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Abstract
We investigate the small-amplitude deformations of a long thin-walled elastic tube
having an initially axially uniform elliptical cross-section. The tube is deformed by
a (possibly non-uniform) transmural pressure. At leading-order its deformations are
shown to be governed by a single partial differential equation (PDE) for the azimuthal
displacement as a function of the axial and azimuthal co-ordinates and time. Previous
authors have obtained solutions of this PDE by making ad-hoc approximations based
on truncating an approximate Fourier representation. In this paper, we instead
write the azimuthal displacement as a sum over the azimuthal eigenfunctions of a
generalised eigenvalue problem, and show that we are able to derive an uncoupled
system of linear PDEs with constant coefficients for the amplitude of the azimuthal
modes as a function of the axial co-ordinate and time. This results in a formal solution
of the whole system being found as a sum over the azimuthal modes. We show that the
nth mode’s contribution to the tube’s relative area change is governed by a simplified
second-order PDE, and examine the case in which the tube’s deformations are driven
by a uniform transmural pressure. The relative errors induced by truncating the series
solution after the first and second term are then evaluated as a function of both the
ellipticity and pre-stress of the tube. After comparing our results with Whittaker et al
(Q. J. Mech. Appl. Math. 63(4) 465-496, 2010), we find that this new method leads
to a significant simplification when calculating contributions from the higher-order
azimuthal modes, which in turn makes a more accurate solution easier to obtain.

1. Introduction

The fluid–structure interaction between elastic-walled tubes and biological fluids can
be observed throughout the biological sciences. In the circulatory system, pulse–wave
propagation allows for the transportation of nutrients to tissues and organs within the body
(1), and it is flow-induced deformations that lead to the rupture of arterial and cerebral
aneurysms (2). In the respiratory system, there is a strong interaction between air flow
and the elasticity of the airway walls, leading to physiologically significant flow limitation
(3). To construct mathematical models that capture such physiological behaviour, we must
consider both the mechanics of the internal fluid, and the mechanics of the tube wall.

Many theoretical models that describe the relationship between the deformation of elastic-
walled tubes and the fluid conveyed within them are based on experimental models. These
models are generally based on what has become a canonical set-up known as the ‘Starling
resistor’ (4). The typical set-up is shown in Fig. 1 and consists of a thin-walled, finite-length
(but not necessarily axially uniform) elastic tube. The tube is pre-stretched and pinned (at
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Figure 1: The typical set-up of the Starling resistor comprising a thin-walled elastic tube
section pinned between two rigid tubes. The elastic section is placed inside a pressure
chamber and fluid is driven through the system by either imposing a pressure difference
between the ends of the tube or by imposing a flow rate at one end using a volumetric
pump.

both ends) to two rigid tubes. Fluid is driven through the system by either imposing a
pressure difference between either end of the tube, or by imposing a flow rate at one end
through a volumetric pump. By placing the collapsible section of the tube inside a pressure
chamber, we are given the freedom to manually alter the ambient pressure that imposes a
force on the exterior of the tube. By ensuring that the external pressure pext is larger than
the interior fluid pressure pint by a suitable amount, the transmural pressure pint − pext
will be sufficiently negative to induce buckling. For large positive transmural pressures
(applicable for most arteries), the tube is inflated and the transmural pressure is mainly
balanced by an azimuthal hoop stress. When the transmural pressure decreases, the tube’s
cross-section becomes elliptical-like, and the compliance of the tube increases. Decreasing
the transmural pressure further causes the tube’s cross-section to adopt a ‘two lobed’ state
(see Fig. 2) before the opposite sides finally come into contact (5). In its deformed state,
small changes in the transmural pressure yields large changes in cross-sectional area, and in
this state, the system will often exhibit self-excited oscillations in the presence of an axial
flow (3).

The simplest theoretical approach to understanding the interaction between compliant
elastic-walled tubes and the fluid conveyed within them is via a one-dimensional model. The
conservation of both mass and axial momentum of the internal fluid provide two equations
relating the internal pressure pint, the fluid velocity u, and the tube’s cross-sectional area
A. To close the system, we require a third and final equation — known as a ‘tube law’ —
that captures the mechanics of the elastic-walled tube. The tube law, which usually takes
the form

pint − pext = P (A), (1.1)

for some function P , is often chosen to fit experimental results.
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Figure 2: Typical cross-sectional shapes of an elastic-walled tube subject to increasingly
negative (left to right) transmural pressures pint − pext. The first (circular) cross-section
corresponds to a positive transmural pressure, whilst the remaining cross-sections all
correspond to negative transmural pressures.

Flaherty et al. (6) was one of the first to propose a tube law, based on the post-buckling
behaviour of an inextensible elastic ring. However, this local analysis fails to capture axial
tension effects that are induced by the interaction with neighbouring cross-sections (7). In
an attempt to improve the tube law of Flaherty et al. (6), many authors have proposed
ways of incorporating contributions from axial forces and bending moments. We refer the
reader the studies (8), (9), (5), (10) and (11) as examples.

In the present work we will adopt the initial modelling of Whittaker et al. (10), who
investigated the small-amplitude deformations of a long thin-walled elastic tube having an
initially axially uniform elliptical cross-section. The deformations of the tube were assumed
to be induced by an azimuthally uniform transmural pressure, and contributions from the
inertia of the tube wall were ignored. Whittaker et al. (10) formally derived governing
equations using Kirchhoff–Love shell theory within a long wavelength thin-walled regime,
and then used these to obtain a tube law.

By considering the equilibrium of forces in the normal, azimuthal and axial directions,
together with linear constitutive laws, Whittaker et al. (10) formulated the entire problem
in terms of an azimuthal displacement η(τ, z), which depends on the azimuthal co-ordinate
τ and axial co-ordinate z. The governing PDE for η was shown to be of the form

L (K (η))− F̃ ∂2

∂z2
J (η) = P̃ (z)CPh, (1.2)

where L ,K and J are linear differential operators in τ , F̃ is the dimensionless axial
tension, and P̃ (z) is the dimensionless (azimuthally uniform) transmural pressure. The
quantities CP (τ) and h(τ) are known functions of the azimuthal coordinate τ and arise
during the set-up of the problem.

Whittaker et al. (10) opted to solve (1.2) via Fourier decomposition, by seeking a solution
of the form

η(τ, z) =

∞∑
n=1

en(z) sin(2nτ). (1.3)

Whittaker et al. (10) argued that just the first term in (1.3) would provide a good
approximation to η. After truncating (1.3) after mode n = 1 and introducing α(z), the
relative change in cross-sectional area, Whittaker et al. (10) deduced the tube law

P̃ = k0α− k2F̃
d2α

dz2
, (1.4)



4 D.Netherwood & R.J Whittaker

where k0 and k2 are constants, which are computed using numerical solutions for the leading
Fourier modes of the particular integral and complementary function of (1.2).

