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Preface

Radio pulsars are fascinating objects of study. Pulsars are rapidly rotating, highly magne-
tised neutron stars which emit strong radio waves from their magnetic poles. At approxi-
mately ten kilometers in diameter, and with masses larger than our Sun’s as predicted by
general relativity, neutron stars necessarily comprise an ultra-compressed state of matter.
At present, the conditions necessary to create this matter cannot be met in Earthican
laboratories and current theories surrounding specific neutron star composition and evo-
lution remain highly theoretical, through use of equations of state, with little reproducible
empirical evidence. Radio pulsars are but one piece of the puzzle. Recently gravitational
waves (GWs), amplified by merging compact binaries, have been detected. Analyses of
these results and observations from other parts of the EM spectrum (e.g. from thermal
sources) will help pin down viable equations of state so that we can better understand how
our universe evolves.

Observed changes in pulsar pulse frequency, which is otherwise relatively stable, can
sometimes be well modelled by assuming the neutron star as part of a binary system.
Binary systems offer a plethora of information for the astronomer – with enough data, and
under a given theory of gravity, the masses of the binary constituents can be measured
which can lead to tighter constraints on that given gravitational framework. Measuring as
many astrometric and orbital parameters as possible for each pulsar alongside using data
from other binary sources (such as X-ray binaries), can constrain evolutionary models for
the system post-first and post-second (if applicable) supernovae. Studies show that pulsars
with higher spin frequency (more than about twenty unique pulses per second) are almost
always found in binary systems. This is well explained by the theory of pulsar spin-up:
matter is accreted to the neutron star from the companion which increases the neutron
star’s rotation speed due to the conservation of angular momentum – this process is called
recycling.

If the pulsar in a binary has a spin period in the tens of milliseconds, the recycling
process may not have been so rapid which may be implicit that the companion is also a
neutron star. Direct companion searches are often fruitless due to the unlikely nature of
seeing a radio pulsar signal, with only one previously observed companion pulsar. Double
neutron star systems provide some of the most stringent tests of gravity, however their
population is small and the key indicators for their evolution are poorly constrained. The
following work presents and discusses the results from observations of five radio pulsar
signals, all with rotation frequencies between fifteen and forty-four rotations per second.

PSR J1829+2456 is a member of one such double neutron star system in a compact
binary orbit with a period of 1.18 days. Observations of this pulsar were made for three
consecutive years, starting in 2017, following a hiatus in observations for almost ten years.
Timing analysis of this new observing campaign shows a measureable signal delay due to
the eclipsing of the neutron star by its companion, known as Shapiro delay, as well as a
measureable two-dimensional shift in right ascension and declination – i.e. proper motion.
In conjunction with previously known relativistic effects and assuming general relativity
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as the correct theory of gravity, the masses are found to be 1.306 ± 0.007 Solar masses1

and 1.299 ± 0.007 Solar masses for the neutron star and its companion, respectively. The
proper motion implies a low-to-moderate space velocity of ∼ 50 km s−1 which, in tandem
with the measured masses and mild orbital eccentricity, suggests the system is the result
of a low-kick, symmetric supernova having undergone an ultra-stripped iron core-collapse.

PSRs J1851+0010 and J1853+0008, found by the PALFA collaboration, are also be-
lieved to be members of double neutron star systems although current timing analysis
renders this claim inconclusive. Binary models suggest these two pulsars have rather wide
orbital periods of 2.00 and 9.61 days, respectively as well as high eccentricities relative to
the entire binary pulsar population. The relativistic effect of the binary constituents on
their longitudes of periastron have been measured precisely and led to total mass measure-
ments of 2.59 ± 0.02 and 2.6 ± 0.4 Solar masses respectively using general relativity, as well
as precise component masses for PSR J1851+0010 whose companion mass is 1.15 ± 0.04

Solar masses. If the true companion mass is found to be close to its median value, this
will be the lowest mass NS discovered to-date. At the present time, no significant proper
motion measurement can be obtained so the evolution of these systems remains shrouded
in some mystery.

