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Abstract

Background: Health care professionals seek information about effectiveness of treatments

in patients who would be offered them in routine clinical practice. Electronic medical

records (EMRs) and randomized controlled trials (RCTs) can both provide data on treat-

ment effects; however, each data source has limitations when considered in isolation.

Methods: A novel modelling methodology which incorporates RCT estimates in the

analysis of EMR data via informative prior distributions is proposed. A Bayesian mixed

modelling approach is used to model outcome trajectories among patients in the EMR

dataset receiving the treatment of interest. This model incorporates an estimate of treat-

ment effect based on a meta-analysis of RCTs as an informative prior distribution. This

provides a combined estimate of treatment effect based on both data sources.

Results: The superior performance of the novel combined estimator is demonstrated via

a simulation study. The new approach is applied to estimate the effectiveness at

12 months after treatment initiation of acetylcholinesterase inhibitors in the management

of the cognitive symptoms of dementia in terms of Mini-Mental State Examination

scores. This demonstrated that estimates based on either trials data only (1.10,

SE¼0.316) or cohort data only (1.56, SE¼0.240) overestimated this compared with the

estimate using data from both sources (0.86, SE¼ 0.327).

Conclusions: It is possible to combine data from EMRs and RCTs in order to provide bet-

ter estimates of treatment effectiveness.
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Introduction

Health care professionals seek knowledge of the effective-

ness of treatments in patients who would be offered them in

routine clinical practice. Electronic medical records (EMRs)

provide potentially valuable representative longitudinal data

on treatment outcomes in routine clinical practice.1,2

However, the absence of an adequate control group can of-

ten limit estimates of treatment effects. On the other hand,

randomized controlled trials (RCTs) should provide an un-

biased estimate of treatment effect in the population in

which they are conducted,3 but may lack generalizability to

patients who will be given the treatment in routine prac-

tice.4,5 Combining data from both sources may help provide

estimates that are both unbiased and generalizable.

Development of methods to combine data from both ran-

domized and observational data sources is an ongoing area

of research, with a variety of methods developed in recent

years.6–8 An early, influential approach was the confidence

profile method,9 a direct application of Bayesian modelling

which emphasizes a case-specific modelling approach. Meta-

analysis is popular (e.g. Prevost et al.,10, Larose and Dey11);

however, these methods tend to combine aggregate-level

data only and require comparative data from both sources.

Similarly, using a Bayesian model to incorporate aggregate-

level data from one source as an informative prior distribu-

tion when analysing the other,12,13 also requires comparative

data from both sources. Cross-design synthesis14,15 combines

individual-level data from observational studies with

aggregate-level data from RCTs, and involves the adjustment

of individual study results for biases, followed by the combi-

nation of results within and across designs. The clinical

applications of such methods have been limited, due to meth-

odological complexity and individual-level data require-

ments. There is need for further research in this area,

particularly in regard to methods that use EMR data which

are a growing source of information. Many of the existing

methods depend on having comparative data from an obser-

vational study rather than cohort data from an EMR.

In this paper, we propose a novel methodology for com-

bined modelling which provides an estimator of treatment

effectiveness which overcomes both the lack of an ade-

quate control group in EMR data and the lack of generaliz-

ability in RCT data. A Bayesian approach combines these

data sources, incorporating RCT estimates as part of an in-

formative prior distribution.

The motivating clinical question for this work is the esti-

mation of the effectiveness of acetylcholinesterase inhibitors

(AChEIs) in managing the cognitive symptoms of dementia.

Dementia is a major health concern, affecting 47 million suf-

ferers worldwide in 2016, predicted to rise to 131 million by

2050.16 There is currently no cure for most forms of demen-

tia; however, AChEIs are often prescribed to manage cogni-

tive symptoms.17 These drugs have been prescribed in

routine clinical practice for several years, and one source of

pseudonymized data on their use is the South London and

Maudsley Biomedical Research Centre case register.18 This

EMR has been used to provide follow-up on a treated cohort

of patients with a wide variety of comorbidities,who receive

a range of concurrent medications.19 The most commonly

applied measure of cognition used in routine dementia as-

sessment and care is the Mini-Mental State Examination

(MMSE20), generating scores ranging from 0 to 30 with

higher scores indicating better cognition. There can be situa-

tions where a patient is not able to complete all items of the

MMSE for reasons unrelated to their cognition (e.g. vision

impairment, mobility restrictions etc). In this case, the

score may be expressed as being out of a different total (e.g.