Walters et al. (12) furthered the work of Whittaker et al. (10) by including contributions
due to the inertia of the tube wall. Walters et al. (12) showed that such contributions
could be captured via a single parameter M , a dimensionless measure of the inertia in the
tube wall. It was found that wall inertia contributed additively to the governing PDE (1.2)
through a new term proportional to M . The governing equation becomes

L (K (η))− F̃ ∂2

∂z2
J (η) +M

∂2

∂t2
Ĵ (η) = P̃ (z)CPh, (1.5)

and the corresponding tube law is

P̃ = k0α− k2F̃
∂2α

∂z2
+ k2M

∂2α

∂t2
. (1.6)

Whilst the approach of Whittaker et al. (10) and Walters et al. (12) appeared to give
good results, an ad-hoc approximation was used to truncate the Fourier series (1.3). The
correction to the first mode, which is induced by the (coupled) higher-order modes is then
difficult the calculate. In the present work, we will instead use an eigenfunction expansion
method that allows the equations for the modes to fully decouple. We derive a formal
solution of the whole system, which allows us to calculate the order of magnitude of the
error induced after truncation at any mode.

We organise this paper as follows. In §2 we adopt the set-up of Whittaker et al. (10) by
defining the geometry of the tube as well as the functions which measure wall deformation.
A revised governing equation for η(τ, z, t) that permits azimuthal variation in the pressure
is then presented. In §3 we introduce a generalised eigenvalue problem, which will later be
used to decouple the governing equation for the azimuthal deformation. The generalised
eigenvalue problem is solved numerically using a collocation method (bvp4c) and solutions
for a variety of elliptical cross-sections are presented. In §4 we show that the relative area
change α can be decomposed as α(z, t) =

∑∞
n=1 αn(z, t), where each αn(z, t) satisfies a

tube-law like equation

F̃
∂2αn
∂z2

−M ∂2αn
∂t2

− λnαn = −Qn(z, t)tn. (1.7)

Here αn is the component of the relative area change corresponding to the nth azimuthal
deformation eigenmode, λn and tn are positive constants that arise from the solutions of the
generalised eigenvalue problem, and Qn(z, t) measures forcing from the transmural pressure
on the nth eigenmode. In §5 we examine the case where the deformations of the tube wall
are induced by a steady uniform transmural pressure. In this case, the components αn(z)
are governed by a system of ordinary differential equations. We present results for the first
four modes of the relative area change, comparing directly with the work of Whittaker et al.
(10), and evaluate the relative error after truncation after n = 1 and n = 2. Finally, in §6
we present our final discussions and conclusions, whilst also commenting on future work.

2. Set-up

2.1 Physical set-up

We adopt the set-up of Whittaker et al. (10) and Walters et al. (12) by considering a
long thin-walled elastic tube of length L, with mass per unit area m and wall thickness d
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Figure 3: The typical set-up showing a long thin-walled tube of length L, mass per unit
area m, and wall thickness d, with an initially axially uniform elliptical cross-section of
circumference 2πa. The tube is subject to an axial pre-stress F/(2πad) and is exhibiting
deformations in response to an applied transmural pressure pint − pext.

(see Fig. 3). In what we shall term the undeformed configuration, the tube is subject to
an axial pre-stress of magnitude F/(2πad) and is axially uniform with an elliptical cross-
section of circumference 2πa. Hence F is the extensional force applied at the ends of the
undeformed tube, and a is the length scale of the tube’s cross-section. The tube is aligned
with Cartesian coordinates (ax, ay, Lz) where z is aligned with the tube’s central axis. We
introduce τ ∈ (0, 2π) as a dimensionless Lagrangian azimuthal co-ordinate on the tube wall.
Assuming that the tube wall is linearly elastic with Young’s modulus E and Poisson ratio
ν, we define the extensional stiffness D and bending stiffness K respectively as

D =
Ed

1− ν2
, K =

Ed3

12(1− ν2)
. (2.1)

We suppose that changes to the deformation of the tube wall occur over a typical time
scale T , and are induced by an applied transmural pressure p∗tm(τ, z, t), with dimensional
scale P. For simplicity, we assume that the transmural pressure is even and π-periodic in
τ . This corresponds to mirror symmetry in the x and y axes.

We introduce the dimensionless transmural pressure as

P̃ (τ, z, t) =
p∗tm(τ, z, t)

P
. (2.2)

2.2 Dimensionless parameters and asymptotic regime

We will work within an asymptotic regime in which the tube is long and the wall is thin.
Defining dimensionless parameters ` and δ for the respective aspect ratios, we have

` =
L

a
� 1, and δ =

d

a
� 1. (2.3)

Whittaker et al. (10) showed that the dominant mechanisms that balance the transmural
pressure (at leading-order) within this regime are those of azimuthal bending and/or the
action of axial tension through axial curvature. For the case of Walters et al. (12) the
pressure may also be balanced by contributions due to wall inertia. To describe the relative
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magnitudes of the transmural pressure scale P, the bending stiffness K, the axial tension
F , and the mass m, we introduce the dimensionless parameters:

F̃ =
aF

2πK`2
= O(1), M =

ma4

KT 2
. 1, ε =

a3P

K
� 1. (2.4)

The parameter F̃ gives the ratio between axial tension–curvature effects and azimuthal
bending, and can be though of as a dimensionless axial tension. The parameter M gives the
ratio between wall inertia and azimuthal bending and can be thought of as a dimensionless
mass. Taking F̃ = O(1) and M . O(1) enables effects due to axial tension–curvature, wall
inertia and azimuthal bending all to be present at leading-order. The parameter ε is the
ratio of the pressure forcing to the resistance from azimuthal bending. It gives an estimate
of the dimensionless amplitude of the deformations (εa in dimensional terms). Taking ε� 1
ensures that we have small amplitude deformations, and that we can linearise the problem
about the base state.

Using the set-up of Whittaker et al. (10), we consider an asymptotic solution that is zeroth
order in δ, `−1, and first order in ε. There is one constraint on the relative magnitudes of δ
and `−1, which ensures that boundary layers in the axial co-ordinate (containing unwanted
shear affects) are passive, and have negligible affect on the bulk solution. We refer readers
to (13) and (14) for a comprehensive discussion on this topic. Following (13) and (14), we
introduce the dimensionless parameter

F =
F̃ δ2`2

12(1− ν2)
(2.5)

to characterize boundary layer thickness for the asymptotic regimes considered here. For
F � 1, an axial boundary layer of dimensional thickness O(aδ`) is present, which is
necessarily passive when δ � 1. On the other hand, when F � 1, an outer shear layer of
dimensional thickness O(aF−1/2) is present. For this layer to have negligible affect on the
bulk solution, we require aF−1/2 � L. Overall, this amounts to the constraint

δ`2 � 1. (2.6)

2.3 Description of the tube wall and deformation

The tube’s cross-section is initially elliptical. We introduce the constant ellipticity
parameter σ0 such that the tube’s semi-major and semi-minor axes are of length ac coshσ0
and ac sinhσ0 respectively. The normalisation factor c(σ0) is chosen to set the initial
circumference of the tube’s cross-section to be 2πa. It is found that c is given by

c =
π sech(σ0)

2E(sech(σ0))
, (2.7)

where E(k) =
∫ π/2
0

√
1− k2 sin2 θdθ is the complete elliptic integral of the second kind.

