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The composite likelihood (CL) is amongst the computational methods used for the esti-
mation of high-dimensional multivariate normal (MVN) copula models with discrete re-
sponses. Its computational advantage, as a surrogate likelihood method, is that is based 
on the independence likelihood for the univariate marginal regression and non-regression 
parameters and pairwise likelihood for the correlation parameters. Nevertheless, the ef-
ficiency of the CL method for estimating the univariate regression and non-regression 
marginal parameters can be low. For a high-dimensional discrete response, weighted ver-
sions of the composite likelihood estimating equations and an iterative approach to de-
termine good weight matrices are proposed. The general methodology is applied to the 
MVN copula with univariate ordinal regressions as the marginals. Efficiency calculations 
show that the proposed method is nearly as efficient as the maximum likelihood for 
fully specified MVN copula models. Illustrations include simulations and real data applica-
tions regarding longitudinal (low-dimensional) and time (high-dimensional) series ordinal 
response data with covariates. Our studies suggest that there is a substantial gain in effi-
ciency via the weighted CL method.

 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The multivariate normal (MVN) copula with discrete margins has been in use for a considerable length of time, e.g., Joe 
(1997), and much earlier in the biostatistics (Ashford and Sowden, 1970), psychometrics (Muthén, 1978), and econometrics 
(Hausman and Wise, 1978) literature. It is usually known as a multivariate or multinomial probit model. The multivariate 
probit model is a simple example of the MVN copula with univariate probit regressions as the marginals. The use of the 
MVN copula with logistic regression (or Poisson or negative binomial or ordinal regression) is just a special case of the 
general theory of dependence modelling with copulas (e.g., Joe 2014; He et al. 2018; Smith 2022).

The MVN copula is generated by the MVN distribution and thus inherits the useful properties of the latter (e.g., Li et 
al. 2017; He et al. 2018). Therefore, the MVN copula allows a wide range of dependence and overcomes the drawback of 
limited dependence inherent in other parametric copulas such as Archimedean and nested Archimedean (Nikoloulopoulos, 
2013a,b). When the univariate margins are regression models for discrete response, then copula models can be more difficult 
to discriminate (Joe, 2014, page 242). Hence, the MVN copula with discrete margins or discretized MVN model not only 
provides a wide range of flexible dependence but also approximates other copula models.
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Nevertheless, implementation of the MVN copula for discrete data is not easy, because the MVN distribution as a latent 
model for discrete response requires rectangle probabilities based on high-dimensional integrations or their approximations 
(Nikoloulopoulos and Karlis, 2009; Panagiotelis et al., 2012) unless the correlation matrix is positive exchangeable or has 
an 1-factor structure (Johnson and Kotz, 1972). Hence, Joe (1997) and Song (2007) restricted on low dimensional regression 
modelling of dependent discrete data using the MVN copula. Accordingly, Nikoloulopoulos and Moffatt (2019) and Sun et al. 
(2020) used copula-based Markov models where bivariate or trivariate copula functions such as the bivariate or trivariate 
normal are used to construct the joint distribution function of the consecutive discrete responses.

Nikoloulopoulos (2013b, 2016b) and Masarotto and Varin (2012) proposed efficient simulated likelihood methods that 
can be used for estimation of MVN copula discrete regression models in higher dimensions, occurring with time series, 
spatial data, longer longitudinal studies, but there is an issue of computational burden as the dimension d and the sample 
size n increase. This is also the case for the efficient Bayesian data augmentation method of Pitt et al. (2006) or the data 
augmentation together with a parameter expansion approach of Murray et al. (2013) as the number of latent variables is of 
the same size as the data, i.e., a matrix of size n × d (e.g., Panagiotelis et al. 2012; Henn 2022).

Zhao and Joe (2005) proposed composite likelihood (CL) estimating equations to overcome the computational issues at 
the maximization routines for the MVN copula in a high-dimensional context by using the independence likelihood for 
the marginal parameters and pairwise likelihood for the correlation parameters. CL is a surrogate likelihood which leads 
to unbiased estimating equations (Varin, 2008; Varin et al., 2011) obtained by the derivatives of the composite univariate 
and bivariate log-likelihoods. As the estimation of univariate marginal parameters ignores the dependence, the efficiency of 
estimating the univariate regression and non-regression parameters is low.

To improve the efficiency of the CL method on estimating the MVN copula with discrete margins, we propose weighted 
versions of the CL estimating equations and an iterative approach to determine good weight matrices. Based on the matrix 
version of the Cauchy-Schwarz inequality (Chaganty, 1997; Chaganty and Joe, 2004), we determine the optimal weights for 
which the asymptotic efficiency of the proposed estimates with these weights is close to the asymptotic efficiency of the 
maximum likelihood (ML) estimates. Our intent is to develop an efficient estimation method for MVN copula regression 
models for discrete responses that can be used for the regression analysis of high-dimensional discrete response data with 
covariates observed in time series or spatial statistics. We call the proposed method weighted composite likelihood (WCL). 
Nevertheless, its weights are not related with the contribution of particular pairs of variables as in other weighted composite 
likelihood methods, e.g., Pedeli and Varin (2020).

The remainder of the paper proceeds as follows. Section 2 introduces the general theory of weighted versions of the com-
posite likelihood estimating equations and gives the details for the MVN copula with ordinal regressions as the marginals. 
Section 3 studies asymptotic efficiency of our method as compared to the ‘gold standard’ ML method. Section 4 studies 
the small-sample efficiency of the weighted composite score functions in both low- and high-dimension. Section 5 presents 
two applications of our methodology to analyze longitudinal (low-dimensional) and time (high-dimensional) series ordinal 
response data. We conclude this article with some discussion, followed by a technical Appendix.

2. Weighted versions of the composite likelihood estimating equations

To illustrate the method of the weighted versions of the composite likelihood estimating equations to estimate the MVN 
copula parameters concretely, we use univariate ordinal probit/logit regressions as the marginals. The resulting multivariate 
discrete distribution is the multivariate ordinal probit/logit model.