PSR J1936+1805 is an isolated pulsar with an unusually fast rotation frequency (for
an isolated pulsar) of about seventeen rotations per second. In lieu of any orbital fit, the
rotation frequency is expected to be quite stable although the rate at which this frequency
is changing, to a first order Taylor expansion, has been found to be (−2.75 ± 0.06) ×
10−17 rotations s−2. These parameters are suggestive of binary pulsars, leading to the
conclusion that this must be a disrupted binary – a pulsar that was once part of a high-
mass binary system that did not survive either the supernova(e) nor the common envelope
phases of evolution. The derived characteristic age of this pulsar is about ten-billion years
meaning that it could have certainly been part of what would have otherwise become a
double neutron star system.

PSR J1936+2142 is believed to be a member of a relatively circular (e ∼ 3 × 10−5)
close compact binary with an orbital period of 0.757 days. Phase connection of this pulsar
shows it to have an observed pulse frequency decay of (−4.6 ± 0.6) × 10−15 rotations s−2

which implies the pulsar is old, with a characteristic age on the order of eleven billion
years. Although some pulsars have been found with similar spin properties to these, they
do not definitively categorise the binary nature of this system. Astrometric and orbital
parameters, such as its very circular orbit suggest that this system is a high-mass neutron
star-white dwarf binary, otherwise known as an intermediate mass binary pulsar as opposed
to a double neutron star system, although a tighter orbital campaign will be necessary to
conclude the evolution of this system.

The latter four pulsars represent the groundbreaking work being done by the Pulsar
Arecibo L-band Feed Array (PALFA) survey collaboration. Its mission has brought about
the discovery of many wonderful types of radio phenomena and shows the utmost value in
collaborative efforts within astronomy. None of the present-day radio astronomy research

1All quoted uncertainties in this work are to the 2σ, or 95% confidence level, unless otherwise stated.
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Chapter 1

Introduction

F
ritz Zwicky and Walter Baade’s 1934 article on the nature of supernovae (Baade
and Zwicky, 1934a) led to the hypothesis of a very exotic type of stellar remnant.
The theory stated that supernovae could result in very fast spinning, incredibly

dense stellar remnants with incredibly small radii (∼ 10 km). Since neutrons can be gravi-
tationally packed more efficiently than nuclei containing charged particles (Rutherford and
Nuttal, 1913; Chadwick, 1932), it was theorised that these stellar remnants most likely
consisted of ultra dense ‘neutronic’ matter and hence were dubbed neutron stars (NSs;
Baade and Zwicky, 1934b). Current theory suggests that supernovae of progenitor stars of
between 9 and ∼ 25M�1 can become neutron stars post–supernova. Stars with initial mass
between 8 and 10M� likely create neutron stars through the core-collapse of an ONeMg
core and stars with initial mass grater than 10M� likely end their lives in Fe core-collapse
supernovae (Heger et al., 2003). If the remnant left behind has a mass greater than the
Tolman–Oppenheimer–Volkoff limit (about 2.3M�; Shibata et al., 2019), then further col-
lapse ensues, leading to black hole formation. The small radii of NSs (see e.g. Özel and
Freire, 2016) makes them very difficult to discover at visible wavelengths; only a handful
are observable in the optical bands (Mignani, 2009). Gamma ray astronomy, such as the
study of gamma ray bursts (GRBs) from merging NS binaries, has given us a wealth of
information concerning neutron star composition (Tsang et al., 2012). However, arguably
by far the most successful technique in aiding our understanding of neutron stars has been
through radio astronomy.

1.1 Neutron stars as radio sources

The first radio pulsar (Pulsating Source of Radio – PSR) was discovered by Jocelyn Bell
Burnell in 1967 at the Mullard Radio Astronomy Observatory, University of Cambridge,
where a celestial object was observed in the Vulpecula constellation that displayed incred-
ibly regular radio pulses separated by 1.337 s. This came to be known as CP1919, for
“Cambridge Pulsar" (now known as PSR J1921+2153; Hewish et al., 1968). At first, no
theory was aptly linked to support these findings, however when Bell Burnell discovered a
similar set of regular pulses, each precisely 1.19 s apart, from a completely different region

1M� is the Solar mass = 1.98847(7)× 1030 kg
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of space (PSR B1133+16; Hewish et al., 1968; Lyne and Rickett, 1968), the game was on
to find a common source. The regularity and short periods of these radio pulses emanating
from optically empty regions of space gave rise to the suggestion that these pulses could
originate from neutron stars (Gold, 1968), a theory that was confirmed later that year by
the discovery of two similar radio sources in the Vela (PSR J0835−4510, 89.33ms; Large
et al., 1968) and the Crab (PSR J0534+2200, 33.50ms; Staelin and Reifenstein, 1968)
nebulae, the latter of which is the remnant of a supernova that was visible to Earth in
1054.

