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To understand intercellular heterogeneity
within an organism, it is essential tomake
coordinated measurements linking the
genome and its epigenetic regulation to
gene and protein expression at the
single-cell level.

Rapid advances in single-cell multiomics
approaches have enabled analysis of
multiple molecular modalities from the
same single cell.
Single-cell transcriptomic approaches have revolutionised the study of complex
biological systems, with the routine measurement of gene expression in thou-
sands of cells enabling construction of whole-organism cell atlases. However,
the transcriptome is just one layer amongst many that coordinate to define cell
type and state and, ultimately, function. In parallel with the widespread uptake
of single-cell RNA-seq (scRNA-seq), there has been a rapid emergence of
methods that enable multiomic profiling of individual cells, enabling parallel
measurement of intercellular heterogeneity in the genome, epigenome, tran-
scriptome, and proteomes. Linking measurements from each of these layers
has the potential to reveal regulatory and functional mechanisms underlying
cell behaviour in healthy development and disease.
Methods incorporating several modali-
ties now exist, although several chal-
lenges remain with regard to resolution,
data integration, and scale.

Further developments in multiomics ap-
proaches will provide unique insights
into the regulatory processes governing
how individual cells function collectively
to produce whole-organism phenotypes
in development, health, and disease.
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The many sources of cellular heterogeneity
As fundamental biological units, cells within a multicellular organism are capable of remarkable
diversity in form and function throughout development and disease. Individual cells have typically
been classified to particular ‘types’ or ‘states' by phenotypic measurement, such as marker gene
expression, morphology, or function. scRNA-seq has been instrumental in revealing a broader
scheme for cell type classification through simultaneous measurement of the expression of
thousands of genes in thousands – even millions – of cells, and therefore more detailed classifi-
cation of cell types, subtypes, and states in dynamic and complex developmental systems
[1–7]. These rapid advances in scRNA-seq technologies have made whole-organism single-cell
profiling a reality, underpinning the efforts of major consortia aiming to produce a comprehensive
map of cell types in the human body [8].

However, a cell’s transcriptome is just one aspect of its phenotype – an incomplete representation of
cellular identity, reflecting both the regulatory status of the genome and implied protein production.
Cell-type-specific mRNA expression is governed by epigenetic mechanisms and, in general,
only has functional potential when translated into protein. Thus, molecular cellular identity
(see Glossary) is a product of the interplay between many different modalities within the cell
(Figure 1, Key figure), all of which can vary as a result of intrinsic and extrinsic factors. To
truly understand how individual cells within a multicellular organism can demonstrate such
remarkable heterogeneity, it is essential to be able to make coordinated measurements linking
the genome and its epigenetic regulation to gene products (transcripts and proteins).

In parallel with the rapid and widespread adoption of scRNA-seq, there has been an adaptive
radiation of single-cell multiomics approaches for the simultaneous analysis of multiple molecular
modalities from the same single cell (Figure 2). These powerful approaches enable associations to
be made between genome sequence, structure, and regulatory state and the transcriptional and
proteomic phenotype of the cell. While a cell can be classified on the basis of any one of these
measurements, a cell’s identity can only be understood through the integration of these different
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Glossary
ATAC-seq: an 'assay for transposase-
accessible chromatin with high-
throughput sequencing' in which DNA
from accessible chromatin is selectively
sequenced. This gives an overview of
the 'openness' of the chromatin across
the genome, probed by hyperactive Tn5
transposase.
Chromatin velocity: a trajectory of cell
lineage commitment based on the
measurement of changes in
euchromatin and heterochromatin in
thousands of cells, as measured by the
GET-seq assay.
Combinatorial indexing: methods
which use serial barcoding of pools of
nuclei or cells to generate highly complex
combinations of barcodes attached to
individual molecules (DNA or RNA), and
thus increasing throughput without the
need for dedicated microfluidics
platforms. These methods are often
appropriate for experiments where large
number of cells (>1000s) undergo
parallel analysis and classification.
Copy-number variant (CNV): an
increase or decrease in the number of
copies of a region of the genome,
ranging from increased numbers of short
tandem repeats through to whole
chromosome gains and losses.
CUT&Tag: 'cleavage under targets and
tagmentation', a method which uses
antibody-tethered transposases to
target specific DNA–protein interactions
for sequencing, including histone
modifications and transcription factors.
DNA methylation: in mammals, this is
an epigenetic mechanism involving the
transfer of a methyl group onto cytosine
bases in the genome which can have a
regulatory impact on gene expression.
This is typically measured using bisulfite
sequencing, in which unmethylated
cytosines are converted to uracil –which
will appear as a thymine base in
sequencing data – while methylated
cytosines remain unchanged.
Epigenetic plasticity: variability in
epigenetic regulation that permits cells to
undergo cell fate transitions due to
stochastic activation of gene
expression.
Euchromatin: loosely packed or 'open'
chromatin, which is often the site of
active gene expression.
FACS: fluorescence-activated cell
sorting, amethod for the sorting of single
cells based on phenotypic measure-
ments, including size, granularity, and
protein/antigen expression.
layers. This kind of analysis can not only enhance our ability to classify cell identity but brings us
closer to being able to perform mechanistic, functional genomic studies of individual cells within
a population. This has a particular impact on the study of development, ageing, and disease,
where heterogeneity at multiple levels can contribute to cellular phenotypes which have profound
impact on the organismal phenotype.