24/29). In the remainder of this paper we will refer to the

number of questions asked of a patient as the denominator

and the number answered correctly as the numerator. The

Key Messages

• Data on a treated cohort from an electronic medical record (EMR) and data from randomized controlled trials (RCTs)

can be combined to provide estimates of treatment effects that are less biased and more generalizable than those

from either data source alone.

• This holds true even if both are biased in the same direction.

• Estimates from either EMRs or RCTs alone overestimate the effects of acetylcholinesterase inhibitors in terms of

Mini-Mental State Examination scores at 12 months after treatment initiation.

• It is possible to combine data from observational and randomized data sources even when the observational data are

not comparative.

• A concerted effort to assemble routine EMR data in a form that can be used to improve real-world inferences from

RCTs is required.
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effects of AChEIs have also been investigated in a large num-

ber of RCTs, and we recently conducted a systematic review

and meta-analysis of these data.21 Synthesis of both sources

of evidence offers the promise of a better estimate of the ef-

fectiveness of these treatments in routine clinical practice.

Methods

Description of data

The treated cohort used in this study was extracted from the

South London and Maudsley Biomedical Research Centre

case register. Patients were included in the cohort if: (i) they

had at least one mention of an AChEI (donepezil, galant-

amine, rivastigmine) for which the date of treatment offer

(approximated by treatment start date which is coded as the

earliest date on any AChEI prescription) could be identified;

(ii) they had at least one MMSE score with a denominator

�24 recorded between 1 year before and 3 years after treat-

ment offer (only a single MMSE score was required for in-

clusion and this could be before or after treatment

initiation); and (iii) they had received a primary or second-

ary diagnosis of dementia excluding diagnoses of

Parkinson’s disease dementia and dementia with Lewy bod-

ies. For each eligible patient, all MMSE scores recorded be-

tween 1 year before and 3 years after treatment were

extracted. MMSE scores with a denominator less than 30

were standardized by calculating an adjusted score as nu-

merator divided by the denominator multiplied by 30. The

treated cohort contained 3134 patients with a total of

13 577 scores between them, and covered the period 1

January 2005 to 8 February 2015. A previous systematic re-

view and meta-analysis of trials of AChEIs in managing the

cognitive symptoms of dementia forms the RCT dataset.21

Estimator of treatment effect based on treated

cohort alone

Each member of the target population, that is patients who

receive this treatment in routine clinical practice, can be

thought of as having two potential outcome trajectories:

the one they would have followed if they were offered

treatment, and the one they would have followed if they

were not. In practice, only the first of these is observed.

Using t to denote time, with time 0 being the point of treat-

ment offer, these two outcomes can be summarized as:

yij;R¼1j tij � N l1 tijð Þ; r2
� �

if the participant was offered treatment

yij;R¼0j tij � N l0 tijð Þ; r2
� �

if the participant was not offered treatment
(1)

where yij, R¼1 is the outcome for individual i at time tij if

they are offered treatment, and yij, R¼0 is the outcome for

individual i at time tij if they are not offered treatment. For

an individual, the effect of treatment offer (Di) at a fixed

time t¼ a> 0, is the difference between their outcome at a

if they were and were not offered treatment:

Di að Þ ¼ yij;R¼1ja – yij;R¼0ja (2)

For an individual it is possible to observe only one of the

two potential outcomes; therefore, the parameter we are

interested in estimating is the average effect of treatment

offer at t¼ a, which we call the ARE (since it seeks to ap-

proximate the effect of randomized treatment allocation

analysed under the intention-to-treat principle):

ARE að Þ ¼ Ei Di að Þð Þ ¼ Ei yij;R¼1ja – yij; R¼0ja
� �

¼ Ei yij;R¼1ja
� �

– Ei yij; R¼0ja
� �

¼ l1 að Þ – l0 að Þ
(3)