The currently accepted model of a radio pulsar is that a conic emission of synchrotron
radio waves originates from a region above the NS’s magnetic poles (Pacini, 1968; Rankin,
1983) (see Figure 1.1). These magnetic poles, unlike Earth’s and those of most main se-
quence (MS) stars, can have a large misalignment angle from the spin axis, with older
members of the NS population having relatively small misalignment and younger members
displaying larger angles, as expected from theory (Nowakowski, 1983). This misalignment
implies the radio emission can potentially ‘sweep’ into our line of sight periodically as the
NS rotates, a model coined the ‘lighthouse model’. The catastrophic supernova environ-
ments that give rise to NSs (Baade and Zwicky, 1934c) could not possibly produce such an
initially stable structure. A total dynamical energy of oscillation of about 1053 ergs must
be dissipated from the NS before stability is reached leading to the theory that emission of
electromagnetic (EM) radiation could be the cause (Hoyle et al., 1964). Therefore, every
NS is theorised to emit a strong stream of charged particles along the open magnetic field
lines at the polar caps (Sturrock, 1971). The term ‘pulsar’, then, is an entirely human–
centric term: a pulsar is simply a NS that we can see2. However, it is currently unknown
to what extent factors other than beaming direction (such as emission mechanism or age)
affect our ability to see pulsars.

2Some pulsars, such as PSR J0737−3039B, have now stopped emitting towards our line of sight due to
geodetic precession, however their status as pulsars remains. See Perera et al. (2010)
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S

S

Figure 1.1: The basic schematic of a neutron star with electromagnetic jets being denoted
with arrows labeled S to symbolise high flux. The cross points on the NS sphere represent
the spin axis which is set here to 45deg from the magnetic axis as an example.

Since their discovery, over 2600 NSs have been discovered as pulsars (from any part
of the EM spectrum) (Manchester et al., 2005), most of them within our own galaxy
and a small percentage coming from globular clusters around the Milky Way. Notable
current radio pulsar records are the fastest rotator (PSR J1748−2446ad, 1.396 ms; Hessels
et al., 2006), slowest rotator (PSR J0250+5854, 23.5 s; Tan et al., 2018) and most massive
(PSR J0740+6620, 2.14M�; Cromartie et al., 2019).

The so–called ‘pulsar problem’: the continued lack of definitive consensus on how
pulsars are able to produce coherent radio emission (see e.g. Bahcall and Ostriker, 1997;
Lorimer and Kramer, 2005), is perhaps one of limited data and relative newness of the
field. As a scientific community, we have yet to come to a definitive consensus on even
the most fundmental questions about how NSs might manifest as pulsars. Some questions
that remain about NSs are: the origin, shape and mechanism of their radio emissions; their
internal and atmospheric structure; and the nuances of additional pair creation due to the
charge separation (Timokhin and Arons, 2012)3. It is therefore imperative that more pulsar
studies can be carried out in order to probe these interesting phenomena. Added caveats
are that pulsar spectral flux densities are incredibly weak, on the order of 1− 10mJy.4 –
approximately the signal strength of an old mobile phone on the Moon as observed from
Earth. This means that signals often compete with surrounding background interference. A
final caveat is that pulsar signals are date-dependent (experiment results necessarily depend

3but cf. Philippov et al. (2020).
41 Jansky (Jy) = 10−26 Wm−2 Hz−1
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on the day on which the observations were taken). It is therefore important to understand
the proposed signal theoretically before observation in order to disentangle the signal from
the noise post-observation effectively, especially when the observation conditions are not
ideal.

The rest of this section discusses the fundamental properties and theoretical under-
standing of pulsars that one must take into account when observations are taken.