The tube wall’s midplane is parametrised by the dimensionless co-ordinates τ ∈ (0, 2π)
and z ∈ (0, 1). As depicted in Fig. 4, the azimuthal co-ordinate τ varies along the
circumference of the tube’s cross-section, and z is the distance along the tube’s central
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z
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y

Figure 4: Schematic of a shell segment illustrating the dimensionless co-ordinate system
(τ, z). Here τ is the azimuthal co-ordinate oriented around the circumference of the tube’s
cross-section. The co-ordinate z represents the distance along the tube’s central axis.

axis. In its undeformed configuration, the position vector of the tube wall is given explicitly
by

r̄(τ, z) = a

c cosh(σ0) cos(τ)
c sinh(σ0) sin(τ)

`z

 . (2.8)

We define unit vectors t̂, ẑ and n̂, which are oriented in the azimuthal, axial and normal
directions respectively. They are given explicitly by

t̂ =
c

h

− cosh(σ0) sin(τ)
sinh(σ0) cos(τ)

0

 , ẑ =

0
0
1

 , n̂ =
c

h

sinh(σ0) cos(τ)
cosh(σ0) sin(τ)

0

 , (2.9)

where

h(τ) = c

(
1

2
cosh(2σ0)− 1

2
cos(2τ)

) 1
2

> 0 (2.10)

is the dimensionless scale factor for the elliptical co-ordinate system.
By using (2.8)–(2.9), we find that the undisturbed cross-sectional area Ā and the base-

state azimuthal curvature B̄(τ) of the undeformed tube are given respectively by

Ā = πa2
c2 sinh(2σ0)

2
, B̄(τ) = n̂ · 1

h

dt̂

dτ
= −c

2 sinh(2σ0)

2h3
. (2.11)

Throughout this paper we shall refer to a set of six representative values of σ0,
(s0, s1, s2, s3, s4, s5) which are presented in table 1. Fig. 5 shows the corresponding elliptical
cross-sections.

We now introduce variables to describe the deformation of the tube from its undeformed
configuration. We follow Whittaker et al. (10) who used the four deformation functions:
ξ(τ, z, t), η(τ, z, t), ζ(τ, z, t) and ζa(z, t). The deformed position of the part of the tube wall
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j 0 1 2 3 4 5√
Ā(sj)− Ā(s0) 0 γ 2γ 3γ 4γ 5γ

sj ∞ 0.9540 0.6000 0.3840 0.2194 0.0755

Table 1: The representative eccentricity parameter values sj of σ0. The values were chosen

such that
√
Ā(sj)− Ā(s0) = γj is linear in j, where γ = 1

2

√
Ā(0.6)− Ā(s0) is chosen such

that s2 = 0.6 for a comparison with the study of Whittaker et al. (10). The resulting
elliptical cross-sections are shown in Fig. 5. The sj values were deduced numerically using
the built in Matlab function fzero.

Figure 5: The elliptical cross-sections for σ0 ∈ {s0, s1, s2, . . . , s5} as given in table 1. The
curves are plotted using (2.7) and (2.8) with a = 1.

which was at r̄(τ, z) in the undeformed configuration is then given by

r(τ, z, t) = r̄(τ, z)+
εa

h(τ)

(
ξ(τ, z, t)n̂ + η(τ, z, t)t̂

)
+εa`

(
1

`2
ζ(τ, z, t) + δ2ζa(z, t)

)
ẑ. (2.12)

The function ξ(τ, z, t) describes the component of displacement normal to the tube wall,
η(τ, z, t) describes the displacement in the azimuthal direction, and the functions ζ(τ, z, t)
and ζa(z, t) represent the axial displacements. The two functions are used here to
distinguish between the azimuthal-mean axial displacement ζa(z, t), and the azimuthally
varying component ζ(τ, z, t), which have different scales. The pre-factors present in (2.12)
ensure that the dimensional scales are consistent whilst rendering the deformation functions
ξ, η, ζ, ζa all O(1).

Whittaker et al. (10) argued that at leading-order there is negligible azimuthal stretching
and that the in-plane shear is uniform within each cross-section. They showed that these
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physical constraints result in the following relationships between the displacement functions:

ξ sinh(2σ0) +
2h2

c2
∂η

∂τ
− η sin(2τ) = 0, (2.13)

∂η

∂z
+
∂ζ

∂τ
=
h(τ)

2π

d

dz

∫ 2π

0

η dτ. (2.14)

2.4 The governing equation for the azimuthal displacements

Whittaker et al. (10) obtained a single governing equation for η in the case where wall
inertia is neglected and the transmural pressure is azimuthally uniform. This was later
extended by Walters et al. (12) to include the inertia of the tube wall.

The derivation of the governing equation by Whittaker et al. (10) and Walters et al. (12)
starts with linear constitutive laws (15) for the elastic wall and the Kirchoff–Love shell
equations (16). On substituting the deformation (2.12) into these equations and neglecting
terms of O(ε, `−1, δ), a set of three equations of motion in the normal, azimuthal and axial
directions is obtained. The unknowns in these equations are displacement functions ξ, η, ζ, ζa
and a hoop stress Ñ (the latter is effectively a Lagrange multiplier for the constraint of no
azimuthal stretching).

The constraints (2.13)–(2.14) are then used to eliminate ξ and ζ from the system in favour
of η. The hoop stress Ñ is then eliminated between the normal and azimuthal equations.
Since neither involve ζa, a single partial integro-differential equation for η is thus obtained.
Once a solution for η has been found, the other displacement functions ξ, ζ and ζa can be
recovered using (2.13), (2.14), and the axial equation respectively.

In the present work, we replicate this procedure, but allow for azimuthal variation in
the transmural pressure P̃ (τ, z, t). The details are omitted for brevity, but we obtain the
following governing equation for η:

L̂ (K̂ (η))−h ∂
2

∂z2
R̂(η)−F̃ ∂2

∂z2
Ĵ (η)+M

∂2

∂t2
Ĵ (η) = − tanh2 2σ0

∂

∂τ

(
P̃ (τ, z, t)

B̄(τ)

)
, (2.15)

where the linear differential operators L̂ , K̂ and Ĵ , are given explicitly by

L̂ (η) = tanh(2σ0)

(
−B̄ ∂

∂τ

(η
h

)
− ∂

∂τ

(
1

B̄h

∂

∂τ

(
1

h

∂

∂τ

(η
h

))))
, (2.16)

Ĵ (η) = tanh2(2σ0)

(
η − ∂

∂τ

(
1

B̄2h

∂

∂τ

(η
h

)))
, (2.17)

K̂ (η) = tanh(2σ0)
∂

∂τ

(
B̄η

h
+

1

h

∂

∂τ

(
1

B̄h

∂

∂τ

(η
h

)))
, (2.18)

and the integral operator R̂(η) is defined as

R̂(η) =
12(1− ν) tanh2 2σ0

2πδ2`2

∫ 2π

0

η dτ. (2.19)

These operators differ slightly from when they were originally presented by previous
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authors due to the inclusion of the linear scaling tanh2 2σ0. This scaling is introduced to
prevent unbounded behaviour in both Ĵ (η) and the forcing of (2.15) as σ0 → 0, which
arises due to the small σ0 behaviour of the azimuthal curvature

B̄ ∼ − sinh(2σ0)

π sin3 τ
as σ0 → 0. (2.20)

Owing to the assumed symmetry of the transmural pressure (P̃ is even and π-periodic),

together with the parity of the operators L̂ K̂ and Ĵ , it follows that the only component
of η that is forced by the transmural pressure will be odd and π-periodic. We therefore
proceed by seeking solutions for η that are odd and π-periodic. This results in R̂ ≡ 0, and
the governing equation (2.15) reduces to the PDE

L̂ (K̂ (η))− F̃ ∂2

∂z2
Ĵ (η) +M

∂2

∂t2
Ĵ (η) = − tanh2 2σ0

∂

∂τ

(
P̃ (τ, z, t)

B̄(τ)

)
. (2.21)

Equation (2.21) is identical to the governing PDE derived by Walters et al. (12), with the
exception of the linear scaling applied to the operators, and the form of the pressure term
on the right hand side.