In order to be able to estimate this parameter, appropriate

expressions for the average trajectory in the population

who are offered treatment, and the population who are

not, are needed. Previous work22 and non-parametric

modelling of the current treated cohort have indicated that

a piecewise linear mixed effects model (or alternatively lin-

ear spline) with two change points (or knot points), at

treatment offer (t¼0) and at some subsequent unspecified

time (t¼ d>0), is appropriate to model the trajectory in

those who are offered treatment (see Figure 1):

l1 tð Þ ¼ b0 þ b1t; t < 0

b0 þ b2t; 0 � t < d

b0 þ b2 � b3ð Þdþ b3t; t � d

l1 tð Þ ¼ b0 þ b1t 1t< 0 þ b2min t; dð Þ 1t�0 þ b3 t� dð Þ 1t�d

(4)

All participants in the cohort were offered treatment, and

so an assumption must be made about what would have

happened had they not been offered treatment. The

Figure 1 Piecewise linear model for Mini Mental State Examination

trajectories
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assumption made is that they would have continued on

their pre-treatment trajectory (A1):

l0 tð Þ ¼ b0 þ b1t (5)

Having made this assumption, it is possible to derive an ex-

pression for an estimator of treatment effect parameter

(ARE). This estimator of treatment effect is denoted ha,

and may suffer from bias since it relies on assumption A1:

ha ¼ l1 að Þ – l0 að Þ ¼ b2– b1ð Þ a; a < d

b2– b3ð Þdþ b3– b1ð Þa; a � d

(6)

Equation (6) can be rearranged to express b2 in terms of

the other parameters:

b2¼
1

a
haþb1; a<d

1

d
½ha– b3�b1ð Þa�þb3; a�d

b2¼b1 1a<dþ
a
d

1a�d

� �
þha

1

a
1a<dþ

1

d
1a�d

� �
þb3 1�a

d

� �
1a�d

(7)

This expression for b2 can be substituted into the expected

treated trajectory for those who are offered treatment

[Equation (4)]:

l1 tð Þ ¼ b0 þ b1 t 1t< 0 þ 1a< d þ
a
d

1a�d

� �
min t; dð Þ 1t>0

� �

þ ha
1

a
1a< d þ

1

d
1a�d

� �
min t; dð Þ 1t>0

þ b3 1� a
d

� �
1a�d min t; dð Þ 1t>0 þ t� dð Þ1t�d

� 	

(8)

This model can be used to estimate the effect of treatment at

time t¼ a (ha) based on data from a cohort who were all of-

fered treatment. Random effects on the coefficients can be in-

corporated to allow variation between patients:

l1 tð Þ ¼ b0 þ b0i

� �
þ b1 þ b1ið Þ

t 1t< 0 þ 1a< d þ
a
d

1a�d

� �
min t; dð Þ 1t>0

� �

þ ha þ b2ið Þ 1

a
1a< d þ

1

d
1a�d

� �
min t; dð Þ 1t>0þ

b3 þ b3i

� �
1� a

d

� �
1a�dmin t; dð Þ 1t>0 þ t� dð Þ1t�d

� 	

(9)

To fit this model under a Bayesian framework, prior distri-

butions for each of the parameters were determined. In the

absence of additional information, non-informative priors

should be used.23 For the coefficients, a suitable choice is a

normal distribution with zero mean and large deviation. For

the residual standard deviation, a suitable choice is uniform

on the range 0–100. A suitable prior distribution for a

change point parameter, such as d, is a uniform prior on the

range of possible values.24 In this instance, a plausible range

is from 0 to 3, since the second change point must come after

the first at t¼ 0 and the cohort consists of scores from 0 to

3 years after treatment offer. Suitable vague hierarchical pri-

ors are also placed on the random effects. For a single ran-

dom effect, this is a normal distribution with mean 0 and

variance r0
2 which is given a vague prior [U(0,100)]. In the

presence of two or more random effects, these can be mod-

elled using a multivariate normal distribution with mean

zero. Vague priors are used for the covariance matrix. In the

case of two random effects, the constituent parts of the co-

variance matrix can be given vague priors [U(0,100) for

standard deviations and U(-1,1) for the correlation]. In the

presence of three or more random effects, an inverse Wishart

prior distribution is used for the re-scaled covariance matrix

with U(0,100) priors used for the scaling parameters.23

Incorporating RCT data via informative prior

distributions

The assumption on which the estimator ha is based may be

biased, patients may not have continued on their pre-

treatment trajectory. This is called projection bias, with

the projection bias at time¼ a denoted ua. The true treat-

ment effect, ARE(a), can be calculated as:

