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COMPETING WITH BIG DATA*
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†  
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We study competition in data-driven markets, where the cost of quality 
production decreases in the amount of machine-generated data about user 
preferences or characteristics. This gives rise to data-driven indirect network 
effects. We construct a dynamic model of R&D competition, where 
duopolists repeatedly determine innovation investments. Such markets 
tip under very mild conditions, moving towards monopoly. After tipping, 
innovation incentives both for the dominant firm and the competitor are 
small. We show when a dominant firm can leverage its dominance to a 
connected market, thereby initiating a domino effect. Market tipping can be 
avoided if competitors share their user information.

I.  INTRODUCTION

In recent decades, the rate of technological progress has accelerated 
and most of it has occurred in fields that draw heavily on machine-generated 
data about user behavior (Brynjolfsson and McAfee [2012]). This develop-
ment was coined ‘the rise of big data’ or ‘datafication’ and is explained by 
two simultaneous, recent technological innovations (Mayer-Schönberger and 
Cukier [2013]): first, the increasing availability of data, owing to the fact that 
more and more economic and social transactions take place aided by infor-
mation and communication technologies; second, the increasing ability of 
firms and governments to analyse the novel big data sets. Einav and Levin 
[2014] ask: ‘But what exactly is new about [big data]? The short answer is that 
data is now available faster, has greater coverage and scope, and includes new 
types of observations and measurements that previously were not available.’

In this paper we attempt to better understand data-driven markets: markets 
where the marginal cost of quality production is decreasing in the amount of 
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machine-generated data about user preferences or characteristics (henceforth: 
user information), which is an inseparable byproduct of using services offered in 
such markets. This implies that, if a firm has a higher sales volume or market 
share today, it is cheaper for it to satisfy users’ preferences tomorrow. Search 
engines, digital maps, platform markets for hotels, transportation, dating, or 
video-on-demand, as well as smart electricity meters comprise but some exam-
ples. Given that it has been documented that some data-driven markets are char-
acterized by imperfect competition,1 we ask under which conditions a duopoly 
can be a stable market structure in a data-driven market, and when the propen-
sity to market tipping, that is, to monopolization, becomes overpowering. We 
also study under which conditions and how a dominant firm in one data-driven 
market can leverage its position to another market—including traditional mar-
kets that were not data-driven before its entry.

We construct and analyze a dynamic model of R&D competition, where 
duopolistic competitors repeatedly and sequentially choose their rates of 
innovation. The important feature of the model is that it incorporates data-
driven indirect network effects that arise on the supply side of a market, via 
decreasing marginal costs of innovation, but are driven by user demand. 
Demand for the services of one provider generates user information as a cos-
tless by-product, which Zuboff [2016] calls ‘behavioral surplus.’ It is private 
information of the provider who collected it and can be used to adapt the 
product better to users’ preferences, thereby increasing perceived quality in 
the future. Thus, higher initial demand reduces the marginal cost of inno-
vation: producing an additional unit of quality, as perceived by users, gets 
cheaper with more user information to access.

Data-driven indirect network effects have become relevant because of recent 
progress in data storage and data analytics technologies. They are fundamentally 
different from direct network effects, where consumption utility of one consumer 
increases in the amount of other consumers on the same network and which are, 
hence, completely demand-driven, for instance, in telecoms (Besen and Farrell 
[1994], Economides [1996], Shapiro and Varian [1999]).2 They are also different 
from dynamic economies of scale (or learning-curve effects), which are completely 

	 1	Argenton and Prüfer [2012] produce evidence and theory supporting these characteristics in 
the search engine industry. Edelman [2015] reports about competitive dynamics in transporta-
tion networks. The markets for online search, digital maps, online social networks, or video 
platforms are all highly concentrated. See https://www.stati​sta.com/stati​stics/​86541​3/most-popul​
ar-us-mappi​ng-apps-ranke​d-by-audie​nce/ and https://www.dream​grow.com/top-10-socia​l-netwo​
rking​-sites​-marke​t-share​-of-visit​s/, respectively.
	 2	There, consumers face coordination problems. Consequently, expectations about other con-
sumers’ behavior are the most relevant force in the dynamics of markets with direct network effects 
and potential market tipping is driven by these expectations. This problem is well studied—see 
Farrell and Saloner [1985], Besen and Farrell [1994] and Halaburda et al. [2016]—but orthogonal 
to the problem we study. With data-driven indirect network effects, a consumer does not have to 
form expectations about market dynamics because he cannot do better than simply demanding the 
good/service he currently likes best in each period. The driving forces for market tipping in our 
model are therefore very different from those in models with direct network effects.

https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
https://www.dreamgrow.com/top-10-social-networking-sites-market-share-of-visits/
https://www.dreamgrow.com/top-10-social-networking-sites-market-share-of-visits/
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supply-driven, for instance in aircraft manufacturing (Benkard [2000]).3 In con-
trast to these mechanisms, data-driven indirect network effects cannot be easily 
copied by competitors or destroyed by the arrival of a new technology. In aircraft 
manufacturing, firm B can poach dominant firm A’s key engineers (=acquiring 
relevant knowledge), and fiercely compete with firm A. In data-driven markets, 
even if firm B poaches firm A’s key software/algorithm developers, firm A still 
retains its user information, preserving A’s lower cost of innovation.4

We show that, for almost all initial quality differences, the market will eventually 
tip and one firm will dominate the market. Moreover, we show that such dominance 
is persistent, in the sense that, once the market has tipped, the weaker firm will never 
acquire more than a negligible market share in the future. The market is even tipping 
if it requires continuous, small investments in innovation to keep consumers’ per-
ceived quality constant, which appears to be a reasonable description of many 
dynamic, high-tech markets. Our main result is robust to changes in the time hori-
zon, that is, whether competitors determine innovation investments using a finite 
time horizon T, for T high, or whether they play a game with an infinite time hori-
zon. We identify a strong first-mover advantage in data-driven markets, which leads 
towards monopolization and is built upon data-driven indirect network effects.5

An important feature of a tipped market is that there are few incentives for either 
the dominant firm or the ousted firm to further invest in innovation. The reason is 
that after tipping, the ousted firm knows that the dominant firm offers consumers 
both a higher quality level and has lower marginal costs of innovation, due to its 
larger stock of user information. The latter characteristic enables the dominant firm 
to match any innovative activities of the ousted firm at lower marginal innovation 
cost and hence keep its quality advantage. As demand follows quality differences in 
our model, the smaller firm gives up innovating if its quality lags behind the larger 
firm’s too much. Knowing this, the dominant firm’s best response is to also save on 
investing in innovation—and still reap the monopoly profit.6

	 3	Some of our results will be reminiscent of results in the literature on learning curves, see for 
example Cabral and Riordan [1994], Dasgupta and Stiglitz [1988] or Lewis and Yildirim [2002].
	 4	To complicate matters empirically, these effects can be overlapping in practice. For instance, 
online social networks are characterized both by direct and by data-driven indirect network ef-
fects. As direct network effects have been studied in detail but data-driven indirect network ef-
fects are novel, we focus on the latter.
	 5	This rationalizes why firms pay large amounts for user information, as evidenced by WhatsApp’s 
acquisition through Facebook: ‘The rationale that Facebook gave in acquiring WhatsApp at that 
valuation was that during the first four years of its operation, the number of users on WhatsApp 
grew faster than comparable networks’ (https://finan​ce.yahoo.com/news/faceb​ook-benef​it-whats​app-
deal-13053​0791.html). In a data-driven market, such an acquisition makes sense. It would not make 
sense if the mechanism in place were learning-curve effects because Facebook did not obtain a sig-
nificantly better algorithm through the acquisition, ‘just’ more user data.
	 6	This result is reflected by Edelman [2015], who cites the oral testimony of Yelp’s CEO before 
the Senate Judiciary Subcommittee on Antitrust, Competition Policy and Consumer Rights on 
September 21, 2011, and writes: ‘Google dulls the incentive to enter affected sectors. Leaders of 
TripAdvisor and Yelp, among others, report that they would not have started their companies 
had Google engaged in behaviors that later became commonplace.’ The problems of TripAdvisor 
and Yelp can be explained by the theory of connected markets explained in Section IV.

https://finance.yahoo.com/news/facebook-benefit-whatsapp-deal-130530791.html
https://finance.yahoo.com/news/facebook-benefit-whatsapp-deal-130530791.html
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Going a step further, we study under which circumstances a dominant 
position in one data-driven market could be used to gain a dominant posi-
tion in another market that is (initially) not data-driven. We show that, if  
market entry costs are not prohibitive, a firm that manages to find a ‘data-
driven’ business model, can dominate virtually any market in the long term. 
We then introduce the concept of connected markets, which captures situa-
tions in which user information gained in one market is a valuable input to 
improve one’s perceived product quality in another market. We show that 
user information in connected markets is two-way complementary, such that 
incentives to acquire user information in one market can justify market entry 
in another market, and vice versa.

Consequently, if  technology firms realize that user information consti-
tutes a key input into the production of quality in data-driven markets, they 
need to identify other markets where these data can be used as well. In those 
connected markets, the same results as in the initial markets apply, suggest-
ing a domino effect: a first mover in market A can leverage its dominant 
position, which comes with an advantage on user information, to let con-
nected market B tip, too, even if  market B is already served by traditional 
incumbent firms.

We also study the normative implications of our results. Because a tipped 
market provides low incentives for firms to innovate further, market tipping 
may be negative for consumers.7 It also deters market entry of new firms, 
even if  they may develop a revolutionary technology. Therefore, we analyze 
the effects of  a specific market intervention that was recently proposed: what 
if  firms with data-driven business models have to share their (anonymized) 
data about user preferences or characteristics with their competitors?8

We show that a dominant firm’s incentives to innovate further do not 
decline after such forced sharing of  user information, even in a dynamic 
model. Instead, we show that data sharing (voluntary, or not) elimi-
nates the mechanism causing data-driven markets to tip. The intuition 
is that the key assumption that lead to market tipping in our baseline 
model—more demand today leads to lower marginal cost of  innovation 
and, hence, to higher equilibrium quality tomorrow—depends on a data 
collector’s exclusive proprietorship of  user information. With manda-
tory data sharing, both competitors face the same cost function; a firm 
with initially higher demand does not have a cost advantage in producing 

	 7	From an antitrust perspective, underprovision of innovation is our theory of harm in data-
driven markets.
	 8	Argenton and Prüfer [2012] suggested a related policy for the search engine market. But 
their paper only contained a static model, which was hard to interpret over time, a shortcoming 
addressed by the dynamic model in our paper. Our policy proposal and analysis have already 
influenced policy makers, such as the Secretary General of the Dutch Ministry of Economic 
Affairs and Climate Policy (Camps [2018]) and the EU Commission (European Commission 
[2018], Crémer et  al. [2019]), and other influential authors, such as Mayer-Schönberger and 
Ramge [2018].
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quality, anymore. As a result, the sharing of  user information avoids the 
negative consequences for innovation that are specific to data-driven mar-
kets. The net welfare effects are ambiguous, though. We find that data 
sharing is likely to increase welfare if  indirect networks effects are suffi-
ciently pronounced.

The model offers a rationale for why some firms in data-driven markets 
are highly successful while their competitors fail, and which type of  data 
are crucial to compete in such markets.9 Our model can be used to ratio-
nalize strategies of  firms like Alphabet/Google, which first tipped the 
search engine market, our most prominent example of  a data-driven mar-
ket.10 Today, however, Alphabet ‘has started to look like a conglomerate, 
with interests in areas such as cars, health care, finance and space’ (The 
Economist [2016]). Our model can also identify the characteristics of 
industries that may be prone to entry of  data-driven firms, which has wide-
ranging implications for suppliers, buyers, antitrust and regulation author-
ities in many industries, including some traditional sectors that are not 
thought of  as data-driven today.

Summarizing, the paper makes three theoretical contributions. First, it 
introduces data-driven indirect network effects as a novel economic mech-
anism, formally defines data-driven markets, and thereby clarifies which 
type of data—namely user information—is ‘the oil of the data economy’ 
(The Economist [2017]). Second, it introduces the idea of connected markets, 
showing the domino effect, and thereby rationalizes business strategies of 
the most successful global firms. Third, it broadens the policy proposal by 
Argenton and Prüfer [2012] to data-driven markets in general and analyzes 
it in a dynamic model, showing positive net effects of data sharing if  data-
driven indirect network effects are sufficiently strong.

To appreciate the novelty of these results, it is helpful to pinpoint the differ-
ences between market tipping under data-driven indirect network effects and 
learning-curve effects. In a standard learning curves model, e.g., Cabral and 
Riordan [1994], firms set prices in a setup with an infinite time horizon and sto-
chastic demand. Firms do not have an investment decision—neither in higher 
quality nor in lower cost. Marginal costs of production are decreasing in the 
cumulative past production until they reach a minimum level, at which they 
remain. This implies that, in the absence of substantial fixed costs, both firms 
reach the minimal marginal costs of production after a finite number of periods 
and will then share the market equally in all following periods. Consequently, 
permanent market tipping cannot occur. The exception is Habermeier [1992], 

	 9	For instance, Alphabet is among the world’s most valuable companies. Its main competitors 
in the search engine market, Yahoo and Bing, are reported to have significant troubles, however 
(The Economist [2016]).
	 10	Zuboff [2016] explains: ‘Most people credit Google’s success to its advertising model. But 
the discoveries that led to Google’s rapid rise in revenue and market capitalization are only inci-
dentally related to advertising. Google’s success derives from its ability to predict the future—
specifically the future of behavior.’
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who assumes that the random component of demand has a bounded support 
and therefore a high enough cost disadvantage will lead to zero sales by the 
weaker firm. Market tipping occurs in our model for another reason: firms’ 
choice variable is investment in quality enhancement (instead of prices) and 
therefore differences between firms are permanent if both firms find it optimal 
not to invest from a certain point of time onward. On top, there is no upper 
bound on quality and, hence, no mechanical catching up takes place.

