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Abstract (218 words) 22 

Background: Healthcare professionals seek information about effectiveness of treatments in patients 23 

who would be offered them in routine clinical practice. Electronic medical records (EMRs) and 24 

randomised controlled trials (RCTs) can both provide data on treatment effects; however, each data 25 

source has limitations when considered in isolation. 26 

Methods: A novel modelling methodology which incorporates RCT estimates in the analysis of EMR 27 

data via informative prior distributions is proposed. A Bayesian mixed modelling approach is used to 28 

model outcome trajectories amongst patients in the EMR dataset receiving the treatment of interest. 29 

This model incorporates an estimate of treatment effect based on a meta-analysis of RCT as an 30 

informative prior distribution. This provides a combined estimate of treatment effect based on both 31 

data sources. 32 

Results: The superior performance of the novel combined estimator is demonstrated via a simulation 33 

study. The new approach is applied to estimate the effectiveness at 12 months after treatment 34 

initiation of AChEIs in the management of the cognitive symptoms of dementia in terms of MMSE 35 

scores This demonstrated that estimates based on either trials data only (1.10, SE=0.316) or cohort 36 

data only (1.56, SE=0.240) over-estimated this compared to the estimate using data from both sources 37 

(0.86, SE=0.327). 38 

Conclusion: It is possible to combine data from EMRs and RCTs in order to provide better estimates of 39 

treatment effectiveness. 40 

 41 

Key words: Randomized controlled trial; Electronic medical record; Bayesian modelling; Dementia; 42 

Cognition; Acetylcholinesterase inhibitors 43 

  44 
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Key Messages 45 

• Data on a treated cohort from an EMR and data from RCTs can be combined to provide 46 

estimates of treatment effects that are less biased and more generalisable than those from 47 

either data source alone 48 

• This holds true even if both are biased in the same direction 49 

• Estimates from either EMRs or RCTs alone over-estimate the effects of acetylcholinesterase 50 

inhibitors in terms of MMSE scores at 12 months after treatment initiation 51 

• It is possible to combine data from observational and randomized data sources even when 52 

the observational data is not comparative 53 

• A concerted effort to assemble routine EMR data in a form that can be used to improve real-54 

world inferences from RCTs is required 55 

  56 
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Introduction 57 

Healthcare professionals seek knowledge of the effectiveness of treatments in patients who would be 58 

offered them in routine clinical practice. Electronic medical records (EMRs) provide potentially 59 

valuable representative longitudinal data on treatment outcomes in routine clinical practice (1, 2); 60 

however, the absence of an adequate control group can often limit estimates of treatment effects. On 61 

the other hand, randomised controlled trials (RCTs) should provide an unbiased estimate of treatment 62 

effect in the population in which they are conducted (3), but may lack generalisability to patients who 63 

will be given the treatment in routine practice (4, 5). Combining data from both sources may help 64 

provide estimates that are both unbiased and generalisable. 65 

Development of methods to combine data from both randomised and observational data sources is 66 

an ongoing area of research with a variety of methods developed in recent years (6-8). An early, 67 

influential approach was the confidence profile method (9), a direct application of Bayesian modelling 68 

which emphasizes a case-specific modelling approach. Meta-analysis is popular (e.g. 10, 11); however, 69 

these methods tend to combine aggregate-level data only and require comparative data from both 70 

sources. Similarly using a Bayesian model to incorporate aggregate-level data from one source as an 71 

informative prior distribution when analysing the other (e.g. 12, 13) also requires comparative data 72 

from both sources. Cross-design synthesis (14, 15) combines individual-level data from observational 73 

studies with aggregate-level data from RCTs, and involves the adjustment of individual study results 74 

for biases, followed by the combination of results within and across designs. The clinical applications 75 

of such methods have been limited, due to methodological complexity and individual-level data 76 

requirements. There is need for further research in this area, particularly in regard to methods that 77 

use EMR data which is a growing source of information. Many of the existing methods depend on 78 

having comparative data from an observational study rather than cohort data from an EMR.  79 

In this paper, we propose a novel methodology for combined modelling that provides an estimator of 80 

treatment effectiveness which overcomes both the lack of an adequate control group in EMR data and 81 



5 

the lack of generalisability in RCT data. A Bayesian approach combines these data sources 82 

incorporating RCT estimates as part of an informative prior distribution.  83 

The motivating clinical question for this work is the estimation of the effectiveness of 84 

acetylcholinesterase inhibitors (AChEIs) in managing the cognitive symptoms of dementia. Dementia 85 

is a major health concern, affecting 47 million sufferers in 2016, predicted to rise to 131 million by 86 