ARE að Þ ¼ ha– ua

ha ¼ ARE að Þ þ ua
(10)

This can be substituted into Equation (9) to give an expres-

sion for the MMSE trajectory in the treated cohort based

on the true treatment effect and the projection bias, both at

time¼ a:

l1 tð Þ¼ b0þb0i

� �
þ b1þb1ið Þ

t 1t<0þ 1a<dþ
a
d
1a�d

� �
min t;dð Þ 1t>0

� �

þ ARE að Þþuaþ b2i

� � 1

a
1a<dþ

1

d
1a�d

� �
min t; dð Þ 1t>0

þ b3þ b3i

� �
1�a

d

� �
1a�dmin t;dð Þ 1t>0þ t�dð Þ1t�d

� 	

(11)

Data from RCTs can form the basis of an informative prior

distribution for ARE(a); however, this is only true for the

proportion of the target population who are trial eligible.

The model in Equation (11) can be expanded to incorporate
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not only the possibility of different treatment effects in the

trial-eligible and trial not-eligible populations, but also dif-

ferent trajectories within these two populations through the

use of Si, which takes value 1 if individual i is trial eligible

and 0 otherwise, to denote whether or not the individual is

part of the trial-eligible population:

l1 tð Þ ¼ b011Si¼1 þ b021Si¼0 þ b0i

� �
þ b111Si¼1 þ b121Si¼0 þ b1ið Þ

t 1t< 0 þ 1a< d þ
a
d

1a�d

� �
min t; dð Þ 1t>0

� �

þ ARE1 að Þ 1Si¼1 þ ARE2 að Þ 1Si¼0 þ ua þ b2i

� �
1

a
1a< d þ

1

d
1a�d

� �
min t; dð Þ 1t>0þ

b311Si¼1 þ b321Si¼0 þ b3i

� �

1� a
d

� �
1a�dmin t; dð Þ1t>0 þ t� dð Þ1t�d

� 	

(12)

where subscript 1 denotes parameters referring to the trial-

eligible portion of the target population and subscript 2

denotes those for the trial not-eligible portion. The trial eli-

gibility parameter is given a Bernoulli distribution:

Si � Bin 1; pð Þ (13)

where 0 < p < 1 is the proportion of the target population

that are trial eligible. The overall treatment effect can be

calculated as:

ARE að Þ ¼ pARE1 að Þ þ 1� pð Þ ARE2 að Þ (14)

As before, each of the parameters in the model is given a

prior distribution. An informative prior distribution25 based

on meta-analysis of RCTs is used for ARE1(a). This meta-

analysis was performed based on trials identified during a

systematic review of the use of AChEIs in the management

of dementia.21 Two steps were followed to convert the

meta-analysis results to a suitable informative prior distribu-

tion26: (i) choosing an appropriate distribution; and (ii) us-

ing available information from the meta-analysis to provide

estimates for the mean and variance. A normal distribution

was selected with mean set as the pooled effect estimate

from the meta-analysis and standard deviation set as the as-

sociated standard error. For other parameters, vague priors

as described previously were used. Projection bias, ua, can

be both positive and negative and so was given a normal

prior distribution with mean 0 and large variance. The trial-

eligible proportion, p, is a probability and was thus given a

uniform prior on the range 0 to 1.

This proposed combined model relies on two assump-

tions; first, that there are no treatment effect moderators

whose distribution differs between the trial-eligible portion

of the target population and the trial samples (A3); and sec-

ond, that the projection bias, ua, is the same in the trial-

eligible and trial not-eligible portions of the target population

(A4). These assumptions are weaker than those required

when estimating treatment effects based on the treated co-

hort alone (where A1 is made instead of A3) or trial data

alone, where we must assume that the trial and trial-eligible

portions of the target population do not differ on any charac-

teristics which predict treatment effect (A2) rather than A4.

