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Abstract
Two informed and interested parties (senders) repeatedly send messages to an unin-
formed party (public). Senders face a trade-off between propagating their favoured 
opinions, possibly by lying, and maintaining a high audience (or market share), as 
the state is occasionally revealed and lies cause audiences to switch to the competi-
tor. We fully characterize a focal Markov perfect equilibrium of this game and dis-
cuss the impact of exogenous parameters on the truthfulness of equilibrium report-
ing. In particular, we find that senders’ lying propensities are strategic complements 
so that increasing one sender’s bias decreases both senders’ truthfulness. We also 
analyse the role of polarization across senders.

Keywords  Information · Externalities · Communication · Polarization

JEL Classification  C 78

1  Introduction

Interaction between informed parties (governments, firms, media outlets etc.) and an 
uninformed public (citizens, customers, readers, etc.) typically repeats over time and 
as time passes, facts may become available which allow to verify past claims. Inac-
curate claims, though perhaps advantageous in the short run, hurt an informed par-
ty’s ability to wield influence in the future by affecting the latter’s credibility, audi-
ence size, etc.In spite of that, one often observes (diametrically) different accounts 
of the same underlying facts. For example, the following two quotes, taken from 
articles published in November 2018 by, respectively, the New York Times and Fox 
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Business, offer very different evaluations of the state of the U.S. economy in the 
preceding months.

“Emerging signs of weakness in major economic sectors, including auto manu-
facturing, agriculture and home building, are prompting some forecasters to warn 
that one of the longest periods of economic growth in American history may be 
approaching the end of its run.”1

“U.S. employers added a better-than-expected 250,000 jobs in October, soar-
ing past expectations for an increase of 190,000 jobs (...). The unemployment rate 
remained at 3.7 percent, the lowest rate in nearly 50 years, while the labor force 
participation rate increased to 62.9 percent from 62.7 percent during the month.2

One potential driver of such divergence in the selection and interpretation of 
facts is that informed parties have an ideological agenda and wish to influence pub-
lic opinion accordingly. In this paper, we investigate the competition between two 
biased senders for an audience, whose members switch their preferred source of 
information in proportion to the discrepancy between sources’ past messages and 
the revealed state.

We propose a simple infinite horizon model that captures key features of the 
problem. Two biased and strategic senders face the public in every period. In each 
period, the state �t is drawn anew from a fixed continuous distribution. The state is 
observed only by senders at the beginning of the period, while the public observes 
it by the end of the period with some probability. Each sender k has a fixed favoured 
state �k which may or may not be commonly known. After observing the state, each 
sender sends a period-t message mk

t
 . At the beginning of each period t, a share xk

t
 of 

the market (audience) is held by sender k, and this share represents the fraction of 
the public that listens to him (i.e. trusts him, is loyal to him). Senders’ shares sum up 
to one in any given period, i.e. all members of the public are loyal to (exactly) one or 
the other media.

Sender k’s period-t message affects his payoff through two channels; by influ-
encing the beliefs of his current audience, and by affecting the size of his audi-
ence tomorrow. Formally, message mk

t
 yields a period-t payoff to sender k which 

is a function of his audience share xk
t
 , the distance between mk

t
 and his ideal state 

�k , as well as his ideological commitment �k . His period-t payoff decreases in 
the weighted distance �k(mk

t
− �k)2 and it increases in xk

t
 . In other words, sender 

k prefers sending messages that are close to his ideal state and are received by a 
large audience. The simplest interpretation is that k’s audience naively takes k’s 

1  The NYT report continues: “The economy has been a picture of health, expanding at a 3.5 percent 
annual pace during the third quarter and driving the unemployment rate to 3.7 percent, the lowest level 
in almost half a century. But General Motors’ plan to cut 14,000 jobs and shutter five factories reinforces 
other recent indications that the better part of the expansion is now in the rearview mirror.”, Appelbaum, 
B., New York Times, November 28, 2018.
2  The FB report continues: “Average hourly earnings meanwhile rose by five cents to $27.30,  or 3.1 per-
cent year-over-year, the highest it’s been since the Great Recession.“We saw better-than-expected payroll 
gains at 250,000 jobs, surging wages and increased labor force participation,” Mark Hamrick, a senior 
economic analyst for Bankrate.com said.“That’s a kind of an economic trinity that we haven’t often seen 
during this economic expansion.”. Henney, M., Fox Business, November 2, 2018.
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message at face value, so that the smaller the distance between mk

t
 and �k , the 

closer his audience’s belief to his ideal belief.
The message mk

t
 chosen by k at t also affects k’s expected audience tomorrow. 

At the end of t, the current state �t becomes observable with some probability � 
and, in this case, the public compares senders’ messages to the revealed truth. 
Then, at t + 1 , each sender loses to his opponent a fraction of his audience that is 
increasing in the (square of the) size of his lie (mk

t
− �t)

2 . In particular, if send-
ers’ initial market shares are identical and both reports diverge equally from the 
truth, market shares stay put. One can think of electoral campaigns, where false 
claims by two opposing parties (candidates) cancel out. If instead only k lied, 
then l acquires a share from k while k acquires no share from l.

Summarizing, senders’ incentives exhibit two key features. First, a sender faces 
a trade-off between advantageously moving the beliefs of his audience towards 
his ideal state by biasing his report, and ensuring a large audience tomorrow by 
reporting truthfully. Second, a sender benefits from his competitor’s lies as this 
yields an expected inflow of audience.

Senders simultaneously choose their messages with the aim of maximizing the 
expected value of the discounted sum of their future payoffs. Each message mk

t
 of 

sender k can depend on all information available up to the start of date t (includ-
ing the realized state �t and k’s audience xk

t
 ). The natural strategies to examine 

in this environment are Markov strategies, in which the period-t message can 
depend only on the current state and the current market audience. We construct a 
simple Markov perfect equilibrium (MPE), in which sender k’s message at each 
date t is a convex combination of the current state and his favoured state, mk

t
= 

ak�t+ (1 − ak)�k . The truthfulness of k in any period is thus quantified by the 
constant ak that depends neither on the state nor on k’s audience. In the extreme 
case of ak = 1 , sender k always reports truthfully, whereas if ak = 0 , he ignores 
the realized state and simply reports his ideal point. Moreover, we show that the 
identified strategy profile constitutes the unique MPE if we restrict the strategy 
sets of senders to Markov strategies that condition the period t message on the 
current state only.

