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Abstract

Ambiguous language is ubiquitous and often deliberate. Recent theoretical work (Bose and

Renou, 2014; Kellner and Le Quement, 2018; Beauchêne, J. Li, and M. Li, 2019) has shown

how language ambiguation can improve outcomes by mitigating conflict of interest. Our

experiment finds a significant effect of language ambiguation on subjects who are proficient

at Bayesian updating. For ambiguity averse subjects within this population, a significant

part of this effect operates via the channel of subjects’ desire to reduce ambiguity. For both

ambiguity averse and neutral subjects within this population, an additional behavioral

channel is also present. (JEL: C91; D01; D81)

Keywords: Ambiguity aversion; Communication; Persuasion; Laboratory experiment.

1. Introduction

Individuals often make use of ambiguous formulations. Such ambiguity often

appears deliberate as it could easily be avoided. Governors of the US central

bank have been known for their use of cryptic language. In 1995, a speech

by Alan Greenspan gave rise to very different headlines, the New York Times
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writing “Doubts voiced by Greenspan on a rate cut” and the Washington Post

writing instead “Greenspan hints Fed may cut interest rates” (see Blume and

Board, 2014).1 Other examples include contracts or advertising messages as

well as political speech—e.g., former UK Labour Party leader Jeremy Corbyn’s

stance on Brexit.

How and why senders resort to ambiguous messages remains subject to

discussion. Clarifying this requires understanding better how audiences react to

such messages. We conduct a lab experiment which focuses on a specific type of

ambiguous messages characterized by non-probabilistic uncertainty about the

used communication rule. After such a message, a receiver who originally had a

unique prior now faces multiple posteriors which he is not willing to compound

into a single probability distribution over the unknown state of the world.

Such non-probabilistic uncertainty is labeled ambiguity in the decision theory

literature, motivating our use of the term ambiguous messages. In our setup,

non-probabilistic uncertainty about the communication rule is generated by

conditioning messages on privately observed draws from urns with an unknown

composition (so-called Ellsberg urns). Echoing this description, real language

features many expressions (cryptic sentences, unclear words) whose use cannot

be described in probabilistic terms and which are, in this sense, ambiguous in

their meaning. The type of ambiguous messages that we study could be seen

as a specific instance of vague language. By vagueness one often means that

the language is produced according to an unclearly defined rule.2

1. See also the following excerpt from a 2001 Congressional hearing speech by A. Greenspan

“The members of the Board of Governors and the Reserve Bank presidents foresee an implicit

strengthening of activity after the current rebalancing is over, although the central tendency

of their individual forecasts for real GDP still shows a substantial slowdown, on balance,

for the year as a whole.” (Federal Reserve Board’s semiannual monetary policy report to

the Congress Before the Committee on Banking, Housing, and Urban Affairs, U.S. Senate

February 13, 2001)

2. See for example Lipman (2009), Williamson (1996), and Peirce (1902). Lipman (2009),

discussing vagueness, gives the example of the word “tall”, where the threshold above which
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The study of language as an equilibrium phenomenon goes back to the

seminal contribution of Crawford and Sobel (1982), which has since spurned a

vast literature; theoretical, applied and experimental (see Sobel, 2013; Blume,

Lai, and Lim, 2020, for reviews). Key applications include settings with multiple

senders or receivers, repeated communication over time, boundedly rational

players or image concerns. Equilibrium communication in the baseline Crawford

and Sobel (1982) does not feature ambiguity or vagueness but simply imperfect

(i.e., coarse) information transmission: intervals of sender types pool on the

same messages and thus leave the receiver ex post uncertain.

Kellner and Le Quement (2018) as well as Beauchêne, J. Li, and M.

Li (2019) have shown how ambiguity might emerge in addition to pooling

in the Crawford and Sobel (1982) model. The communication strategy

there combines partitioning with non-probabilistic randomization. A central

insight is that rather than hindering communication, language ambiguation—

i.e., making language non-probabilistic—can help improve communication by

mitigating conflict of interest. The insight is relevant to important applications

(see for example Evdokimov and Garfagnini (2019) for an experiment on

communication in organizations).

Our experiment aims at testing whether real subjects’ response to language

ambiguation echoes theory. Does ambiguation affect behavior in the expected

direction and in a quantitatively significant way? If so, via which channels?

Besides ambiguity averse (or loving) subjects’ specific response to ambiguity,

behavioral effects could potentially be significant.

We find that ambiguation significantly shifts behavior in the expected

direction. We focus our analysis on subjects who demonstrate good Bayesian

updating skills when faced with standard partitional messaging rules, and we

call these Bayes-Competent. For Bayes-Competent subjects who are ambiguity

averse, a significant part of the effect of language ambiguation operates through

someone should be called “tall” is uncertain (words such as “many”, or “good” are other

examples).
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a specific hedging mechanism driven by subjects’ desire to reduce ambiguity.

Perfect hedging would correspond to the case where agents pick an action, after

observing an ambiguous message, which ensures that their expected utility is

the same whatever the true randomization probability used by the sender. This

effect complements an anchoring effect of similar magnitude. Among Bayes-

Competent subjects who are ambiguity neutral, the hedging effect appears to

be absent.

In the main treatment task, each subject (also called DM) must choose a

number after observing a message issued by an automated process. The message

provides information on an unobservable state drawn from [0, 100]. DM’s payoff

decreases linearly in the distance between number and state. We run variations

of this task within and between subjects. Our main focus is on the ambiguous

variant, which we now describe.

The state ω is drawn from an (unambiguous) uniform distribution on

[0, 100]. The latter interval is partitioned into three subintervals [0, 50), [50, c)

and [c, 100], for some known c. There are three messages, ?, X, and #. If

ω ∈ [0, 50), the message sent is ?. If instead ω lies in [50, c) or [c, 100], the

message conditions also on an unobservable draw from a so-called Ellsberg urn

featuring blue and red balls in unknown proportions. If the draw is red, the

message is X if the state lies in [50, c) and # if it lies in [c, 100]. If the draw is

blue, the use of X and # is reversed.

After observing ?, DM has a unique posterior, so we expect her to choose 25,

the conditional expectation of ω. In contrast, X and # leave DM with multiple

posteriors and her choice should thus depend on her ambiguity attitude and

belief updating.

If a DM is ambiguity averse and uses prior by prior updating, a wide range

of common models of decision-making under ambiguity (max-min, α-max-min,

or the smooth model) predict that her optimal action is greater than 75 if c is

greater than 75. Similar behavior could arise under a known urn composition

if the DM does not reduce compound lotteries. Instead, an ambiguity neutral
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DM considering both colors equally likely (at least on average) should choose

75 after X and #.

To gain some intuition, consider the case of a max-min DM choosing

an action (a number) after the signal X or #. Such a DM evaluates

every action according to its worst-case scenario, the lowest expected utility

among all possible urn compositions. Practically, the decision maker needs to

consider only the two extreme scenarios, which correspond to a degenerate

urn composition (all balls red or all blue). Given the messaging rule, under

one of these scenarios the state ω is uniformly distributed over the interval

[50, c), under the other scenario over the interval [c, 100]. For low actions, the

worst-case scenario corresponds to the high interval, and expected payoffs are

increasing in the action. As the action increases, the worst-case scenario at a

certain point changes to the low interval and expected payoffs now become

decreasing in the action. Overall, the worst-case expected utility is inverse v-

shaped and uniquely maximized at the action where the worst-case scenario

shifts. At this action, all possible urn compositions yield the same expected

utility and thus the decision maker is fully hedged against uncertainty.

To understand that this max-min action is greater then 75, note that for

the action 75 the worst-case scenario uniquely corresponds to the high interval,

as we explain now. Under the high interval, if 75 is chosen, the loss of |75−ω| is

uniformly distributed over the interval [c− 75, 25] (with c− 75 > 0). Under the

low interval, the loss is distributed instead over [0, 25] and any loss in (0, c− 75])

is twice as likely as any loss in (c − 75, 25]. Thus, the high interval leads to

a more adverse distribution of losses (in the sense of first order stochastic

dominance) and thus lower expected utility for the action 75. Next, note that

under the high interval, since the state is known to be above c > 75, expected

utility is still increasing in the action at 75. Thus, worst-case expected utility

is increasing at 75 as well.3

3. Under alternative models such as the smooth model and the α-max-min model, the DM

is still influenced by worst-case expected utility, though to a lesser extent. Accordingly, the

mechanism described above still applies but affects the DM’s action to a lesser degree. The
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We run a two by two treatment design. The first variable is subjects’

knowledge of the composition of the urn (so-called risky vs ambiguous

treatments). The second variable is whether subjects are given help in updating

their beliefs.