Simulation study

To investigate the properties of the proposed new estima-

tor, a simulation study was conducted. The target popula-

tion, P, can be split into the trial-eligible portion P1, and

the trial not-eligible portion P2. We assumed that P1 could

be further split into k mutually exclusive and exhaustive

subsets P1j, representing those eligible for each of k trials.

Using Zi as an indicator for trial eligibility, Zi ¼ 1 if indi-

vidual i is trial eligible, 0 otherwise, and setting P(Zi ¼ 1)

¼ p, then the treatment effect for each individual [Di, eqn

(2)] can be generated using:

Dij Zi ¼ 1 \ i 2 P1j

� �
� N ARE1j; x2

� �
Dij Zi ¼ 0 � N ARE2; m2

� �
ARE1j � N ARE1; s2

� � (15)

The outcomes for individuals at treatment offer c0, i, can

similarly be defined as follows:

c0;i ¼ yi0;R¼1 ¼ yi0; R¼0

c0;ij Zi ¼ 1 \ i 2 P1j

� �
� N C01;j; x0

2
� �

c0;ijZi ¼ 0 � N C02;r0
2

� �
C01;j � N C01; s0

2
� �

(16)

For each individual, these values are first generated and the

trajectories under treatment offer are derived. The trajec-

tory under no treatment offer is assumed to be:

yit; R¼0 ¼ c0;i þ c1tþ e; t < 0
c0;i þ c2tþ e; t � 0

(17)

where t¼ 0 is the point where treatment would have been

offered and the trajectory has two slopes. Equation (2) can

be rearranged to show:

yia;R¼1 ¼ Di þ yia; R¼0 (18)

Assuming that the trajectory under treatment offer has a

second change point at t¼ d and slope c3, thereafter the
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following expressions for the trajectory under treatment

offer can be derived:

If a < d : yit; R¼1 ¼ yit; R¼0 þ
1

a
Dit; t < d

yit; R¼0 þ
1

a
Didþ c3– c2ð Þ t – dð Þ; t � d

If a � d : yit; R¼1 ¼ yit; R¼0 þ
1

d
Ditþ c3– c2ð Þ 1� a

d

� �
; t < d

yit; R¼0 þ Di þ c3– c2ð Þ t – að Þ; t � d

(19)

Expressions for the projection bias ua, and generalizability

bias f, are as follows:

ua ¼ c2– c1ð Þa
f ¼ ARE1– ARE

(20)

Trial samples for each of the k trials were generated by first

assuming that the whole trial sample size, n1, was split

evenly among the k trials so that n1
k participants from P1j

were selected for each trial. For each, their outcome at

treatment offer was obtained from Equation (17).

Randomization, R�Bin(1, 1/2), was generated to ensure

50:50 allocation, and their outcome at t¼ a was obtained

using Equation (19) if R¼ 1 and Equation (17) if R¼ 0.

For each participant their change score from time 0 to a

was calculated, and these were aggregated to provide an

estimate of effectiveness and associated standard error

from each trial. A cohort sample was generated by: select-

ing n2 participants from the target population P; choosing

the time points at which observations are recorded for indi-

vidual i, tsel, i, to ensure variation in location and number

of measurements; and generating potential outcomes at se-

lected time points using Equation (19).

Input values investigated for each of the parameters are

summarized in Table 1. Parameters of interest (size of data-

sets, projection and generalizability biases, and proportion

trial eligible27,28) were investigated with the combinations

considered determined using a Latin Squares Design29 in

order to reduce the number of parameter combinations

considered. Situations where generalizability bias, projec-

tion bias and both generalizability and projection bias si-

multaneously were present in the data were considered.

Other parameters were set to reasonable values, based on

example datasets.

Three competing estimators were calculated for each

simulated dataset: (i) trials only estimator; (ii) cohort only

estimator; and (iii) combined estimator. Estimators were

compared in terms of absolute bias, standard error (SE)

and mean squared error (MSE); 500 sets of data were gen-

erated for each combination of input values.