Linking somatic variation and gene expression
Within the lifetime of an organism, genomic diversification between cells – known as somatic
variation – can occur as a result of programmed and spontaneous mechanisms. Thus, the
genomes of individual cells within a multicellular organism can have substantial and significant
deviations from the 'prime' genome – that of the fertilised zygote. For example, programmed
somatic variation occurs in B and T lymphocytes to produce diversity in specificity of antibody
and T cell receptors. Spontaneous somatic variation, where individual cells acquire genomic
diversity – from single-nucleotide variants (SNVs) to whole-chromosome copy-number
variants (CNVs) – is common in normal mammalian development and ageing [9,10]. This
phenomenon can become pathogenic when a particular variant (or set of variants) acquired in
a single cell confers a competitive advantage to the cell and its subsequent progeny. This cellular
evolutionary process, where genotypic changes create competitive phenotypic heterogeneity,
can lead to clonal expansion and the formation of malignant or cancerous clones through the
acquisition of further mutations and genomic rearrangements [11].

Changes in the genome itself have limited impact unless they modify the sequence of genes or
their regulatory elements, thereby modifying gene expression and the overall phenotype of the
cell. Therefore, linking somatic variation to gene expression in the same cell is critical to under-
stand the functional consequences of acquired mutations and how these can introduce
functional cellular heterogeneity. Early single-cell multiomics methods, such as DR-seq (gDNA
and mRNA-sequencing) [12] and G&T-seq (genome and transcriptome-sequencing) [13], per-
formed parallel analysis of genomes and transcriptomes of individual cells, typically isolated man-
ually or by FACS. In DR-seq, combined amplification of a single cell’s genome and transcriptome
is performed in a single reaction, while in G&T-seq, mRNA is physically separated from genomic
DNA before parallel amplification of both (Figure 3A). Both plate-basedmethods enabled links to
be made between genomic variation – from chromosomal copy number down to single-
nucleotide resolution – and gene expression. They also demonstrated, for the first time, the direct
impact of chromosomal copy number on gene expression in the same cell, with a clear correlation
between copy number and gene expression. In the case of G&T-seq it was possible to demon-
strate this correlation immediately after the cell cycle in which reciprocal chromosomal gains or
losses occurred. Additionally, the combination of full-length RNA-seq and whole-genome se-
quencing in G&T-seq enabled parallel detection of a fusion transcript and the causative genomic
rearrangement in the same cell of a breast cancer cell line. Both of these early methods demon-
strated potential for single-cell multiomic studies in cancer (Box 1) in which the transcriptional
phenotype of the cell can be associated with evolutionary events recorded in the genome.

These approaches were not without limitations, suffering from sequence errors introduced in the
whole-genome amplification processes, as well as allelic and locus dropout that is inherent in
single-cell genome amplification. Gaining high coverage data from the entire genomes of single
cells, in parallel with rich transcriptomic data, is also expensive, which limits reasonable through-
put to 100s or 1000s of cells.

More recently, Target-seq [14] was developed to enable parallel mRNA-seq and targeted
genotyping, rather than whole-genome sequencing, of the same single cell. The plate-based
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Heterochromatin: tightly packed or
'closed' chromatin, which is less
accessible for transcription.
Hi-C: a chromosome conformation
capture assay which enables the
genome-wide measurement of long-
range interactions between genomic
loci.
Microfluidic assays: in this case
referring to assays which isolate
individual cells in microfluidic droplets in
the presence of barcoded
oligonucleotide-coated beads to enable
the capture and barcoding of molecules
of multiple classes (DNA, RNA, and
protein) from single cells. These
methods are often appropriate for
experiments in which a large number of
cells (>1000s) undergo parallel analysis
and classification.
Molecular cellular identity: the
amalgamation of molecular events that
make a cell belong to a particular type or
state.
Plate-based assay: in this case refers
to a single-cell multiomic approach for
which cells are isolated into 96- or 384-
well plates for processing (typically) using
liquid handling robotics. These methods
are often appropriate for experiments
where small numbers (100s–1000s) of
cells undergo a detailed analysis.
Single-nucleotide variant (SNV): a
single base change in the genome.
Somatic variation: genetic diversity
occurring between cells within the same
organism, arising from mutations
occurring after conception.
Whole-genome amplification:
describes several possible methods for
genome-wide amplification of cellular
DNA, in this case to enable single-cell
genome sequencing.
protocol features an optimised version of the Smart-seq2 mRNA amplification, after which the
sample is split and primers targeting regions of interest within the transcriptome and/or genome
are used to generate targeted amplicon sequencing libraries. By focussing on known mutations,
this approach significantly increases the sensitivity and reduces the cost of mutation detection. A
related, microfluidic targeted genome sequencing approach has been commercialised by
Mission Bio, enabling high-throughput genotyping of single cells, but linking with protein expres-
sion information rather than transcriptomic data. These targeted methods are highly relevant for
studies where a known repertoire of mutations is prevalent, such as studies of intratumoural
heterogeneity and cancer evolution, where recurrent mutations are common. However, in
complex mutational backgrounds, or where mutation discovery is important, bulk or single-cell
whole-genome sequencing may still be more applicable.