Suppose that the data are (yij, xi j), j = 1, . . . , d, i = 1, . . . , n, where i is an index for individuals or clusters and j is 
an index for the repeated measurements or within cluster measurements. The MVN copula model with ordinal probit 
regressions as the marginals has the following cumulative distribution function (cdf):

Fd(yi1, . . . , yid;νi1, . . . ,νid,γ ,R) = "d
(
"−1[F1(yi1;νi1,γ )], . . . ,"−1[F1(yid;νid,γ )];R

)
,

where "d denotes the standard MVN distribution function with correlation matrix R = (ρ jk : 1 ≤ j < k ≤ d), " is cdf of the 
univariate standard normal, and F1(y; ν, γ ) is the univariate cdf for the ordinal variable Y . Let Z be a latent variable with 
cdf F , such that Y = y if αy−1 + ν ≤ Z ≤ αy + ν, y = 1, . . . , K , where K is the number of categories of Y (without loss of 
generality, we assume α0 = −∞ and αK = ∞), γ = (α1, . . . , αK−1) is the q-dimensional vector of the univariate cutpoints 
(q = K − 1) and ν = x%β is a function of x and the p-dimensional regression vector β . From this definition, the ordinal 
variable Y is assumed to have cdf F1(y; ν, γ ) = F(αy + ν). Note that F normal leads to the probit model and F logistic 
leads to the cumulative logit model for ordinal response (Agresti, 2010, Section 3.3.2).

The MVN copula lacks a closed form cdf; hence implementation of the discretized MVN is feasible, but not easy, because 
the MVN distribution as a latent model for discrete response requires rectangle probabilities of the form

fd(yi;νi1, . . . ,νid,R) =
"−1[F1(yi1;νi1)]∫

"−1[F1(yi1−1;νi1)]

· · ·
"−1[F1(yid;νid)]∫

"−1[F1(yid−1;νid)]

φd(z1, . . . , zd;R)dz1 · · ·dzd, (1)
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where φd denotes the standard d-variate normal density with correlation matrix R. When the joint probability is too difficult 
to compute, as in the case of the discretized MVN model, composite likelihood is a good alternative (Varin, 2008; Varin et 
al., 2011).

Zhao and Joe (2005) proposed the CL method to overcome the computational issues at the maximization routines for 
the MVN copula in a high-dimensional context. Estimation of the model parameters can be approached by solving the 
estimating equations obtained by the derivatives of the sums of univariate and bivariate log-likelihoods.

The sum of univariate log-likelihoods is

L1 =
n∑

i=1

d∑

j=1

log f1(yij;νi j,γ ) =
n∑

i=1

d∑

j=1

&1(νi j,γ , yij), (2)

where f1(y; ν, γ ) = F(αy + ν) − F(αy−1 + ν) and &1(·) = log f1(·). The score equations for β and γ are

(
∂L1
∂β
∂L1
∂γ

)

=
n∑

i=1

d∑

j=1

(
xi j 0
0 Iq

)( ∂&1(νi j,γ , yi j)

∂νi j
∂&1(νi j,γ , yi j)

∂γ

)

=
n∑

i=1

d∑

j=1

(
xi j1q

Iq

)
∂&1i j(γ i j, yij)

∂γ i j
= 0, (3)

where γ i j = (α1 + νi j, . . . , αK−1 + νi j) = (γi j1, . . . , γi j,K−1), &1i j(·) = log f1i j(·), f1i j(γ i j, y) = F(γi jy) − F(γi j,y−1), Iq is an 

identity matrix of dimension q and 1q is a vector of units of size q. Let XT
i j =

(
xi j1q

Iq

)
and s(1)

i j (a) = ∂&1i j(γ i j ,yij)

∂γ i j
, where 

a% = (β%, γ %) is the column vector of all r = p + q univariate marginal parameters. The score equations in (3) can be 
written as

g1 = g1(a) = ∂L1

∂a
=

n∑

i=1

d∑

j=1

X%
i j s(1)

i j (a) =
n∑

i=1

X%
i s(1)

i (a) = 0, (4)

where X%
i = (X%

i1, . . . , X
%
id) and s(1)%

i (a) = (s(1)%
i1 (a), . . . , s(1)%

id (a)). The vectors s(1)
i j (a) and s(1)

i (a) have dimensions q and dq
respectively. The dimensions of Xi j and Xi are q × r and dq × r respectively. The CL estimate of a, denoted by ã, is the 
solution of g1(a) = 0.

The sum of bivariate log-likelihoods is

L2 =
n∑

i=1

∑

j<k

log f2(yij, yik;νi j,νik,γ ,ρ jk), (5)

where

f2(yij, yik;νi j,νik,γ ,ρ jk) =
"−1[F1(yi j;νi j ,γ )]∫

"−1[F1(yi j−1;νi j,γ )]

"−1[F1(yik;νik,γ )]∫

"−1[F1(yik−1;νik),γ ]

φ2(z j, zk;ρ jk)dz jdzk;

φ2(·; ρ) denotes the standard bivariate normal density with correlation ρ . Differentiating L2 with respect to R leads to the 
bivariate composite score function:

g2 =
n∑

i=1

s(2)
i (̃a,R) = 0, (6)

where s(2)
i (a, R) = ∂

∑
j<k log f2(yij ,yik;νi j ,νik,γ ,ρ jk)

∂R . The CL estimate of R, denoted by R̃, is the solution of g2 (̃a, R) = 0.
In what follows, we form weighted versions of the CL estimating equations and an iterative approach to determine good 

weight matrices. At the first stage we reform the univariate estimating composite function by inserting weight matrices 
between the matrix of the covariates Xi and the vector of univariate scores for regression and non-regression parameters in 
the univariate composite score function in (4). The resulting estimation function is

g)
1 = g)

1(a) =
n∑

i=1

XT
i [W(1)

i ]−1 s(1)
i (a), (7)

where W(1)
i are invertible d(1 + q) × d(1 + q) matrices. The WCL estimate of a, denoted by â, is the solution of g)

1(a) = 0.
With a fixed, as estimated at the first stage of the method, we also include weight matrices in the bivariate composite 

score function in (6) at the second stage of the method. The resulting estimation function is

