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ABSTRACT
BACKGROUND: Genetic risk is thought to drive clinical variation on a spectrum of schizophrenia-like traits, but the
underlying changes in brain structure that mechanistically link genomic variation to schizotypal experience and
behavior are unclear.
METHODS: We assessed schizotypy using a self-reported questionnaire and measured magnetization transfer as a
putative microstructural magnetic resonance imaging marker of intracortical myelination in 68 brain regions in 248
healthy young people (14–25 years of age). We used normative adult brain gene expression data and partial least
squares analysis to find the weighted gene expression pattern that was most colocated with the cortical map of
schizotypy-related magnetization.
RESULTS: Magnetization was significantly correlated with schizotypy in the bilateral posterior cingulate cortex and
precuneus (and for disorganized schizotypy, also in medial prefrontal cortex; all false discovery rate–corrected
ps , .05), which are regions of the default mode network specialized for social and memory functions. The genes
most positively weighted on the whole-genome expression map colocated with schizotypy-related magnetization
were enriched for genes that were significantly downregulated in two prior case-control histological studies of
brain gene expression in schizophrenia. Conversely, the most negatively weighted genes were enriched for genes
that were transcriptionally upregulated in schizophrenia. Positively weighted (downregulated) genes were enriched
for neuronal, specifically interneuronal, affiliations and coded a network of proteins comprising a few highly
interactive “hubs” such as parvalbumin and calmodulin.
CONCLUSIONS: Microstructural magnetic resonance imaging maps of intracortical magnetization can be linked to
both the behavioral traits of schizotypy and prior histological data on dysregulated gene expression in schizophrenia.

Keywords: Adolescence, Allen Human Brain Atlas, Development, Fast-spiking GABAergic interneurons, Multipa-
rameter MRI mapping, Myelination, Schizophrenia
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The genetic architecture of schizophrenia spectrum disorders
assumes many independent allelic variations, each of small
effect, contributing to the probability of diagnosis. Individuals
with the greatest accumulation of genetic risk have the more
severe psychotic disorder; individuals with a lower genetic risk
may have less severe, nonpsychotic schizotypal personality
disorder (1), characterized by social eccentricity and unusual
beliefs (2). The genetic risk for schizophrenia has been
resolved more clearly by recent genome-wide association
studies (3,4) and postmortem human brain transcriptional
studies (3,5). However, it remains unclear how expression of
these schizophrenia-related genes might be related to neuro-
imaging markers of schizophrenia spectrum disorders.

Macrostructural magnetic resonance imaging (MRI)
studies—which measure anatomical parameters like cortical
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thickness—have collectively provided robust evidence for
reduced volume or thickness in a network of interconnected
cortical areas in patients with schizophrenia (6). There have
been fewer MRI studies of schizotypy, and the pattern of
macrostructural results has not been consistent, perhaps
reflecting their relatively small sample sizes (Table 1).

Microstructural MRI provides information about the
composition of tissue within a voxel (7). For example,
magnetization transfer (MT) images (8) and “myelin maps”
derived from the ratio of conventional T1- and T2-weighted
images (9) are sensitive to the proportion of fatty brain tissue
represented by each voxel, which, according to histological
studies on animal models, is related to myelin content (10–13).
MT maps have been used as markers of myelination in white
matter and the cortex (14) in healthy subjects (15) and in
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Table 1. Previous Studies Relating Schizotypal Traits and Macrostructural Magnetic Resonance Imaging Metrics

Study

Sample
Size,
n

Mean Age,
Years

Experimental
Design

Brain
Coverage

Schizotypy
Measure

Type I Error
Control

Structural
Index Directionality

Brain
Regions

Evans et al.,
2016 (63)

28 11 VBM Whole
brain

PSI-C Bonferroni Volume 2 Caudate, amygdala,
hippocampal gyrus,
middle temporal

Nenadic et al.,
2015 (64)

59 31 VBM / positive and
negative factor of
schizotypy

Whole
brain

CAPE FWE Volume 2 R precuneus

Wang et al.,
2015 (65)

69 19 VBM / dividing
subjects with high/
low schizotypy

Whole
brain

SPQ AlphaSim
permutation

Volume 2 Dorsolateral prefrontal
cortex, insula,
posterior temporal,
cerebellum

DeRosse et al.,
2015 (66)

138 36 ANCOVA / dividing
subjects with high/
low schizotypy

ROIs SPQ None Thickness/
GM and
WM
volume

2 Frontal, temporal

Kühn et al.,
2012 (67)