2.5 Boundary conditions

There are two sets of boundary conditions associated with the problem (2.21). The first
applies at the tube ends z = 0 and z = 1 and encapsulates the requirement that the elastic
tube is pinned to rigid supports. The conditions are given explicitly by

η = 0 on z = 0, 1. (2.22)

The second set of boundary conditions are with respect to the azimuthal co-ordinate τ ,
and arise due to the symmetries of the problem. The assumption that η is both odd
and π periodic in τ means that we can restrict the azimuthal domain to τ ∈ (0, π/2)
and conditions on the continuity of odd derivatives in η are automatically satisfied. The
remaining boundary conditions are given by

η =
∂2η

∂τ2
=
∂4η

∂τ4
= 0 on τ = 0,

π

2
. (2.23)

3. A generalised eigenvalue problem

In this section we introduce a generalised eigenvalue problem whose eigenfunctions will
be used to construct a solution to (2.21). We will show that the operators L̂ K̂ and Ĵ
are self-adjoint, as well as present the fundamental result that the eigenfunctions form a
complete set. We compute numerical solutions to the eigenvalue problem at each σ0 ∈
{s1, s2, s3, s4, s5}, and also obtain an analytical solution in the limit σ0 →∞.

3.1 The eigenvalue problem

The generalised eigenvalue problem for y(τ) that we need to consider in order to construct
solutions to (2.21)–(2.23) is:

L̂ K̂ (y)− λĴ (y) = 0 for τ ∈ (0, π/2), (3.1)
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subject to

y =
d2y

dτ2
=

d4y

dτ4
= 0 on τ = 0,

π

2
. (3.2)

We observe that (3.1) is a 6th-order ordinary differential equation for y(τ), with one
parameter λ (the eigenvalue) and 6 boundary conditions. Since the system is linear and
homogeneous, the remining degree of freedom is the normalisation (linear scaling) of the
solutions (see below). Let y = Yn(τ) be the eigenfunctions of (3.1) with corresponding
eigenvalues λn, ordered such that λ1 < λ2 < ....

3.2 Self-adjointness of the operators and eigenfunction orthogonality

We define the inner product

〈u, v〉 =

∫ π/2

0

1

h
uvdτ. (3.3)

From the definitions (2.17)–(2.18) of L̂ K̂ and Ĵ we can integrate by parts to show that

the operators L̂ K̂ and Ĵ are self-adjoint with respect to (3.3). In other words:

〈L̂ K̂ (u), v〉 = 〈u, L̂ K̂ (v)〉 and 〈Ĵ (u), v〉 = 〈u, Ĵ (v)〉 (3.4)

for all smooth functions u and v that satisfy (3.2).
Using the relationships (3.4), together with the eigenvalue equation (3.1), we can employ

the usual method to show that the eigenfunctions satisfy the orthogonality relation

〈Yn, Ĵ (Ym)〉 = 0 for n 6= m. (3.5)

The individual eigenfunctions Yn are not orthogonal to one another. Moreover, it can
also be shown that the bilinear form 〈u, Ĵ (v)〉 is positive definite on (0, π/2), since, after
integrating by parts recursively

〈u, Ĵ (u)〉 = tanh2(2σ0)

∫ π/2

0

(
1

h
|u|2 +

1

(B̄)2h

∣∣∣∣ ∂∂τ (uh)
∣∣∣∣2
)

dτ > 0, (3.6)

with equality if and only if u ≡ 0. We therefore define the normalisation condition

〈Yn, Ĵ (Yn)〉 ≡
∫ π/2

0

1

h
YnĴ (Yn)dτ = 1, (3.7)

which sets the amplitude of the eigenfunctions. This condition, together with the
orthogonality result (3.5) yields the property

〈Yn, Ĵ (Ym)〉 = δnm, (3.8)

where δnm is the Kronecker delta.
It can be shown that the set of eigenfunctions {Yn} form a complete set, in the sense

that any smooth function satisfying the boundary conditions (3.2) can be represented as a
linear combination of the eigenfunctions Yn. The result is obtained by defining appropriate
function spaces and equipping them with carefully chosen inner products such that theorem
6.3.1 in Blanchard and Brüning (17) yields a basis of eigenfunctions that satisfy (3.1)–(3.2).
We omit the details here for brevity, however the full proof can be found in the PhD thesis
of Netherwood (18).
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3.3 The circular limit σ0 →∞
For general σ0, the system (3.1), (3.2) and (3.7) can only be solved numerically. However,
analytic results can be obtained in the limit σ0 →∞, which corresponds to the tube’s initial
cross-section becoming circular. These results are then used to formulate an initial guess
when solving the problem numerically for general σ0 in §3.4. The analytical results can also
be used as a check of the numerical solutions.

It is simple to show that in the limit as σ0 →∞, we have B̄ → −1 and h→ 1. It follows
that in this circular limit, the eigenvalue problem (3.1) reduces to

d6Yn
dτ6

+ 2
d4Yn
dτ4

+ (1− λn)
d2Yn
dτ2

+ λnYn = 0, (3.9)

subject to

Yn =
d2Yn
dτ2

=
d4Yn
dτ4

= 0 on τ = 0,
π

2
. (3.10)

The normalisation condition (3.7) becomes∫ π/2

0

Y 2
n +

(
dYn
dτ

)2

dτ = 1, (3.11)

after applying integration by parts.
The ordinary differential equation (3.9) has constant coefficients and contains only even

derivatives of τ . This observation, together with the periodicity implied by the boundary
conditions (3.2), suggests we should seek solutions of the form

Yn = Dn sin(2nτ) for n ∈ N, (3.12)

where the constants Dn are set by the normalisation (3.11). By substituting (3.12) into
(3.9) and arranging for λn we find that

λn =
64n6 − 32n4 + 4n2

1 + 4n2
. (3.13)

Finally, the normalisation condition (3.11) yields Dn, and hence the solution

Yn(τ) =
2√

π(1 + 4n2)
sin(2nτ). (3.14)

Plots of the eigenfunctions (3.14) are shown in Fig. 6.

3.4 Numerical method for general σ0

The eigenvalue problem (3.1)–(3.2) and (3.7) with y = Yn(τ) was solved numerically by
using the built in Matlab solver bvp4c. The solver requires that we write the governing
equation as a first-order coupled system of ODEs. We do this in the standard way by using
Yn and its first five derivatives as the variables.

