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Neural interactions in working 
memory explain decreased recall 
precision and similarity‑based 
feature repulsion
Jeffrey S. Johnson1,2*, Amanda E. van Lamsweerde1,2, Evelina Dineva4 & John P. Spencer3

Over the last several years, the study of working memory (WM) for simple visual features (e.g., colors, 
orientations) has been dominated by perspectives that assume items in WM are stored independently 
of one another. Evidence has revealed, however, systematic biases in WM recall which suggest that 
items in WM interact during active maintenance. In the present study, we report two experiments 
that replicate a repulsion bias between metrically similar colors during active storage in WM. We also 
observed that metrically similar colors were stored with lower resolution than a unique color held 
actively in mind at the same time. To account for these effects, we report quantitative simulations of 
two novel neurodynamical models of WM. In both models, the unique behavioral signatures reported 
here emerge directly from laterally‑inhibitory neural interactions that serve to maintain multiple, 
distinct neural representations throughout the WM delay period. Simulation results show that the 
full pattern of empirical findings was only obtained with a model that included an elaborated spatial 
pathway with sequential encoding of memory display items. We discuss implications of our findings 
for theories of visual working memory more generally.

Research has suggested that the ability to actively hold information in visual working memory (VWM) may be 
limited to as few as 3–4  items1,2. For example, studies of change  detection2,3, which require observers to remem-
ber a variable number of simple objects over a brief, unfilled delay, have shown that performance remains quite 
good for displays containing a small number of items (~ 1–3), but declines rapidly as more to-be-remembered 
items are added to the memory display (> 4 or so). According to one prominent view, such capacity limits reflect 
the functioning of a memory system that stores a limited number of fixed-resolution representations in a small 
number of memory ‘slots’1–4. When the number of to-be-remembered items is less than or equal to the number 
of available slots, each item is stored at a fixed level of high precision in one of the available slots and performance 
remains good. When the number of items exceeds the number of available slots, however, only a subset of the 
memory display items is stored and the rest are simply forgotten, negatively impacting performance. Critically, 
according to the model, information in each slot is stored independently of the other items in the memory display.

Contrary to this view, several lines of research have suggested that memory for individual items is influenced 
by the properties of the other items being stored. For example, when holding more than one item in memory, 
individual items are often remembered as being more similar than they really were—that is, individual item 
representations are biased toward, or ‘attracted’ to, each  other5–8. This effect has been proposed to reflect the 
combination of individual item information (e.g., the particular color or orientation of a stimulus) with ensem-
ble statistics reflecting the perceptual average of all of the items in the memory display (e.g., the mean color or 
orientation of all items) during  recall7.

More recently, other studies have revealed the opposite pattern: a repulsion bias during multi-item storage 
in which metrically similar stimuli (e.g., similar colors or orientations) are remembered as being more distinct 
than they really  were9,10  (see11 for a review of studies showing attraction versus repulsion in WM tasks). Unlike 
the attraction bias described above, in which individual item representations are thought to be combined with 
ensemble information during recall, these repulsion biases have been proposed to arise as a result of direct 
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interactions among memory items during active storage. To test this possibility, Scotti and  colleagues10 used 
a non-retinotopic VWM paradigm (that is, item location was varied from study to test) and manipulated the 
duration of the memory delay and the necessity of actively attending to the items throughout the delay. Results 
showed the predicted repulsion bias for similar items with longer delays when the items were actively attended. 
A much smaller repulsion effect in a short-delay condition suggested that, rather than reflecting a perceptual 
bias, the observed repulsion bias likely arose as a result of metric-dependent interactions occurring among items 
during active maintenance of featural information.

The above findings are consistent with neural models that posit metric-dependent inhibitory interactions 
among items stored in  VWM12,13. In particular, Johnson and  colleagues12 proposed a dynamic field model that 
captured the processes of encoding, maintenance and comparison required in change detection VWM tasks 
see  also14. In this model, inhibitory interactions between similar items produces a sharpening of the neural 
representation of each item, making it easier to detect subtle featural changes at test. These same inhibitory 
interactions also give rise to metric-dependent repulsion among similar items during active storage in VWM. 
In the present study, we report two new experiments that replicate previous findings of a repulsion bias during 
active storage in WM and we propose a novel neural dynamic field model and assess its ability to capture the 
observed pattern of results.

Dynamic field model of working memory
To capture performance in recall tasks, we build on previous dynamic field (DF) models of VWM, change detec-
tion, and memory-based  recall12,14–16. Within this framework, object surface features (e.g., specific orientations 
or colors) are modeled as localized activation peaks within populations of feature-tuned neurons (for similar 
formulations,  see13,17–20). In the present case, inputs to the model are first registered in a low-level sensory field 
that encodes both the spatial and surface features of presented objects, in keeping with the coding properties of 
early visual areas. Localized peaks are formed when specific input causes activity within the population to cross 
a soft threshold that engages lateral interactions (self-excitation and surround inhibition). However, lateral inter-
actions in the sensory field are relatively weak, and as a result, localized peaks only remain stable while input is 
present. This field provides input to a multi-layered feature WM system with lateral interactions tuned such that 
localized peaks can be sustained in the absence of continuing input. Neural populations exhibiting self-sustained 
activation of this sort have been identified in a range of different cortical areas, including the lateral prefrontal 
cortex, inferior temporal cortex, parietal cortex, higher order visual cortices, as well as subcortical nuclei includ-
ing the basal ganglia (see reviews  in21,22). Note, however, that it is unclear whether sustained activity in all of 
these areas is produced locally, or if it results from multi-regional interactions  (see23 for consideration of local 
circuit and large-scale network mechanisms that could support sustained activation). Our model is agnostic on 
this issue. In any event, as more and more items are remembered, inhibition eventually becomes too strong to 
sustain an unlimited number of peaks. Consequently, only a small number of distinctive neural representations 
can be consolidated and maintained simultaneously in WM, placing an upper limit on  capacity13,14,19,24.

In addition to supporting maintenance in WM, strong lateral interactions can also give rise to interactions 
among items when more than one item is stored. For example, when very similar items are stored (e.g., two 
nearly-identical colors), self-excitatory interactions associated with each peak can cause them to fuse into a single 
peak (see, e.g.,13,14). When peaks are a bit further apart, however, inhibitory interactions tend to dominate. In 
this case, overlapping surround inhibition from each peak produces a gradient of activation in which inhibition 
is strongest at field sites in-between each peak, and weaker on the outside edge (for evidence of surround inhibi-
tion in WM,  see25). As a consequence, the peaks will tend to drift along the activation gradient towards field sites 
where activation is strongest—that is, away from each other. In the present study, we test this model prediction in 
a new experiment that is similar to the studies of repulsion bias described  above9,10. Results replicated previous 
findings, confirming the predicted repulsion effect. Furthermore, probabilistic mixture modeling of response 
errors suggests that response variability (used as a proxy for mnemonic precision) differed as a function of the 
metric similarity of remembered items, with greater variability (lower precision) for more similar versus less 
similar items.

In the sections that follow, we provide a full description of the model architecture we used to capture these 
behavioral effects and illustrate its functioning through an example simulation. We then report the results of 
two behavioral experiments that replicate the finding of delay-dependent repulsion between metrically similar 
items actively maintained in VWM. Finally, we describe the results of two simulation experiments that provide 
quantitative fits of the observed behavioral results.

Dynamic field architecture. The DF model captures patterns of neural activation, u, defined over relevant 
metric dimension, x, that evolve over time, t, in a manner described by a differential equation of the general form

where τ is a time constant, h is the field resting level, s(x, t) is the external input to the field, and ξ(x, t) is random 
noise scaled by noise level q. Lateral interactions in the field are defined by the convolution of the field output, 
g(u(x, t)) (where g is a sigmoid function) with an interaction kernel, k . The interaction kernel describes con-
nection weights as a function of distance in feature space. It is defined as a difference of Gaussians with local 
self-excitation and surround inhibition and, in some cases, a constant (global) inhibitory offset (e.g., in a field 
implementing attention functions). Dynamic interactions within and between fields promote the formation of 
localized peaks of activation, which form attractor states at the level of the neural population. In the case of sen-
sory representations, these peaks provide stabilized detection of stimuli. In motor representations or attention 
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control, competitive interactions between active regions produce selection decisions in which only a single activa-
tion peak can form even in the presence of multiple inputs. Finally, with sufficiently strong lateral interactions, 
activation peaks can become self-sustaining without external input and thereby serve as WM representations.