34 36 Vertexwise / positive
and negative factor
of schizotypy

Whole
cortex/
thalamus

SPQ FDR Thickness/
thalamus
volume

1 R dorsolateral prefrontal
cortex, R dorsal
premotor

Ettinger et al.,
2012 (68)

55 27 VBM Whole
brain

RISC FWE cluster Volume 2 Medial prefrontal,
orbitofrontal, temporal

Modinos et al.,
2010 (69)

38 20 VBM / dividing
subjects with high/
low schizotypy

Whole
brain

CAPE FDR Volume 1 Medial posterior
cingulate, precuneus

Moorhead et al.,
2009 (70)

98 16 VBM / longitudinal
study

Whole
brain

SIS Unspecified
multiple
comparison
correction

Volume 2 L medial temporal, L
amygdala, L
parahippocampal
gyrus

Stanfield et al.,
2008 (71)

143 16 ANCOVA Whole
brain

SIS None Folding 1 R prefrontal

Directionality refers to whether the study reports a positive (1) or negative (2) association between a schizotypy measure and a structural metric.
ANCOVA, analysis of covariance; CAPE, Community Assessment of Psychic Experience; FDR, false discovery rate; FWE, familywise error; GM, gray matter; L, left; PSI-C: Psychiatric and

Schizotypal Inventory for Children; R, right; RISC, Rust Inventory of Schizotypal Cognitions; ROI, region of interest; SIS, Structured Interview for Schizotypy; SPQ, Schizotypal Personality
Questionnaire; VBM, voxel-based morphometry; WM, white matter.
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demyelinating disorders such as multiple sclerosis (16–18).
Schizophrenia has been associated with reduced MT in the
frontal, temporal, and insular cortices (19–26), and the cortical
expression of schizophrenia-related genes was (negatively)
correlated with T1- and T2-weighted maps (27).

In this context, we measured schizotypy, using the Schiz-
otypal Personality Questionnaire (SPQ), and MT, using a
multiparameter MRI scanning procedure, in a sample of 248
healthy young people (14–25 years of age) (Table S1). We
tested 3 key hypotheses in a logical sequence: 1) that intra-
cortical MT was correlated with the SPQ total score (and
subscale scores), 2) that the cortical pattern of schizotypy-
related magnetization (SRM) was colocated with a cortical
map of weighted whole-genome expression, and 3) that the
gene transcripts most strongly coupled to SRM were enriched
for genes that were transcriptionally dysregulated in histolog-
ical case-control studies of schizophrenia.

METHODS AND MATERIALS

Participants

A total of 2135 healthy young people, 14 to 25 years of age,
were recruited from schools, colleges, National Health Service
primary care services, and direct advertisement in north Lon-
don and Cambridgeshire, United Kingdom. This primary cohort
was stratified into 5 contiguous age-related strata, balanced
for gender and ethnicity (28). A secondary cohort of 297 in-
dividuals was recruited by randomly subsampling the primary
cohort so that w60 participants were assigned to each of the
same age-related strata, balanced for gender and ethnicity, as
in the primary cohort. Participants were excluded if they had a
current or past history of clinical treatment for a psychiatric
disorder, drug or alcohol dependence, neurological disorder
including epilepsy, head injury causing loss of consciousness,
or learning disability (see Supplement for details).

Written informed consent was provided by all participants
as well as written parental assent for participants less than 16
years of age. The study was approved by the National
Research Ethics Service and conducted in accordance with
National Health Service research governance standards.

Schizotypy Assessment

The SPQ (29) is a self-report scale, comprising 74 dichoto-
mous items that are grouped on 9 subscales, measuring the
complex trait of schizotypy. Participants completed the SPQ
on 2 assessments, separated by 6 to 18 months, so that
traitlike scores on total and subscale SPQ metrics could be
estimated by the number of questionnaire items positively
endorsed by each participant on average over time.

MRI Data Acquisition

Structural MRI scans were acquired on 1 of 3 identical 3T MRI
systems in London or Cambridge, United Kingdom (Magnetom
TIM Trio [Siemens Healthcare, Erlangen, Germany], software
version VB17). The multiparametric mapping protocol (8) yiel-
ded 3 multiecho fast low-angle shot scans with variable exci-
tation flip angles. By appropriate choice of repetition time and
flip angle a, acquisitions were predominantly weighted by T1
(repetition time = 18.7 ms, a = 20�), proton density, or MT
250 Biological Psychiatry August 1, 2020; 88:248–259 www.sobp.org/
(repetition time = 23.7 ms, a = 6�). Other acquisition parame-
ters were 1-mm3 voxel resolution, 176 sagittal slices, and a
field of view of 256 3 240 mm. A pilot study demonstrated
satisfactory levels of between-site reliability in multiparametric
mapping data acquisition (8). MT images (15) and T1 images
(30,31) from this sample have been previously reported.

