
Proc. London Math. Soc. (3) 123 (2021) 460–497 doi:10.1112/plms.12403

Decidability of theories of modules over tubular algebras

Lorna Gregory

Abstract

We show that the common theory of all modules over a tubular algebra (over a recursive
algebraically closed field) is decidable. This result supports a long standing conjecture of Mike
Prest which says that a finite-dimensional algebra (over a suitably recursive field) is tame if and
only if its common theory of modules is decidable (Prest, Model theory and modules (Cambridge
University Press, Cambridge, 1988)). Moreover, as a corollary, we are able to confirm this
conjecture for the class of concealed canonical algebras over algebraically closed fields. Tubular
algebras are the first examples of non-domestic algebras which have been shown to have decidable
theory of modules. We also correct results in Harland and Prest (Proc. Lond. Math. Soc. (3) 110
(2015) 695–720), in particular, Corollary 8.8 of that paper.
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1. Introduction

The study of the decidability and undecidability of theories of modules over finite-dimensional
algebras began with papers of Baur which showed that the 4-subspace problem is decidable
[4] and that the 5-subspace problem is undecidable [3] (also see [39]). For a given ring R, the
theory of R-modules is said to be decidable if there is an algorithm that decides whether a
given first order sentence in the language of R-modules is true in all R-modules. It follows
easily from the results of Baur that the theory of modules over the path algebras of D̃4 (in
subspace orientation) is decidable and that the theory of modules over the path algebra of D̃5

(in subspace orientation) is undecidable.
Geisler [14] and Prest [27] showed that the theory of modules over all tame hereditary

algebras (over recursive fields with splitting algorithms) is decidable. In the converse direction,
Prest showed that the theory of modules of strictly wild algebras is undecidable [30], and thus,
all wild finite-dimensional hereditary algebras have undecidable theories of modules. Improving
this result, the author, together with Prest, has shown that, over an algebraically closed field,
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 461

all (finitely) controlled wild algebras have undecidable theories of modules [15]. Note that at
this time there is no known finite-dimensional algebra (over an algebraically closed field) which
is wild but not (finitely) controlled wild. Indeed, Ringel has conjectured that all wild algebras
(over algebraically closed fields) are controlled wild.

Toffalori and Puninski [33] have worked on the problem of classifying finite commutative
rings which have decidable theories of modules, which, of course, includes all commutative
finite-dimensional algebras over finite fields.

The main result of this paper is the following.

Theorem. Let R be a tubular algebra over a recursive algebraically closed field. The
common theory of R-modules is decidable.

Our result supports the following long standing conjecture of Mike Prest.

Conjecture [28]. Let R be a finite-dimensional algebra over a suitably recursive field.
The theory of R-modules is decidable if and only if R is of tame representation type.

Tubular algebras are finite-dimensional non-domestic tame algebras of linear growth (see [38,
3.6] where tubular algebras are referred to as Ringel algebras). These are the first examples of
non-domestic algebras which have been shown to have decidable theory of modules.

A finite-dimensional k-algebra is of tame representation type if for each dimension d, almost
all d-dimensional modules are in μ(d) ∈ N many 1-parameter families (for a precise definition
see [37, 3.3]). An algebra is of domestic representation type if there is a finite bound on μ(d).
So, the module categories of non-domestic algebras are significantly more complex than those
of domestic representation type. A finite-dimensional k-algebra R is of wild representation type
if there is an exact k-linear functor F : fin-k〈x, y〉 → mod-R which preserves indecomposability
and reflects isomorphism type, where fin-k〈x, y〉 denotes that category of finite-dimensional
right modules over the free k-algebra in two non-commuting variables. Drozd [9] showed that all
finite-dimensional algebras over algebraically closed fields are either wild or tame and not both.

Tubular algebras, introduced by Ringel in [35], belong to a wider class of algebras called the
concealed canonical algebras. According to [25], the concealed canonical algebras are exactly
those algebras which admit a sincere separating tubular family of stable tubes. Equivalently,
they are exactly the endomorphism rings of tilting bundles in categories of coherent sheaves
on Geigle–Lenzing weighted projective lines. Moreover, the tubular algebras are exactly the
tame non-domestic concealed canonical algebras [24, 3.6]; this perspective gives a geometric
interpretation of the category of finite-dimensional modules over a tubular algebra akin to
Atiyah’s description of the category for coherent sheaves on an elliptic curve. As a corollary to
our main theorem, we are able to conclude, see Corollary 9.3, that Prest’s conjecture is true
for all concealed canonical algebras.

Our methods for proving our main result are inspired by results of Harland and Prest in
[17], an understanding of the Ziegler topology for modules of a fixed rational slope, decidability
for tame hereditary algebras and decidability of Presburger arithmetic. For most of the paper
we will work with general tubular algebras. However, in Section 6, we will mainly deal with
canonical algebras of tubular type.

We also show that [17, Corollary 8.8] is false and provide, see Theorem 7.7, a best possible
replacement for that result.

2. Background

If R is a ring, then we write mod-R for the category of finitely presented right R-modules,
Mod-R for the category of all right R-modules and ind-R for the set of isomorphism classes of
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462 LORNA GREGORY

finitely presented indecomposable right R-modules. If M,N ∈ Mod-R, then we will frequently
write (N,M) for HomR(N,M).

If X is a class of modules, then we write (M,X ) = 0 (respectively, (X ,M) = 0) to mean that
(M,X) = 0 (respectively, (X,M) = 0) for all X ∈ X .

We will usually assume that finite-dimensional algebras are basic, connected and over an
algebraically closed base field. Note, however, that every finite-dimensional algebra is (k-
linearly) Morita equivalent to a basic algebra and every basic finite-dimensional algebra is
isomorphic to a finite product of basic connected algebras. So, for the main results of this
article, restricting to basic connected finite-dimensional algebras is only a cosmetic restriction.

2.1. Grothendieck groups and the Euler characteristic

Let R be a finite-dimensional algebra, let S1, . . . , Sn be the simple modules over R and for
1 � i � n, let Pi be the projective cover of Si. If M is a finite-dimensional module over R, then
we call

dimM = (dim HomR(P1,M), . . . ,dim HomR(Pn,M)),

the dimension vector of M . The Grothendieck group, K0(R), of a finite-dimensional algebra
R is the abelian group generated by the isomorphism classes [X] of modules X ∈ mod-R and
subject to the relation [Y ] − [X] − [Z] = 0 whenever there exists a short exact sequence

0 → X → Y → Z → 0.

Note that K0(R) ∼= Zn. Moreover, we identify K0(R) with Zn via the unique isomorphism
which for all M ∈ mod-R sends [M ] to dimM .

We say a vector x = (x1, . . . , xn) ∈ K0(R) is positive if xi � 0 for 1 � i � n and x �= 0. Note
that x is positive if and only if x = dimM for some non-zero M ∈ mod-R.

The assumption that R is basic implies, [2, II.2], that there exists a quiver Q, with vertices
corresponding to the simple R-modules, such that R is isomorphic to the quotient of the path
algebra kQ by an admissible ideal. We say x ∈ K0(R) is connected if its support is connected
in the underlying quiver Q of R.

The Grothendieck group of a finite-dimensional algebra R of finite global dimension can
be equipped with a bilinear form 〈−,−〉, called the Euler characteristic, such that for all
M,N ∈ mod-R,

〈[M ], [N ]〉 :=
∞∑
i=0

(−1)i dim Exti(M,N),

see [2, III.3.13].
The Euler quadratic form of R is defined as χR(x) := 〈x, x〉. We call an element x ∈ K0(R)

radical if χR(x) = 0 and a root if χR(x) = 1. We denote the set of radical vectors radχR.

2.2. Tubular algebras

We will not give the definition of a tubular algebra in terms of branch extensions of tame
concealed algebras, for this see [35, Chapter 5] or [37, XIX 3.19]; instead we will describe their
module categories.

As mentioned in the Introduction, another route to tubular algebras is via coherent sheaves
on Geigle–Lenzing weighted projective lines. We will use this perspective in Section 7 and briefly
in Section 9. Introductory material and references on this topic are contained in Section 7.2.1.

The Euler quadratic form of a tubular algebra is positive semi-definite. It follows from [35,
1.1.1] that x ∈ radχR if and only if 〈x, y〉 + 〈y, x〉 = 0 for all y ∈ K0(R). So, in particular,

(1) radχR is a subgroup of K0(R),
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 463

(2) if x, y ∈ radχR then 〈x, y〉 = −〈y, x〉 and
(3) if x ∈ radχR and y ∈ K0(R) then χR(x + y) = χR(y).

If R is a tubular algebra, then there exists a canonical pair of linearly independent radical
vectors h0, h∞ which generate a subgroup of radχR of finite index [35, Section 5.1].

For finite-dimensional indecomposable modules M over R, we define the slope of M to be

slope(M) = − 〈h0,dimM〉
〈h∞,dimM〉 .

For q ∈ Q∞
0

†, let Tq be the set of isomorphism classes of indecomposable finite-dimensional
modules of slope q. Let P0 be the preprojective component (the indecomposable finite-
dimensional modules M with 〈h0,dimM〉 < 0 and 〈h∞,dimM〉 � 0) and let Q∞ be the
preinjective component (the indecomposable finite-dimensional modules M with 〈h0,dimM〉 �
0 and 〈h∞,dimM〉 > 0).

Theorem 2.1 [35]. Let R be a tubular algebra. The set of indecomposable finite-
dimensional modules is

P0 ∪
⋃

{Tq | q ∈ Q∞
0 } ∪ Q∞,

where each Tq is a tubular family separating Pq := P0 ∪
⋃
{Tq′ | q′ < q} from Qq :=⋃

{Tq′ | q′ > q} ∪ Q∞.

That Tq separates Pq from Qq means that 0 = (Tq,Pq) = (Qq, Tq) = (Qq,Pq) and, that for
every tube T (ρ) ∈ Tq and every homomorphism from L ∈ Pq to M ∈ Qq, factors through a
direct sum of modules in T (ρ).

All finite-dimensional modules over tubular algebras have injective dimension � 2 and
projective dimension � 2. This means that dim Extn(−,−) terms of the Euler characteristic
are zero for n > 2. All finite-dimensional indecomposable modules of strictly positive rational
slope have projective and injective dimensions less than or equal to 1 [35, 3.1.5]. Thus, for
those modules

〈−,−〉 := dim Hom(−,−) − dim Ext(−,−).

Theorem 2.2 [35, 5.2.6, pg 278]. Let R be a tubular algebra.

(1) For any indecomposable finite-dimensional R-module X, dimX is either a connected
positive root or a connected positive radical vector of χR.

(2) For any positive connected root vector x ∈ K0(R), there is a unique indecomposable
module X ∈ mod-R with dimX = x.

(3) For any positive connected radical vector x ∈ K0(R), there is an infinite family of
indecomposable modules with dimX = x.

We will refer to the properties asserted in this theorem as mod-R is controlled by χR.

If R is a finite-dimensional k-algebra and M is a right (respectively, left) R-module, then we
write M∗ for its k-dual the left (respectively right) R-module Hom(M,k).

Remark 2.3. Let R be a tubular algebra. If M is a finite-dimensional indecomposable with
slope a, then the slope of M∗ is 1/a, here we read 1/0 as ∞ and 1/∞ as 0. If M is preprojective
(respectively, preinjective), then M∗ is preinjective (respectively, preprojective).

†By Q∞
0 we mean the non-negative rational together with a maximal element ∞
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464 LORNA GREGORY

The definition of slope on finite-dimensional indecomposable modules is extended to infinite-
dimensional modules by Reiten and Ringel in [34] as follows.

Definition 2.4. Let r ∈ R∞
0

†. We say a module M is of slope r if (M,P ) = 0 and (Q,M) =
0 for all P ∈ Pr and Q ∈ Qr.

Note that M ⊗ P ∗ = 0 if and only if (M,P ) = 0 because

Homk(M ⊗R P ∗, k) ∼= HomR(M,Homk(P ∗, k)) ∼= HomR(M,P )

for P ∈ mod-R. Therefore M has slope r if and only if M ⊗ P ∗ = 0 and (Q,M) = 0 for all
P ∈ Pr and Q ∈ Qr.

Theorem 2.5 [34, 13.1]. All indecomposable modules, except for the finite-dimensional
preprojectives and preinjectives, over a tubular algebra have a slope.

2.3. pp-formulas

We now recall some concepts and results from model theory of modules; the necessary
background can be found in [31] or [28].

A pp-n-formula is a formula in the language LR = (0,+, (·r)r∈R) of (right) R-modules of the
form

∃y(x, y)H = 0,

where x is a n-tuple of variables and H is an appropriately sized matrix with entries in R. If ϕ
is a pp-formula and M is a right R-module, then ϕ(M) denotes the set of all elements m ∈ Mn

such that ϕ(m) holds. Note that for any module M , ϕ(M) is a subgroup of Mn equipped with
the addition induced by addition in M . We identify two pp-formulas if they define the same
subgroup in every R-module, equivalently in every finitely presented R-module [31, 1.2.23].
After apply this identification, for each n ∈ N the set of (equivalence classes of) pp-n-formulas
forms a lattice with the order given by implication, that is, ψ � ϕ if and only if ψ(M) ⊆ ϕ(M)
for all R-modules M . The meet of two pp-n-formulas ϕ,ψ is given by ϕ ∧ ψ and the join is
given by ϕ + ψ.

If M is finitely presented module and m ∈ Mn, then there is a pp-n-formula ϕ which
generates the pp-type of m in M , that is, for all pp-formulas ψ, ψ � ϕ if and only if m ∈ ψ(M).
Conversely, if ϕ is a pp-n-formula, then there exists a finitely presented module M and m ∈ Mn

such that ϕ generates the pp-type of m in M . We call M together with m a free-realisation of
ϕ. For proofs of these assertions and more about free-realisations, see [31, Section 1.2.2].

A pair of pp-formulas ϕ/ψ is a pp-n-pair‡ if for all R-modules M , ϕ(M) ⊇ ψ(M). We say
that a pp-pair ϕ/ψ is open on M if ϕ(M) �= ψ(M) and closed on M if ϕ(M) = ψ(M).

A functor from Mod-R to Ab is said to be coherent if it is additive and if it commutes
with products and direct limits. Every pp-pair gives rise to a coherent (additive) functor ϕ/ψ :
Mod-R → Ab by sending M ∈ Mod-R to ϕ(M)/ψ(M). All coherent functors arise in this way.
Moreover, these are exactly the functors F such that there exist A,B ∈ mod-R and f : B → A
such that

(A,−)
(f,−)−−−→ (B,−) → F → 0

is exact. See [31, Section 10].

†By R∞
0 we mean the non-negative reals together with a maximal element ∞

‡This notation for a pair of pp-formulae, which is standard in the area, is used to indicate that we are
interested in the quotient groups ϕ(M)/ψ(M) for R-modules M .
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 465

For example, the functors (M,−) and −⊗M are coherent when M is finitely presented and
hence equivalent to functors defined by pp-pairs.

2.4. Definable subcategories and Ziegler spectra

A definable subcategory of Mod-R is a subcategory which is closed under pure-submodules,
taking direct limits and products. Equivalently, see [31, 3.47], a full subcategory D of Mod-R
is a definable subcategory if there is a set of pp-pairs Ω such that M ∈ D if and only if
ϕ(M) = ψ(M) for all ϕ/ψ ∈ Ω. If X ⊆ Mod-R then we will write 〈X〉 for the smallest definable
subcategory containing X.

Let R be a tubular algebra and r ∈ R∞
0 . Since −⊗ P ∗ is a coherent functor for each finite-

dimensional P and (Q,−) is a coherent functor for each finite-dimensional Q, the class of all
modules of slope r is a definable subcategory which we denote by Dr.