After the main treatment task, subjects perform a set of control tasks

checking their (1) ability to update beliefs, (2) anchoring tendency, (3) risk

and ambiguity aversion and (4) cognitive ability.

Literature review. Starting from Ellsberg (1961), a rich theoretical

literature has developed on the subject of decision-making under ambiguity.4

Decision-making under ambiguity has also been studied experimentally.5

A new experimental literature studies responses to ambiguous signals.

Epstein and Halevy (2019) study signals of ambiguous precision and distinguish

between attitudes towards “prior-ambiguity” and “signal-ambiguity”. They find

non-indifference to signal-ambiguity and association between attitudes towards

same applies also if a max-min decision maker would not consider all possible probability

distributions, but, say, only those which she considers particularly plausible.

4. Ellsberg (1961) presents a thought-experiment displaying behavior incompatible with

subjective expected utility maximization. He rationalizes behavior by introducing ambiguity

aversion. The max-min Expected Utility model (Gilboa and Schmeidler, 1989) posits that an

ambiguity averse DM facing multiple priors evaluates each action according to its worst-case

expected utility across priors and maximizes the thereby constructed lower envelope. The

smooth model of ambiguity aversion (Klibanoff, Marinacci, and Mukerji, 2005) incorporates

second order beliefs (a prior over priors) and quantifies the degree of ambiguity aversion

through a concavity parameter which is a counterpart of the standard risk parameter.

The max-min model and the smooth model yield similar predictions in our setup. Given

ambiguity averse preferences (defined over an unrestricted domain) and an updating rule,

behavior must violate either dynamic consistency or consequentialism (see e.g., Siniscalchi,

2011; Hanany and Klibanoff, 2007; Hanany and Klibanoff, 2009).

5. Fox and Tversky (1995) finds that the effect of ambiguity is greater if only a subset of

options features ambiguity. Halevy (2007) shows that ambiguity aversion strongly associates

with the failure to reduce compound lotteries. Cubitt, van de Kuilen, and Mukerji (2019)

find evidence that choices are more in line with the smooth ambiguity model than with

max-min. Dominiak, Duersch, and Lefort (2012) and Bleichrodt, Eichberger, Grant, Kelsey,

and C. Li (2018) find that subjects’ updating procedure is harder to reconcile with dynamic

consistency than with consequentialism.
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prior- and signal ambiguity. Shishkin and Ortoleva (2019) and Kops and

Pasichnichenko (2020) study the value of ambiguous signals in the case where

“all news is bad news”.6 In this case, an ambiguity averse decision maker using

prior-by-prior updating assigns a lower valuation to a given bet after every

signal realization. The key is that for such signals—call them dilation signals—

the set of posteriors after any signal realization contains the original set of

priors.7 Shishkin and Ortoleva (2019) compare the willingness to pay for a 50:50

bet with and without being exposed to a dilation signal. The authors find that

empirically, decision makers do not assign negative value to dilation signals,

in contrast to theoretical predictions. Kops and Pasichnichenko (2020) instead

offer a choice between two comparable options, both of which involve being

exposed to a dilation signal. The signal provides payoff-relevant information

only for the second of two options, and this second option yields slightly higher

payoffs in all states. They find that decision makers prefer the first option, where

the dilation signal is not payoff-relevant, and, when given a further choice, prefer

not to be exposed to the dilation signal.

In contrast to Shishkin and Ortoleva (2019) and Kops and Pasichnichenko

(2020), in our experiment signals have positive ex ante value—a relevant case for

many applications—as they always reveal whether ω lies above or below 50. Yet,

between our ambiguous treatment and an alternative in which X or # would

be merged, a DM would prefer the latter. Without commitment, the ambiguity

contained in X or # has a negative value ex ante. To reconcile Shishkin and

Ortoleva (2019) with our findings, one could posit that DMs ignore only signals

that are not valuable from an ex ante perspective.

A rich body of work studies behavioral biases in belief updating (see for

example Kahneman and Tversky, 1974; Jörg Oechssler, Roider, and Schmitz,

2009). Anchoring occurs when irrelevant information becomes a reference point

distorting peoples’ belief updating and action choice. For example, exposure to

6. For theoretical discussions of the value of information under ambiguity aversion see

Siniscalchi (2011) and J. Li (2020).

7. See Seidenfeld and Wasserman (1993) for the first definition of dilations.
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a random integer might affect guesses on the percentage of African countries in

the UN. Cognitive sophistication has been shown to negatively correlate with

such bias (see Jörg Oechssler, Roider, and Schmitz, 2009; Bergman, Ellingsen,

Johannesson, and Svensson, 2010).

There exists a lively literature on strategic information transmission and

various forms of vagueness, both theoretical and experimental. A key message

of this literature is that vagueness can help incentivize more informative

communication by senders and ultimately improve welfare. There are two

strands of literature, (a) papers that take a non-probabilistic uncertainty

approach and (b) papers that take an expected utility approach.

We build on the non-probabilistic uncertainty approach proposed in Kellner

and Le Quement (2018) and Beauchêne, J. Li, and M. Li (2019).8 The other set

of contributions studies language vagueness in an expected utility framework.

A common aspect is the presence of some known noise process that generates

randomness in the message received by the receiver or in the interpretation

thereof. Garbling, by generating pooling of sender (S) types, can induce the

receiver (R) to react less adversarially to messages, in turn incentivizing S

to reveal more. In the partitional equilibria of Blume, Board, and Kawamura

(2007), R’s expectation is a weighted average of the conditional expectation

without transmission error and the ex ante mean, implying a beneficial upwards

distortion of R’s action. In Blume and Board (2014), the sender abstains from

choosing messages that minimize the effect of exogenous channel noise, thereby

similarly achieving a conflict mitigating effect. Giovannoni and Xiong (2019),

building on a framework by Blume and Board (2013), studies cheap talk under

8. Both build on Bose and Renou (2014), where a principal can use an Ellsbergian device

to make the agents face ambiguity. Kellner and Le Quement (2018) considers the case of

cheap talk with an ambiguous distribution of the state, and find that in sender optimal

equilibria, the sender randomizes between partitional strategies and thereby hedges against

exogenous ambiguity. See also Colo (2021) for a complementary analysis of cheap talk under

exogenous ambiguity. Ambiguity in strategic settings has been studied in general in Azrieli

and Teper (2011), Bade (2011) and Riedel and Sass (2014). See also Lo (1996) and Klibanoff

(2001) on equilibrium in ambiguous beliefs.
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language barriers which restrict messages that can be respectively sent and

understood. Under the standard communication protocol, language barriers

weakly improve equilibrium welfare by relaxing incentive conditions.

Comparing the expected utility approach to the approach of Kellner and

Le Quement (2018) and Beauchêne, J. Li, and M. Li (2019), a number of clear

differences appear. In the latter, noise is entirely endogenous, it does not come

in the form of a well specified stochastic process, and it affects R’s actions via

a different channel, namely hedging against ambiguity. 9

Language vagueness has also been studied experimentally. Closest to the

above contributions, Blume, Lai, and Lim (2021) find that—as predicted

by theory—garbling of information via a mediator can improve reporting

incentives, by advantageously distorting the receiver’s response to information.

Vagueness has also been shown to have value through other types of channels.

Agranov and Schotter (2012) study a privately informed principal sharing

information with agents about potentially asymmetric payoffs in a coordination

game. Coarse communication helps by hiding payoff asymmetries which hurt

coordination by weakening focal points. Serra-Garcia, Van Damme, and Potters

(2011) study sequential public good games in which a leader privately informed

about the good’s value can communicate with others. Leaders prefer using

vague messages rather than explicitly lying, and achieve the same efficient

outcome as if lying due to imperfect updating by followers. In Blume, Lai,

and Lim (2019), exogenous garbling of sender messages improves incentives

to reveal unfavorable information by mitigating risk through the option to

plausibly deny specific interpretations. Finally, Evdokimov and Garfagnini

(2019) investigate experimentally communication within organizations à la

Alonso, Dessein, and Matouschek (2008) and conjecture that receivers’ biased

9. Lipman (2009), studying cheap talk under aligned interests, argues that explaining the

value of vagueness requires assuming bounded rationality. Jäger, Metzger, and Riedel (2011)

consider a sender with an infinite type space endowed with a finite message set. Equilibrium

language is by definition imprecise, and the paper identifies efficient languages.
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behavior might originate in ambiguous communication as in Kellner and Le

Quement (2018).