MRI Reconstruction, Cortical Parcellation, and
Estimation of SRM

We used a standard automated processing pipeline for skull
stripping, tissue classification, surface extraction, and cortical
parcellation (FreeSurfer [http://surfer.nmr.mgh.harvard.edu])
applied to longitudinal relaxation rate (R1) maps (R1 = 1/T1).
Expert visual quality control ensured accurate segmentation of
pial and gray/white matter boundaries. Regional MT values
were estimated at each of 68 cortical regions for each subject,
resulting in a 248 3 68 regional MT data matrix. The Euler
number for the R1 images was calculated as a proxy
measure of image quality in the simultaneously acquired
MT images (32).

A simple linear model of age-related change in MT was used
to estimate two key parameters for each region: baseline MT at
14 years of age and age-related rate of change in the period
from 14 to 24 years of age (15). For the principal analyses,
effects of age on MT were controlled by regression before
estimating the correlation of the age-corrected MT residuals
with SPQ total score. The Kolmogorov-Smirnov normality test
was used to determine the appropriate correlation estimator
(Pearson’s or Spearman’s).

Estimation of Regional Gene Expression

We used the Allen Human Brain Atlas (AHBA), a whole-
genome expression atlas of the adult human brain created
by the Allen Institute for Brain Sciences using 6 donors 24 to
57 years of age (http://human.brain-map.org) (33). Probe-to-
gene and sample-to-region mapping strategies can have a
major impact on regional gene expression estimation (34).
Here, we used the genome assembly hg19 (http://sourceforge.
net/projects/reannotator/) (35) to reannotate the probe se-
quences into genes (36). When genes were mapped by mul-
tiple complementary RNA hybridization probes, the probe
showing the highest average expression across samples was
selected (37). MRI images of the AHBA donors were parcel-
lated using the Desikan-Killiany atlas, and each cortical tissue
sample was assigned to an anatomical structure. Regional
expression levels were compiled to form a 68 3 20,647
regional transcription matrix (38) (see Supplement).

SRM and Human Brain Gene Expression

We used partial least squares (PLS) to analyze covariation
between SRM and gene expression because it is technically
well suited to the high collinearity of the gene expression data
(39,40), and because PLS and the related multivariate method
of canonical correlation analysis have been extensively
developed and used for neuroimaging and transcriptional data
analysis (41–44). Specifically, we used PLS to analyze the
relationship between the vector of 68 regional measures of
SRM and the 68 3 20,647 matrix of 68 regional messenger
RNA measurements for 20,647 genes (44). The first PLS
journal
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component (PLS1) was defined as the weighted sum of whole-
genome expression that was most strongly correlated, or most
closely colocated, with the anatomical map of SRM. Permu-
tation testing based on spherical rotations or “spins” of the
spatially correlated SRM map was used to test the null hy-
pothesis that PLS1 explained no more covariance between
SRM and whole-genome expression than expected by chance
(31). Bootstrapping was used to estimate the variability of each
gene’s positive or negative weight on PLS1, and we tested the
null hypothesis of zero weight for each gene with a false dis-
covery rate (FDR) of 5% (42). The set of genes that were
significantly (positively or negatively) weighted on PLS1 was
called the SRM gene list or set.

Enrichment Analysis

We assigned a cellular affiliation score to each gene in the
SRM gene list according to prior criteria for 4 cell types—
neuron, astrocyte, microglia, or oligodendroglia (45)—and
for a more fine-grained set of cell types (46) (Table S2). We
used a data resampling procedure to test the null hypothesis
that SRM genes were randomly assigned to different cell
types.

We used 2 lists of genes that were differentially expressed,
or transcriptionally dysregulated, in postmortem brain tissue
measurements of messenger RNA from case-control studies
of schizophrenia: 1) the list of genes reported by Gandal et al.
(5) as upregulated (n = 845) or downregulated (n = 1175) in the
prefrontal and parietal brain regions in schizophrenia (n = 159);
and 2) the list of genes reported by Fromer et al. (47) as
upregulated (n = 304) or downregulated (n = 345) in the
dorsolateral prefrontal cortex in schizophrenia (n = 258). The 2
gene lists were partially overlapping (Table S3), and differential
expression of all genes subsumed by the union of the 2 lists
was strongly correlated between studies (r = .76, p , 102129)
(Figure S1).