To see this formally, consider the following set-up. In a learning-curve model, 
per-unit production costs depend on the total quantity produced in the past, 
e.g., unit costs are c(Qa

i
), where Qa

i
 is the aggregate quantity of firm i up to 

this point and c is decreasing. Note first that, as unit costs are positive and c 
is decreasing, limx→∞c(x) exists and is a non-negative number, say c. Suppose 
there are two firms with Qa

1
> Qa

2
. Then firm 1 will have lower production costs 

this period and will naturally enjoy a higher market share. Consequently, the 
gap Qa

1
−Qa

2
 will increase this period. However, it is unclear whether the gap in 

unit costs, c(Qa
1
) − c(Qa

2
), will increase: if Qa

1
 is high and therefore c(Qa

1
) is close 

to c, then additional quantity will not change firm 1’s unit costs (much) while 
even a small quantity of sales might decrease firm 2’s unit costs substantially. 
Hence, the difference in unit costs may decrease, which prevents tipping in the 
long run: inevitably firm 1’s unit costs will be close to c in the long run but, as 
long as firm 2 sells some units each period, its unit costs will also converge to 
c and the two firms will eventually compete on equal terms. The crucial point 
here is that firm 2 sells something in each period. In Cabral and Riordan [1994], 
this is ensured by an unbounded support of consumer preferences: they are 
horizontally differentiated such that some consumers have an infinitely higher 
preference for firm 2 than for firm 1. If horizontal differentiation of preferences 
is bounded, this will not be the case and tipping can emerge.

How is this different from data-driven indirect network effects? Admittedly, 
the horizontal differentiation is bounded in our model. However, we assume 
this only to be able to use a convenient linear demand function. In contrast 
to learning-curve models, our tipping logic does not depend on this assump-
tion. While in learning-curve models the effect of large market share today 
on competitive advantage tomorrow has to die out over time (because c 
converges to c and therefore no significant learning takes place anymore) 
and a natural catching up of the smaller firm ensues, this is not true in our 
model: The firm with the higher market share has lower costs of investing 
in additional quality and can therefore improve its quality advantage easier 
than the firm with the low market share. This is independent of the cur-
rent quality level. If  quality were bounded from above, this would not be 
the case and similar effects as in the learning-curve literature would emerge, 
where with unbounded support a natural catching up would ensue as soon 
as the quality leader had a quality close to the upper bound. As there is no 
upper bound on quality, however, our tipping logic applies with bounded as 
well as with unbounded support of horizontal preferences. This illustrates 
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that it is fundamentally different from the learning-curve logic for tipping. 
It also explains our choice of information and preference fundamentals (the 
functions f and û introduced in Section II). These allow us to combine the 
technically convenient linear demand model with unbounded quality range.

Focusing on the search engine market, Argenton and Prüfer [2012] intro-
duce the idea of search log data-based indirect network effects as a crucial 
dimension of competition in the (law and) economics literature. They doc-
ument the tipping of the search-engine market since 2003 and construct a 
simple model that explains a strong tendency towards monopolization, based 
on indirect network effects. However, their static model cannot convincingly 
capture dynamic effects such as the incentives of a leading search engine to 
invest in R&D once it would have to share its search-log data with competi-
tors. The paper at hand improves this.

Chiou and Tucker [2014] recently reacted to Argenton and Prüfer [2012]. 
They study empirically how the length of time that search engines retain 
their server logs affects the apparent accuracy of subsequent searches, which 
could be interpreted as a measure of search engine quality. They find no 
empirical evidence for a negative effect from the reduction of data retention 
on the accuracy of search results. This is an important finding and should 
be taken seriously by privacy regulators. However, it is not surprising in the 
light of our model: such anonymization, if  done properly, eliminates a search 
engine’s potential to identify or re-engineer a user’s identity. But the change 
in Yahoo’s policy did not derogate its aggregate amount of data on users’ 
clicking behavior, which is the driver for indirect network effects.

Edelman [2015] underlines the opportunity of dominant firms on data-
driven market to use their market power to speed up monopolization, via 
tying their main product with other services. He proposes ‘to open all ties,’ 
that is, to allow competitors to wholly replace Google’s offerings rather than 
to present consumers with parallel offerings from both Google and its com-
petitors (p. 399). As the analysis above indicates, which does not assume any 
abusive behavior of a dominant firm, ruling out certain conduct, such as 
tying, is unlikely to prevent a dominant data-driven firm from completely 
tipping the market. The only proposal we are aware of that may be able to 
achieve that is data sharing.11

This view is supported by Lianos and Motchenkova [2013], who show in a 
two-sided market setting that, ‘similar to Argenton and Prüfer [2012], the 
desired reduction in the asymmetry in the size of  network effects can be 

	 11	Some people may think that sharing of data with user information would allow competitors 
of a dominant firm to reengineer a dominant firm’s algorithm (its key resource and tool of in-
novation), potentially aided by machine learning. Others doubt this: ‘The Great Google 
Algorithm is not a set of ranking factors; rather, it is a collection of protocols, operating systems, 
applications, databases, and occasional information retrieval processes. [...] The Great Google 
Algorithm changes at an exponential rate’ (https://www.seo-theory.com/2011/01/07/why-you-
canno​t-rever​se-engin​eer-googl​es-algor​ithm).

https://www.seo-theory.com/2011/01/07/why-you-cannot-reverse-engineer-googles-algorithm
https://www.seo-theory.com/2011/01/07/why-you-cannot-reverse-engineer-googles-algorithm
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achieved through the remedy of requiring search engines to share their 
data bases and data on previous searches’ (p. 451). Moreover, Lianos and 
Motchenkova [2013] show that a dominant monopoly platform results in 
higher prices and underinvestment in quality-improving innovations by a 
search engine relative to the social optimum. They also show that monopoly 
is sub-optimal in terms of harm to advertisers in the form of excessive prices, 
harm to users in the form of reduction in quality of  search results, as well as 
harm to society in the form of lower innovation rates in the industry.12

In the next section, we present our baseline model. Section III analyzes 
subgame-perfect Nash equilibria of the model with a finite time horizon T 
(as well as the limit case T→∞). In Section IV, we analyze the incentives and 
consequences of market entry, where either the entrant or the incumbent has 
a data-driven business model but the competitor is a traditional firm. Here we 
also develop the notions of connected markets and the domino effect and study 
the effects of data sharing among competitors. We analyze robustness and study 
an extension of the model in Section V: for the case where the time horizon is 
infinite, we solve for Markov equilibria and show that the results are also robust if  
perceived product quality declines exogenously over time. Section VI concludes. 
All proofs are in the Appendix. Additional material is in an Online Appendix.

II.  THE MODEL

There is a unit mass of consumers each demanding one unit of a good in 
each period t  ∈  {1,  2,  …,  T}.13 Consumers face duopolistic producers 

	 12	Burguet et al. [2015] set out to identify the main sources of market failure in the markets that 
search engines intermediate. Complementary to our approach, they focus on the reliability of the 
organic search results of a dominant search engine and take search engine quality as given. They 
show that improvements in an alternative (non-strategic) search engine induce the dominant 
search engine to improve search reliability, which benefits consumers: just as in our framework, 
more competition (in our case, via data sharing) leads to more innovation and higher quality of 
results. It also benefits consumers. Burguet et al. [2015] refrain from studying dynamic effects, 
which we do in this paper and which explains market tipping. In Halaburda et al. [2016], two 
competing platforms repeatedly set prices. Consumers not only value product quality but also 
benefit from direct network effects. If those are strong enough, consumers may choose to buy a 
product with inferior quality from a ‘focal’ platform. Halaburda et al. [2016] complements our 
paper in several important aspects: the focus on the pricing, not the quality decision; the reliance 
of direct, not data-driven indirect network effects, and the normalization of production costs to 
zero, as opposed to positive costs of innovation that are decreasing in a firm’s output.
	 13	Equilibrium sets in games with infinite time horizon are large. When we analyze equilibria 
of games with a finite time horizon T and then take the limit as T→∞, we can approximate some 
equilibria of the game with an infinite time horizon but clearly not all. For instance, Fudenberg 
and Levine [1983] show that the equilibrium set of the infinitely repeated game is the set of limits 
of ɛ-equilibria of finitely repeated games as the number of periods approaches infinity and ɛ 
approaches zero. We focus on subgame-perfect equilibria instead of ɛ-equilibria. For a finite 
time horizon, our model has an essentially unique subgame-perfect Nash equilibrium for generic 
parameter values. Essential uniqueness means that a firm has a unique optimal investment x in 
period t for almost all quality differences Δt−1; i.e. different equilibria differ only in actions on a 
negligible set of quality differences.
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i ∈ {1, 2} and value product quality qi ≥ 0. The firms’ quality difference is 
denoted by Δ = q1−q2. Demand for the two firms in a given period is assumed 
to be linear and given by

This demand system can be micro founded by a simple Hotelling model. 
Quality of firm i in period t, denoted by qi,t, can, for example, be interpreted 
as the quality of firm i’s recommendation in period t. That is, the higher qi,t, 
the better will the recommendation/service of firm i fit a consumer’s needs 
in period t.

We consider goods where consumption or the usage of a service in period t 
reveals some information about the consumer’s preferences or characteristics 
and where this information can be easily logged by machines, such as in search 
engines, platform sites for accommodation or car sharing, or digital maps. We 
call such data user information, which grows linearly in Di and can be stored by 
the seller automatically and for free, in contrast to traditional industries, where 
the marginal cost of storage and data analytics are positive. User information is 
an input into a firm’s efforts to improve its perceived product quality and there-
fore reduces firm i’s cost of innovation. It constitutes data-driven indirect net-
work effects in this model.14

Firms repeatedly set innovation levels xi,t ≥ 0, such that firm i’s perceived 
product quality in period t increases by xi,t  =  qi,t−qi,t−1.15 A firm that 
invests in order to increase its quality by x units faces the following 
submodular investment cost function in the period of  investment:  
c(x, Di) = γx2/2 + αx(1−Di(Δ)). Di(Δ) is the demand the firm had in the 
previous period and γ > 0, α ∈  [0, 1) are parameters measuring the diffi-
culty to innovate (γ) and the importance of  data-driven indirect network 
effects (α). We assume α  <  1 to rule out excessively expensive investment, 
i.e., the marginal costs of  innovation should not be prohibitively high, to 
make the game interesting.16 To avoid messy case distinctions, we also 
assume γ > 1/4, which limits the size of  the investment. In particular, this 

(1) D1(Δ) =

⎧
⎪⎨⎪⎩

1+Δ

2
if Δ∈ [−1, 1]

1 if Δ > 1

0 if Δ < −1,

D2(Δ) =

⎧
⎪⎨⎪⎩

1−Δ

2
if Δ∈ [−1, 1]

0 if Δ > 1

1 if Δ < −1.

	 14	The comprehensive computer science literature review in Argenton and Prüfer [2012] signi-
fies the long-documented importance of large amounts of search log/query log data for produc-
ing search engine quality, our most prominent example of a data-driven market. McAfee et al. 
[2015] find that a search engine with more demand improves its quality faster, acquires data on 
new queries more quickly, and has more other data to make inferences about users’ queries. They 
conclude (p. 34): ‘Even at web scale, more data makes search better.’ See also He et al. [2017], 
Fortuny et al. [2013], or Schaefer and Sapi [2020].
	 15	For better exposition, we will drop subscripts wherever there is no danger of confusion.
	 16	The specific value α  <  1 implies that in the final period T there are values of ΔT−1 (around 
0) where both firms would like to invest a positive amount (if  they were the one investing in T).
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assumption implies that in a one-shot game the optimal investment is less 
than 2, that is, in equilibrium one-period investments will not change the 
market share from 0% to 100%. In principle, user data from earlier periods 
could also be useful in innovating and the cost function would then depend 
on more lags of  demand. For the sake of  simplicity and tractability, we 
ignore this possibility in our model.

In period 1, we assume some starting value Δ0 and the respective cost 
functions of  firms 1 and 2. Hence, period 1 should not be thought of  as the 
birth of  the industry but the first period of  observation.17 Since we employ 
a subgame-perfect Nash equilibrium and therefore backwards induction as 
the solution concept, actions in prior periods will not change the solution.

The functional form of c(x, Di) implies that costs are increasing and con-
vex in the rate of innovation and are lower for the firm with the bigger market 
share in the previous period. Fixed costs of quality do not depend on Di and 
are, just as the marginal cost of producing the good or service, assumed to 
be zero. To clearly differentiate this model from others in the literature, we 
define the central concept of the paper, data-driven markets.

Definition 1.  (Data-Driven Markets). In a data-driven market, the marginal 
costs of  innovating, c(x, Di), are decreasing in own demand: cx,Di

< 0.

Data-driven markets are characterized by indirect network effects driven 
by machine-generated data about user preferences or characteristics. These 
are raw data, before any data analytics are applied. Hence, the marginal cost 
of data production is virtually zero.

In each period, only one of the two firms can invest in innovation in order 
to increase its quality, and then demand realizes. In odd periods, firm 1 can 
invest, whereas in even periods, firm 2 can invest. This game structure has a 
long tradition in repeated oligopoly interaction (e.g., in Cyert and de Groot 
[1970], or Maskin and Tirole [1988]). Imagine a variant of our model where 
both firms can invest every period. Further, suppose Δ is close to 1 and T = 1. 
If  firm 1 knew that firm 2 was investing zero, firm 1’s best response would 
be to invest just enough to capture the whole market, that is, to set x = 1−Δ, 
given that costs are not prohibitive. In this case, however, it is a best response 
for firm 2 to invest a small amount in x in order to stay in the market, as long 
as α  <  1/2. If  firm 2 invests a positive amount, then firm 1 will best respond 
by investing an even higher amount (note that firm 1’s marginal innovation 
costs are much lower because Δ is close to 1) in order to push firm 2 out of 

	 17	Several industries we consider to be data driven today started with a single incumbent firm. 
But often these firms’ business models were not built on exploiting data-driven indirect network 
effects initially. For instance, in the search engine market, then-market leader Yahoo categorized 
websites by hand, in the 1990’s. Only in 2001, Google made use of users’ clicking behavior saved 
in search logs (Zuboff [2016]). This move transformed the search engine industry into a data-
driven market, leading to Google’s market leadership as of 2003.
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the market anyway. But in this case it is a best response for firm 2 not to invest 
at all. Hence, a matching pennies-like situation has emerged: for Δ close to 1, 
equilibrium strategies have to be mixed. By assuming alternating moves, we 
can focus on pure-strategy equilibria, which are simpler and more intuitive.

We assume that a firm’s revenue is proportional to its demand and, for 
notational simplicity, we assume that revenue equals demand. This can be 
interpreted as setting the nominal price to use a firm’s services for consumers 
to zero but to charge fees to (unmodeled) sellers for access to (targeted) con-
sumers, for instance, via advertising. For example, each user can be shown 
an advertisement and the expected revenue generated by an ad is normalized 
to 1.