Our second set of findings regards the comparative statics of ak w.r.t. the key 
parameters. For example, we find that the common discount factor � and the veri-
fication probability � influence the reporting strategies asymmetrically through a 
function that captures the cost of lying. We consider also the effect of ideal states 
and the ideological commitments to these states by the two senders. We refer to 
(�k − E[�])2 as the ex-ante bias of k. Assuming identical ex ante biases (resp. 
ideological commitments), k is more truthful than l, i.e., ak > al , if and only if k 
is less ideologically committed (resp. ex ante biased) than l. Second, unilaterally 
increasing the ex-ante bias or ideological commitment of one player renders both 
strictly less truthful. Hence, ak and al are both decreasing in the ex-ante bias and 
in the ideological commitment of any given sender l. For an intuition concerning 
the indirect impact on player k of increasing l’s lying, note that the latter reduces 
the expected cost of lying for k (in terms of lost audience), and thus incentiv-
izes k to lie more as well. This in turn has a positive feedback effect on l’s lying 
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incentive. We also find that, interestingly, the degree of polarization of sender 
preferences (as captured by the distance ||�k − �l|| separating their ideal states) is 
not a relevant quantity in determining the truthfulness of equilibrium communi-
cation. Rather, the key quantity is simply the sum of ex-ante biases. Finally, we 
also show that higher uncertainty negatively affects the accurateness of communi-
cation. In other words, ak and al both decrease in Var(�).

2 � Related Literature

Our paper relates to the literature on strategic information transmission with mul-
tiple experts. A central question is how the informativeness of communication is 
affected by the diversity of biases among informed parties. In the cheap talk model 
of Krishna and Morgan (2001b), two senders have different biases and at least one 
is not extremely biased. Then, consulting two senders is beneficial and may induce 
full revelation. In Battaglini (2002), the receiver faces multiple perfectly informed 
experts and the state is multidimensional. Full revelation is generically possible, 
even when the conflict of interest is arbitrarily large. In Battaglini (2004), senders 
hold noisy signals and multiple consultation induces less precise communication by 
each sender. In Austen-Smith (1993), the receiver faces two imperfectly informed 
experts and the state and signal space is binary. Under some conditions, full revela-
tion is possible with a single expert but not when two experts are consulted simul-
taneously. On the other hand, there is little difference between similar and oppos-
ing biases. Krishna and Morgan (2001a), reexamining Gilligan and Krehbiel (1989), 
find that when fully informed experts have heterogeneous preferences, full revela-
tion can be achieved. If instead experts have identical preferences, only imperfect 
revelation obtains.3 McGee and Yang (2013) study a setup where a decision maker’s 
optimal decision is a (multiplicative) function of the uncorrelated types of two pri-
vately informed senders. In Li et al. (2016), a principal has to choose between two 
potential projects, information about returns being held separately by two experts 
who are each biased towards their own project. In both of these papers, senders’ lev-
els of informativeness are strategic complements, as in our analysis. The underlying 
mechanism is that when the other sender communicates very informatively, large 
deviations from the truth become more costly. Alonso et al. (2008) consider infor-
mation transmission in a multi-division organization, where each division’s profits 
depend on how its decision matches its privately known local conditions and on 
how it matches the other division’s decisions. One possible decision protocol is cen-
tralization, whereby division managers report to central headquarters which decide 
for both divisions. They find that a stronger desire to coordinate decisions worsens 
headquarters’ ability to retrieve information from divisions.4

3  See also Ambrus and Lu (2014), Li et al. (2016), Ottaviani and Sørensen (2001).
4  Another strand of the static multi-expert literature examines games of disclosure (persuasion) with 
multiple senders. This relates less closely to our analysis in this paper. Milgrom and Roberts (1986) 
show that competition among interested parties with opposing biases might be helpful when the decision 
maker is uninformed or strategically unsophisticated (See also Shin (1994), Bhattacharya and Mukherjee 
(2013), Bhattacharya et al. (2018)).
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Our modelling of the cost of lying (through the loss of audience tomorrow) 
relates to Kartik (2009). The latter proposes to apply a cost function to a simple 
measure of lying which bases on the distance between the sender’s true type and 
the exogenous (literal) meaning of the message sent. He finds that communication 
is noisy regardless of the level of lying costs, though higher lying costs intuitively 
induce more informativeness. Our paper also relates to the literature on communica-
tion with strategic senders facing boundedly rational receivers (e.g., Ottaviani and 
Squintani 2006,or Kartik et  al. 2007). When fully rational and boundedly rational 
receivers are simultaneously present, Ottaviani and Squintani (2006) show that the 
amount of information that is revealed to fully rational receivers increases in the 
fraction of naive receivers.

Moreover, our paper connects to the literature on trust and reputation under 
repeated interaction, which divides into two main strands; the Bayesian-reputation 
building and the repeated games and punishment (see, e.g., Cabral 2005). An impor-
tant instance of the first strand is Board and Meyer-ter-Vehn (2013). The authors 
examine the problem of a firm which can invest in product quality, and whose profits 
from sales are determined by its reputation for quality. In their specification with 
perfect Poisson learning and either perfect good news or perfect bad news, they find 
that equilibrium takes a work-shirk form. The firm works when its reputation lies 
below some cutoff and shirks when it is above it. A set of papers has examined the 
issue of reputation building specifically in a repeated cheap talk context (see Sobel 
1985; Benabou and Laroque 1992; Morris 2001; Ely and Välimäki 2003). Here, 
the key is that an expert who wants to repeatedly influence the decision of an unin-
formed party has to signal himself as a good expert over time. This might in turn 
bias the expert’s communication.

A different perspective on the foundations of trust is the literature on repeated 
games and punishment. The general insight is that if players care enough about 
future payoffs, the prospect of future punishment renders certain strategies credible 
which are not credible in a one-shot setup. A set of papers focuses specifically on 
repeated communication either in the form of cheap talk or in the form of disclosure 
of verifiable messages. Renault et al. (2013) study a situation of repeated cheap talk 
where the underlying state follows a Markov process and the receiver never observes 
the utility obtained from actions chosen. The sender is disciplined by the fact that in 
the long run, the profile of reports must be compatible with the stationary distribu-
tion of the process. If the receiver detects a clear deviation from this distribution, 
there is punishment in the form of reversion for ever to the babbling equilibrium 
(see also Escobar and Toikka (2013) for a related model). Margaria and Smolin 
(2018), in the same vein, study repeated interaction with multiple senders with state 
independent payoffs and a state evolving according to a Markov chain. They prove 
equivalents of Folk Theorems for the case where senders are sufficiently patient. In 
Golosov et al. (2014), communication and decision making is repeated over time but 
the state is fixed throughout. Their main finding is that full revelation of the state 
can be achieved in finite time. The equilibrium construction involves conditioning 
future information revelation on the receiver’s past response to information and, in 
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particular, punishing the receiver if the latter has in the past responded to informa-
tion in a hostile way.5

We proceed as follows. Section 3 introduces the model. Section 4 presents the 
equilibrium analysis. Section 5 concludes. All proofs are relegated to the Appendix.