For the normalisation, the eigenfunctions were initially normalised subject to Y ′n(0) = 1,
since this was numerically more convenient than using the integral condition (3.7) when
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Figure 6: Plots of the eigenfunctions Yn for modes n = 1, 2, ..., 6 in the limit as σ0 → ∞,
corresponding to analytically obtained solutions (3.14) of the system (3.9)–(3.11).

calling the solver. Once a numerical solution of (3.1)–(3.2) has been found, it is scaled to
satisfy the required normalisation (3.7).

The solver bvp4c requires an initial guess for the solution and any parameters (the
eigenvalue in this case). Initially, when considering an approximation for the eigenfunctions
of (3.1)–(3.2), it seemed that the analytical results for σ0 → ∞ studied in §3.3 would
provide a sufficient approximation for all σ0. However, within this regime the method would
sometimes (and unpredictably) converge to different solutions (corresponding to different
modes), particularly at smaller σ0. Therefore, in order to obtain a reliable solution for the
nth mode at each σ0, we iterated through descending values of σ0 and used each preceding
solution as the initial approximation ỹ of the eigenfunction at the next value of σ0. In order
to provide an initial estimate λ̃n of the eigenvalue, we calculated the Rayleigh quotient for
each σ0 using our eigenfunction estimate:

λ̃n =
〈ỹ, L̂ K̂ (ỹ)〉
〈ỹ, Ĵ (ỹ)〉

. (3.15)

For each n and σ0, once the approximations ỹn and λ̃n had been determined, we called
bvp4c on an initial mesh of 500 points on the interval τ ∈ (0, π/2), which found a numerical
approximation of the system. Each solution yn from bvp4c then needed to be scaled to
satisfy the normalisation condition (3.7). The inner product

γn = 〈yn, Ĵ (yn)〉,

=

∫ π/2

0

1

h
yn · Ĵ (yn) dτ, (3.16)

was evaluated numerically. Once γn had been found, the normalised eigenfunction was
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σ0 λ1 λ2 λ3 λ4 λ5 λ6
s0 =∞ 7.20000 211.765 1191.89 3907.94 9703.96 20308.0
s1 = 0.9540 6.97182 207.340 1180.73 3887.93 9672.74 20263.1
s2 = 0.6 6.42638 194.436 1140.73 3811.43 9552.18 20090.5
s3 = 0.3840 5.83285 176.578 1066.20 3636.83 9240.97 19614.3
s4 = 0.2194 5.38682 160.336 979.575 3384.11 8695.61 18631.7
s5 = 0.0755 5.16604 151.227 922.705 3191.48 8217.27 17647.5

Table 2: Numerical results for the eigenvalues λn of (3.1)–(3.2). The eigenvalues are shown
for the first six modes and are calculated numerically at each σ0 ∈ {s0, s1, s2, s3, s4, s5}. The
row corresponding to s0 =∞ contains values for the eigenvalues in the limit σ0 →∞ from
(3.13).

computed as

Yn(τ) =
1
√
γn
yn(τ). (3.17)

3.5 Numerical results for the eigenvalue problem

In Fig. 7 we plot the normalised eigenfunctions Yn(τ) for modes n = 1, 2, ..., 6 that satisfy
(3.1), (3.2) and (3.7) for ellipticity parameter σ0 ∈ {s0, s1, s2, ..., s5} (see table 1). It can
be seen that the number of half-oscillations of each eigenfunction present on the interval
(0, π/2) is equal to the mode number n. Moreover, we observe that for decreasing values
of σ0 relative to the σ0 = ∞ case, the corresponding eigenfunctions are increasingly out
of phase (to the right) with the analytic limits Yn ∝ sin(2nτ). The amplitude of the
eigenfunctions is found to be larger towards the τ = 0 end of the azimuthal domain.

Fig. 8 shows the eigenvalues λn (scaled by their circular limit behaviour (3.13)) plotted
against σ0 for modes n = 1, 2, ..., 6. We observe that, for each n, the plots maintain a
similar-shaped profile. However, there are large differences in the magnitude of λn (see
table 2) as we change the mode number, n. Fig. 8 also shows that the numerically obtained
eigenvalues λn converge to the analytically obtained limits (3.13) as σ0 →∞.

4. Solution by series expansions

In this section we seek a full series solution to (2.21)–(2.23). We represent the solution as a
sum over the eigenfunctions studied in §3.1, and show that this allows us to fully decompose
the governing equation (2.21) into a system of uncoupled linear partial differential equations
with constant coefficients.

4.1 Decomposition of η(τ, z, t)

Let η(τ, z, t) be the solution of (2.21)–(2.23). We assume on physical grounds that such a
solution will exist. Recall the inner product (3.3) and define

an(z, t) = 〈η, Ĵ (Yn)〉 =

∫ π/2

0

1

h
ηĴ (Yn(τ)) dτ. (4.1)
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Figure 7: Numerical solutions to the system (3.1), (3.2) and (3.7) for y = Yn(τ) (the
eigenfunctions) for modes n = 1, 2, · · · , 6 with σ0 ∈ {s0, s1, s2, s3, s4, s5}. The dashed
curves represent the analytic solution (3.14) obtained in the limit σ0 →∞.
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Figure 8: Numerical solutions for the eigenvalues λn, plotted against eccentricity parameter
σ0 for modes n = 1, 2, ..., 6. Each eigenvalue λn has been scaled by its value λn∞ in the
circular limit (σ → ∞), as given analytically in (3.13). In the inset we plot the circular
limit eigenvalues λn∞ against n to give an indication of the relative sizes of the eigenvalues
corresponding to different azimuthal modes.

Owing to the completeness of the eigenfunctions Yn (see §3.2) and the orthogonality relation
(3.8), we can express η(τ, z, t) as

η(τ, z, t) =

∞∑
n=1

an(z, t)Yn(τ). (4.2)

The boundary conditions on an(z, t) can then be derived from the pinned-end conditions
(2.22), we find that

an = 0 on z = 0, 1. (4.3)

We now take the the inner product of (2.21) with Yn to obtain

〈L̂ K̂ (η), Yn〉 − F̃
∂2

∂z2
〈Ĵ (η), Yn〉+M

∂2

∂t2
〈Ĵ (η), Yn〉 = Qn(z, t), (4.4)
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where

Qn(z, t) = − tanh2(2σ0)

∫ π/2

0

1

h

∂

∂τ

(
P̃ (τ, z, t)

B̄(τ)

)
Yn(τ) dτ. (4.5)

For the case in which the pressure is azimuthally uniform†, we can write

Qn(z, t) = P̃ (z, t)qn, (4.6)

where

qn = tanh2(2σ0)

∫ π/2

0

CP (τ)Yn(τ) dτ, (4.7)

and

CP (τ) =
3 sin 2τ

sinh 2σ0
. (4.8)

Since L̂ K̂ is self-adjoint with respect to (3.3) on the space of functions that satisfy (3.2),
and because Yn is an eigenfunction of (3.1), we have

〈L̂ K̂ (η), Yn〉 = 〈η, L̂ K̂ (Yn)〉 = λn〈η, Ĵ (Yn)〉. (4.9)

Since Ĵ is also self-adjoint, (4.4) becomes

λn〈η, Ĵ (Yn)〉 − F̃ ∂2

∂z2
〈η, Ĵ (Yn)〉+M

∂2

∂t2
〈η, Ĵ (Yn)〉 = Qn(z, t) (4.10)

Recalling the definition of an(z, t) in (4.1), we obtain:

λnan − F̃
∂2an
∂z2

+M
∂2an
∂t2

= Qn(z, t), for n = 1, 2, 3, · · · . (4.11)

Equation (4.11) is an uncoupled system of partial differential equations for the axial modes
an(z, t), forced by Qn(z, t). We interpret Qn as the contribution from the pressure to the
nth eigenmode. For a given transmural pressure P̃ , we can obtain Qn (via (4.5)) using
the numerical solutions for the eigenfunctions Yn(τ). Equation (4.11) can then be solved
for an(z, t) for each n subject to the boundary conditions given by (4.3). Once the modes
an(z, t) are known, the solution for η is then given by (4.2).