Firm i maximizes its discounted profits, where per-period profits equal 
demand in periods where firm i cannot invest and equal demand minus 
investment costs in periods where firm i can invest. The common discount 
factor is δ ∈  [0, 1). All choices are perfectly observable by the players. We 
solve this model for subgame-perfect Nash equilibria (SPNE’s). The equilib-
ria that we select have the advantage of (i) satisfying subgame perfection, (ii) 
being relatively tractable and (iii) retaining intuitive properties of the finitely 
repeated game. We show properties holding for all stationary Markov equi-
libria of the game with infinite time horizon in Section II.

III.  ANALYSIS

We are interested in the development of market structures over time as a 
function of initial (exogenous) differences in firms’ qualities. Therefore, our 
central question is, under which conditions will a market characterized by 
data-driven indirect network effects (not) tip?

Definition 2.  (Market Tipping): A market is weakly tipping if  one firm ob-
tains full demand in some future period (and the other firm does not). A 
weakly tipping market is strongly tipping if  from some period t� < T − 1 on-
wards one firm has full demand in every period in which it invests. A market 
is absolutely tipping if  from some period t′ < T  onwards one firm has full 
demand in all following periods.

III(i).  Period T

To start with, consider the problem in the final period T and assume that T 
is even, which implies that firm 2 can invest. Firm 2 is faced with a situation 
where the quality difference after period T−1, ΔT−1, is given and each unit 
of x it innovates increases q2 and hence decreases Δ. Firm 2’s maximization 
problem is:



© 2022 The Authors. The Journal of Industrial Economics published by Editorial Board and John Wiley & Sons Ltd

JENS PRÜFER AND CHRISTOPH SCHOTTMÜLLER978

The solution to this maximization problem is:

where

Zero investment and therefore ΔT = ΔT−1 emerges if  either firm 2 has already 
grabbed the market (ΔT−1 ≤ −1) or if  investment is prohibitively expensive, 
which can be the case if  both α and ΔT−1 are high. The second case leads to 
ΔT = −1, that is, firm 2 grabs the complete market in period T. The third case 
in (3) corresponds to ΔT = ΔT−1−x, being interior.18

Note that firm 2’s investment if  ΔT is interior is decreasing in ΔT−1: A 
higher ΔT−1 implies lower D2(ΔT−1) (lower market share) and therefore 
higher (marginal) investment costs due to data-driven indirect network 
effects.

The optimal investment xT leads to the following profits for both competitors:

(2) max
x≥0

D2(ΔT−1 − x) − �x2∕2 − �x(1 −D2(ΔT−1)).

(3) xT =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 if ΔT−1≤ −1

1+ΔT−1 if −1 < ΔT−1 < −
2𝛾−1+𝛼

2𝛾+𝛼
1

2𝛾
−
𝛼

𝛾

�
1−D2(ΔT−1)

�
if ΔT−1∈

�
−
2𝛾−1+𝛼

2𝛾+𝛼
,U𝛼

�

0 if ΔT−1 > U𝛼

U𝛼 =

{
1∕𝛼−1 if 𝛼≥1∕2

1+ (1−4𝛼(1−𝛼))∕(4𝛾) if 𝛼 < 1∕2.

	 18	Note that by γ > 1/4 and α ∈ [0, 1), we have −1 < −(2γ−1+α)/(2γ+α)  <  Uα, that is, the case 
distinction in (3) is well defined.

(4) VT
1
(ΔT−1) =

⎧
⎪⎪⎨⎪⎪⎩

2𝛾+𝛼−1+ (2𝛾+𝛼)ΔT−1

4𝛾
if ΔT−1∈

�
−
2𝛾−1+𝛼

2𝛾+𝛼
,U𝛼

�

0 if ΔT−1 < −
2𝛾−1+𝛼

2𝛾+𝛼
D1(ΔT−1) else

(5)

VT
2
(ΔT−1) =

⎧
⎪⎪⎨⎪⎪⎩

4𝛾+1−2𝛼+𝛼2

8𝛾
−
2𝛾+𝛼−𝛼2

4𝛾
ΔT−1+

𝛼2

8𝛾
Δ2
T−1

if ΔT−1∈

�
−
2𝛾−1+𝛼

2𝛾+𝛼
,U𝛼

�

2−𝛼−𝛾

2
− (𝛼+𝛾)ΔT−1−

𝛼+𝛾

2
Δ2
T−1

if −1 < ΔT−1 < −
2𝛾−1+𝛼

2𝛾+𝛼
D2(ΔT−1) else.
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These value functions have two noteworthy characteristics. First, V1 is 
increasing while V2 is decreasing in ΔT−1. This is straightforward: a producer 
benefits from having higher prior quality. Second, the value functions are 
piecewise quadratic (or linear). This is an implication of the linear quadratic 
setup we chose and will simplify the following analysis.

III(ii).  Period t  <  T

Consider a generic period t  <  T. If  t is odd, firm 1 can invest and solves the 
following maximization problem:

The first-order condition (for interior Δt and Δt−1 at points of differentiabil-
ity of Vt+1

1
) is:

By contrast, if t is even, firm 2 invests. The resulting first-order condition is:

We first show an intuitive monotonicity result.

Lemma 1.  (Quality Monotonicity). (i) Vt
1
(Δt−1) is increasing and Vt

2
(Δt−1) is 

decreasing in Δt−1. (ii) Δt is increasing in Δt−1.

In all periods t, firm 1 benefits from higher Δt and firm 2 benefits from 
lower Δt. A higher Δt leads to a higher Δt+1. This second result is powerful as 
it implies that an increase in the initial quality difference will lead to a higher 
quality difference in all following periods.

Let It be the set of quality differences Δt for which in all following periods 
(up to T) the equilibrium quality difference is in (−1, 1), that is, no firm has 
full demand in any period; the quality difference is ‘interior.’ Put differently, 
as long as the quality difference Δt is in It, the market remains competitive in 
all following periods. Hence, the market does not tip.

Proposition 1.  (Market Tipping for T→∞). It is an interval and its length is 

less than 2/(1+α/(2γ))⌈T−t⌉/2. Hence, the length of I0 shrinks to zero at expo-

nential speed for T→∞.

(6) max
x≥0

D1(Δt−1 + x) − �x2∕2 − �x(1 −D1(Δt−1)) + �Vt+1
1

(Δt−1 + x).

(7) 1

2
− �x − �

1 −Δt−1

2
+ �Vt+1�

1
(Δt−1 + x) = 0.

(8) 1

2
− �x − �

1 +Δt−1

2
− �Vt+1�

2
(Δt−1 − x) = 0.
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Proposition 1 shows that the market will weakly tip if the time horizon T is 
sufficiently long. One firm will have full demand in some periods for almost any 
initial quality difference if only T is large enough. The idea behind the result 
is to show that firm 1’s (2’s) investment is increasing (decreasing) in Δt−1 on 
It. Intuitively, this is not surprising as a higher (lower) Δt−1 implies more user 
data and lower marginal costs of investment for firm 1 (2). Our linear quadratic 
setup allows us to find a lower bound s for the absolute value of the slope of 
xt
i
(Δt−1). Now consider a hypothetical increase of an initial quality difference 

Δ0 ∈ I 0 by ɛ > 0. This will increase the quality difference in period 1 by at least 
ɛ(1+s): the ɛ increase would increase the quality difference t periods later by at 
least ɛ(1+s)t. This implies that the ɛ increase will lead to full demand for firm 
1 in a future period if the number of remaining periods is sufficiently large. 
Therefore the length of I0 has to be very small if T is large.

Proposition 1, however, is not entirely satisfactory. We know that some pro-
ducer will acquire full demand in some period—but what will happen thereafter?

Lemma 2.  (Persistent Dominance Finite T). If  firm i has full demand in pe-
riod t < T−1, then firm i will have full demand again in a later period and 
firm j ≠ i will not have full demand in any following period.

Lemma 3.  (Persistent Dominance T = ∞). Take a stationary equilibrium of 
the game with an infinite time horizon that is the limit of a subgame-perfect 
equilibrium of the finite-length game, as T→∞. Such an equilibrium exists. 
If  firm i has full demand in period t, then firm i will have full demand in all 
periods t + 2n for n ∈ ℕ. Furthermore, firm j will have less demand in all con-
secutive periods than in t−1.

Lemma 2 shows that a firm will remain dominant once it has become dom-
inant in the following sense. If  firm i has full demand in one period, then 
firm i will have full demand in more periods afterwards while firm j will never 
have full demand. Combining Proposition 1 with Lemma 3 implies that in 
the game with an infinite time horizon one firm will eventually dominate the 
market by having full demand (at least) every second period while the other 
firm does not have full demand, i.e. the market is strongly tipping.

Proposition 2.  (Market Tipping for T = ∞). Take a stationary equilibrium 
of the game with infinite time horizon that is the limit of subgame perfect 
equilibria of the game with finite horizon T, as T→∞. There the market is 
strongly tipping for almost all initial quality differences Δ0.

The situation, where firm 2 still has some demand in every second period 
while firm 1 has full demand in every other period, is depicted in the left 
panel of Figure 1. Innovation stabilizes at a very low level. The intuition is 
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that firm 2 is only motivated to innovate by its profits in the period in which 
it invests (and not by effects on future profits) because δ = 0 in the left panel. 
Furthermore, firm 2 does not want to invest a lot because the marginal costs 
of innovation are rather high due to its low demand. Firm 1 simply undoes 
firm 2’s (low) investment each period and obtains monopoly profits.

If  firm 1 cares sufficiently about the future, that is, if  δ is not too low, 
then it will usually be more profitable to push firm 2 completely out of  the 
market, i.e., the market tips absolutely; see the right panel of  Figure 1, 
where we assume δ = 0.25. Firm 1 will increase q1 so far that Δ grows above 
1 and firm 2 finds it unprofitable to fight back. As soon as this is achieved, 
however, firm 1 can stop investing forever and enjoy monopoly profits in all 
remaining periods. The user information, which firm 1 then gathers as a 
monopolist (for free), is not used for innovation but as a barrier to entry.19 
Firm 2 will not try to get back into the market because in this case firm 1 
would start using its superior data to immediately push firm 2 out again.

Which of the two scenarios in Figure 1 occurs in equilibrium depends on 
parameter values. The following Lemma gives a clear-cut answer in case the 
parameter α—which represents data-driven indirect network effects—is suffi-
ciently large.

Lemma 4.  (Absolute Tipping for High α). Let α  ≥  1/2 and T finite. Then 
every weakly tipping market is absolutely tipping.

The reason is that high α implies high marginal costs of  investment for 
a firm with zero market share. Consequently, it is no longer profitable to 

	 19	Zero investments by a monopolist might seem unrealistic. Note that in an extension in 
which quality decays, for instance due to changing consumer interests, we obtain a result that 
investments by the monopolist will be positive but quite low after tipping; see Section I.

Figure 1  
Strong Tipping (left) and Absolute Tipping (right). 

Notes: Parameters: T = 30, α = 0.4, γ = 1, Δ0 = 0, δ = 0 (left), δ = 0.25 (right) [Colour figure can 
be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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‘invest back’ after one’s market share has dropped to zero. In particular, 
for α ≥ 1/2, marginal costs are higher than marginal revenue in the current 
period (which is 1/2 for our demand function). This implies that invest-
ment is not profitable this period and—as the other firm will invest enough 
next period to grab the whole market again—the investment also does not 
pay off  in the future.

IV.  CONNECTING MARKETS: ENTRY AND TRADITIONAL VS. DATA-BASED 
BUSINESS MODELS

IV(i).  Market Entry by a Data-Driven Firm

Consider a market, where a representative incumbent firm operates with 
traditional investment methods that do not exploit data-driven indirect net-
work effects. We study the strategic situation that arises when a potential 
entrant, who uses a data-based business model and, hence, is harvesting 
indirect network effects (henceforth a data-driven firm), contemplates enter-
ing the traditional market. What is important for this model is that exploit-
ing user information creates value for the users but that such exploitation is 
unique to data-driven firms. Traditional firms do not have the option to 
create consumption value in this way, for two reasons. First, their product 
might not provide them with data on usage. Second, personalization might 
be technologically incompatible with their product. Both reasons are true, 
amongst many more industries, in the case of  traditional paper maps.20

Consider the general framework of our T-period model, just as in Section 
III. But now assume that firm 2 is an incumbent firm in a market operating 
a traditional, that is, not data-driven, business model. Firm 1 is a potential 
entrant employing a data-driven business model. Assume that firm 2’s costs of 
investing are γ′x2/2+α′x/2 (i.e., for α′ = α, firm 2 has the same marginal costs 
of investment at x = 0 as firm 1 has with 50% market share). To rule out exces-
sively expensive investment, we assume α′  <  1, as before. We also assume that 
prices are fixed and normalize prices such that demand equals revenue. Hence, 
the investment x is the only choice variable in all periods after period 1.

Firm 1, by contrast, operates under the same cost function as in the pre-
vious sections and has the additional choice in period 1 of whether it wants 
to enter the market (and invest some x of  its choosing, which will add to the 
initial quality difference Δ0), or not enter. Entering comes at fixed cost F ≥ 0. 
To simplify notation, we will assume that T is even. Clearly, markets where 
entry has already taken place emerge as a subgame of this model.

It is straightforward to solve for firm 2’s optimal investment in period T 
which turns out to be:

	 20	Alternately, consider the market for traditional travel agents, which were marginalized by 
online travel agents—and among online travel agents, the numbers of successful firms is getting 
smaller and smaller.
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The resulting period T value functions are:

In this setup, Lemma 1 still holds true in case firm 1 enters because cxD ≤ 0 
for both firms (with equality for firm 2). As a consequence, a result similar to 
Proposition 1 can be derived.

Proposition 3.  (Tipping Tendency in a Traditional Market). Let T→∞ and 
consider the subgame where firm 1 enters. The length of I0 shrinks to zero 
and the market weakly tips in a finite number of periods for almost all initial 
quality differences Δ0.

Corollary 1.  (Entry and Tipping in a Traditional Market). Let T→∞. (i) 
For F very high, say F > F , firm 1 does not enter (regardless of  Δ0). (ii) 
There exists an �F < F  such that for F ∈ [F̂ ,F ] the market tips weakly in 
favor of  firm 1 whenever (Δ0 is such that) firm 1 enters. (iii) For very low 
F and not too low Δ0, firm 1 might enter and run down its market share 
to zero after entry.