3 � Two‑sender game

Two biased and strategic senders 1 and 2 face the public in every period t = 0, 1, .. , 
the horizon being infinite. Each sender k has an initial audience xk

0
∈ (0, 1) , where 

x1
0
+ x2

0
= 1 . During each period, the following events take place consecutively: 

1.	 The state of the world �t ∈ [0, 1] is drawn from a distribution with a continuous 
probability density function �(�) and a full support on the unit interval. The state 
is i.i.d. across periods.

2.	 Each sender k ∈ {1, 2} learns �t and sends a message mk

t
∈ [0, 1] to her audience 

xk
t
∈ (0, 1) . The message mk

t
 can depend on all available past and current informa-

tion (including �t and xk
t
 ). Given the message mk

t
 , sender k receives the per-period 

utility, 

 where �k ∈ [0, 1] is k’s favoured state and �k ∈ [0, 1] stands for k’s ideological 
commitment to �k . Receivers may or may not observe �k and �k . The audience 
shares add up to one in each period, x1

t
+ x2

t
 = 1.

3.	 Given the state �t and the messages mk

t
 and ml

t
 , k ≠ l , sender k’s audience share 

is updated according to the function, 

Hence, xk
t+1

 obtains as the net balance of the outflows from and inflows to the share 
xk
t
 at the end of period t. The parameter � ∈ (0, 1) can be interpreted as the prob-

ability that the period-t state is revealed ex post, allowing the audience to assess 
the truthfulness of reports. This interpretation reflects the level of transparency, i.e., 
observability by the public of the state of the world, and highlights possible frictions 
in information acquisition (e.g., due to censorship, state media dominance, language 
barriers, etc.). Alternatively, � embodies inertia of the audience in changing their 
information source.

The updating rule (2) implies that sender k loses to the competitor l a fraction 
of his audience that is proportional to the quadratic distance between his mes-
sage and the actual state of the world and, at the same time, gains a fraction of the 

(1)u
k(xk

t
,mk

t
) = x

k

t
− x

k

t
⋅ �k ⋅ (mk

t
− �k)2,

(2)x
k

t+1
= x

k

t
− x

k

t
⋅ �(mk

t
− �t)

2 + (1 − x
k

t
)�(ml

t
− �t)

2.

5  Finally, a set of papers (Aumann and Hart 2003; Krishna and Morgan 2004; Forges and Koessler 2008) 
examines how the use of repeated jointly controlled lotteries and signaling stages allows to enlarge the 
set of achievable outcomes in a repeated communication environment.
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competitor’s audience that is proportional to the quadratic distance between the 
competitor’s message and the actual state of the world. We show in Lemma 2 that 
under this rule it holds for t ≥ 1 and k ∈ {1, 2} that xk

t
∈ (0, 1) and x1

t
+ x2

t
 = 1 when 

xk
0
∈ (0, 1) and x1

0
+ x2

0
 = 1.

A simple interpretation of the above setup is that the public is boundedly rational 
and follows simple rules of thumb both in its belief updating conditional on mes-
sages as well as in weighting news sources over time. Each zero mass receiver in the 
audience of sender k takes the period-t message of sender k at face value, attaching 
probability one to state mk

t
 . If the state is revealed and the receiver realizes that he 

was lied to and thus tricked into wrong beliefs, he becomes likely to switch to the 
other sender, the more so the larger the lie. One can interpret this shift as motivated 
by a desire to punish the liar, or by a naive expectation that the other sender will be 
more truthful.

In what follows, we shall focus on equilibria that feature simple Markov strate-
gies. A Markov strategy for sender k requires that the sender uses the same messag-
ing rule mk

t
 in every period and that the latter conditions only on the current state 

variables of the stochastic game, namely �t and xk
t
 . However, the strategy spaces of 

senders are as such unrestricted (conditional on the available information) except 
that messages must change continuously in the state. The latter requirement ensures 
that agents’ expected utilities are well-defined.

Given a profile of communication strategies, agent k’s expected utility of the infi-
nite stream of per-period payoffs at period t is given by

where � ∈ [0, 1) is the common senders’ discount factor.
Our solution concept is MPE, which is a subgame perfect equilibrium of the 

game in which each sender k uses a Markov messaging strategy. All of the above 
aspects are common knowledge among senders.

4 � Main results

This section introduces our main findings and accompanying discussions. Given 
Markov strategies, agent k’s expected utility (3) takes the recursive form (note that 
we omit time indices in what follows),

where we substituted from (1) for this period utility uk(⋅) and used (2) to compute 
the next period audience.

As mentioned in the Introduction, sender k’s current payoff decreases in the dis-
tance between the message mk and his favoured state �k , while his future audience 
decreases in the discrepancy between the message mk and the realized state � due to 

(3)v
k

t
(xk

t
) = E

�∑∞

s=t
�suk(xk

s
,mk

s
)
�
,

(4)
v
k(xk) = ∫ 1

0
(xk − x

k
⋅ �k ⋅ (mk − �k)2)d�(�)

+ �∫ 1

0
v
k
(
x
k − x

k�(mk − �)2 + (1 − x
k)�(ml − �)2

)
d�(�),
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the outflow of k’s audience. Therefore, a crucial role in our analysis will be played 
by the expected rate of utility loss,

and the expected rate of audience outflow,

When endowed with the audience xk at a particular date t, sender k expects the 
period-t payoff xk(1 − �klk(mk)) and the audience outflow xkok(mk) at the end of 
period-t. Note that none of these expressions depends on the messaging rule of the 
opponent. Both expressions will depend in equilibrium on the expected squared 
deviation of the current state from the preferred state,

which decomposes into the squared difference of the current and the expected 
state (ex-ante bias 

(
�k − E[�]

)2 ), and the variance Var(�) of the state distribution. 
Clearly, �(�k) increases when the ex-ante bias or/and the uncertainty (variance) 
increases.