3
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g)
2 = g)

2(â,R) =
n∑

i=1

[W(2)
i ]−1s(2)

i (â,R), (8)

where W(2)
i are invertible 

(d
2

)
×

(d
2

)
matrices. We estimate R by R̂, a solution of g)

2(â, R) = 0.
The estimators of θ = (a, R) that solve the WCL estimating equations g) = (g)

1, g)
2)

% , under the usual regularity conditions 
on the log-likelihood of univariate and bivariate margins as n → ∞, are asymptotically normal viz.,

√
n(θ̂ − θ) → N

(
0,G−1

g) (θ)
)
,

where Gg) (θ) is the Godambe information matrix (Godambe, 1991). The asymptotic covariance matrix for the estimators θ̂
that solve the WCL estimating equations g) viz.,

G−1
g) = (−Hg))−1Jg)(−HT

g))−1, (9)

is used to obtain optimal choices for W(1)
i and W(2)

i . The covariance matrix J)g of the estimating functions g) is

Jg) = Cov(g)) =
(

Cov(g)
1) Cov(g)

1,g)
2)

Cov(g)
2,g)

1) Cov(g)
2)

)

=





∑n
i=1 X%

i [W(1)
i ]−1!(1)

i [W(1)%
i ]−1Xi

∑n
i=1 X%

i [W(1)
i ]−1!(1,2)

i [W(2)%
i ]−1

∑n
i=1[W(2)

i ]−1!(2,1)
i [W(1)%

i ]−1Xi
∑n

i=1[W(2)
i ]−1!(2)

i [W(2)%
i ]−1



 (10)

where
(

!(1)
i !(1,2)

i

!(2,1)
i !(2)

i

)

=




Cov

(
s(1)

i (a)
)

Cov
(

s(1)
i (a), s(2)

i (a,R)
)

Cov
(

s(2)
i (a,R), s(1)

i (a)
)

Cov
(

s(2)
i (a,R)

)



 .

The Hessian matrix −Hg) of the estimating functions g) is

−Hg) =





E
(

∂g)
1

∂a

)
E
(

∂g)
1

∂R

)

E
(

∂g)
2

∂a

)
E
(

∂g)
2

∂R

)



 =
( −Hg)

1
0

−Hg)
2,1

−Hg)
2

)

=





∑n
i=1 X%

i [W(1)
i ]−1"(1)

i 0

∑n
i [W(2)

i ]−1"(2,1)
i

∑n
i [W(2)

i ]−1#(2)
i



 , (11)

where "(1)
i = E

(
∂s(1)

i (a)

∂a

)
, "(2,1)

i = E
(

∂s(2)
i (a,R)

∂a

)
and #(2)

i = E
(

∂s(2)
i (a,R)

∂R

)
.

The matrix Cauchy-Schwarz inequality (Chaganty, 1997; Chaganty and Joe, 2004), shows that the optimal choices of W(1)
i

and W(2)
i satisfy X%

i [W(1)
i ]−1 = "(1)%

i [!(1)
i ]−1 and [W(2)

i ]−1 = #(2)
i [!(2)

i ]−1, respectively, leading to

Jg) =





∑n
i=1 "(1)%

i [!(1)
i ]−1"(1)

i

∑n
i=1 "(1)%

i [!(1)
i ]−1!(1,2)

i #(2)
i [!(2)

i ]−1

∑n
i=1 #(2)

i [!(2)
i ]−1!(2,1)

i [!(1)
i ]−1"(1)

i

∑n
i=1 #(2)

i [!(2)
i ]−1#(2)

i



 (12)

and

−Hg) =





∑n
i=1 "(1)%

i [!(1)
i ]−1"(1)

i 0

∑n
i=1 #(2)

i [!(2)
i ]−1"(2,1)

i

∑n
i=1 #(2)

i [!(2)
i ]−1#(2)

i



 . (13)

Details on the calculation of "(1)
i , "(2,1)

i , #(2)
i and !(1)

i , !(1,2)
i , !(2)

i are given in the Appendix.
To summarise, the steps to obtain the WCL estimates and standard errors, along with the involved numerical methods, 

are as follows.

1. Obtain the CL estimates ã and R̃ solving the CL estimating functions in (4) and (6), respectively, or equivalently by 
maximizing the sum of univariate log-likelihoods in (2) and then the sum of bivariate log-likelihoods in (5) with the 
univariate marginal parameters fixed from the first step.

4
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2. Compute using standard matrix operations the weight matrices W(1)
i with the CL estimates ̃a and R̃.

3. Obtain the WCL estimates ̂a of the univariate marginal parameters solving the estimating function in (7) using a non-
linear system solver such as multiroot in the R package rootSolve (Soetaert, 2021) or BBsolve in the R package
BB (Varadhan and Gilbert, 2009). The CL estimator ̃a is a good starting point for the non-linear root solver.

4. Compute using standard matrix operations the weight matrices W(2)
i with the WCL estimates â of the univariate 

marginal parameters and the CL estimates R̃ of the correlation parameters.
5. Obtain the WCL correlation parameter estimates R̂ solving the estimating function in (8) using a non-linear system 

solver such as multiroot in the R package rootSolve (Soetaert, 2021) or BBsolve in the R package BB (Varadhan 
and Gilbert, 2009). The CL estimator R̃ is a good starting value for the non-linear system solver.

6. Finally, the WCL standard errors for ̂a and R̂ are obtained by calculating the estimated covariance matrix G−1
g) of ̂a and 

R̂ in (9) with Jg) and −Hg) as given in (12) and (13), respectively, using standard matrix operations.

3. Relative efficiency: comparison based on asymptotic variances

We consider the MVN copula with positive exchangeable dependence and univariate ordinal logistic regressions as the 
marginals. For positive exchangeable dependence, if one computes the rectangle MVN probabilities with the 1-dimensional 
integral method in Johnson and Kotz (1972), then one is using a numerically accurate maximum likelihood (ML) method 
that is valid for any dimension (Nikoloulopoulos, 2013b, 2016b).