Methods involving physical separation of the nucleus and cytoplasm of a cell have also been
demonstrated (Figure 3B). 'Simultaneous isolation of genomic DNA and total RNA' (SIDR) [15]
was the first such method. This approach has seen massive increases in throughput in direct nu-
clear tagmentation and RNA sequencing (DNTR-seq) [16], which relies on nuclear/cytoplasmic
separation, followed by full-length mRNA amplification from the cytoplasmic fraction, and direct
tagmentation-based genomic library preparation from the nuclear DNA, obviating the need for
a traditional whole-genome amplification step. This represents a significant cost reduction and
contributes to the increased scale at which themethod can operate. However, like othermethods
which require physical separation of nucleus and cytoplasm, it is unclear how they are affected by
disassembly of the nuclear envelope during the mitotic cell cycle.

Linking the epigenome and gene expression
Although intercellular diversity in genome sequence and structure is common, the phenotypic
heterogeneity of cells is a hallmark of multicellular organisms and emerges from the regulation
of gene expression through epigenetic modification of the genome. Starting from the same
genetic background, cells can acquire highly specialised functions during development and are
able to dynamically modify their phenotype in response to environmental stimuli. Many
epigenomic approaches have been adapted to make measurements in single cells, but only as-
says for DNA methylation and chromatin accessibility have been incorporated into multiomic
assays. These assays, by linking genome regulation and gene expression in the same cell, can
shed light on lineage determination, developmental dynamics (Box 2), and mechanisms of
disease development.

The first methods that attempted to link epigenetic diversity with transcriptional heterogeneity
in single cells focussed on the association between DNA methylation at CpG sites and gene
expression. To achieve this, single-cell bisulfite sequencing methods – either post-bisulfite
adaptor tagging (PBAT) [17], which measures DNA methylation across the genome, or reduced
representation bisulfite sequencing (RRBS) [18], which enriches for regions with high CpG
content – have been combined with transcriptomic analysis of individual cells. scM&T-seq
(single-cell methylome and transcriptome sequencing) built upon the G&T-seq method
(Figure 3A), but instead uses the purified genomic DNA for a modified PBAT protocol, generating
genome-wide methylation data, while the transcriptome is again sequenced using a modified
Smart-seq2 protocol [19]. The method was first applied to mouse embryonic stem cells to
discover novel correlations between heterogeneity at DNA methylation of distal regulatory
elements and expression of hundreds of genes, including key pluripotency genes. The G&T-
seq approach was also adapted for Smart-RRBS, which enables joint profiling of DNA
methylation (by RRBS) and transcriptome analysis [20]. Other approaches involving physical
separation of the nucleus and the cytoplasm have been used to obtain gene expression and
Trends in Genetics, August 2022, Vol. 38, No. 8 833
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Figure 1. (A) Molecular cell identity comprises the interaction of many different molecular layers within the cell. Genomic and epigenomic variation influence the sequence
and abundance of transcripts and proteins, which in turn can influence eachmolecular layer within the cell. Areas in which single-cell multiomic analysis hasmade significant
advances are highlighted in (B–D).
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DNA methylation data from the same single cell, including MT-seq [21] and scTRIO-seq [22]
(Figure 3B).