The interesting part of  Corollary 1 is (ii), which features an all-or-nothing 
result (for certain parameter values):21 either the data-driven firm is deterred 
from entry, or not. But if  it enters the traditional market, it will eventually 

xT
2
(ΔT−1) =

⎧
⎪⎪⎨⎪⎪⎩

1−𝛼�

2𝛾 �
if ΔT−1∈
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1−𝛼� −2𝛾 �

2𝛾 �
, 1+

(1−𝛼�)2

4𝛾 �

�

1−ΔT−1 if ΔT−1 <
1−𝛼� −2𝛾 �

2𝛾 �

0 else.
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1
(ΔT−1) =

⎧
⎪⎪⎨⎪⎪⎩

1
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+
1

2
ΔT−1−

1−𝛼�

4𝛾 �
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2𝛾 �
, 1+

(1−𝛼�)2

4𝛾 �
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1 else.
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8𝛾 �
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1−𝛼� −2𝛾 �

2𝛾 �
, 1+

(1−𝛼�)2

4𝛾 �

�

1−
𝛼� +𝛾 �

2
+ (𝛾 � +𝛼�∕2)ΔT−1−

𝛾 �

2
Δ2
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if ΔT−1 <
1−𝛼� −2𝛾 �

2𝛾 �

0 else.

	 21	Part (iii) includes cases where the entrant can enter with positive demand but her investment 
costs are substantially higher than the incumbent’s. It is then profitable to enter and realize prof-
its while waiting to be kicked off  the market. The case does not strike us as particularly relevant 
and is not specific to markets with data-driven indirect network effects.
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take it over completely. The mechanism at play is the same as the one stud-
ied in the previous section. Conditional on firm 1’s market entry, it does not 
matter in the long-run, anymore, that the product quality of  the established 
firm may be superior (and hence Δ0  <  0). It is sufficient that firm 1 finds it 
worthwhile to enter the market and to invest in innovation such that it 
obtains some positive demand. Then the indirect network effects play into 
firm 1’s hands because, from that point onward, its marginal cost of  innova-
tion only decreases. As the traditional firm 2 cannot react by increasing its 
own quality at the same rate and for the same cost as firm 1, it is bound to 
lose market share. Market tipping cannot be avoided anymore then.

In this case, firm 1 managed to transform the traditional market into a 
data-driven market. If  another firm with a data-driven business model were 
to show up to compete with firm 1, the model in Section II would apply 
henceforth. It follows that the first data-driven firm entering a traditional 
market has a strong first-mover advantage.

The inevitability of  market tipping after the entry of  firm 1 shifts our 
attention to the first part of  Corollary 1. The long-term structure of  the 
traditional market is decided at the point in time that firm 1 decides about 
its entry. The decision depends on the cost that firm 1 has to bear to cre-
ate a product that consumers would accept as a (potentially imperfect, 
inferior) substitute to the existing products in the market. This cost, F, is 
a function of  the product characteristics expected by consumers. It also 
depends on legal requirements, for instance, to obtain a public authority’s 
approval or to acquire a license. Consumers’ expectations regarding the 
must-have features in this market, as is pointed at by the threshold cost 
level F , depend on the actions and quality investments of  the traditional 
incumbent firm. If  firm 2 manages to innovate itself  (prior to firm 1’s 
potential entry) by improving consumption utility to such a degree that 
the market entry cost is prohibitive for firm 1, there will be no entry by 
firm 1. In this case, the traditional market will not be transformed into a 
data-driven market.

Now we test the validity of our results on the entry of firms with a data-
driven business model in a traditional market when firms’ horizons are 
infinite. Specifically, we study stationary Markov equilibria of the game with 
an infinite time horizon that are limits of equilibria of games with a finite 
time horizon as T→∞. Still firm 1 is assumed to use a data-driven business 
model but firm 2 is a traditional firm.

Lemma 5.  (Market Entry in the Infinite Game). Take a stationary Markov 
equilibrium of the game with infinite time horizon that is the limit of 
subgame-perfect equilibria in the game with finite time horizon T, as T→∞. 
If  firm 1 enters and Δ2 > Δ0, then the market will eventually tip strongly in 
favor of firm 1.
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Lemma 5 states that early movements in quality or market shares are indic-
ative of whether the market will tip: if  an entrant with a data-driven business 
model enters a market and gains positive market share immediately after 
entry, then the market will tip in its favor.

IV(ii).  Competing with a Data-Driven Incumbent

Representatives of  technology firms as well as certain business commenta-
tors have argued that competition is simply different in digital markets, 
in the sense that firms face little competition for some time until they are 
eventually ousted by ‘the next big thing.’ In this subsection, we show how 
our model lends some support to this claim but also highlight the diffi-
culty of  overcoming an incumbent’s advantage due to an existing stock of 
exclusive data in data-driven markets. This advantage implies that entrants 
with a superior technology will not always succeed in the market and may, 
hence, decide not even to enter despite their technological advantage. 
We illustrate this problem with two variations of  our model and finally 
argue that a specific policy intervention might overcome the described 
inefficiencies.

In the first variation of  the model, let firm 1 be a data-driven incum-
bent with the same cost function and demand as in Section III. Firm 2 
is a potential entrant that is not data driven and has the investment cost 
function of  the previous subsection, γ′x2/2+α′x/2. Clearly, the subgame 
after entry is the same as in Subsection IV(i). and, therefore, Proposition 
3 implies that the length of  I0 shrinks to zero and the market weakly tips 
in a finite number of  periods for almost all initial quality differences Δ0 
if  firm 2 enters. This is in line with the idea that competition is not in the 
market but for the market: a single firm typically dominates a given market 
at most points in time. It is also straightforward to obtain an equivalent to 
Corollary 1: if  entry costs are high, the entrant does not enter. For some 
intermediate range of  entry costs, the entrant will only enter if  it eventu-
ally tips the market in its favor. Note that the latter is possible because we 
did not restrict the efficiency of  the entrant, i.e., α′ and γ′ may be extremely 
low.

In the second variation, let firm 1 be a data-driven incumbent with ini-
tial quality q1,0 ≥ 1 in period 1 (i.e., the market is covered if  firm 2 does not 
enter) and let firm 2 be a potential entrant who would also like to use a 
data-driven business model. Suppose that there is a period 0 in which the 
entrant can invest x in order to increase its quality from 0 to q2,1=x at cost 
c(x,  0)  =  γx2/2+αx. This reflects the fact that a new entrant will not have 
any data initially when launching its product. In case, the entrant decides to 
enter—by investing x > 0 in period 0—the firms play the game of our main 
model with Δ0 = q1,0−x. Consequently, the market will tip if  the time horizon 



© 2022 The Authors. The Journal of Industrial Economics published by Editorial Board and John Wiley & Sons Ltd

JENS PRÜFER AND CHRISTOPH SCHOTTMÜLLER986

is sufficiently long as described in Propositions 1 and 2. This is in line with 
the argument that competition is very much for the market and not so much 
in the market. The next question is: under which circumstances would the 
entrant enter? Put differently, how big does ‘the next big thing’ have to be?

After the initial investment of the entrant, it is firm 1’s turn to invest in 
period 1. In the game of our baseline model, the firm investing in period 1 has 
a first-mover advantage because investing earlier bears fruit immediately and 
increases quality for more consecutive periods. If we let T be large, Proposition 
2 implies that the market will tip for almost all initial quality differences. As 
firm 1 has a first-mover advantage, this means that the market will tip in favor 
of firm 1 whenever it has at least 50% market share in the first period. Hence, 
the market can only tip in favor of the entrant if the entrant has more than 
50% market share immediately after its initial investment. Of course, a supe-
rior entrant—in the sense of having much lower investment costs than the 
incumbent, i.e., a lower α or γ—will be able to compete also with a lower initial 
market share but it is clear that the advantage has to be substantial. This is true 
in particular if the incumbent already has a high initial quality level q1,0.

Consequently, there can be entrants with a superior technology, i.e., 
lower α and γ, who will not be able to compete in the long run (and there-
fore may find it optimal not to enter in the first place). A second ineffi-
ciency emerges where such an entrant can only use very little user 
information to improve its product in early periods, when its market share 
is low. Both inefficiencies can be overcome by an often observed practice 
in the digital economy: acquisitions. Here the incumbent buys the technol-
ogy of  the entrant in order to combine it with its own data. While this 
practice can in principle mitigate the inefficiencies mentioned before, it 
does not lead to competition. In particular, it creates no incentives for the 
incumbent to innovate and improve its own quality. A monopolist has no 
incentives to improve its quality because quality improvement leads to 
costs but no additional revenues in our model.22

Therefore, a regulatory intervention allowing for genuine quality-enhancing 
competition could increase welfare. Argenton and Prüfer [2012] propose that 
competing search engines should be forced to share their (anonymized) search 
log data (that is, user information, according to our definition) among each 
other.23 In the context of our model, the proposal implies that both firms 
obtain the data of all consumers when innovating. We will show that the forces 
that led to market tipping in the earlier sections of this paper are no longer 

	 22	See Section I for a variation of our setup in which a monopolist still innovates a little bit 
after the market has tipped in its favor.
	 23	Argenton and Prüfer [2012] also discuss the technical feasibility and potential legal avenues 
for implementing their proposal. They tentatively conclude that in both dimensions unsolved 
issues remain but that, in principle, the proposal is feasible. Prüfer [2020] discusses resulting 
policy implications.
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present after this regulatory measure is introduced. That is, genuine competi-
tion with permanently positive innovation rates is possible under data sharing 
and an entrant might enter and compete with an incumbent in the long run.

As both producers now have access to the data of all users, the cost func-
tion of each firm is c(x) = γx2/2: for innovation purposes, the cost function 
is specified as if  the firm had had full demand in the previous period. This is 
reminiscent of our baseline model with α = 0. In particular, Lemma 1 holds 
and It is still an interval. However, Proposition 1 no longer implies that I0 
shrinks to zero, for T→∞, because the bound on its length no longer depends 
on T if  α = 0. The following Lemma states the equilibrium choice of a firm 
within the interior of It.

Lemma 6.  (Interior Innovation with Data Sharing). Assume data sharing. 
Restricted to the interior of It, Vt

i
 is linear and firm i’s investment in period t is

Equation 9 already shows that It can only be non-empty if  γ is not too 
small and δ is not too close to 1. This is not surprising: for γ→0, investment 
is costless and, therefore, the firms will invest huge amounts in innovation 
that lead outside the interior range (−1, 1) of Δ. The same is true for δ→1: If  
every investment bears fruit forever and there is no discounting, the firms will 
want to invest arbitrarily large amounts. Equation 9 allows us to compute 
how much Δ changes over two periods (when each firm can invest once) if  
Δt−1 ∈ I t:

This implies that It is shifting upwards over time. The reason for the 
shift is the alternating move structure of  the model. When investing in 
period 1, firm 1 takes the revenue effect of  its investment for all T peri-
ods into account. Firm 2 invests a period later. Therefore, its investment 
has a revenue effect for all but the first period (which is already over). 
Hence, firm 2’s marginal revenue of  investing is lower. In contrast to the 
result with α > 0 (see Proposition 1), however, the length of  I0 does not 
need to shrink for T→∞. The just described timing effect is independent 
of  the specific Δt in It. Hence, the length of  It does not change while It 
shifts upwards. The reason for It shrinking to zero in Proposition 1 was the 
existence of  indirect network effects, the competitive effects of  which are 
eliminated by data sharing.

(9) xt
i
=

1 − �T−t+1

2�(1 − �)
.

(10) xt
1
− xt+1

2
=

�T−t − �T−t+1

2�(1 − �)
=

�T−t

2�
on I t.
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While data sharing can prevent market tipping, its welfare consequences 
are ambiguous in our model. Welfare in a given period consists of the two 
firms’ revenues, which sum to 1, the investing firm’s cost, and consumer sur-
plus. Here we adopt the Hotelling interpretation of our demand structure, 
where consumers are uniformly distributed between -1 and 1. Total welfare 
equals the discounted sum of welfare in periods 1 to T.

Welfare effects of  data sharing are ambiguous because several effects 
interact. First, sharing data directly reduces innovation costs. In our 
model, costs are reduced by αx(1−Di(Δt−1)). Second, quality is higher due 
to lower marginal costs of  innovation and—in particular in later periods—
because market tipping may be prevented: recall that the remaining firm 
stops innovating after the other firm exited the market. The additional 
innovation is beneficial for consumers. Third, more consumers may be able 
to buy from their preferred firm. In the Hotelling interpretation of  our 
demand function, transportation costs of  some consumers will be lower 
if  both firms stay in the market. Fourth, higher investments (especially in 
later periods) imply higher costs. Note that investment costs are duplicated 
in case both firms stay active in the market. While the first three effects 
increase welfare, this last effect reduces it. Depending on parameter values 
the overall effect of  data sharing on welfare can be positive or negative. 
Numerical results suggest, however, that the positive effects of  data shar-
ing dominate if  indirect network effects are sufficiently important, i.e., if  
α is high.

IV(iii).  Connected Markets

Definition 3.  (Connected Markets). Markets A and B are connected if  
cx1,B ,D1,A

< 0 or cx1,A,D1,B
< 0.

This definition builds on our definition of data-driven markets. Where 
we characterize a data-driven market as a market with machine-generated 
indirect network effects, the notion of connected markets focuses on the 
impact of user information gained in one market for the cost of innovation in 
another market. We take the connectedness of two specific markets as given. 
But firms can be creative in developing new business models and, thereby, 
exploring the degree of connectedness between two markets. Hence, if  mar-
ket entry costs are not prohibitive, a firm that manages to find a ‘data-driven’ 
business model can dominate most traditional markets in the long term.

The connectedness of two markets can be used in two ways. If  cx1,A,D1,B
< 0 , 

market A in isolation might not tip in favor of firm 1, for instance, because 
indirect network effects, measured by α, are not important enough. But after 
entering market B, the additional data gained in market B will allow firm 1 to 



© 2022 The Authors. The Journal of Industrial Economics published by Editorial Board and John Wiley & Sons Ltd

Competing with Big Data 989

innovate much more cheaply in market A; hence market A may tip (quicker) 
in favor of firm 1. The additional profits generated in market A might even 
make entry into market B profitable where entry into B only would not have 
been profitable.24

Proposition 4.  (Domino Effect). Assume that firm 1 is active in market A 
and identifies connected market B, that cx1,B ,D1,A

< 0, cx1,A, D1,B
= 0, and where 

entry is not prohibitive (F ≤ F ). Then firm 1 will enter market B when it has 
become sufficiently dominant in market A.