Although each sender is allowed to condition on her audience, the current state 
and past play, there exists a MPE with strikingly simple strategies: A sender’s 
period-t message is a convex combination of the realized period-t state and the 
favoured state. The weight placed on the realized state (i.e., sender’s truthfulness) 
in this equilibrium is a constant that depends only on the parameters of the game. 
This constant is computed by the simultaneous minimization of the expected rate of 
utility loss and the expected rate of audience outflow under the equilibrium strategy. 
Equilibrium messages change, therefore, continuously in the state.

Proposition 1  Assuming 0 < 𝛿𝛾 < 1 , there is a MPE in which player k ∈ {1, 2} uses 
the message function

 where (ãk, ãl) ∈ [0, 1]2 is the unique maximizer of,

We argue that this equilibrium is focal due to its simplicity but also because it is 
unique if the strategy spaces of senders are restricted to Markov strategies that con-
dition on the current state only. This is shown in our next result.

Proposition 2  The MPE in Proposition 1 is unique if the strategy space of sender 
k ∈ {1, 2} is restricted to Markov strategies mk ∶ [0, 1] → [0, 1] that map the real-
ized state � into a message mk(�).

(5)l
k(mk) = ∫ 1

0
(mk − �k)2d�(�),

(6)o
k(mk) = ∫ 1

0
(mk − �)2d�(�).

(7)�(�k) = ∫ 1

0
(�k − �)2d�(�) =

(
�k − E[�]

)2
+ Var(�),

(8)m̃
k = ã

k� + (1 − ã
k)�k, ã

k ∈ [0, 1],

(9)P(ak, al) =
(1 − �k�(�k)(ak)2)(1 − �l�(�l)(al)2)
1−�

��
+ �(�k)(1 − ak)2 + �(�l)(1 − al)2

.
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For the message function m̃k , the expected rate of utility loss and the expected rate of 
audience outflow simplify to

respectively. In the simple equilibrium that we focus on, players choose the vec-
tor (ãk, ãl) that maximizes P(ak, al) , which implies that player k minimizes the util-
ity loss lk(m̃k) in the numerator and minimizes the audience outflow ok(m̃k) in the 
denominator of (9).

In this equilibrium, k’s choice boils down to picking ãk , which we will henceforth 
refer to as k’s (messaging) strategy. As ãk is the weight of the realized state in k’s 
messages, it reflects the truthfulness of reporting. In particular, ãk = 0 corresponds 
to extremely biased and ãk = 1 to perfectly truthful messages. Note, that sender k 
reports truthfully when � = �k.

We now add some comments on the fact that a player’s audience share does 
not affect his messaging incentives in the (m̃k, m̃l) equilibrium, which is a property 
underpinning the fact that the equilibrium is subgame perfect. The intuition follows 
from applying the one-shot deviation principle. In the proof of Proposition 1, we 
show that (see equation (25) in the Appendix), after any history that ends with the 
audience xk , sender k chooses a message m such that

where the current period utility uk(xk,m) is defined in (1), the next period audience 
zk is computed from xk by the updating rule (2) and ṽk(zk) is k’s value function at the 
beginning of next period when senders play (m̃k, m̃l) from then on. Note that dṽ

k(zk)

dzk
 

does not depend on xk , as can be seen from considering the closed form expressions 
(24) and (15) in the Appendix. Instead, du

k(xk ,m)

dm
 and dz

k

dm
 are linear functions of xk . It 

follows that xk cancels out of the above equality (10), which means that xk does not 
affect sender k’s one-shot deviation incentives.

4.1 � Comparative statics

In the proof of Proposition 1, we show that the maximizer (ãk, ãl) of the function 
P(⋅) in (9) satisfies the equation,

This equation defines implicitly a strictly increasing continuous function ãk = �(ãl) 
such that �(0) = 0 and �(1) = 1 . An increase in ãl is then only compatible with MPE 
when ãk increases as well. In other words, ãk and ãl are strategic complements. 
The idea here is that increasing l’s lying effectively reduces the cost of lying for k, 
which resides in the resulting future loss of audience. When k lies in period t, then 
k mechanically loses a fraction of his audience to l in period t + 1 . However, when l 
lies in period t + 1 , k acquires a fraction of l’s period t + 1 audience at t + 2 , thereby 

l
k(m̃k) = �(�k)(ãk)2, and o

k(m̃k) = �(�k)(1 − ã
k)2,

(10)
duk(xk,m)

dm
= −�

dṽk(zk)

dzk

dzk

dm
,

(11)
ãk(1 − ãl)�k

1 − (ãk)2�(�k)
=

ãl(1 − ãk)�l

1 − (ãl)2�(�l)
.
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effectively recovering some of the audience lost in period t + 1 . Thus, the more l 
lies, the smaller the net future loss of audience associated with a fixed lie of k, and 
the higher the incentive to lie for k at t. In particular, false claims by competing 
parties cancel out, in a way that is proportional to the parties’ respective audience 
shares and deviations from the truth.

The shape of �(ãl) depends on the ex-ante biases 
(
�k − E[�]

)2 , ideologi-
cal commitments and the variance of the state distribution but not on � or � . In 
order to find the maximizer of P(⋅) on �(⋅) for particular values 0 < 𝛿, 𝛾 < 0 , we 
derive in the proof of Lemma 3 the formula for the best response function �k(al) 
of player k to strategy al of his opponent. We show that �k(⋅,�) intersects �(⋅) 
only once and that their intersection uniquely maximizes P(⋅) . It turns out that 
�k(al) depends on � and � only via the “cost of lying” parameter � = ��∕(1 − �) . 
As illustrated in Figure 1, the best response shifts upwards when this parameter 
increases, i.e., when lying becomes more costly. Together with the fact that �(⋅) is 
increasing, this implies that ãk and ãl will move upwards along �(⋅) , i.e., reports 
become more truthful, when the cost of lying � increases.

Although the maximizer of (9) has no simple explicit form, we are able to per-
form the comparative statics analysis summarized in our next result.