There are still major limitations to the detection of DNA methylation in single cells – bisulfite
treatment is destructive to the DNA, resulting in a high level of allelic and locus dropout. Similarly,
the sequencing libraries generated using these approaches are typically rich in PCR duplicates,
which, combined with dropouts and the expense of pursuing high genomic coverage from single
cells, make themeasurement of DNAmethylation at single-base resolution challenging. Furthermore,
the C > T substitution inherent in the approachmakes the calling of genomic variants difficult, making
existing approaches unsuitable for parallel methylation and SNV calling. Recently, the epi-gSCAR
approach (epigenomics and genomics of single cells analysed by restriction) demonstrated the
feasibility of bisulfite-free single-cell library preparation – using the methylation-sensitive restriction
834 Trends in Genetics, August 2022, Vol. 38, No. 8
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Figure 2. An overview of current single-cell multiomic approaches. See [12,13,15,16,19,21,22,24–26,28,29,36,41,45–50,53–56,58,59,61,63–65,102].
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enzyme HhaI and quasilinear amplification – to study genome-wide methylation and genomic
variation at single-nucleotide resolution in cancer cell lines [23].

The accessibility of sequences within the genome is considered to be a mark of genomic activity,
representing the expression of particular genes or the openness of particular sequences, includ-
ing enhancers or transcription factor binding sites. Chromatin accessibility in single cells is now
routinely measured by the 'assay for transposase-accessible chromatin' using sequencing
(ATAC-seq), in which the Tn5 transposase is used to fragment and insert sequencing adaptors
into open regions of the genome (euchromatin). Due to the nature of the ATAC-seqmethod, it is
compatible with considerably higher throughput than the analysis of DNAmethylation. In general,
these high-throughput methods rely on the tagmentation of accessible chromatin in a bulk
preparation of nuclei before paired barcoding of the tagmented DNA and RNA from the same
cell, either through combinatorial indexing or in droplet-based approaches (Figure 3C,D).
For example, sciCAR-seq [24], used combinatorial indexing to process over 11 000 nuclei per
experiment. Medium-throughput methods, working with intact cells rather than nuclei, have
also been described (scCAT-seq, [25] and ASTAR-seq [26]) and may potentially be more
applicable to experiments in which rare cells are to be profiled.

Throughput was dramatically increased in Paired-seq [27] by implementation of a ligation-based
combinatorial indexing strategy which enabled processing of one million nuclei per experiment.
Building on Paired-seq and a similar approach, SPLiT-seq [28] and SHARE-seq [29], further
increased the sensitivity of the combinatorial indexing approach to measure the 'chromatin
Trends in Genetics, August 2022, Vol. 38, No. 8 835
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Figure 3. Capturing multiple layers of information from the same single cell. Various approaches have emerged to extract distinct layers of omic information
from the same single cell. (A) G&T-seq, and those methods based on it, perform physical separation of genomic DNA and mRNA following capture on magnetic
beads. (B) An alternative approach involves physical separation of the nucleus and cytoplasm of the cell. These methods allow both genome sequencing and
methylation sequencing to be performed on the isolated DNA. High-throughput combinatorial indexing has been applied in (C) sci-CAR and (D) SHARE-seq to obtain
linked transcriptome and chromatin accessibility from the same cell, while droplet-based microfluidic approaches (E) have enabled parallel capture of these modalities
using SNARE-seq and the 10X Genomics Chromium platform. (F) Droplet microfluidics has also been used to sequence DNA from accessible and compacted
chromatin using GET-seq. (G) CITE-seq and REAP-seq take advantage of polyadenylated oligonucleotide tags attached to antigen-specific antibodies to capture
protein expression information in parallel with mRNA expression. Abbreviations: ATAC-seq, 'assay for transposase-accessible chromatin with high-throughput
sequencing'; CITE-seq, cellular indexing of transcriptomes and epitopes by sequencing; FACS, fluorescence-activated cell sorting; G&T-seq, genome and
transcriptomesequencing; GET-seq, genome and epigenome by transposases sequencing; sci-CAR, single-cell combinatorial indexing-chromatin accessibility and
RNA sequencing; SNARE-seq, single-nucleus chromatin accessibility and mRNA expression sequencing.
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Box 1. Single-cell multiomics in cancer evolution

Cancer development within an individual is an evolutionary process in which cells evolve by mutation and subsequent
selection for clones with increased proliferative capability, fitness, and resistance to therapeutic intervention. While
mutational profiling is informative in understanding tumour evolution, it is critical to link these mutations or genotypes with
cellular phenotype or functional data. Single-cell multiomic approaches enable the integration of genotypic information –

from single nucleotide to whole chromosome resolution – with epigenomic, transcriptomic, and increasingly, proteomic
information, and several landmark studies have demonstrated the application of these approaches in cancer.

The scTrio-seq approach [22] was optimised to profile human colorectal cancer cells from paired primary tumours and
lymphatic or liver metastases [72]. In one patient, this permitted the identification of 12 sublineages that originated from
two different progenitors, one of which was maintained throughout tumour progression and was still present in both the
final neoplasm and distant metastases. Overlaying DNA methylation data along these lineages revealed that methylation
levels were homogeneous among cells within the same genetic lineage but varied among different lineages.