4.2 Contribution to the area change

A tube-law provides a relation between the transmural pressure and the tubes cross-sectional
area. In place of a single such equation here, we instead obtain a set of equations for the
contribution to the area change from each of the azimuthal eigenmodes.

Whittaker et al. (10) showed that at leading-order, the area change of the tube’s cross
section is given by

A− Ā = εa2
∫ 2π

0

ξ(τ, z, t)dτ +O(ε2). (4.12)

† This case is applicable for the models derived by Whittaker et al. (19), Whittaker et al. (20) and
Whittaker et al. (21)
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By using (2.13) we can eliminate ξ from (4.12) to obtain

A− Ā = εa2
∫ 2π

0

(
sin 2τ

sinh(2σ0)
η − 2h2

c2 sinh(2σ0)

∂η

∂τ

)
dτ +O(ε2). (4.13)

Using the symmetry of η, we can restrict the range of integration to (0, π/2) and multiply
the result by 4. Noting that 2h2/c2 = cosh(2σ0) − cos(2τ), and that η = 0 at τ = 0, π/2,
we can use integration by parts to simplify the second term in the integrand. We obtain:

A− Ā =
12εa2

sinh(2σ0)

∫ π
2

0

sin(2τ) η(τ, z, t) dτ +O(ε2). (4.14)

Decomposing η(τ, z, t) as in (4.2) provides

A− Ā =
12εa2

sinh(2σ0)

∞∑
n=1

an(z, t)

∫ π
2

0

sin(2τ)Yn(τ)dτ +O(ε2). (4.15)

We define the fractional area change εα(z, t), such that

εα =
A− Ā
Ā

. (4.16)

Substituting (4.15) into (4.16) and using the expression for Ā in (2.11), we obtain

α =
24

πc2 sinh2(2σ0)

∞∑
n=1

an(z, t)

∫ π/2

0

sin(2τ)Yn(τ)dτ +O(ε). (4.17)

We define αn(z, t) = an(z, t)tn, where tn is given by

tn =
24

πc2 sinh2(2σ0)

∫ π/2

0

sin(2τ)Yn(τ)dτ. (4.18)

Then it follows that

α(z, t) =

∞∑
n=1

αn(z, t), (4.19)

and

η(τ, z, t) =

∞∑
n=1

1

tn
αn(z, t)Yn(τ). (4.20)

We therefore interpret αn(z, t) as the component of the relative area change corresponding
to the nth azimuthal eigenmode. By (4.11) and (4.3), each αn satisfies the partial differential
equation

F̃
∂2αn
∂z2

−M ∂2αn
∂t2

− λnαn = −Qntn, (4.21)

subject to
αn = 0 on z = 0, 1. (4.22)
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Figure 9: Numerical results for (a) qn as defined in (4.7), and (b) tn, as defined in
(4.18), plotted as functions of σ0 for n = 1, 2, . . . , 6. Both plots demonstrate a dominant
contribution from the fundamental mode n = 1.

Equation (4.21) governs the components αn, which when summed together, provide the
change in cross-sectional area of an initially elliptical elastic-walled tube subject to a given
transmural pressure P̃ (τ, z, t). For simple analytic functions P̃ (τ, z, t), the system (4.21)–
(4.22) can be solved analytically for each n, though the evaluation of Qn, tn and λn will
require numerical attention.

For P̃ uniform in τ , recall that Qn = P̃ qn, where qn is given by (4.7). In Fig. 9 we plot
qn and tn numerically against σ0 for n = 1, 2, . . . , 6 and observe that in both cases there is
a dominant contribution from the first (n = 1) mode. We shall term this the fundamental
mode. The results demonstrate that a good approximation of the system could be obtained
after truncating (4.19) after n = 1.

4.3 Comparison with Whittaker et al. (10)

In the present notation, the ‘tube law’ derived by Whittaker et al. (10) – which applies
when the transmural pressure is steady and azimuthally uniform – is given by

k0α− k2F̃
d2α

dz2
= P̃ (z), (4.23)

where k0 and k2 are numerically determined constants. If we truncate expansion (4.19)
after n = 1, and assume a steady deformation in response to a steady azimuthally uniform
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σ0 q1 q2 q3 q4 q5 q6
s1 = 0.9540 0.326229 0.053729 0.012425 0.003104 0.000797 0.000207
s2 = 0.6 0.523926 0.153981 0.065155 0.030600 0.014980 0.007480
s3 = 0.3840 0.540936 0.202923 0.111130 0.069308 0.045950 0.031499
s4 = 0.2194 0.399920 0.167120 0.101920 0.071523 0.053940 0.042484
s5 = 0.0755 0.154760 0.067428 0.042727 0.031198 0.024523 0.020169

Table 3: Results for the numerical constants qn, as defined in (4.7), which measure the
contribution from the (azimuthally uniform) pressure to the nth eigenmode. The values are
given for the representative values σ0 ∈ {s1, s2, s3, s4, s5}. The circular limit case (σ0 = s0)
has been omitted since qn → 0 when σ0 →∞ for all n as is observed in Fig. 9.

σ0 t1 t2 t3 t4 t5 t6
s1 = 0.9540 0.468950 0.077235 0.017861 0.004462 0.001146 0.000299
s2 = 0.6 1.104332 0.324563 0.137336 0.064500 0.031576 0.015767
s3 = 0.3840 2.340500 0.878035 0.480852 0.299891 0.198821 0.136295
s4 = 0.2194 6.272272 2.621097 1.598410 1.121761 0.845988 0.6663216
s5 = 0.0755 48.12290 20.9690 13.2861 9.701156 7.62547 6.27148

Table 4: Results for the numerical constants tn, as defined in (4.18), which measure
the effect of the nth modes amplitude on the area change. The values are given for the
representative values σ0 ∈ {s1, s2, s3, s4, s5}.

transmural pressure, then equation (4.21) reduces to

λ1
q1t1

α1 −
F̃

q1t1

d2α1

dz2
= P̃ (z). (4.24)