2. Experimental design

2.1. Main treatment task

In the main treatment task, the state of the world ω is given by a number

between 0 and 100, which is drawn from a uniform distribution on [0; 100].10 An

automated process generates an informative signal (also called message) about

the state. Upon observing the signal, a subject has to choose a point estimate of

the true state and is rewarded in money according to the distance between the

state and her estimate. Denoting the chosen action by a, the payoff function is

simply given by −|ω − a|. Accordingly, given a unique probability distribution

of ω, the subject’s expected payoff maximizing action is the expected value of

the state.11

We now describe the signal generating process in more detail. The state

space [0, 100] is partitioned into three adjacent intervals [0, 50), [50, c) and

[c, 100], which we call intervals 1, 2 and 3, respectively. Moreover, there is an

urn containing 100 balls which can be either red or blue. Before a message is

sent, a ball is drawn randomly from the urn, the color of which is not observed

by the subject. Let θ be a random variable that takes either value r if the drawn

ball is red or b if it is blue.

The message sent depends on ω and θ as follows. If ω ∈ [0, 50), the signal

sent is ? no matter the value of θ. If ω lies in intervals 2 or 3, the emitted

message depends on ω and on the value of θ. If θ = r, then the sent message

10. Within the experiment all random draws are simulated using the random number

generator of zTree (Fischbacher, 2007).

11. Computerizing the sender makes the problem under consideration a decision problem

as opposed to a game between a strategic sender and a receiver. This leaves no scope for

other-regarding or moral preferences (Gneezy, 2005; Wang, Spezio, and Camerer, 2010).
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is X if the state is in interval [50, c) while the message is # if the state is in

interval [c, 100]. If, on the other hand, θ = b, then the messaging rule on these

two intervals is reversed; i.e., the message is # if the state is in interval [50, c)

and the message is X if the state is in interval [c, 100].

We will refer to this task as Main-Treatment. Participants make nine

decisions in Main-Treatment. The value of c changes with each repetition

and is drawn from the set {54, 64, 86, 96}. The values of c are assigned in random

order, in a way that guarantees that each subject was assigned each value at

least twice across the nine iterations. We introduce two independent dimensions

of between subjects variation. These are described below.

The first dimension of between subjects variation has to do with what

subjects know concerning the distribution of colors in the urn. In the so-

called Risky environment, the subject knows that there are 50 red and 50 blue

balls in the urn. In the so-called Ambiguous environment, the subject has no

information regarding the proportion of red and blue balls in the urn.

The second dimension of between subjects variation is whether or not

we provide subjects with help in forming beliefs. Across the Risky and

Ambiguous environments, in case help is provided, we assist subjects in

evaluating the conditional probabilities of the different messages across intervals

1-3. In the Risky environment, we point out that messages X and # each

have a conditional probability 1
2 of being sent both on intervals 2 and 3

(and 0 on interval 1). In the Ambiguous environment, subjects are asked

to propose a potential composition of the urn. Given this composition, we

provide the conditional probabilities of the different messages in the different

intervals. Subjects are asked to repeat this procedure for several possible urn

compositions (at least two, at most four).

2.2. Control tasks

Our control tasks cover four themes: Agents’ belief updating abilities, their

anchoring propensity, their attitudes to risk and ambiguity, and finally their

general understanding and ability.
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2.2.1. Belief updating ability.

Choice after message ? in the main treatment task. In the main treatment

task, as message ? does not depend on draws from the Ellsberg Urn, it allows

us to evaluate to which extent the participants follow Bayesian updating in the

absence of ambiguity. The control variable starchoice records the difference

between the choice after this message and the Bayesian choice 25.

Only red balls task. The decision is identical to the Main-Treatment task,

with the difference that subjects are told that the urn contains only red balls.

The task is repeated three times and each repetition features a new independent

draw of the state.

Belief elicitation task. This set of controls is referred to as Beliefs. We

explicitly elicit subjects’ probabilistic beliefs over the actual interval within

which the state is contained. Subjects face the same signal generating process

as in the Main-Treatment task. However, the value for c is fixed at 80, and

they now are informed about the distribution of colors in the urn, independent

of the previously encountered Main-Treatment task, in which they were

faced with either a risky or an ambiguous urn.

The nature of the decision after receiving a signal differs from that

encountered in the Main-Treatment task. A specific task is repeated

twice with minimal modification. In the first variant of the task, subjects

can choose between a fixed option A and a list of versions of Option B,

each being indexed by a value of x ∈ (0, 1). Option A yields 100 ECU if

the state is in interval 2 and 0 otherwise. Option (B,x) yields 100 ECU

with probability x and otherwise nothing. The values of x considered

are {.1, .2, .3, .35, .4, .45, .5, .55, .6, .65, .7, .75, .8, .9.}. We chose this grid to be

sufficiently fine in the region of interest. The second variant of the task is

identical, except that option A yields 100 ECU if the state is in interval 3 and

0 otherwise.

In the two above variants of the task, the value of x at which the subject

switches from option A to option B indicates the probability that she attributes

to the respective interval (2 in the first task, 3 in the second). An expected
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utility DM should attribute probability 0 to intervals 2 and 3 after message

?. The probability assigned to interval 2 should be .6 after X and #. The

probability assigned to interval 3 should be .4 after X and #. After X and #,

if the elicited probabilities for intervals 2 and 3 do not add up to one, this could

be a sign that, perhaps due to difficulties in updating, participants consider also

the risky treatment in fact as ambiguous.

2.2.2. Anchoring propensity. The Anchoring 1 and Anchoring 2 control

tasks test subjects’ anchoring propensity. A concern in our setup is that the

partitioning of the [0, 100] interval potentially makes threshold c an anchor.

Subjects who anchor might display a tendency to choose an action close

to c. Anchoring 1 and Anchoring 2 provide simplified environments in

comparison to the Main-Treatment task. The expectation is that subjects

who anchor in the treatment also anchor in these simpler tasks. Anchoring

1 and Anchoring 2 share the following basic features. The task is iterated 3

times with an independent draw of the state in each repetition. The value of c

changes across periods. Each subject observes three out of the four values in the

set {54, 64, 86, 96}. Observed values and their order are randomly determined.

In the Anchoring 1 control task, we reduce the signal space to {?,X} and

subjects are informed that they will receive signal ? if the state is in interval

1 and X if it is either in interval 2 or in interval 3. Threshold c has thus lost

its significance, i.e. it should not affect the action taken by DM in response to

messages X and #. Both of these messages contain only the information that

ω ≥ 50, whatever the value of c.

In the Anchoring 2 control task, the messaging rule conditions on the

color of the ball drawn from the urn. For subjects participating in a risky

treatment, the urn is known to contain 50% red balls. For subjects participating

in ambiguous treatments, the composition of the urn is unknown. As usual the

message is ? if the state is in interval 1. If the drawn ball is red and the state

is either in interval 2 or 3, then the message is X. If on the other hand the ball

is blue and the state is either in interval 2 or 3, then the message is #. Again,

note that the threshold c should not affect the action taken by DM in response
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to messages X and #. Both of these messages contain only the information that

ω ≥ 50, whatever the value of c.

2.2.3. Risk and ambiguity attitude. In the Uncertainty-Attitudes tasks,

we elicit risk and ambiguity aversion within the same framework in order to

construct a risk corrected measure of ambiguity aversion, our control variable

of interest.

In the risk aversion elicitation task, subjects face multiple similar choices.

The first Option, A, is indexed by a value of x ∈ (0, 1). Option (A,x) yields

x ECU for sure. We consider a grid of equally spaced values for x given by

0, 5, . . . , 100. The payoff of the other Option, B, depends on a draw from an

urn containing 50% white balls and 50% black balls. It yields 100 ECU if the

drawn ball is white and otherwise 0. One expects that decision makers chooses

B for low values of x, A otherwise. The exact switching point indicates their

risk attitude.