The model proposed here builds on the basic three-layer model of VWM originally proposed by Johnson and 
 colleagues12, with two additional fields that allow the model to simulate performance in the cued color recall 
task commonly used to study VWM (see Fig. 1). The three-layer model was originally proposed to capture per-
formance in the change detection WM task and consists of two excitatory fields reciprocally coupled to a single 
inhibitory field. The excitatory feature contrast field (denoted FC in the figure) is the main target of bottom-up 
input to the three-layer model, and the primary source of input to both the excitatory feature working memory 
(FWM) field and to the inhibitory field (Inhib). Locally excitatory interactions within the feature contrast field 
and FWM, together with broad inhibitory inputs from Inhib, allow localized peaks of activation to form in these 
fields in response to input. However, once input is removed, self-sustained peaks are only maintained in FWM, 
which features much stronger excitatory interactions than the feature contrast field. During the delay period, 
feedback from Inhib to the feature contrast layer, driven by input from FWM, produces localized regions of 
inhibition at field sites matching the features held in WM. This ensures that new peaks of activation will only 
form in response to inputs that are not currently being actively remembered. Thus, the feature contrast layer 
serves as a kind of novelty detector, which underlies the model’s ability to detect feature changes at test (as  in12).

Figure 1.  Model architecture used in Simulation Experiment 1 and a sample simulation of the model 
performing a single trial in the cued color recall task used in the behavioral experiment. The model consists of 
five fields: a two-dimensional visual sensory field defined over both color and space (CS), a feature attention 
(FA) field, a feature contrast (FC) field, an inhibitory field (Inhib), and a feature working memory (FWM) 
field, all of which are defined over the dimension of color. Blue lines in each panel represent the activation level 
(horizontal-axis) across field sites (vertical-axis), whereas the red lines depict the sigmoidal threshold function 
that determines the extent to which a given field site contributes to the activation dynamics. The task begins with 
the appearance of a sample display that contains either one or three colors. When three colors are presented, one 
of them is unique, and the other two are similar. Locally excitatory and laterally inhibitory interactions within 
and between fields support maintenance and produce repulsion between nearby peaks over the delay. See the 
text for full details of the model simulation shown here.
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For the present work, two additional fields were added to the three-layer model. The first is a two-dimensional 
visual sensory field spanning the dimensions of spatial position (polar angle) and color (hue value). This field 
represents a simplification of the known properties of color-selective visual areas, in which a given neuron’s 
firing rate is determined by its coordinates in three dimensions; two dimensions of visual space and one dimen-
sion of hue (see, e.g.,26–28). The 2D Color-Space (CS) field is the primary target of sensory input to the five-layer 
model, and plays a critical role in allowing the model to make a spatially directed color recall response during 
the test phase of the task. Once input is turned on, activation initially builds in the visual sensory field and then 
propagates through a feature pathway that consists of the three-layer WM system described above with the 
addition of a feature attention field (FA). The feature attention field implements a weak form of feature-based 
competition that enables selection of specific inputs for encoding into WM, and, most critically in the present 
case, control of feedback input to the visual sensory field during recall. Each of the fields comprising the feature 
pathway are defined over the space of hue values. (Note that we assume the existence of a parallel spatial path-
way that tracks the locations of remembered features [as  in16]. However, for simplicity, we have elected not to 
include this pathway in the present model.) Excitatory and inhibitory connections between the model’s layers 
are indicated by solid and dashed arrows, respectively, as shown in the top panel of Fig. 1 (see Supplementary 
Materials for full model equations).

To facilitate understanding of how the various layers of the model work together to achieve multi-item WM 
and color recall, Fig. 1 shows a simulation of the model performing a single trial in the cued color recall task 
used here. At the beginning of the trial (topmost panel), three colored circles are presented at different spatial 
locations. This event leads to the formation of three localized peaks of activation in the 2D color-space sensory 
field (CS) representing the specific location and color of each stimulus in the task space. Above-threshold activa-
tion in the sensory field (integrated over the spatial dimension) is then propagated to the feature attention field 
(FA), the feature contrast field (FC), and, less strongly, to FWM. Direct excitatory input to the feature attention 
field leads to the formation of localized peaks representing the hue value of each stimulus. Lateral interactions 
within this field produce a weak form of feature-based competition in which each active region excites itself 
while suppressing other field sites. Above-threshold activation in the feature attention field combines with input 
from the sensory field to produce peaks of activation in the feature contrast field reflecting the novel hue values 
present in the task space. Although FWM also receives direct input from the sensory field, the primary input to 
this field comes from the feature contrast field, which is also the primary source of stimulus-related input to the 
inhibitory field. Stimulus input from the feature contrast field and the sensory field induces the parallel forma-
tion of localized peaks of activation in FWM, which is also reciprocally coupled to the inhibitory field. Once the 
memory display is removed (Fig. 1, middle panel), locally excitatory interactions within FWM together with 
strong surround inhibition from the inhibitory field allow sustained peaks of activation to be maintained in the 
absence of input. Additionally, inhibitory feedback from the inhibitory field to the feature contrast field, driven by 
sustained peaks in FWM, produces regions of inhibition in the feature contrast field corresponding to the stored 
hue values. Thus, new inputs that match the current contents of FWM are suppressed by the feature contrast 
field. As noted above, when used to capture performance in the change detection task, this plays a role in the 
ability of the model to detect featural changes at test. This field will also play a role in facilitating the sequential 
consolidation of memory display items in Simulation Experiment 2, described further below.

Another consequence of strong lateral interactions in FWM can be seen in the bottom panel of Fig. 1. Early 
in the delay period (middle panel), the peaks of activation in FWM are closely aligned with the position in hue 
space of the presented colors. However, by the end of the delay when the response wheel is presented (bottom 
panel), the activation peaks associated with the two similar colors have moved away from each other (i.e., have 
been repelled from each other) due to strong inhibition in-between versus on the “outside” of each peak. As a 
consequence, when one of these two items is subsequently reported at test, the estimated hue value is shifted 
away from the other nearby item in hue space.

To capture recall responses in the model (see Fig. 1, bottom panel), the appearance of the color wheel in the 
task space at test was modeled as a sub-threshold input along the diagonal of the 2D sensory field (spanning 
360° of color and 360° of polar angle). The effect of the spatial cue was captured by a flat, local boost of the region 
surrounding the peak in FWM that matched the hue value associated with the cued spatial position. Here, we 
assume that this boost comes from attentional selection at the level of a scene representation that maps ‘what’ and 
‘where’ and is reciprocally coupled to FWM, which is not explicitly modeled here (for an earlier implementation 
of this idea,  see29). Note that this local boost was not precise. Indeed, it often robustly boosted one peak in FWM 
and partially boosted a neighboring peak.

The spatial cuing event increases the strength of an activation peak in FWM and biases activation in the fea-
ture attention field in favor of the cued item. We prompt the model to make a response by boosting the resting 
level in the feature attention field, which causes a peak to build at the field site representing the cued hue value 
and broad inhibition to suppress activity at field sites representing the other items in FWM. This peak, in turn, 
projects a horizontal ridge of activation into the color-space sensory field, boosting activity representing the 
remembered hue value across all spatial positions. A response peak then builds in the color-space field at the 
intersection of the diagonal ridge representing the colorwheel and the horizontal ridge reflecting color-specific 
input from the feature attention field. To derive a recall estimate, we then read off the spatial position of this peak 
and record the color value at that position in the wheel. This allows us to calculate a response error between the 
remembered hue value and the selected hue value associated with where the model ‘clicked’ on the color wheel. 
In Fig. 1, the response peak in the CS field is centered at 83° in hue space, whereas the target hue was presented 
at 90°. Thus, the model recalled the target hue as being seven degrees further away from the other close color 
than it actually was. That is, it produced a robust repulsion bias.
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Overview of the present study. In the present study, we first replicate the repulsion effect described in 
previous research using a task design optimized for simulation by the DF model described above. Specifically, 
the task requires the encoding and maintenance of a small set of colors drawn from a continuous color space 
and presented at particular spatial locations on an imaginary circle surrounding fixation. We then run a control 
experiment to rule out a perceptual account of the repulsion effects. Results confirm that a robust repulsion 
effect only arises in the case where a memory delay is inserted between the memory display and the cue to recall 
one of the remembered colors. In addition to the expected repulsion bias, we also observed metric-dependent 
differences in recall precision and a tendency towards increased guessing when the unique target item was cued 
at test. Specifically, recall precision was lower for two metrically similar colors versus a unique color stored at 
the same time. Additionally, the probability of storage of the unique item was somewhat lower than for either 
of the two similar items, contrary to what might have been expected based on studies of visual search in which 
unique items tend to “pop out” of the visual display see, e.g.,30. To our knowledge, these latter findings have not 
been reported previously.

We then ask if the DF model can quantitatively capture these findings in detail. An initial simulation experi-
ment shows that the model captures the repulsion effect, but performs less accurately on precision and fails to 
capture the finding of reduced likelihood of storage for the unique item. Thus, we propose a modification to 
the model based on a recent model of scene representation that adds more details of a spatial pathway as well 
as implementing sequential consolidation in WM. Simulations reveal that this second model does a good job 
capturing all effects reported in the empirical findings including the details of the control experiment.