Let R be a ring. An embedding of R-modules f : M → N is pure if for every pp-1-formula ϕ,
f(ϕ(M)) = ϕ(N) ∩ f(M). A right R-module M is pure-injective if it is injective over all pure-
embeddings.

The (right) Ziegler spectrum of a ring R is a topological space with set of points, pinjR, the
isomorphism classes of indecomposable pure-injectives and basis of open sets given by

(ϕ/ψ) := {N ∈ pinjR | ϕ(N) �= ψ(N)},

where ϕ/ψ is a pp-pair.
The open sets (ϕ/ψ) are exactly the compact open sets of ZgR. Note that this means that

ZgR itself is compact. We should mention here that the open sets of the form (ϕ/ψ) where ϕ
and ψ are pp-1-formulas are also a basis for ZgR.

There is a correspondence between closed subsets of ZgR and definable subcategories of
Mod-R given by taking a closed subset C to the smallest definable subcategory 〈C〉 containing
C and in the opposite direction taking a definable subcategory D to D ∩ pinjR.

The following is an explanation of the above correspondence. If D1 and D2 are definable
subcategories of Mod-R, then D1 = D2 if and only if D1 ∩ pinjR = D2 ∩ pinjR [31, 5.1.5]. Thus,
if D is a definable subcategory, then D = 〈D ∩ pinjR〉. Conversely, if C is a closed subset of ZgR
and N ∈ 〈C〉 ∩ pinjR, then for all pp-pairs ϕ/ψ, ϕ(N) �= ψ(N) implies ϕ(M) �= ψ(M) for some
M ∈ C. Since C is closed and the basis of ZgR is given by pp-pairs, N ∈ C. Thus C = 〈C〉 ∩ pinjR.

Let R be a tubular algebra and r ∈ R∞
0 . We denote the set of all indecomposable pure-

injectives of slope r by Cr. So Cr = Dr ∩ pinjR.
For each rational q ∈ Q+†, the indecomposable pure-injective modules in Dq have been

completely described.

Lemma 2.6 [16, Lemma 50]. The following is a complete list of the indecomposable pure-
injective modules in Dq:

(1) the modules in Tq,
(2) a unique Prüfer module S[∞] for each quasi-simple S in Tq,
(3) a unique adic module Ŝ for each quasi-simple S in Tq,
(4) the unique generic module Gq.

In Section 4, we will describe the topology on Cq for q ∈ Q+.
For r ∈ R+‡ irrational this has already been done in [17].

†By Q+ we mean the strictly positive rationals.
‡By R+ we mean the strictly positive reals.
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466 LORNA GREGORY

Theorem 2.7 [17, Theorem 8.5]. Let R be a tubular algebra and r ∈ R+ irrational. The
definable subcategory Dr has no non-trivial proper definable subcategories.

Two points x, y in a topological space are said to be topologically indistinguishable if for all
open sets U , x ∈ U if and only if y ∈ U . Since the closed subsets of ZgR correspond to definable
subcategories of Mod-R, this means that, after identifying topologically indistinguishable
points, there is exactly one point in Cr for r ∈ R+ irrational.

In Section 6 we will use Prest’s elementary duality for pp-formulas and Herzog’s elementary
duality for the Ziegler spectrum in order to transfer results about P0 ∪ C0 to results about
C∞ ∪ Q∞.

A duality between the lattice of right pp-n-formulae and the lattice of left pp-n-formulae
was first introduced by Prest [28, Section 8.4] and then extended by Herzog [18] to give an
isomorphism between the lattice of open set of the left Ziegler spectrum of a ring and the
lattice of open sets of the right Ziegler spectrum of a ring.

Definition 2.8. Let ϕ be a pp-n-formula in the language of right R-modules of the form
∃ȳ(x̄, ȳ)H = 0 where x̄ is a tuple of n variable, ȳ is a tuple of l variables, H = (H ′ H ′′)T and
H ′ (respectively, H ′′) is a n×m (respectively, l ×m) matrix with entries in R. Then Dϕ is
the pp-n-formula in the language of left R-modules ∃z̄(I H′

0 H′′)(x̄z̄) = 0.

Similarly, let ϕ be a pp-n-formula in the language of left R-modules of the form ∃ȳ H(x̄ȳ) = 0
where x̄ is a tuple of n variable, ȳ is a tuple of l variables, H = (H ′ H ′′) and H ′ (respectively,
H ′′) is an m× n (respectively, m× l) matrix with entries in R. Then Dϕ is the pp-n-formula
in the language of right R-modules ∃z̄ (x̄, z̄)( I 0

H′ H′′) = 0.

Note that the pp-formula a|x for a ∈ R is mapped by D to a formula equivalent to xa = 0
and the pp-formula xa = 0 for a ∈ R is mapped by D to a formula equivalent to a|x.

Theorem 2.9 [28, Chapter 8]. The map ϕ → Dϕ induces an anti-isomorphism between the
lattice of right pp-n-formulae and the lattice of left pp-n-formulae. In particular, if ϕ,ψ are pp-
n-formulae then D(ϕ + ψ) is equivalent to Dϕ ∧Dψ and D(ϕ ∧ ψ) is equivalent to Dϕ + Dψ.

This gives rise ‘at the level of open sets’ to a homeomorphism from the left Ziegler spectrum
of R to the right Ziegler spectrum of R. To be precise the following theorem.

Theorem 2.10 [18]. The map D given on basic opens sets by

(ϕ/ψ) �→ (Dψ/Dϕ)

is an idempotent lattice isomorphism from the lattice of open sets of ZgR to the lattice of open
sets of RZg.

It is unknown whether this lattice isomorphism always comes from a homeomorphism or
even if this map always comes from a homeomorphism between ZgR and RZg after identifying
topologically indistinguishable points in both spaces.

The lattice isomorphism between open sets in ZgR and open sets in RZg gives rise to a lattice
isomorphism between the lattices of closed sets.

Remark 2.11. Under the lattice isomorphism D, C0 in ZgR is sent to C∞ in RZg. This
follows from the proofs of Lemmas 3.8 and 3.9 in Sections 3 and 2.3.
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 467

Lemma 2.12 [31, 1.3.13]. Let R be a finite-dimensional k-algebra. Let ϕ/ψ be a right
pp-pair and M a right R-module. Then ψ(M) � ϕ(M) if and only if Dϕ(M∗) � Dψ(M∗).

2.5. Baur–Monk and decidability

Let ϕ/ψ be a pp-n-pair and n ∈ N. There is a sentence, denoted by |ϕ/ψ| � n in the language of
(right) R-modules, which expresses in every R-module M that the quotient group ϕ(M)/ψ(M)
has at least n elements. Such sentences will be referred to as invariant sentences.

Theorem 2.13 (Baur–Monk theorem [28]). Let R be a ring. Every sentence χ ∈ LR is
equivalent to a Boolean combination of invariant sentences.

If R is an algebra over an infinite field, then for all pp-pairs ϕ/ψ and all R-modules M ,
|ϕ(M)/ψ(M)| is either equal to one or infinite. This is because if M is a module over a
k-algebra, then ϕ(M) and ψ(M) are k-vector subspaces of Mn and thus so is ϕ(M)/ψ(M).

A recursive field is a field k together with a bijection with N such that addition and
multiplication in the field induce recursive functions on N via this bijection. If k is a countable
algebraically closed field, then there exists a bijection f : k → N so that k together with f is a
recursive field. With a bit of work, this follows from [11, 5.1] together with the fact, [26, 2.2.9],
that the theory of algebraically closed fields of a specified characteristic is decidable.

We will frequently use the word ‘effectively’ followed by an operation in this paper. For
example, ‘effectively calculate’, ‘effectively decide’ or as in the next paragraph ‘effectively list’.
This is just short hand for there exists an algorithm which performs that operation.

If R is a finite-dimensional algebra over a recursive field, then the theory of R-modules is
recursively axiomatisable, that is, we can effectively list axioms for the theory of R-modules.
In this situation we may use the so-called proof algorithm, which lists all sentences that are
true in all R-modules by listing all formal proofs in first-order logic from the axioms for the
theory of R-modules.†

With the proof algorithm in hand, we may then compute, for each sentence Θ ∈ LR, a
Boolean combination χ of invariant sentences that is equivalent to Ω as follows: In the list
of formal proofs we search for entries of the form Ω ↔ χ for some Boolean combination of
invariant sentences χ. By Baur–Monk the search terminates.

Thus, given a finite-dimensional algebra R over an algebraically closed recursive field k, in
order to show that the theory of R-modules is decidable, it is enough to show that there is an
algorithm which, given a boolean combination χ of invariant sentences of the form |ϕ/ψ| > 1,
answers whether there is an R-module in which χ is true.

If χ is a boolean combination of invariants sentences, we can put it into disjunctive normal
form

∨n
i=1 χi where each χi is a conjunction of invariants sentences and negations of invariants

sentences. It is therefore enough to be able to check whether one of the χi is true in some
R-module.

Suppose that χ is of the form
n∧

i=1

|ϕi/ψi| > 1 ∧
m∧
j=1

|σj/τj | = 1,

where ϕi/ψi and σj/τj are pp-1-pairs. Since every module is elementary equivalent to a
(possibly infinite) direct sum of indecomposable pure-injective modules [28, 4.36] and solution

†The existence of such an algorithm may be found in any standard source on first order logic, for example,
[10]
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468 LORNA GREGORY

sets of pp-formulas commute with direct sums, there is an R-module M which satisfies χ if and
only if there are indecomposable pure-injective R-modules M1, . . . ,Mn such that Mi satisfies

|ϕi/ψi| > 1 ∧
m∧
j=1

|σj/τj | = 1

for each 1 � i � n.
Thus, it is enough to show that there is an algorithm which given pp-1-pairs,

ϕ/ψ, ϕ1/ψ1, . . . , ϕn/ψn answers whether

(ϕ/ψ) ⊆
n⋃

i=1

(ϕi/ψi).

An interpretation functor, I : Mod-R → Mod-S, is specified (up to equivalence) by giving
a pp-m-pair ϕ/ψ and, for each s ∈ S, a pp-2m-formula ρs such that, for all M ∈ Mod-R, the
solution set ρs(M,M) ⊆ Mm ×Mm defines an endomorphism of ϕ(M)/ψ(M) as an abelian
group, and such that ϕ(M)/ψ(M), together with the ρs actions, is an S-module (see [29] or
[31, 18.2.1]).

An interpretation functor I : Mod-R → Mod-S gives rise to a mapping χ �→ χ′ from the set
of sentences in the language of S-modules to the set of sentences in the language of R-modules
such that for any R-module M , χ is true for IM if and only if χ′ is true for M . In particular,
χ is true for all S-modules in the image of I if and only if χ′ is true for all R-modules.

If R and S are finite-dimensional k-algebras and I : Mod-R → Mod-S is a k-linear interpre-
tation functor, then together with ϕ/ψ, it is enough to specify pp-formulas ρs1 , . . . , ρsn where
s1, . . . , sn are a k-basis for S and then extend k-linearly. Moreover, if k is a recursive field, then
the induced mapping on sentences in the previous paragraph is effective.

3. Basic calculations

Let k be a recursive field. In this section we list basic operations that can be carried out
effectively over k which we will need later in the paper. We will sketch proofs of some of the
less trivial operations.

Remark 3.1. Given a finite subset S of kn and v ∈ kn, we can effectively calculate a basis
for SpanS, decide whether v ∈ SpanS and find a basis for a complement of SpanS. In particular,
we can effectively calculate the dimension of SpanS.

Remark 3.2. Given a matrix M ∈ Mn×l(k) we can effectively find a basis for the kernel of
M in kn and the image of M in kl when considering M as a linear map from kn to kl. Hence
we can calculate the rank of M .

Let R be a finite-dimensional algebra with k-basis r1 = 1, . . . , rs. Let αk
ij ∈ k be such that

rirj =
∑s

k=1 α
k
ijrk. These relations and that r1, . . . , rs is a k-basis for R completely define R

as a k-algebra. An R-module M is now given by a k-vector space V together with linear maps
ϕ1, . . . , ϕs ∈ Homk(V, V ) such that ϕi ◦ ϕj =

∑s
k=1 α

k
ijϕk. Now, if V is finite-dimensional, say

of dimension d, by picking a basis B for V , we may identify M with (kd, A1, . . . , As) where
A1, . . . , As are d× d matrices with entries in k representing the linear maps ϕ1, . . . , ϕs with
respect to B. We call (kd, A1, . . . , As) a presentation of M . Note that if A1, . . . , As are d× d
matrices with entries in k, then (kd, A1, . . . , As) is a presentation of an R-module if and only
if AiAj =

∑s
k=1 α

k
ijAk for 1 � i, j � s.

 1460244x, 2021, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12403 by T

est, W
iley O

nline L
ibrary on [18/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 469

If (kd, A1, . . . , As) is a presentation of an R-module, then we write

M(A1, . . . , As)

for the R-module it represents.

Remark 3.3. Let R be a finite-dimensional k-algebra with k-basis r1, . . . , rs. Given
presentations of R-modules (kn, A1, . . . , As) and (kl, B1, . . . , Bs), we can effectively calculate
a basis for the subspace

Mn×l(k) ⊇ {Φ ∈ Mn×l(k) | AiΦ = ΦBi for 1 � i � s}.

Note that this set is Hom(M(A1, . . . , As),M(B1, . . . , Bs)) in terms of matrices with respect to
the standard basis.

From now on we will assume that k is a recursive algebraically closed field and that R is a
finite-dimensional algebra over k given in terms of a k-basis r1, . . . , rs and relations.

Lemma 3.4. Given a presentation (kn, A1, . . . , As) of an R-module M , we can effectively
decide whether M is indecomposable or not. If M is decomposable, then we can effectively
find non-zero pair-wise disjoint A1, . . . , As-invariant subspaces V1, . . . , Vm of kn such that each
Vi with the restricted action of A1, . . . As is indecomposable as an R-module and such that
V1 + · · · + Vm = kn.

Proof. Firstly, we effectively find a basis for EndR(M). That is, we find a basis T1, . . . , Tl

for the subspace

Mn×n(k) ⊇ {Φ ∈ Mn×n(k) | AiΦ = ΦAi for 1 � i � s}.

We may assume that T1 is the identity matrix.
Now M is indecomposable if and only if EndR(M) has no idempotents apart from 0

and 1. For a1, . . . , al ∈ k, the condition that a1T1 + · · · + alTl is idempotent is equivalent to
a = (a1, . . . , al) being a root of a particular system of polynomial equations with coefficients
in k (and we can find this system effectively). Using effective quantifier elimination for
algebraically closed fields, we can thus decide whether there exists (a1, . . . , al) ∈ k such that
a �= 0, a �= (1, 0, . . . , 0) and a1T1 + · · · + alTl is idempotent. Thus, given a presentation of a
finite-dimensional R-module, we can effectively decide if it is indecomposable or not.

Supposing that we know that M is not indecomposable, we may now search for an idempotent
e represented by a1T1 + · · · + alTl in EndR(M) which is not the identity or zero. We know we
will eventually find one because M is not indecomposable. Now M = eM ⊕ (e− 1)M and we
can easily use our presentation of M to get presentations of eM and (e− 1)M . If either eM
or (e− 1)M is decomposable, then we may repeat the process eventually stoping when we get
a decomposition of M into indecomposable summands. �

Lemma 3.5. There is an algorithm which lists the indecomposable finite-dimensional
representations of R.

Proof. Given Lemma 3.4, it is enough to be able to effectively decide if, given two
presentations (kn, A1, . . . , As) and (kn, B1, . . . , Bs) of indecomposable R-modules M and N ,
M is isomorphic to N .

We can compute a basis T1, . . . , Tl for

HomA(M(A1, . . . , An),M(B1, . . . , Bn))
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470 LORNA GREGORY

and S1, . . . , Sl for

HomA(M(B1, . . . , Bn),M(A1, . . . , An)).