Proposition 3  The equilibrium message function mk(�) = ãk ⋅ � + (1 − ãk)�k of 
sender k ∈ {1, 2} satisfies the following: 

Fig. 1   Functions �(⋅) (continuous line) and �k(⋅) for � = 3 (dashed line) and for � = 1 (dotted line) when 
�k = �k = 1∕2 , �l = �l = 1∕4 and � is the Uniform[0,1] PDF with E[�] = 1/2 and Var(�) = 1/12
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1.	 Extreme cases: ãk = 0 iff �� = 0 and ãk → 1 iff � → 1 or �k → 0 for k ∈ {1, 2}.
2.	 (A)symmetric messaging strategies: 

3.	 For 0 < 𝛿𝛾 < 1 , the discount factor � and the verification probability � influence 
ãk only via the “cost of lying” parameter � =

��

1−�
 . Specifically, 

4.	 An increase in the ex-ante bias 
(
�l − E[�]

)2 or the ideological commitment �l of 
sender l ∈ {1, 2} or an increase in the variance of the state distribution Var(�) = 
E[�2] − E[�]2 reduces truth telling of both senders, 

Item (1) covers extreme cases that result in either fully revealing or fully unin-
formative messages. In particular, when � = 0 , both players will always report their 
preferred state independently of � . In the other extreme, when � → 1 both players 
will report truthfully for any value 𝛾 > 0 . Hence, for extreme values of � , the level of 
transparency (verification probability) � is irrelevant. A captive audience with scarce 
access to direct information on the state of the world (low � ) will still enjoy truthful 
reporting when senders assign high weights to future profits. Conversely, a lie-sen-
sitive audience which very likely observes the state of the world (high � ) will face 
very biased reports when senders are extremely myopic. Moreover, ãk converges to 1 
also when �k → 0 . In other words, the only guarantee for truthful reporting is either 
an ideologically uncommitted (but possibly biased) or a sufficiently patient sender.

Item (2) specifies the condition for (a)symmetric reporting strategies. This condi-
tion reveals an interesting relationship between biases and ideological commitments. 
In particular, we note that both senders use symmetric messaging functions, i.e., 
ã1 = ã2 , when,

When (12) holds, the discount factor and the verification probability influence only 
the level of truth-telling by both senders but cannot break the symmetry of their 
reports.

Item (3) reveals, similarly to Item (1), an asymmetric impact of the discount 
rate � and the verification probability � on equilibrium strategies. For example, the 
“cost of lying” parameter � =

��

1−�
 cannot exceed �

1−�
 for any value of � , while for 

any 𝛾 > 0 , this cost has no upper bound and goes to infinity when � → 1 . Hence, for 
any interior point (ã1, ã2) on the �(⋅) curve, there exists a 𝛿 < 1 such that (ã1, ã2) is 
a MPE. This point, however, will not be an equilibrium for any value of � when � is 

�ak > (=)�al ⇔ 𝜃(𝜔k)𝜆k < (=)𝜃(𝜔l)𝜆l.

d�ak

d𝜋
> 0, k ∈ {1, 2}, 𝜋 ∈ [0,∞).

d�ak

d
(
𝜔l − E[𝜔]

)2 < 0,
d�ak

d𝜆l
< 0,

d�ak

dVar(𝜔)
< 0, ∀k, l ∈ {1, 2}.

(12)�1(Var(�) +
(
�1 − E[�]

)2
) = �2(Var(�) +

(
�2 − E[�]

)2
).
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sufficiently low. Generally, an increase in the discount factor � or/and in the verifica-
tion probability � leads to less bias in reporting, i.e., to an increase in both, ãk and ãl.

Item (4) states that both reports become less truthful when one of the following 
increases:

•	 sender l’s ex-ante bias 
(
�l − E[�]

)2.
•	 sender l’s ideological commitment �l.
•	 uncertainty of the state distribution as measured by Var(�).

Therefore, sender l lies more ( ̃al decreases) when his ex-ante bias and/or his ideo-
logical commitment increase but also when there is more uncertainty about the 
state. As ãl and ãk are strategic complements, this also induces more lying by k. 
Recall that the key intuition is that l’s lying reduces the expected cost of lying for k 
in terms of lost audience.

Note that senders distort their messages even if they are both ex-ante unbiased, 
i.e. even if �1 = �2 = E[�] . Clearly, ex ante unbiased players have an ex post 
incentive to lie which is increasing in the divergence between the realized state � 
and E[�] . For ex ante unbiased players, the expected ex post incentive to lie thus 
increases in Var(�). An intuition for the role of key statistics and parameters can 
be gained by considering the expected period-t payoff (1) to player k, who holds an 
exogenous market share of xk . This payoff simplifies under the equilibrium messag-
ing rule ãk� + (1 − ãk)�k to

Note that the derivative of the above w.r.t. ãk is negative and decreasing in the exog-
enous quantities �k , 

(
�k − E[�]

)2 , Var(�) . In consequence, sender k will decrease 
ãk (i.e. distort his messages more) to offset an increase in one these three exogenous 
quantities.6

We conclude with some observations on the role of polarization in this model. 
It is often argued that polarization is a vital threat to modern societies. In the con-
text of this work, we can analyse its impact on reporting policies. Polarization in 
our framework can be expressed as the distance between individual preferred states, 
|�k − �l| , while recall that (�k − E[�])2 is the ex-ante bias of k. In order to disentan-
gle the roles of polarization and ex-ante bias in our model, we consider two cases: 

1.	 There is a “left” and a “right” sender, �k ≤ E[�] ≤ �l.
2.	 There are two “left” senders, �k ≤ �l ≤ E[�] (the case of two “right” senders, 

�k ≥ �l ≥ E[�] , is analogous).

x
k − x

k�k(ãk)2
{(

�k − E[�]
)2

+ Var(�)
}
.

6  The fact that ãk is positive in equilibrium stems from the fact that sender k, in maximising his expected 
stream of payoffs as appearing in the full expression (4), takes into account the negative effect of 
decreasing ãk on his expected market share.
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In the first case, rising polarization is equivalent to an increase in the ex-ante bias of 
at least one sender. By Proposition 3, this will lead to a larger bias in the reports of 
both senders. Hence, in this case, increasing polarization and ex-ante bias go hand in 
hand and have a negative effect on the quality of messages.

The analysis of the second situation is more subtle and requires distinguishing 
between two subcases. Depending on the subcase considered, increasing polarization 
is compatible with less or more ex-ante bias, which respectively leads to a smaller or a 
larger distortion in both senders’ reports. The first subcase is when �l moves closer to 
E[�] , thereby at the same time increasing polarization and making sender l less ex-ante 
biased. The second subcase is when �k moves closer to 0, thereby at the same time 
increasing polarization and making sender k more ex-ante biased. In either case, Item 
(4) in Proposition 3 makes it clear that ex-ante biases and not polarization per se influ-
ences the truthfulness of senders.