Results

Simulation study

The impact of varying the generalizability bias parameter

(f) at a¼ 0.25 and averaged across all other parameters is

summarized in Figure 2. In the presence of generalizability

bias (non-zero f) the combined estimator is less biased and

Table 1 Input parameters used for simulation model

Parameter Description Values

n1 Combined size of all trials 1000, 3000, 10 000

k Number of trials 4, 12, 40

n2 Size of cohort dataset 1500, 3000, 6000

ARE Average effect of treatment offer in P 1

ARE1 Average effect of treatment offer in P1 0.5, 1, 1.5

Note: values chosen to investigate f ¼ -0.5, 0, 0.5

a Time treatment effect measured at (years) 0.25, 0.5, 1

p Proportion of target population trial eligible 0.5, 0.7, 0.9

C0 Mean intercept in P 20

C02 Mean intercept in P2 20

c1 Rate of decline t<0 �2

c2 Rate of decline among patients not offered treatment if a¼0.25: -4, -2, 0

Note: values chosen to investigate ua ¼ -0.5, 0, 0.5 if a¼0.5: -3, -2, -1

if a¼1: -2.5, -2, -1.5

c3 Rate of decline when t�d in patients offered treatment �1.9

d Second change point (time in years) 0.3

r Residual standard deviation 2

r0 Intercept standard deviation 4

�2 Total variation in Di in P1 and in P2 1

s1
2 Between trial variation in P1 0.25

ARE is used to denote the average effect of treatment offer, since it seeks to approximate the effect of randomized treatment allocation analysed under the in-

tention-to-treat principle.
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has a smaller MSE than the trials-only estimator. When

there is no generalizability bias (f¼ 0), that is when the

RCT estimate is representative of the whole population,

the combined estimator remains unbiased but the MSE is

slightly larger than the trials-only estimator. Similarly,

when varying the projection bias, the combined model has

lower bias and MSE than the cohort only estimator in the

presence of projection bias and remains unbiased, but with

slightly larger MSE when there was no projection bias (see

Figure 3). Variation in the sizes of the two datasets and the

trial-eligible proportion did not affect on bias estimates;

however, increasing the proportion trial eligible or either

of the sample sizes led to a reduction in the MSE of the

combined estimator. Tables summarizing outputs from all

combinations of inputs considered in the simulation study

are provided in the Supplementary Material (available as

Supplementary data at IJE online).

Illustration using real data

Having demonstrated the favourable performance of the

combined model in the simulation study, it was applied to

the motivating clinical question. The recent systematic re-

view of AChEIs in the management of dementia identified

four trials estimating their effects at 12 months after treat-

ment offer.30–33 Five overall eligibility criteria for these tri-

als were established: (i) baseline age between 40 and

94 years; (ii) baseline MMSE between 10 and 26; (iii) diag-

nosed with Alzheimer’s or Alzheimer’s and cerebrovascular

disease; (iv) participant has a reliable/responsible caregiver;

and (v) participant does not have another major psychiat-

ric disorder. Participants in the treated cohort meeting

these criteria were identified. Estimates of treatment effect

based on the trials only were calculated as part of the sys-

tematic review. Estimates based on the treated cohort only

and using the new combined model were calculated. All

three estimators suggested a modest but significant effect

in favour of treatment (see Table 2). The estimate based on

the combined model was lower than those based on either

of the two data sources alone, demonstrating that the com-

bined model can quantify both generalizability and projec-

tion bias even when they are both in the same direction.

Discussion

In this paper we have proposed and evaluated a novel esti-

mator of treatment effectiveness which incorporates data

from RCTs to improve the estimates of treatment effect

available from analysis of data on a treated cohort. The

performance of the novel estimator was compared with

that of those based on either data source alone via a simu-

lation study, demonstrating the model to be superior for

estimating effectiveness in the presence of bias in one or

both of the data sources. The model was applied to esti-

mate the effectiveness of AChEIs 12 months after treat-

ment offer in terms of MMSE scores, and this highlighted

an important strength of the new combined model: namely

that even when both of the estimates based on a single data

source are biased in the same direction, the model can

identify and account for these biases.