We used repeated random relabeling of genes to test the
null hypothesis that the SRM gene list included no more
schizophrenia-related genes than expected by chance. We
also applied the same resampling procedures to comparable
prior data on differential gene expression from case-control
studies of inflammatory bowel disease, bipolar disorder
(BPD), major depressive disorder, and autism spectrum dis-
order (ASD) (5).

Data and Code Sharing

Data. Regional MT for 68 cortical regions, schizotypy scores,
age, gender, socioeconomic status, scanning site, total brain
volume, and Euler values (for N = 248) are available at https://
github.com/RafaelRomeroGarcia/Schizotypy_MT_geneExp.

Code. Cortical parcellation of gene expression maps to
estimate regional mean gene expression (48) can be found
at https://github.com/RafaelRomeroGarcia/geneExpression_
Repository. The rotate_parcellation code generates null
models that preserve the spatial contiguity of cortical re-
gions for permutation testing (31): https://github.com/
frantisekvasa/rotate_parcellation. PLS analysis and boot-
strapping to estimate PLS weights (15) can be found at
https://github.com/KirstieJane/NSPN_WhitakerVertes_PNAS2
Biological P
016/tree/master/SCRIPTS. To generate Figure S1 from the
raw Gandal et al. (5) and Fromer et al. (47) datasets, we used
https://github.com/RafaelRomeroGarcia/Schizotypy_MT_geneExp.
For mapping regional values to the cortical surface for
visualization (BrainsForPublication v0.2.1), see https://doi.
org/10.5281/zenodo.1069156.

RESULTS

Sample Characteristics

After quality control checks, complete, evaluable MRI and
behavioral data were available for analysis on 248 participants:
mean age 19.11 6 2.93 years; 123 (50%) female participants;
213 (86%) right-handed participants; IQ = 112.0 6 10.5; and
214 (86%) white Caucasian, 10 Asian, 4 black/African Amer-
ican/Caribbean American, 17 mixed, and 3 other ethnic groups
(see Table S1 for details).

Schizotypy and MT

Schizotypal personality scores in this healthy (nonpsychotic)
sample followed a positively skewed distribution (mean = 0.23,
median = 0.20) that was normalized by square root trans-
formation prior to statistical analysis. There was no significant
effect of age (R2 , .001, p = .69) (Figure S2), gender (R2 , .001,
p = .77), or age-by-gender interaction (R2 , .001; p = .82) on
SPQ total score or subscale scores.

SPQ total score was modestly positively correlated with
global MT, estimated as the average MT over all 68 regions
(R2 = .02, p = .015) (Figure S3). SPQ total score was signifi-
cantly correlated with age-corrected regional MT in 4 of 68
regions individually tested (R2 . .04, p , .05, FDR corrected)
(Figure 1A, B and Table S4): the left isthmus cingulate, left
posterior cingulate, left precuneus, and right isthmus cingulate.
These medial posterior cortical regions had high MT signals at
14 years of age (MT14) and relatively slow rates of increase in
MT over the period of 14 to 25 years of age (DMT) (Figure 1C).

We used prior functional MRI data to identify experimental
task conditions that were most robustly associated with
functional activation of these areas of significant SRM (Neu-
rosynth [https://neurosynth.org/]) (49): memory, social cogni-
tion or theory of mind, and executive functions (Figure 1D). The
posterior cingulate and medial parietal cortical areas of sig-
nificant SRM were also enriched for default mode network–
related terms in ontological analysis of prior functional MRI
data (49).

Sensitivity Analyses of SRM

We used a linear model to control the association between SPQ
and MT for the potentially confounding effects of age, gender,
site, socioeconomic status, and total brain volume (Figure S4),
and robust estimators to mitigate the influence of the small
number of high SPQ scores on the estimation of SRM (Figure S5).
In both cases, the key results were conserved: namely, significant
SRM in default mode network areas and significant correlations
between PLS1 weights and differential gene expression in
schizophrenia. We also noted a negative correlation between
Euler number and global MT, indicating reduced MT in a minority
of poor-quality images (r =2.14, p = .03). When we excluded the
10%of participantswith the poorest image quality, the correlation
sychiatry August 1, 2020; 88:248–259 www.sobp.org/journal 251
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Figure 1. Schizotypy-related magnetization
(SRM): association between intracortical magneti-
zation transfer (MT) and Schizotypal Personality
Questionnaire (SPQ) score. (A) Cortical surface maps
highlighting areas where SPQ total score was
significantly positively correlated with regional MT
after controlling for age by regression: pink regions
had nominally significant SRM (2-tailed p , .05); red
regions had significant SRM controlled for multiple
comparisons over 68 cortical regions tested (false
discovery rate , .05). (B) Scatterplot of SPQ total
score for each participant vs. mean MT in regions of
significant SRM (R2