Based on the physical separation of genomic DNA and transcriptomes, Smart-RRBS has been applied in the study of
epigenetic evolution in chronic lymphocytic leukaemia (CLL) [73]. Here, the parallel measurement of epigenetic and tran-
scriptional changes enabled the linkage of epimutations in SF3B1-mutant CLL cells to a 3′ splicing phenotype and
subclones of cells with epigenetic and transcriptional phenotypes that expanded following chemotherapeutic treatment.
Subsequently, the same approach demonstrated that a decrease in epigenetic–transcriptional coordination in CLL could
partially be explained by intercellular epigenetic diversification [74]. The Smart-RRBS approachwas also recently applied in
the study of primary diffuse glioma, where it enabled joint capture of transcriptional, genetic, and epigenetic data from the
same single cell [75]. The scRRBS enabled CNV analysis at 20 Mb resolution for genome-wide analysis, but also 0.1 Mb
resolution to reveal CNVs at the EGFR locus. Furthermore, it could be used to generate lineage trees from individual
glioblastoma samples, with individual branches annotated with transcriptomic cell types and states.

Recently G&T-seq [13] was coupled with laser capture microdissection (LCM) to generate spatially resolved genomic and
transcriptional profiles of cancer cells with the potential for lymphovascular invasion in a patient with triple-negative
breast cancer [76].

While these studies are still relatively small in scale, continued development of these methods, including increases in
throughput and resolution, reductions in cost, and incorporation of additional layers of data, will undoubtedly transform
single-cell multiomic profiling into a mainstream tool in the study of cancer evolution.

Box 2. Single-cell multiomics analysis in developmental systems

In multicellular organisms, cells can adapt an immense array of phenotypes and states, despite having the same or highly
similar genomes. During development and a healthy lifespan, as cells commit first to specific germ layers then cell types,
the regulation of genome function through epigenetic modification is fundamental to the emergence of this complexity. Cell
fate decisions are made by individual cells responding to intrinsic and extrinsic factors resulting in changes to epigenomic,
transcriptomic, and proteomic aspects of cell identity. The integration of different omic layers of the same single cell
through multiomic analysis can provide a unique perspective on the dynamics of these processes.

During early embryogenesis, global demethylation erases the epigenetic signatures of the highly specialised gametes to
enable the embryonic cells to become totipotent. scCOOL-seq, which measures DNA methylation, chromatin accessibility,
and copy number variation has been applied to study this epigenetic reprogramming inmouse [57] and human embryos [77],
revealing the dynamics of parental genome activity in the first cell divisions after fertilisation. The iscCOOL-seq method was
subsequently applied to the study of mouse oocytes, identifying dynamic associations between chromatin accessibility,
methylation, and expression during oocyte maturation. Similarly, scM&T-seq was also used to explore the heterogeneity in
DNAmethylation of oocytes from young and agedmice, with those from agedmice showing increased molecular heteroge-
neity indicative of epigenetic dysregulation [78].

Combined gene expression and whole-genomemethylation profiling was used to characterise the post-implantation DNA
methylation landscapes inmouse embryos (from eight-cell stage to E6.5 epiblast and extraembryonic ectoderm), revealing
divergent methylation patterns in the extraembryonic tissue, with methylation in these lineages mirroring the aberrant
methylation of the promoters of developmental genes observed in tumorigenesis [79].

The emergence of high-throughput approaches, combining ATAC-seq and RNA-seq from the same cell, with the potential
to integrate protein expression and cell-lineage tracing (e.g., DOGMA-seq), has enormous potential in unravelling the
dynamic interactions underpinningmolecular cell identity during early development and organogenesis as well as in cellular
systems undergoing constant replenishment (e.g., blood).
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potential' of individual cells, which explores the predictive power of chromatin accessibility on
future gene expression changes and lineage commitment within the cell. Single-nucleus chroma-
tin accessibility and mRNA expression sequencing (SNARE-seq) leverages the microfluidic
Drop-seq [30] method to perform parallel chromatin accessibility and gene expression measure-
ments on the same nuclei [31]. This approach has been adapted for the 10X Genomics
Chromium platform using hydrogel beads carrying separate capture oligonucleotides which
capture both the tagmented genome and mRNA. A recent alternative method for single-nu-
cleus multiomic profiling, ISSAAC-seq [32], based on the Sequencing HEteRo RNA-DNA-
hYbrid (SHERRY) approach [33], exploits a first tagmentation reaction on accessible
chromatin followed by reverse transcription and then a second tagmentation round on DNA–RNA
hybrids. Nuclei are loaded on microfluidic or FACS apparatus for single-cell analysis, and separate
DNA and RNA libraries are produced, exploiting the different adaptor configuration for the two
tagmentation steps.