Experiment 1
In the present experiment, we seek to replicate the finding of a repulsion bias between metrically similar colors 
using a procedure optimized for the model, which represents colored items in WM along a continuous 1D feature 
space. To do this, we use the procedure depicted in Fig. 1 to test the model prediction that metric-dependent 
interactions between items in FWM will lead to similarity-based feature repulsion. We then adopted a probabil-
istic mixture modeling  approach4 to test for possible effects of metric similarity on putatively different sources 
of response error.

Methods. Participants. Twelve neurologically normal college students (9 women; age range of 18–29) with 
normal or corrected-to-normal visual acuity and normal color vision participated in this experiment in ex-
change for monetary compensation. Each participant provided written informed consent and all procedures 
were approved by the University of Iowa Institutional Review Board. All methods were performed in accordance 
with relevant guidelines and regulations. Sample size was determined based on what were best practices in the 
lab at the time the study was run.

Materials. Stimulus presentation and response recording was controlled with a Pentium IV PC-based com-
puter running custom software in Microsoft Visual Studio 6. Stimuli were presented against a gray background 
(28.73 cd/m2) on a 27″ Dell LCD monitor at a viewing distance of 70 cm. Sample arrays consisted of either 1 or 
3 small (1.9° in diameter) colored circles. Individual colors were selected from a set of 180 colors equally dis-
tributed in CIELAB (1976) color space (centered at CIE L*a*b* coordinates: L = 70, A = 28, B = 12). Stimuli were 
presented on the circumference of an invisible circle with a radius of 7.5° positioned at the center of the screen, 
with a minimum distance between targets of 80° of angular rotation (see Fig. 1, top panel). For set size 1 (SS1) 
trials, a single color was randomly chosen from the 180 possible colors making up the color space. For set size 3 
(SS3) trials, a single unique color was randomly chosen on each trial, then two similar targets were chosen that 
were 20° apart in color space—one clockwise (CW) and one counter-clockwise (CCW)—and 170° away from 
the unique target. The test array contained a color wheel with an outlined white circle at its center whose size 
and location matched one of the original sample array items (see Fig. 1C). The color wheel contained each of 
the 180 possible sample colors equally distributed in 2° steps. To prevent the adoption of a spatial strategy, the 
orientation of the color wheel was randomized on each trial and was presented equally often in either a standard 
or a mirror reversed fashion.

Procedure. Individual trials began with the appearance of a fixation cross at the center of the screen for 500 ms, 
followed by the 800-ms presentation of a sample array, a 1000-ms delay interval, and the appearance of a test 
display, which remained present until the participant made a response. Color recall responses were made by 
moving a set of crosshairs over the color wheel using a computer mouse, and left-clicking on the color that most 
closely matched the probed color (i.e., the color at whose location the color wheel was presented). The experi-
ment was completed in one session consisting of a total of 800 experimental trials: 160 SS1 trials and 640 SS3 
trials; 320 probing one of the two similar colors and 320 probing the unique color, randomly determined. Note 
that trial numbers for each condition were chosen so as not to bias participants towards remembering the two 
close items, which would be over-represented if trial numbers were equated across possible targets.

Statistical modeling of recall response distributions. To analyze performance in the recall task, response errors 
were calculated by subtracting each probed item’s correct value from the color value selected on the color wheel 
on a given trial. The resulting response error distributions were modeled as a mixture of a circular normal dis-
tribution and a uniform distribution using maximum likelihood estimation (as described  in4). Model fits were 
separately obtained for each participant and each condition using the standard mixture model (with bias) imple-
mented in the MemToolbox (v. 1.0.0)31. The model successfully converged for each participant. According to the 
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logic of this approach, the mean (µ) and variance of the circular normal distribution capture the accuracy and 
resolution, respectively, of the representation when the probed item is present in memory at test. Conversely, the 
height of the uniform distribution gives an estimate of the probability that a given recall response was selected 
at random from the color space  (Puniform). The parameter  Pm can then be derived from the uniform distribution 
(1-Puniform) as an estimate of the overall probability that the probed item was present in memory at test (i.e., of 
WM capacity). Thus, this approach makes it possible to examine the impact of metric similarity on both the 
quantity and quality of information in WM. We should note, however, that mapping the separate parameters of 
the mixture model onto these putative sources of error relies on several underlying assumptions regarding the 
nature of storage in VWM that are still a matter of considerable debate in the literature  (see32,33).

Results. Analysis of mixture model fits. Individual parameter estimates averaged across participants are 
shown in Fig. 2A (black bars). (Note that model fits for each condition were also obtained for response distribu-
tions aggregated over participants, with very similar results. Data from these fits (using the swap model with 
bias) are reported in the Supplementary Results.) The accuracy of memory representations (reflected in the pa-
rameter µ) differed significantly across targets (SS1, Unique, CW, CCW), F(3,44) = 39.376, p = 1.60E-12, η2 = 0.73. 
Color estimates in the SS1 condition were highly accurate and were not significantly different from zero (p > 0.2), 
whereas estimates of the Unique target were biased in a negative direction, t(11) =  − 4.022, p = 0.001, d = 1.16. 
Critically, mean color estimates in the CW and CCW conditions significantly differed from zero (all p’s < 0.01), 
and response biases occurred in the predicted direction (i.e., positive in the CW condition, and negative in the 
CCW condition). That is, similar targets were repelled from one another as they were actively maintained in 
working memory, in keeping with previous results and the simulation depicted in Fig. 1.

Mnemonic resolution (s.d.) also varied significantly across targets (SS1, Unique, CW, CCW), F(3,44) = 27.13, 
p = 4.32E-10, η2 = 0.65. Colors were stored with higher resolution (i.e., s.d was smaller) when a single item was 
held in memory, versus three items, t(11) =  − 8.632, p = 3.15E-6, d = 2.49, in keeping with previous findings (see, 
e.g.,4,34). Additionally, unique colors were stored with higher resolution than were similar colors, t(11) = 2.47, 
p = 0.031, d = 0.71. This novel finding suggests that, with set size held constant, the resolution of individual items 
stored in working memory varies as a function of metric similarity.

Finally, the probability that the probed item was stored in memory  (Pm) also varied significantly across targets 
(SS1, Unique, CW, CCW), F(3,44) = 11.05, p = 1.564E-5, η2 = 0.43, with a greater likelihood of storage in the SS1 
versus SS3 condition, t(11) = 5.06, p = 0.0004, d = 1.46. Contrary to what we would have expected,  Pm was not 
significantly different for Close versus Unique targets, p > 0.2.

Discussion. Results from the behavioral experiment confirmed previous findings of a repulsion bias for met-
rically similar features actively held in VWM  (see9,10): metrically similar colors were remembered as being more 
distinct than they really were. Results also revealed an additional effect that, to the best of our knowledge, has 
not been previously reported in the literature: s.d. was found to be higher (resolution was lower) for metrically 
similar versus distinct colors held in WM at the same time. This finding is inconsistent with fixed resolution, 
slot-based views of WM (see, e.g.,4), and suggests that the resolution of individual items in WM is influenced by 
their metric similarity to the other items in WM. In addition to these effects, the likelihood of storing the Unique 
item throughout the delay  (Pm) was somewhat lower than it was for each of the two Close colors, although this 
effect was not significant. Given the well-established finding from studies of visual search that unique items tend 
to pop out of visual displays composed of otherwise homogeneous elements  (see30), we expected the Unique 
item to be more salient than either of the two similar items, and therefore to be remembered more frequently.

The finding of a repulsion bias is consistent with initial simulations of the DF model of VWM depicted in 
Fig. 1, which demonstrates that, in the model, similar items held in WM interact in an inhibitory fashion that 
can give rise to memory biases. Before moving on to the simulation experiments, which attempt to quantitatively 
capture the repulsion effect and the other novel findings reported above, we first report the results of a control 
experiment aimed at ruling out an alternative, perceptual-level explanation for the observed repulsion bias.

Control experiment
According to the DF model described above, the observed differences in mean error in the CW and CCW con-
ditions arise as a result of strong inhibitory neural interactions between nearby peaks during active storage in 
WM. This causes the peaks to drift away from each other over the course of the memory delay. An alternative 
possibility, however, is that the observed effects represent a perceptual-level phenomenon in which similar colors 
either interact directly during perception, or are encoded together with information reflecting the categorical 
structure of the color space  (see35 for evidence of categorical effects in WM for color). The observed bias could 
arise if the perception of similar colors is affected by perceptual-level color category effects that pull them in 
opposite directions. If this were the case, we would expect the repulsion effect to persist even when the memory 
delay is eliminated. This possibility was tested by Scotti and  colleagues10, who found that a robust repulsion effect 
was only observed in a condition that featured a long delay between the memory display and the cue to report 
a given color. Here, we provide additional evidence against a perceptual locus for the repulsion bias in a control 
experiment that was identical to Experiment 1, with the exception that the color wheel appeared during the 
final 300 ms of the stimulus presentation interval. This design effectively reduced the length of the delay to be 
as close to zero as possible while preventing participants from simply ignoring the original display and focusing 
solely on the cued item at test.