This is the same form as (4.23), but with differently computed coefficients.
In Fig. 10 we plot the results of Whittaker et al. (10) for k0 and k2 together with the

expressions λ1/q1t1 and 1/q1t1 (scaled by their circular limit behaviour) appropriate for
a comparison. We find that better agreement is found for the comparisons involving k0,
although in both cases, we observe that the two solutions converge towards agreement in
the limit as σ0 →∞. The reason for the agreement at large σ0 is because the eigenfunction
expansion (4.2) of η becomes exactly the Fourier expansion used by Whittaker et al. (10) in
this circular limit (see §3.3). Moreover, for both models, the amplitude of the higher-order
azimuthal modes become asymptotically smaller than the amplitude of the fundamental
mode. This can be justified by considering the ratio

qntn
q1t1

=

(∫ π/2
0

sin(2τ)Yn(τ) dτ∫ π/2
0

sin(2τ)Y1(τ) dτ

)2

. (4.25)

Hence, using the analytical solution (3.14) for Yn as σ0 →∞, it follows (by orthogonality)
that

lim
σ0→∞

qntn
q1t1

= 0 for n > 2. (4.26)
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Figure 10: Comparison of the coefficients in the tube-law equations (4.23) and (4.24), as the
ellipticity σ0 is varied. The dot-dashed lines show the values of k0 and k2 from Whittaker
et al. (10). The continuous lines show the values of λ1/q1t1 and 1/q1t1 from the present
work. In the main figure the values have been scaled by their respective asymptotic forms
e4σ0 and 5/36e4σ0 as σ0 →∞. The raw values are shown in the inset.

5. Application and truncation error estimates

In this section we shall consider the errors incurred by truncating the expansion (4.19); first
by constructing general estimates for the magnitude of each αn, and secondly by considering
the specific case of a uniform transmural pressure (for which analytical solutions can be
obtained).

5.1 Estimates of relative area change for steady problems

We can use (4.21) to obtain estimates for the magnitude of each αn, which contributes to
the relative area change through (4.19). We consider a steady problem in which P̃ = P̃ (z)
and αn = αn(z). Equation (4.21) then reduces to the ordinary differential equation

F̃
d2αn
dz2

− λnαn = −qntnP̃ (z). (5.1)

Recall that z ∈ (0, 1) and P̃ (z) = O(1).
When F̃ � λn, the second term in (5.1) does not contribute at leading-order. An estimate

α̂n for the magnitude of the relative area change when F̃ � λn is then

|αn(z)| ∼ α̂n =
qntn

F̃
. (5.2)

Conversely, for F̃ � λn, we neglect the first term in (5.1) at leading-order. The estimate
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Figure 11: (a) Numerical results for the ratio between the estimates α̂n for n = 2, 3, ..., 6
and the estimate α̂1 from (5.2). (b) Numerical results for the ratio between the estimates
α̌n for n = 2, 3, ..., 6 and the estimate α̌1 from (5.3).

ᾰn for the relative area change is then

|αn(z)| ∼ α̌n =
qntn
λn

. (5.3)

Fig. 11 shows the ratios α̂n/α̂1 and α̌n/α̌1 between the higher mode estimates for αn
and the first mode estimate, plotted against σ0. In both (a) and (b) we see that for
smaller σ0, the higher-order modes provide a more substantial contribution to the relative
area change, and become less important as σ0 becomes larger. Physically, the increase in
σ0 corresponds to the tubes initial cross-section becoming circular. This means that the
accuracy in approximating the relative area change of the tube by truncating (4.19) at
n = 1 depends on the ellipticity of the tubes initial cross-section. For tubes that initially
have highly elliptical cross-sections (see Fig. 5), contributions from the higher-order terms
in (4.19) may be required.

5.2 Analytic solution for a steady uniform pressure

For a steady uniform transmural pressure say P̃ = −1, we can solve (4.21)–(4.22)
analytically. By using standard methods for solving linear ordinary differential equations
with constant coefficients, we find the steady solution

αn(z) = −qntn
λn

[
1−

cosh[µn(z − 1
2 )]

cosh
(
µn
2

) ]
, (5.4)
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where µ2
n = λn/F̃ .

In Fig. 12 we plot the initial and deformed cross-sectional shapes of the tube located at
z = 0.5, and in Fig. 13, we plot the solutions (5.4) with P̃ = −1 for F̃ = 1 and F̃ = 3.
Comparing with the work of Whittaker et al. (10) (plotted in Fig. 13) we see that for n = 1
and σ0 = 0.6 our results are in good agreement.

The solutions (5.4) for αn have a maximum amplitude at z = 1/2, given by

αn
(
1
2

)
= −qntn

λn

[
1− sech

(µn
2

)]
. (5.5)

When µn is large (corresponding to F̃ � λn), we see that

|αn( 1
2 )| ∼ qntn

λn
for µn � 1, (5.6)

in agreement with the estimate (5.3).
Conversely, for small µn (F̃ � λn), by making use of the Taylor expansion of sech(µn),

we find that

|αn
(
1
2

)
| ∼ qntn

8λn
µ2
n for µn � 1. (5.7)

Since µ2
n = λn/F̃ , this is consistent with the estimate (5.2).

Figures 14 and 15 show contour plots of the ratios α2/α1 and α3/(α1 + α2) evaluated
at z = 0.5 in (F̃ , σ0) parameter space. The plots provide an understanding of the relative
error induced by truncating (4.19) after the first and second modes respectively. Whilst the
features of both Fig. 14 and 15 are similar, we find that the retention of the second mode
provides an improvement in the error by a factor of between 10−1 and 10−4.5.

The contour plots 14 and 15 show that the relative error induced by truncation decreases
monotonically as the ellipticity parameter σ0 is increased. This observation is in agreement
with our analysis in §4.3, where it was shown that the higher order azimuthal modes vanish
in the circular limit σ0 →∞. In both plots we see that smaller values of the axial tension
result in a smaller relative error, with the added feature that the error seems to tend
towards being independent of F̃ when F̃ is either large or small. To explain these features
we consider the dominant contribution αn+1/α1 to the relative error in truncating (4.19)
after the nth mode. Using the estimates (5.2) and (5.3) we find that

αn+1

α1
∼ qn+1tn+1

q1t1
for F̃ � λn, (5.8)

αn+1

α1
∼ λ1
λn+1

qn+1tn+1

q1t1
for F̃ � λn. (5.9)

Examining (5.8)–(5.9) we see that both are independent of F̃ . Moreover, the presence of the
factor λ1/λn+1 in (5.9) justifies mathematically why the error decreases with an increase in
dimensionless axial tension, since λn+1 � λ1 for every n.

6. Conclusions

In this paper we have produced the first formal solution of the problem initially formulated
by Whittaker et al. (10) of the small amplitude deformations of a long thin-walled elastic
tube that has an initially axially uniform elliptical cross-section.
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Figure 12: Cross-sectional deformations of an initially elliptical elastic-walled tube induced
by a steady uniform transmural pressure for different initial ellipticities. The figure shows
the midpoint z = 1/2, with the dashed line showing the undeformed and the solid lines
showing the deformed wall. All the figures use the same transmural pressure P̃ ≡ −1
with ε = 0.6, and have the same dimensionless tension F̃ = 1. The area changes αn
were calculated using (5.4) and then η was computed from (4.20) and ξ from (2.13). The
deformation is then found using (2.12). The expansion (4.19) was truncated after n = 2
since adding further modes produced indistinguishable results.