Linking different aspects of the epigenome
ATAC-seq will only provide sequence information from accessible chromatin and does not
capture genetic alterations and chromatin remodelling events associated with heterochromatin.
Compacted chromatin is crucial for lineage specification [34] and genome stability [35]. Recently,
chromatin accessibility profiling has been combined with heterochromatin sampling in the single-
cell genome and epigenome by transposases sequencing (scGET-seq) assay [36]. This assay builds
on scATAC-seqwith dropletmicrofluidic exploiting engineered transposases to simultaneously probe
H3K9me3-enriched compacted chromatin alongside accessible chromatin. This combined
epigenomic and genetic characterization allowed for increased resolution in CNV calling and it was
used to compute a new metric called chromatin velocity – based on the differential enrichment
between closed and open chromatin – to reveal patterns of epigenetic plasticity during stem cell
reprogramming and key transcription factors correlated to developmental commitment. The introduc-
tion of engineered transposases in single-cell genomics unlocks immense potential for targeted anal-
ysis of other domains within the epigenome. A similar method named scCUT&Tag2for1, a
modification of standard CUT&Tag [37], uses antibody-guided tagmentation to simultaneously
characterise accessible and silenced regulome by targeting the initiation form of RNA polymerase II
(Pol2 Serine-5 phosphate) and repressive Polycomb domains (H3K27me3) [38]. A further CUT&Tag
development, scCUT&Tag-pro, allows simultaneous profiling of histone modifications with protein
abundances on whole cells [39].

Chromatin conformation assays, such as Hi-C, have revealed the extent to which three-
dimensional conformation of the genome regulates gene expression in health, disease, and se-
nescence. Two multiomic approaches, single-nucleus methyl-3C [40] and scMethyl-HiC [41],
have described methods to obtain linked chromatin conformation and methylation data from
the same single cell, using bisulfite conversion of crosslinked genomic DNA. These approaches
reveal that chromatin conformation alone can identify cell typeswithin heterogeneous populations
and differential methylation signatures associated with cell-type-specific chromatin interactions in
human brain cells.

Linking transcript and protein expression
Much of cell behaviour is determined by the functions of proteins, and it is generally accepted that
mRNA expression levels offer only a weak proxy for direct measurement of protein expression
[42]. The obvious biochemical differences between nucleic acids and protein constitute a
challenge for developing single-cell approaches – there is no method for protein sequence ampli-
fication and so measurements are dependent on antibody-based protein detection or mass
spectrometry for peptide identification.
838 Trends in Genetics, August 2022, Vol. 38, No. 8

CellPress logo


Trends in Genetics
OPEN ACCESS
Proximity extension assays (PEAs) have been exploited to detect protein expression using anti-
bodies recognising different epitopes on the same protein. PEA is based on proximity ligation
assay (PLA) [43] in which antibodies conjugated with single-stranded DNA oligonucleotides
colocalise on the target protein, enabling ligation and generation of a sequence that is detectable,
in parallel with mRNA molecules, by qPCR [44,45]. Proximity ligation assay for RNA (PLAYR)
expanded the throughput of the PLA approach by detecting transcripts and proteins using mass
cytometry, enabling parallel measurement of over 40 different transcripts and protein epitopes in
thousands of cells [46]. More recently, the 'single-cell protein and RNA coprofiling' (SPARC)
method, in which mRNA and protein lysate are physically separated, enables parallel whole tran-
scriptome mRNA-seq and detection of extracellular and intracellular proteins using PEA [47].

Increases in throughput have been enabled by the combination of oligonucleotide-conjugated
antibodies with droplet-based microfluidic (e.g., 10X Genomics) and micro-well platforms (e.g., BD
Rhapsody). This approach was pioneered in RNA expression and protein sequencing (REAP-seq)
[48], Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) [49]. In these
methods, cells are labelled with panels of antibodies, each tagged with a specific polyadenylated
barcode which can be captured in parallel with the mRNA from the same cell following lysis
(Figure 3G). SCITO-seq demonstrated a combinatorial indexing approach for antibody barcoding,
enabling extreme multiplexing of cells as well as multimodal profiling of more than 150 surface pro-
teins in parallel with mRNA expression from the same cells [50].

Antibody-based methods are severely limited by the availability of antigen-specific reagents –

detection requires a reliable epitope-specific antibody (or pair of antibodies for PEA-based assays)
which dramatically reduces the number of proteins or epitopes that can be surveyed. To obtain a
more complete overview of the cellular proteome, antibody-independent methods are essential.
Single-cell mass spectrometry-based approaches, such as single cell proteomics by mass spec-
trometry (SCoPE-MS) [51] and SCoPE2 [52], can analyse thousands of proteins and post-
translational modifications in individual cells; however, they have yet to be directly incorporated into
a combined multiomics approach. Recently, the PHAGE-ATAC assay [53] demonstrated an alterna-
tive approach where antibodies are replaced with nanobody phage-display libraries. This may offer a
potential route towards protein detection without the need for antibodies.