2050 (16). There is currently no cure for most forms of dementia; however, AChEIs are often 87 

prescribed to manage cognitive symptoms (17). These drugs have been prescribed in routine clinical 88 

practice for several years, and one source of pseudonymised data on their use is the South London 89 

and Maudsley (SLaM) Biomedical Research Centre (BRC) case register (18). This EMR has been used to 90 

provide follow-up on a treated cohort of patients with a wide variety of comorbidities who receive a 91 

range of concurrent medications (19). The most commonly applied measure of cognition used in 92 

routine dementia assessment and care is the Mini-Mental State Examination (MMSE (20)) generating 93 

scores ranging from 0 to 30 with higher scores indicating better cognition. There can be situations 94 

where a patient is not able to complete all items of the MMSE for reasons unrelated to their cognition 95 

(e.g., vision impairment, mobility restrictions etc.). In this case the score may be expressed as being 96 

out of a different total (e.g., 24/29). In the remainder of this paper we will refer to the number of 97 

questions asked of a patient as the denominator and the number answered correctly as the 98 

numerator. The effects of AChEIs have also been investigated in a large number of RCTs and we 99 

recently conducted a systematic review and meta-analysis of this data (21). Synthesis of both sources 100 

of evidence offers the promise of a better estimate of the effectiveness of these treatments in routine 101 

clinical practice.  102 

Methods 103 

Description of data 104 

The treated cohort used in this study was extracted from the SLaM BRC case register. Patients were 105 

included in the cohort if: (i) they had at least one mention of an AChEI (donepezil, galantamine, 106 
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rivastigmine) for which the date of treatment offer (approximated by treatment start date which is 107 

coded as the earliest date on any AChEI prescription) could be identified; (ii) they had at least one 108 

MMSE score with a denominator ≥24 recorded between 1 year before and 3 years after treatment 109 

offer (only a single MMSE score was required for inclusion and this could be before or after treatment 110 

initiation); and, (iii) they had received a primary or secondary diagnosis of dementia excluding 111 

diagnoses of Parkinson’s Disease Dementia and Dementia with Lewy Bodies. For each eligible patient, 112 

all MMSE scores recorded between 1 year before and 3 years after treatment were extracted. MMSE 113 

scores with a denominator less than 30 were standardised by calculating an adjusted score as 114 

numerator divided by denominator multiplied by 30. The treated cohort contained 3134 patients with 115 

a total of 13577 scores between them, and covered the period 1st January 2005 to 8th February 2015. 116 

A previous systematic review and meta-analysis of trials of AChEIs in managing the cognitive 117 

symptoms of dementia forms the RCT dataset (21). 118 

Estimator of treatment effect based on treated cohort alone 119 

Each member of the target population, that is patients who receive this treatment in routine clinical 120 

practice, can be thought of as having two potential outcome trajectories. The one they would have 121 

followed if they were offered treatment and the one they would have followed if they were not. In 122 

practice, only the first of these is observed. Using t to denote time, with time 0 being the point of 123 

treatment offer, these two outcomes can be summarised as: 124 

yij, R=1 | tij ~ N(μ1(tij), σ2)  if the participant was offered treatment 125 

yij, R=0 | tij ~ N(μ0(tij), σ2) if the participant was not offered treatment   (1) 126 

where yij, R=1 is the outcome for individual i at time tij if they are offered treatment and yij, R=0 is the 127 

outcome for individual i at time tij if they are not offered treatment. For an individual, the effect of 128 

treatment offer (Δi) at a fixed time, t=α>0, is the difference between their outcome at α if they were 129 

and were not offered treatment: 130 
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Δi (α) = yij, R=1 |α – yij, R=0 |α        (2) 131 

For an individual it is possible to observe only one of the two potential outcomes; therefore, the 132 

parameter we are interested in estimating is the average effect of treatment offer at t=α which we 133 

call the ARE: 134 

ARE(α) = Ei(Δi(α)) = Ei(yij, R=1 |α – yij, R=0 |α) = Ei(yij, R=1 |α) – Ei(yij, R=0 |α) = μ1(α) – μ0(α) (3) 135 

In order to be able to estimate this parameter, appropriate expressions for the average trajectory in 136 

the population who are offered treatment and the population who are not are needed. Previous work 137 

(22) and non-parametric modelling of the current treated cohort have indicated that a piecewise linear 138 

mixed effects model (or alternatively linear spline) with two change points (or knot points), at 139 

treatment offer (t=0) and at some unspecified time subsequent (t=δ>0), is appropriate to model the 140 

trajectory in those who are offered treatment (see Figure 1): 141 

μ1(t) =  β0 + β1 t ,  t<0 142 

 β0 + β2 t,  0≤t<δ 143 

 β0 + (β2 - β3)δ + β3t, t≥δ        144 

μ1(t) =  β0 + β1 t 1t<0 + β2 min(t, δ) 1t≥0  + β3 (t- δ) 1t≥δ         (4) 145 
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 146 

Figure 1: Piecewise linear model for MMSE trajectories 147 

All participants in the cohort were offered treatment, and so an assumption must be made about what 148 

would have happened had they not been offered treatment. The assumption made is that they would 149 

have continued on their pre-treatment trajectory (A1): 150 

μ0(t) = β0 + β1 t          (5) 151 

Having made this assumption it is possible to derive an expression for an estimator of treatment effect 152 

parameter (ARE). This estimator of treatment effect is denoted θα, and may suffer from bias since it 153 

relies on assumption A1: 154 

θα = μ1(α) – μ0(α) = (β2 – β1) α,   α<δ 155 

        (β2 – β3)δ + (β3 – β1)α, α≥δ     (6) 156 

Equation (6) can be rearranged to express β2 in terms of the other parameters: 157 
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β2 = 
1