This Proposition adds on top of Corollary 1 the idea that two characteris-
tics are complementarily helpful in entering and dominating any traditional 
market: (i) finding a business model that connects a new market with one’s 
home market, that is, to develop a service or product that makes good use of 
user information gained in one’s original market. (ii) possessing a lot of  rel-
evant user information in one’s home market. Proposition 4 then states that 
firm 1 can leverage its dominant position from market A to market B.25

This process could potentially be repeated in markets C, D, etc., which 
explains the term domino effect. It also produces an empirical prediction: In 
traditional markets, our model suggests that we observe races between data-
driven firms to identify data-driven business models utilizing their existing 
data stocks and traditional companies trying to increase data-independent 
product quality before market entry occurs.

While Proposition 4 focuses on the effect of market A on B, it is clear that there 
can also be effects from B on A. As entry in market B will be profitable when it 
happens, the possibility of entry in B after becoming sufficiently dominant in A 
creates an additional incentive to invest in A. Also after entry in B investment 
incentives in A are high as additional market share in A will reduce investment 
costs in B. Given these additional investment incentives in A, a second testable 

	 24	The second way to exploit connectedness is associated with cx1,B ,D1,A
< 0. Tipping in market 

A might then make entry in market B feasible. To see this, suppose that entry into market B is 
prohibitively expensive at the outset but market A tips in favor of firm 1. Firm 1 has therefore 
more data from market A, which will reduce innovation costs in market B. This might make 
entry into market B feasible, which will then also tip in favor of firm 1.
	 25	Until the 1990’s, most road maps were printed on paper and supplied by oligopolistic in-
cumbents that offered consumers differentiated versions of maps. Those paper maps were static, 
in the sense that consumers could not customize them for a specific purpose and recustomize 
them for another purpose later. The digitization of maps lifted the latter restriction, such that 
users of online maps or downloaded maps, for instance in cars’ GPS navigation systems, could 
zoom in and out and ask for the ‘best’ route to a certain destination. The unique feature distin-
guishing Google from its competitors, when introducing Google Maps, was that a share of users’ 
queries that the firm received in its main search engine business was geography-related: Google 
received a huge stock of geographical information about user preferences and characteristics as 
a by-product of its main search engine business. Today, many features in Google Maps, such as 
‘popular times’ of restaurants, are fed by such data and not copyable (at the same quality level) 
by competitors that lack large amounts of user information.
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prediction emerges: Markets tip quicker if the leading firm identifies a connected 
market in which it can use the data collected on its home market. Note that the 
additional investment incentives discussed here are only relevant as long as addi-
tional market share in market A can be gained. As soon as firm 1 is a monopolist 
on market A, the additional investment incentives no longer exist.

V.  ROBUSTNESS AND EXTENSIONS

V(i).  Decaying Quality

An important critique of the notion of data-driven markets (Definition 1) 
is that user preferences are unstable and subject to fashion trends over time. 
One could therefore argue that the quality of a product/an algorithm dete-
riorates over time unless it is constantly improved by investments in quality 
improvements (or innovation). In terms of our baseline model, this means 
that perceived quality q decays if  a firm does not innovate. Assume, for con-
creteness, that qi,t+1 = μqi,t+xi,t+1 where μ ∈ [0,1]. Hence, quality decays at rate 
1−μ. This implies that, without any investments, Δt+1 = μΔt: the quality dif-
ference shrinks due to quality decay. Proportional quality decay is therefore 
a force working against market tipping.

The analysis mirrors the one in the main text. We will therefore focus on 
the changes. In the final period T, equations (3), (4) and (5) remain valid if we 
write μΔT−1 instead of ΔT−1. In particular, VT

i
 is linear-quadratic in ΔT−1 on IT.

For t < T, the first-order condition on the interior of It (for firm 1) changes 
from (7) to:

Because Lemma 1 is crucial for the remainder of the analysis, we replicate 
its proof in some more detail in the Appendix. The result is that Lemma 1 
remains valid. Proposition 5 follows.

Proposition 5.  (Market Tipping with Quality Decay). Assume μ(μ+α/
(2γ)) > 1. The length of I0 shrinks at exponential speed to zero in T.

This result implies that Proposition 1 still holds as long as μ is not too 
small. Quality decay affects the firm with higher quality more than the firm 
with lower quality as decay is modeled proportionally to existing quality. 
This force counteracts the main mechanism of our paper – namely that 
higher quality firms have more demand and therefore more user data leading 
to lower investment costs. We expect to find similar results as in Proposition 
5 also in other extensions that introduce a way in which higher quality leads 
to a disadvantage: if  those effects are not too strong, similar results as in the 
main section of our paper will hold.

1

2
− �x − �

1 −Δt−1

2
+ �Vt+1�

1
(�Δt−1 + x) = 0.
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Note that in the setting with decaying quality the firm that eventually 
becomes a monopolist has to continue to innovate in order to remain a 
monopolist as more quality decays for the high than for the low quality firm. 
However, the amount of innovation is at a very low level after the market has 
tipped. This is in line with the casual observation that dominant firms do not 
stop all quality investments after monopolizing a market which might have 
seemed at odds with the results in our baseline model.

V(ii).  Infinite Time Horizon

To understand whether the tipping result shown in the previous sections is an 
artifact of our equilibrium concept, looking at limits of subgame-perfect 
Nash equilibria of finite-time horizon games, we now analyze the model with 
an infinite time horizon.26

Games with an infinite time horizon usually have many equilibria. In par-
ticular, there can be equilibria which are not limits of equilibria in T-times 
repeated games, as T→∞. A commonly used restriction, which we also apply 
here, is to look at Markov equilibria.27 These are equilibria in which the equi-
librium strategy depends only on a ‘state variable’ and not on the full history 
of the game or the specific time period. The state variable in our setting is the 
quality difference Δ. In this section, we derive some properties that hold for 
all Markov equilibria. The main purpose is to show that our results on mar-
ket tipping in the previous section are not a special feature of the equilibrium 
of the T-times repeated game (as T→∞) but that market tipping, in some 
form, is a robust phenomenon across different equilibria of games with an 
infinite time horizon when there are data-driven indirect network effects.

To express our results clearly, we define the notions of steady state and 
stability.

Definition 4.  (Stable Steady State). Steady State denotes a quality differ-
ence Δ such that, in a given equilibrium, Δt  =  Δ implies Δt� = Δ, for all 
t� = t + 2n , for n = 1, 2, …. A Steady State Δ is (strictly) stable if, for some 
ɛ > 0, |Δt+2 −Δ| ≤ ( < )|Δt −Δ| for all Δt ∈ (Δ− �, Δ+ �).

Proposition 6.  (Tipping after Threshold Quality Difference). Let α ≥ 1/2. In 
every Markov equilibrium, Δ = −1 and Δ = 1 are strictly stable steady states.

	 26	Such games are usually called ‘stochastic games,’ (see Fudenberg and Tirole [1991], ch. 13), 
which might however sound a bit odd in our deterministic setup.
	 27	Strictly speaking, we focus in this section on stationary Markov equilibria, where strategies 
do not depend on the time period t. We call these equilibria ‘Markov equilibria’ for short. Note, 
however, that value functions will still depend on whether a period is odd or even due to the al-
ternating move assumption. A formal definition of Markov equilibrium can be found in Mailath 
and Samuelson [2006] (ch. 5.5) or in Fudenberg and Tirole [1991] (see ch. 13.1.2 for a discussion 
of Markov strategies in separable sequential games of perfect information and 13.2.1 for a for-
mal definition of Markov equilibrium).
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Proposition 6 considers cases where α ≥ 1/2, that is, where indirect network 
effects are sufficiently important in the innovation process. There, a firm with 
zero demand in the previous period would find zero investments optimal in 
a one-shot game. This parameter restriction rules out equilibria where, say, 
firm 1 has full demand in all odd periods but both firms take turns in invest-
ing a small amount such that firm 2 has a small, positive market share in 
even periods and zero market share in odd periods. (With α  ≥  1/2 firm 2 
would make losses in such a situation; see the discussion after Lemma 4.) 
The Proposition implies that a market tips whenever the quality difference 
between the competitors is sufficiently large.

Going a step further, we study how large the set of initial quality differ-
ences is that finally leads to market tipping. Especially, we are interested in 
the role of firms’ discount factor, δ.

Lemma 7.  For every ɛ > 0, there exists a 𝛿 > 0 such that the market tips strongly 
for all initial quality levels apart from a set of measure less than ɛ if 𝛿 < 𝛿.

Lemma 7 states that the market tips for almost all initial quality differ-
ences if  the discount factor δ is sufficiently low: If  firms do not value the 
future too much, the market will tip. To understand the intuition of this 
result, say the market should tip for all initial quality differences but an inter-
val of  ɛ length. For any ɛ  >  0, there is a discount factor � such that the 
Lemma is true whenever 𝛿 < 𝛿. This can be understood as a continuity prop-
erty: In the one shot game, firm 1’s (firm 2’s) investment is increasing 
(decreasing) in the initial quality difference due to the indirect network 
effects.28 Hence, there is only a single quality difference at which the two 
firms’ investments would be equal. For quality differences above (below) this 
level, firm 1 (firm 2) invests more than its rival. Consequently, the market 
would tip for all but this one initial quality level if  myopic players repeatedly 
played the game. While full myopia corresponds to δ = 0, Lemma 7 shows 
that this idea still holds approximately for low but positive discount factors.

These results are silent about market outcomes if  the discount factor is 
high and initial market shares are approximately equal. See the Journal’s edi-
torial web site for a numerical analysis for those cases, where we show that 
our results are qualitatively robust.

VI.  CONCLUSION

The process of  datafication is around us and progressing with stagger-
ing speed. From an economic perspective, a key feature of  this process 
is the growing importance of  data-driven indirect network effects, which 

	 28	This monotonicity does not hold in the regions where the investing firm grabs the entire 
market, but then the market will obviously tip, even within a single period!
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combine the automatic demand-side creation of  information on users’ 
preferences and characteristics, as a by-product of  using goods and ser-
vices that are connected to the internet, with a reduction in the marginal 
cost of  innovation on the supply side. Due to this combination, unlike 
direct network effects, two-sided market network effects, or learning-curve 
effects, these data-driven indirect network effects cannot be easily copied 
by competitors or be made irrelevant by the random arrival of  the next 
revolutionary innovation.

The results of our model on market tipping and connected markets suggest 
a race. On the one hand, technology firms with large stocks of existing data on 
user preferences and characteristics will be looking to identify data-driven 
business models utilizing these data stocks in other industries. On the other 
hand, traditional companies will be trying to increase data-independent prod-
uct quality in order to make it prohibitively costly for those data-driven firms 
to enter their markets in the first place. Several firms—most clearly Google, the 
self-proclaimed ‘data company’—have apparently understood this mecha-
nism. But other companies, notably some in manufacturing or car making, 
may have missed the message.29 We exemplified the domino effect by showing 
that Google’s strategy of investing in many apparently unrelated markets can 
be rationalized by our model: these markets are either already connected (by 
user information driving indirect network effects in each of them) or the firm 
is trying to identify business models where user information from existing mar-
kets can serve as a valuable input into traditional markets.30

The policy proposal to require data sharing of anonymized user informa-
tion among competitors in data-driven markets coincides with major policy 
initiatives of the European Commission.31 Since May, 2018, the General 

	 29	For instance, during a recent motor show, the head of production at Mercedes said amidst 
discussions about the future of the automobile industry, ‘we created the automobile, and we will 
not be a hardware provider to somebody else’ (The New York Times [2015]). Our model suggests 
a more cautious prediction.
	 30	Google’s success suggests that the firm is good in connecting markets. In July, 2019, Google 
Photos was reported to be the ninth Alphapet product with a billion users (https://www.engad​get.
com/2019-07-24-googl​e-photo​s-billi​on-users​-four-years.html). Many of them benefit from a 
shared pool of user information.
	 31	The proposal has already influenced policy makers. In January, 2018, the Secretary General 
of the Dutch Ministry of Economic Affairs wrote: ‘By increasing access to such anonymised 
clickstream data, other parties in different markets can use them for further innovation. At the 
same time, a strong concentration of large internet companies on these markets can be avoided 
(Prüfer and Schottmüller [2017]). One can think of the markets for digital maps, retail and, in 
the future, autonomous cars’ (Camps [2018], p.8). Other authors have built their own ideas on it: 
‘Rather than algorithmic transparency, regulators wanting to ensure competitive markets should 
mandate the sharing of data. To this end, economists Jens Prüfer and Christoph Schottmüller 
offer an intriguing idea. They suggest that large players using feedback data must share such 
data (stripped of obvious personal identifiers, and stringently ensuring that privacy is not being 
unduly compromised) with their competitors. Calculating the effect of such mandated data shar-
ing over a wide spectrum of scenarios, they see an overall net benefit in most cases, especially 
when one incumbent is close to dominating a market. Building on this idea, we suggest what we 
term a progressive data-sharing mandate’ (Mayer-Schönberger and Ramge [2018], p. 167).

https://www.engadget.com/2019-07-24-google-photos-billion-users-four-years.html
https://www.engadget.com/2019-07-24-google-photos-billion-users-four-years.html
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Data Protection Regulation has obliged firms to enable individuals to take 
their personal data with them when they quit using an online service.32 That 
is, differing from the proposal studied in Section II, data sharing is imple-
mented on the user side, not on the producer side, in Europe. A thorough 
comparison of both types of mandatory data sharing is up for future research.

On the empirical side, the fundamental mechanism of treating demand side-
generated user information as input into the supply side-run innovation pro-
cess must be studied and verified in various industries. On the theoretical side, 
the nexus of innovation and personalization, that is, the use of past user data 
to improve the service not only in general but in particular for the user whose 
interaction generated the data, is an important topic for future research.

Finally, the proposal studied in Section II is silent about organizational 
and institutional issues. What type of data should be shared in which market, 
and precisely by whom? At which intervals? Should competitors be asked to 
share data bilaterally, in a network of dyads? Or should there be a third party, 
for instance a centralized public authority that collects and distributes the 
data from and among competitors? Or should such an authority be a private 
industry association that is run by and on behalf  of competitors? These are 
just some of the important questions, on top of a battery of legal issues, that 
have to be answered before policy makers could seriously consider taking 
action. We are working on them.