246 = .04, p = .002); each dot
represents 1 of 248 healthy people 14 to 25 years of
age. (C) Scatterplots of SRM vs. MT at 14 years of
age (MT14) (left) (R2

67 = .34, permutation testing
based on spherical rotations: p = .002) and SRM vs.
change in magnetization 14 to 25 years of age (DMT)
(right) (R2

67 = .28, permutation testing based on
spherical rotations: p = .006). Each point represents
a cortical region and colored points represent re-
gions with significant SRM (pink: p , .05; red: false
discovery rate , .05). (D) Word cloud representing
ontological terms most frequently associated with
functional activation of the medial posterior cortical
areas of significant SRM. (E) Cortical surface maps
highlighting areas where scores on the disorganized
factor of schizotypy was significantly positively
correlated with regional MT after controlling for age
by regression (pink, 2-tailed p , .05; red, false dis-
covery rate , .05).
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between Euler number and MT was no longer significant (r = .04,
p = .11), but the key results were conserved (Figure S6).

Schizotypy is a complex trait comprising multiple di-
mensions of cognition, emotion, and behavior. In addition to
the principal analysis of SPQ total score, we also considered
2 possible decompositions of the schizotypal trait. Nine
subscales of the SPQ defined by Raine (29) were positively
correlated with regional MT, but these associations were
less robust than for SPQ total score (Figure S7). All 3 factors
of schizotypy defined by Raine et al. (50), i.e., positive,
negative, and disorganized dimensions, were positively
correlated with MT. The correlation between disorganized
schizotypy and MT was strongest and statistically significant
when controlling for multiple comparisons (Figure 1E and
Figure S8).

We also measured cortical thickness for each of the same
68 regions, using R1 images collected as part of the same
MRI sequence used to measure MT. SPQ scores were
negatively correlated with cortical thickness in some
252 Biological Psychiatry August 1, 2020; 88:248–259 www.sobp.org/
regions, but the associations between schizotypy and
cortical thickness were not significant when corrected for
multiple tests (Figure S9).
SRM and Gene Expression

PLS1 defined a weighted sum of whole-genome expression
that accounted for w40% of the cortical patterning of SRM,
significantly more than expected by chance (permutation
testing based on spherical rotations: p = .027) (Figure 2A).

Multiple univariate Z tests were used to test the set of null
hypotheses that the weight of each gene on PLS1 was zero.
We found that this null hypothesis was refuted for 1932 posi-
tively weighted genes and 2153 negatively weighted genes
(p , .05, FDR corrected for whole-genome testing at 20,647
genes) (Figure 2B). Positively weighted genes were normally
overexpressed, and negatively weighted genes were normally
underexpressed, in cortical areas with high SRM. These 4085
genes constituted the SRM gene list.
journal
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Figure 2. Gene expression and schizotypy-related magnetization (SRM). (A) (Left panel) The first partial least squares component (PLS1) defined a linear
combination of genes that had a similar cortical pattern of expression to the cortical map of SRM, representing the correlation between Schizotypal Personality
Questionnaire and magnetization transfer at each of 68 cortical regions. (Center panel) Scatterplot of PLS1 scores versus SRM; each point is a cortical region.
(Right panel) The combination of genes defined by PLS1 explains more of the variance in SRM (dotted line) than expected by chance (histogram of permutation
distribution). (B) Illustrative example of the weights assigned to representative genes on PLS1. Genes with the highest positive weights are colored in pink,
nonsignificantly weighted genes are shown in white, and the genes with the lowest negative weights are colored in blue. Tables summarize p values by
permutation testing for enrichment analysis by 4 lists of genes affiliated to specific cell types and 4 lists of genes associated with schizophrenia: Gandal and
Fromer up-reg (5, 47) are lists of genes transcriptionally upregulated postmortem in schizophrenia; Gandal and Fromer down-reg are lists of genes tran-
scriptionally downregulated in schizophrenia. Scatterplots and cortical maps illustrate that positively weighted genes, like ANK1, are overexpressed in cortical
regions with high levels of schizotypy-related myelination, whereas negatively weighted genes, like PTPRC, are underexpressed in regions with high levels of
SRM. FDR, false discovery rate.
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Functional and Schizophrenia-Related Enrichment
of SRM Genes