For the covariates and univariate marginal parameters we chose p = 1, xi j = x%
1i j where x1i j are taken as uniform random 

variables in the interval [−1, 1]; β1 = 0.5 and γ = (0.33, 0.67). For the above parameters we computed the inverse of the 
Fisher information matrix I , viz.

I = 1
n

n∑

i=1

∑

y

∂ fd(y;νi1, . . . ,νid,R)

∂θ

∂ fd(y;νi1, . . . ,νid,R)

∂θ T

/
fd(y;νi1, . . . ,νid,R),

where the inner sum is taken over all the possible vectors y, and the inverse Godambe matrix G−1
g) in (9) with Jg) and −Hg)

as given in (12) and (13), respectively. The former is the asymptotic covariance matrix of the ML estimates, while the latter 
is the asymptotic covariance matrix of the WCL estimates of univariate marginal and correlation parameters that are the 
solutions of the weighted versions of the CL estimating equations in (7) and (8). We have also computed the asymptotic 
covariance matrix of the CL estimates, that is the matrix G−1

g) in (9) with Jg) and −Hg) as given in (10) and (11), respectively, 
where the weight matrices are simply the identity matrices.

Representative summaries of findings on the performance and the comparison of the competing methods are given in 
Table 1 for three-, six- and nine-dimensional MVN copula models with univariate ordinal logistic regressions. We took n =
500 to get a good approximation of the asymptotic efficiency. The comparisons are made on the scaled diagonal elements, 
corresponding to the asymptotic variances of the parameters, of the three matrices with different values of ρ .

Conclusions from the values in the table are the following.

• The WCL method for the univariate marginal parameters is nearly as efficient as ML.
• The CL method for the univariate marginal parameters is inefficient as the asymptotic variances are overestimated.
• The WCL method for the correlation parameters shares similar efficiency with the CL method. That is, their efficiency 

decreases for strong correlation as the dimension increases. This is not a worry though as for real discrete response 
data one does not expect correlations greater than 0.8.

4. Simulations

We study the small-sample efficiency of the weighted composite score functions in both a low- and high-dimensional 
case. Section 4.1 focuses on simulated longitudinal ordinal data with small size clusters. Section 4.2 contains simulations for 
ordinal time-series of dimension up to d = 1000.

4.1. Longitudinal ordinal

We randomly generate B = 104 samples of size n = 100, 300, 500 from the multivariate ordinal probit model with an 
unstructured dependence. We use the same dimension (d = 4) and latent correlation matrix as in Pitt et al. (2006), viz.,

R =





1 0.6348 0.5821 0.6916
0.6348 1 0.3662 0.8059
0.5821 0.3662 1 0.0435
0.6916 0.8059 0.0435 1





and K = 5 ordinal categories (equally weighted). For the covariates and ordinal probit regression parameters, we chose 
p = 4, xi j = (x1i j, x2i j, x3i j, x4i j)

% with x1i j the time, x2i j ∈ {0, 1} a group variable, x3i j = x1i j × x2i j , and x4i j a uniform random 
variable in the interval [−1, 1]; β1 = −β2 = −β3 = −0.5, β4 = 1.

5



A.K. Nikoloulopoulos Computational Statistics and Data Analysis 179 (2023) 107654

Table 1
Asymptotic variances, multiplied by n, of the ML, WCL and CL estimates of the MVN copula 
model parameters. Efficiencies with respect to ML are shown in parentheses.

d True ρ Method β1 γ1 γ2 ρ

3 0.1 ML 4.064 (1.000) 1.572 (1.000) 1.695 (1.000) 0.856 (1.000)
WCL 4.064 (1.000) 1.572 (1.000) 1.695 (1.000) 0.856 (1.000)
CL 4.097 (0.992) 1.572 (1.000) 1.695 (1.000) 0.856 (1.000)

0.4 ML 3.610 (1.000) 2.107 (1.000) 2.263 (1.000) 0.851 (1.000)
WCL 3.623 (0.996) 2.111 (0.998) 2.266 (0.999) 0.856 (0.994)
CL 4.086 (0.884) 2.112 (0.998) 2.266 (0.999) 0.856 (0.994)

0.7 ML 2.699 (1.000) 2.711 (1.000) 2.921 (1.000) 0.473 (1.000)
WCL 2.744 (0.983) 2.734 (0.992) 2.939 (0.994) 0.481 (0.982)
CL 4.104 (0.658) 2.735 (0.991) 2.940 (0.994) 0.482 (0.981)

0.9 ML 1.735 (1.000) 3.241 (1.000) 3.508 (1.000) 0.113 (1.000)
WCL 1.866 (0.930) 3.237 (1.001) 3.481 (1.008) 0.116 (0.977)
CL 4.141 (0.419) 3.240 (1.000) 3.485 (1.007) 0.117 (0.964)

6 0.1 ML 2.010 (1.000) 0.916 (1.000) 0.983 (1.000) 0.234 (1.000)
WCL 2.010 (1.000) 0.916 (1.000) 0.982 (1.000) 0.235 (0.999)
CL 2.047 (0.982) 0.916 (1.000) 0.982 (1.000) 0.235 (0.999)

0.4 ML 1.705 (1.000) 1.582 (1.000) 1.690 (1.000) 0.374 (1.000)
WCL 1.715 (0.994) 1.591 (0.994) 1.696 (0.996) 0.384 (0.974)
CL 2.102 (0.811) 1.591 (0.994) 1.696 (0.996) 0.384 (0.974)

0.7 ML 1.239 (1.000) 2.319 (1.000) 2.494 (1.000) 0.258 (1.000)
WCL 1.267 (0.978) 2.370 (0.979) 2.538 (0.983) 0.279 (0.926)
CL 2.203 (0.562) 2.371 (0.978) 2.539 (0.982) 0.279 (0.926)

0.9 ML 0.866 (1.000) 2.956 (1.000) 3.205 (1.000) 0.067 (1.000)
WCL 0.894 (0.969) 2.999 (0.986) 3.218 (0.996) 0.075 (0.898)
CL 2.312 (0.375) 3.003 (0.984) 3.221 (0.995) 0.076 (0.889)