Methods. Participants. Twelve neurologically normal college students (8 women; age range of 18–33) with 
normal or corrected-to-normal visual acuity and normal color vision participated in this experiment in ex-
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Figure 2.  Comparison of mixture model fits derived from Experiment 1 subject data (black filled bars), simulation 1 (dark grey filled 
bars), and simulation 2 (medium grey filled bars) in the SS1 and SS3 conditions, and from the Control Experiment (white unfilled 
bars) and simulations (off white filled bars) for SS3 only. (A) Mean color error (μ) derived from the mixture model revealed a clear bias 
in color recall for each of the similar targets (CW and CCW), but only when a blank delay was imposed between the memory display 
and the test display, replicating previous findings. This effect was well captured by both variants of the DNF model. (B) Estimated 
mnemonic resolution (s.d.) also revealed an increase in variance in the SS3 versus SS1 condition, and higher s.d. for similar versus 
unique targets. This effect was moderately well captured by simulation 2 and less so for simulation 1. In each case, s.d. was lower in 
the simulations versus the subject data, and there were only small differences as a function of set-size. The resolution of color recall 
was lower overall in both the Control Experiment and simulations. (C) The likelihood that the cued item was stored in WM  (Pm) 
was higher in the SS1 versus SS3 condition overall in Experiment 1. In simulation 1, estimated  Pm for the simulated data was elevated 
relative to estimates derived from the subject data. Simulation 2, which features sequential loading of items into WM, did a better job 
of capturing this effect in the data.
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change for course credit. Each participant provided written informed consent and all procedures were approved 
by the North Dakota State University Institutional Review Board. All methods were performed in accordance 
with relevant guidelines and regulations.

Materials and procedure. Materials were identical to those described for Experiment 1, with the exception 
that stimulus presentation and response recording was controlled by a PC using custom code written in Matlab 
(Mathworks, Inc.) with Psychtoolbox  extensions36,37, and stimuli were presented on the surface of a 24″ LCD 
monitor. Procedures were identical to those described above, with the exception that the color wheel and cue 
circle appeared 500 ms into the 800 ms presentation of the sample display, with both displays remaining on the 
screen together for an additional 300 ms. Additionally, the experiment only included the Unique, CW, and CCW 
conditions, resulting in a total of 640 trials (320 trials to the Unique target, and 160 each to the CW and CCW 
targets).

Results. Parameter estimates averaged across all 12 subjects are shown in Fig. 2A (black bars with white cross-
hatching). To assess the effect of the delay period on the separate parameters of the mixture model, we ran three 
separate, one-way ANOVAs comparing mean color bias (μ),  Pm, and s.d. across conditions. Mixture model fits for 
the parameter μ revealed a small negative bias in each condition (Unique =  − 1.10; CW =  − 0.11; CCW =  − 1.66). 
One-way ANOVA revealed that these differences were statistically significant: F(2, 22) = 8.18, p = 0.002, η2 = 0.43. 
Paired t-tests further revealed significantly greater negative bias in the CCW versus CW condition (p = 0.014) 
and in the Unique versus CW condition (p = 0.002), but not for the CCW versus Unique condition (p = 0.12). 
There were no significant differences as a function of color target for either s.d. (F = 1.12, p = 0.34) or  Pm (F < 1, 
p = 0.67). The resolution of color WM was relatively high overall (s.d. was low: Unique = 10.66; CW = 11.15; 
CCW = 10.79; see Fig. 2, Panel B) compared to Experiment 1 (Unique = 18.66; CW = 21.63; CCW = 20.44), and 
 Pm was generally very high across color targets (Unique = 0.96; CW = 0.97; CCW = 0.96; see Fig. 2, Panel C).

Although there were differences across conditions in terms of mean color bias, including a more strongly 
negative bias in the CCW versus CW condition, the magnitude of these effects was quite small, with a CW-CCW 
difference of less than 2 degrees. Additionally, mean color bias in the CW condition was very small and was 
also in a negative direction (mean color bias =  − 0.10), unlike the repulsion biases observed for both close color 
targets in Experiment 1 (see black bars in Fig. 2, Panel A).

Nonetheless, to more directly compare the results from Experiment 1 and the Control condition, we per-
formed a mixed within- and between-subjects ANOVA with factors of Condition (Control, Experiment) and 
Color Target (Unique, CW, CCW). This analysis revealed a significant main effect of color target: F(2, 44) = 53.32, 
p < 0.0001, η2 = 0.50. The main effect of Condition was not significant (F = 1.74, p = 0.20). However, there was a 
significant Condition x Color Target interaction: F(2,44) = 31.85, p < 0.0001, η2 = 0.30. This reflects the fact that 
although mean bias for the Unique target was quite similar across experiments, there were large differences in 
mean error for the CW and CCW color targets in the Control Experiment versus Experiment 1.

Discussion. As expected, recall performance was generally superior in the Control Experiment versus 
Experiment 1, which featured a 1-s blank delay between the memory display and the cue to recall a particular 
color. Specifically, memory display items were more likely to be successfully recalled at test  (Pm was higher), were 
recalled with greater precision (s.d. was lower), and, importantly, mean color biases were lower overall compared 
to Experiment 1. The overall improvement in performance was not unexpected and can be readily explained in 
light of the model’s function. Briefly, in the presence of continuing stimulus input, peaks are higher amplitude, 
making them less susceptible to noise and stabilizing their position in the field near the actual target value. This 
reduces guessing by reducing the likelihood that a peak will fail before recall is complete, reduces s.d. by increas-
ing the precision and the strength of input to the visual sensory field during recall, and reduces the impact of 
overlapping inhibition in-between versus on the outside edge of each close peak, which drives the repulsion bias. 
Essentially, the presence of continuing stimulus input at the field site representing the target color counteracts 
the tendency of the peak to move along its activation gradient. Once stimulus input is removed, self-sustained 
peaks are more susceptible to noise, are more likely to fail, and are more likely to drift along the activation gradi-
ent produced by overlapping inhibition between nearby peaks.

Most critically, this pattern of results conceptually replicates the findings of Scotti and  colleagues10, who 
showed that robust repulsion biases in WM only arise with a sufficiently long delay between the presentation of 
the memory display and the appearance of the cue to report a particular color. Although mean color biases did 
differ significantly between the CW and CCW color target conditions in the Control Experiment, these differ-
ences were quite small (~ 1.5 degrees in color space) and did not occur in opposite directions in color space, like 
they did in Experiment 1. Thus, taken together, these results suggest that interactions occurring during perception 
can account for, at most, a small portion of the repulsion bias observed in Experiment 1. Instead, they suggest that 
metric-dependent repulsion between items arises during active maintenance of featural information throughout 
the memory delay. The ability of the DF model to capture these findings is explored in the following section.

Simulation Experiment 1
The findings reported above are consistent with simulations of the DF model described above and shown in 
Fig. 1, specifically, that a repulsion bias arises as a result of similarity-based interactions among items during 
active storage in WM. In the current simulation experiment, we assess the ability of the DF model to account 
for the full pattern of similarity-based modulations of recall responses observed in Experiment 1 (see  also9,10).
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Simulation procedures. The stimulus attributes and timings from the behavioral experiment were directly 
adapted for the simulation experiment (all model code is available at https:// github. com/ cosiv ina/ cosiv ina_ dft_ 
proje cts). The model was run through the cued recall task as described in the example simulation and depicted 
in Fig. 1. The models’ recall responses on each trial were calculated by reading out the location along the spatial 
dimension of the CS field where above-threshold activation reached a local maximum. We then looked up the 
hue value presented at that position and response errors were estimated by calculating the difference between the 
selected hue value and the hue value of the actual target color.