1.1.1 Pulsar emission

Radio pulsar emission is made of highly elliptically polarised synchrotron radiation, mean-
ing that it contains a combination of both linear and circular polarisation components,
with the majority contribution coming from linear polarisation. Thermally radiating bod-
ies that are still fusing low–mass elements in their cores (e.g. the Sun and other MS stars)
emit, re-absorb and scatter their energetic photons through the process of radiation, usually
modeled by a ‘random walk’ process (see e.g. Tunaley, 1974), in the core and by convection
in outer layers of the star. Since there is no orientation bias, the MS star radiates in all
directions essentially equally and the net polarisation of the emitted EM waves is ∼ 0. As
NSs are non-thermal radiators a degree of polarisation is expected, with the highest degree
of linear polarisation observed for lower frequencies (Manchester, 1971). Observations at
frequencies as high as 4.9GHz have also confirmed the obverse situation to this: that the
polarisation properties often diminish at high frequencies, leading towards depolarisation
(Hoensbroech et al., 1998). Radio magnetars (see Section 1.1.4) are the exception to this
and have been observed to be quite polarised even at high frequencies (Kramer et al.,
2007).

Soon after the linking of radio pulsars to neutron stars, Radhakrishnan and Cooke
(1969) suggested a model for the polarisation shifts observed in many pulsars (Manchester
et al., 1975, is a notable example), in which the parallactic position angle of the linear
polarised emission, with respect to the line of sight (Ψ), follows an ‘S’-shaped curve as the
beam sweeps into, and eventually out of, that line of sight, although this is not generally
seen in recycled (see Section 1.1.3) systems (Stairs et al., 1999). The model is called the
rotating vector model (RVM) and, although relatively weak, outputs from such a model
have proven invaluable in the goal of helping to constrain orbital geometries for certain
binary systems (see e.g. Konacki et al., 2003). The RVM can be summarised with a
mathematical description of the parallactic angle using the fiducial plane as the rotational
origin for phase, φ:

tan(Ψ) =
sin(α) sin(φ)

sin(α+ β) cos(α)− cos(α+ β) sin(α) cos(φ)
(1.1)

where α and β are the magnetic inclination and impact parameter respectively and, al-
though possible to fit for directly, are most easily determined by the relation of steepest
gradient on Ψ: (

dΨ

dφ

)
max

=
sinα

sinβ
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The remainder of this section will go through the mathematical reasoning behind po-
larised feed setup. For a fixed direction of propagation, z, the electric vector E, with
magnitude |E|, sweeps out an ellipse in the x− y plane. This ellipse can be parametrised
with respect to the Cartesian axis using the usual elliptical parameters for semi–major and
semi–minor axes, A and B respectively, given as:

A =
|E|√

2

√
1 +

√
1− sin2(2θ) sin2 β

B =
|E|√

2

√
1−

√
1− sin2(2θ) sin2 β

(1.2)

where β is the signed difference in phase angle in the x and y directions (β = αy − αx for
Cartesian) and θ is the angle the semi–major axis makes with the x-axis. In this respect,
β = 0 corresponds to complete linear polarisation (A = |E|, B = 0) whereas β = ±90◦

corresponds to circularly polarised light (A = B = |E|/
√

2 if θ = 45◦). Figure 1.2 shows
the geometry behind the polarisation.

E

x

y

AB

θ

Figure 1.2: A diagrammatic representation of elliptically polarised light. A and B are the
semi–major and semi–minor axes respectively. E is the EM field vector and the arrow,
here arbitrarily orientated as RH, is the handedness of the circularly polarised light.

At an observatory, two orthogonal dipole feeds are typically installed in the receiver
which are sensitive to the two components of linear polarisation. In order to obtain a
circular dipole basis, the linear component receivers can be passed through a hybridisation
procedure. The vectors from both dipole feeds are converted into a four-channel scalar
basis which, for this thesis, is either coherent (uncalibrated) format (AABBCRCI) or Stokes
calibrated format (IQUV) for folded data. In coherent format, each channel is a component
of A⊗B, with the vector description,

(
A2, B2,CR,CI

)
where CR and CI are the real co-spectrum and imaginary quadrature spectrum of A and B
respectively (they represent the phase of polarisation). These four variables can uniquely
determine a circular basis through the values of CR and CI. In Stokes format, the input
channels are transformed into four geometrically motivated output channels representing
the total light intensity, the degree of polarisation and the angular shape of the polarisation.
These were designed by Stokes (1851) and were rediscovered almost 100 years later by
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Perrin (1942) and Chandrasekhar (1947), of which the linear variant is given here:

I = A2 +B2

Q =
(
A2 −B2

)
cos(2θ)

U =
(
A2 −B2

)
sin(2θ)

V = 2ABh

(1.3)

with θ defined as above, I is the total flux intensity and h is the so-called ‘handedness’ of
the circular component which is +1 for right-handed polarisation and −1 for left-handed
(International Astronomical Union, 1974). For the PSR J1829+2456 observations taken
for this thesis, h = +1 and therefore V = 2AB. For the PALFA observations, the h = −1

handedness was used.
The data gathered and analysed for this work mostly uses the linear dipole feeds (al-

though a few observations were taken with a circular basis), where the impulse response
beam pattern P (φ, λ) measured in mJy, for aperture zenith angle φ and wavelength λ,
agrees with the following one–dimensional aperture relation.