𝛼
θα + β1,   α<δ 158 

       
1

𝛿
[θα – (β3 - β1)α] + β, α≥δ 159 

β2 = β1 (1α<δ + 
𝛼

𝛿
 1α≥δ) + θα (

1

𝛼
 1α<δ + 

1

𝛿
 1α≥δ) + β3 (1 - 

𝛼

𝛿
) 1α≥δ     (7) 160 

This expression for β2 can be substituted into the expected treated trajectory for those who are 161 

offered treatment (eqn (4)): 162 

μ1(t) = β0 + β1 (t 1t<0 + (1α<δ + 
𝛼

𝛿
 1α≥δ) min(t,δ) 1t>0) + θα (

1

𝛼
 1α<δ + 

1

𝛿
 1α≥δ) min(t, δ) 1t>0 + 163 

   β3 [(1 - 
𝛼

𝛿
)1α≥δ min(t,δ) 1t>0 + (t- δ)1t≥δ     (8) 164 

This model can be used to estimate the effect of treatment at time t=α (θα) based on data from a 165 

cohort who were all offered treatment. Random effects on the coefficients can be incorporated to 166 

allow variation between patients.  167 

μ1(t) = (β0 + b0i) + (β1 + b1i)(t 1t<0 + (1α<δ + 
𝛼

𝛿
 1α≥δ) min(t,δ) 1t>0) + (θα + b2i)(

1

𝛼
 1α<δ + 

1

𝛿
 1α≥δ) min(t, δ) 1t>0 + 168 

   (β3 + b3i)[(1 - 
𝛼

𝛿
)1α≥δ min(t,δ) 1t>0 + (t- δ)1t≥δ    (9) 169 

To fit this model under a Bayesian framework, prior distributions for each of the parameters were 170 

determined. In the absence of additional information, non-informative priors should be used (23). For 171 

the coefficients, a suitable choice is a normal distribution with zero mean and large deviation. For the 172 

residual standard deviation, a suitable choice is uniform on the range zero to one hundred. A suitable 173 

prior distribution for a change point parameter, such as δ, is a uniform prior on the range of possible 174 

values (24). In this instance, a plausible range is from 0 to 3 since the second change point must come 175 

after the first at t=0 and the cohort consists of scores from 0 to 3 years after treatment offer. Suitable 176 

vague hierarchical priors are also placed on the random effects. For a single random effect, this is a 177 

normal distribution with mean 0 and variance σ0
2 which is given a vague prior (U(0,100)). In the 178 

presence of two or more random effects, these can be modelled using a multi-variate normal 179 

distribution with mean zero. Vague priors are used for the covariance matrix. In the case of two 180 
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random effects the constituent parts of the covariance matrix can be given vague priors (U(0,100) for 181 

standard deviations and U(-1,1) for the correlation). In the presence of 3 or more random effects an 182 

inverse Wishart prior distribution is used for the re-scaled covariance matrix with U(0,100) priors used 183 

for the scaling parameters (23). 184 

2.3 Incorporating RCT data via informative prior distributions 185 

The assumption on which the estimator θα is based may be biased, patients may not have continued 186 

on their pre-treatment trajectory. This is called projection bias, with the projection bias at time = α 187 

denoted φα. The true treatment effect, ARE(α) can be calculated as: 188 

ARE(α) = θα –  φα  189 

 θα = ARE(α) + φα         (10) 190 

This can be substituted into equation (9) to give an expression for the MMSE trajectory in the treated 191 

cohort based on the true treatment effect and the projection bias, both at time = α: 192 

μ1(t) = (β0 + b0i) + (β1 + b1i)(t 1t<0 + (1α<δ + 
𝛼

𝛿
 1α≥δ) min(t,δ) 1t>0) +  193 

                  (ARE(α) + φα + b2i)(
1

𝛼
 1α<δ + 

1

𝛿
 1α≥δ) min(t, δ) 1t>0 + 194 

   (β3 + b3i)[(1 - 
𝛼

𝛿
)1α≥δ min(t,δ) 1t>0 + (t- δ)1t≥δ    (11) 195 

Data from RCTs can form the basis of an informative prior distribution for ARE(α); however, this is only 196 

true for the proportion of the target population who are trial eligible. The model in equation (11) can 197 

be expanded to incorporate not only the possibility of different treatment effects in the trial eligible 198 

and trial not eligible populations, but also different trajectories within these two populations through 199 

the use of Si, which takes value 1 if individual i is trial eligible and 0 otherwise, to denote whether or 200 

not the individual is part of the trial eligible population: 201 
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 μ1(t) = (β01 1Si=1 + β02 1Si=0  + b0i) + (β11 1Si=1 + β12 1Si=0 + b1i)(t 1t<0 + (1α<δ + 
𝛼