The SRM gene list was tested for enrichment by genes char-
acteristic of specific cell types using 2 sets of prior criteria
Biological P
(45,46). Positively weighted SRM genes were enriched for
neuronal affiliation (permutation test, p , 1024) (45) and, more
specifically, for genes differentially expressed in fast-spiking
parvalbumin (PVALB)-positive inhibitory interneurons
sychiatry August 1, 2020; 88:248–259 www.sobp.org/journal 253
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(permutation test, FDR-corrected p , .01) (Table S2) (46).
Negatively weighted SRM genes were enriched for astrocytes,
microglia, and neuronal affiliation (permutation tests, all ps ,

1024) (Figure 2B) (45,46).
The positive or negative weighting of each SRM gene

was strongly related to its differential expression in 2
postmortem studies of schizophrenia (5,47). Positively
weighted SRM genes were enriched for genes that were
significantly downregulated in both studies (Table S5) but
not for significantly upregulated genes in either study.
Additionally, positively weighted SRM genes were also
enriched for genes previously associated with white matter
connectivity differences in schizophrenia described by
Romme et al. (51) (Figure S10). In contrast, negatively
weighted SRM genes were enriched for genes that were
significantly upregulated in both studies (permutation tests,
all ps , 1024) (Figure 2B and Table S6) but not for signif-
icantly downregulated genes.
254 Biological Psychiatry August 1, 2020; 88:248–259 www.sobp.org/
Convergently, there was a significant negative correlation
(Spearman’s r = 2.16, p , 1026) between the PLS1 weights
of all genes in the genome and the differential expression
values reported for all genes by Gandal et al. (5) and Fromer
et al. (47) (Figure 3A). PLS1 gene weights were not correlated
with differential expression in inflammatory bowel disease or
major depressive disorder; however, they were negatively
correlated with differential expression in BPD and ASD
(Figure 3B).

We analyzed the network of known protein-protein in-
teractions [STRING (http://string-db.org) (52)] between pro-
teins coded by the 213 genes that were significantly
downregulated in schizophrenia (5) and significantly positively
weighted in the PLS analysis of SRM (Table S5). There were
significantly more interactions (edges) between proteins coded
by these genes than expected by chance (permutation test, p
, 1025) (Figure 4 and Figure S11). Topologically, the network
comprised several clusters of densely interconnected and
Figure 3. Weights of gene expression from partial
least squares (PLS) analysis of schizotypy-related
magnetization (SRM) were related to histological
measures of differential gene expression from case-
control studies of schizophrenia and other disorders.
(A) The weight of each gene on the first PLS
component was significantly negatively correlated
with differential gene expression postmortem in
schizophrenia according to prior data reported by
Gandal et al. (5) (Spearman’s rank correlation,
r11111 = 2.16, Bonferroni-corrected adjusted p11111
, 10265) and by Fromer et al. (47) [Spearman’s rank
correlation, r586 = 2.30, adjusted p586 , 10212; for
this dataset, only significantly different expression
values have been reported (46)]. (B) Correlations
between PLS weights and differential expression
were also evaluated for other conditions (5): inflam-
matory bowel disease (r586 = 2.02, adjusted p586 =
.10), major depressive disorder (r15281 = .007,
adjusted p15281 = .37), bipolar disorder
(r16064 = 2.09, adjusted p16064 , 10219 ), and autism
spectrum disorder (r11131 = .11, adjusted
p11131 , 10235). Red and blue points represent
genes that are significantly up- and downregulated in
postmortem data.
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functionally specialized proteins. The biggest cluster was
enriched for synaptic terms and centered around highly con-
nected “hub” proteins (Figure 4).

DISCUSSION

Schizotypy was associated with intracortical magnetization of
posterior cortical regions of the default mode network and
colocated with a normative cortical pattern of weighted whole-
genome expression. The gene transcripts most strongly
weighted in association with this MRI map of SRM were
significantly enriched for genes specifically expressed by
neuronal and glial cells, especially PVALB-positive in-
terneurons, and for genes that were transcriptionally dysre-
gulated in 2 prior postmortem studies of schizophrenia.