To obtain the solution, we used an eigenfunction expansion method, which involved
writing the azimuthal displacement η(τ, z, t) as a sum over the azimuthal eigenfunctions
Yn(τ) of a generalised eigenvalue problem. This allowed us to derive a series expansion
for the tube’s dimensionless relative area change α in terms of the dimensionless functions
αn(z, t), which correspond to the area change associated with each azimuthal eigenmode.
We showed that the equations for the αn decouple completely, with each satisfying a PDE

F̃
∂2αn
∂z2

−M ∂2αn
∂t2

− λnαn = −Qntn, (6.1)

where the forcing Qn from the dimensionless transmural pressure P̃ is given by

Qn(z, t) = − tanh2 2σ0

∫ π/2

0

1

h

∂

∂τ

(
P̃ (τ, z, t)

B̄(τ)

)
dτ. (6.2)

The coefficients involve the following quantities. In (6.1), F̃ is the dimensionless axial
tension, M is the dimensionless inertia coefficient of the tube, λn is the eigenvalue of the
eigenfunction Yn(τ), and tn is an integral of Yn(τ) defined in (4.18). In (6.2), σ0 defines
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Figure 13: Plots of (5.4) corresponding to solutions of (4.21) for a given transmural pressure
P̃ = −1 where σ0 = 0.6 and F̃ = 1, 3. We also plot the results of Whittaker et al. (10) with
the first mode solution using open circles.

the initial ellipticity of the tube, h(τ) is the dimensionless scale factor for the elliptical co-
ordinates system and B̄(τ) is the base-state azimuthal curvature. We interpret the terms
present on the left hand side of (6.1) as contributions to the amplitude of the nth azimuthal
pressure mode owing to different physical effects. The first term represents axial tension–
curvature effects, the second is wall inertia, and the third term arises due to azimuthal
bending. The sum of these three terms matches the overall amplitude of the nth mode
pressure forcing Qn.

This model represents a substantial improvement of previous studies. In the solution
method of Whittaker et al. (10) and Walters et al. (12), there are two significant limitations
that we draw attention to. Firstly, the ad-hoc truncation results in the corrections to the
fundamental mode being difficult to calculate, which means that an understanding of the
relative error induced by truncating the expansion cannot easily be obtained. Secondly,
the pressure is assumed to be azimuthally uniform, which places limitations on future
investigation. In the current work, we overcome both of these limitations. The eigenfunction
expansion method used here allows the azimuthal modes to completely decouple, meaning
that a formal series solution can be obtained, and that an analysis of the error induced
after any truncation can be constructed trivially. This significant result has allowed us to
justify that the leading azimuthal mode provides a dominant contribution to the change in
cross-sectional area of the tube. This observation was first made by Whittaker et al. (10),
however they were unable to comprehensively justify such an argument quantitatively due
their invoked ad-hoc assumption.
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Figure 14: Contour plots of the ratio α2(1/2)/α1(1/2) computed using (5.4) for a uniform
transmural pressure. This illustrates how changes in F̃ and σ0 affect the error when
truncating the expansion (4.19) after the first mode.

Figure 15: Contour plots of the ratio α3(1/2)/(α1(1/2) + α2(1/2)) computed using (5.4)
for a uniform transmural pressure. This illustrates how changes in F̃ and σ0 affect the error
when truncating the expansion (4.19) after the second mode.
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The ‘tube law’ like equations (6.1) derived here can be used in a variety of contexts. In
this paper we have shown that we can obtain an analytical solution for the case in which
the deformations are induced by a steady uniform transmural pressure. We verified that
the fundamental azimuthal mode yields the dominant contribution to the change in cross-
sectional area, and produced contour plots demonstrating the accuracy of the respective
solutions after truncating at the first and second modes throughout different regions of
(σ0, F̃ ) space. For many applications, it is convenient to write (6.1) in terms of the tube’s
cross-sectional area. For the specific case of coupling the results here to the leading–order
fluid mechanics (in which the hydrodynamic pressure is azimuthally uniform) presented in
Whittaker et al. (21), we can write (6.1) in dimensional variables as follows

ma
∂2

∂t∗2

(
A∗n
A∗0

)
− F

2π

∂2

∂z∗2

(
A∗n
A∗0

)
+
λnK

a3

(
A∗n
A∗0

)
= Q∗n(z, t)tn, (6.3)

where starred variables represent dimensional quantities. Here F is the dimensional axial
tension, K is the bending stiffness, Q∗n is the forcing from the transmural pressure which
can be calculated via (6.2) with P̃ = p∗tm, and we have defined A∗n as the dimensional
perturbation to the cross-sectional area associated with the nth azimuthal eigenmode. The
total area change is then given by

A∗(z, t)−A∗0 =

∞∑
n=1

A∗n(z, t). (6.4)

Equation (6.3) can be used to couple the fluid and solid mechanics via the transmural
pressure p∗tm. However, at least for the oscillatory problem, the azimuthal modes no
longer decouple. Area displacements that are associated with the first azimuthal eigenmode
create a pressure distribution in the fluid that forces all of the azimuthal eigenmodes. We
can address this limitation by calling on the analysis in the present work that justified a
dominant fundamental azimuthal mode. This result means that the dominant contribution
to the pressure in the fluid is forced by the n = 1 azimuthal mode, and that the response
from this pressure is to excite predominantly the first azimuthal mode. Consequently, the
coupling with higher order azimuthal modes is weak. The result of this simplification is the
ability to compute a series solution.

The ability to permit azimuthal variation into the transmural pressure is significant for
future study. Whittaker et al. (21) derived a model (applicable for the parameter regimes
considered here) that couples the wall motion to an internally conveyed viscous fluid. For a
regime in which oscillations in the tube wall are of high-frequency and long-wavelength, the
tube-law derived by Whittaker et al. (10) was adequate, since the hydrodynamic pressure
was azimuthally uniform at leading-order. To incorporate higher-order effects from the fluid
mechanics, we would need to allow azimuthal variation in the transmural pressure, which
our results permit.

Whilst the results presented in this paper are developments on previous theoretical and
rational descriptions of the Starling resistor, the model is not without its limitations. The
action of retaining only leading-order contributions in (2.21) linearises the problem, and
therefore non-linear affects (such as instability saturation) are not captured. There are two
main draw backs when considering the initial geometry of the tube. In various biomedical
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contexts we might expect to find axially non-uniform tubes, whose initial cross-sectional
shapes are not necessarily elliptical.

The limitations discussed here provide the foundations for future study. When considering
different initial geometries of the tube, it should be relatively straight forward to derive the
governing equation (2.21) in terms of an arc-length parameter with an arbitrary curvature
B̄. Provided that appropriate constraints were placed on the curvature profile of the initial
cross-section, one should therefore be able to adapt the solution method discussed here
and present solutions for a variety of different cross-sectional shapes. When trying to
introduce initially axially non-uniform features (which applies to blood vessels that are
partially collapsed) in the tube, more work is required in deriving new governing equations
that measure the deformations. One potential avenue might be to capture all of the axial
dependence within the ellipticity parameter σ0.
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