𝛿
 1α≥δ) min(t,δ) 1t>0) +  202 

                  (ARE1(α) 1Si=1 + ARE2(α) 1Si=0  + φα + b2i)(
1

𝛼
 1α<δ + 

1

𝛿
 1α≥δ) min(t, δ) 1t>0 + 203 

   (β31 1Si=1 + β32 1Si=1 + b3i)[(1 - 
𝛼

𝛿
)1α≥δ min(t,δ) 1t>0 + (t- δ)1t≥δ  (12) 204 

where subscript 1 denotes parameters referring to the trial eligible portion of the target population 205 

and subscript 2 denotes those for the trial not eligible portion. The trial eligibility parameter is given 206 

a Bernoulli distribution: 207 

Si ~ Bin(1, π)          (13) 208 

where 0 < π < 1 is the proportion of the target population that are trial eligible. The overall 209 

treatment effect can be calculated as: 210 

ARE(α) = π ARE1(α) + (1-π) ARE2(α)       (14) 211 

As before, each of the parameters in the model are given a prior distribution. An informative prior 212 

distribution (25) based on meta-analysis of RCTs is used for ARE1(α). This meta-analysis was performed 213 

based on trials identified during a systematic review of the use of AChEIs in the management of 214 

dementia [21]. Two steps were followed to convert the meta-analysis results to a suitable informative 215 

prior distribution (26); (1) choosing an appropriate  distribution; and, (2) using available information 216 

from the meta-analysis to provide estimates for the mean and variance. A normal distribution was 217 

selected with mean set as the pooled effect estimate from the meta-analysis and standard deviation 218 

set as the associated standard error. For other parameters, vague priors as described previously were 219 

used. Projection bias, φα, can be both positive and negative and so was given a normal prior 220 

distribution with mean 0 and large variance. The trial eligible proportion, π, is a probability and was 221 

thus given a uniform prior on the range 0 to 1.   222 

This proposed combined model relies on two assumptions; first, that there are no treatment effect 223 

moderators whose distribution differs between the trial eligible portion of the target population and 224 

the trial samples (A3); and second that the projection bias, φα, is the same in the trial eligible and trial 225 
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not eligible portions of the target population (A4). These assumptions are weaker than those required 226 

when estimating treatment effects based on the treated cohort alone (where A1 is made instead of 227 

A3) or trial data alone, where we must assume that the trial and trial eligible portions of the target 228 

population do not differ on any characteristics which predict treatment effect (A2) rather than A4. 229 

2.4 Simulation study 230 

To investigate the properties of the proposed new estimator, a simulation study was conducted. The 231 

target population, P, can be split into the trial eligible portion, P1, and the trial not eligible portion, P2. 232 

We assumed that P1 could be further split into k mutually exclusive and exhaustive subsets, P1j, 233 

representing those eligible for each of k trials. Using Zi as an indicator for trial eligibility, Zi=1 if 234 

individual i is trial eligible and 0 otherwise, and setting P(Zi = 1) = π, then the treatment effect for each 235 

individual (Δi, eqn (2)) can be generated using: 236 

Δi | (Zi = 1 ∩ i ∈ P1j) ~ N(ARE1j, ω2) 237 

Δi | Zi = 0 ~ N(ARE2, ν2) 238 

ARE1j ~ N(ARE1, τ2)         (15) 239 

The outcomes for individuals at treatment offer, γ0,i, can similarly be defined as follows: 240 

γ0,i = yi0, R=1 = yi0, R=0 241 

γ0,i | (Zi = 1 ∩ i ∈ P1j) ~ N(Γ01,j, ω0
2) 242 

γ0,i | Zi = 0 ~ N(Γ02, σ0
2) 243 

Γ01,j ~ N(Γ01, τ0
2)          (16) 244 

For each individual, these values are first generated and the trajectories under treatment offer are 245 

derived. The trajectory under no treatment offer is assumed to be: 246 

yit, R=0 = γ0,i + γ1t + ε, t<0 247 
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γ0,i + γ2t + ε, t≥0        (17) 248 

where t=0 is the point where treatment would have been offered and the trajectory has two slopes. 249 

Equation (2) can be rearranged to show: 250 

yiα, R=1 = Δi + yiα, R=0         (18) 251 

Assuming that the trajectory under treatment offer has a second change point at t=δ and slope γ3 252 

thereafter the following expressions for the trajectory under treatment offer can be derived: 253 

If α<δ: yit, R=1 = yit, R=0 + 
1

𝛼
Δi t,   t<δ  254 

   
1

𝛼
Δi δ + (γ3 – γ2)(t – δ),  t≥δ 255 

If α≥δ: yit, R=1 = yit, R=0 + 
1

𝛿
Δi t + (γ3 – γ2)(1 - 

𝛼

𝛿
), t<δ  256 

   Δi  + (γ3 – γ2)(t – α),  t≥δ     (19) 257 

Expressions for the projection bias, φα, and generalisability bias, ζ, are as follows: 258 