The ambiguity aversion elicitation task is similar in structure to the one used

for risk aversion and comes in two similar variants. The first variant is identical

to the risk aversion task, with the difference that the composition of the urn

determining the payoff of Option B is now unknown. The second variant is

identical to the first variant, with the only difference that Option B now yields

100 ECU if the drawn ball is black and 0 otherwise. In all Uncertainty-

Attitudes tasks, participants indeed switched only once. This allows us to

partition ambiguity attitudes set into three categories as follows. We define a

subject as Ambiguity averse, Ambiguity neutral, and Ambiguity loving if her

switching point in both ambiguity aversion tasks is located after, at, or before

the switching point in the risk aversion task, respectively.12

2.2.4. General understanding and ability.

12. No subjects were not classifiable according to this rule. For the vast majority of

subjects, switching points differed by no more than one unit across the two versions of

the ambiguous task.
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Pre-treatment control questions. Before the main task, subjects have to

answer questions concerning the signaling rule and pay-off calculations which

verify that they understood the instructions. To make guessing more tedious,

subjects are told that after mistakes, they will be asked to answer the concerned

questions again, without being told where they made a mistake. This procedure

aims at incentivizing subjects to think more carefully about the correct answers.

Cognitive ability tests. Subjects perform two standard non-verbal tasks,

which both provide general measures of cognitive ability: The Raven’s matrices

test (Raven) and the cognitive reflection test (CRT, Frederick, 2005). The

latter measures in particular subjects’ proneness to give answers governed by

impulses rather than deliberation. The task is numerical, which matches the

nature of our experiment.

2.2.5. Overview of controls. The control tasks Red Balls Only,Anchoring

1 and Anchoring 2 are closely related to the Main-Treatment task, in the

sense that each introduces one specific modification to the messaging rule used

in the Main-Treatment. Table 1 summarizes these four tasks.

Table 1. Signal generating process in the Main-Treatment task and 3 selected control
tasks

Color [0,50) [50,c) [c,100] Urn composition

Main-Treatment red ball ? X # risky or ambiguous
blue ball ? # X

Red Balls Only red ball ? X # all balls are red
blue ball ? # X

Anchoring 1 red ball ? X X as in main task
blue ball ? X X

Anchoring 2 red ball ? X X as in main task
blue ball ? # #

Given that each of the tasks Red Balls Only, Anchoring 1 and

Anchoring 2 is repeated three times and that the state belongs to interval 1

with probability one half, the probability that a subject receives three times

the message ? is (.5)3. For each of the Red Balls Only, Anchoring 1 and

Anchoring 2 control tasks, we thus expect to receive an informative answer
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Table 2. Summary of experiment

Main-Treatment Treatments: c ∈ {54, 64, 86, 96}
Variations: (Risky / Ambiguous × Help /No Help)

9 repetitions

Main-Control Three repetitions for each control task

Further controls
Beliefs Belief elicitation
Uncertainty-Attitudes Ambiguity and risk aversion test
CRT Cognitive reflection test
Raven Raven’s matrices 9 items assessment

for each of the subjects in 1 − (.5)3 = 87.5% of the cases. We will therefore

have a full set of these three controls for approximately 76% of the subjects.

As this subset is randomly determined and not correlated with any decisions

made by the subjects, we can separately analyze this subset without worrying

about selection due to the availability of controls.

Table 2 gives an overview of the complete sequence of control tasks

performed by subjects together with elicited variables.

2.3. Implementation and procedures

Payment was done according to the Random Incentive Scheme: At the end

of the experiment, subjects received payout for one round of one task taken

from the complete set of tasks minus the Raven and CRT tasks. The task

and the round were selected fully randomly. At the end of the experiment,

subjects were informed of the selection and the obtained payoff, where 100

ECU corresponded to 8e. Subjects also received a fixed payment of 2.50e

for the CRT and Raven tasks, and they learned their results for these

tasks. In experiments with ambiguity sensitive subjects, there is a theoretical

possibility that the random incentive scheme is not incentive compatible (Bade,

2015; Baillon, Halevy, and C. Li, 2022a). In practice, the evidence is mixed.

Jörg Oechssler, Rau, and Roomets (2019) find that there is low evidence of

hedging across multiple decisions. Baillon, Halevy, and C. Li (2022b)—who

explicitly address the incentive compatibility of the RIS—provide evidence that

this can be a serious concern if hedging opportunities are fairly straightforward.
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See also the discussion in footnote 14 in Cubitt, Kuilen, and Mukerji (2018).

As argued below, our main task does not create such straightforward hedging

opportunities across repetitions.

The experiment was conducted at the experimental laboratories at

Mannheim and Düsseldorf in May 2016 and April 2017, respectively, with a

standard student subject pool recruited with ORSEE (Greiner, 2004). In total

119 subjects participated in the experiment. We ran 12 sessions where each

session lasted around 45 minutes. The experiment was programmed in z-tree

(Fischbacher, 2007). The average payoff was 9.56e.13

3. Theoretical predictions for the main task

In the risky environment, the messages # and X provide no more information

than the fact that ω ≥ 50. Indeed, the probability of any of these being sent

given ω ∈ [50, c) is 1
2 and the same holds true conditional on ω ∈ [c, 100]. It

follows that DM’s best response to these messages is E [ω|ω ∈ [50, 100]] = 75.

This carries over to the ambiguous environment if DM applies expected utility

and, at least on average, considers both colors equally represented.

We now discuss the ambiguous environment for an ambiguity averse DM.

As she does not know the distribution of colors in the urn, a subject faces

ambiguity after observing # and X. In this section, we base our prediction on

the max-min model, which is simple and widely used. If the DM uses prior by

prior updating, the max-min model specifies that she will choose the action

with the highest worst-case expected payoff across (updated) priors. In this

section, we assume that the subject acts as if considering all proportions of red

balls between 0 and 1 possible. Then, the max-min best-response a∗ to # and

X can be shown to be given as follows.

13. See the Online Appendix for instructions and screenshots.
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a∗ =

100− 5
√

100− c if c ≤ 75

50 + 5
√
c− 50, if c > 75

(1)

Figure 1. Expected utilities given extreme urn compositions

To understand this, simply note that we only need to look at the intersection

between two different expected payoff functions. Figure 1 shows these two

functions. U(a|1,X) indicates the expected payoff of choosing action a after

observing message X under the assumption that all balls in the urn (and hence

the drawn ball) are red. U(a|0,X) is the counterpart, assuming that all balls in

the urn are blue. Note that U(a|1,#) = U(a|0,X) and U(a|0,#) = U(a|1,X).

For any action, the highest and lowest expected utility arises under a scenario

where all balls have the same color (and is thus captured by one of these two

curves). Counterparts for other urn compositions are located between these

curves. For a max-min decision maker, guided by the worst-case scenario, the

objective function is the lower envelope (in bold) of the two curves, and it is

maximized at the point where the two curves intersect. In other words, for this

action, the expected utility of the decision maker is the same whether all balls

are red or all balls are blue (it is actually the same for any distribution of colors).
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By equalizing expected utility across possible urn compositions, the max-min

action thus completely hedges the decision maker against ambiguity.14

To gain some intuition, observe that one could think about the problem

as finding the right compromise between the two actions which are optimal

given each of the two possible sub-intervals [50, c] and [c, 100], each of these

actions being located on different sides of 75. The smaller sub-interval warrants

a larger deviation from 75 than the larger sub-interval. An expected utility

decision maker takes into account that the smaller sub-interval is less likely to

be the relevant one, so that 75 is her optimal compromise action. Instead, an

ambiguity averse decision maker is not concerned with the probability of the

smaller interval, but guided by the worst-case scenario. Hence, she behaves as

if over-weighting the smaller sub-interval, leading to a deviation from 75. Note

that from an ex ante point of view, the decision maker prefers to play 75 after

both X and #, but her preferences change after receiving these messages. We

refer to Kellner and Le Quement (2018) for further explanations.15

For the values of c used in the experiment, Table 3 summarizes the

corresponding max-min actions and how much they deviate from 75.

14. For an ambiguity loving “max-max” decision maker, the objective function is the upper

envelope of the two curves. As illustrated in the graph, the optimal action for a cutoff above

75 is to state a number above 75. It can be shown that for any value of the threshold c, the

max-max action is on the same side of 75 as the max-min action, but further away from 75.

In that sense, the predicted effect of our form of language ambiguation on the decisions of

ambiguity loving subjects is of a similar nature as the predicted effect on ambiguity averse

subjects, but simply more extreme.