Now M(A1, . . . , An) and M(B1, . . . , Bn) are isomorphic if and only if there exist t1, . . . , tl ∈ k
and s1, . . . , sl ∈ k such that (t1T1 + · · · + tlTl)(s1S1 + · · · + slSl) = 1. This can be expressed
as a system of polynomial equations over k in t1, . . . , tl, s1, . . . , sl, and thus, we may check,
using effective quantifier elimination for algebraically closed fields, whether it has a solution or
not. �

Lemma 3.6. Given a presentation of a finitely presented R-module M and a pp-pair ϕ/ψ,
we can effectively decide whether ϕ/ψ is open on M or not.

Proof. Given a pp-n-formula ϕ we can calculate the dimension as a k-vector space of the
solution set of ϕ in Mn as follows. Suppose that ϕ is

∃y1, . . . , ym

l∧
i=1

x1r1i + · · · + xnrni + y1s1i + · · · + ymsmi = 0.

The k-dimension of ϕ(M) is the k-dimension of the solution set of
l∧

i=1

x1r1i + · · · + xnrni + y1s1i + · · · + ymsmi = 0

minus the k-dimension of the solution set of
l∧

i=1

y1s1i + · · · + ymsmi = 0.

Since ϕ/ψ is a pp-pair, ϕ(M) ⊇ ψ(M), so the dimension of ϕ(M)/ψ(M) is dimk ϕ(M) −
dimk ψ(M). So ϕ/ψ is open on X if and only if dimk ϕ(M) > dimk ψ(M). �

Lemma 3.7. Given a presentation of a finite-dimensional module M , we can effectively find
a pp-n-formula generating the pp-type of a generating tuple for M .

Proof. Let (kn, A1, . . . , As) be a presentation of M and let e = (e1, . . . , en) be the n-tuple
of standard basis vectors for kn. We need to write down finitely many linear equations over
R which describe the linear relations over R which e satisfies. We can do this by describing a
system of finitely many linear equations over k which describe the linear relations between the
vectors eiAj in kn. �

Lemma 3.8. Given a presentation of a finite-dimensional module M , we can effectively
find a pp-n-pair ϕ/x = 0 such that the functor (M,−) is equivalent to the functor defined by
ϕ/x = 0.

Proof. Given a presentation (kn, A1, . . . , As) of M , by Lemma 3.7, we can effectively find a
pp-n-formula generating the pp-type of the standard basis for kn in M . �

Lemma 3.9. Given a presentation of a finite-dimensional module M , we can effectively find
a pp-n-pair x = x/ψ such that the functor −⊗M∗ is equivalent to the functor defined by
x = x/ψ.

Proof. If ϕ is a pp-formula, then Dϕ denotes the elementary dual pp-formula in the sense of
[31, Section 1.3]. Computing the elementary dual of a pp-formula is clearly effective. If ϕ/x = 0
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 471

is isomorphic to Hom(M∗,−), then x = x/Dϕ is isomorphic to −⊗M∗, see [31, Section 10.3].
The previous Lemma 3.8 now finishes the proof. �

Lemma 3.10. Given a presentation of a finitely presented R-module M , we can calculate its
dimension vector. Hence, given a presentation of a finitely presented indecomposable R-module
M over a tubular algebra R, we can calculate the slope of M .

Proof. That we can calculate the dimension vector of a module now follows directly
from Remark 3.3. �

Corollary 3.11. We can list presentations of the finite-dimensional indecomposable
modules of slope q. We can list the quasi-simples of slope q.

Proof. The quasi-simples of slope q are just those modules of slope q with 1-dimensional
endomorphism ring. �

Lemma 3.12. Given a quasi-simple S of slope q, we can list the finite-dimensional modules
in the ray starting at S and in the coray starting at S.

Proof. Look for M indecomposable of slope q with Hom(S,M) �= 0 (respectively,
Hom(M,S) �= 0). �

Lemma 3.13. There is an algorithm, which, given a presentation of a finite-dimensional
indecomposable R-module M , outputs a pp-1-pair ϕ/ψ isolating M in ZgR.

Proof. Given a finite-dimensional indecomposable module M over a finite-dimensional
algebra, [7] gives a method of effectively constructing an almost split sequence

Pick m ∈ M non-zero and calculate ϕ generating the pp-type of m and ψ generating the pp-type
of f(m). Then ϕ/ψ isolates M (see [31, Theorem 5.3.31]).

By 3.7 we can effectively find a pp-formula ψ(x) generating the pp-type of the standard k-
basis (e1, . . . , en) of M . The pp-type of m is ∃y (ϕ(y) ∧ x =

∑n
i=1 yiai) where m =

∑n
i=1 eiai.

Thus, we can effectively find a pp-formula generating the pp-type of m. �

Lemma 3.14. Given presentations of finitely many finite-dimensional indecomposable
modules X1, . . . , Xm and a pp-1-pair ϕ/ψ, we can effectively find pp-pairs ϕ1/ψ1, . . . , ϕn/ψn

such that (ϕ/ψ)\{X1, . . . , Xm} =
⋃n

i=1(ϕi/ψi).

Proof. Suppose that we are given presentations of finitely many finite-dimensional indecom-
posable modules X1, . . . , Xm. For each j, let {Xj} = (σj/τj). By Lemma 3.13, we can find σj/τj
effectively. Since (ϕ/ψ) is compact and the set {X1, . . . , Xm} is clopen, (ϕ/ψ)\{X1, . . . , Xm}
is compact. Thus there exists pp-pairs ϕ1/ψ1, . . . , ϕn/ψn such that

(ϕ/ψ)\{X1, . . . , Xm} = ∪n
i=1(ϕi/ψi).

This is equivalent to ϕ1/ψ1, . . . , ϕn/ψn being such that for all 1 � i � n, Xj /∈ (ϕi/ψi) and

|ϕ/ψ| > 1 ↔
n∨

i=1

|ϕi/ψi| > 1 ∨
n∨

j=1

|σj/τj | > 1.
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472 LORNA GREGORY

We can now use the proof algorithm and Lemma 3.6 to search for ϕ1/ψ1, . . . , ϕn/ψn such
that for all 1 � j � m and for all 1 � i � n, Xj /∈ (ϕi/ψi) and

|ϕ/ψ| > 1 ↔
n∨

i=1

|ϕi/ψi| > 1 ∨
n∨

j=1

|σj/τj | > 1.
�

Lemma 3.15. There is an algorithm which given a pp-1-formula ϕ outputs a presentation
of a finite-dimensional module M and an element m ∈ M such that (M,m) freely realises ϕ.

Lemma 3.16. There is an algorithm which, given a presentation of a module M and an
element m, outputs a presentation of M/mR.

Proof. We are using the fact that given a finite subset L of kn, we can algorithmically find
a basis for SpanL and a basis for a complement of SpanL.

Let (kn, A1, . . . , As) be a presentation for M and identify m with its image in kn with respect
to this presentation.

Find a basis e1, . . . , et for Span{m,mA1, . . . ,mAs} and a basis for a complement f1, . . . , fl
of Span{m,mA1, . . . ,mAs}. By considering the action of A1, . . . , As on f1, . . . , fl, we get a
presentation of M/mR. �

4. Ziegler spectra of tubes of rational slope

In this section we describe the Ziegler spectrum of Dq where q ∈ Q+. That is, we describe the
induced topology on Cq := ZgR ∩ Dq by describing the closed subsets of Cq.

Recall the complete list of indecomposable pure-injectives of rational slope q from Lemma 2.6.
We essentially follow Ringel’s proof from [36] for tame hereditary algebras.

Proposition 4.1. A subset X of Cq is closed if and only if the following hold.

(1) If S is a quasi-simple in Tq and if there are infinitely many finite length modules M ∈ X
with Hom(S,M) �= 0, then S[∞] ∈ X.

(2) If S is a quasi-simple in Tq and if there are infinitely many finite length modules M ∈ X

with Hom(M,S) �= 0, then Ŝ ∈ X.
(3) If there are infinitely many finite length modules in X or X contains an infinite length

module, then Gq ∈ X.

Lemma 4.2. If X is a closed subset of Cq, then (1) from Proposition 4.1 holds.

Proof. This is clear since the Prüfer module is a direct union of such modules. �

Lemma 4.3. If X is a closed subset of Cq, then (2) from Proposition 4.1 holds.

Proof. Suppose that X contains infinitely many finite-dimensional modules M with
Hom(M,S) �= 0. Then each of these M is in the coray starting at S. Therefore Ŝ is an inverse
limit of these M . So by [6, 2.3], Ŝ is in the closure of these M . �

Lemma 4.4. If X is a closed subset of Cq, then (3) from Proposition 4.1 holds.

Proof. Since X is closed, it is compact. Therefore if X contains infinitely many isolated
points, then X must contain a non-isolated point. By [31, 5.3.31], all finite-dimensional points
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 473

are isolated in the Ziegler spectrum of a finite-dimensional algebra, and hence, all finite-
dimensional points are isolated in Cq. Therefore, if X contains infinitely many finite-dimensional
indecomposable modules, then X must contain an infinite-dimensional module, that is, either
an adic, Prüfer or generic module. By [19, 8.10] we know that the generic is in the closure of
every adic and every Prüfer. �

Proof of Proposition 4.1. The proof of Proposition 4.1 now is the same as Ringel’s proof for
tame hereditary algebras but working inside Dq. �

Definition 4.5. Let E be a quasi-simple of slope q and i ∈ N. Let

R[E[i]] := {E[j] | j � i} ∪ {E[∞]}
and

C[[i]E] := {[j]E | j � i} ∪ {Ê}.
Note that, by Proposition 4.1, both these sets are open in the subspace topology on Cq. We
call open sets of the form R[E[i]] rays and open sets of the form C[[i]E] corays.

We now classify the compact open subsets of Cq.

Proposition 4.6. The compact open subsets of Cq are either cofinite (excluding only
finite-dimensional points) or a finite union of rays and corays plus finitely many other finite-
dimensional points.

Proof. If U is an open set containing the generic, then its complement only contains finitely
many points, all of which are finite-dimensional by Proposition 4.1. Such a set is compact
because it is clopen that is, also closed.

So we now consider compact open sets not containing the generic module. The set Cq\{Gq}
is contained in a union of rays and corays. Thus, any compact open set not containing the
generic is a subset of a finite union of rays and corays. In particular, any compact open set not
containing the generic contains only finitely many infinite-dimensional points.

If a compact open set only contains finite-dimensional points, then it is finite (since these
points are isolated). Suppose that U contains a Prüfer point S[∞]. Then its complement, by
Proposition 4.1, must contain only finitely many points of the form S[j]. Thus for some j the
ray R[S[j]] must be contained in U . Similarly, if U contains an adic point Ŝ, then it contains
the coray C[[j]S] for some j. Now removing all the rays and corays (which are open), we must
be left with just finite-dimensional points. Since U is compact, we are left with finitely many
finite-dimensional points. �

5. Algorithms at slope q ∈ Q+

In this section, we present an algorithm which, given n + 1 pp-pairs

ϕ/ψ, ϕ1/ψ1, . . . , ϕn/ψn

and q ∈ Q+, answers whether

Cq ∩ (ϕ/ψ) ⊆
n⋃

i=1

Cq ∩ (ϕi/ψi).

Note that Dq is axiomatised by saying that for each finite-dimensional indecomposable
module Q of slope strictly greater than q, the functor (Q,−) is zero on Dq and for each
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474 LORNA GREGORY

finite-dimensional indecomposable module P of slope strictly less than q, the functor −⊗ P ∗

is zero on Dq. Given a presentation of a module M , by Lemma 3.8, we can effectively find a
pp-n-pair σ/τ such that the functor defined by σ/τ is equivalent to (M,−) and by Lemma 3.9,
a pp-n-pair σ/τ such that the functor defined by σ/τ is equivalent to −⊗M∗. By Lemmas 3.5
and 3.10 we can list the indecomposable finite-dimensional modules of slope < q and those of
slope > q. Thus, given q ∈ Q+, we can recursively list sentences which axiomatise Dq. Let Σq

be the recursive list of sentences axiomatising Dq.

Remark 5.1. Let q ∈ Q+ and ϕ/ψ, ϕ1/ψ1, . . . , ϕn/ψn be pp-pairs. Then

Cq ∩ (ϕ/ψ) ⊆
n⋃

i=1

Cq ∩ (ϕi/ψi)

if and only if

Σq � |ϕ/ψ| > 1 →
n∨

i=1

|ϕi/ψi| > 1.

By compactness, this means that there is some finite subset of Σ ⊆ Σq such that

Σ � |ϕ/ψ| > 1 →
n∨

i=1

|ϕi/ψi| > 1.

We now use the results of the previous section to give canonical forms for compact open
subsets of Cq.

Lemma 5.2. Each compact open subset U of Cq is unique of the form:

(1) F ({X1, . . . , Xn}) := Cq\{X1, . . . , Xn} where X1, . . . , Xn are finite-dimensional indecom-
posables of slope q,

(2)
⋃

E∈S R(E[jE ]) ∪
⋃

E∈D C([kE ]E) ∪ {X1, . . . , Xm} where for each E ∈ S, if R(E[i]) ⊆
U , then i � jE , for each E ∈ D, if C([i]E) ⊆ U , then i � kE and for 1 � i � m, Xi /∈⋃

E∈S R(E[jE ]) ∪
⋃

E∈D C([kE ]E).

Proof. Proposition 4.6 gives us a description of the compact open subsets of Cq. We just
need to observe that the list above contains no repeats. �

Lemma 5.3. There is an algorithm, which, given q ∈ Q+ and pp-pairs
ϕ/ψ, ϕ1/ψ1, . . . , ϕn/ψn, answers whether

Cq ∩ (ϕ/ψ) ⊆
n⋃

i=1

Cq ∩ (ϕi/ψi).

Proof. By Lemmas 3.14, 3.13, 3.9 and 3.8, there is an algorithm which lists pp-pairs defining
the open sets of the form F ({X1, . . . , Xn}), {X}, C(X) and R(X) where X1, . . . , Xn, X ∈ Cq.

Thus, since Dq is recursively axiomatised, there is an algorithm which, given a pp-pair ϕ/ψ,
finds a compact open set U such that (ϕ/ψ) ∩ Cq = U ∩ Cq and such that U is in the canonical
form given in Lemma 5.2.

We now need to take each of the compact open sets of the form F ({X1, . . . , Xn}), {X},
C(X) and R(X) and write an algorithm which determines whether it is contained in a finite
union, W1 ∪ . . . ∪Wn of some specified other open sets of the form F ({X1, . . . , Xn}), {X},
C(X) and R(X).
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 475

Case 0: {X1, . . . , Xm} ⊆ W1 ∪ . . . ∪Wn

Check directly whether each Xi is in some Wj . We can do this by Lemma 3.6.
Case 1: F ({X1, . . . , Xm}) ⊆ W1 ∪ . . . ∪Wn

If F ({X1, . . . , Xm}) ⊆ W1 ∪ . . . ∪Wn, then, by 4.6, one of the sets of Wi must be of the form
F ({Y1, . . . , Yl}) for some Y1, . . . , Yl. So F ({Y1, . . . , Yl}) contains all of F ({X1, . . . , Xm}) except
the points {Y1, . . . , Yl}\{X1, . . . , Xm}. We now just need to check whether the finite subset
{Y1, . . . , Yl}\{X1, . . . , Xm} is contained in W1 ∪ . . . ∪Wn. This is case 0.

Case 2: R(E[j]) ⊆ W1 ∪ . . . ∪Wn

If R(E[j]) ⊆ W1 ∪ . . . ∪Wn then E[∞] ∈ Wi for some i. So either one of the Wi is of the
form F ({X1, . . . , Xm}) for some X1, . . . , Xm or is of the form R[E[l]] for some l.