Magnetization, Intracortical Myelination, and
Schizotypy

MT is a microstructural MRI measurement that is sensitive to
the ratio of fatty and watery tissue represented by each voxel,
and in the brain, most of the fat is myelin. Intracortical myeli-
nation, especially of the deeper layers of the cortex, has been
recognized since seminal cytoarchitectonic and myeloarchi-
tectonic studies in the early 20th century (14). MT images
represent a stark contrast between the cortex and the central
white matter as well as more nuanced variations across
different cortical areas and layers (53). Histological measure-
ments of myelin were positively correlated with MRI mea-
surements of MT in postmortem brains (54). Intracortical
Biological P
measurements of MT in humans have been validated as
microstructural MRI markers of myelination in healthy volun-
teers (55) and in patients with multiple sclerosis (56).

One plausible interpretation of SRM, therefore, is as a proxy
marker for a biological state of schizotypy-related myelination.
On this assumption, the results are open to further interpre-
tation at a cellular level. For example, greater “myelination”
could imply a greater density of myelinated neurons per voxel
(a neuronal process), or a greater density of myelin per neuron
(an oligodendroglial process), or some combination of these
and other cellular parameters. The data available to us did not
allow direct resolution of the relationships between SRM and
myelination. Instead, we used open data on human brain gene
expression (n = 6, mean age = 42.5 years) to explore these
questions more indirectly.

The adult brain gene expression profile that was most
closely colocated with the adolescent brain map of SRM (n =
248, mean age = 19 years) was enriched for neuronal, but not
oligodendroglial, affiliations. This pattern of results arguably
favors the interpretation that higher MT indicates a greater
density of myelinated neurons per voxel, rather than a greater
density of myelin per neuron, in people with higher schizotypy
scores. However, the 201-year age gap between the MRI
measurements and the messenger RNA measurements pre-
cludes definitive resolution of these and other possible cellular
interpretations of SRM. Although the SRM gene set is not
known to demonstrate major developmental changes in
expression after childhood (Figure S12), in the future it will be
important to colocate MT phenotypes in children and young
Figure 4. Protein-protein interaction network for a
set of 213 proteins coded by genes associated with
both schizotypy-related magnetization and post-
mortem brain transcriptional dysregulation in
schizophrenia. Nodes represent genes that were
both 1) downregulated in brain tissue from 159 pa-
tients with schizophrenia and 2) positively weighted
on the partial least squares component most
strongly associated with schizotypy-related myeli-
nation in 248 healthy adolescents. Edges represent
known protein-protein interactions. The color and
size of each node represents its degree centrality or
“hubness,” simply the number of interactions that
protein has with the other proteins in the network.
The top 4 most highly connected hubs are high-
lighted: PPP3CC is a calmodulin dependent phos-
phatase, calcineurin; CAMK2G is a calcium/
calmodulin dependent kinase; PVALB is a calcium
binding protein, parvalbumin; ACTN4 is a micro-
filamentous protein, actinin-alpha-4. This network is
specialized for calcium-dependent processes that
have been previously associated with interneurons
and with pathogenesis of schizophrenia. For
the complete list of gene names on the protein-
protein interaction network, see Figure S11 and
see https://version-10-5.string-db.org/cgi/network.
pl?taskId=RMpA04wbWG8k for a full interactive
version of the protein-protein interaction network.
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people (and animal models) with more precisely age-matched
data on brain gene expression and histology.

The macroscopic medial posterior cortical areas where MT
was most strongly correlated with schizotypy in general—SPQ
total score—are key components of the default mode network
[as defined by functional MRI studies (57)] and specialized for
memory, social cognitive, and theory-of-mind functions that
are known to be abnormal in patients with schizophrenia (58).
Interestingly, the schizotypal factor of disorganization was also
correlated with MT in the medial prefrontal cortical areas that
also form part of the default mode network. All these regions
had high levels of magnetization at 14 years of age and no
significant subsequent change in magnetization over the
period 14 to 25 years of age. This contrasts with areas of the
lateral association cortex, which have a low level of MT at 14
years of age but show significant increase in MT over the
course of adolescence (15). We can infer that these medial
posterior cortical areas matured as part of a preadolescent
wave of cortical development (59), which would be compatible
with the stable, traitlike properties of schizotypal personality in
these data and in other studies of adolescents and adults.
Cortical Gene Expression, Schizotypy-Related
Myelination, and Schizophrenia

We wanted to identify which genes in the whole genome had a
cortical expression pattern that was most similar to the cortical
map of SRM. A large number (.20,000) of nonindependent
statistical tests would be entailed in testing the association
between each transcript’s spatially correlated cortical expres-
sion map and the cortical map of SRM. Therefore, we favored a
multivariate approach and used PLS to identify a cortical
pattern of weighted whole-genome expression that was
significantly colocated with the SRM map and to identify which
particular gene transcripts were most positively or negatively
weighted.