The simulation experiment consisted of a total of 800 trials, as in Experiment 1: 160 SS1 trials and 640 SS3 
trials (320 probing one of the two Close items and 320 probing the Unique item). Random noise was added to 
all field activations to obtain stochastic distributions of results. Full details of the procedure we used to tune the 
model parameters are given in the Supplementary Methods. Briefly, model parameters for the core model (FC, 
Inhib and FWM) were initially set to those used by Johnson and  colleagues12 to capture metric-dependent dif-
ferences in the context of change detection. Parameters for each of the additional fields were adapted from prior 
work and, when necessary, were adjusted by hand until a baseline level of stable model behavior was achieved. 
Once a set of parameters was identified, relevant parameter values were iteratively changed by hand across a 
series of simulation runs aimed at reducing the difference between the model’s output and that observed in the 
behavioral experiment described above. To simulate the performance of multiple participants, once a promis-
ing parameter set was identified, the full set of simulations was run 12 times, and estimates of mixture model 
parameters for each condition were derived from the recall responses generated on each run using the Standard 
Mixture Model (with bias) implemented in MemToolbox v. 1.0.031. Like the behavioral results, reported simu-
lation results therefore represent the mean (and standard error) of the model’s performance estimated across 
multiple runs (i.e., participants).

To quantify model performance, we computed the root mean squared error (RMSE) between mixture model 
fits derived from the model simulations and from the behavioral data (see Table 1). Additionally, to facilitate com-
parison of model fits between the two simulation experiments, we calculated the Akaike Information Criterion 
(AIC), which gives an estimate of goodness of fit while taking model complexity (i.e., number of free parameters) 
into account. The AIC was calculated using Gaussian Likelihood as follows: N log (MSE)+ 2k , where N is the 
number of common data points simulated, MSE is the mean squared error (derived from the values given in 
Supplementary Table 1), and k is the number of free parameters for each model. For the present simulations, 
the number of common data points simulated (N) was 12 (four conditions × three measures = 12 data points), 
and k was 49 (details of how the number of free parameters were determined for each model are provided in the 
Supplementary Methods section).

Results. The filled dark grey bars in each panel of Fig. 2 depict the estimated mixture model parameters 
derived from the first simulation experiment (referred to as Simulation 1 in the figure). Estimated accuracy of 
simulated recall responses (referred to as Mean Color Bias in the figure) exhibited small positive errors in the SS1 
and Unique conditions (Mean errors = 0.93 and 0.84, respectively), a large negative bias in the CCW condition 
(Mean error =  − 7.30) and somewhat smaller positive error in the CW condition (Mean error = 5.03). Estimates 
of mnemonic resolution (s.d.) for the simulated data (see Fig. 2B) revealed fairly low overall error (average s.d. 
across conditions = 12.22). Additionally, there was a small difference between s.d. in the SS1 versus the average 
of the SS3 conditions (Mean s.d. = 12.37 for SS3 and 11.78 for SS1). Finally, results for  Pm (see Fig. 2C) revealed 
a high likelihood of storage in both the SS1 (M = 0.99) and Unique color (M = 0.98) conditions, and lower  Pm for 
both CW and CCW Close colors  (Pm CW = 0.92 in both conditions).

RMSE for the Mean Bias (μ) parameter was 1.77, with the largest difference between model performance and 
behavioral data in the Unique condition. RMSE for parameter s.d. (recall precision) was 6.91, with the largest 
discrepancy between model derived and behavioral estimates in the three SS3 conditions. Finally, RMSE for 
parameter  Pm, reflecting the likelihood that the target was successfully stored in WM, was 0.07, with the largest 
differences in the Unique condition. Overall AIC for the model used in Simulation Experiment 1 was 131.96. We 
will discuss this metric further when we compare the performance of this model to the model used in Simula-
tion Experiment 2.

Discussion. Simulations of the DF model of WM provided a solid fit to the empirical data. For the mean 
color bias effect (Fig. 2A), we expected errors in the SS1 and Unique conditions to be near zero, whereas, for 
the CW and CCW Close color conditions, we expected to observe pronounced biases in the opposite direction 
(positive for CW targets and negative for CCW targets). The model did a good job capturing this overall pattern, 
with small positive errors in the SS1 and Unique conditions, and a clear repulsion bias evident in the CW and 
CCW conditions.

Table 1.  Root mean squared errors between simulations and empirical results.

Mixture model parameters

Mean color bias (μ) SD Pm

Simulation Exp 1 1.77 6.91 .07

Simulation Exp 2 1.70 3.61 .03

Control simulation 1.16 2.40 .03

https://github.com/cosivina/cosivina_dft_projects
https://github.com/cosivina/cosivina_dft_projects


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17756  | https://doi.org/10.1038/s41598-022-22328-4

www.nature.com/scientificreports/

For the s.d. effect (Fig. 2B), we expected variance in recall responses to be higher when three versus one item 
needed to be remembered (i.e., in the Unique, CW, and CCW conditions versus the SS1 condition), and higher 
for the two Close colors versus the Unique color. Both of these effects are expected to arise in the model as a 
result of increased variance in peak drift from trial to trial when multiple items are metrically similar. Although 
this general pattern was observed, s.d. across all conditions was much lower in the model than in the empirical 
data. Additionally, although s.d. was somewhat greater for CW and CCW targets than for targets in either the 
Unique or SS1 conditions, the effect wasn’t as pronounced as observed in the experiment, and s.d. was more or 
less identical in the SS1 and Unique conditions in the model, contrary to the experimental results.

With respect to the overall lower s.d. across conditions, part of the problem here lies in the process by which 
a peak in WM is translated into a response in the visual sensory (CS) field. Specifically, in this simplified model, 
the response is largely driven by featural input to CS, which does not require the selection of a spatial location, 
as in the task. It may be the case that noise would increase overall if a more realistic response mapping were 
implemented that included both spatial and featural inputs to the 2D visual sensory field following the cue. It 
is unclear, however, whether such a change would increase the size of the difference in s.d. between the SS1 and 
SS3 conditions.

Finally, with respect to  Pm, the model did a good job capturing the probability of storage in the SS1 and 
both close color conditions. However, simulations showed that the Unique item was successfully stored much 
more frequently in the model simulations than was observed in the empirical data. Indeed, there is a trend in 
the empirical data towards lower, rather than higher,  Pm for the Unique versus Close color items. This feature of 
model performance is perhaps not too surprising given the parallel nature of memory encoding in the model. 
With relatively narrow spread of inhibition around each memory peak, the Unique item has little competition 
from the other items being encoded. As a consequence, the peak associated with this item tends to build more 
quickly and rarely fails to be consolidated. By contrast, the two close items compete with each other via shared 
lateral inhibition. This feature of lateral-inhibition type neural models has been used to capture the phenomenon 
of “pop out” mentioned above (see, e.g.,38). Given the ubiquity of this finding in studies of visual search, it is 
curious that, in the empirical data,  Pm for the unique item was actually somewhat lower than for either of the 
two metrically similar colors.

One hypothesis that may explain the pattern observed in the empirical data is that  Pm for the Unique item 
is lower because it tends to be consolidated in WM only after both of the Close colors have been consolidated. 
Although several studies have suggested that consolidation of simple features (color, direction of motion, ori-
entation) can occur in parallel (see, e.g.,39–43), other evidence has suggested that when the stimulus display is 
presented for a sufficiently long duration, sequential consolidation is more  likely42. The present paradigm featured 
a relatively long exposure duration compared to other studies (800 ms, compared to the more typical 100–500 ms 
durations used in other studies; see, e.g.,4). Thus, it is possible that participants attended to the similar colors and 
consolidated them first before consolidating the Unique item. This could have resulted in a failure to consolidate 
the Unique item on some trials and an increased likelihood of guessing (i.e. lower  Pm) when this item was probed 
at test. In our model, consolidation always happens in parallel so there is no way to capture this effect.

Interestingly, sequential consolidation is featured in a recent DF model of scene  representation29. This model 
is similar to the model shown in Fig. 1, but it includes a multi-layer spatial pathway as well as an elaborated 
feature pathway that includes additional fields representing color and other object properties (e.g., orientation 
or size). Each of these pathways feeds into a series of two-dimensional fields that ‘bind’ features together into 
a scene representation. In particular, features at the same spatial location are linked together via cross-field 
excitatory interactions, implementing a distributed form of object representation mediated by location-based 
‘binding’ (for evidence of location-based feature binding in WM and a novel neural model accounting for this 
effect,  see44). To facilitate the accurate binding of object features at the scene level, the model implements a form 
of autonomous covert attention in which individual items are sequentially attended (as proposed  by30 and others) 
and consolidated in WM one at a time.

In the simulation experiment that follows, we ask if we can adapt the model depicted in Fig. 1 and achieve a 
better fit to the data by implementing two aspects of the scene representation model: an explicit spatial pathway 
and sequential consolidation of items into WM.