15. Note that our experiment (which uses the random incentive scheme) does not create

any immediate opportunities to hedge across repetitions of the main task. First, we tell

participants that the composition of the urn may change at any time. If the receiver in fact

believes that the urn could change in every repetition, then she would have no opportunities

to hedge at all in the max-min expected utility model. Second, even assuming the subjects

believed that the urn remains the same in every period, they face uncertainty about which

message they will receive in future iterations of the task. Most importantly, in each future

iteration they will receive, with a probability of 50 percent, the ? message, which induces

purely risky beliefs about the state in the corresponding round. Thus, the presence of the ?

message inhibits hedging across periods.
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Table 3. Max-min action a∗

c c− 75 a∗ a∗ − 75

54 −21 66.1 −8.9
64 −11 70 −5
86 11 80 5
96 21 83.90 8.9

In a theoretical extensions section at the end of the paper, we generalize the

result obtained above. If subjects perceive the urn as less than fully ambiguous

or rather act according to the smooth model of ambiguity aversion and the

α-max-min model, the effect of shifting c above 75 remains qualitatively the

same though is smaller in magnitude. As to the symmetry of the set of priors

entertained by the agent, we believe that we give subjects no reason to adopt

an asymmetric set of priors.

Observe that the above predictions may carry over to the risky urn, if

decision makers fail to reduce compound lotteries, as demonstrated e.g., in

Halevy (2007). A higher aversion towards second-order risk generates similar

predictions as the ambiguity aversion model.

We summarize these results by stating the following key prediction:

Prediction 1. In the ambiguous environment:

(i) The higher the threshold c, the higher is, on average, the number chosen by

participants after messages X and #.

(ii) This effect is present for ambiguity averse participants, but not for

ambiguity neutral participants.

These predictions apply to ambiguity averse or neutral decision makers

who are quantitatively sophisticated enough to understand the messaging

rules and who are free from anchoring biases. We expect anchoring bias to

influence choices in the same direction as ambiguity aversion. In contrast, the

implications of low sophistication are difficult to predict. In consequence, in

our main analysis we restrict ourselves to studying quantitatively sophisticated
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participants. The regressions that we run on this selected population in order to

identify a possible hedging effect (of the type described above) explicitly control

for subjects’ anchoring tendency as estimated from the anchoring tasks.

Finally, note that a property of our setup is that whatever the value of

threshold c in the ambiguous environment, the DM attaches strictly positive

ex ante value to the signal if she evaluates it in terms of her consistent planning

ex ante utility, which is her ex ante max-min expected utility anticipating her

future (possibly dynamically inconsistent) behavior. We prove this claim in

Appendix A.1. The intuition is that although ambiguity leads the DM to take

an ex ante suboptimal action whenever the state is above 50, this is more than

compensated by the fact that the signal always beneficially reveals whether the

state is below or above 50.

4. Results

We first present all subjects’ behavior pooled across all variants of Main-

Treatment (risky and ambiguous, help and no help), after these received

either X or #. Figure 2 shows the estimated density of choices using an

Epanechnikov kernel pooled over ambiguous and risky urn. Visual inspection

reveals that choices are skewed in the direction of c. Using Wilcoxon-rank-sum

tests making pairwise comparisons of distributions of choices across different

levels of c, we find significant differences between all pairs of c (p-value< .01)

except for the comparison pairs (c ∈ 86, 96 and c ∈ 54, 64, p-values 0.820 and

0.827, respectively). Our evidence thus supports Prediction 1 (i). One aspect

of the estimated densities is that these visually resemble a mixture of two

densities, one centered around c and another centered around 75, though this

description is not exhaustive.

Given the complexity of the main treatment task, we would expect that

behavior differs not only between ambiguity averse and ambiguity neutral

participants, but also between subjects displaying different levels of quantitative

sophistication (basic conceptual understanding of signaling rules, ability to
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Figure 2. Density of choices in Main-Treatment

Note: The figure shows the smoothed density of choices for the four different values of the threshold
c ∈ 54, 64, 86, 96 using an Epanechnikov kernel in Main-Treatment when receiving an ambiguous
message. There are significant differences between all pairs of c (p-value< .01) except for the
comparisons (c ∈ 86, 96 and c ∈ 54, 64, p-values 0.820 and 0.827, respectively)

do Bayesian updating). As a measure for this quantitative sophistication, we

classify participants as “Bayes-Competent” based on their decisions in the two

instances where only one layer of uncertainty is involved in the message. One

instance is when they see the ? message in the main treatment. Another

instance is when they perform the Red Balls Only control task. The total

number of decisions, across these two instances, is at least 6. Across these

instances, a decision is marked as correct if and only if the DM chooses

the exact expected value of the state conditional on the observed message.

To allow for occasional errors, we require a subject to be correct in these

tasks 80 percent of the time in order to be classified as “Bayes-Competent”.
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This results in 47.90 percent of 119 subjects in our sample being classified

as Bayes-Competent.16 In the main analysis presented in what follows, we

focus exclusively on such participants. Within this population, we study

separately ambiguity averse and neutral subjects. Ambiguity averse subjects

constitute 53.78 percent of the full population of subjects and 56.14 percent of

the population of subjects classified as Bayes-Competent. The corresponding

frequencies of ambiguity neutral subjects are respectively 27.73 percent and

24.56 percent. The corresponding frequencies of ambiguity loving subjects are

respectively 18.49 percent and 19.30 percent.

In the following analysis, we adopt a panel regression framework accounting

for the panel structure of our data and differentiating out the decisions in Main-

Treatment. The independent exogenous variable is c, the dependent variable

is the chosen action a. We estimate the following linear panel model:

ait = α+ β1cit + β2Anchorit + β3cit ×Anchorit + εit (2)

In the above regression, the second and the third variable control for

subjects’ individual tendency to anchor their decision on the threshold c,

and thus allow us to differentiate out the behavior in our Anchoring 1 and

Anchoring 2 anchoring control tasks. Coefficient β3 captures the part of the

effect of c which is due to anchoring. Instead, coefficient β1 captures the part of

the effect of c that is not due to anchoring. This lies at the core of our analysis

as it should be expected to capture the hedging effect of c when ambiguity

averse decision makers face an ambiguous urn.

Panel A of Table 4 reports regression results for ambiguity averse Bayes-

Competent subjects, pooling Help and No Help treatments. Column (1) shows

coefficients when pooling both urn types, while columns (2) and (3) show the

16. As a robustness check, we have also tried close variations of our classification rule, where

a decision is classified as correct if it is located within a small region around the optimal

choice. This yields essentially the same classification of subjects into Bayes-Competent and

non Bayes-Competent.
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Table 4. Effect of c by urn type and ambiguity attitude and more than 80% of Bayes
control correct

Panel A: Ambiguity averse Pooled Ambiguous Risky

c 0.116** 0.126** 0.096
(0.049) (0.061) (0.078)

Anchoring control -6.145 -0.940 -12.095
(4.674) (5.906) (7.385)

c x Anchoring control 0.086 0.035 0.146
(0.060) (0.076) (0.094)

Num.Obs. 272 144 128
R2 0.151 0.137 0.188
R2 Adj. 0.030 0.013 0.053

Panel B: Ambiguity neutral Pooled Ambiguous Risky

c 0.024 0.015 -0.161
(0.073) (0.248) (0.172)

Anchoring control -16.503** -26.525 0.583
(6.691) (19.010) (18.766)

c x Anchoring control 0.193** 0.289 0.257
(0.092) (0.281) (0.253)

Num.Obs. 112 30 109
R2 0.182 0.251 0.225
R2 Adj. 0.044 0.055 0.128

Note: This table reports the effects of c on the choice of Bayes-Competent subjects using fixed
effect panel regressions. Column (1) reports the effects when pooling all urn types, column (3)
and (4) report the effects for the ambiguous and the risky urn types, respectively. In Panel A we
present the results for subjects classified as Ambiguity averse by our control task, while Panel B
reports the effects of for the Ambiguity neutral subjects. Significance is reported at the following
levels: *** < .001, ** < .01, * < .05.

results when considering separately the Ambiguous (32 subjects) and the Risky

urn treatments (28 subjects). The coefficient on c is positive and significant in

the pooled regression and in the ambiguous urn regression. The coefficient on

c in the risky urn regression is slightly smaller and not significantly different

from zero. This in line with our Prediction 1(ii). We summarize the results of

Panel A of Table 4 in what follows:

Result 1. Among Bayes-Competent and ambiguity averse subjects facing

an ambiguous urn, the threshold c has a significantly positive influence on the

chosen number, after controlling for their susceptibility to anchoring.

Notice that our point estimate of .116 for β1 in Panel A of Table 4 is

below the upper bound suggested by the theoretical predictions in equation 1,
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which imply a slope between .354 (for c=86 or 64) and .417 (for c=96 or

54). This can be explained by subjects’ risk attitude and by the fact that

subjects may perceive less ambiguity or be less ambiguity averse than assumed

in section 3 (see discussion in section 5). Alternatively, some—but not all—of

the ambiguity averse decision makers may resort to a dynamically consistent

updating procedure (as in Hanany and Klibanoff, 2007; Hanany and Klibanoff,

2009.)