Triple and higher-order single-cell multiomics
To fully explore the causes and consequences of intercellular heterogeneity, it is important to
simultaneously capture data from as many aspects of the cell as possible. As an early example,
scTRIO-seq could simultaneously measure genomic copy number changes at ~10 Mb resolution,
DNA methylation, and gene expression from the same cell [22]. The single-cell nucleosome, methyl-
ation and transcription sequencing (scNMT-seq) approach [54] combines 'single-cell nucleosome
occupancy' and methylome sequencing (scNOMe-Seq [55]) with a modification of G&T-seq [13] in
a plate-based assay. In this approach, the genomic DNA is methylated, using a GpCmethyltransfer-
ase, at GpC sites that are not bound by nucleosomes. Following physical separation of DNA and
mRNA, the DNA undergoes bisulfite conversion which allows parallel measurement of nucleosome
positioning, DNA methylation, and the cell’s transcriptome [54]. A similar approach, scChaRM-seq,
was also recently described [56]. NOMe-seq approaches were further adapted for scCOOL-seq
[57], which canmeasure various genomic aspects of the cell in parallel, including chromatin state, nu-
cleosome positioning, DNA methylation, CNV, and ploidy. This method has been modified to incor-
porate transcriptomic measurements in iscCOOL-seq [58].

Building on microfluidic workflows for parallel ATAC- and CITE-seq from single cells, ASAP-seq
[59] demonstrated parallel chromatin accessibility, cell-surface and intracellular protein
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Outstanding questions
What is the optimal trade-off between
resolution (number of measurements
per cell) and throughput (number of
cells analysed)?

What are the upper and lower limits of
detection required to make meaningful,
comprehensive investigations of cell
type and state?

By operating at ultra-high-throughput,
do we risk missing key details of
cellular phenotypes – for example,
lowly expressed genes, base-level
(epi)genomic variation?

How can key measurements, such as
histone modifications, DNA protein
interactions, and isoform level gene
expression, be integrated into multiomic
approaches?

How can the nonmacromolecular
components of the cell be integrated
into multiomic studies – for example,
the metabolome and lipidome?

What are the optimal computational
approaches for data integration in
multiomics approaches which take
into account the various errors and
sources of noise in parallel but distinct
types of measurement made from the
same single cell?

What level of detail is required to build
accurate predictive models linking
(epi)genomic variation and the function
of protein–protein interaction networks?

How can antibody-independent pro-
teomics be integrated with existing
multiomic workflows?

Can single-cell multiomics methods be
combined with spatial measurements,
perhaps even in real time?

Can single-cell whole-genome se-
quencing – to base level resolution –

be enabled at high throughput in a
multiomic approach?

What are the applications for wider
scientific questions – for example, can
single-cell multiomics be applied to as-
semble and annotate genomes of
nonmodel single-cell organisms?
measurements. Furthermore, the method enabled mutational profiling of the mitochondrial ge-
nome, allowing simultaneous lineage inference frommitochondria mutations, as previously demon-
stratedwith mtscATAC-seq [60]. This was further expanded in the samemanuscript to incorporate
RNA-seq measurements – thus reading four layers of information from the same cell – in a method
referred to as DOGMA-seq [59]. A similar approach, TEA-seq, was also recently described [61]. In
these studies, whole cells were analysed instead of nuclei, which has the advantage of allowing
more comprehensive phenotypic characterization, surface-marker enrichment prior to analysis,
and retention of cytoplasmic RNA in multimodal assays.

By capturing these multiple layers, the epigenetic determinants of differentiation, and their
dynamics, can be dissected with unprecedented detail – variations in accessibility and methyla-
tion can be directly correlated with variation in gene and protein expression levels. This will enable
the construction of genome-wide regulatory models which incorporate the cell as the unit in
which genomes are regulated and genes are expressed.

Concluding remarks
The emergence of methods enabling multiomic profiling of single cells continues at a staggering
pace. It is now possible to profile multiple molecular layers of thousands of individual cells,
with newer methods approaching 'Omni-seq' – where multiple omic measurements can be
combined with spatial and lineage-based information to determine a cell’s molecular state,
microenvironment, and life-history in a single readout [62]. This has significant implications for
current and future studies of developmental and cancer biology, where changes in individual
cells are fundamental to the progression of healthy development or disease. These methods,
especially when coupled with perturbations using the CRISPR/Cas system [63–65], will have
immense potential to unravel cellular (epi)genotype/phenotype associations and the mechanisms
that govern the emergence of cellular heterogeneity.