P (φ, λ) =
λ

L

sin
(
πφL
λ

)
πφ

2

(1.4)

where L is the aperture size. A two–dimensional model sees the impulse response being
determined by the antenna size in the current direction. One can see by Equation 1.4
that this profile ought to be roughly Gaussian (see Figure 1.3). Both polarisation channels
for a given frequency should overlap on the beam pattern plot, as seen in Figure 1.3b
but sometimes they do not, as seen in Figure 1.3a. When an observation takes place, the
receiver beam pattern is entangled with signal from the source, so knowing by exactly how
much this change in power has occurred, we can most accurately determine the contribution
of signal due to the source.

(a) MJD 58615 (May 12th, 2019) (b) MJD 58845 (December 28th, 2019)

Figure 1.3: Example power profiles, in mJy, from the 305-m Arecibo telescope’s PUPPI
backend, with respect to the zenith angle φ. The centre frequency for both observations was
430 MHz. The blue and green lines are the A(FPGA3) and B(FPGA1) feeds respectively.
(a) The power levels for each dipole feed have a slight deviation at the apex. (b) The
power levels are roughly the same for each feed.
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1.1.2 Spin down

Although radio pulsars provide incredibly well defined pulse times owing to their stable
spin periods (e.g. van Straten et al., 2001), their periods have been observed to increase
over time, a process known as spin–down5. This is inferred by astronomers as a decrease
in the pulsar’s rotational energy, Erot, over time and is related to the spin period:

dErot

dt
= −1

2

d(IΩ2)

dt
= −IΩΩ̇ = −4π2IṖP−3 (1.5)

where Ω is the angular frequency of the pulsar (Ω = 2π/P ) and I is the NS moment of
inertia which is typically assumed to be the canonical value of ∼ 1045 g cm2 (Øvergård and
Østgaard, 1991). The physical reason for this effect is assumed to be mostly from magnetic
dipole emission and pulsar winds (Manchester et al., 1985; Blandford and Romani, 1988),
although, admittedly, some radio emission must be accounted for even though this model
assumes that the loss of radiation power (the radio emission we observe) over time is
negligible when compared to Ėrot, also known as the spin–down luminosity. Asuming that
spin-down equations of motion take the general form of ν̇ ∝ νn, the spin evolution due to
magnetic dipole radiation for a pulsar can be modelled by the braking index, n:

n = 2− PP̈

Ṗ 2
(1.6)

where the magnetic dipole model predicts n = 3 (a derivation can be found in Appendix
A.1). Most observations however show braking indices of much less than 3 (see e.g. Hamil
et al., 2015), implying evolutionary deviations from the magnetic dipole model, and in
practice it is unfeasible to precisely determine the braking index for many pulsars because
only a handful have a measureable P̈ . This is likely due to radio frequency interference
(RFI) and noise contributions from the telescope being on the order of the proposed P̈ flux.
This linear spin–down model, although crude, can give important extrapolative information
about the pulsar’s evolution such as its current age and magnetic field strength.

1.1.3 Characteristic age

From studies of spin–down and braking index, the characteristic age, τc, of the pulsar
can be deduced. This is an approximation of the birth epoch of the NS (the time since
supernova) by extrapolation of the current period assuming that the current period is much
longer than the birth period and has always had a linear spin–down rate; this is given by
(Jiang et al., 2013):

τc =
1

n− 1

P

Ṗ
(1.7)

These cannot be called true ages owing to the fact that their theoretical basis may
not be strictly true; rather, it is a rough approximation and does not take into account
any errors associated with the magnetic field and uncertainty as to the internal chemistry