9 0.1 ML 1.327 (1.000) 0.698 (1.000) 0.745 (1.000) 0.128 (1.000)
WCL 1.327 (1.000) 0.697 (1.000) 0.745 (1.000) 0.128 (0.999)
CL 1.359 (0.976) 0.697 (1.000) 0.745 (1.000) 0.128 (0.999)

0.4 ML 1.096 (1.000) 1.405 (1.000) 1.497 (1.000) 0.272 (1.000)
WCL 1.104 (0.993) 1.417 (0.992) 1.506 (0.994) 0.284 (0.957)
CL 1.382 (0.793) 1.418 (0.991) 1.507 (0.994) 0.284 (0.957)

0.7 ML 0.806 (1.000) 2.180 (1.000) 2.343 (1.000) 0.204 (1.000)
WCL 0.827 (0.975) 2.248 (0.969) 2.404 (0.974) 0.231 (0.884)
CL 1.448 (0.557) 2.249 (0.969) 2.405 (0.974) 0.231 (0.884)

0.9 ML 0.621 (1.000) 2.843 (1.000) 3.085 (1.000) 0.055 (1.000)
WCL 0.621 (1.001) 2.919 (0.974) 3.130 (0.986) 0.065 (0.844)
CL 1.530 (0.406) 2.923 (0.973) 3.133 (0.985) 0.065 (0.838)

Table 2 contains the parameter values, the bias, standard deviations (SD) and root mean square errors (RMSE), along with 
average standard errors (ASEs), scaled by n, of the WCL and CL estimates. The WCL and CL standard errors are the square 
root of the diagonal of the inverse Godambe matrix G−1

g) in (9) with Jg) and −Hg) as given in (12) and (13), respectively; 
for the CL standard errors the weight matrices are simply the identity matrices. It is clear from the table that both the WCL 
and CL methods provide unbiased estimates and the variances computed from the simulations are similar to the asymptotic 
variances for both the WCL and CL methods.

4.2. Ordinal time series

We randomly generate B = 104 samples of dimension d = 100, 200, 500, 1000 from the multivariate ordinal probit model 
with latent correlation matrix corresponding to that of an autoregressive process of order one with first-order autocorrela-
tion equals to 0.8 and K = 4 categories. The above problem differs from the simulations in the preceding section in that 
rather than being repeated or clustered measurements of a variable, the data y j, j = 1, . . . , d are multivariate, with a single 
measurement on each of d different variables.

For the covariates and regression parameters, we use a combination of a time-stationary and a time-varying design, i.e., 
include covariates that are typically constant over time, and correlated over time. More specifically, we chose p = 3, x j =
(x1 j, x2 j, x3 j)

% with x1 j ∈ {0, 1} a binary variable with probability of success 0.4, x2 j a time-varying variable from a d-variate 
MVN copula with latent correlation matrix corresponding to that of an autoregressive process of order one with first-order 
autocorrelation equals to 0.5, x3 j = x1 j × x2 j ; β1 = −β2 = β3 = −0.5.

For a structured dependence and high dimension d, the computation of the bivariate weight matrices involved is pro-
hibitive as the calculation of !(1,2) and !(2) requires the computation of d-variate probabilities and hence, summations 
over all possible K d vectors y. Nevertheless this is not the case for the calculation of !(1) in the univariate weight matri-
ces which only requires the computation of bivariate marginal probabilities and hence, summations over the K 2 possible 
vectors y. Hence, we study the small-sample efficiency of the WCL estimating equations for the univariate regression or 
non-regression parameters, i.e., the first stage of the proposed WCL method.
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Table 3
Small sample of time-series lengths d = 100, 200, 500, 1000 simulations (104 replications) 
and resulted biases, standard deviations (SD), average standard errors (ASE), and root mean 
square errors (RMSE), scaled by d, for the WCL and CL estimates of the univariate marginal 
parameters for the multivariate ordinal probit model with latent correlation matrix corre-
sponding to that of an autoregressive process of order one with first-order autocorrelation 
equals to 0.8 and K = 4 categories.

d β1 β2 β3 γ1 γ2 γ3

dBias 100 CL 4.97 -4.37 4.79 -6.24 0.02 6.26
WCL 5.04 -4.72 5.17 -6.34 0.20 6.58

200 CL 5.10 -5.12 4.59 -5.92 0.07 5.76
WCL 5.33 -4.94 3.94 -6.16 0.26 6.21

500 CL 5.41 -6.01 5.28 -4.96 0.80 6.94
WCL 4.69 -5.90 5.73 -5.13 1.09 7.52

1000 CL 5.65 -6.97 3.94 -5.41 0.97 7.11
WCL 4.48 -6.62 7.07 -5.87 1.02 7.31

dSD 100 CL 49.46 68.20 86.34 49.89 47.99 49.57
WCL 32.33 41.54 55.39 41.02 38.72 40.77

200 CL 68.01 93.52 117.17 68.08 66.27 68.47
WCL 42.68 53.91 72.96 54.90 52.53 55.24

500 CL 103.72 145.21 180.47 106.17 103.41 106.56
WCL 63.16 81.27 108.30 85.81 82.04 86.03

1000 CL 144.65 202.00 250.58 148.67 144.94 148.27
WCL 87.57 110.95 150.69 118.98 113.92 118.54

dASE 100 CL 46.49 61.65 81.00 43.57 42.28 43.56
WCL 32.45 40.61 56.22 36.12 34.52 36.11

200 CL 64.98 88.27 112.58 63.81 62.00 63.69
WCL 42.31 53.43 72.61 52.15 49.80 52.04

500 CL 102.43 141.11 176.85 103.22 100.27 103.04
WCL 63.81 80.95 108.88 83.76 79.86 83.60

1000 CL 144.93 200.68 249.90 147.33 142.78 147.01
WCL 89.10 113.14 151.54 119.42 113.41 119.11

dRMSE 100 CL 49.71 68.34 86.47 50.28 47.99 49.96
WCL 32.72 41.81 55.63 41.50 38.72 41.29

200 CL 68.21 93.66 117.26 68.34 66.27 68.71
WCL 43.01 54.14 73.06 55.25 52.53 55.58

500 CL 103.86 145.33 180.55 106.29 103.41 106.78
WCL 63.34 81.48 108.45 85.96 82.04 86.36

1000 CL 144.76 202.12 250.61 148.77 144.94 148.44
WCL 87.69 111.14 150.86 119.12 113.92 118.77

Table 3 contains the parameter values, the biases, SDs and RMSEs, along with ASEs, scaled by d, of the WCL and CL 
estimates. It is clear from the table that both the WCL and CL methods provide unbiased estimates. The variances computed 
from the simulations are similar to the asymptotic variances for both the WCL and CL methods. The WCL estimates of 
the regression parameters are remarkably more efficient than the CL estimates as the variances in the CL method are 
overestimated.