As an illustration, assume E[�] = 1∕2 , �k = �l and consider the following 
two scenarios, where different levels of polarization lead to the same equilibrium 
outcome:

(a) �k = �l = c (polarization |�k − �l| = 0),
(b) 𝜔k = 1 − 𝜔l = c < 1∕2 (polarization |�k − �l| = 1 − 2c).
In both scenarios, the equality in Proposition 3, Item (2), holds as,

It follows that both scenarios yield the same solution (ã1, ã2) , which is furthermore 
symmetric, i.e. such that ã1 = ã2.

5 � Conclusion

Two ideologically motivated informed parties repeatedly face uninformed audi-
ence. Senders simultaneously aim at influencing their audiences’ views as well 
as maximizing the size of their audiences. As the truth (the state) is occasionally 
revealed and lies cause audiences to switch to the competitor, senders face a trade-
off between propagating their favoured views, possibly by lying, and maintaining 
a high audience. We fully characterize a focal MPE of this game, in which players 
only condition their messages on the realised state (and not on their current audience 
share). We study the impact of key exogenous parameters on this equilibrium such 
as: the discount factor, verification probability, senders’ ideological commitments 
and ex-ante biases on equilibrium strategies. One of our key findings here is that 
increasing the bias and/or ideological commitment of one player lowers the truthful-
ness of both senders.

An interesting direction worth exploring would be to assume Bayesian updating 
by audiences in every period (as opposed to the face-value interpretation assumed 
here), while maintaining our modelling of audience flows as a function of the dis-
tance between messages and the state.

(c − 1∕2)2 + Var(�) = (1 − c − 1∕2)2 + Var(�).
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Appendix

Unless stated otherwise, all results are shown for the parameter values in the open 
unit interval:

Lemma 1  For any �k ∈ [0, 1] and continuous PDF �(�) with the full support on the 
unit interval,

Proof: The first inequality is clear. For the second, we note that given the mean 
e = E[�] , the variance Var(�) is maximized under a distribution that assigns prob-
ability e to 1 and 1 − e to 0. On the other hand, 

(
�k − E[�]

)2 attains the highest 
value for �k = 0 ( �k = 1 ) when E[�] = e ≥ 1∕2 ( E[�] = e ≤ 1∕2 ). In the former 
case, we have

where the r.h.s. attains the global maximum of one for e = 1 . For any continuous 
PDF �(�) , the maximum of 

(
�k − E[�]

)2
+ Var(�) must thus be less than one. A 

similar argument applies to the case �k = 1 ( e ≤ 1∕2).

Lemma 2  Under the law of motion (2), it holds for t ≥ 1 and k ∈ {1, 2} that 
xk
t
∈ (0, 1) and x1

t
+ x2

t
 = 1 when xk

0
∈ (0, 1) and x1

0
+ x2

0
 = 1.

Proof: The law of motion (2) can be written as,

As � ∈ (0, 1) and mk

t
, ml

t
 and �t all live in the unit interval, it follows that the maxi-

mum (minimum) of the r.h.s. of (13) is less than 1 (more than 0) when xk
t
∈ (0, 1) 

and, hence, xk
t+1

 lies in the open interval (0, 1). On the other hand, by substitution 
from (13) and rearranging terms one obtains,

which implies x1
t+1

+ x2
t+1

= x1
t
+ x2

t
 when x1

t
+ x2

t
= 1.

Lemma 3  The function P ∶ R2
→ R (that is identical to the function in (9)),

where �k ∶ R2
→ R is given by,

�, � , �1, �2 ∈ (0, 1).

0 < 𝜃(𝜔k) < 1.

�(�k) =
(
�k − E[�]

)2
+ Var(�) ≤ e

2 + e(1 − e)2 + (1 − e)e2 = e,

(13)x
k

t+1
= x

k

t
(1 − �(mk

t
− �t)

2) + (1 − x
k

t
)�(ml

t
− �t)

2.

x
1

t+1
+ x

2

t+1
= x

1

t
+ x

2

t
+ (1 − x

1

t
− x

2

t
)(�(m1

t
− �t)

2 + �(m2

t
− �t)

2),

(14)P(ak, al) = � ⋅ � ⋅ �k(ak, al)(1 − �l�(�l)(al)2),
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for k, l ∈ {1, 2}, l ≠ k and �(⋅) defined in (7) is uniquely maximized at some 
(ãk, ãl) ∈ [0, 1]2 that satisfies

Proof: We note that a finite maximum of P(⋅) exists as P(ak, al) < 1∕(1 − �) . Moreo-
ver, any maximizer must be a point in the unit square because it holds for any al 
that P(0, al) > P(ak, al) when ak < 0 and P(1, al) > P(ak, al) when ak > 1 (similar 
inequalities hold for al ). As P(⋅) is differentiable, a maximizer (ãk, ãl) ∈ [0, 1]2 must 
satisfy the f.o.c. d lnP(⋅)∕dak = 0 and d lnP(⋅)∕dal = 0 that combined imply,

The last expression defines implicitly a continuous function ãk = �(ãl) with the unit 
interval as its domain and range. Note that �(⋅) does not depend on � and � . Implicit 
differentiation of (17) yields an explicit formula for ��(⋅) with 𝜂�(�al) > 0 . As �(ãl) 
increases in ãl , the equality (17) implies �(0) = 0 and �(1) = 1.

Moreover, for any maximizer (ãk, ãl) of P(⋅) , it must hold that ãk maximizes 
�k(ak, ãl) w.r.t. ak . Similarly as in case of P(⋅) , a finite maximum of �k(ak, ãl) exists 
and it is attained for some ãk ∈ [0, 1] . The f.o.c. d�k(⋅)∕dak = 0 that then holds 
defines the function,

Any maximizer (ãk, ãl) , where ãk = �k(ãl, ⋅) , is then an intersection of �k(⋅) and �(⋅) 
as illustrated in Figure 1. Given that P(⋅) attains a maximum for any 𝜋 > 0 , �k(⋅,�) 
must intersect �(⋅) - that does not depend on � - at least once. We can define then the 
function (ãk(�), ãl(�)) ∶ [0,∞) → [0, 1]2 that maps � into the "highest" intersection 
of �k(⋅,�) with �(⋅) . By directly calculating,

we find that (ãk(�), ãl(�)) strictly increase in � , lim�→0(ã
k(�), ãl(�)) = (0, 0) (note 

that the limit of �k(al,�) as � → 0 is 0 for any al ) and lim�→∞(ã
k(�), ãl(�)) = (1, 1). 