In the light of Halevy (2007), who finds that ambiguity subjects treat purely

risky compound lotteries as if they were ambiguous, it is worth noting that

(restricting ourselves to Bayes-Competent subjects) we find that ambiguity

averse subjects behave differently in the ambiguous and the risky treatments.

Abdellaoui, Klibanoff, and Placido (2015) and Aydogan, Berger, and Bosetti

(2019) provide a way to reconcile our results with Halevy (2007). Both of

these papers find that the positive correlation between ambiguity aversion and

non-reduction of compound lotteries is weaker for quantitatively sophisticated

decision makers. To the extent that the subjects that we classify as Bayes-

Competent subjects are indeed on average more quantitatively sophisticated,

our results are in line with these two latter papers.

Panel B of Table 4 reports regression results for ambiguity neutral Bayes-

Competent subjects, pooling Help and No Help treatments. Results reveal that

such subjects’ decisions are not significantly affected by c when controlling for

the anchoring effect of c. This is true when considering only the ambiguous urn

or only the risky urn, or both together. We summarize the results of Panel B

of Table 4 in what follows:

Result 2. Among Bayes-Competent and ambiguity neutral subjects facing an

ambiguous urn, the threshold c does not have a significantly positive influence

on the chosen number, after controlling for their susceptibility to anchoring.

Taken together, Results 1 and 2 thus provide support for Prediction 1(ii)

for the population of quantitatively sophisticated subjects. In Appendix E, we

provide a counterpart of the above two regression tables for Bayes-Competent
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ambiguity loving subjects. Point estimates are in line with what we would

expect from max-max decision-making.

We present results for subjects who are not Bayes-Competent in

Appendix B. Such subjects react to the threshold c even when controlling for

anchoring, but the effect appears to be overall orthogonal to their ambiguity

attitude. There are not enough observations for ambiguity loving subjects to

meaningfully interpret their results. As a robustness check, we also conducted

a median split by the performance in the Cognitive Reflection Test instead of

using Bayes-competence as a measure of sophistication. We find qualitatively

and quantitatively similar results to those obtained in our main analysis. These

are presented in Table D.1 in the Appendix. Finally, we find no significant

qualitative or quantitative differences between Help and No Help treatments,

as reported in Table C.1 in the Appendix.

5. Alternative models of ambiguity aversion

This section provides an extended theoretical analysis of the effect of

ambiguation on decision making. We extend the analysis in two ways, by

parameterizing the level of ambiguity and by considering alternative models

of decision making. First, we relax the assumption that the decision maker

acts as if she considers all urn composition possible when evaluating available

actions in the main experiment. Second, we consider two further models of

decision making under ambiguity, the smooth model (Klibanoff, Marinacci,

and Mukerji, 2005) and the α-max-min model (Ghirardato, Maccheroni, and

Marinacci, 2004). We first present the interim utility of the DM after receiving

a message m, as it arises under each of these models.

Let P denote the set of probabilities of drawing a red ball from the

ambiguous urn that the decision maker considers possible. Assuming full

Bayesian updating, for any such probability p ∈ P and given the message m

observed by the DM, she will compute a conditional pdf f(ω|p,m) over states

at the interim stage. If p were known, the conditional expected utility of the
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DM would then be given by

U(a|p,m) =

∫
Ω

u(|ω − a|)df(ω|p,m),

where the function u captures the risk attitude of the decision maker. Under

the α-max-min model, the DM’s conditional expected utility function is given

by:

Uα(a|m) = αmin
p∈P

U(a|p,m) + (1− α) max
p∈P

U(a|p,m).

Under the smooth model, the DM additionally assigns a second order belief

to every possible probability p ∈ P , capturing how likely she considers various

urn compositions. This is modeled with a pdf µ(p) with support P . Assuming

full Bayesian updating17, the DM uses Bayes’ Rule to compute an updated

second-order belief µ(p|m) after having observed a message m. Under the

smooth model, the DM’s conditional expected utility function is given by:

US(a|m) =

∫
P

ϕ(U(a|p,m))dµ(p|m),

where ϕ is a function capturing ambiguity attitude. For a linear ϕ, representing

ambiguity neutrality, the smooth model coincides with expected utility. A

concave ϕ corresponds to ambiguity aversion, convex ϕ to ambiguity loving

preferences.

We assume symmetry of first and second order beliefs. We let P = [1/2−

ε, 1/2− ε] for ε ∈ (0, 1/2] and further assume that µ(p) is symmetric around

1/2.

In what follows, in discussing the two above models, we focus on the case

where c > 75 and the DM observes message X. Analogous arguments carry over

to the cases where c ∈ (50, 75) and/or the DM instead observes #. Note also that

all models trivially predict that the DM chooses 25 upon observing message

17. See Hanany and Klibanoff (2007) and Hanany and Klibanoff (2009) for a dynamically

consistent alternative.
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? as the DM faces no ambiguity in this scenario. We impose risk neutrality

(u(|a− ω|) = |a− ω|) to obtain clear results about the involved parameters of

the model, but qualitatively similar results apply for the case of risk aversion.18

5.1. Behavior under α-max-min utility

To gain some intuition, we consider two special cases (A and B) initially.

We begin with the case (A) where ε is small but α = 1 (the classic max-min

model with a smaller set of priors). Figure 3, which assumes ε = 1
6 , shows the

expected utility of each action under each of the two most extreme priors (i.e.,

urn compositions) considered possible by the DM, that is U(a|12 − ε,X) and

U(a|12 + ε,X) .

The dotted line corresponds to U(a|12 ,X) and is the limit of both curves as

Figure 3. max-min preferences with small ε

ε tends to 0. The decision maker picks the action which maximizes the lower

envelope (in bold) of the solid curves. Note that this is now maximised by the

value a∗∗, the maximizer of U(a|12 − ε,X). This action is to the left of a∗, the

value which perfectly hedges against ambiguity (where the lower envelope still

18. The analysis in section 3 analyses a special case of the above, setting ε = 1/2. Note

that simple max-min is a special case of the α-max-min model where α = 1. Also, assuming

constant absolute ambiguity aversion, simple max-min corresponds to the limit of the smooth

model as ambiguity aversion approaches infinity.
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has a kink). As a∗∗ corresponds to a prior below 1/2, its maximum will however

still be above 75. This argument holds true for all possible values of ε > 0.19

Consider next the case (B) of α being strictly between 0 and 1, while ε = 1
2

(representing maximal ambiguity as assumed in the main model).

Figure 4. Two α-max-min objective functions

In Figure 4, we show the objective function Uα(a|X) for two values of α

(3/4, dot-dashed, and 1/3, dashed). The solid lines correspond to the upper and

lower envelope of all possible expected utilities across priors, and recall that

α is the weight attached to the lower envelope. When α = 3/4 (dot-dashed)

the optimal action is a∗, resulting in a perfect hedge against ambiguity. For

α = 1/3, it is however optimal to choose an even higher action, labeled a∗∗.

In the circumstances depicted in Figure 4 (i.e. high ε), one can conclude that

as α decreases from 1, which is often interpreted as lower ambiguity aversion or

less pessimism, the utility maximizing action initially remains at the value that

hedges perfectly against ambiguity but eventually starts to increase towards the

maximum of the upper envelope. For low values of ε as considered in Figure 3,

less ambiguity aversion may instead lead to lower actions.

19. Additionally, from considering the upper envelope of all curves in the figure, one can

conclude that for ambiguity loving max-max preferences (α = 0), the optimal action will be

the maximiser of U(a| 1
2
+ ε,X), and hence be below 75.
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The proposition below summarizes our insights formally. It allows for

intermediate values of both α and ε and identifies a sufficient condition on

these parameters such that c being larger than 75 implies that the optimal

action is larger than 75. Note that if α > 1
2 (capturing preferences which are

often considered ambiguity averse or pessimistic), then the condition holds for

any ε.

Proposition 1. Assume u(|a − ω|) = |a − ω|. Assume that the DM acts

according to α-max-min model. The DM chooses an action strictly larger than

75 if α > 1
2 − ε

c−75
100

Proof. See AppendixA.2. �

As the case of ε = 1
2 (discussed as case B above) illustrates, this condition

is not necessary for large values of ε.