5. Applications

In this section we illustrate the proposed estimation method through two examples with longitudinal (low-dimensional) 
and time (high-dimensional) series ordinal response data. We include comparisons with other possible fitting methods, such 
as ML (low dimension) and CL (high dimension).

5.1. Arthritis data

We illustrate the weighted composite scores equations by analysing the rheumatoid arthritis data-set (Bombardier 
et al., 1986). The data were taken from a randomized clinical trial designed to evaluate the effectiveness of the treat-
ment Auranofin versus a placebo therapy for the treatment of rheumatoid arthritis. The repeated ordinal response is the 
self-assessment of arthritis, classified on a five-level ordinal scale (1 = poor, . . . , 5 = very good). Patients (n = 303) were 
randomized into one of the two treatment groups after baseline self-assessment followed during five months of treatment 
with measurements taken at the first month and every two months during treatment resulting in a maximum of 3 mea-
surements per subject (unequal cluster sizes). The covariates are time, baseline-assessment, age in years at baseline, sex 
and treatment. We treat time and baseline-assessment as categorical variables and look at differences between adjacent 
outcome categories (see, e.g., Tutz and Gertheiss, 2016). To this end we followed the coding scheme for ordinal independent 
variables in Walter et al. (1987). Further, both logit and probit links are used for the ordinal regressions.

Table 4 gives the estimates and standard errors of the model parameters obtained using ML and the WCL estimating 
equations. Ordinal logistic regression is slightly better than ordinal probit regression based on the composite and full likeli-
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Table 4
Maximized log-likelihoods, WCL and ML estimates (Est.) along with their standard errors (SE) for the arthritis data.

Logit link Probit link

Covariates & 
cutpoints

WCL ML WCL ML

Est. SE Est. SE Est. SE Est. SE
I(time = 2) -0.007 0.124 -0.006 0.125 -0.005 0.071 -0.007 0.072
I(time = 3) -0.377 0.116 -0.377 0.115 -0.218 0.066 -0.220 0.066
trt -0.500 0.168 -0.487 0.165 -0.337 0.097 -0.336 0.097
I(baseline = 2) -0.659 0.345 -0.607 0.357 -0.336 0.200 -0.341 0.200
I(baseline = 3) -1.208 0.329 -1.161 0.337 -0.580 0.190 -0.576 0.190
I(baseline = 4) -2.569 0.370 -2.487 0.382 -1.319 0.211 -1.315 0.211
I(baseline = 5) -4.040 0.555 -3.975 0.549 -2.264 0.324 -2.262 0.320
age 0.013 0.008 0.014 0.007 0.008 0.004 0.008 0.004
sex -0.167 0.187 -0.179 0.179 -0.062 0.109 -0.062 0.108
α1 -1.768 0.673 -1.831 0.625 -1.029 0.385 -1.016 0.383
α2 0.351 0.656 0.230 0.608 0.071 0.381 0.059 0.382
α3 2.324 0.662 2.222 0.613 1.249 0.383 1.250 0.385
α4 4.641 0.682 4.526 0.625 2.544 0.390 2.545 0.390
ρ12 0.393 0.057 0.376 0.061 0.393 0.057 0.373 0.061
ρ13 0.505 0.051 0.503 0.052 0.509 0.051 0.505 0.052
ρ23 0.530 0.050 0.536 0.046 0.523 0.050 0.528 0.046

Log-likelihood -2114.855 -1041.477 -2117.755 -1043.083

Table 5
Maximized bivariate composite log-likelihoods L2 in (5), WCL and CL estimates (Est.) along with their standard errors 
(SE) for the sleep data.

Logit link

Covariates & 
cutpoints

CL WCL

Est. SE Z p-value Est. SE Z p-value

heart rate 0.074 0.274 0.271 0.786 0.097 0.044 2.232 0.026
temperature 0.284 0.339 0.837 0.402 0.254 0.190 1.336 0.182
α1 -0.934 0.385 -2.425 0.015 -0.778 0.372 -2.091 0.037
α2 0.771 0.376 2.053 0.040 0.865 0.376 2.300 0.021
α3 1.233 0.406 3.040 0.002 1.322 0.408 3.240 0.001

L2 -1321423

Probit link

Covariates & 
cutpoints

CL WCL

Est. SE Z p-value Est. SE Z p-value

heart rate 0.040 0.164 0.245 0.807 0.057 0.026 2.221 0.026
temperature 0.167 0.202 0.827 0.408 0.169 0.114 1.479 0.139
α1 -0.582 0.231 -2.520 0.012 -0.515 0.227 -2.268 0.023
α2 0.469 0.228 2.058 0.040 0.510 0.227 2.250 0.024
α3 0.744 0.236 3.154 0.002 0.781 0.235 3.317 0.001

L2 -1321157

hoods. Our analysis shows that the WCL estimates of all the parameters and their corresponding standard errors are nearly 
the same as the ML estimates.

5.2. Infant sleep status data

The sleep data (e.g., Fokianos and Kedem 2003) consist of sleep state measurements of a newborn infant together with 
his heart rate and temperature sampled every 30 seconds. The sleep states are classified as: (1) quiet sleep, (2) indeterminate 
sleep, (3) active sleep, (4) awake. The total number of observations is equal to 1024 and the objective is to predict the sleep 
state based on covariate information.