As (ãk(�), ãl(�)) inherits from �k(⋅,�) continuity in � , it follows that any interior 

(15)�k(ak, al) =
1 − �k(ak)2�(�k)

1 − � + ��(1 − al)2�(�l) + ��(1 − ak)2�(�k)
,

(16)ã
k =

���k(ãk, ãl)

�k + ���k(ãk, ãl)
.

(17)
ãk(1 − ãk)�k

1 − �k(ãk)2�(�k)
=

ãl(1 − ãl)�l

1 − �l(ãl)2�(�l)
.

(18)
�k(al,�) =

Ak −
√
(Ak)2 − 4�2�k�(�k)

2��k�(�k)
∈ [0, 1],

where � =
��

1 − �
and Ak = �k + �

�
1 + �k�(�k) + �k�(�l)(1 − a

l)2
�
.

(19)
d𝛽k(al,𝜋)∕d𝜋 > 0, lim

𝜋→0
𝛽k(al,𝜋) = 𝜂(0) = 0,

lim
𝜋→∞

𝛽k(1,𝜋) = 𝜂(1) = 1,
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point on �(⋅) corresponds to an intersection (ãk(�), ãl(�)) with �k(⋅,�) for some 
𝜋 > 0.

Now, we show that �k(⋅,�) intersects �(⋅) only once for any � ∈ (0,∞) , i.e., that 
the maximizer of P(⋅) is unique. Firstly, we note that P(ãk(�), ãl(�)) strictly increases 
in � . To see this notice that P(ak, al;�) increases in � for fixed ak, al . Then, for any 
𝜋′ > 𝜋,

where the first inequality follows because (ãk(��), ãl(��)) maximize P(ak, al;��) . When 
ãk(�) , ãl(�) and P(ãk(�), ãl(�)) all increase in � , �k(⋅,�) cannot intersect �(⋅) more 
than once. Otherwise, there exists �′ ≠ � such that (ãk(�), ãl(�)) and (ãk(��), ãl(��)) 
are different intersection points with P(ãk(�), ãl(�)) ≠ P(ãk(��), ãl(��)) . This contra-
dicts the fact that (ãk(�), ãl(�)) and (ãk(��), ãl(��)) both maximize P(⋅).

In order to show (16), we note that �k(ak, al) is a quotient a two functions. Then, 
the f.o.c. holds when �k(ak, al) is equal to the quotient of their derivatives w.r.t. ak,

Proof  Proposition 1: When senders use the Markov strategies,

then we show in Proposition 2 that sender k’s expected value function takes the 
form,

where �k(ak, al) is defined in (15). We note that in order to maximize vk(xk) , sender 
k needs only maximize �k(ak, al) w.r.t. ak . In Lemma 3, we showed that there is a 
unique maximizer (ãk, ãl) ∈ [0, 1]2 of the function (9) such that ãk maximizes 
�k(ak, ãl) w.r.t. ak and ãl maximizes �k(ãk, al) w.r.t. al . Hence, (ãk, ãl) defines a MPE 
when each sender k is restricted to a strategy of the form (20). Moreover, in Lemma 
3 we prove also that,

We show now that sending the message

is a MPE strategy when each player k ∈ {1, 2} chooses for each period t a messaging 
function mk

t
 that can condition on all information available to k up to the start of date 

t (including �t and xk
t
).

P(�ak(𝜋�),�al(𝜋�);𝜋�) ≥ P(�ak(𝜋),�al(𝜋);𝜋�) > P(�ak(𝜋),�al(𝜋);𝜋),

d�k(ak, al)

dak
= 0 ⇔ �k(ak, al) =

�kak

��(1 − ak)
⇔ a

k =
���k(ak, al)

�k + ���k(ak, al)
.

(20)m
k = a

k� + (1 − a
k)�k, k ∈ {1, 2},

(21)v
k(xk) = �k(ak, al)

{
���(�l)(1 − al)2

1 − �
+ x

k

}
,

(22)ã
k =

���k(ãk, ãl)

�k + ���k(ãk, ãl)
.

(23)m̃
k = ã

k� + (1 − ã
k)�k,
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As MPE is, by definition, subgame perfect, we can apply the one-shot deviation 
principle for infinite games with discount. According to this principle, a strategy 
profile is a subgame perfect equilibrium if and only if there exist no profitable one-
shot deviations for each subgame and every player. For any history that ends with 
k’s audience xk and state � , we denote by ṽk(xk) her expected payoff (4) when both 
players play the strategy profile (m̃k, m̃l) , and by vk

m
(xk) her expected payoff when she 

deviates from (m̃k, m̃l) by sending the message m once and follows the strategy m̃k 
thereafter. Then,

where the second equality follows after substitution from (1) and (21) and zk results 
from the updating rule (2),

As vk
m
(xk) is concave in m ( d2vk

m
(xk)∕dm2 < 0 ), sender’s k optimal (unrestricted) 

message m uniquely maximizes vk
m
(xk) and it is given by the f.o.c.,

We note that the optimal message does not depend on the share xk that cancels out in 
the above f.o.c. Comparison with (22) and (23) confirms that m̃k = ãk�+ (1 − ãk)�k 
defines an MPE strategy for each player k ∈ {1, 2} in the game with unrestricted 
strategy spaces. 	�  ◻

Proof  Proposition 2: Given an infinite path (�0,�1, ...) of realized states, the payoff 
at date 0 to k under stationary message functions (mk,ml) is computed by Eqs. (3) 
and (1),

where each xk
s
 , s > 0, is a linear function of xk

0
= xk and of previous states and mes-

sages of both players by the (repeatedly applied) updating rule (2). As k’s expected 
payoff is, essentially, an average over paths (�0,�1, ...) , it follows from (26) that 
vk(xk) = v0 + v1 ⋅ x

k for some expressions v0 and v1 that do not depend on xk (because 

(24)
v
k

m
(xk) = u

k(xk,m) + �ṽk(zk)

= x
k − x

k�k(m − �k)2 + ��k(ãk, ãl)

{
���(�l)(1 − ãl)2

1 − �
+ z

k

}
,

z
k = x

k − x
k�(m − �)2 + (1 − x

k)�(m̃l − �)2.