APPENDIX A

PROOFS

I. Derivations for Period T

The optimal interior xT in (3) follows directly from the first order condition. The 
main task is to derive the boundaries of  the range of  interior investments. This range 
is limited by the following conditions: First, −1≤ΔT = ΔT−1−xT≤1. Second, VT

2
≥ 0 

and third xT ≥ 0. For α ≥ 1/2, the marginal costs of  investment at ΔT−1 = 1 are higher 
than the marginal revenue and therefore zero investment is optimal already for some 
Δt−1≤1. Clearly, VT

2
≥ 0 and ΔT≤1 in this case and the binding upper bound on ΔT−1 is  

derived from xT ≥ 0 which can then be rewritten as ΔT−1≤1/α−1. For α < 1/2, there 
are some ΔT−1 > 1 such that investment is still profitable and the optimal investment 
at these ΔT−1 > 1 is 1/2γ−α/γ > 0 (as D2(ΔT−1) = 0). Profits for firm 2 are in this case 
1/2−ΔT−1/2+1/(8γ)−α/(2γ)+α2/(2γ) and therefore VT

2
≥ 0 if  ΔT−1≤1+(1−4α(1−α))/

(4γ). Note that this condition is also sufficient for ΔT≤1 and we obtain the expression 
for Uα from these considerations.

	 32	Regulation (EU) 2016/679 of the European Parliament and of the European Council of 27 
April, 2016, on the protection of natural persons with regard to the processing of personal data 
and on the free movement of such data (https://op.europa.eu/en/publi​catio​n-detai​l/-/publi​catio​
n/3e485​e15-11bd-11e6-ba9a-01aa7​5ed71a1).

https://op.europa.eu/en/publication-detail/-/publication/3e485e15-11bd-11e6-ba9a-01aa75ed71a1
https://op.europa.eu/en/publication-detail/-/publication/3e485e15-11bd-11e6-ba9a-01aa75ed71a1
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The condition ΔT ≥ −1 can be rewritten (using the optimal interior investment) as 
ΔT−1  ≥ −1+1/2γ−(1−D2(ΔT−1)α/γ. Depending on whether ΔT−1 is below or above 1, 
the condition is ΔT−1 ≥ −1+1/(2γ+α) or ΔT−1 ≥ −1+(1−2α)/(2γ). As, by the assumption 
γ > 1/4, the former bound is below 1, ΔT−1 ≥ −1+1/(2γ+α) is the relevant lower bound. 
The profits in (4) and (5) follow then simply from plugging (3) into the profit functions.

II. Proof of Lemma 1

We know from Section I that Lemma 1 is true in t = T. We proceed by induction. 
Assuming that the statement is true for t+1, we will now show that it is true for t. For 
concreteness, say t is odd, i.e., firm 1 can invest. We consider the last statement of 
the Lemma first: Take two values of Δt−1; a high one, Δh, and a low one, Δl. Denote 
firm 1’s optimal investment by x(Δt−1). Now suppose – contrary to the Lemma – that 
Δh
t
= Δh + x(Δh) < Δl + x(Δl ) = Δl

t
. We will show that this leads to a contradiction. 

Optimality of the investment xh = x(Δh) requires that investing xh leads to a higher 
value than investing Δl+xl−Δh when the quality difference is Δh:

Similarly, investing xl must lead to a higher value than investing xh+Δh−Δl if  the qual-
ity difference is Δl:

Taking these two optimality conditions together we obtain

We will show that this last inequality cannot hold. Note that Δh > Δl implies that 
xh < Δh+xh−Δl. Therefore, the strict convexity of c in x implies that

as the difference in x is the same on both sides of the inequality but the cost differ-
ence is evaluated at a lower x on the right hand side. As D1 is strictly increasing in Δ 
and Δh > Δl, the assumption cxD1

< 0 implies that the right hand side of the previous 
inequality is lower when evaluated at D1(Δ

h) instead of D1(Δ
l) (this is the point where 

we use Δl+xl > Δh−xh which implies Δl+xl−Δh > xh), i.e.

D1(Δ
h+xh)−c(xh,D1(Δ

h))+�Vt+1
1

(Δh+xh)

≥D1(Δ
l +xl )−c(Δl +xl −Δh,D1(Δ

h))+�Vt+1
1

(Δl +xl )

⇔D1(Δ
h+xh)−D1(Δ

l +xl )+�Vt+1
1

(Δh+xh)−�Vt+1
1

(Δl +xl )

≥ c(xh,D1(Δ
h))−c(Δl +xl −Δh,D1(Δ

h)).

D1(Δ
l +xl )−c(xl ,D1(Δ

l ))+�Vt+1
1

(Δl +xl )

≥D1(Δ
h+xh)−c(Δh+xh−Δl ,D1(Δ

l ))+�Vt+1
1

(Δh+xh)

⇔D1(Δ
h+xh)−D1(Δ

l +xl )+�Vt+1
1

(Δh+xh)−�Vt+1
1

(Δl +xl )

≤ c(Δh+xh−Δl ,D1(Δ
l ))−c(xl ,D1(Δ

l )).

(A.1)

c(xl ,D1(Δ
l )) − c(Δh + xh − Δl ,D1(Δ

l )) ≤ c(Δl + xl − Δh,D1(Δ
h)) − c(xh,D1(Δ

h)).

c(xl ,D1(Δ
l )) − c(Δh + xh − Δl ,D1(Δ

l )) > c(Δl + xl − Δh,D1(Δ
l )) − c(xh,D1(Δ

l ))

c(xl ,D1(Δ
l ))−c(Δh+xh−Δl ,D1(Δ

l )) > c(Δl +xl −Δh,D1(Δ
l ))−c(xh,D1(Δ

l ))

> c(Δl +xl −Δh,D1(Δ
h))−c(xh,D1(Δ

h)).
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But this contradicts (A.1). We can therefore conclude that Δt is increasing in Δt−1.
To show that Vt

1
(Δt−1) is increasing in Δt−1 consider again Δh > Δl and let xl be the 

optimal choice under Δl:

where the inequality follows from the fact that D1 is increasing and c is decreasing 
in D1 as well as the induction assumption that Vt+1

1
 is increasing.

To show that Vt
2
(Δt−1) is decreasing, recall that Δt = Δt−1+x(Δt−1) is increasing in 

Δt−1 and therefore

since D2 and Vt+1
2

 are decreasing.
If  t is even, the proof is analogous.					                 □

III. Proof of Proposition 1

We start with stating and proving two Lemmas which constitute important steps on 
the way to proving Proposition 1 and which are also of  independent interest.

Lemma 1 implies the following result that establishes the first part of Proposition 1.

Lemma A.1.  I  t is an interval.

Proof of Lemma A.1.  Take some Δt as given. Assume Δt� ≥ 1 for some t′ > t. Then 
Δt� is also above 1 for all Δ�

t
> Δt. This follows directly from Lemma 1 as a higher Δt 

leads to a higher Δt+1, which leads in turn to a higher Δt+2… which leads to a higher Δt�.

This implies the following: Whenever for a given Δt we have Δt� ≥ 1, for some t′ > t , 
then the same is true for all higher Δt. Clearly, we can obtain the same result for −1: 
Whenever for a given Δt we have Δt� ≤ − 1 for some t′ > t, then the same is true for 
all lower Δt. These two statements imply the Lemma.			                □

We will now show an important technical property of value functions and quality 
investment in the interval It. Lemma A.2 states that, for quality differences in It, firm 
i will invest more if  it had more demand in the previous period. This means that equi-
librium forces do not destroy the basic cost advantage generated by indirect network 
effects. Instead, having relatively higher quality than a competitor incentivizes a firm 
to invest even more heavily in the future.

Lemma A.2.  (Monotonic dynamic quality investment incentives). Assume that the 
equilibrium investment is strictly positive in all periods if  Δt ∈ I t. Restricted to the 
interior of It, (i) Vt

i
 is quadratic and convex; (ii) in odd periods, firm 1’s investment 

Vt
1
(Δh) =max

x
D1(Δ

h+x)−c(x,D1(Δ
h))+�Vt+1

1
(Δh+x)

≥D1(Δ
h+xl )−c(xl ,D1(Δ

h))+�Vt+1
1

(Δh+xl )

≥D1(Δ
l +xl )−c(xl ,D1(Δ

l ))+�Vt+1
1

(Δl +xl )

=Vt
1
(Δl )

Vt
2
(Δh) =D2(Δ

h+x(Δh))+�Vt+1
2

(Δh+x(Δh))

≤D2(Δ
l +x(Δl ))+�Vt+1

2
(Δl +x(Δl ))=Vt

2
(Δl )
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is linearly and strictly increasing in Δt−1; (iii) in even periods, firm 2’s investment is 
linearly and strictly decreasing in Δt−1.

Proof of Lemma A.2.  Lemma A.2 is true for period T; see equations (4) and (5). We 
will argue via induction that it is true for any t. From the definition of It and Lemma 
1, it is clear that any Δt in the interior of It leads in equilibrium to a Δt+1 in the interior 
of It+1. Then the first-order conditions of the investing firm, (7) or (8) respectively, 
implies that the optimal investment is linear in Δt−1 as D is linear, c is quadratic and 
Vt+1
i

 is by the induction hypothesis quadratic.

Consider an odd t where firm 1 invests. Then using the implicit function theorem 
on (7) yields

where the inequality follows because Vt+1
i

 is convex by the induction hypothesis and 
the denominator is positive by the second-order condition of the maximization prob-
lem. Note that x is linear as Vt+1

i
 is quadratic by the induction hypothesis.33 Similarly, 

if  t is even then

Now we want to derive Vt′′

1
 in odd t. By the envelope theorem,

which after differentiating yields

We conclude that Vt′′

1
≥ 0 as Vt+1��

1
≥ 0 by the induction hypothesis.

Furthermore, Vt
1
 is quadratic as xt is linear and Vt+1

1
 is quadratic. Next we consider 

Vt′′

2
 for odd t:

(A.2) dxt

dΔt−1

=
𝛼∕2 + 𝛿Vt+1��

1

𝛾 − 𝛿Vt+1��

1

> 0

	 33	Here one might consider the possibility of a corner solution xt = 0 if  marginal costs, i.e., α, 
are excessively high. If  we assume α≤1/2 this is impossible (recall that Vt+1

1
 is increasing). For 

large T = ∞, the assumption α < 1 would be enough to rule this out: Suppose it xt = 0: Then 
Δt−1 < 0 as otherwise α < 1 implies that firm 1 wants to invest (recall that Vt+1

1
 is increasing). This 

implies by α < 1 that firm 2 will invest a positive amount in t+1 and Δt+1 < Δt−1. By the convexity 
of Vt+1

1
, firm 1 will again find it optimal to invest 0 in t+2. Repeating the argument shows that Δ 

will diverge to −1 which contradicts that Δt ∈ I t.

(A.3)
dxt

dΔt−1

=
− 𝛼∕2 − 𝛿Vt+1��

2

𝛾 − 𝛿Vt+1��

2

< 0.

Vt�

1
(Δt−1) =

1

2
+ �xt

1

2
+ �Vt+1�

1
(Δt−1 + xt)

(A.4) Vt��

1
= �

d xt

d Δt−1

1

2
+ �

(
1 +

d xt

d Δt−1

)
Vt+1��

1
.

(A.5)

Vt+1��

2
(Δt−1) = −

1

2
+�

(
1+

d xt

d Δt−1

)
Vt+1�

2
(Δt−1+x

t)

Vt��

2
=�

(
1+

d xt

d Δt−1

)2

Vt+1��

1
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where the last step utilizes that xt is linear (hence its second derivative is zero). 
We obtain that Vt′′

2
≥ 0 as Vt+1��

2
≥ 0 by the induction hypothesis. Also Vt

2
 is 

quadratic as xt is linear and Vt+1
2

 is quadratic. The result for even t is derived 
analogously.� □

Note that Proposition 1 holds for t = T by the definition of It with t = T.34 For a 
given equilibrium in the game with length T, consider the function that assigns to 
each Δt the resulting Δt+1, e.g., for even t we have Δt+2(Δt) = Δt+xt+1(Δt)−xt+2(Δt+xt+

1(Δt)). By Lemma A.2, this function is linear on the interior of It (if  both xt+1 and xt+2 
are strictly greater than 0). Using the first-order conditions, it is straightforward to 
calculate that the slope of Δt+2(Δt) is (for concreteness, we let t be odd though this has 
no impact on the final result):

If  either xt+1 or xt+2 is zero (say for concreteness xt+2 = 0), then the slope is only

By α < 1, it is impossible that both xt+1 and xt+2 are zero at any quality difference 
between -1 and 1. From the definition of It, it follows that the length of It can be at 
most length(I t+2)∕ s. The condition in the Proposition iterates this reasoning, e.g., the 
length of It can be at most length(I t+4)∕s2 etc. Since 1+α/(2γ) > 1, the maximal length 
of I0 shrinks to zero as T becomes large.                                                                         □

IV. Proof of Lemma 2

As the proof  of  Proposition 1 shows, the upper (lower) bound of  It will be 
strictly below 1 (above -1) for t  <  T−1. This implies that Δt is strictly above 
(below) It if  Δt = 1 (if  Δt = −1). By the definition of  It and the monotonicity 
derived in Lemma 1, it follows that Δt� has again to be 1 (respectively -1) in some 
later period t′ > t. The monotonicity in Lemma 1 in fact implies that Δt� will be 
above I t

′

 in all t′ > t and therefore firm j cannot have full demand in any follow-
ing period.                                					                □

	 34	 In fact, we could use the analysis of Section I to give the tighter (though somewhat messy) 
bound [Uα+(2γ−1+α)/(2γ+α)]/[(1+α/(2γ))⌈T−t⌉/2] in the Proposition. The proof for this tighter 
bound is the same.

dΔt+2

dΔt

=
d
{
Δt+1+x

t+2(Δt+1)
}

d Δt

=
d
{
Δt−x

t+1(Δt)+x
t+2

(
Δt−x

t+1(Δt)
)}

d Δt

=1+
𝛼∕2+𝛿Vt��

2

𝛾−𝛿Vt��

2

+
𝛼∕2+𝛿Vt+1��

1

𝛾−𝛿Vt+1��

1

(
1+

𝛼∕2+𝛿Vt��

2

𝛾−𝛿Vt��

2

)

=

(
1+

𝛼∕2+𝛿Vt+1��

1

𝛾−𝛿Vt+1��

1

)(
1+

𝛼∕2+𝛿Vt��

2

𝛾−𝛿Vt��

2

)
> (1+𝛼∕(2𝛾))2 > 1

s = 1 +
𝛼∕2 + 𝛿Vt+1��

i

𝛾 − 𝛿Vt+1��

i

> 1 + 𝛼∕(2𝛾) > 1.
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V. Proof of Lemma 3

We will show that there exists a stationary Markov equilibrium that is the limit of 
subgame-perfect Nash equilibria in games with finite time horizon as the time horizon 
T approaches infinity. Note that a Markov equilibrium can essentially be denoted by the 
value function. We will therefore concentrate on those. For every time horizon T, take a 
subgame perfect Nash equilibrium and denote the first period value function of player i 
as V 1,T

i
. Note that player i’s value function is bounded from below by 0 and bounded from 

above by 1/(1−δ) (i.e., the revenue of capturing the whole market for all times without 
investing anything). By Lemma 1, the value functions are monotone. Take an increasing 
sequence of T’s and the corresponding sequence of value functions of firm 1 (V 1,T

1
)T.