The combined model used a Bayesian framework,

allowing the incorporation of data external to the current

dataset in the form of informative prior distributions. This

model can be considered an example of the type of bias

analysis proposed by Greenland.34 In this combination of

data sources, it is important to account for potential differ-

ences in study design and data collection features between

the sources. The lack of such a mechanism is one criticism

of many of the existing techniques.35 Others have

Figure 3 Impact of projection bias on performance of estimators at

a¼ 0.25

Table 2 Comparing estimates of the average effect of the offer

of cetylcholinesterase inhibitors treatment at 12 months after

treatment offer in terms of the Mini Mental State

Examination

Trials only Cohort only Trials and cohort

ARE 1.10 1.56 0.86

SE(ARE) 0.316 0.240 0.327

ARE is used to denote the average effect of treatment offer, since it seeks to

approximate the effect of randomized treatment allocation analysed under

the intention-to-treat principle..

Figure 2 Impact of generalizability bias on performance estimators at

a¼ 0.25
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suggested that results could be weighted to account for per-

ceived differences in reliability of data sources,12,13 adjust-

ing point estimates given anticipated bias36 or discounting

the weight of prior information using power priors.37

However, each of these approaches requires substantial

subjective judgement about how to make these adjust-

ments, which can present challenges. On the other hand,

the approach proposed here provides a method by which

informative priors can be applied only to the proportion of

the population to which they apply.

One limitation of this method is that it does not address

potential differences in distribution between the trial-

eligible portion of the treated cohort and the trial sample

(the requirement for assumption A3 to hold). Approaches

to account for these differences38 could be investigated in

future as a possible expansion to the model proposed here,

which would allow assumption A3 to be relaxed and in-

crease the possible applications for the model. In addition,

the model does not currently address the possibility that

adherence rates may differ between the trial and cohort

populations, instead relying on the fact that these are likely

to be similar when the trials in question are pragmatic

phase III trials. Future work could address this by incorpo-

rating adherence in the model; however, this would require

careful definition of adherence in both data sources.

A further limitation which may be encountered in ap-

plying such a model is the need to be able to identify pa-

tient eligibility in an EMR; however, the availability of

such data is increasing.39 Techniques such as natural lan-

guage processing, constructing variables from constituent

parts or the use of proxies may be required; these can in-

crease the time and complexity of fitting this type of

model. Similarly, whereas all trial reports should include

details of eligibility criteria as per the CONSORT

Statement,40 the implementation of these guidelines has

been mixed and there is still need for further improve-

ments.41,42 In addition, the new combined model relies on

assumption A4; however, this is weaker than assumption

A1 which must be made when estimating treatment effects

based on only one type of data.

Assumption A4 is analogous to the one made when cal-

culating the linearly extrapolated estimator of treatment

effect in Cross Design Synthesis.15 The model proposed

here does, however, have advantages over Cross Design

Synthesis, in that it uses a treated cohort from routine data

rather than a comparative observational study; such data

sources are more readily and more widely available. In ad-

dition, the approach proposed here uses both data sources

directly in estimating the treatment effect.

The approach has been developed for a continuous out-

come measure; however, it could be expanded in future for

use with in other clinical settings (e.g. where patients are

expected to recover permanently as a result of treatment)

or other data types (for example binary or time-to-event

data). This would require careful consideration of reason-

able assumptions for outcomes under control conditions in

the EMR data and then using these assumptions to derive

an appropriate model with a treatment effect parameter on

which a prior could be placed. Simulation studies would be

required to investigate the performance of such an expan-

sion of the model. The modelling methods could also be

applied in other conditions and to estimate the effective-

ness of other treatments.

Conclusion

In conclusion, in this paper we have proposed a Bayesian

mixed model approach to combining data from trials and a

treated cohort to estimate treatment effectiveness, and

demonstrated, using a simulation study, the superiority of

estimates of effectiveness produced by this model com-

pared with those provided by either data source alone. The

new model was also applied to estimate the effectiveness at

12 months after treatment offer of AChEIs in the manage-

ment of dementia as measured using the MMSE. Several

possible avenues for future extensions of this model have

also been proposed.
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