φα = (γ2 – γ1)α 259 

ζ = ARE1 – ARE           (20) 260 

Trial samples for each of the k trials were generated  by first assuming that the whole trial sample size, 261 

n1, was split evenly amongst the k trials so that 
n1

𝑘
 participants from P1j were selected for each trial. 262 

For each their outcome at treatment offer was obtained from equation (17). Randomisation, R~Bin(1, 263 

1/2 ), was generated to ensure 50:50 allocation, and their outcome at t=α was obtained using equation 264 

(19) if R=1 and equation (17) if R=0. For each participant their change score from time 0 to α was 265 

calculated, and these were aggregated to provide an estimate of effectiveness and associated 266 

standard error from each trial. A cohort sample was generated by selecting n2 participants from the 267 

target population, P; choosing the time points at which observations are recorded for individual i, tsel,i, 268 

to ensure variation in location and number of measurements; generate potential outcomes at selected 269 

time points using equation (19).  270 
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Input values investigated for each of the parameters are summarised in Table 1. Parameters of interest 271 

(size of datasets, projection and generalisability biases, and proportion trial eligible (27, 28)) were 272 

investigated with the combinations considered determined using a Latin Squares Design (29) in order 273 

to reduce the number of parameter combinations considered. Situations where generalisability bias, 274 

projection bias, and both generalisability and projection bias simultaneously were present in the data 275 

were considered. Other parameters were set to reasonable values, based on example datasets. 276 

Three competing estimators were calculated for each simulated dataset: (i) trials only estimator; (ii) 277 

cohort only estimator; and, (iii) combined estimator. Estimators were compared in terms of absolute 278 

bias, standard error (SE) and mean squared error (MSE). 500 sets of data were generated for each 279 

combination of input values. 280 

Table 1: Input parameters used for simulation model 281 

Parameter Description Values 

n1 Combined size of all trials 1000, 3000, 10000 

k Number of trials 4, 12, 40 

n2 Size of cohort dataset 1500, 3000, 6000 

ARE Average effect of treatment offer in P 1 

ARE1 Average effect of treatment offer in P1 

Note: values chosen to investigate ζ = -0.5, 0, 0.5 

0.5, 1, 1.5 

 

α Time treatment effect measured at (years) 0.25, 0.5, 1 

π Proportion of target population trial eligible 0.5, 0.7, 0.9 

Γ0 Mean intercept in P 20 

Γ02 Mean intercept in P2 20 

γ1 Rate of decline t<0 -2 

γ2 Rate of decline amongst patients not offered treatment 

Note: values chosen to investigate φα = -0.5, 0, 0.5 

if α=0.25: -4, -2, 0 

if α=0.5: -3, -2, -1 
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if α=1: -2.5, -2, -1.5 

γ3 Rate of decline when t≥δ in patients offered treatment -1.9 

δ Second change point (time in years) 0.3 

σ Residual standard deviation 2 

σ0 Intercept standard deviation 4 

ν2 Total variation in Δi in P1 and in P2 1 

τ1
2 Between trial variation in P1 0.25 

 282 

3. Results  283 

3.1 Simulation study 284 

The impact of varying the generalisability bias parameter (ζ) at α=0.25 and averaged across all other 285 

parameters is summarised in Figure 2a. In the presence of generalisability bias (non-zero ζ) the 286 

combined estimator is less biased and has a smaller MSE than the trials only estimator. When there is 287 

no generalisability bias (ζ=0), that is when the RCT estimate is representative of the whole population, 288 

the combined estimator remains unbiased but the MSE is slightly larger than the trials only estimator. 289 

Similarly when varying the projection bias, the combined model has lower bias and MSE than the 290 

cohort only estimator in the presence of projection bias and remains unbiased, but with slightly larger 291 

MSE when there was no projection bias (see Figure 2b). Variation in the sizes of the two datasets and 292 

the trial eligible proportion did not impact on bias estimates, however, increasing the proportion trial 293 

eligible or either of the sample sizes led to a reduction in the MSE of the combined estimator. Tables 294 

summarising outputs from all combinations of inputs considered in the simulation study are provided 295 

in the supplementary material.  296 
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 297 

Figure 2a: Impact of generalisability bias on performance estimators at α=0.25 298 

 299 

Figure 2b: Impact of projection bias on performance of estimators at α=0.25 300 

3.2 Illustration using real data 301 

Having demonstrated the favourable performance of the combined model in the simulation study, it 302 

was applied to the motivating clinical question. The recent systematic review of AChEIs in the 303 

management of dementia identified four trials estimating their effects at 12 months after treatment 304 

offer (30-33). Five overall eligibility criteria for these trials were established: (i) baseline age between 305 