However, several challenges remain. At present, the analysis of eachmolecular level is imperfect –
single-cell measurements of any kind are prone to noise and, in particular, drop-out, where critical
signals of mutation, modification, or expression may be lost. As methods scale to incorporate
thousands, even millions, of cells, there is a concomitant loss of detail per cell (see Outstanding
questions). While the future development of methods will undoubtedly see the incorporation of
further omics measurements – including expanded proteomic and metabolomic profiling [66] –
there is still a need to refine many of the existing methods to obtain high resolution, accurate
measurements of base-level events in the genome, and sensitive, quantitative, measurements
of both gene and isoform expression from individual cells.

Aside from themacromolecular components of the cell, there are also manymetabolites that can be
instrumental in the regulation of cell function, and new approaches for their measurement are emerg-
ing [67]. No cell lives in isolation – beyond molecular profiling, the life history of the cell and its spatial
relationship to other cells are critical determinants of cell identity. Undoubtedly, the considerable
advances in cell lineage tracing [68] and spatial transcriptomics [69] will converge with multiomic
profiling to enable comprehensive analysis of cellular identity in the context of where it is (Box 3),
and where it has come from, but this will come with additional – and complex – computational
and data science challenges. While each layer of information added to a multiomic analysis can
bring new opportunities to classify cells and their biological context, it will also bring opportunities
to study the mechanistic relationships between these different modalities in individual cells. While
this an extremely exciting prospect, it requires the development of robustmethods for the integration
of diverse data types, eachwith their own idiosyncrasies. Packages such as Seurat [70] andMOFA+
[71] enable data integration from single-cell multiomic experiments, with the latter designed to
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Box 3. Spatial multiomics

The organisation of cellular structures and corresponding cell–cell interactions are fundamental to the operation of any
multicellular system. Understanding the spatial organisation of cells within tissues is therefore essential to linkmolecular cell
identities with organ- or organism-level functional biology. However, single-cell methods are not able to capture the spatial
context of cells as the analysed tissue must be dissociated in order to be analysed. To address this need, there have been
considerable advances in spatial transcriptomics, with transcriptome-wide or targeted approaches revealing gene
expression patterns with regional, cellular, and even subcellular resolution [80].

Conventional in situ hybridisation [81] allows transcript detection at subcellular resolution, and recent developments of this
approach have increased the multiplexing capacity for this approach from tens [82–85] to hundreds and even thousands
of transcripts [85–88]. Untargeted methods have also expanded imaging-based in situ methodology to genome-wide
profiling of gene expression [89,90]. Substrate-based approaches use positionally barcoded oligo-dT microarray features
to locally capture mRNA molecules from tissue sections [91], with resolutions ranging from 50 μm (e.g., the 10X Visium
platform), spanning multiple cells, through to methods approaching single-cell [92–94] and subcellular (<1 μm) resolution
[95]. Spatial epigenomics approaches are also emerging, firstly with sciMAP-ATAC [96], where chromatin accessibility
profiles obtained from tissue micropunches were matched with tissue spatial coordinates using combinatorial indexed
transposition and sci-ATAC-seq workflow.

Spatial multiomic approaches are emerging – fluorophore- and oligonucleotide-conjugated antibodies can be
incorporated into both in situ and array-based methods to enable parallel mRNA and protein detection, which has been
demonstrated for several of the spatial transcriptomics methods mentioned previously [87,97], using the Nanostring
GeoMX DSP instrument [98] and also very recently demonstrated in SPOTS [99], which combines the 10X Genomics
Visium Platform with CITE-seq antibody-based protein detection. Novel approaches, such as the recently described
DBiT-seq, can perform spatial profiling of mRNA and protein with 10 μm resolution [100]. DBiT-seq is based on two-step
microfluidic-delivery of DNA barcodes directly to the surface of a tissue slide, and this approach has also enabled the spa-
tially resolved profiling of accessible chromatin at approximately 20 μM resolution using in situ Tn5 transposition combined
with microfluidic spatial barcoding [101].

Although only now emerging, these methods are likely to evolve rapidly, and far beyond transcriptomic and proteomic
integration. Bringing multiomic methods with single-cell resolution together with imaging approaches will eventually enable
comprehensive, three-dimensional molecular profiling of the dynamics of multicellular systems in development and disease.

Trends in Genetics
OPEN ACCESS
identify cell classification factors and regulatory dependencies in scNMT-seq data. The continued
development of computational tools that go beyond cell type classification, and can infer regulatory
networks across multiple layers, is essential for future single-cell multiomic studies.

The ongoing convergence of methods enabling multiomic profiling of cellular molecular identity,
localisation, and life history will dramatically change how we study multicellular living systems,
offering unique insights into the regulatory processes governing how individual cells function
collectively to produce whole-organism phenotypes in development, health, and disease.
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