(25)

dvk
m
(xk)

dm
= 0 ⇔

duk(⋅)

dm

= −�
dṽk(⋅)

dzk

dzk(⋅)

dm
⇔ −2xk�k(m − �k) = ��k(⋅)2xk�(m − �)

⇔ m =
���k(ãk, ãl)

�k + ���k(ãk, ãl)
�

+
�k

�k + ���k(ãk, ãl)
�k.

(26)v
k(xk) =

∑∞

s=0
�suk(xk

s
,mk(�s)) =

∑∞

s=0
�sxk

s
(1 − �k(mk(�s) − �k)2),
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senders’ messages do not depend on xk ). We substitute this form on both sides of (4) 
and equate the coefficients v0 and v1 . This leads to,

where

and ok(mk) and lk(mk) are defined in (6) and (5), respectively. In order to maximize 
vk(⋅) w.r.t. mk , sender k needs only maximize �k(mk,ml).

By inspection of (28), we observe that the equilibrium message mk must be 
a convex combination of the realized state and k’s ideal point, i.e., mk(�) = 
ak(�)�+ (1 − ak(�))�k for some ak(�) ∈ [0, 1] . Otherwise, sender k could simul-
taneously decrease lk(mk) and ok(mk) increasing �k(⋅) in the process. For exam-
ple, if mk < 𝜔 ≤ 𝜔k ( 𝜔 ≤ 𝜔k < mk ) this will be achieved by marginally increasing 
(decreasing) the message mk(�).

We show now that for any message function mk of the form,

where the continuous function ak(�) has the unit interval as its domain and range, 
there is a message mk

(�) = ak� + (1 − ak)�k such that

unless ak(�) = ak.
We compute the constant ak from the condition,

In light of the fact that

lies between 0 and �(�k) = ∫ 1

0
(� − �k)2d�(�) , it holds that ak ∈ [0, 1] . In order to 

show that ok(mk) > ok(m
k
) unless ak(�) = ak , we first evaluate the definition (6) for 

mk and mk,

After substituting for lk(mk) from (31), we calculate the difference,

(27)v
k(xk) = �k(mk,ml)

{
� ⋅ �ol(ml)

1 − �
+ x

k

}
,

(28)�k(mk,ml) =
1 − �klk(mk)

1 − � + ��ok(mk) + ��ol(ml)
,

(29)m
k(�) = a

k(�)� + (1 − a
k(�))�k,

(30)
l
k(mk) = l

k(m
k
) and ok(mk) > o

k(m
k
)

⇒ 𝜇k(m
k
,ml) > 𝜇k(mk,ml),

(31)l
k(mk) = l

k(m
k
) = (ak)2�(�k) ⇒ a

k =
√
lk(mk)∕�(�k).

(32)l
k(mk) = ∫ 1

0
(mk(�) − �k)2d�(�) = ∫ 1

0
a
k(�)2(� − �k)2d�(�),

(33)

o
k(mk) = ∫ 1

0
(mk(�) − �)2d�(�) = ∫ 1

0
(1 − a

k(�))2(� − �k)2d�(�)

= l
k(mk) + �(�k) − 2∫ 1

0
a
k(�)(� − �k)2d�(�),

o
k(m

k
) = (1 − a

k)2�(�k).
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The sign of the last difference is the same as the sign of

where we substituted for ak from (31) and from (32) and defined the PDF function,

By Jensen’s inequality, the last difference in (34) is positive unless ak(�) is con-
stant with probability one (in which case this difference is zero). A continuous func-
tion ak(�) is constant with probability one (under the continuous PDF �(�) ) when-
ever it attains the same value for all � ∈ [0, 1] . Hence, for mk ( ak ) defined in (31), 
ok(mk) > ok(m

k
) unless ak(�) = ak . We showed in Proposition 1 that ak = ãk in equi-

librium. 	� ◻

Proof  Proposition 3: 	�  ◻

1.	 When �� = 0 , it is clear that ãk = 0 maximizes k’s objective function �k(ak, al) 
defined in (15). For � → 1 (i.e., � =

��

1−�
→ ∞ ), we show in the proof of Lemma 3 

that lim�→∞(ã
k(�), ãl(�)) = (1, 1) . For �k = 0 , it is clear that ãk = 1 maximizes k’s 

objective function �k(ak, al) defined in (15). In order to show that ãk = 0 ⇒ �� = 0 
and ãk = 1 ⇒ �k = 0 or � → 1 , we calculate the derivatives of function P(⋅) in (9), 

 where P0 and P1 are strictly positive expressions when 0 < 𝛾 , 𝛿, 𝜆k < 1 and Δ = 
(1 − �l(al)2�(�l)) . The signs of the derivative follow because �l, al ∈ [0, 1] and 
𝜃(𝜔l) < 1 by Lemma 1. Hence, ãk can only attain the extreme values if the same 
occurs to some of the parameters.

2.	 This part follows directly from the equality (17) derived in the proof of Lemma 
3.

3.	 It is clear from the definition of the function P(a1, a2) in (9) that its unique maxi-
mizer (ãk, ãl) depends on 0 < 𝛿, 𝛾 < 1 only via � =

��

1−�
 . In the proof of Lemma 3, 

we show that (ãk(�), ãl(�)) strictly increases in �.
4.	 The essence of the proof is in the evaluation of the relevant derivatives. Algebraic 

manipulations7 show that, 

o
k(mk) − o

k(m
k
) = 2ak ⋅ �(�k) − 2∫ 1

0
a
k(�)(� − �k)2�(�)d�.

(34)

(ak)2 − (∫ 1

0
a
k(�)(� − �)2

�(�)

�(�k)
d�)2

= ∫ 1

0
a
k(�)2�(�)d� − (∫ 1

0
a
k(�)�(�)d�)2

= E�(�)[a
k(�)2] − E�(�)[a

k(�)]2,

�(�) = �(�)(� − �k)2∕�(�k).

(35)dP(ak, al)

dak
|ak=0 = P0Δ > 0,

dP(ak, al)

dak
|ak=1 = −P1Δ < 0,

7  We used Mathematica 11.3 commands FullSimplify, Resolve, Exists and FindInstance to obtain the 
derivatives and their signs.
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 for all values of the parameters � , � , �1 , �2 , �1 and �2 . As the adjustment (if 
any) of the messaging strategies of both senders goes in the same direction in 
response to a change in the bias or in the ideological commitment of one of 
them and, moreover, d𝛽k(�al)∕d�al > 0 , the conclusions follow.
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