40 and 94 years; (ii) baseline MMSE between 10 and 26; (iii) diagnosed with Alzheimer’s or Alzheimer’s 306 

and cerebrovascular disease; (iv) participant has a reliable/responsible caregiver; and, (v) participant 307 

does not have another major psychiatric disorder. Participants in the treated cohort meeting these 308 

criteria were identified. Estimates of treatment effect based on the trials only were calculated as part 309 
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of the systematic review. Estimates based on the treated cohort only and using the new combined 310 

model were calculated. All three estimators suggested a modest but significant effect in favour of 311 

treatment (see Table 2). The estimate based on the combined model was lower than those based on 312 

either of the two data sources alone, demonstrating that the combined model can quantify both 313 

generalisability and projection bias even when they are both in the same direction. 314 

Table 2: Comparing estimates of the average effect of the offer of AChEI treatment at 12 months 315 

after treatment offer in terms of the MMSE 316 

 Trials only Cohort only Trials and cohort 

ARE 1.10 1.56 0.86 

SE(ARE) 0.316 0.240 0.327 

 317 

4. Discussion 318 

In this paper we have proposed and evaluated a novel estimator of treatment effectiveness which 319 

incorporates data from RCTs to improve the estimates of treatment effect available from analysis of 320 

data on a treated cohort. The performance of the novel estimator was compared with that of those 321 

based on either data source alone via a simulation study, demonstrating the model to be superior for 322 

estimating effectiveness in the presence of bias in one or both of the data sources. The model was 323 

applied to estimate the effectiveness of AChEIs 12 months after treatment offer in terms of MMSE 324 

scores, and this highlighted an important strength of the new combined model; namely that even 325 

when both of the estimates based on a single data source are biased in the same direction the model 326 

can identify and account for these biases.  327 

The combined model used a Bayesian framework, allowing the incorporation of data external to the 328 

current dataset in the form of informative prior distributions. This model can be considered an 329 

example of the type of bias analysis proposed by Greenland (34). In this combination of data sources, 330 
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it is important to account for potential differences in study design and data collection features 331 

between the sources. The lack of such a mechanism is one criticism of many of the existing techniques 332 

(35). Others have suggested that results could be weighted to account for perceived differences in 333 

reliability of data sources (12, 13), adjusting point estimates given anticipated bias (36) or discounting 334 

the weight of prior information using power priors (37); however, each of these approaches requires 335 

substantial subjective judgement about how to make these adjustments which can present 336 

challenges. On the other hand, the approach proposed here provides a method by which informative 337 

priors can be applied only to the proportion of the population to which they apply. 338 

One limitation of this method is that it does not address potential differences in distribution between 339 

the trial eligible portion of the treated cohort and the trial sample (the requirement for assumption 340 

A3 to hold). Approaches to account for these differences (e.g., (38)) could be investigated in future as 341 

a possible expansion to the model proposed here which would allow assumption A3 to be relaxed and 342 

increase the possible applications for the model. In addition, the model does not currently address 343 

the possibility that adherence rates may differ between the trial and cohort populations, instead 344 

relying on the fact that these are likely to be similar when the trials in question are pragmatic phase 345 

III trials. Future work could address this by incorporating adherence in the model; however, this would 346 

require careful definition of adherence in both data sources. 347 

A further limitation which may be encountered in applying such a model is the need to be able to 348 

identify patient eligibility in an EMR; however, the availability of such data is increasing (39). 349 

Techniques such as natural language processing, constructing variables from constituent parts or the 350 

use of proxies may be required; these can increase the time and complexity of fitting this type of 351 

model. Similarly whilst all trial reports should include details of eligibility criteria as per the CONSORT 352 

Statement (40), the implementation of these guidelines has been mixed and there is still need for 353 

further improvements (41, 42). In addition, the new combined model relies on assumption A4; 354 
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however, this is weaker than assumption A1 which must be made when estimating treatment effects 355 

based on only one type of data. 356 

Assumption A4 is analogous to the one made when calculating the linearly extrapolated estimator of 357 

treatment effect in Cross Design Synthesis (15). The model proposed here does, however, have 358 

advantages over Cross Design Synthesis, in that it uses a treated cohort from routine data rather than 359 

a comparative observational study; such data sources are more readily and more widely available. In 360 

addition, the approach proposed here uses both data sources directly in estimating the treatment 361 

effect. 362 

The approach has been developed for a continuous outcome measure; however, it could be expanded 363 

in future for use with in other clinical settings (e.g., where patients are expected to recover 364 

permanently as a result of treatment) or other data types (for example binary or time to event data). 365 

This would require careful consideration of reasonable assumptions for outcomes under control 366 

conditions in the EMR data and then using these assumptions to derive an appropriate model with a 367 

treatment effect parameter on which a prior could be placed. Simulation studies would be required 368 

to investigate the performance of such an expansion of the model. The modelling methods could also 369 

be applied in other conditions and to estimate the effectiveness of other treatments.  370 