We will show that this sequence (V 1,T

1
)T has a pointwise converging subsequence. 

To do so we consider the metric space of increasing functions mapping into [0,1/
(1−δ)]. First consider the restrictions of the functions in (V 1,T

1
)T to the rational 

domain ℚ. As ℚ is countable, the diagonal theorem, see for example Appendix A14 
in Billingsley [2008], establishes that there exists a subsequence of (V 1,T

1
)T that con-

verges pointwise on ℚ. With a slight abuse of notation, let (V 1,T

1
)T be this subsequence 

in the remainder and let Ṽ  be the pointwise limit. Note that Ṽ  is monotone (on ℚ) 
because all V 1,T

1
 are monotone. Now consider again the original domain ℝ and let 

� be the set of points on which (V 1,T

1
)T does not converge. For any d ∈ �, we claim 

that limq∈ℚ↗d Ṽ (q) < limq∈ℚ↘d Ṽ (q). By monotonicity of Ṽ  on ℚ, the opposite strict 
inequality is impossible. If, however, limq∈ℚ↗d Ṽ (q) = limq∈ℚ↘d Ṽ (q), then (V 1,T

1
(d))T 

must converge to limq∈ℚ↘d Ṽ (q), contradicting that d ∈ �. To make the latter point 
clear, suppose to the contrary that there is an ɛ > 0 such that for any T′ there exists a 
T > T′ such that |V 1,T

1
(d) − limq∈ℚ↘d Ṽ (q)| > 𝜀. For concreteness, let us assume that 

we can find such a T > T′ such that V 1,T

1
(d) − limq∈ℚ↘d Ṽ (q) > 𝜀 (the opposite case 

analogous). Take a q′ > d such that Ṽ (q�) < limq∈ℚ↘d Ṽ (q) + 𝜀∕2. As (V 1,T

1
) converges 

point-wise, there exists a T″ such that Ṽ (q�) + 𝜀∕2 > V
1,T

1
(q�) for all T > T″. Hence, 

V
1,T

1
(q�) < limq∈ℚ↘d Ṽ (q) + 𝜀 for T > T″ but this (together with the monotonicity of 

V
1,T

1
) contradicts that V 1,T

1
(d) − limq∈ℚ↘d Ṽ (q) > 𝜀 for some arbitrarily large T. This 

establishes that limq∈ℚ↗d Ṽ (q) < limq∈ℚ↘d Ṽ (q) for all d ∈ �.
As ̃V  is monotone on ℚ and ℚ is dense in ℝ, the condition limq∈ℚ↗d Ṽ (q) < limq∈ℚ↘d Ṽ (q) 

can hold at only countably many points d. Hence, � has a countable number of ele-
ments. But then the diagonal theorem can be applied again to show that there exists 
a subsequence of (V 1,T

1
)T that converges point-wise on ℝ. For this subsequence of 

T, take the corresponding subsequence of (V 1,T

2
)T and, using the same steps, we can 

get a subsequence such that also (V 1,T

2
)T converges point-wise on ℝ. Let V 1,∗

1
 and V 1,∗

2
 

be these limit value functions. Using the second period value functions correspond-
ing to the elements of the sequence of value functions converging to (V 1,∗

1
,V

1,∗

2
) and 

applying the same steps again gives us a subsequence of value functions (this time 
for the even periods where firm 2 is investing) converging point-wise. The resulting 
(V

1,∗

1
,V

1,∗

2
,V

2,∗

1
,V

2,∗

2
) is a stationary Markov equilibrium (if  the Bellman equation 

was not satisfied for one player at some Δ, it would also be violated for this player in 
a subgame-perfect Nash equilibrium for T sufficiently high).

After showing existence, we provide a persistence result that for stationary equilib-
ria that are the limit of a subgame-perfect equilibrium of the finite-length game that 
is somewhat stronger than Lemma 2.
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Vi will no longer depend on t as the equilibrium is stationary. For concreteness, let 
firm i be firm 1 and assume that firm 1 has full demand in period t but not in t−2 (i.e. t 
is the first period in which firm 1 has full demand). Let t be odd (this is without loss of 
generality: if  firm 1 has full demand in an even period, it will obviously also have full 
demand in the directly following odd period). From Lemma 1 it follows that Δt+1 ≥ Δt−1 
is implied by Δt−2 < Δt. This implies, by Lemma 1, that Δt+2 ≥ Δt. As firm 1 had full 
demand in t, firm 1 will have full demand again in t+2. This argument can now be iter-
ated to yield the result (i.e. Δt+2 ≥ Δt implies Δt+4 ≥ Δt+2 etc.). Note that this iteration 
also shows that Δt+2n+1 is increasing in n ∈ ℕ. As we consider a stationary equilibrium, 
nothing depends on time periods per se and the result therefore also holds if  firm 1 has 
full demand in the initial period. An analogous argument works for firm 2.� □

VI. Proof of Proposition 2

Follows directly from the combination of Proposition 1 and Lemma 2.

VII. Proof of Lemma 4

Let the market be weakly tipping and assume for concreteness that firm 1 obtains full 
demand in some period t″ and that T is even. Lemma 2 (used inductively) implies that 
firm 1 will also have full demand in period T−1. By α ≥ 1/2, marginal costs of firm 2 
in period T are greater than 1/2 for every investment x > 0 while marginal revenue is 
– at most – −D�

2
= 1∕2. Hence, zero investment is optimal for firm 2 in period T and 

firm 1 will have full demand also in period T. Using t� = T − 1 in the definition of 
absolutely tipping market gives the result.� □

VIII. Proof of Proposition 3

Note that Lemma A.1 and Lemma A.2 hold still true as their proofs go through with 
only minor changes in notation.

In the interior of It, the first-order condition in even periods is

Note that this always yields a positive optimal investment, by α′ < 1 and Vt+1�

2
< 0 . 

In particular, (1−α′)/(2γ′) is a lower bound for this investment. Furthermore – as Vt+1
2

 
is quadratic in the interior of It – the optimal investment is linear in Δt−1 with slope 
− �Vt+1��

2
∕(� � + �Vt+1�

2
) ≤ 0.

In odd periods, the slope of  the optimal investment is as given in (A.2) unless 
the investment is zero, which is in principle possible if  α > 1/2 and Δt−1 sufficiently 
negative. We will now show that the optimal investment of  firm 1 has to be strictly 
positive in the interior of  It (as T→∞) in some periods. Recall that firm 2’s invest-
ment in even periods is bounded from below by (1−α′)/(2γ′). If  firm 1 invested zero 
in 4γ′/(1−α′) consecutive odd periods, then clearly Δ would decrease by more than 
2 and, therefore, firm 2 would have captured the whole market, which contradicts 
the definition of  It.

1∕2 − � �x − ��∕2 − �Vt+1�
2

(Δt−1 − x) = 0.
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Hence, at least in one period out of every time window of 8γ′/(1−α′) periods, firm 1 
will have an interior investment. Let t+1 be such a period with an interior investment 
by firm 1. Then,

If  firm 1 chooses xt+1 = 0, then:

The effect of increasing Δ0 by ɛ > 0 will therefore be greater than 2 in 2γ/α*8γ′/
(1−α′) periods which shows that Δ0 + ɛ cannot be in I0 if  Δ0 is. Since ɛ > 0 is arbitrary, 
this shows that the length of the interval I0 is zero if  T is sufficiently large. The other 
results follow immediately from there.� □

IX. Proof of Corollary 1

Let Δ0 be the infimum of the initial quality differences for which the market tips 
weakly in favor of  firm 1 in case of  entry. (Such a Δ0 trivially exists as firm 2 finds 
investments unprofitable for sufficiently high Δ0). Part (i) is obviously true as firm 1 
will never enter if  F > F = 1∕(1 − 𝛿). (ii) Recall that V 1

1
 is increasing in Δ0. As firm 

1 enters only if  F ≤ V 1
1
(Δ0), this implies that firm 1 enters only if  Δ0 is sufficiently 

large. For F ∈ [V 1
1
(Δ0),F ], firm 1 enters only if  it takes over the market eventually, 

i.e., taking F̂ = V 1
1
(Δ0) yields (ii). Part (iii), entry without tipping, occurs if  Δ0 < Δ0 

but nevertheless entry allows a positive profit. For example, assume α′ and γ′ are very 
low, say 0 for concreteness, (and α and γ are not low), then firm 2 will react to entry 
by investing in period 2 sufficiently to force firm 1 from the market. If  F = 0 and 
Δ0 > −1, entry will nevertheless be profitable for firm 1 as positive profits are made 
in period 1.� □

X. Proof of Proposition 4

Consider competition between a data-driven firm 1 and a traditional firm 2, as de-
scribed in Section IV. The main argument of the proof is the intuitive result that a 
hypothetical reduction of the marginal costs of investment of the data-driven firm 1 
in some period t would increase its value function in all earlier periods.

Consider the effect of  an exogenous reduction in firm 1’s marginal costs (and total 
costs) in some odd period t on the value functions of firm 1 and firm 2. Clearly, firm 

dΔt+2

dΔt

=
d
{
Δt+1−x

t+2(Δt+1)
}

dΔt

=
d
{
Δt+x

t+1(Δt)−x
t+2

(
Δt+x

t+1(Δt)
)}

dΔt

=1+
𝛼∕2+𝛿Vt��

1

𝛾−𝛿Vt��

1

+
𝛿Vt+1��

2

𝛾 � −𝛿Vt+1��

2

(
1+

𝛼∕2+𝛿Vt��

1

𝛾−𝛿Vt��

1

)

=

(
1+

𝛼∕2+𝛿Vt+1��

1

𝛾−𝛿Vt+1��

1

)(
1+

𝛿Vt��

2

𝛾 � −𝛿Vt��

2

)
> 1+𝛼∕(2𝛾) > 1.

dΔt+2

dΔt

=
d
{
Δt+x

t+1(Δt)−x
t+2

(
Δt+x

t+1(Δt)
)}

dΔt

=1+
�Vt+1��

2

� � −�Vt+1��

2

≥1.
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1 will have higher profits in t (as costs are lower) and will invest weakly more as mar-
ginal costs are lower. This implies that Vt

1
 is higher and Vt

2
 is lower. This, in turn, implies 

that Vt−1
2

 is also lower because for any investment firm 2 undertakes in t−2, including 
the optimal one, the resulting value in period t is lower. Furthermore, firm 2’s optimal 
investment in t−1 is lower: Via induction starting from T it is straightforward to show 
that Vt

2
(Δt−1) is quadratic and concave in Δt−1 (while investments are linear in the qual-

ity difference). As own investments xt−1
2

 reduce Δt−1, future benefits of  investments 
are reduced as a consequence of the exogenous reduction in 1’s marginal costs in t. 
Hence, the derivative of  Vt

2
(Δt−2 − xt−1

2
) =

1−Δt−2 +x
t−1
2

−xt
1

2
+ �Vt+1

2
(Δt−2 − xt−1

2
+ xt

1
) 

with respect to xt−1
2

 is lower due to the linearity of  xt
1
 and the concavity of  Vt+1

2
 and 

the increase in xt
1
. Hence, the incentives of  firm 2 to invest in t−1 are reduced. This 

implies that Vt−1
1

 is higher as a consequence of the exogenous reduction in firm 1’s 
marginal cost in t: first, because Vt

1
 is higher and second because firm 2 invests less in 

t−1. Arguing inductively, the same can be shown for all earlier periods, that is, firm 
1’s value function is higher and firm 2’s value function is lower as a consequence of 
an exogenous reduction in firm 1’s marginal costs of  investment in some period t. 
Firm 1’s higher value function will also allow entry for values of  F for which entry 
would have been prohibitive without the cost reduction. If  market B is connected 
to A, then an increase of  the market share in A reduces firm 1’s marginal costs of 
investment in market B. Hence, an increase in market share in A allows entry in B for 
values of  F where entry would be prohibitive costly, otherwise. This shows the result: 
Firm 1 will enter market B only if  its value of entering exceeds F, which is the case if  
its marginal cost of  investment is low enough. This holds if  its (current and future) 
market share in A is sufficiently high.� □

XI. Proof of Lemma 5

By Proposition 3, the length of I0 is zero. That is, it contains at most a single point. 
Consequently, there is a Δ0 such that the market tips in favor of firm 1 (2) if  Δ0 > Δ0 
(if  Δ < Δ0). By the stationarity of the equilibrium, Δ0 = Δt for all t, where Δt is the 
quality difference such that the market will eventually tip in favor of firm 1 if  the 
quality difference is above Δt after period t.

Now we will show that Δ2 > Δ0 implies that Δ0 > Δ0. To do so we show that Δ is 
increasing over time if  Δ0 > Δ0 and decreasing if  Δ0 < Δ0. To see this, let Δ0 > Δ0 or, 
more generally, Δt > Δt. If  Δt+2 < Δt, then—by the monotonicity shown in Lemma 
1—Δt+2 < Δt+2 < Δt for all Δ̃t < Δt. In a stationary equilibrium, this implies that 
Δt+2n can never be above Δt. If  Δt  <  1, this would, however, contradict Δt > Δt. 
Hence, for all Δt ∈ (Δt, 1), we obtain that Δt+2 > Δt. By monotonicity, we then get 
Δt+2 ≥ 1 for all Δt ≥ 1. Similarly, we can obtain the result that, for all Δt ∈ ( − 1,Δt), 
we have Δt+2 < Δt. By monotonicity, we then get Δt+2≤−1 for all Δt ≤ −1.

Taking this together we can have market entry and Δ2 > Δ0 only if  Δ0 > Δ0.� □

XII. Proof of Lemma 6

The Lemma is true for t = T. Using (backwards) induction and the first-order condi-
tions (7) and (8), it is straightforward to derive the result for t < T.
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Let us be a bit more precise here: In period T, VT �

1
= 1∕2 on IT. In other periods, 

VT �

1
= 1∕2 + �Vt+1�

1
 on It, which implies by induction that VT �

1
=

∑T−t

i = 0
�i∕2 on It. 