If one of the sets Wis is F ({X1, . . . , Xm}), then check if any of X1, . . . , Xm is of the form
E[k] for some k � j. For any which is, check if that point is in one of the remaining open sets.

If one of the sets Wis is R[E[l]], then either l � j, in which case R(E[j]) ⊆ R(E[l]), or l > j.
If l > j, then R[E[j]]\R[E[l]] is E[j], E[j + 1], . . . , E[l − 1]. So we just use case 0 to find out
whether these are contained in the remaining open sets.

Case 3: C([j]E) ⊆ W1 ∪ . . . ∪Wn

As above but replacing E[∞] by Ê. �

6. One-point extensions and coextensions

Let Tn1,...,nt
be the star quiver with t arms of length n1, . . . , nt in the ‘subspace’ configuration.

A canonical algebra of tubular type is a one-point extension of the tame hereditary path
algebra of Tn1,...,nt

by a quasi-simple module X at the base of a tube such that (n1, . . . , nt)
is in the set {(3, 3, 3), (2, 4, 4), (2, 3, 6), (2, 2, 2, 2)} [35, pg161]. These algebras may equally well
be viewed as one-point coextensions of star path algebras with the ‘cosubspace’ configuration
by a quasi-simple module X at the base of a tube.

Throughout this section, A will be the path algebra of a star quiver in subspace configuration
as above, X ∈ mod-A will be a quasi-simple at the base of a tube and A[X] will be the one-point
extension of A by X, that is, the 2 × 2-matrix algebra(

A 0
kXA k

)
.

The category Mod-A[X] is equivalent to Rep(X), the category of representation of the
bimodule kXA and also to, Rep(X), the k-category with objects M = (M0,M1,ΓM ) where M0

is a k-vector space, M1 is a right A-module and ΓM : M0 → HomA(X,M1) is a k-vector space
homomorphism. Morphisms in Rep(X) are given by pairs f = (f0, f1) : M = (M0,M1,ΓM ) →
N = (N0, N1,ΓN ), where f0 : M0 → N0 is a k-vector space homomorphism and f1 : M1 → N1

is a A-module homomorphism such that the following square commutes.

Throughout this section we identify representations of A[X] with objects in Rep(X). So, if
(M0,M1,ΓM ) is an object in Rep(X), m ∈ M1, δ ∈ M0, a ∈ A, x ∈ X and μ ∈ k, then

(m, δ) ·
(
a 0
x μ

)
= (m · a + ΓM (δ)[x], μδ).
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476 LORNA GREGORY

This gives us the following two embeddings of Mod-A into Mod-A[X];

F0 : Mod-A → Mod-A[X], M �→ (0,M, 0)

and

F1 : Mod-A → Mod-A[X], M �→ (Hom(X,M),M, IdHom(X,M)).

We also have a functor r : Mod-A[X] → Mod-A which sends (M0,M1,ΓM ) to M1. This functor
is right adjoint to F0 and left adjoint to F1.

In this section we will see that F0 and F1 are interpretation functors whose images are finitely
axiomatisable and that every indecomposable pure-injective in P0 ∪ D0 is in the union of the
images of F0 and F1.

Remark 6.1. Let A be a k-algebra and X a right A-module. The assignment F0 which sends
a right A-module M to the right A[X]-module (0,M, 0) and sends a morphism g : M → N
to (0, g) is clearly a full and faithful exact interpretation functor whose image is a (finitely
axiomatisable) definable subcategory of Mod-A[X].

Proposition 6.2. Let A be a k-algebra and X a finitely presented right A-module. The
functor F1 is a full and faithful (left exact) interpretation functor whose image is a definable
subcategory (after closing under isomorphisms) of Mod-A[X].

Proof. It is straightforward to see that F1 is indeed a functor and that it is full, faithful and
left exact (see, for instance, [37, 1.4]).

The functor F1 is an interpretation functor if and only if it commutes with direct limits and
products [32, 25.3]. In order to check that F1 commutes with direct limits and products, it
is enough to check that its composition with the forgetful functor from Mod-A[X] to Mod-k
commutes with direct limits and products. This follows since Hom(X,−) commutes with direct
limits and products.

We now show that the image of F1 is a (finitely axiomatisable) definable subcategory of
Mod-A[X]. Firstly note that L = (L0, L1,ΓL) is in the (essential) image of F1 if and only if ΓL

is an isomorphism. Let t1, . . . , tn generate X as an A-module. Note that for any δ ∈ L0 and
γ ∈ Hom(X,L1), we have that ΓL(δ) = γ if and only if ΓL(δ)[ti] = γ[ti] for 1 � i � n. Now for
δ ∈ L0,

ΓL(δ)[ti] = (0, δ)
(

0 0
ti 0

)
.

Let ψ ∈ ppn
R be the pp-formula

∃z
n∧

i=1

xi = z

(
0 0
ti 0

)
.

Let ϕ generate the pp-type of (t1, . . . , tn) viewed as a tuple from (0, X, 0). Now

ϕ(L) = {f(t) | f ∈ HomR((0, X, 0), L)}.

So

ϕ(L) = {(γ[t1], . . . , γ[tn]) | γ ∈ HomA(X,L1)}.

Thus ΓL is surjective if and only if ϕ(L) = ψ(L).
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 477

Let e0 = (0 0
0 1).

Let

σ(x) := ∃z x = ze0

n∧
i=1

x

(
0 0
ti 0

)
= 0.

For all M ∈ Mod-A[X], ΓM is injective if and only if σ(M) = 0.
So M is in the (essential) image of F1 if and only if σ(M) = 0 and ϕ(M) = ψ(M). �

Let E0 be the image of the functor F0 and E1 be the image of the functor F1. We will
show, Proposition 6.8, that every indecomposable finite-dimensional module of slope 0 is either
contained in E0 or E1. Thus, if the finite-dimensional modules of slope 0 are dense in the Ziegler
closed subset corresponding to the definable subcategory of slope 0, then all indecomposable
pure-injective modules of slope zero are either contained in E0 or E1.

Proposition 6.3. Let R be a tubular algebra. The finite-dimensional indecomposable R-
modules of slope zero are dense in the Ziegler closed subset of indecomposable pure-injective
modules of slope zero.

Proof. By an argument exactly as the first paragraph of [28, Theorem 13.6], we know that
every open set containing a module of slope zero contains a finite-dimensional module of slope
greater than or equal to zero.

Suppose that N is an infinite-dimensional indecomposable module of slope zero and that F
is a coherent functor with FN �= 0. Let P2, P1 ∈ mod-R be preprojective, T2, T1 ∈ mod-R of
slope zero, Q2, Q1 ∈ mod-R of slope greater than zero and f : P1 ⊕ T1 ⊕Q1 → P2 ⊕ T2 ⊕Q2

be such that

(P2 ⊕ T2 ⊕Q2,−)
(f,−)−−−→ (P1 ⊕ T1 ⊕Q1,−) → F → 0

is exact.
Let πi : Pi ⊕ Ti ⊕Qi → Pi ⊕ Ti and μi : Pi ⊕ Ti → Pi ⊕ Ti ⊕Qi be canonical projections and

embeddings for i = 1, 2. Let G be a coherent functor such that

(P2 ⊕ T2,−)
(π2◦f◦μ1,−)−−−−−−−−→ (P1 ⊕ T1,−) → G → 0

is exact.
Suppose that M is an indecomposable module of slope zero. We show that (π2fμ1,M) is

surjective if and only if (f,M) is surjective. That is, we show that FM �= 0 if and only if
GM �= 0.

Since there are no non-zero maps from modules of slope greater than zero to M , for all
g ∈ (P2 ⊕ T2 ⊕Q2,M), g = gμ2π2. So the following diagram commutes.

Moreover, (μ1,M) and (μ2,M) are isomorphisms. Thus, g ∈ (P1 ⊕ T1 ⊕Q1,M) is in the
image of (f,M) if and only if gμ1 is in the image of (π2fμ2,M). So for M a module of slope
zero, GM �= 0 if and only if FM �= 0.

Now in order to show that there is some L ∈ ind-R of slope zero such that FL �= 0, it is
enough to show that GL �= 0.
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478 LORNA GREGORY

By the first paragraph, there exists L ∈ mod-R of slope greater than or equal to zero, such
that GL �= 0. Suppose that the slope of L is greater than zero and let h ∈ (P1 ⊕ T1, L) be such
that it does not factor through g. Since the finite-dimensional modules of slope zero separate the
preprojective modules from those of slope greater than zero, h factors through some direct sum
of finite-dimensional modules of slope zero. One of these modules T is such that GT �= 0. �

We gather together the facts we need in order to show that every finite-dimensional module
of slope zero over a canonical algebra of tubular type is either in the image of F1 : Mod-A →
Mod-A[X] or in the image of F2 : Mod-A → Mod-A[X].

From now on, let m be the rank of the tube T containing X. The quasi-simples at the mouth
of T are X, τ−1X, . . . , τ−(m−1)X. Note that if 1 � p < m and i ∈ N, then HomA(X, τ−pX[i]) =
0. So, in particular, F1τ

−pX[i] ∼= F0τ
−pX[i].

A finite-dimensional module M over a tame hereditary algebra is regular if (M,P ) = 0 for
all preprojective P and (E,M) = 0 for all preinjective E.

Lemma 6.4. If M = (M0,M1,ΓM ) ∈ Mod-A[X] is finite-dimensional, indecomposable and
has slope zero then M1 is regular. Moreover either M = (0,M1, 0) with M1 indecomposable
(and regular) or M1 is a sum of finite-dimensional modules of the form X[i].

Proof. Suppose that P is a preprojective A-module, so Hom(X,P ) = 0. Then
HomA(rM,P ) ∼= HomA[X](M,F1P ) = 0 since F1P = (0, P, 0) ∈ P0.

Note that if Q is preinjective over A, then (0, Q, 0) has slope greater than zero. This
is because 〈dimX,dimQ〉 = dim HomA(X,Q) − dim ExtA(X,Q) = dim HomA(X,Q) �= 0, since
X is a regular module. Then HomA(Q, rM) ∼= HomA[X](F0Q,M) = 0 since F0Q ∈ Q0.

So for all preprojective A-modules P , HomA(rM,P ) = 0 and for all preinjective A-modules
Q, HomA(Q, rM) = 0. Thus rM = M1 is regular.

For the final part, suppose that M1 = L⊕K where L is a direct sum of A-modules of the form
X[i] and K is a direct sum of regular modules not of the form X[i]. Then HomA(X,K) = 0.
So (M0,M1,ΓM ) decomposes as a direct sum of (0,K, 0) and (M0, L,ΓM ). �

Lemma 6.5. (1) When m � 2, for each i ∈ N and 1 � p < m,

is an almost split exact sequence, where τ−(p+1)X[0] = 0.
(2) For each i ∈ N,

is an almost split exact sequence, where τ−1X[0] = 0.

Proof. Apply [37, XV 1.6] to the almost split sequence 0 → τ−pX[i] → τ−pX[i + 1] ⊕
τ−(p+1)X[i− 1] → τ−(p+1)X[i] → 0. �

The following lemma is most likely well known but since we could not find a reference, we
include a proof.

Lemma 6.6. For each i ∈ N,

is an almost split exact sequence.
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 479

Proof. We prove this by induction on i.
Suppose i = 1. Firstly, note that the embedding of X[1] into X[2] remains irreducible in

A[X] after applying F0 and the canonical embedding of F0X[1] into F1X[1] is irreducible since
it is the embedding of the radical of an indecomposable projective.

Suppose that N is an indecomposable non-projective module and that f : F0X[1] → N is
irreducible. By [2, IV 3.8], there exists an irreducible map from τN to F0X[1]. So by Lemma 6.5,
τN ∼= F1X[2] if m = 1 and τN = F0τ

−(m−1)X[2] otherwise. In either case Lemma 6.5 implies
N ∼= F0X[2]. It now remains to remark that HomA[X](F0X[1], F1X[1]) ∼= HomA(X[1], X[1])
and HomA[X](F0X[1], F0X[2]) ∼= HomA(X[1], X[2]) are both one dimensional and that the
cokernel of the left minimal almost split map from F0X[1] to F1X[1] ⊕ F0X[2] is F1X[2].

Now suppose that we have proved the assertion of the lemma for all i � n. Suppose that
N is an indecomposable non-projective module and that f : F0X[n + 1] → N is irreducible.
Then, as before, there is an irreducible map from τN to F0X[n + 1]. So, by Lemma 6.5, if
m = 1, then τN ∼= F0X[n] or τN ∼= F1X[n + 2], and, if m �= 1, then τN ∼= F0X[n] or τN ∼=
F0τ

m−1X[n + 2]. If τN ∼= F0X[n], then, by the induction hypothesis, N ∼= F1X[n + 1]. If m =
1 and τN ∼= F1X[n + 2], or, if m �= 1 and τN ∼= F0τ

m−1X[n + 2], then N ∼= F0X[n + 2].
It remains now to note that every map from F0X[n + 1] to F1X[n + 1] factors though

the canonical embedding and that the spaces of irreducible morphisms IrrA[X](F0X[n +
1], F0X[n + 2]) and IrrA(X[n + 1], X[n + 2]) are isomorphic. �

Lemma 6.7. If M ∈ Mod-A[X] is indecomposable and not injective, then ΓM is an embed-
ding.

Proof. Note that (M0,M1,ΓM ) ∼= (ker ΓM , 0, 0) ⊕ (M0/ ker ΓM ,M1,ΓM ) and the only
indecomposable A[X]-module with M1 = 0 is the simple injective module. �

Proposition 6.8. If M is an indecomposable finite-dimensional module of slope zero, then
M = F0N or M = F1N for some indecomposable regular module N .

Proof. Since M := (M0,M1,ΓM ) is not injective either M0 = 0 and M is in the image of F0,
or, M0 �= 0 and, using Lemma 6.7 and the adjunction HomA(rM,M1) ∼= HomA[X](M,F1M1),
there is an embedding of M into F1M1. From Lemma 6.4 we know that if M0 �= 0, then F1M1 is
a direct sum of modules of the form F1X[i]. Thus there is a non-zero map f = (f0, f1) from M
to some F1X[i]. Take i minimal such that f0 �= 0. Firstly suppose i > 1. If M is not isomorphic
to F1X[i], then f factors through the right minimal almost split map from F0X[i] ⊕ F1X[i− 1]
as in Lemma 6.6. Since f0 �= 0, there is a non-zero map from M to F1X[i− 1] contradicting
the minimality of i. Thus M ∼= F1X[i].

Now suppose i = 1. Then F1X[1] is an indecomposable projective and F0X[1] is its radical.
Thus either f : M → F1X[1] is surjective or f factors through F0X[1]. If f : M → F1X[1] is
surjective, then it is split since F1X[1] is projective. So, since M is indecomposable, M ∼=
F1X[1]. The second possibility cannot occur since f0 �= 0. �

Proposition 6.9. Every indecomposable pure-injective module of slope zero is either in the
image of F0 or in the image of F1. Note that all preprojective modules are in the image of F0.

Proof. The pure-injective modules of slope zero form a closed subset C0 of the Ziegler
spectrum. By 6.3, the finite-dimensional indecomposable modules of slope zero are dense in
this set. We have shown (Remark 6.1 and Proposition 6.2) that the images of F0 and F1 are
definable subcategories. Let A0 and A1 be their images in ZgA[X] intersected with C0, note
that both A0 and A1 are closed. Since all finite-dimensional points of slope zero are contained
in either A0 or A1, the closure of A0 ∪ A1 is C0. Thus A0 ∪ A1 = C0 as required. �
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480 LORNA GREGORY

We now use the above to provide an algorithm which given pp-pairs

ϕ/ψ, ϕ1/ψ1, . . . , ϕn/ψn

answers whether there is a preprojective or module of slope zero in (ϕ/ψ) but not in⋃n
i=1(ϕi/ψi).