In conclusion, in this paper we have proposed a Bayesian mixed model approach to combining data 371 

from trials and a treated cohort to estimate treatment effectiveness and demonstrated using a 372 

simulation study the superiority of estimates of effectiveness produced by this model compared to 373 

those provided by either data source alone. The new model was also applied to estimate the 374 

effectiveness at 12 months after treatment offer of AChEIs in the management of dementia as 375 

measured using the MMSE. Several possible avenues for future extensions of this model have also 376 

been proposed.  377 

  378 



20 

Ethics approval 379 

The CRIS system received ethical approval from the Oxfordshire Research Ethics Committee C as an 380 

anonymised data resource. 381 

Author contributions 382 

All authors contributed to study conception, study design, interpretation of the results, and reviewed 383 

the draft manuscript. RK performed the formal analyses and prepared the first draft of the manuscript. 384 

Sources of funding 385 

This paper represents independent research funded by the National Institute for Health Research 386 

(NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s 387 

College London as part of a PhD studentship to RK. The views expressed are those of the authors and 388 

not necessarily those of the NHS, the NIHR, or the Department of Health. 389 

RS is part-funded by: i) the National Institute for Health Research (NIHR) Biomedical Research Centre 390 

at the South London and Maudsley NHS Foundation Trust and King’s College London; ii) the Medical 391 

Research Council (MRC) HDR UK DATAMIND hub; iii) an NIHR Senior Investigator Award; iv) the 392 

National Institute for Health Research (NIHR) Applied Research Collaboration South London (NIHR ARC 393 

South London) at King’s College Hospital NHS Foundation Trust.  394 

Conflict of interest 395 

RS declares research support received in the last 36 months from Janssen, GSK and Takeda. All other 396 

authors declare no competing interests.  397 



21 

References 398 

1. Smeets HM, Laan W, Engelhard IM, Boks MP, Geerlings MI, de Wit NJ. The psychiatric case 399 
register middle Netherlands. BMC Psychiatry. 2011;11(1):106. 400 
2. Stewart R, Davis K. ‘Big data’in mental health research: current status and emerging 401 
possibilities. Soc Psychiatry Psychiatr Epidemiol. 2016;51(8):1055-72. 402 
3. Dunn G, Emsley R, Liu H, Landau S, Green J, White I, et al. Evaluation and validation of social 403 
and psychological markers in randomised trials of complex interventions in mental health: a 404 
methodological research programme. 2015. 405 
4. Licht RW, Gouliaev G, Vestergaard P, Frydenberg M. Generalisability of results from 406 
randomised drug trials: a trial on antimanic treatment. The British Journal of Psychiatry. 407 
1997;170(3):264-7. 408 
5. Rothwell PM. External validity of randomised controlled trials:“to whom do the results of 409 
this trial apply?”. The Lancet. 2005;365(9453):82-93. 410 
6. Ades A, Sutton A. Multiparameter evidence synthesis in epidemiology and medical decision‐411 
making: current approaches. J Roy Stat Soc Ser A (Stat Soc). 2006;169(1):5-35. 412 
7. Kaizar EE. Incorporating both randomized and observational data into a single analysis. 413 
Annual Review of Statistics and Its Application. 2015;2:49-72. 414 
8. Verde PE, Ohmann C. Combining randomized and non‐randomized evidence in clinical 415 
research: a review of methods and applications. Research synthesis methods. 2015;6(1):45-62. 416 
9. Eddy DM. The confidence profile method: a Bayesian method for assessing health 417 
technologies. Oper Res. 1989;37(2):210-28. 418 
10. Prevost TC, Abrams KR, Jones DR. Hierarchical models in generalized synthesis of evidence: 419 
an example based on studies of breast cancer screening. Stat Med. 2000;19(24):3359-76. 420 
11. Larose DT, Dey DK. Grouped random effects models for Bayesian meta‐analysis. Stat Med. 421 
1997;16(16):1817-29. 422 
12. O'Rourke K, Walsh C, Hutchinson M. Outcome of beta-interferon treatment in relapsing-423 
remitting multiple sclerosis: a Bayesian analysis. J Neurol. 2007;254(11):1547-54. 424 
13. Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Stat 425 
Methods Med Res. 2001;10(4):277-303. 426 
14. Droitcour J, Silberman G, Chelimsky E. Cross-design synthesis: a new form of meta-analysis 427 
for combining results from randomized clinical trials and medical-practice databases. Int J Technol 428 
Assess Health Care. 1993;9(3):440-9. 429 
15. Kaizar EE. Estimating treatment effect via simple cross design synthesis. Stat Med. 430 
2011;30(25):2986-3009. 431 
16. Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M. World Alzheimer 432 
report 2016: improving healthcare for people living with dementia: coverage, quality and costs now 433 
and in the future. 2016. 434 
17. Terry AV, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer's disease-related 435 
cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol 436 
Exp Ther. 2003;306(3):821-7. 437 
18. Perera G, Broadbent M, Callard F, Chang C-K, Downs J, Dutta R, et al. Cohort profile of the 438 
South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLaM BRC) case 439 
register: current status and recent enhancement of an electronic mental health record-derived data 440 
resource. BMJ open. 2016;6(3):e008721. 441 
19. Perera G. Predictors of response to acetylcholinesterase inhibitors: an observational case 442 
register-based cohort study: King's College London (University of London); 2013. 443 
20. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the 444 
cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-98. 445 