We found that the positively weighted genes (n = 1932) were
overexpressed in cortical areas with high levels of SRM,
whereas the negatively weighted genes (n = 2153) were
overexpressed in cortical areas with low levels of SRM. Both
positive and negative genes were enriched for neuronal, but
not for oligodendroglial, affiliations. Positive genes were spe-
cifically enriched for PVALB-positive inhibitory interneurons;
negative genes were enriched for astrocytes and microglia.

We predicted hypothetically that the SRM gene set would
be enriched for genes that are known to be transcriptionally
dysregulated in schizophrenia. This prediction was supported
by convergent results from enrichment analysis using two
prior, independently discovered, and partially overlapping lists
of genes differentially expressed in postmortem case-control
studies of schizophrenia. In both cases, there were signifi-
cantly more histologically downregulated genes in the list of
positively weighted SRM genes, and significantly more upre-
gulated genes in the list of negatively weighted SRM genes,
than expected by chance. In other words, genes with reduced
brain transcription postmortem in schizophrenia were normally
more highly expressed in cortical areas with higher levels of
SRM. A subset of the positively weighted SRM genes has been
previously associated with white matter dysconnectivity in
schizophrenia (51), suggesting that SRM of cortex and
256 Biological Psychiatry August 1, 2020; 88:248–259 www.sobp.org/
schizophrenia-related disruption of central white matter tracts
may be different imaging phenotypes related to expression of
genes in common.

The subset of 213 SRM-positive genes that were also
significantly downregulated in one or both of the prior histo-
logical studies coded for a protein-protein interaction network
comprising a small number of highly connected hub proteins
(ACTN4 [alpha-actinin-4], CAMK2G [calcium/calmodulin-
dependent protein kinase II gamma], PPP3CC [protein phos-
phatase 3 catalytic subunit gamma], and PVALB), each hub
having up to 14 known biochemical interactions with other
proteins in the network. CAMK2G is one of a family of serine/
threonine kinases that mediate many of the second messenger
effects of Ca21 that are crucial for plasticity at glutamatergic
synapses. PVALB is a calcium-binding albumin protein that is
expressed particularly by the fast-spiking class of GABAergic
(gamma-aminobutyric acidergic) interneurons that has been
strongly implicated in the pathogenesis of schizophrenia
(Figure 4) (60).

We found that the SRM gene list was also enriched by
genes differentially expressed in ASD and BPD. These results
are consistent with the postmortem evidence (5) that the dif-
ferential gene expression profile of schizophrenia (compared
with healthy controls) is strongly correlated with the case-
control differences of transcription in BPD and ASD (r . .45,
p , .001). They are also consistent with clinical evidence that
both ASD and BPD are associated with increased schizotypal
traits (61,62).
Methodological Issues

The brain tissue samples used for RNA sequencing in the
AHBA were not homogeneously distributed across the cortex,
so estimates of regional expression are based on different
numbers of experimental measurements in each of the 68 re-
gions. The case-control differences in frontal or parietal lobar
gene transcription reported by Gandal et al. (5) and Fromer
et al. (47), although based on a relatively large number of pa-
tients, are not as precisely localized or representative of the
whole brain as the AHBA and MRI data. This study has a
considerably larger sample size than any previously reported
MRI study of schizotypy, and it is the first to evaluate a
microstructural MRI marker, which was more strongly related
to schizotypy than the more conventional macrostructural MRI
marker of cortical thickness. Nonetheless, it is theoretically
surprising that there was limited evidence for significant SRM
of the frontal and lateral temporal cortex (although magneti-
zation of the medial prefrontal cortex was significantly asso-
ciated with the disorganized component of schizotypy)
(Figure 1E), possibly reflecting limited statistical power. The
SPQ is a self-report questionnaire measure of schizotypy;
more refined and objective assessments of schizotypal traits
would likely add value to future studies.
Conclusions

Overall, these correlational results do not unambiguously
resolve questions of causality, but they are consistent with the
interpretation that SRM, putatively an imaging marker of
intracortical density of myelinated neurons, represents cellular
journal
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processes determined in part by transcription of genes related
to schizophrenia and other neuropsychiatric disorders.
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