Proposition 6.10. Let A be a tame hereditary algebra and A[X] be a canonical algebra of
tubular type both over a recursive algebraically closed field. There is an algorithm which given
pp-pairs ϕ/ψ, ϕ1/ψ1, . . . , ϕn/ψn answers whether there is an indecomposable pure-injective
module N such that N ∈ (ϕ/ψ) ∩ (E0 ∪ E1) and N /∈

⋃n
i=1(ϕi/ψi) ∩ (E0 ∪ E1).

Proof. If N ∈ P0 ∪ C0, then N ∈ E0 or N ∈ E1. We now describe how to effectively check
whether there is an N ∈ E0 such that N ∈ (ϕ/ψ) and N /∈

⋃n
i=1(ϕi/ψi). Given a pp-pair ϕ/ψ

we can effectively translate this to a pp-pair σ/τ in the language of A-modules via F0 such
that N ∈ (σ/τ) if and only if F0N ∈ (ϕ/ψ). Since the common theory of modules over a tame
hereditary algebra is decidable [14], we can answer whether one Ziegler basic open set over A
is contained in a finite union of other specified Ziegler open sets over A.

The argument is exactly the same for E1. �

We now deal with the preinjective component and modules of slope ∞. If R is a canonical
algebra of tubular type (respectively, a tubular algebra), then Rop is also a canonical algebra
of the same tubular type (respectively, a tubular algebra) as R. For canonical algebras, this
can be easily seen from the original definition of canonical algebra [35, p. 161] and for tubular
algebras is [35, 5.2.3].

We have shown Proposition 6.3 that, for a tubular algebra R, the finite-dimensional
indecomposable R-modules of slope zero are dense in C0. Using elementary duality, this implies
the same result for C∞.

Proposition 6.11. Let R be a tubular algebra. The finite-dimensional indecomposable
R-modules of slope infinity are dense in the definable subcategory of modules of slope infinity.

Proof. Suppose that N ∈ C∞ and N ∈ (ϕ/ψ). By Lemma 2.12 and Remark 2.11,
Hom(N, k) ∈ D0 and Hom(N, k) ∈ (Dψ/Dϕ). Thus, by Proposition 6.3, there is an indecom-
posable finite-dimensional module M of slope zero such that M ∈ (Dψ/Dϕ). Now Hom(M,k) ∈
(ϕ/ψ) and is an indecomposable finite-dimensional module of slope infinity. �

If E is a definable subcategory of Mod-R such that E := {N ∈ Mod-R | ϕi(N) =
ψi(N) for all i ∈ I}, then let DE be the definable subcategory of Mod-Rop such that DE :=
{N ∈ Mod-Rop | Dϕi(N) = Dψi(N) for all i ∈ I}.

Lemma 6.12. Let A be a tame hereditary algebra and R := A[X] be a canonical algebra
of tubular type. Every indecomposable pure-injective module of slope infinity and every
indecomposable preinjective module over Rop is in DE0 ∪DE1.

Proof. This is true for all finite-dimensional modules by Remark 2.3. So by Proposition 6.11,
this is also true for all indecomposable pure-injectives of slope infinity. �

If R is a canonical algebra of tubular type, then let E ′
0 (respectively, E ′

1) be DE1 (respectively,
DE0) where E0 and E1 are the images of F0 (respectively, F1) as functors to Mod-Rop.
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 481

Lemma 6.13. Let A be a tame hereditary algebra and R := A[X] be a canonical algebra of
tubular type. Let ϕ/ψ, ϕ1/ψ1, . . . , ϕn/ψn be pp-pairs over R. There exists an indecomposable
pure-injective R-module N ∈ E0 ∪ E1 such that N ∈ (ϕ/ψ) and N /∈

⋃
(ϕi/ψi) if and only if

there exists a indecomposable pure-injective Rop-module L ∈ E ′
0 ∪ E ′

1 such that L ∈ (Dψ/Dϕ)
and L /∈

⋃
(Dψi/Dϕi).

Proof. Suppose L ∈ E ′
0 ∪ E ′

1 is such that L ∈ (ϕ/ψ) and L /∈
⋃n

i=1(ϕi/ψi).
Then Hom(L, k) is in the definable category E0 ∪ E1 and Hom(L, k) opens Dψ/Dϕ but not

Dψi/Dϕi for any 1 � i � n. Therefore, there is an indecomposable pure-injective module M
over Rop in E ′

0 ∪ E ′
1 which is in (Dψ/Dϕ) but not in

⋃n
i=1(Dψi/Dϕi).

The reverse direction is proved symmetrically. �

Corollary 6.14. Let A be a tame hereditary algebra and A[X] be a canonical algebra
of tubular type over a recursive algebraically closed field. There is an algorithm which given
pp-pairs ϕ/ψ, ϕ1/ψ1, . . . , ϕn/ψn answers whether there is an indecomposable pure-injective
module N such that N ∈ (ϕ/ψ) ∩ (E ′

0 ∪ E ′
1) and N /∈

⋃n
i=1(ϕi/ψi) ∩ (E ′

0 ∪ E ′
1).

7. Corrections to a paper of Harland and Prest

Throughout this section, unless explicitly indicated, R will be a tubular algebra.
The main work of this section is to show, Proposition 7.15, that [17, Corollary 8.8] is false

for all tubular algebras and to provide, Theorem 7.7, a best possible replacement. Although
the replacement of Corollary 8.8 will not be used in later sections, many statements in this
section will be needed.

We start by correcting some statements in [17, Section 3].
In [17], it is claimed that for a, b ∈ R+ the set of modules which are direct limits of finite-

dimensional modules with slope in the interval (a, b) is a definable subcategory of Mod-R,
in [17] this is called the set of modules supported on (a, b). This is false for a, b ∈ Q+. The
problem is that although the set of modules supported on (a, b) is a definable category by [22,
2.1], it is not a definable subcategory of Mod-R.

Using the terminology of [17], the set of modules lying over (a, b), that is, those modules
M such that M ⊗ P ∗ = 0 (equivalently (M,P ) = 0) for all finite-dimensional P of slope less
than or equal to a and (P,M) = 0 for all finite-dimensional P of slope greater than or equal
to b, is a definable subcategory by definition. However, the description of the indecomposable
pure-injectives lying over (a, b) given in [17] is not correct. The following proposition corrects
this.

Proposition 7.1. Let R be a tubular algebra and let a, b ∈ R+. The smallest definable
subcategory, D+

(a,b), containing all finite-dimensional indecomposable modules with slope in

(a, b) contains exactly all indecomposable pure-injectives with slope in (a, b) plus,

(1) the Prüfer and generic modules of slope a if a ∈ Q+,
(2) the adic and generic modules of slope b if b ∈ Q+,
(3) all indecomposable pure-injective modules of slope a if a /∈ Q+,
(4) all indecomposable pure-injective modules of slope b if b /∈ Q+.

Before we prove the proposition, we need a few lemmas and to recall a few facts. The
following remark will hold for general rings if Hom(M,k) is replaced an appropriate notion of
dual module (see [31] for notions of dual modules in the general context). We will only need
it for finite-dimensional k-algebras.
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482 LORNA GREGORY

Remark 7.2. Let R be a finite-dimensional k-algebra. If {Mi | i ∈ I} is a set of finite-
dimensional left modules and L ∈ 〈Mi | i ∈ I〉, then Hom(L, k) ∈ 〈Hom(Mi, k) | i ∈ I〉.

Lemma 7.3 [17, 3.4]. Suppose that M is an indecomposable module of positive slope r > 0.
Then for every ε > 0, M is the directed union of its finite-dimensional submodules in (r − ε, r],
indeed in (r − ε, r) in the case that r is irrational.

Lemma 7.4. Let M be a finite-dimensional indecomposable module of slope q ∈ Q+ and
let E be a quasi-simple of slope q. Then

(i) Hom(Gq,M) = 0,
(ii) Hom(E[∞],M) = 0,
(iii) Hom(M,Gq) = 0,
(iv) Hom(M, Ê) = 0.

Proof. The first two statements are a consequence of [34, Theorem 6.4]. The right
adic modules of slope q are k-duals of the left Prüfer modules at slope 1/q, the generic
module of slope q is the k-dual of the generic module of slope 1/q and k-duality sends
finite-dimensional indecomposable modules of slope q to finite-dimensional modules of slope
1/q. Thus, if Hom(M, Ê) �= 0 (respectively Hom(M,Gq) �= 0), then Hom(E∗[∞],M∗) �= 0
(respectively, Hom(G1/q,M

∗) �= 0). But this cannot happen by parts (i) and (ii). �

Proposition 7.5 [17, 3.11]. Let ϕ/ψ be a pp-pair and r ∈ R+ irrational. Then the following
are equivalent.

(1) There is an ε > 0 such for all finite-dimensional modules M lying in homogeneous tubes
with slope in (r, r + ε), ϕ(M) > ψ(M).

(2) There is an ε > 0 such for all finite-dimensional modules M lying in homogeneous tubes
with slope in (r − ε, r), ϕ(M) > ψ(M).

(3) There is an indecomposable pure-injective module N with slope r such that ϕ(N) >
ψ(N).

Proof of Proposition 7.1. We give proofs for the case a, b ∈ Q+ and the case a, b /∈ Q+.
Note that the definable subcategory D+

(a,b) is contained in the definable subcategory of
modules M such that (P,M) = 0 for all finite-dimensional P of slope greater than or equal to
b and M ⊗ P ∗ = 0 for all finite-dimensional P of slope less than or equal to a. We will now
show that this definable subcategory is in fact D+

(a,b).
By Lemma 7.3, every indecomposable pure-injective module with slope in (a, b) is in D+

(a,b).
If b ∈ Q+, ε ∈ R+ and a definable subcategory D of Mod-R contains all finite-dimensional

indecomposable modules with slope in (b− ε, b), then D contains the generic at b and all adic
modules at b. This is because any module of slope b is a direct union of direct sums of indecom-
posable finite-dimensional modules with slope in (b− ε, b] and no finite-dimensional indecom-
posable module of slope b is a submodule of the generic at b or any adic module at b by 7.4.

If a ∈ Q+, ε ∈ R+ and a definable subcategory D of Mod-R contains all finite-dimensional
indecomposable modules with slope in (a, a + ε), then D contains the generic at a and all Prüfer
modules at a. This follows from the above paragraph, since each left adic module at 1/a is
equal to the k-dual of some right Prüfer module at a, so, by [31, 1.3.16], every right Prüfer
module at a is a pure-submodule of the k-dual of a left adic module at 1/a.

Note now that, by Proposition 4.1, if any definable subcategory contains either a Prüfer mod-
ule at slope c or an adic module at slope c, then it also contains the generic module at slope c.
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 483

Thus if a, b are both rational, then D+
(a,b) contains all pure-injective indecomposables with

slope in (a, b), the adic and generic modules at b and the Prüfer and generic modules at
a. These are exactly the pure-injective indecomposable modules M such that (P,M) = 0
for all finite-dimensional P of slope greater than or equal to b and M ⊗ P ∗ = 0 for all
finite-dimensional P of slope less than or equal to a.

If both a, b are irrational, then the situation is much simpler. All indecomposable modules
of slope b are direct unions of direct sums of finite-dimensional modules with slope in (a, b).
In order to deal with the a irrational case we use Proposition 7.5, which says that if ϕ/ψ
is open on some indecomposable pure-injective module of slope a, then it is open on all
homogeneous tubes with slope in (a, a + ε) for some ε > 0. Thus if ϕ/ψ is open on some
indecomposable pure-injective module of slope a, then it is open on some finite-dimensional
indecomposable module with slope in (a, b). So the indecomposables pure-injectives of slope a
are in the definable subcategory generated by the finite-dimensional indecomposable modules
with slope in (a, b). �

Definition 7.6. For a, b ∈ Q+, let C(a,b) := D+
(a,b) ∩ pinjR.

7.1. A replacement for [17, Corollary 8.8]

We now consider [17, Corollary 8.8] and prove a replacement.
We say a pp-pair ϕ/ψ is uniformly open at q ∈ Q+ if ϕ/ψ is open on all finite-dimensional

indecomposable modules of slope q. We say that ϕ/ψ is uniformly closed at q ∈ Q+ if ϕ/ψ is
closed on all finite-dimensional indecomposable modules of slope q. We say that q ∈ Q+ is a
non-uniform slope for ϕ/ψ if ϕ/ψ is neither uniformly open or closed at q.

Corollary 8.8 of [17] states that if ϕ/ψ is a pp-pair over a tubular algebra, then for all but
finitely many r ∈ R+, ϕ/ψ is either ϕ/ψ is open on all indecomposable pure-injective modules
of slope r or closed on all indecomposable pure-injective modules of slope r. It further states
that the set of r ∈ R+ for which ϕ/ψ is open on all indecomposable pure-injective modules of
slope r is the union of finitely many rational points and intervals with rational endpoints. We
will show in Proposition 7.15 that for all tubular algebras this is not the case and, in fact, that
for all p ∈ Q∞

0 there exists a pp-pair ϕ/ψ such that p is an accumulation point of the set of
slopes q ∈ Q+ where ϕ/ψ is neither uniformly open nor uniformly closed at q.

We first prove the following which is a best possible replacement for [17, Corollary 8.8].

Theorem 7.7. Let ϕ/ψ be a pp-pair and S be the set of slopes q ∈ Q+ where ϕ/ψ is neither
uniformly open nor uniformly closed at q. The set S has finitely many accumulation points in
R, and all these accumulation points are in Q.

The following series of lemmas will be used in the proof of Theorem 7.7.

Lemma 7.8. If q ∈ Q+ and ϕ/ψ is open on all finite-dimensional modules of slope q in
homogeneous tubes, then ϕ/ψ is closed on at most finitely many X ∈ ind-R of slope q.

Proof. This follows directly from Proposition 4.6. �

Lemma 7.9. Suppose that q ∈ Q+, ϕ/ψ is a pp-pair and v ∈ K0(R) is such that
dimϕ/ψ(X) = v · dimX for all X ∈ ind-R of slope q. Then ϕ/ψ is either open on all modules
in homogeneous tubes of slope q or closed on all modules in homogeneous tubes of slope q.

Proof. Let w be the dimension vector of a finite-dimensional quasi-simple in a homogeneous
tube of slope q. Then for all finite-dimensional indecomposable modules X of slope q lying
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484 LORNA GREGORY

in homogeneous tubes, dimX = n · w for some n ∈ N. Since dimϕ/ψ(X) = v · dimX for all
X ∈ ind-R of slope q, ϕ/ψ is open on all modules in homogeneous tubes of slope q if v · w > 0
and ϕ/ψ is closed on all modules in homogeneous tubes of slope q if v · w = 0. �

Proposition 7.10. Suppose that q ∈ Q+, ϕ/ψ is a pp-pair and v ∈ K0(R) is such that
dimϕ/ψ(X) = v · dimX for all X ∈ ind-R of slope q. If ϕ/ψ is closed on all modules of slope
q in homogeneous tubes, then ϕ/ψ is closed on all modules of slope q.