5.2. Behavior under smooth ambiguity

As in many applications of the smooth model, we assume constant absolute

ambiguity aversion by letting ϕ(u) = − exp(−αu). We further assume that the

DM’s second order prior is a uniform distribution over P = [1/2− ε, 1/2 + ε].

For this simple specification, we show that ambiguity aversion ensures that the

DM’s optimal action is above 75 if c > 75.

Proposition 2. Assume that the DM acts according to the smooth model.

Assume u(a,ω) = −|a − ω| and ϕ(u) = − exp(−αu) (constant absolute

ambiguity aversion). Assume that µ is uniform over P = [1/2 − ε, 1/2 + ε].

If the DM is (strictly) ambiguity averse (α > 0) and c > 75, then DM chooses

an action (strictly) above 75.

Proof. See Appendix A.2 �

The proof proceeds by establishing that the further the DM’s action moves

from a∗ (the action perfectly hedging against ambiguity) towards 75, the more
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the DM is exposed to ambiguity about the expected utility that she obtains.

The optimal action strikes a compromise between two concerns: Increasing the

average expected utility (as computed by using the second order belief µ) by

moving towards 75 on the one hand, and on the other hand decreasing the

entailed ambiguity by moving towards a∗.

6. Conclusion

In our experiment, language ambiguation affected the decisions of

quantitatively sophisticated and ambiguity averse subjects by triggering

hedging behavior, in line with the predictions of models of ambiguity aversion.

This effect operates in an environment where receivers ex ante benefit from

the information contained in messages, though they would benefit if they could

selectively ignore the ambiguity created by messages.

As noted in existing contributions, the use of ambiguous communication

strategies in sender-receiver games would in principle allow for the emergence

of equilibria featuring more informative communication than the standard

equilibria predicted by expected-utility theory. Future experimental work

should study games where both the sender and the receiver are real subjects,

and study equilibrium behavior when the sender is known to privately observe

some payoff-irrelevant and ambiguously distributed variable. Would the sender

make use of the opportunity to condition his messages on such a variable?

Would the receiver anticipate this? Would the overall effect be beneficial to

both parties?
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Appendix A: Proofs

A.1. ex ante value of the signal

We here prove the following result.

Result A.1. For any c ∈ [50, 100] and not belonging to {50, 75, 100}, the DM’s

consistent planning ex ante utility from observing the message is strictly higher

than his ex ante utility from not observing it.

Proof. Assume that c > 75. Since the DM chooses the fully hedging action

a? after # and X and 25 otherwise, her consistent planning ex ante utility,

the max-min expected utility given the optimal behavior of future selves, is

independent of the urn composition. The max-min utility can be most easily

be computed with the urn having equally many red and blue balls, as it leads

to a uniform conditional distribution of states over [50,100] after the messages

# and X:

(
− 1

100

)
∫ 25

0 (25− ω)dω +
∫ 50

25 (ω − 25)dω

+
∫ 50+5

√
c−50

50 (50 + 5
√
c− 50− ω)dω

+
∫ 100

50+5
√
c−50(ω − (50 + 5

√
c− 50))dω


=

5

2

√
c− 50− 1

4
c− 25

4
.

Assume that the decision maker does not observe the message. Then she

optimally chooses 50 and her ex ante (max-min) expected utility is simply as

follows:

(
− 1

100

)( ∫ 50

0 (50− ω)dω +
∫ 100

50 (ω − 50)dω
)

= −25.

It can be easily shown that 5
2

√
c− 50− 1

4c−
25
4 > −25 for any c ∈ (75, 100].

The same argument can be made for c ∈ (50, 75) .
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A.2. Proof of Proposition 1

By Bayes’ rule, for a given prior proportion p of red balls in the urn, let π(p|X)

denote the conditional probability of a red ball having been drawn from the

ambiguous urn given that message X observed. We have

π(p|X) =
P (θ = r)P (X |θ = r )

P (θ = r)P (X |θ = r ) + P (θ = b)P (X |θ = b)

=
p
(
c−50
100

)
p
(
c−50
100

)
+ (1− p)

(
100−c

100

) .
Consequently,

U [a |p,X ] = π(p|X)
1

c− 50

(∫ c

50

u(|a− ω|)dω
)

+(1− π(p|X))
1

100− c

(∫ 100

c

u(|a− ω|)dω
)
.

It is easily shown that for c > 75, whatever ε it holds true that 75 < a∗ < c,

where a∗ is the action for which expected utility is the same under all possible

priors in [1
2 − ε,

1
2 + ε]. Note that for a < a∗,

Uα(a) = αU(z|1
2
− ε,X) + (1− α)U(z|1

2
+ ε,X).

For a < a∗, this function is concave as it is a convex combination of concave

functions.

Since a∗ < c, simple calculations establish that

Uα(a) =−
2ε
(
(c− a)2 + 50(a− 75)

)
+ a2 − 150z + 6250

4(c− 75)ε+ 50

− 2α(c− 100)ε(25c− (a− 100)a− 3750)

4(c− 75)2ε2 − 625
.

The derivative w.r.t. a eveluated at a = 75 equals:

Uα′(75) =
100α(100− c)ε

252 − 4ε2(c− 75)2
− 2(50− 2(c− 75))ε

4(c− 75)ε+ 50
.
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This is increasing in α as ε2 ≤ 1/4 and (c− 75) < 25.

Note that Uα′(75) has its only zero at

α =
1

2
− εc− 75

100
.

Thus, if α is larger than this value, we have Uα′(75) > 0. Then Uα(a) is

increasing at 75. As it is concave at least for a ∈ [50, a∗] (with a∗ > 75), the

maximizer of this function is above 75.

A.3. Proof of Proposition 2

Recall in what follows that for c > 75, whatever ε it holds true that 75< a∗ < c,

where a∗ is the action for which expected utility is the same under all possible

priors in [1
2 − ε,

1
2 + ε].

By Bayes’ rule, using the DM’s second order prior µ, the conditional

probability assigned to prior p after observing signal X is given by:

µ(p |X ) =
µ(p)P (X |p)∫

p̃ µ(p̃)P (X |p)dp̃

=

(
1
2ε

) [
p
(
c−50
100

)
+ (1− p)

(
100−c

100

)]∫ 1
2+ε
1
2−ε

(
1
2ε

) [
p̃
(
c−50
100

)
+ (1− p̃)

(
100−c

100

)]
dp̃

=

(
1
2ε

) [
p
(
c−50
100

)
+ (1− p)

(
100−c

100

)]
(1/4)

.

The objective function conditional on having received the message X is

thus:

US(a|X) =

∫
P

ϕ(U(a|p,m))dµ(p|X),

where U(a|p,m) is constructed as explained in the main text.

Let

A(a) ≡
∫
P

U(a|p,X)µ(p|X)dp = U(a|.5,X).

Noting that ϕ(u+ ũ)=ϕ(u) · ϕ(ũ), the objective function rewrites as:
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US(a|X) =

∫
P

ϕ (U(a|p,X)−A(a)) · ϕ(A(a))µ(p|X)dp.

As A(a) does not depend on p, this in turn rewrites as

US(a|X) = ϕ(A(a)

∫
P

ϕ (U(a|p,X)−A(a))·)µ(p|X)dp.

Noting that ϕ−1(S · S̃) = ϕ−1(S) + ϕ−1(S̃) and recalling that the function

ϕ(x) is monotonically increasing in x, it follows that:

ϕ−1(US(a|X)) = A(a) + ϕ−1

(∫ 1/2+ε

1/2−ε
ϕ(U(a|p,X)−A(a))µ(p|X)dp

)
.

For a < a∗, defining the new variable û = U(a|p,X)−A(a), we can write

the integral inside brackets as:

O(a) =

∫ ¯̂u(a)

û(a)

ϕ(û)f̂(û, a)dû.

Below, we give closed forms for û(a), ¯̂u(a) and f̂(û, a) using integration by

substitution. For a < c, note that

û =
(100− c)(2p− 1)

(
100a− a2 + 25c− 3750

)
50(2(c− 75)p− c+ 100)

.

This is monotonically increasing in p as long as a < a∗, so that

û(a) = U(a|1/2− ε,X)−A(a) =
(c− 100)

(
2
(

1
2 − ε

)
− 1
) (
a2 − 100a− 25c+ 3750

)
50
(
2(c− 75)

(
1
2 − ε

)
− c+ 100

)
and

¯̂u(a) = U(a|1/2 + ε,X)−A(a) =
(c− 100)

(
2
(
ε+ 1

2

)
− 1
) (
a2 − 100a− 25c+ 3750

)
50
(
2(c− 75)

(
ε+ 1

2

)
− c+ 100

) .