Simulation Experiment 2
The model used in the present simulation experiment is depicted in Fig. 3. This model incorporates aspects of the 
scene representation model described  in29 including a simplified spatial pathway. The spatial pathway consists 
of a spatial attention (SA) field and an inhibition-of-return (IOR) field both of which are defined in the same 
retinal coordinates as the spatial dimension of the CS (color-space) field. The model also includes an additional 
one-dimensional attention field, defined in color coordinates, that stands in for attention operating at the scene 
level (SLA). Finally, the model includes a set of dynamic nodes: a peak detector (PD) node that detects the pres-
ence of an above-threshold peak of activation in the scene level attention field, and a condition-of-satisfaction 
(CoS) node that becomes active when the peak detector node goes above threshold and which plays a key role in 
the sequence of autonomous serial consolidation in FWM described below (note: for simplicity, these nodes are 
omitted from Fig. 3). Together, this simplified scene model tracks the spatial locations of remembered features 
and implements an autonomous form of covert attention that gives rise to sequential encoding of each item in 
the memory display. This modification turns out to be critical to capture the full pattern of results observed in 
the behavioral experiment. (see Supplementary Methods for full model equations, and Supplementary Tables 1–2 
for model parameters).

A simulation of the modified model is shown in Fig. 3. As with the first model, when the memory input is 
turned on, peaks begin to form in the visual sensory (CS) field at the two-dimensional coordinates corresponding 
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Figure 3.  Model architecture and sample simulation of the simplified scene representation model used in 
Simulation Experiment 2 and the Control Simulations. This model includes an expanded spatial pathway that 
adds a spatial attention field (SA) and an Inhibition of Return (IOR) field, as well as a field representing attention 
at the scene level (SLA) to the model depicted in Fig. 1. These model additions give rise to an autonomous 
form of covert orienting that results in the sequential consolidation of items in WM, as shown in the top three 
panels of the figure. As before, blue lines represent the activation value across field sites, and red lines depict the 
sigmoidal threshold function. See the text for full details of the model simulation shown here.
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to the unique pairings of color and location defining each memory item. Feature-selective activation then propa-
gates first to the feature contrast (FC) field, which detects the presence of novel items in the scene (i.e., items that 
are not currently being represented in WM), and then to the feature attention (FA) field. Activation along the 
spatial dimension of the CS field also propagates to the spatial attention field (SA). Competition among items 
then ensues in both attention fields, which operate in a winner-takes-all regime in the presence of strong global 
inhibition. Once an item gains a competitive advantage in one attention field, this same item becomes enhanced 
in the other attention field via coupling through the visual sensory field, implementing a form of biased com-
petition (for a detailed account of this model feature,  see16). The result is the selection of the color and spatial 
location of a single item from the memory display. This competitive advantage allows this item to be loaded into 
WM (i.e., for a peak to build in the FWM layer of the model) ahead of the other two items in the sample display 
(see topmost panel of Fig. 3).

After the first item is successfully consolidated, the sustained peak in FWM drives the formation of a peak 
in the scene level attention field. In the full scene representation model, this is where spatial and featural inputs 
would be bound together. Here, we simplify this picture and use the scene level attention field as a placeholder for 
the fully bound representation. This simplifies the spatial pathway as well as the scene level attention field, which 
is a two-dimensional (feature-space) field in the full model. Once a peak forms in the scene level attention field, 
this provides input to the peak detector node (not shown). Activation of the peak detector node signals that the 
item has been successfully ‘bound’ in scene level attention for the feature in question (color in this case). The peak 
detector node then activates the condition of satisfaction node (not shown), which boosts activation in the IOR 
field and suppresses activation in all three attention fields (FA, SA and SLA), triggering a disengagement from 
the current focus of attention. Now, with the first item successfully consolidated in FWM, activation associated 
with this item in the feature contrast field is inhibited by feedback from Inhib, signaling that the item is no longer 
novel. The remaining two items then compete for access to the focus of attention and the cycle repeats until each 
additional novel sensory input is consolidated. The sequential loading of each additional novel item into FWM is 
depicted in the second and third panels of Fig. 3. Once each item is consolidated, maintenance proceeds as in the 
model depicted in Fig. 1. For this reason, and for simplicity, the delay phase of the task was omitted from Fig. 3.

Finally, the generation of a recall response works similarly to the first model, with the exception that the 
cue to report one of the colors is generated by boosting activation in the scene level attention field, which then 
boosts activation around the cued item in FWM. In Simulation 1, this was achieved by boosting the item directly 
in FWM. The boost in activation surrounding the cued item in the scene level attention field and the increased 
amplitude peak at the corresponding location in FWM can be clearly seen in the bottom-most panel of Fig. 3. 
This gives rise to a peak in the feature attention field which projects a horizontal ridge of activation into the 
CS field. Once a peak begins to emerge at the intersection of the horizontal attention ridge and the color wheel 
input (see diagonal input in the bottom panel of Fig. 3), coupling with the spatial attention field causes a peak to 
emerge and the selection of a specific location on the color wheel. As with the first model, inhibitory interactions 
between the two nearby peaks in FWM leads to a repulsion bias: the response peak in the visual sensory (CS) 
field is centered at 84° in hue space, whereas the target hue was presented at 90°, an error of − 6° in color space.

Simulation procedures. Simulation procedures were identical to those described for the first simulation 
experiment. Briefly, 160 simulated trials were run for the SS1, CW, and CCW conditions and 320 simulations 
were run for the Unique condition, with random noise added to each simulated run. Model parameters were 
iteratively modified across model runs in an attempt to match the behavioral data as closely as possible (see Sup-
plemental Methods for full discussion of the parameter tuning procedure). Once a good set of parameters was 
arrived at, 12 runs of the model were completed, simulating the performance of different participants. All results 
reflect the average mixture model parameters across model runs, as in Simulation Experiment 1. Finally, the root 
mean squared error (RMSE; see Table 1) and the Akaike Information Criterion (AIC) were once again calculated 
as measures of model fit and to facilitate comparison of model performance between the two simulation experi-
ments. For the present simulations, the number of common data points simulated was again 12 (four conditions 
× three measures = 12 data points), and k was 56 (details of how the number of free parameters was determined 
for each model are provided in the Supplementary Methods section).

Results. The filled light grey bars in each panel of Fig. 2 depict the estimated mixture model parameters 
derived from the second simulation experiment (referred to as Simulation 2 in the figure). Estimated mean 
color bias in the model revealed near zero errors in both the SS1 and Unique conditions (Mean errors =  − 0.07 
and 0.14, respectively). Additionally, there were prominent color biases in both the CW (Mean error = 4.46) and 
CCW (Mean error =  − 5.52) conditions. Critically, these biases were in opposite directions in color space. Esti-
mates of mnemonic resolution (s.d.) for the simulated data (see Fig. 2B) revealed moderate overall variance in 
recall responses, compared to the behavioral data (average s.d. across conditions = 15.81 and 18.53 for the simu-
lated vs. empirical data, respectively). Critically, there was an effect of set size on s.d., with greater s.d. in the SS3 
(Mean s.d. across SS3 trial types = 16.19) versus the SS1 condition (Mean s.d. = 14.65). s.d. was also larger in the 
CW (s.d. = 16.73) and CCW (s.d. = 16.77) conditions than in the Unique condition (s.d. = 15.06). Finally, results 
for  Pm (see Fig. 2C) revealed a high likelihood of storage in the SS1 condition  (Pm = 0.94), lower  Pm in the CW 
 (Pm = 0.87) and CCW  (Pm = 0.89) conditions, and lowest  Pm in the Unique  (Pm = 0.84) condition.

RMSE for the Mean Bias parameter was 1.70, with the largest difference between model performance and 
behavioral data in the Unique condition, followed by SS1 and the CW and CCW conditions. RMSE for parameter 
s.d. (recall precision) was 3.61, with the largest discrepancy between model derived and behavioral estimates in 
the three SS3 conditions. Finally, RMSE for parameter  Pm, reflecting the likelihood that the target was successfully 



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17756  | https://doi.org/10.1038/s41598-022-22328-4

www.nature.com/scientificreports/

stored in WM, was 0.03, with the largest differences in the Unique condition and the smallest difference in the 
SS1 condition. Overall AIC for Simulation Experiment 2 was 132.01.

Discussion. The simplified scene representation model provided a good fit to the data from Experiment 
1. In particular, the model captured the repulsion bias evident in both the CW and CCW close color condi-
tions in Experiment 1, and more closely matched the pattern of s.d. across conditions, including lower overall 
s.d. compared to the SS1 condition and reduced resolution in the CW and CCW versus the Unique condition. 
Additionally, the simplified scene model did a better job capturing the qualitative pattern of reduced  Pm for the 
Unique color observed in the behavioral experiment. Thus, although the AIC values were essentially identical 
across simulation experiments  (AICModel1 = 131.96;  AICModel2 = 132.01), it appears that the addition of an explicit 
spatial pathway and an IOR mechanism that implements sequential consolidation of memory display items 
allowed the model to better capture the overall pattern of recall errors suggested by the mixture model analysis. 
In the section that follows, we assess whether the simplified scene model can also capture the pattern of findings 
from the Control Experiment.