Proof. Let E1, . . . , En be the quasi-simples at the mouth of an inhomogeneous tube T (ρ)
of slope q. Then dimE1 + · · · + dimEn is the dimension vector of an indecomposable module
in a homogeneous tube with slope q. Thus ϕ/ψ is closed on all modules with dimension vector
dimE1 + · · · + dimEn, so v · (dimE1 + · · · + dimEn) = 0. Since v · dimEi � 0 for 1 � i � n, it
follows that v · dimEi = 0 for 1 � i � n. Thus v · dimX = 0 for every finite-dimensional module
in T (ρ). Thus ϕ/ψ is closed on all finite-dimensional indecomposable modules of slope q. So,
by Proposition 4.1, ϕ/ψ is closed on all modules of slope q. �

Lemma 7.11. Let a < b ∈ Q∞
0 , ϕ/ψ be a pp-pair and suppose that there is a v ∈ K0(R)

such that dimϕ/ψ(X) = v · dimX for all X ∈ ind-R of slope q ∈ (a, b). If ϕ/ψ is closed on all
homogeneous tubes of slope q for some rational q ∈ (a, b), then ϕ/ψ is uniformly closed on all
rational slopes in (a, b).

Proof. Let q ∈ (a, b) be such that ϕ/ψ is closed on all homogeneous tubes of slope q. By
Proposition 7.10, we may assume that ϕ/ψ is uniformly closed at q.

Thus

Cq =
⋂
ε>0

C(q−ε,q+ε) ⊆ ZgR\(ϕ/ψ).

So, since the closed sets C(q−ε,q+ε) form a chain and (ϕ/ψ) is compact, there exists a δ > 0
such that

(ϕ/ψ) ⊆ ZgR\C(q−δ,q+δ).

Thus ϕ/ψ is closed on C(q−δ,q+δ). This implies that v · (ch0 + dh∞) = 0 for all d/c ∈ (q − δ, q +
δ). Thus v · h0 = v · h∞ = 0. So v · dimX = 0 for all X in homogeneous tubes with slope in
(a, b) and thus ϕ/ψ is uniformly closed on all rational slopes in (a, b). �

Lemma 7.12. If p ∈ Q+ is such that ϕ/ψ is closed on just finitely many indecomposable
modules of slope p and p is rational, then there is an ε > 0 such that for all q ∈ (p− ε, p + ε)\{p},
ϕ/ψ is uniformly open at q.

Proof. Let {Z1, . . . , Zn} be the indecomposable modules of slope p which do not open ϕ/ψ.
Let σ/τ be a pp-pair such that (σ/τ) = {Z1, . . . , Zn}. Then U := (ϕ/ψ) ∪ (σ/τ) is open and

U ∩
⋂
ε>0

C(p−ε,p+ε) = U ∩ Cp = Cp =
⋂
ε>0

C(p−ε,p+ε).

Thus ZgR\U ⊆ ∪ε>0ZgR\C(p−ε,p+ε). Since ZgR\U is closed and hence compact, there is an
ε > 0 such that ZgR\U ⊆ ZgR\C(p−ε,p+ε). So C(p−ε,p+ε) ⊆ U . Thus for all q ∈ (p− ε, p + ε)\{p},
ϕ/ψ is uniformly open at q. �

The following is inspired by [17, Theorem 3.2].
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 485

Proposition 7.13. Let ϕ be a pp-formula. There is an algorithm which outputs n ∈ N, q0 =
0 < q1 < q2 < . . . < qn < qn+1 = ∞ ∈ Q∞

0 and v1, . . . , vn+1 ∈ K0(R) such that for 0 � i � n,
for all finite-dimensional indecomposable modules N with slope in (qi, qi+1),

dimϕ(N) = vi · dimN.

Proof. There is an algorithm, Lemma 3.15, which given ϕ outputs a presentation
(kn, A1, . . . , As) of a finite-dimensional module M and an element m ∈ kn such that (M,m) is
a free-realisation of ϕ. Note that, [31, Corollary 1.2.19] for any finite-dimensional module L,
dimϕ(L) = dim Hom(M,L) − dim Hom(coker(m), L).

There is an algorithm, Lemma 3.4, which given a presentation of M outputs presentations of
its indecomposable factors with multiplicity. From this we can compute the dimension vectors of
the indecomposable factors of M and coker(m) with multiplicity. We may now, by Lemma 3.10,
compute the slope of each of the indecomposable factors of M and coker(m). Let q1 < . . . < qn
be the slopes of those indecomposable factors which have slope greater than zero and less
than infinity.

For 0 � i � n, let wi (respectively, ui) be the sum of the dimension vectors of all
indecomposable factors of M (respectively, of coker(m)) with slope strictly smaller than qi+1

(equivalently have slope less than or equal to qi).
Since all indecomposable factors of M are either preprojective or have slope less than or

equal to qi,

dim Hom(M,N) = 〈wi,dimN〉 + dim Ext(M,N) = 〈wi,dimN〉

and

dim Hom(coker(m), N) = 〈ui,dimN〉 + dim Ext(M,N) = 〈ui,dimN〉

for all finite-dimensional indecomposable N with slope in (qi, qi+1).
Thus dimϕ(N)/ψ(N) = 〈wi − ui,dimN〉 for N with slope in (qi, qi+1). For 0 � i � n, let

vi = (〈wi − ui,dimS1〉, . . . , 〈wi − ui,dimSm〉) where S1, . . . , Sm are the simple modules over
R. �

Corollary 7.14. Let ϕ/ψ be a pp-pair. There is an algorithm which outputs n ∈ N,
q0 = 0 < q1 < q2 < . . . < qn < qn+1 = ∞ ∈ Q∞

0 and v0, . . . , vn ∈ K0(R) such that for all for all
finite-dimensional indecomposable modules N with slope in (qi, qi+1),

dimϕ/ψ(N) = vi · dimN.

Proof of Theorem 7.7. By Corollary 7.14, it is enough to show that if a < b ∈ Q∞
0 and there

exists v ∈ K0(R) such that for all M ∈ ind-R,

dimϕ(M)/ψ(M) = v · dimM,

then there are only finitely many accumulation points of non-uniform slopes for ϕ/ψ in (a, b).
Lemmas 7.8, 7.9, 7.10 and 7.11 show that either ϕ/ψ is uniformly closed on all rational

q ∈ (a, b) or for each rational q ∈ (a, b), ϕ/ψ is open on all but finitely many points of slope q,
all of which are finite-dimensional.

If ϕ/ψ is uniformly closed on all rational q ∈ (a, b), then ϕ/ψ is closed on all indecomposable
pure-injectives with slope in (a, b). This is because the finite-dimensional indecomposable
modules are dense in C(a,b).

If for each rational q ∈ (a, b), ϕ/ψ is open on all but finitely many points of slope q, all
of which are finite-dimensional, then there are no rational accumulation points in the set of
non-uniform slopes for ϕ/ψ between a and b by Lemma 7.12.
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486 LORNA GREGORY

It remains to show that if for each rational q ∈ (a, b), ϕ/ψ is open on all but finitely many
points of slope q, all of which are finite-dimensional, then there are no irrational accumulation
points of non-uniform slopes for ϕ/ψ inside (a, b). Note that if ϕ/ψ is closed on X ∈ ind-R,
then X is in an inhomogeneous tube. We refer forward to Lemma 8.3, which states that
there is a finite set Ω of roots of χR such that for all X ∈ ind-R lying in inhomogeneous
tubes dimX = y + w where y ∈ Ω and w ∈ radχR. Let g1, g2 generate radχR. Note that since
ϕ/ψ is open on all homogeneous tubes with slope in (a, b) either vg1 �= 0 or vg2 �= 0. So if
dimX = y + αg1 + βg2 for y ∈ Ω and α, β ∈ Z, X has slope in (a, b) and ϕ/ψ is closed on X,
then 0 = v · dimX = αv · g1 + βv · g2 + v · y.

For fixed y ∈ Ω, we now consider the set of α, β ∈ Z such that αv · g1 + βv · g2 + v · y = 0. If
v · g1 = 0, then β is a fixed integer and if v · g1 �= 0, then α = σβ + μ for some fixed σ, μ ∈ Q.
In the first case there are fixed rationals c, d, e, f such that the slope of y + αg1 + βg2 is of the
form (cα + d)/(eα + f). So as α tends to ±∞, the slope of y + αg1 + βg2 tends to a rational or
±∞. In the second case there are fixed rationals c, d, e, f such that the slope of y + αg1 + βg2

is of the form (cβ + d)/(eβ + f). So as β tends to infinity, the slope of y + αg1 + βg2 tends to
a rational or ±∞. Therefore, since Ω is finite, there are no irrational accumulation points of
non-uniform slope for ϕ/ψ in (a, b). �

In the above proof we could have replaced the final argument with the following argument
using Theorem 2.7. We know that if r ∈ (a, b) is irrational and an accumulation point of non-
uniform slopes for ϕ/ψ, then ϕ/ψ is open on all points in Cr. Thus

⋂
ε>0 C(r−ε,r+ε) = Cr ⊆

(ϕ/ψ). So ZgR\(ϕ/ψ) ⊆
⋃

ε>0 ZgR\C(r−ε,r+ε). Since ZgR\(ϕ/ψ) is closed, it is compact. Thus
there exists an ε0 > 0 such that ZgR\(ϕ/ψ) ⊆ ZgR\C(r−ε0,r+ε0). So C(r−ε0,r+ε0) ⊆ (ϕ/ψ). So r
is not an accumulation point of non-uniform slopes for ϕ/ψ.

7.2. Accumulation points of non-uniform slopes

The rest of this section will be spent proving the following result.

Proposition 7.15. Let R be a tubular algebra. For any q′ ∈ Q+ ∪ {0} there exists L ∈
ind-R of slope q′ such that q′ is an accumulation point of the set of non-uniform slopes for
Hom(L,−).

If X is finite-dimensional, then the functor Hom(X,−) is equivalent to a functor given by
a pp-pair ϕ/ψ (see 3.8). So Proposition 7.15 implies that for all q′ ∈ Q+ ∪ {0}, there is a pp-
pair ϕ/ψ such that q′ is an accumulation point of the set of non-uniform slopes of ϕ/ψ thus
contradicting [17, Corollary 8.8].

Corollary 7.16. Let R be a tubular algebra. For all q ∈ Q∞
0 there exists a pp-pair ϕ/ψ

such that q is an accumulation point of the set of non-uniform slopes for ϕ/ψ.

Proof. For all q ∈ Q+ ∪ {0}, this follows directly from Proposition 7.15. The result for q = ∞
follows by combining duality for pp-formulas with Lemma 2.12 and Theorem 2.3. �

7.2.1. Coherent sheaves on weighted projective lines. We will use categories of coherent
sheaves on a weighted projective lines of tubular type to prove Proposition 7.15. To introduce
notation and for the readers’ convenience, we briefly review various features of categories of
coherent sheaves on weighted projective lines. Our main references are [12, 23].

Let t ∈ N be greater than 2, p = (p1, . . . , pt) be a t-tuple of strictly positive integers pi,
called a weight sequence, and λ = (λ1, . . . , λt) a t-tuple of pairwise distinct elements of P1(k),
called a parameter sequence, normalised so that λ1 = ∞, λ2 = 0 and, if it exists λ3 = 1. For
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 487

1 � i � t, we will refer to the point λi ∈ P1(k) as an exceptional point (of weight pi) and all
other points in P1(k) as ordinary.

For every pair (p, λ), Geigle and Lenzing define, [12, 1.1,1.5], a weighted projective line
X := X(p, λ). We will not give this definition but instead define the category of coherent sheaves
on X(p, λ) purely in terms of (p, λ).

Given a weight sequence p, let L := L(p) be the abelian group on generators x1, . . . , xt with
the relations

p1x1 = p2x2 = · · · ptxt =: c.

The degree homomorphism δ : L → Z is defined on generators by δ(xi) := p/pi where p is the
lowest common multiple of p1, . . . , pt.

The L(p)-graded k-algebra S := S(p, λ) is the quotient of k[X1, . . . , Xt] by the ideal
generated by

fi := Xpi

i −Xp2
2 − λiX

p1
1 ,

for 3 � i � t, with the L(p)-grading given by assigning Xi, for 1 � i � t, degree xi.
Let modL-S denote the category of finitely generated L-graded S-modules with morphisms

given by S-linear maps of degree zero. Let modL

0 -S denote the full subcategory of all graded
modules of finite length. The category of coherent sheaves, coh(X), on the weighted projective
line X, is equivalent to the category modL-S/modL

0 -S (see [12, Serre’s theorem] and [13, 7.4]).
The structure sheaf O is the image of S in modL-S/modL

0 -S.
The group L acts on modL-S by grading shift, that is, for x ∈ L and M ∈ modL-S, M(x) is

defined to be the L-graded S-module such that for all y ∈ L, the homogeneous component
of degree y, M(x)y, is equal to Mx+y. Since the L-action on modL-S fixes modL

0 -S as a
subcategory, L acts on coh(X).

The category coh(X) is a hereditary hom-finite k-category with Serre duality. In particular,
[12, 2.2], for all X,Y ∈ coh(X),

DExt(X,Y ) ∼= Hom(Y,X(ω)),

where ω := (t− 2)c−
∑t

i=1 xi is called the dualising element. Moreover, coh(X) has almost-
split sequences and the Auslander–Reiten translate τX of X ∈ coh(X) is X(ω).

The Grothendieck group of coh(X), denoted as K0(X) := K0(coh(X)), is equipped with the
Euler form 〈−,−〉 : K0(X) ×K0(X) → Z which is given on sheaves X,Y ∈ coh(X) by

〈[X], [Y ]〉 = dim Hom(X,Y ) − dim Ext(X,Y ).

The torsion-free objects in coh(X), that is, those without non-zero subobjects of finite length,
are called vector bundles. Every object in coh(X) decomposes as V ⊕ F where V is a vector
bundle and F is finite length.

The subcategory, coh0(X), of finite length objects is uniserial and decomposes into connected
components as

∐
λ∈P1(k) Uλ where for each λ ∈ P1(k)\{λ1, . . . , λt}, Uλ is a homogeneous tube

and for 1 � i � t, Uλi
is a stable tube of rank pi. We will refer to the sheaves in Uλ for λ ∈ P1(k)

as being sheaves concentrated at λ.
There are linear forms rk : K0(X) → Z [12, 1.8.2], called rank, and deg : K0(X) → Z [12,

2.8], called degree. The linear form rk is determined by rkO(x) = 1 for all x ∈ L and the linear
form deg is determined by degO(x) = δ(x) for all x ∈ L. For all X ∈ coh(X), rkX � 0. A
coherent sheaf X has rank zero if and only if X is finite length. If X ∈ coh(X) is finite length
and non-zero, then degX > 0.

The vector bundles of rank 1 are called line bundles and they are all isomorphic to vector
bundles of the form O(x) where x ∈ L. Moreover, [12, 2.6], every vector bundle F has a
filtration by line bundles and the number of line bundles occurring in such a filtration is equal
to the rank of F .
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488 LORNA GREGORY

The virtual genus gX := 1 + 1
2δ(ω) of X strongly controls the structure of coh(X). When

gX = 1, we say that X is of tubular type. Note that gX is only dependent on the weight sequence
of X and, up to permutation, the only weight sequences of tubular type are (2,3,6), (2,4,4),
(3,3,3) and (2,2,2,2).

The Riemann–Roch formula, given here as in [23, 2.4], relates the degree and rank of x, y ∈
K0(X) with the Euler form:

p−1∑
j=0

〈τ jx, y〉 = p(1 − gX) rkx · rk y +
∣∣∣∣ rkx rk y
deg x deg y

∣∣∣∣.
The (GL-)slope of a non-zero vector bundle X is given by μ(X) := degX/ rkX. If X is a

finite length sheaf then we set μ(X) := ∞.
A vector bundle X ∈ coh(X) is semistable if for each Y ⊆ X, μ(Y ) � μ(X). For q ∈ Q ∪ {∞},

let Wq denote the full subcategory of all semistable sheaves of slope q.
When X is of tubular type the following theorem describes coh(X).

Theorem 7.17 [12, 5.6][23]. Let X be a weighted projective line of tubular type.