The response, sleep state, is an ordinal time series in the sense that the response increases from awake to active sleep, 
i.e., “(4)” < “(1)” < “(2)” < “(3)”. We use the standardized heart rate and temperature as covariates to avoid large estimates 
for the univariate cutpoints. Fokianos and Kedem (2003) have previously adopted regression models for this ordinal time 
series and confirmed an autoregressive model of order 1 to adequately capture the serial dependence among the ordinal 
observations.

Table 5 summarizes the WCL and CL estimates of the regression and non-regression parameters. The first-order autocor-
relation parameter of the MVN copula with latent correlation matrix corresponding to that of an autoregressive process of 
order one is estimated as 0.96 for both logistic and probit ordinal regression. The latter is slightly better than ordinal logit 
regression based on the composite likelihood values. It is obvious from the table that ignoring the actual serial dependence 
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in the data on the CL estimation of the regression parameters leads to invalid conclusions resulting to no effect of the time-
dependent covariates at sleep state. The WCL analyses reveal that the heart rate effect is a statistically significant predictor 
of sleep state.

6. Discussion

We have studied a weighted composite likelihood estimating equations approach, namely the WCL, based on weighting 
the univariate and bivariate scores of the univariate and bivariate margins of a MVN copula model with discrete margins 
to estimate the model parameters. The WCL method leads to efficient estimating equations for both the univariate marginal 
(regression and non-regression) and correlation parameters.

For high-dimensional discrete data such as discrete time or spatial series, the first stage of the method, i.e., the esti-
mation of the univariate marginal parameters, is computationally feasible as the weight matrices of the WCL estimating 
equations in (7) depend on covariances of the univariate scores that only require the computation of bivariate marginal 
probabilities. Nevertheless, as such data require a structured correlation, such as an autoregressive moving average or the 
Matérn isotropic structure, the second stage of the method, i.e., the estimation of the correlation parameters, becomes cum-
bersome. However, as the WCL correlation parameter estimates share the same efficiency as that achieved by the traditional 
CL correlation parameter estimates, the problem can be circumvented by using the latter. That is, the correlation and uni-
variate marginal parameters can be estimated by the CL method and the WCL method, respectively. Hence, estimation of 
MVN copula regression models is efficient and feasible for high-dimensional discrete response data with covariates.

Nikoloulopoulos et al. (2011) and Nikoloulopoulos (2016a, 2020) have considered estimating equations of this form when 
dependence is considered a nuisance; this leads to an extension of generalized estimating equations of Liang and Zeger 
(1986) in that a wider class of univariate regression models can be called. A sandwich-type estimator is used to obtain 
estimates of the covariance matrix of model parameters that are robust to misspecification. Nevertheless, such methods of 
inference about regression and non-regression parameters are not available in the setting where is a single measurement 
on each of d different variables.

Future research will focus on the model selection (e.g., Alexopoulos and Bottolo 2021) for high-dimensional normal 
copula regression models. The WCL is a likelihood method, and thus, analogues of the AIC and BIC for correlation structure 
and variable selection can be derived in the framework of the composite likelihood.

Software

A contributed R package weightedCL (Nikoloulopoulos, 2022) has R functions to estimate high-dimensional MVN copula 
regression models with the WCL estimating equations. It provides ARMA(p, q) correlation structures and binary, ordinal, 
Poisson, and negative binomial (both NB1 and NB2 parametrizations in Cameron and Trivedi 1998) regressions.
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Appendix A

The matrices involved in the calculation of the sensitivity matrix Hg) of the WCL estimating functions g) take the form:

−"(1)
i = E





∂s(1)
i1 (a)

∂γ i1
. . . 0 0 . . . 0

...
. . .

...
...

...
...

0 . . .
∂s(1)

i j−1(a)

∂γ i j−1
0 . . . . . .

0 . . . 0
∂s(1)

i j (a)

∂γ i j
. . . . . .

...
...

...
...

. . .
...

0 . . . 0 0 . . .
∂s(1)

id (a)

∂γ id





Xi;
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−"(2,1)
i

% = X%
i E





∂s(2)
i,12(a,ρ12)

∂γ i1
. . . 0 . . . 0

∂s(2)
i,12(a,ρ12)

∂γ i2
. . . 0 . . . 0

...
. . .

...
...

...

0 . . .
∂s(2)

i, j−1 j(a,ρ j−1 j)

∂γ i j−1
. . . 0

0 . . .
∂s(2)

i, j−1 j(a,ρ j−1 j)

∂γ i j
. . . 0

...
...

...
. . .

...

0 . . . 0 . . .
∂s(2)

i,d−1d(a,ρd−1d)

∂γ id−1

0 . . . 0 . . .
∂s(2)

i,d−1d(a,ρd−1d)

∂γ id





;

−#(2)
i = E





∂s(2)
i,12(a,ρ12)

∂ρ12
. . . 0 . . . 0

...
. . .

...
...

...

0 . . .
∂s(2)

i, jk(a,ρ jk)

∂ρ jk
. . . . . .

...
...

...
. . .

...

0 . . . 0 . . .
∂s(2)

i,d−1d(a,ρd−1d)

∂ρd−1d





.

The elements of these matrices are calculated as below:

−E
(∂s(2)

i, jk(a,ρ jk)

∂ρ jk

)
= −E

(∂2 log f2(y j, yk;νi j,νik,γ ,ρ jk)

∂ρ2
jk

)
= E

((∂ log f2(y j, yk;νi j,νik,γ ,ρ jk)

∂ρ jk

)2
)
,

where ∂ log f2(y j ,yk;νi j ,νik,γ ,ρ jk)

∂ρ jk
= ∂ f2(y j ,yk;νi j ,νik,γ ,ρ jk)

∂ρ jk
/ f2(y j, yk; νi j, νik, γ , ρ jk);

−E
(∂s(2)

i, jk(a,ρ jk)

∂a%

)
= −E

(∂2 log f2(y j, yk;νi j,νik,γ ,ρ jk)

∂a%∂ρ jk

)

= E
(∂ log f2(y j, yk;νi j,νik,γ ,ρ jk)

∂a%
∂ log f2(y j, yk;νi j,νik,γ ,ρ jk)