Control experiment simulation. In addition to capturing the pattern of results observed in Experiment 
1, we also conducted a set of simulations aimed at using the simplified scene representation model depicted in 
Fig. 3 to capture performance in the Control Experiment. Getting the model to perform the control task, in 
which the stimulus display and the colorwheel/recall cue overlapped in time for 300 ms, required a few modifica-
tions. In the experiment, there is a shift in the spatial frame of reference from the full display area to the region 
of the screen where the colorwheel is presented (see task schematic in Fig. 1). In effect, participants ‘zoom in’ on 
the colorwheel at test. This change in reference frame is not explicitly modeled; instead, we change the spatial 
frame implicitly during the transition from the memory delay to the response phase of the task. This works fine 
when the memory display and the colorwheel are separated in time, but creates a clash of reference frames when 
they are presented together. For the control experiment, our assumption is that, during the response phase of the 
task, participants’ attention shifts to the colorwheel, the cue, and the cued color, and away from the other items 
in the display. As a result, the uncued colors fade into the background as people focus on the relevant region of 
space. To model this, we reduced the strength of the two uncued inputs during the 300 ms interval when they are 
presented together with the colorwheel. We also modified the spatial layout of the memory display items so they 
would not overlap with the diagonal ridge representing the colorwheel. With these modifications, the model is 
able to perform the recall task with the same timings used in the control experiment. Besides these modifica-
tions, all model parameters were held constant and simulation procedures were identical to those used to capture 
performance in Experiment 1.

Results and discussion
Mixture model fits for the Control Experiment Simulation can be seen in Fig. 2 (white bars with black cross-
hatching). There were a few small discrepancies between the model’s performance and the behavioral results: 
mean color biases were flatter across targets, s.d. was lower (resolution was higher), and  Pm was slightly higher 
than in the behavioral data. Despite these differences, the model did a good job overall capturing the pattern 
of results observed in the Control Experiment. Critically, these simulations show that, in the model as well as 
the behavioral data, a sufficiently long delay between the stimulus display and the response phase of the task is 
required to observe a robust repulsion bias.

General discussion. The present study aimed to replicate recent reports of a repulsion effect between simi-
lar features stored concurrently in WM and to capture this phenomenon using a novel DF model of WM. To 
do this, we conducted two separate color recall experiments that differed only in whether there was a blank 
delay inserted in-between an initial stimulus display and a subsequent colorwheel and cue to recall a particular 
remembered target. We also described two novel DF models of WM, which differed in their complexity, and 
used them to simulate performance in the behavioral tasks.

Results from Experiment 1 replicated the repulsion effect observed in recent experiments and predicted by 
the model simulations depicted in Fig. 1, and revealed an additional novel result that, to the best of our knowl-
edge, has not been previously reported. Specifically, results confirmed that recall estimates for similar colors 
are biased away from each other during active storage in WM. In keeping with this possibility, results from the 
Control Experiment, in which the memory delay was eliminated, revealed significantly reduced memory biases 
compared to Experiment 1. In particular, although there was a small but significant repulsion bias between the 
CW and CCW color targets in the Control experiment, this effect was nearly an order of magnitude smaller than 
the repulsion effect observed in Experiment 1 (1.55 vs. 12.23 degrees; this difference is comparable to the results 
of Scotti et al.10 Experiment 1 versus Experiment 2). Additionally, both Close targets in the Control experiment 
were weakly biased in a negative direction (CW =  − 0.10 and CCW =  − 1.66). Given this, we contend that the 
repulsion effect observed in Experiment 1 largely depends on the same dynamic neural processes that mediate 
active storage and limit the number of distinct items that can be simultaneously stored in WM. In the model, this 
effect arises as a result of strong inhibitory interactions between nearby peaks in WM, which are stronger at field 
sites in-between versus on the ‘outer’ edge of each peak. The inhibitory gradient established by these interactions 
causes each peak to move along the activation gradient until inhibition is balanced on either side of each peak. 
Observing this phenomenon requires a sufficiently long delay between the stimulus display and the recall test.

Behavioral results also revealed a metric-dependent decrease in the resolution of color WM (s.d.), which, 
to the best of our knowledge, has not been previously reported. Specifically, mixture model fits suggested that 
unique colors were stored with higher precision than were metrically similar colors stored at the same time. If 
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real, this finding violates the claim made by proponents of the discrete slots view (see, e.g.,4) that WM stores a 
small number of items in independent storage slots at a fixed level of resolution. However, it is possible that this 
result could have been an artifact of the mixture modeling procedure, rather than a real effect of metric similarity 
on recall precision. For example, recall precision for the two close items could have been spuriously elevated if 
the mixture model had difficulty attributing a given reported feature to the correct distribution on close color 
trials. This could have arisen if the participant mistakenly reported the un-cued (aka “non-target”) close feature, 
instead of the cued close color target, on some portion of trials. This type of “swap” error is known to occur with 
some frequency in studies of VWM (see, e.g.,34,45). Although this certainly could have occurred on some trials, if 
it were happening with sufficient frequency to account for the 2–3 degree increase in s.d. observed in the Close 
versus Unique color conditions, we would have expected mean errors to be biased towards, rather than away 
from, the close non-target color.

Nonetheless, to examine this possibility further, we conducted a separate mixture model analysis using the 
three-component “swap” model proposed by Bays and  colleagues34,45. This is reported in full in the Supplemen-
tary Results section. Briefly, this analysis revealed that the probability of non-target responses was elevated in 
the Close versus Unique color conditions, with non-target responses on Close color trials (i.e., on trials when 
either the CW or CCW target was cued) clearly clustering around the location in color space of the Unique non-
target (see response distributions in Supplementary Figure S1A-C). However, there was no obvious clustering 
of responses around the close non-target item. Instead, responses were more likely to cluster in the four or five 
bins moving away from, rather than towards, the other close item, as would be expected given the finding of an 
overall repulsion bias.

Another possibility is that the finding of increased s.d. in the Close color conditions may simply reflect a trade-
off between s.d. and guess rate (g), which are known to be correlated in some cases (see discussion  in31). Recall 
that s.d. was greater and g was lower  (Pm was greater) in the Close versus Unique color conditions. To examine 
whether the increase in s.d. could be explained by a trade-off of this sort, the Supplementary Results section 
also includes heatmaps depicting the relationship between model estimates of g and s.d. for each condition (see 
Supplementary Results, Figure S2). These plots reveal a negative correlation between these parameters, which 
suggests that the data in each condition are equally consistent with a slightly higher g and a slightly lower s.d., 
or with a slightly lower g and higher s.d. However, as can be seen in the separate panels of Figure S1, the credible 
ranges given for these parameters for the Close versus Unique conditions are entirely non-overlapping. Thus, this 
difference would persist even if one or both parameters was closer to the edge of its credible range, suggesting 
that this effect likely cannot be explained as a simple trade-off between these parameters.

Taken together, the results summarized above, and described more fully in the Supplementary Results, 
increase our confidence that the observed increase in s.d. in the Close color conditions likely reflects a real 
effect, rather than an artifact of the mixture modeling procedure. This finding, and the ability of both DF models 
to capture it, is consistent with the suggestion that individual items stored in WM interact, and the metric-
dependent nature of this interaction gives rise to both the repulsion effect described above, as well as an increase 
in recall variance. In the model, reduced resolution for highly similar colors likely arises as peaks move along 
the activation gradient produced by inhibition from the other peak. This produces a systematic bias as well as an 
increase in the variance of estimated peak position across trials. By contrast, the unique item is less likely to be 
influenced by the presence of strong activation gradients (i.e., to drift over time), and therefore recall estimates 
for this item are generally more stable across trials.

In addition to capturing these effects, both models exhibited an overall increase in guessing (i.e., reduced  Pm) 
and a reduction in resolution (higher s.d.) as a function of set size (SS3 versus SS1; for similar findings,  see4), 
although overall s.d. and the effect of set-size on this parameter were smaller than observed in Experiment 1. 
In the model, guessing typically occurs when a stable representation of one of the memory display items (i.e., a 
memory peak) fails to build in WM, or one or more of the peaks in WM is destabilized prior to the generation of 
a recall estimate. Such destabilization can occur when inhibition from other items in WM effectively suppresses 
the recurrent excitatory activity necessary to maintain stable peaks. Similarly, increased recall variance in the 
SS3 condition could be due to an increase in peak movement caused by the presence of other items in WM. This 
effect is most pronounced for each of the close items, but, as seen in Fig. 2B, s.d. is also increased to a small extent 
for the unique item, relative to SS1. Thus, the DF model provides a parsimonious neurodynamic account of the 
commonly observed positive relationship between guessing  (Pm), memory resolution and set size. By contrast, 
Zhang and  Luck4 proposed to capture set-size effects on resolution via an ad hoc assumption that, for trials in 
which the set size is less than the number of available slots, separate slots can be used to store independent sam-
ples of the same stimulus. The average of these samples is then reported at test, resulting in improved resolution.