(i) All indecomposable X ∈ coh(X) are semistable.
(ii) For all X ∈ coh(X) indecomposable, μ(X) = μ(τX).
(iii) For X,Y ∈ coh(X) indecomposable, if Hom(X,Y ) �= 0 then μ(X) � μ(Y ).
(iv) For each q ∈ Q ∪ {∞}, Wq is equivalent to coh0(X).

7.2.2. Concealed canonical algebras. A vector bundle Σ is said to be a tilting bundle
if Ext1(Σ,Σ) = 0 and Db(X) := Db(coh(X)) is the smallest triangulated subcategory of Db(X)
containing Σ (see [12, 3.1]). A concealed canonical algebra is the endomorphism ring of a tilting
bundle in coh(X) for some weighted projective line X. If X is of tubular type and Σ ∈ coh(X)
is a tilting bundle, then End(Σ) is a tubular algebra and all tubular algebras occur in this way
[24, 3.6].

For any weighted projective line X(p, λ), Geigle and Lenzing defined a tilting bundle
Σcan := ⊕0�x�cO(x), called the canonical tilting bundle. The endomorphism ring of Σcan is
the canonical algebra Λ(p, λ) in the sense of Ringel [12, § 4].

Suppose that R is a concealed canonical algebra of tubular type, that is, a tubular algebra,
and Σ ∈ coh(X) is a tilting vector bundle such that End(Σ) = R.

Let T be the torsion class of Σ, that is, the full subcategory of coh(X) generated by Σ (or
equivalently, the full subcategory of objects X ∈ coh(X) such that Ext1(Σ, X) = 0) and let F
be the torsion-free class of Σ, that is, the full subcategory of objects X ∈ coh(X) such that
Hom(Σ, X) = 0.

Since coh(X) is hereditary, the objects of the bounded derived category, Db(X), are of the
form ⊕i∈IXi[i] where I ⊆ Z is finite and Xi ∈ coh(X) for all i ∈ I. For all X,Y ∈ coh(X) and
i, j ∈ Z,

HomDb(X)(X[i], Y [j]) = Extj−i
coh(X)(X,Y ).

The right derived functor of Hom(Σ,−) gives equivalence of bounded derived categories

RHom(Σ,−) : Db(X) → Db(R) := Db(mod-R)

and mod-R is equivalent to the subcategory T ∨ F [1] of Db(X) consisting of objects of the form
X ⊕ Z[1] where X ∈ T and Z ∈ F (see [12, § 3]). Moreover, RHom(Σ,−) induces an Euler
form preserving isomorphism of Grothendieck groups

K0(X) → K0(R), [X] �→
∞∑
i=0

(−1)i[Exti
X
(Σ, X)].
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 489

In what follows, we will use this equivalence to identify Db(X) and Db(R) (and hence K0(X)
and K0(R) equipped with their Euler forms).

We now recall, see [23] and [20, 4.9], how the various parts of mod-R sit in T ∨ F [1]. This
will allow us to link slope in the sense of Geigle and Lenzing and slope in the sense of Ringel.

Throughout this section, let μmax (respectively, μmin) be the maximal (respectively, minimal)
GL-slope of any indecomposable direct summand of Σ. Decompose the tilting bundle Σ =
Σ0 ⊕ Σmax = Σ∞ ⊕ Σmin where Σmax (respectively, Σmin) is the sum of the indecomposable
direct summands of Σ with GL-slope μmax (respectively, μmin). Note that μmin < μmax since if
all indecomposable direct summands of Σ had the same GL-slope, then Σ would not generate
Db(X).

Proposition 7.18. (1) If X ∈ coh(X) is indecomposable and μ(X) > μmax, then X ∈ T .
(2) If Z ∈ coh(X) is indecomposable and μ(Z) < μmin, then Z ∈ F .
(3) The indecomposable projective R-modules are the indecomposable direct summands of

Σ and the preprojective component of R is equal to those X ∈ coh(X) with μ(X) < μmax and
ExtX(Σ, X) = 0. So, in particular, the indecomposable direct summands of Σmax are exactly
the projective R-modules of Ringel slope zero.

(4) The indecomposable injective R-modules are (τX)[1] where X is an indecomposable
direct summand of Σ and the preinjective component of R is equal to Z[1] such that Z ∈ coh(X),
μ(Z) > μmin and Hom(Σ, Z) = 0.

Proof. Points (1) and (2) follow from Theorem 7.17 and Serre duality. For (3), see [24, 5.7]
and [20, 4.9]. The first part of (4) is [24, 5.3] and the rest follows from (3) using vector bundle
duality as indicated in [23, 5.1]. �

Following [23], let uj := [τ jO] and u :=
∑p−1

j=0 uj and w := [S] where S ∈ coh(X) is a simple
sheaf concentrated at an ordinary point. Then 〈u, x〉 = deg x and 〈w, x〉 = − rkx. By [23, 2.6],
w and u generate rad(K0(X)) as an abelian group.

Let h0 and h∞ be the canonical radical vectors of R in the sense of Ringel. Let
α0, α∞, β0, β∞ ∈ Q be such that h0 = α0u + β0w and h∞ = α∞u + β∞w.

Suppose X ∈ T . Then

〈h0, [X]〉 =
{
α0 degX, when rkX = 0;
rkX(α0μ(X) − β0), otherwise

and

〈h∞, [X]〉 =
{
α∞ degX, when rkX = 0;
rkX(α∞μ(X) − β∞), otherwise.

Suppose Z ∈ F . Then

〈h0, [Z[1]]〉 = − rkZ(α0μ(Z) − β0)

and

〈h∞, [Z[1]]〉 = − rkZ(α∞μ(Z) − β∞).

Lemma 7.19. With the notation as in the rest of this section, the following hold:

(i) β0 = μmaxα0,
(ii) β∞ = μminα∞,
(iii) α0 > 0 and α∞ < 0.
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490 LORNA GREGORY

Proof. (i) If X is an indecomposable direct summand of Σmax, then X ∈ T and X is a
projective R-module not in the preprojective component by Proposition 7.18 (3). Hence X
has Ringel slope 0. Therefore 0 = 〈h0, [X]〉 = rkX(α∞μ(X) − β∞). So, since rkX > 0, β0 =
μmaxα0. Note that we can also conclude from this that α0 �= 0.

(ii) This is proved as (i) using 7.18 (4). As in (i), we can conclude that α∞ �= 0.
(iii) If X ∈ coh(X) is indecomposable and μ(X) = ∞ then, by Proposition 7.18, as a R-

module, X is neither preprojective, of slope 0 or preinjective. So, by [35, 5.2], α0 degX > 0
and α∞ degX � 0. Therefore α0 > 0 and α∞ < 0. �

Definition 7.20. Let γ : Q ∪ {∞} → Q ∪ {∞} be defined by

γ(q) := − α0

α∞
· q − μmax

q − μmin

for q ∈ Q\{μmin}, γ(μmin) = ∞ and γ(∞) = −α0/α∞.

The determinant of the möbius transformation γ is

α0β∞ − α∞β0 = α0α∞(μmin − μmax).

So, by Lemma 7.19, the determinant is strictly positive. It is now easy to see that

γ|(−∞,μmin) : (−∞, μmin) → (−α0/α∞,∞)

and

γ|(μmax,∞] : (μmax,∞] → (0,−α0/α∞]

are both strictly increasing and bijective.
So, in particular, if X ∈ coh(X) is indecomposable and q := μ(X) > μmax, then the Ringel

slope of X is γ(q) ∈ (0,−α0/α∞] and if Z ∈ coh(X) is indecomposable and q := μ(Z) < μmin,
then the Ringel slope of Z[1] is γ(q) ∈ (−α0/α∞,∞).

7.2.3. Accumulation points for coherent sheaves and tubular algebras.

Remark 7.21. Let X be a weighted projective line of tubular type. Let (a, b) ∈ Z × N ∪
{(1, 0)} with a, b coprime. Every quasi-simple Y ∈ coh(X) in a tube of rank p := lcm{p1, . . . , pt}
with μ(Y ) = a/b has rkY = b and deg Y = a.

Proof. Let E be a simple sheaf concentrated at an exceptional point of weight p. By
definition, see [12, 2.8], degE = 1 and rkE = 0. For all q ∈ Q, there is an equivalence, defined
in [23], called a telescopy functor, Φq,∞ : C∞ → Cq. These functors are compositions of shift
functors S : coh(X) → coh(X) given on objects by SX = X(xi) where 1 � i � t is such that
pi = p, inverses of shift functors and right mutations Rq : Cq → Cq/1+q for 0 < q � ∞. If X ∈
coh(X), then rkSX = rkX and degSX = degX + rkX. If X ∈ coh(X) and 0 < μ(X) � ∞,
then rkRqX = rkX + degX and degRqX = degX. So S and Rq, and hence Φq,∞ preserve
coprimeness of rank and degree. �

Proposition 7.22. Let X be a weighted projective line of tubular type.

(a) Let q ∈ Q and Y be a quasi-simple in a tube of rank p with μ(Y ) = q. There exist
• (qn)n∈N a strictly decreasing sequence with qn ∈ Q such that qn → q as n → ∞, and
• Xn, Zn ∈ coh(X) with μ(Xn) = μ(Zn) = qn, Hom(Y,Xn) = 0 and Hom(Y, Zn) �= 0.

(b) There exist
• Y ∈ coh(X) with μ(Y ) = ∞, and
• Xn, Zn ∈ coh(X) with μ(Xn) = μ(Zn) = −n, Hom(Zn, Y ) = 0 and Hom(Zn, Y ) �= 0.
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 491

Proof. (a) Let q ∈ Q. By Remark 7.21, r := rkY > 0 and d := deg Y are coprime and d/r =
q. Since r and d are coprime, there exists a0 ∈ Z and b0 ∈ N such that ra0 − b0d = 1. For all
n ∈ N, let an = a0 + nd and bn = b0 + nr. Then ran − bnd = 1 for all n ∈ N0 and hence an
and bn are coprime. Moreover qn := an/bn is a strictly decreasing sequence of rational numbers
such that qn → d/r = q as n → ∞.

Since an and bn are coprime, by Remark 7.21, for each n ∈ N, there exists a quasi-simple W
in a tube of rank p such that rk(W ) = bn and deg(W ) = an. By the Riemann–Roch equation
and since qn > q,

p−1∑
j=0

dim Hom(Y, τ jW ) = ran − bnd = 1.

Therefore dim Hom(Y, τ jW ) �= 0 for exactly one 0 � j � p− 1.
(b) The argument is similar to part (a) and left to the reader. �

Proof of Proposition 7.15. Let X be a weighted projective line and Σ ∈ coh(X) a tilting
bundle such that End(Σ) ∼= R. We keep the notation as in the rest of this section.

First suppose that q′ ∈ (0,−α0/α∞). Let q ∈ (μmax,∞) be such that γ(q) = q′. Let
Y,Xn, Zn ∈ coh(X) and qn ∈ Q be as in Proposition 7.22(a). Since μ(Y ), μ(Xn), μ(Zn) > μmax,
Y,Xn, Zn ∈ T . So HomR(Y,Xn) = 0 for all n ∈ N and HomR(Y, Zn) �= 0 for all n ∈ N. Let
q′n := γ(qn). Then slopeY = q′, slopeXn = slopeZn = q′n and q′n → q as n → ∞. So q′ is an
accumulation point of the set of non-uniform slopes for HomR(Y,−).

The case when q′ ∈ (−α0/α∞,∞) is similar and left to the reader.
Suppose that q′ = −α0/α∞. Let Y,Xn, Zn ∈ coh(X) be as in Proposition 7.22(b).

Then μ(τXn) = μ(τZn) = −n for all n ∈ N. For all n � −μmin + 1, Xn, Zn ∈ F . By Serre
duality, 0 = DHomX(Xn, Y ) = ExtX(Y, τXn) and 0 �= DHomX(Zn, Y ) = ExtX(Y, τZn). So
HomR(Y, (τXn)[1]) = 0 and HomR(Y, (τXn)[1]) �= 0 for all n � −μmin + 1. It just remains to
note that the Ringel slope of Xn and Zn, that is, γ(−n), tends to −α0/α∞ as n → ∞.

Suppose q′ = 0. The description of the tilting objects of coh(X) given in [24, 3.1 & 3.5] means
that if X is of tubular type and if T is inhomogeneous tube of slope μmax, then if Σmax has a
direct summand in T , then Σmax has a quasi-simple from T as a direct summand. Let Y be
a quasi-simple of slope μmax in a tube T of rank p. If Σmax has a direct summand from T ,
then assume that Y is a direct summand of Σmax. In either case, Ext(Σmax, Y ) = 0 and hence
Ext(Σ, Y ) = 0.

Now, arguments as in Proposition 7.22 imply that there exist a strictly decreasing sequence
qn ∈ Q such that qn → q as n → ∞ and Xn, Zn ∈ coh(X) indecomposable of slope qn such that
HomX(Y,Xn) = 0 and HomX(Y, Zn) �= 0. Since μ(Xn) = μ(Zn) > μmax for n ∈ N, Y,Xn, Zn ∈
T . The argument now proceeds as in the previous cases. �

8. Almost all slopes and Presburger arithmetic

The language of Presburger arithmetic is LPr := (+, <, 0) where + is a binary function symbol,
< is a binary relation symbol and 0 is a constant symbol. Presburger arithmetic is the theory
of Z in LPr where + is interpreted as the usual addition on Z, < is interpreted as the usual
order on Z and 0 is interpreted as the additive unit in Z. Presburger arithmetic is decidable.
For more information about Presburger arithmetic, see [26] (see [26, 3.1.21] for the proof of
decidability).

We start this section by showing that for a tubular algebra R, the set of x ∈ Zn ∼= K0(R)
such that x is the dimension vector of some indecomposable X ∈ mod-R is a definable subset
of Zn in the language of Presburger arithmetic 8.4. In order to do this, we will use the fact
that mod-R is controlled by χR, in particular that the dimension vectors of indecomposable

 1460244x, 2021, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12403 by T

est, W
iley O

nline L
ibrary on [18/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



492 LORNA GREGORY

finite-dimensional R-modules correspond exactly to the positive connected radical and root
vectors of χR. Note, however, that if we add a function symbol χ to Presburger arithmetic and
interpret it as any non-zero quadratic form on Z, then we can define multiplication in Z, and
hence, the theory becomes undecidable. So instead we argue that for χR the Euler quadratic
form on K0(R), the set of x ∈ Zn such that χR(x) = 0 or χR(x) = 1 is already a definable
subset of Zn in the language of Presburger arithmetic.

Lemma 8.1. For any pure subgroup G of Zn there is an n-formula Δ(x1, . . . , xn) in the
language of Presburger arithmetic such that (g1, . . . , gn) is in G if and only if Δ(g1, . . . , gn)
holds in Z.

Proof. Let V be the Q-linear span of G as a subset of Qn. Since G is pure, V ∩ Zn = G. Since
V is a subspace of Qn, there is a matrix A with entries from Q such that v ∈ V if and only if
vA = 0. By multiplying A by some integer, we may assume that A has integer entries. Now, for
any g ∈ Zn, g ∈ G if and only if gA = 0. Let Δ(x1, . . . , xn) be the formula (x1, . . . , xn)A = 0.
Note that Δ is a formula without parameters. �

Corollary 8.2. Let R be a tubular algebra. The group radχR ⊆ Zn ∼= K0(R) is definable
in the language of Presburger arithmetic.

Proof. Recall, that, when R is a tubular algebra, χR is positive semi-definite and hence
radχR is a subgroup of K0(R). If x ∈ K0(R) and nx ∈ radχR for some n ∈ Z\{0}, then
n2χR(x) = χR(nx) = 0 and hence x ∈ radχR. So radχR is pure in K0(R). �

If R is a tubular algebra, χR(x) = 1 and x− y ∈ radχR, then, since χR is positive semi-
definite, χR(y) = χR(x− (x− y)) = χR(x) = 1.