Similarly, Vt�

2
= −

∑T−t

i=0
�i∕2 on It. Using the first-order conditions (7) and (8) yields 

that

on It.� □

XIII. Proof of Lemma 1 with Decaying Quality

First consider Lemma 1(ii). Take two values of Δt−1; a high one, Δh, and a low one, 
Δl. Denote firm 1’s optimal investment by x(Δt−1). Now suppose – contrary to the 
Lemma – that Δh

t
= 𝜇Δh + x(Δh) < 𝜇Δl + x(Δl ) = Δl

t
. We will show that this leads 

to a contradiction. Optimality of the investment, xh = x(Δh), requires that investing xh 
leads to a higher value than investing μΔl+xl−μΔh when the quality difference is Δh:

Similarly, investing xl must lead to a higher value than investing xh+μΔh−μΔl if  the 
quality difference is Δl:

Taking these two optimality conditions together, we obtain:

We will show that this last inequality cannot hold. Note that Δh > Δl implies that 
xh < μΔh+xh−μΔl. Therefore, the strict convexity of c in x implies that:

because the difference in x is the same on both sides of the inequality but the cost 
difference is evaluated at a lower x on the right-hand side. As D1 is strictly increasing 
in Δ and Δh > Δl, the assumption cxD1

< 0 implies that the right-hand side of the 
previous inequality is lower when evaluated at D1(Δ

h) instead of D1(Δ
l) (for this, we 

use μΔl+xl > μΔh−xh, which implies μΔl+xl−μΔh > xh). It follows:

xt =
1∕2 + �|Vt+1�

i
|

�
=

1 − �T−t+1

2�(1 − �)

D1(�Δ
h+xh)−c(xh,D1(Δ

h))+�Vt+1
1

(�Δh+xh)

≥D1(�Δ
l +xl )−c(�Δl +xl −�Δh,D1(Δ

h))+�Vt+1
1

(�Δl +xl )

⇔D1(�Δ
h+xh)−D1(�Δ

l +xl )+�Vt+1
1

(�Δh+xh)−�Vt+1
1

(�Δl +xl )

≥ c(xh,D1(Δ
h))−c(�Δl +xl −�Δh,D1(Δ

h)).

D1(�Δ
l +xl )−c(xl ,D1(Δ

l ))+�Vt+1
1

(�Δl +xl )

≥D1(�Δ
h+xh)−c(�Δh+xh−�Δl ,D1(Δ

l ))+�Vt+1
1

(�Δh+xh)

⇔D1(�Δ
h+xh)−D1(�Δ

l +xl )+�Vt+1
1

(�Δh+xh)−�Vt+1
1

(�Δl +xl )

≤ c(�Δh+xh−�Δl ,D1(Δ
l ))−c(xl ,D1(Δ

l )).

(A.6)
c(xl ,D1(Δ

l )) − c(�Δh + xh − �Δl ,D1(Δ
l )) ≤ c(�Δl + xl − �Δh,D1(Δ

h)) − c(xh,D1(Δ
h)).

c(xl ,D1(Δ
l )) − c(𝜇Δh + xh − 𝜇Δl ,D1(Δ

l )) > c(𝜇Δl + xl − 𝜇Δh,D1(Δ
l )) − c(xh,D1(Δ

l ))

c(xl ,D1(Δ
l ))−c(𝜇Δh+xh−𝜇Δl ,D1(Δ

l )) > c(𝜇Δl +xl −𝜇Δh,D1(Δ
l ))−c(xh,D1(Δ

l ))

> c(𝜇Δl +xl −𝜇Δh,D1(Δ
h))−c(xh,D1(Δ

h)).
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But this contradicts A.6. We can therefore conclude that Δt is increasing in Δt−1.
To prove the robustness of Lemma 1(i), we have to show that Vt

1
(Δt−1) is increasing 

in Δt−1. Consider again Δh > Δl and let xl be the optimal choice under Δl:

where the inequality follows from the fact that D1 is increasing and c is decreasing in 
D1 as well as the induction assumption that Vt+1

1
 is increasing.

To show that Vt
2
(Δt−1) is decreasing, recall that Δt = μΔt−1+x(Δt−1) is increasing in 

Δt−1 and therefore

because D2 and Vt+1
2

 are decreasing.
If  t is even, the proof is analogous.� □

XIV. Proof of Proposition 5

The proofs of Lemma A.1 and Lemma A.2 go through without substantial change. 
However, the slope of the investment decision in the interior of It if firm 1 invests is now

and if  firm 2 invests we obtain

Following the proof of Proposition 1, we now have to analyze (concentrating on 
odd t for concreteness) Δt+1(Δt)=μ2Δt−μxt+1(Δt)+xt+2(μΔt−xt+1(Δt)). This yields (if  
both xt+1 and xt+2 are strictly positive)

If  only one of the two investments is positive (say xt+2 = 0) we obtain the following 
slope

Vt
1
(Δh) =max

x
D1(�Δ

h+x)−c(x,D1(Δ
h))+�Vt+1

1
(�Δh+x)

≥D1(�Δ
h+xl )−c(xl ,D1(Δ

h))+�Vt+1
1

(�Δh+xl )

≥D1(�Δ
l +xl )−c(xl ,D1(Δ

l ))+�Vt+1
1

(�Δl +xl )

=Vt
1
(Δl ),

Vt
2
(Δh) =D2(�Δ

h+x(Δh))+�Vt+1
2

(�Δh+x(Δh))

≤D2(�Δ
l +x(Δl ))+�Vt+1

2
(�Δl +x(Δl ))=Vt

2
(Δl )

d xt

d Δt−1

=
�∕2 + ��Vt+1��

1

� − �Vt+1��

1

d xt

d Δt−1

=
− �∕2 − ��Vt+1��

2

� − �Vt+1��

2

.

dΔt+2

dΔt

=

(
𝜇+

𝛼∕2+𝜇𝛿Vt+1��

1

𝛾−𝛿Vt+1��

1

)(
𝜇+

𝛼∕2+𝜇𝛿Vt��

2

𝛾−𝛿Vt��

2

)
> (𝜇+𝛼∕(2𝛾))2 > 𝜇(𝜇+𝛼∕(2𝛾)).

s
¯

= 𝜇2 + 𝜇
𝛼∕2 + 𝜇𝛿Vt��

2

𝛾 − 𝛿Vt��

2

> 𝜇(𝜇 + 𝛼∕(2𝛾)).
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If μ(μ+α/(2γ)) > 1, we can therefore bound the slope Δt+2 as a function of Δt from 
below by a constant strictly higher than 1. The maximal length of I0 will therefore 
shrink to zero at exponential speed as T→∞ if  μ(μ+α/(2γ)) > 1.� □

XV. Proof of Proposition 6

The proof is done for Δ while the proof for Δ works analogous. First, we show 
that for sufficiently high Δ investments by both SE are zero. Note that for Δ > 1 
the marginal costs of  firm 2 are strictly higher than α. Now suppose that Δ > 1+1/
(α−αδ). It is then optimal for firm 2 not to invest: Suppose otherwise, i.e., suppose 
there is a Δ′ > 1+1/(α−αδ) such that firm 2 invest in equilibrium. This implies that 
firm 2 must have positive demand eventually in this equilibrium, say firm 2 will have 
positive demand (for the first time) in t′ periods. Firm 2’s revenue is then bounded 
from above by �t

�

∕(1 − �) . Firm 2’s investment costs (until period t′, i.e. until Δ < 1) 
are strictly bounded from below by �t

�

�∕(� − ��), which equals the upper bound on 
revenues. Hence, firm 2’s value would be negative although it could secure a zero 
value by not investing ever. This contradicts that there is an equilibrium in which 
firm 2 invests a positive amount at some Δ > 1+1/(α−αδ). Given that firm 1 has full 
demand and firm 2 does not invest for Δ > 1+1/(α−αδ), firm 1 will also not invest 
for Δ > 1+1/(α−αδ). This proves that every Δ > 1+1/(α−αδ) is a steady state in every 
Markov equilibrium.

Let D be the set of all Δ that are (i) steady states such that firm 2 invests zero in t+2 
if  Δt+1 = Δ, (ii) firm 1 has full demand, i.e., Δ ≥ 1 and (iii) the steady states are stable 
in the following sense: There exists an ɛ > 0 such that Δt+2 ≥ Δt if  Δt ∈ (Δ − �,Δ) if  t is 
even. By the previous paragraph, this set is non-empty and by (ii) it is bounded from 
below by 1. Therefore, D has an infimum. Let Δ′ be this infimum of D. We will now 
show that Δ′ is a stable steady state.

Suppose otherwise, i.e., suppose we can find Δ″ < Δ′ arbitrarily close to Δ′ such 
that Δt+2 < Δ″ if  Δt = Δ″ and t is even. First, note that V1(Δ) = 1/(1−δ) for Δ > Δ′ by 
the definition of D. Given that Δt+2 < Δ″, firm 2 must invest in t+2 more than firm 
1 does in t+1. Firm 2 only invests a positive amount if  it can enjoy some positive 
demand in a future period. As firm 2’s marginal costs of investment are at least α, the 
future revenue stream of firm 2 must be at least �xt+2

2
 and, therefore, firm 1’s value 

at Δ″ has to be less than 1∕(1 − �) − ��xt+2
2

. Now distinguish two cases. First sup-
pose Δ′ > 1. Then take Δ″ > 1 and note that firm 2 will in period t+2 expect to make 
future revenues worth a net present value of at least α(Δ″−1) (as otherwise xt+2

2
= 0 

would be optimal) and therefore Vt+1
1

(Δ��) < 1∕(1 − 𝛿) − 𝛿𝛼(Δ�� − 1). By investing 
Δ′−Δ″+ɛ in period t for some ɛ > 0 arbitrarily small, firm 1 would guarantee itself  1/
(1−δ). For Δ″ sufficiently close to Δ′ and ɛ sufficiently small, this gives 1 a higher value 
than 1/(1−δ)−δα(Δ″−1), which contradicts the candidate equilibrium.

Hence, we can move to the second case Δ′ = 1. Note that firm 1 can, for Δt = Δ″, 
guarantee itself  1/(1−δ)−c(1−Δ″ + ɛ, D1(Δ″)) = 1/(1−δ)−γ(1−Δ″ + ɛ)2/2−α(1−Δ″ + 
ɛ)(1−Δ″)/2 for some ɛ > 0 arbitrarily small by investing 1−Δ″+ɛ in t+1. By sticking 
to its equilibrium investment, firm 1 will get at most 1/(1−δ)−δ(1−Δ″)/2 as firm 2 will 
have demand of  at least (1−Δ″)/2 in period t+2. But for Δ″ sufficiently close to Δ′ = 1 
and ɛ sufficiently small, γ(1−Δ″+ɛ)2/2+α(1−Δ″+ɛ)(1−Δ″)/2 < δ(1−Δ″)/2, which con-
tradicts the optimality of  firm 1’s equilibrium investment. Hence, Δ′ is stable.
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Last we show that Δ′ = 1. Suppose otherwise, i.e., suppose Δ′ > 1. As Δ′ is stable 
and above 1, firm 2’s investment when facing quality difference Δ′ will pay off  only 
in the period t+2 in which it is made. By α ≥ 1/2, marginal costs of investing are then 
higher than marginal revenue even at zero investment. Hence, investing is unprofit-
able for firm 2 when facing quality difference Δ′. By stability of Δ′, the same is true 
for all Δ ∈ (Δ� − �,Δ�) for ɛ > 0 sufficiently small. Given that firm 2 invests zero when 
facing Δ ∈ (Δ� − �,Δ�) and given that Δ′ > 1, it is optimal for firm 1 to invest zero 
at Δ ∈ (Δ� − �,Δ�) for ɛ sufficiently small. Hence, these quality differences are stable 
steady states. But this means that all Δ ∈ (Δ� − �,Δ�) are in D, which contradicts the 
definition of Δ′ as the infimum of D. Hence, Δ′ = 1.

To see that Δ′ = 1 is a strictly stable steady state, note that the arguments two para-
graphs above show a profitable deviation in case in case that Δ″ < 1 arbitrarily close 
to 1 exist such that Δt = Δ″ imply Δt+1 = Δ″.� □

XVI. Proof of Lemma 7

Consider the completely myopic case: δ = 0 and the firms invest as in the one-shot 
game. Investments will then be given by (3) and will be denoted by x∗

i
(Δ) for the 

remainder of  this proof. Consider one investment by firm 1 and one investment by 
firm 2. If  neither grabs the whole market, that is, if  investments are interior, then the 
change in Δ is:

Clearly, this is a strictly monotone (and linear) function with only one zero; call this 
zero Δ̃. Consequently, if  firms play myopic and repeatedly, the market will tip for all 
initial quality differences but Δ̃. Now consider the profit difference between investing 
x*(Δ) and investing some x in the current period (assuming that one does not grab the 
whole market), that is, for firm 1 consider:

Clearly, f ≥ 0 is a quadratic function in x with its minimum at x = x*(Δ). Hence, for 
any ɛ′ > 0, we can find a δ′ such that f(x, Δ) ≥ δ′/(1−δ′) if  x ∉ [x∗(Δ) − ��, x∗(Δ) + ��] 
(assuming that Δ ∈ [−1,1]).

Now for a given ɛ > 0, choose ɛ′ > 0 such that d(Δ) > 2ɛ′ if  Δ ∉ [Δ̃ − �∕2, Δ̃ + �∕2] . 
For this ɛ′, determine δ′ as in the previous paragraph. Note that neither firm will devi-
ate from x*(Δ) by more than ɛ′ if  δ ≤ δ′ as the possible gain in the future is bounded by 
1/(1−δ) (and as it is in the future this potential gain is discounted by δ). Hence, when 
δ ≤ δ′ and Δ ∈ ∉ [Δ̃ − �∕2, Δ̃ + �∕2], then Δ will change qualitatively as in d and the 
market will tip eventually.� □
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Multiplicity of Markov Equilibria: Numerical Analysis with Finite State Space

Table 1: Number of pure-strategy Markov equilibria for different grid sizes (n is number of grid 

points). The distance between grid points is fixed to 0.25. Parameter values: α = 0:75, γ = 1,  

δ= 0:75, lowest feasible quality is 0.

Table 2: Long run outcomes: Given q2, 0 = 2.5, the table shows the steady state outcome to 

which the market converges for different values of firm 1’s starting quality q1, 0 and different 

strengths of the data-driven indirect network effects α. ‘tipi’: i has 100% market share; ‘MaxQ’: 

both firms have the maximal quality; ‘IntQ’: interior steady states in which both firms have pos-

itive market share. Parameters: γ = 1, δ = 0:75, quality grid {0.0, 0.01, ..., 5.0}
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