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.5 93.5 0.0 0.0 0.0 0.0 0.0 
Bl_01 0.0 0.0 83.2 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 12.5 0.0 
Bl_02 0.0 0.0 7.9 1.2 0.0 0.0 13.5 0.0 0.0 0.0 0.0 1.5 75.9 0.0 
Bl_03 0.0 0.0 1.8 1.1 0.0 2.4 2.0 0.0 0.0 0.0 0.0 3.5 89.3 0.0 
Bl_04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 97.2 0.0 
Bl_05 0.0 0.0 0.0 1.7 0.0 0.0 93.4 0.0 0.0 0.0 0.0 0.0 4.9 0.0 
Bl_06 1.4 0.0 97.3 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bl_07 0.0 0.0 14.6 1.4 0.0 0.0 1.2 0.0 0.0 0.0 0.0 1.2 81.7 0.0 
Bl_08 0.0 0.0 0.0 0.0 0.0 0.0 96.6 0.0 0.0 0.0 0.0 0.0 3.4 0.0 
Bl_09 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bl_10 0.0 0.0 17.1 0.0 0.0 0.0 80.6 0.0 0.0 0.0 0.0 0.0 2.3 0.0 
Bl_11 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bl_12 0.0 0.0 0.0 0.0 0.0 0.0 72.8 0.0 0.0 0.0 0.0 0.0 27.2 0.0 
Bl_13 0.0 0.0 37.4 0.0 0.0 0.0 62.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bl_14 0.0 0.0 0.0 1.1 0.0 1.1 33.1 0.0 0.0 0.0 0.0 1.6 63.1 0.0 
Bl_15 0.0 0.0 0.0 0.0 0.0 0.0 18.8 0.0 0.0 0.0 0.0 2.3 78.9 0.0 
Bl_16 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bl_17 0.0 0.0 0.0 0.0 0.0 0.0 33.0 0.0 0.0 0.0 0.0 1.8 65.2 0.0 
Bl_18 0.0 0.0 0.0 0.0 1.4 0.0 75.6 0.0 2.1 20.9 0.0 0.0 0.0 0.0 
Bl_19 0.0 0.0 0.0 1.1 0.0 0.0 25.8 0.0 0.0 0.0 0.0 1.4 71.7 0.0 
Bl_20 0.0 0.0 2.8 0.0 0.0 0.0 23.1 0.0 0.0 0.0 0.0 1.7 72.3 0.0 
Bl_21 0.0 0.0 0.0 0.0 0.0 0.0 55.3 0.0 0.0 0.0 0.0 1.7 43.0 0.0 
Bl_22 0.0 0.0 0.0 0.0 0.0 0.0 84.6 0.0 0.0 0.0 0.0 0.0 15.4 0.0 
Bl_23 0.0 0.0 4.3 0.0 0.0 0.0 95.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bl_24 0.0 0.0 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0.0 1.6 86.4 0.0 
Bl_25 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bl_26 0.0 0.0 0.0 0.0 0.0 0.0 95.5 0.0 0.0 0.0 0.0 0.0 4.5 0.0 
Bl_27 0.0 0.0 0.0 0.0 0.0 0.0 43.4 0.0 0.0 0.0 0.0 1.8 54.7 0.0 
Bt_lc_01 0.0 1.7 1.7 0.0 1.7 0.0 0.0 0.0 1.7 0.0 72.4 3.4 13.8 3.4 
Bt_lc_02 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 1.9 90.5 0.0 
Bt_lc_03 0.0 0.0 3.8 0.0 0.0 0.0 19.0 2.5 72.2 0.0 0.0 0.0 2.5 0.0 
Bt_lc_04 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bt_lc_05 0.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0 1.9 93.8 0.0 
Bt_lc_06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 98.8 0.0 
Bt_lc_07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 76.4 20.5 0.0 0.0 1.0 0.0 
Bt_lc_08 0.0 0.0 0.0 0.0 0.0 0.0 80.8 0.0 0.0 0.0 0.0 0.0 19.2 0.0 
Bt_lc_09 0.0 0.0 0.0 1.6 0.0 0.0 50.0 0.0 0.0 0.0 0.0 1.2 47.2 0.0 
Bt_lc_10 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 95.3 0.0 0.0 2.7 0.0 
Bt_lc_11 0.0 0.0 0.0 0.0 0.0 0.0 17.9 0.0 0.0 0.0 0.0 1.8 80.4 0.0 
Bt_lc_12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 

               
    Plant species on which bee was foraging when collected       

 