Similar results to the following have been obtained purely K-theoretically in [21, 2.3].
However, we require exactly the formulation of Lemma 8.3.

Lemma 8.3. Let R be a tubular algebra. There is a finite subset Ω ⊆ K0(R) such that for
all x ∈ K0(R) with χR(x) = 1, there exists y ∈ Ω such that x− y ∈ radχR.

Proof. Suppose that no such finite set Ω ⊆ K0(R) exists. Then there are infinitely many
y with χR(y) = 1 all in pairwise distinct cosets of radχR. Note that if λ, μ ∈ Z, then 〈h0, y +
λh0 + μh∞〉 = 〈h0, y〉 + μ〈h0, h∞〉 and 〈h∞, y + λh0 + μh∞〉 = 〈h∞, y〉 + λ〈h∞, h0〉. Let a, b ∈
N be such that a = 〈h0, h∞〉 and −b = 〈h∞, h0〉. Thus, there are infinitely many y with
χR(y) = 1 in pairwise different cosets of radχR such that 0 < 〈h0, y〉 � a and −b � 〈h∞, y〉 < 0.
Therefore, there exists e, f ∈ N such that there are infinitely many y with χR(y) = 1 in pairwise
different cosets of radχR such that 〈h0, y〉 = e and 〈h∞, y〉 = −f .

Let x = fh0 + eh∞. Note that by [35, 5.1.1] x is sincere, that is, xi > 0 for all 1 � i � n
where x = (x1, . . . , xn). A quick calculation gives that −e〈h∞, x〉 = f〈h0, x〉. Since x is sincere,
for any y in our infinite set, there is a c ∈ N0 such that y + cx is positive and connected; note
that −e〈h∞, y + cx〉 = f〈h0, y + cx〉. Thus we have an infinite set of elements z ∈ K0(R) such
that z is connected, positive, χR(z) = 1 and −e〈h∞, z〉 = f〈h0, z〉 all of which are pairwise in
different cosets of radχR. This contradicts that fact that for each slope q, R has only finitely
many inhomogeneous tubes. �

Lemma 8.4. Let R be a tubular algebra. The set of dimension vectors x ∈ K0(R) such that
χR(x) = 0 or χR(x) = 1 is definable in the language of Presburger arithmetic. Thus, the set
of dimension vectors of finite-dimensional indecomposable modules over R is definable in the
language of Presburger arithmetic.
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 493

Proof. By Lemma 8.3, there is a finite subset Ω ⊆ K0(R) such that for all x ∈ K0(R) with
χR(x) = 1, there exists y ∈ Ω such that x− y ∈ radχR. By Lemma 8.1 radχR is definable in
the language of Presburger arithmetic. Thus, the set of dimension vectors x ∈ K0(R) such that
χR(x) = 0 or χR(x) = 1 is definable in the language of Presburger arithmetic.

That x = (x1, . . . , xn) ∈ K0(R) is positive is expressed by saying xi � 0 for all 1 � i � n and
that xi > 0 for some 1 � i � n. That x = (x1, . . . , xn) ∈ K0(R) is connected is expressed by
saying that if xi > 0 and xj > 0, then there is some path P in the underlying quiver of R
between i and j such that for all vertices k in P , xk > 0.

By 2.2, mod-R is controlled by χR. Thus any connected positive dimension vector with
χR(x) = 0 or χR(x) = 1 is the dimension vector of an indecomposable module and all dimension
vectors of indecomposable modules are of this form. Thus, we have shown that the set of
dimension vectors of finite-dimensional indecomposable modules over R is definable in the
language of Presburger arithmetic. �

Proposition 8.5. Let R be a tubular algebra and ϕ/ψ, ϕ1/ψ1, . . . , ϕn/ψn be pp-pairs
such that there exist v, w1, . . . , wn ∈ K0(R) such that for indecomposable finite-dimensional
modules M with slope in the interval (a, b),

dimϕ(M)/ψ(M) = v · dimM

and for 1 � i � n

dimϕi(M)/ψi(M) = wi · dimM.

If there is an indecomposable pure-injective module N with slope in (a, b) such that N ∈
(ϕ/ψ) but N /∈

⋃n
i=1(ϕi/ψi), then there is a finite-dimensional indecomposable module M with

slope in (a, b) such that M ∈ (ϕ/ψ) but M /∈
⋃n

i=1(ϕi/ψi).

Proof. Suppose that N is as in the statement and that N has slope q.
For any slope p ∈ (a, b) either ϕ/ψ is closed on all modules of slope p or ϕ/ψ is open on all the

indecomposable pure-injective modules of slope p except for finitely many finite-dimensional
indecomposable modules. See Proposition 7.10 and Lemma 7.8 for p rational and Theorem 2.7
for p irrational.

So, N ∈ (ϕ/ψ) implies that ϕ/ψ is open on almost all indecomposable pure injectives of
slope q and N /∈ (ϕi/ψi) implies that ϕi/ψi is closed on all indecomposable pure-injectives of
slope q. So if q is rational, then there is a finite-dimensional indecomposable module M such
that M ∈ (ϕ/ψ) and M /∈ (ϕi/ψi) for 1 � i � n.

If q is irrational, then there is some ε > 0 such that ϕ/ψ is open on all finite-dimensional
indecomposable M with slope in (q − ε, q + ε) [17, 8.7]. Likewise, for each 1 � i � n, there
is some εi > 0 such that ϕi/ψi is closed on all finite-dimensional indecomposable M with
slope in (q − εi, q + εi). This is true because if Cq ⊆ ZgR\(ϕi/ψi), then (ϕi/ψi) ⊆ ZgR\Cq =⋃

ε>0 ZgR\C(q−ε,q+ε). Since (ϕi/ψi) is compact, there exists some ε > 0 such that (ϕi/ψi) ⊆
ZgR\C(q−ε,q+ε).

Thus there is some finite-dimensional indecomposable module M with slope in (a, b) such
that M ∈ (ϕ/ψ) and M /∈

⋃n
i=1(ϕi/ψi). �

Lemma 8.6. There is an algorithm which given w, v1, . . . , vn ∈ Zm and a < b ∈ Q∞
0 answers

whether there is an indecomposable finite-dimensional module X with slope in (a, b) such that
w · dimX > 0 and for 1 � i � n, vi · dimX = 0.

Proof. Note that there are vectors g0 and g∞ such that for all x ∈ Zm, 〈h0, x〉 = g0 · x and
〈h∞, x〉 = g∞ · x.
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494 LORNA GREGORY

Thus x ∈ Zm has ‘slope’ in (a, b) if and only if −(g0 · x)/(g∞ · x) ∈ (a, b). This statement can
be easily rewritten in the language of Presburger arithmetic.

In Lemma 8.4, we showed that set of dimension vectors of indecomposable finite-dimensional
modules over R is definable in Presburger arithmetic. Thus, since Presburger arithmetic is
decidable, there is an algorithm which decides whether there is an x ∈ Zm such that x is the
dimension vector of an indecomposable finite-dimensional module over R, x has slope in (a, b),
w · x > 0 and for 1 � i � n, vi · x = 0. �

9. Decidability for theories of modules over tubular algebras

In this section we combine the results of the previous sections in order to prove that if R is
a tubular algebra over a recursive algebraically closed field, then R has decidable theory of
modules.

Theorem 9.1. Let R be a tubular algebra over a recursive algebraically closed field. The
common theory of R-modules is decidable.

Proof of Theorem 9.1 for canonical algebras of tubular type. It is enough to show that there
is an algorithm which, given pp-pairs ϕ/ψ, ϕ1/ψ1, . . . , ϕn/ψn, answers whether

(ϕ/ψ) ⊆
n⋃

i=1

(ϕi/ψi).

First we show that there is an algorithm which answers whether there is an indecom-
posable pure-injective N of strictly positive non-infinite slope with N ∈ (ϕ/ψ) such that
N /∈

⋃n
i=1(ϕi/ψi).

By Corollary 7.14, there is an algorithm which, given ϕ/ψ, ϕ1/ψ1, . . . , ϕn/ψn, outputs 0 =
q0 < q1 < . . . < qm < qm+1 = ∞ and vj , wij such that for all 0 � j � m and all indecomposable
finite-dimensional modules N with slope in (qj , qj+1),

dimϕ(N)/ψ(N) = vj · dimN

and
dimϕi(N)/ψi(N) = wij · dimN.

By Proposition 8.5, if there is an indecomposable pure-injective module N with slope in
(qj , qj+1) such that N ∈ (ϕ/ψ) and N /∈

⋃n
i=1(ϕi/ψi), then there is a finite-dimensional inde-

composable module with slope in (qj , qj+1) such that N ∈ (ϕ/ψ) and N /∈
⋃n

i=1(ϕi/ψi). Thus,
by Lemma 8.6, we can effectively answer whether there is an indecomposable pure-injective
module N with slope in (qj , qj+1) such that N ∈ (ϕ/ψ) and N /∈

⋃n
i=1(ϕi/ψi).

By Lemma 5.3, there is an algorithm which, for each 1 � j � m answer whether

(ϕ/ψ) ∩ Cqj ⊆
n⋃

i=1

(ϕi/ψi) ∩ Cqj .

It now remains to answer whether there is an indecomposable pure-injective module N ∈
P0 ∪ C0 or N ∈ C∞ ∪ Q∞ such that N ∈ (ϕ/ψ) and N /∈

⋃n
i=1(ϕi/ψi).

Since P0 ∪ C0 ⊆ E0 ∪ E1 and C∞ ∪ Q∞ ⊆ E ′
0 ∪ E ′

1, it is enough to check if there is an
indecomposable pure-injective module N ∈ E0 ∪ E1 or N ∈ E ′

0 ∪ E ′
1 such that N ∈ (ϕ/ψ) and

N /∈
⋃n

i=1(ϕi/ψi). For this we refer to 6.10 and 6.14. �

We now extend the above result to tubular algebras. Note that since the results of
Sections 5–8 are for general tubular algebras, the only part of the proof missing is an algorithm
which given pp-pairs ϕ/ψ, ϕ1/ψ1, . . . , ϕn/ψn answers yes or no such that
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DECIDABILITY OF MODULES OVER TUBULAR ALGEBRAS 495

(1) if the algorithm answers yes, then there is an (indecomposable pure-injective) R-module
N such that N ∈ (ϕ/ψ) and N /∈

⋃n
i=1(ϕi/ψi) and

(2) if the algorithm answers no, then there does not exist N ∈ H such that N ∈ (ϕ/ψ) and
N /∈

⋃n
i=1(ϕi/ψi) where H := P0 ∪ C0 ∪ C∞ ∪ Q∞.

Using Herzog’s duality, as in Lemma 6.13, it is sufficient to replace H in the above by P0 ∪ C0.
Let Γ be a finite-dimensional algebra. A finite-dimensional Γ-module T is a tilting module

if the following three conditions are satisfied:

(T1) T has projective dimension less than or equal to 1,
(T2) Ext1(T, T ) = 0 and
(T3) There exists a short exact sequence 0 → Γ −→ T ′ −→ T ′′ → 0 where T ′ and T ′′ are

direct summands of some finite power of T .

Note that, [5, 2.1], (T3) can be replaced with the condition that the number of pairwise
non-isomorphic indecomposable direct summands of T is equal to the number of pairwise
non-isomorphic simple Γ-modules.

For an introduction to tilting theory for finite-dimensional algebras, see [2, Chapter VI].

Proposition 9.2. Let R be a tubular algebra. There exists a canonical algebra Γ of tubular
type and a tilting module Σ ∈ mod-Γ with End(Σ) ∼= R such that for all indecomposable
pure-injective R-modules N which are either of slope zero or preprojective, there exists an
indecomposable pure-injective Γ-module M with HomΓ(RΣ,M) ∼= N .

Proof. Let Σ be a tilting vector bundle in coh(X) where X is of tubular type such
that End(Σ) ∼= R. Let Γ be the endomorphism ring of the canonical tilting bundle Σcan :=⊕

0�x�c O(x). Then Γ is a canonical algebra of tubular type. We will view the categories
coh(X), mod-Γ and mod-R as subcategories of Db(X).

Let coh�(X) be the torsion class of Σcan and coh−(X) be the torsion-free class of Σcan. So
mod-Γ is equivalent to coh�(X) ∨ coh−(X)[1]. Note that the maximal (respectively, minimal)
GL-slope of any O(x) for 0 � x � c is p = lcm{p1, . . . , pt} (respectively, 0).

By repeatedly applying the shift functor, which acts on sheaves by sending X to X(xt),
we may assume that each indecomposable direct summand of Σ has slope strictly greater
than p and hence Σ ∈ coh�(X). Since Σ generates Db(X) ∼= Db(Γ), the indecomposable direct
summands of Σ generate K0(Γ). So, viewed as a Γ-module Σ satisfies (T3). That Σ has
projective dimension less than or equal to 1 follows from [35, 3.1.5]. Therefore Σ ∈ mod-Γ
is a tilting module.

Let T be the torsion class induced on coh(X) by Σ. Let μmax be the maximal slope of any
indecomposable direct summand of Σ and let μmin be the minimal slope of any indecomposable
direct summand of Σ. Note that if X ∈ T is indecomposable, then μmin � μ(X). So, in particu-
lar, p < μ(X) and hence X ∈ coh�(X). Moreover, if X ∈ T , then Ext1Γ(Σ, X) = Ext1

X
(Σ, X) = 0

and HomΓ(Σ, X) ∼= HomX(Σ, X) as R-modules.
Since T contains the preprojective component and all finite-dimensional R-modules of slope

0, the image of the torsion class of Σ in mod-Γ under HomΓ(Σ,−) in Mod-R contains all
preprojective R-modules and all finite-dimensional R-modules of slope zero.

Since Σ is a tilting module in mod-Γ, HomΓ(Σ,−) : Mod-Γ → Mod-R induces an equivalence
between the torsion class G in Mod-Γ of Γ-modules M with ExtΓ(Σ,M) = 0 and the torsion-free
class Y in Mod-R of R-modules N with TorR(N,Σ) = 0 by [8, 3.5.1]. By [31, 10.2.36], Y is a
definable subcategory of Mod-R. Since, by Proposition 6.3, the smallest definable subcategory
of Mod-R containing all finite-dimensional R-modules of slope 0 contains all R-modules of slope
0 and Y contains all finite-dimensional R-modules of slope 0, it follows that all R-modules of
slope 0 are in the image of HomΓ(Σ,−) : Mod-Γ → Mod-R. �
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496 LORNA GREGORY

Proof of Theorem 9.1 for tubular algebras via tilting. Let R be a tubular algebra. Let Γ
and Σ ∈ mod-Γ be as in Proposition 9.2.

Since F := HomΓ(Σ,−) is a k-linear interpretation functor, given a pp-pair ϕ/ψ over R, we
can effectively construct a pp-pair ϕ′/ψ′ over Γ such that for all M ∈ Mod-Γ, |ϕ′(M)/ψ′(M)| >
1 if and only if |ϕ(FM)/ψ(FM)| > 1. By the previous discussion and since we have already
shown that the theory of Γ-modules is decidable, this is enough. �

Corollary 9.3. Prest’s conjecture is true for concealed canonical algebras.

Proof. As a consequence of Theorem 9.1, it remains to confirm that domestic concealed
canonical algebras have decidable theory of modules and that wild concealed canonical algebras
have undecidable theory of modules.

By [24, 5.7], if Λ is a wild concealed canonical algebra, then Λ is strictly wild and hence, by
[30], has undecidable theory of modules.

By [25, 7.1], if Λ is a domestic concealed canonical algebra, then Λ is tame concealed. So,
[28, 17.17], Λ has decidable theory of modules. �
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