22 

21. Knight R, Khondoker M, Magill N, Stewart R, Landau S. A systematic review and meta-446 
analysis of the effectiveness of acetylcholinesterase inhibitors and memantine in treating the 447 
cognitive symptoms of dementia. Dement Geriatr Cogn Disord. 2018;45(3-4):131-51. 448 
22. Perera G, Khondoker M, Broadbent M, Breen G, Stewart R. Factors associated with response 449 
to acetylcholinesterase inhibition in dementia: a cohort study from a secondary mental health care 450 
case register in London. PloS one. 2014;9(11):e109484. 451 
23. Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models: 452 
Cambridge university press; 2006. 453 
24. Pauler DK, Finkelstein DM. Predicting time to prostate cancer recurrence based on joint 454 
models for non‐linear longitudinal biomarkers and event time outcomes. Stat Med. 455 
2002;21(24):3897-911. 456 
25. Lunn D, Jackson C, Best N, Spiegelhalter D, Thomas A. The BUGS book: A practical 457 
introduction to Bayesian analysis: Chapman and Hall/CRC; 2012. 458 
26. Schlüter P, Deely J, Nicholson A. Ranking and selecting motor vehicle accident sites by using 459 
a hierarchical Bayesian model. Journal of the Royal Statistical Society: Series D (The Statistician). 460 
1997;46(3):293-316. 461 
27. Kennedy-Martin T, Curtis S, Faries D, Robinson S, Johnston J. A literature review on the 462 
representativeness of randomized controlled trial samples and implications for the external validity 463 
of trial results. Trials. 2015;16(1):495. 464 
28. Zimmerman M, Chelminski I, Posternak MA. Exclusion criteria used in antidepressant 465 
efficacy trials: consistency across studies and representativeness of samples included. The Journal of 466 
nervous and mental disease. 2004;192(2):87-94. 467 
29. Wallis WD, George JC. Introduction to combinatorics: Chapman and Hall/CRC; 2016. 468 
30. Hager K, Baseman AS, Nye JS, Brashear HR, Han J, Sano M, et al. Effects of galantamine in a 469 
2-year, randomized, placebo-controlled study in Alzheimer’s disease. Neuropsychiatr Dis Treat. 470 
2014;10:391. 471 
31. Karaman Y, Erdoğan F, Köseoğlu E, Turan T, Ersoy AÖ. A 12-month study of the efficacy of 472 
rivastigmine in patients with advanced moderate Alzheimer’s disease. Dement Geriatr Cogn Disord. 473 
2005;19(1):51-6. 474 
32. Mohs RC, Doody R, Morris J, Ieni J, Rogers S, Perdomo C, et al. A 1-year, placebo-controlled 475 
preservation of function survival study of donepezil in AD patients. Neurology. 2001;57(3):481-8. 476 
33. Winblad B, Engedal K, Soininen H, Verhey F, Waldemar G, Wimo A, et al. A 1-year, 477 
randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology. 478 
2001;57(3):489-95. 479 
34. Greenland S. Bayesian perspectives for epidemiologic research: III. Bias analysis via missing-480 
data methods. International journal of epidemiology. 2009;38(6):1662-73. 481 
35. Verde PE, Ohmann C, Morbach S, Icks A. Bayesian evidence synthesis for exploring 482 
generalizability of treatment effects: a case study of combining randomized and non‐randomized 483 
results in diabetes. Stat Med. 2016;35(10):1654-75. 484 
36. O’rourke K, Walsh C. Impact of stroke units on mortality: a Bayesian analysis. European 485 
journal of neurology. 2010;17(2):247-51. 486 
37. Ibrahim JG, Chen M-H. Power prior distributions for regression models. Statistical Science. 487 
2000;15(1):46-60. 488 
38. Cole SR, Stuart EA. Generalizing evidence from randomized clinical trials to target 489 
populations: The ACTG 320 trial. American journal of epidemiology. 2010;172(1):107-15. 490 
39. Morgan VA, Jablensky AV. From inventory to benchmark: quality of psychiatric case registers 491 
in research. The British Journal of Psychiatry. 2010;197(1):8-10. 492 
40. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: Updated guidelines for reporting 493 
parallel group randomized trials. Ann Intern Med. 2011;154(4):291-2. 494 
41. Hopewell S, Dutton S, Yu L-M, Chan A-W, Altman DG. The quality of reports of randomised 495 
trials in 2000 and 2006: comparative study of articles indexed in PubMed. BMJ. 2010;340:c723. 496 



23 

42. Turner L, Shamseer L, Altman DG, Weeks L, Peters J, Kober T, et al. Consolidated standards 497 
of reporting trials (CONSORT) and the completeness of reporting of randomised controlled trials 498 
(RCTs) published in medical journals. Cochrane Database Syst Rev. 2012(11). 499 

 500 