Although the model used for Simulation Experiment 1 did a reasonably good job capturing the overall effect 
of set-size on  Pm, it failed to capture the differential pattern of  Pm across the unique and similar items in WM. 
As can be seen in Fig. 2C (black filled bars), participants exhibited a general decrease in  Pm that was comparable 
for all three items stored. By contrast, the model closely matched  Pm for the two close color targets, but over-
estimated  Pm for the unique target. This difference may be explained as a result of local inhibitory interactions 
in the model, which have a substantially larger effect on nearby versus more distal peaks. Specifically, although 
the unique target is affected by moderate global inhibition produced by the other two items in WM, each of the 
close peaks receives strong inhibition from the other nearby peak. In some cases, this is sufficient to suppress the 
excitatory activation necessary for the peak to be sustained throughout the delay, resulting in elevated guess-like 
responses (i.e., lower  Pm).

The poor performance of the first model in capturing the pattern of  Pm described above and the relatively low 
s.d. across conditions compared to Experiment 1, motivated the development of the elaborated model shown 
in Fig. 3. We hypothesized that lower  Pm for the unique color target could have arisen as a result of sequential 
consolidation of the display items into WM, and a tendency to focus first on the two close colors. To examine 
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this possibility in the model, we adopted a simplified version of a scene representation model  (see29) whose 
autonomous dynamics give rise to sequential consolidation of memory display items. Interestingly, in this model, 
the two close items tend to be consolidated before the unique item. This arises as a result of overlapping inputs 
from the visual sensory field to the feature attention field for the two close colors, which pushes activation in this 
region of the color space closer to threshold. This can be seen in the feature attention (FA) field of the first few 
panels of Fig. 3. Overlapping inputs for the two close colors in feature attention creates a bias for peaks to build 
here first, and in turn, for activation related to the close colors to propagate to the feature contrast and FWM 
fields, where consolidation occurs. This feature of the model increases the likelihood that the unique color will 
fail to be consolidated in FWM, allowing the model to capture the qualitative pattern of lower  Pm for all targets 
in the SS3 versus SS1 condition. Additionally, this model more closely matched the overall magnitude and pat-
tern of s.d. observed across conditions, and did a good job capturing the pattern of findings observed in the 
Control Experiment. Critically, mean color biases in the model were near zero for each target. Additionally, s.d. 
was reduced and  Pm was increased compared to Experiment 1 and Simulation Experiment 2.

Although the DF model did a good job capturing the main experimental findings from Experiment 1 and the 
Control condition, there were a few curious aspects of the results that are not very well understood. Specifically, 
there was an overall tendency for recall estimates to be biased in a negative direction in the SS3 conditions. This 
is most clearly demonstrated by the finding of a significant negative bias for the Unique color in Experiment 1 
and, to a lesser extent, in the Control Experiment. There was also an asymmetry in the repulsion effects observed 
in the CW and CCW color conditions of both experiments, with a large negative bias in the CCW condition 
and a smaller positive bias in the CW condition. These small effects were not predicted by the model, and it is 
not clear what caused them. One possibility we considered was that all of the display items were being drawn 
towards the ensemble average color of the memory display, which has been observed to occur in other studies of 
multi-item VWM (see, e.g.,5–8). However, it isn’t clear why this would produce the small negative bias observed 
here, given that the Unique item was always exactly 170 degrees away from each of the close color targets in color 
space. Whatever the cause, these effects are secondary to the main findings of a repulsion bias and increased s.d. 
for metrically similar colors.

In summary, both models reported here provide a neurally plausible account of similarity-based repulsion 
in WM and the dependence of this effect on the presence of a memory delay. Although both models produced 
comparable fits to the observed data, as indicated by their near-identical AIC values, the second model accurately 
captured both the pattern of reduced  Pm in the Unique versus Close color conditions as well as performance in 
the Control Experiment. Taken together, we think this argues in favor of Model 2, which implements a form of 
autonomous sequential consolidation in WM.

Relationship of dynamic field model to other prominent models of WM. The proposed neurody-
namical model builds on previous models that have aimed to capture working memory, attention, and related 
phenomena using attractor dynamics within populations of location and feature-selective neurons. Although 
the goal here is to show how neural population dynamics can give rise to and support perceptual and cognitive 
phenomena, this model shares some properties with other prominent frameworks for thinking about WM. 
For example, the dynamic neural processes underlying maintenance in the model impart a discrete, “all-or-
none” quality to neural representations and can give rise to capacity limits at higher set sizes (see, e.g.,14,15). This 
reflects the bi-stability underlying the peak state—peaks either form or they do not. In this sense, WM peaks 
in the model could be thought of as the neural implementation of a discrete, slot-like form of WM postulated 
by Zhang and  Luck4 and others (see, e.g.,46,47). However, the results reported here (see  also12) suggest that items 
in WM interact in particular ways depending on their metric similarity. Additionally, previous findings within 
this framework suggest that capacity may not be fixed across trials, but likely varies dynamically as a function of 
noise as well as metric  similarity15, a finding that likely also applies to mnemonic resolution (see, e.g.,48). Both of 
these properties set this framework apart from standard slot-based views.

In addition to sharing some commonalities with slot-based approaches, the proposed model is similar to 
a recent hybrid slot/resource model of working memory proposed by Wei and  colleagues13 (see  also18,19). Like 
the DF model, maintenance in the Wei et al. model is achieved by interactions between separate populations of 
excitatory and inhibitory feature-tuned neurons (i.e., locally excitatory and surround inhibitory interactions). 
However, their model is implemented in a more biophysically realistic framework (spiking network versus 
abstract population code model), and interactions between nearby items in WM are primarily excitatory in 
nature. As a consequence, WM peaks representing very similar features have a tendency to merge into a single 
peak over the memory delay, which provides one source of capacity limits in their model. Although mutually 
excitatory interactions do come into play in the DF model when colors are very similar, at more intermediate 
separations, such as probed here, inhibition tends to dominate. Such inhibitory competition can contribute to 
peak failure, and, importantly, can also account for the finding of similarity-based feature repulsion reported 
here and  elsewhere9,10. It is unclear how this effect could be accounted for in the Wei et al. model.

Although the lateral-inhibition type model proposed here provides a plausible account of repulsion biases 
observed in some WM tasks, there are a number of challenges that it would be beneficial to address in future 
research. First, there may be other neurally plausible approaches that could similarly capture, or predict, these and 
related phenomena, and such approaches should be developed and tested. For example, Bays and  colleagues49–51 
have proposed a population coding approach in which errors in WM tasks are accounted for by noise in feature-
tuned neural populations (for a related approach pitched at a different level of analysis,  see52). Within this frame-
work, informative cues about which item(s) are relevant on a given trial increase the gain of neurons coding 
for the relevant features, at the expense of task-irrelevant information. This framework has done a good job to 
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date explaining memory errors in a neurally plausible framework, but it is unclear whether it could provide a 
principled account of the kinds of memory distortions examined here.

In addition to testing the DF model against other neural models, an important step in the process of validat-
ing the models proposed here will be to generate and test novel predictions in new experiments. Although this 
important goal is beyond the scope of the present paper, a way forward is suggested by previous research within 
this framework looking at delay and experience-dependent distortions in spatial WM (see, e.g.,53–57). For example, 
work in the spatial domain has shown that recall of the location of a single stimulus held in WM is biased away 
from salient axes of reference (e.g., the midline of the task space) over the memory delay  (see57,58). Interestingly, 
in other contexts, this midline repulsion effect is observed together with an attraction effect, in which recall of 
the location of a single stimulus is biased towards the location of a frequently viewed target  (see55). Both of these 
findings can be captured by a DF model that incorporates a Hebbian learning mechanism that allows traces of 
items viewed and held in WM to accumulate over time, producing peak drift in the direction of frequently viewed 
targets. Although preliminary, recent evidence from a similar study involving WM for color suggests that recall 
of individual colors may also be influenced by the distribution of color targets that were remembered throughout 
the  experiment59. Work of this sort could provide a principled account of the conditions under which different 
kinds of memory distortions of the sort described  in11 may be expected to arise.

In conclusion, results confirm the presence of a repulsion effect in WM when similar features are held actively 
in mind over a memory delay. This phenomenon was captured by a neurodynamical model in which items in 
WM interact in a metric-dependent fashion and give rise to characteristic behavioral signatures that are evident 
in performance. Taken together with previous findings, the current results suggest that this neurally-grounded 
framework offers insights into both the neural population dynamics that underlie working memory for simple 
visual features and the behavioral signatures evident in experiment that are critical to testing competing theories 
of working memory.

Data availability
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