Using the above presented closed form for û and solving for p, we get:

p(û, a) =
(c− 100)((a− 100)a− 25(c+ 2(û− 75)))

2(c− 100) (a2 − 100a− 25c+ 3750)− 100(c− 75)
.
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From dp = ∂p(û,a)
∂û dû and f̂(û, a) = µ(p(û, a)|X)∂p(û,a)

∂û we can compute

f̂(û, a) =
625(c− 100)2

(
a2 − 100a− 25c+ 3750

)2
2ε ((c− 100) (a2 − 100a− 25c+ 3750)− 50(c− 75)û)3 .

Recall that we have:

ϕ−1(US(a|X)) = A(a) + ϕ−1 (O(a)) .

We want to show that US(a|X) is strictly increasing in a for a ∈ [50, 75 + δ),

for some δ > 0. As ϕ−1 is monotonic, in order to show that US(a|X) is

increasing in a on some domain, it suffices to show that the RHS of the above

equality is increasing in a on this same domain.

Note first that A(a) is differentiable and concave in a with a maximum at

a = 75. Consider now ϕ−1 (O(a)). Again, to show that this is increasing in a

on some domain, we simply need to show that O(a) is increasing in a on this

same domain. Next, we shall show that O(a) is increasing in a for a ∈ [50, a∗).

This, combined with what we established about A(a), implies that US(a|X) is

strictly increasing in a for a ∈ [50, 75 + δ], for some δ > 0.

Let us now go back to O(a). We show that it is increasing in a for a ∈ [50, a∗]

by showing that for any a, ã ∈ [50, a∗], if a > ã then f̂(·, a) second-order

stochastically dominates f̂(·, ã).

Note first that by construction, the expectation of û under f̂(·, a) is 0 for

all a. Let F̂ (·, a) be the corresponding cdf and observe

∫ ũ

û(a)

F̂ (û, a)dû=

(
(c− 100)ε

(
a2 − 100a− 25c+ 3750

)
+ 25ũ(25− 2(c− 75)ε)

)2
2500ε ((c− 100) (a2 − 100a− 25c+ 3750)− 50(c− 75)ũ)

.

Note that the interval [û(a), ¯̂u(a)] shrinks in a for all a ∈ [50, a∗)

and collapses to a single point at a∗. By the standard characterization of

stochastic dominance, we need to show that ∀ũ ∈ (û(a), ¯̂u(a)) the expression∫ ũ
û(a) F̂ (û, a)dû is decreasing in a.
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The derivative of the above expression with respect to a is given by

(a− 50)(c− 100) (εT + 25ũ(25− 2(c− 75)ε)) (εT − 25ũ(2(c− 75)ε+ 25))

1250ε (T − 50(c− 75)ũ)2 ,

where T =
(
a2 − 100a− 25c+ 3750

)
(c− 100).

Note that for any a ∈ (50, a∗) the denominator is non-zero if ũ ∈ [û(a), ¯̂u(a)]

Thus, for a ∈ (50, a∗), the above expression is continuous in a,ũ, ε and c. Also,

fixing all other variables in an arbitrary way, it has no zeros in ũ ∈ (û(a), ¯̂u(a)).

Finally, simple computation shows that the above expression is strictly negative

for some a ∈ (50, a∗). We can thus conclude that
∫ ũ
û(a) F̂ (û, a)dû is decreasing in

a on the relevant domain, thus establishing second order stochastic dominance

as needed.

Appendix B: Non-Bayes-Competent

Table B.1 reports the result for Non-Bayes-Competent subjects. We show

results for ambiguity neutral (Columns 1–3) and averse (columns 4–6) subjects.

Table B.1. Effect of c by urn type for Non-Bayes-Competent subjects

Ambiguity neutral Ambiguity averse

Pooled Ambiguous Risky Pooled Ambiguous Risky

c 0.250*** 0.231** 0.252** 0.170*** 0.249*** 0.087
(0.078) (0.105) (0.121) (0.061) (0.084) (0.087)

Anchoring control -18.718** -17.727* -19.968* -19.957*** -11.474 -28.714***
(7.841) (10.599) (11.766) (5.739) (8.051) (8.179)

c x Anch. ctrl. 0.263** 0.232 0.296* 0.273*** 0.145 0.407***
(0.104) (0.140) (0.157) (0.076) (0.106) (0.110)

Num.Obs. 148 77 71 347 175 172
R2 0.362 0.335 0.391 0.260 0.241 0.294
R2 Adj. 0.255 0.197 0.289 0.150 0.120 0.185

Note: This table reports the effects of c on choices of Non-Bayes-Competent subjects. We employ
a fixed effects panel model. Columns (1) to (3) report the effects for ambiguity neutral subjects,
column (4) to (6) for ambiguity averse subjects. Significance is reported at the following levels:
*** < .001, ** < .01, * < .05.
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Appendix C: Help and No Help treatments

Table C.1 reports the results by help and no-help treatments for subjects who

are Bayes-Competent.

Table C.1. Effect of c by help treatments for Bayes-Competent subjects pooled over urn
types

Ambiguity averse Ambiguity neutral

Help No help Help No help

c 0.178* 0.327*** -0.230 -0.053
(0.093) (0.122) (0.233) (0.174)

Anchoring control 19.546* 30.229** -11.428 5.868
(10.146) (13.488) (26.907) (18.304)

c × Anch. ctrl. 0.081 -0.113 0.492 0.210
(0.133) (0.180) (0.364) (0.246)

Num.Obs. 326 170 53 103
R2 0.314 0.286 0.286 0.260
R2 Adj. 0.307 0.273 0.242 0.238

Note: This table reports the effects of c on choice who are Bayes Competent. We employ a fixed
effects panel model. Columns (1) to (3) report the effects for ambiguity neutral subjects, column
(4) to (6) for ambiguity averse subjects. Significance is reported at the following levels: *** <
.001, ** < .01, * < .05.
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Appendix D: CRT Median split

As an alternative to measure subjects ability in logical and mathematical tasks,

we split the sample by performance in the CRT test. Table D.1 reports the

results and finds similar effects for subjects who performed better or equal

to the median in the CRT compared to subjects who we classified as Bayes-

Competent.

Table D.1. Effect of c by performance in the CRT task pooled over urn types

CRT ≥ median CRT < median

Pooled Non neutral Neutral Pooled Non neutral Neutral

c 0.160*** 0.196*** 0.090 0.169*** 0.170** 0.267***
(0.034) (0.049) (0.057) (0.051) (0.066) (0.094)

Anchoring control -6.868** -6.301 -7.291 -22.414*** -15.324** -32.288***
(3.244) (4.678) (5.314) (4.900) (6.337) (9.330)

c × Anch. ctrl. 0.091** 0.084 0.103 0.303*** 0.212*** 0.421***
(0.043) (0.061) (0.070) (0.065) (0.082) (0.127)

Num.Obs. 551 308 156 412 223 104
R2 0.181 0.212 0.167 0.283 0.234 0.503
R2 Adj. 0.176 0.204 0.150 0.278 0.223 0.488

Note: This table reports the effects of c by performance on the cognitive reflection test (CRT
Frederick, 2005). We employ a fixed effects panel model. Columns (1) to (3) report the effects for
subjects with equal or above median performance on the CRT, column (4) to (6) with less than
median performance. Significance is reported at the following levels: *** < .001, ** < .01, * <
.05.
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Appendix E: Ambiguity loving subjects

Table E.1 reports the results for Ambiguity Loving subjects who are Bayes-

Competent.

Table E.1. Effect of c for ambiguity loving subjects

Bayes-Competent

Pooled Ambiguous Risky

c 0.101 0.045 -0.612***
(0.103) (0.065) (0.203)

Anchoring control -15.630* -1.190 -60.526***
(9.274) (6.626) (22.202)

c x Anchoring control 0.205 0.000 1.220***
(0.127) (0.085) (0.296)

Num.Obs. 84 45 55
R2 0.203 0.042 0.532
R2 Adj. 0.055 -0.171 0.463

Note: This table reports the effects of c on ambiguity loving subjects. We employ a fixed effects
panel model. Columns (1) to (3) report the effects for subjects with equal or above median
performance on the CRT, column (4) to (6) with less than median performance. Significance is
reported at the following levels: *** < .001, ** < .01, * < .05.
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