∂ρ jk

)
,

where

∂ log f2(y j, yk;νi j,νik,γ ,ρ jk)

∂a% = ∂ f2(y j, yk;νi j,νik,γ ,ρ jk)

∂a% / f2(y j, yk;ν j,νik,γ ,ρ jk),

∂ f2(y j, yk;νi j,νik,γ ,ρ jk)

∂a% =
∂ f2i jk(y j, yk;γ i j,γ ik,ρ jk)

∂γ i j
Xi j +

∂ f2i jk(y j, yk;γ i j,γ ik,ρ jk)

∂γ ik
Xik,

∂ f2i jk(y j, yk;γ i j,γ ik,ρ jk)

∂γ i j
=

∂ f2i jk(y j, yk;γ i j,γ ik,ρ jk)

∂"−1
(

F1(y j;γ i j)
)

∂"−1(F1(y j;γ i j)
)

∂γ i j

+
∂ f2i jk(y j, yk;γ i j,γ ik,ρ jk)

∂"−1
(

F1(y j − 1;γ i j)
)

∂"−1(F1(y j − 1;γ i j)
)

∂γ i j
,

∂"−1(F1(y j;γ i j)
)

∂γ i j
=

y j∑

1

∂ f1(y j;γ i j)

∂γ i j
/φ

(
"−1(F1(y j;γ i j)

))
, where

∂ f1(y j;γ i j)

∂γ i j
= f1(y j;γ i j)

∂&1i j(γ i j, y j)

∂γ i j
.

At the above formulas

f2i jk(y j, yk;γ i j,γ ik,ρ jk) =
"−1[F1(y j;γ i j)]∫

"−1[F1(y j−1;γ i j)]

"−1[F1(yk;γ ik)]∫

"−1[F1(yk−1;γ ik)]

φ2(z j, zd;ρ jk)dz jdzk,

11
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where F1i j(y; γ i j) = F(γi jy), while the derivatives ∂ f2(y j ,yk;γ i j ,γ ik,ρ jk)

∂ρ jk
and ∂ f2i jk(y j ,yk;γ i j ,γ ik,ρ jk)

∂"−1
(

F1(y j;γ i j)
) are computed with the R

functions exchmvn.deriv.rho and exchmvn.deriv.margin, respectively, in the R package mprobit (Joe, 1995; Joe 
et al., 2011).

The matrices involved in the calculation of the covariance matrix Jg) of the WCL estimating functions g) take the form:

!(1)
i =





Var
(

s(1)
i1 (a)

)
. . . Cov

(
s(1)

i1 (a), s(1)
i j (a)

)
. . . Cov

(
s(1)

i1 (a), s(1)
id (a)

)

...
. . .

...
. . .

...

Cov
(

s(1)
i j (a), s(1)

i1 (a)
)

. . . Var
(

s(1)
i j (a)

)
. . . Cov

(
s(1)

i j (a), s(1)
id (a)

)

...
. . .

...
. . .

...

Cov
(

s(1)
id (a), s(1)

i1 (a)
)

. . . Cov
(

s(1)
id (a), s(1)

i j (a)
)

. . . Var
(

s(1)
id (a)

)





,

!(1,2)
i =





Cov
(

s(1)
i1 , s(2)

i,12

)
. . . Cov

(
s(1)

i1 , s(2)
i, j1 j2

)
. . . Cov

(
s(1)

i1 , s(2)
i,d−1d

)

...
. . .

...
. . .

...

Cov
(

s(1)
i j , s(2)

i,12

)
. . . Cov

(
s(1)

i j , s(2)
i, j1 j2

)
. . . Cov

(
s(1)

i j , s(2)
i,d−1d

)

...
. . .

...
. . .

...

Cov
(

s(1)
id , s(2)

i,12

)
. . . Cov

(
s(1)

id , s(2)
i, j1 j2

)
. . . Cov

(
s(1)

id , s(2)
i,d−1d

)





,

where

Cov
(

s(1)
i j1

, s(2)
i, j1 j2

)
=

∑

y

s(1)
i j1

s(2)
i, j1 j2

f2(y j1 , y j2;νi j1 ,νi j2 ,ρ j1 j2),

Cov
(

s(1)
i j1

, s(2)
i, j2 j3

)
=

∑

y

s(1)
i j1

s(2)
i, j2 j3

f3(y j1 , y j2 , y j3;νi j1 ,νi j2 ,νi j3 ,ρ j1 j2 ,ρ j1 j3 ,ρ j2 j3),

and

!(2)
i =





Var
(

s(2)
i,12

)
. . . Cov

(
s(2)

i,12, s(2)
i, j1 j2

)
. . . Cov

(
s(2)

i,12, s(2)
i,d−1d

)

...
. . .

...
. . .

...

Cov
(

s(2)
i, j1 j2

, s(2)
i,12

)
. . . Var

(
s(2)

i, j1 j2

)
. . . Cov

(
s(2)

i, j1 j2
, s(2)

i,d−1d

)

...
. . .

...
. . .

...

Cov
(

s(2)
i,d−1d, s(2)

i,12

)
. . . Cov

(
s(2)

i,d−1d, s(2)
i, j1 j2

)
. . . Var

(
s(2)

i,d−1d

)





,

where

Var
(

s(2)
i, j1 j2

)
=

∑

y

s(2)
i, j1 j2

s(2)
i, j1 j2

f2(y j1 , y j2),

Cov
(

s(2)
i, j1 j2

, s(2)
i, j1 j3

)
=

∑

y

s(2)
i, j1 j2

s(2)
i, j1 j3

f3(y j1 , y j2 , y j3),

Cov
(

s(2)
i, j1 j2

, s(2)
i, j3 j4

)
=

∑

y

s(2)
i, j1 j2

s(2)
i, j3 j4

f4(y j1 , y j2 , y j3 , y j4);

the inner sum is taken over all possible vectors y. Hence, for an unstructured dependence the calculation of !(1)
i requires 

summations over the K 2 possible vectors y, while the calculation of !(1,2)
i and !(2)

i requires summations up to K 3 and K 4

possible vectors y, respectively.
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