5This is in contrast to the spin–up observed for NSs undergoing Case BB RLO (see Ritter and King,
2001, and Section 1.3)
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and physics of a NS. The “true" age can be defined as the time period due to spin–down
with respect to the birth period (Camilo et al., 1994, Equation (1)), but the required birth
period knowledge is unknown. This measure can be resolved by taking into account the
variation of magnetic moment over time (Helfand and Tademaru, 1977, Equation (3)).
The associated error in the characteristic age estimate can be observationally determined
through analysis of the Crab pulsar (Staelin and Reifenstein, 1968) which has a known
age of 966 years and a derived characteristic age of ∼ 1240 years, assuming the magnetic
dipole model (n = 3) and an observed spin–down rate of 4.22×10−13. This corresponds to
a roughly 30% margin of error in τc, although young pulsars often show large discrepancies
between their true and characteristic ages (Kaspi et al., 2001). Typical pulsar spin-down
rates are between 10−15 and 10−19 s s−1, giving characteristic ages in the millions and
billions of years range and a much higher precision owing to their stability. Regardless
of precision, this age estimate is still widely useful for pulsar population studies (see e.g.
Dewey, 1992).

1.1.4 Surface magnetic field

Although braking index studies consistently show the magnetic dipole model of radiation
to deviate significantly from reality, the surface magnetic field strength can be derived from
Equation 1.5 assuming n = 3. Taking a classical electrodynamical approach, we can find
the energy emission rate due to the dipole:

dEdip

dt
=

2

3c3
|m|2Ω4 sin2 α (1.8)

where m is the magnetic field vector and α is the magnetic misallignment angle as defined
in Section 1.1.1. The model assumes that Ėrot = Ėdip so that Equations 1.5 and 1.8 can
be equated, however this assumption is rather primitive as it does not take into account
energy loss due to, for example, particle radiation or gravitional wave emission. Generally,
pulsars with braking indices lower than n = 3 can be explained by particle emission (Ou
et al., 2016) and a pulsar with n = 5 implies energy loss purely due to gravitational waves
(see e.g. PSR J1640−4631, n = 3.15 ± 0.03; de Araujo et al., 2016). Using the result of
the dipole rotation energy loss assumption, and integrating Equation 1.6, one arrives at
the angular frequency with a power law offset in n to account for observed deviations for
the magnetic dipole emission model:

Ω̇ =

(
2|m|2 sin2 α

3c3I

)
Ω3α− Ωn (1.9)

It can be shown that a reasonable approximation for the magnetic field moment is
B ≈ |m|/r3 (Jackson, 1998). Taking r = R to be the NS star radius (approximately
10 km) and using the ideal magnetic dipole emission case and rearranging Equation 1.9,
the surface magnetic field moment is found to be:

Bsurf =

√
3c3I

8π2R6 sin2 α
PṖ ≈ 3.2× 1019G

√
PṖ (1.10)
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although this is true necessarily only for when α = 90deg and is a minimum; field strengths
with α close to 0 are predicted to be a factor of 2 larger (Shapiro and Teukolsky, 1983).
Given that the majority of pulsars display PṖ ∼ 10−14 s2 s−1, this puts the expected Bsurf

in the 1012 G region.

It seems reasonable, then, to define three distinctive groups of NS pulsar based on
the three afore mentioned principles; the normal pulsars, the recycled pulsars and the
magnetars:

• Normal pulsars have observed spin periods ranging from about 100ms – 4 s and tend
to have high magnetic field strengths at their surface, on the order of 1012 G. Rotation
and spin-down rates for normal pulsars mostly give n = 3 (magnetic dipole emission)
characteristic ages between 100Kyr and 1Gyr.

• Recycled pulsars rotate in the the 1.5− 100ms-period regime, have very stable rota-
tion periods (∼ 10−19 s s−1) and lower surface magnetic field strength (∼ 108 G) than
the normal pulsars, based on the magnetic dipole emission model. Pulsars with a
very short rotation period (. 30ms) are called millisecond pulsars (MSPs). Recycled
pulsars generally have characteristic ages between 1 and 100Gyr.

• Magnetars have long periods (> 1 s) and have the strongest estimated surface mag-
netic fields (> 1014 G) based on the dipole emission model, however this model is
largely inappropriate for current observations of magnetars which routinely imply
braking indices < 3 (Lasky et al., 2017). The spin-down rates of megnetars are quite
high (∼ 10−12 s s−1) compared with other pulsars, giving low characteristic ages of
only a few thousand years, although spin-down rates are highly irregular, often best
being modeled by glitch parameters or coupled with timing noise (see e.g. Turolla
et al., 2015). One explanation for braking index measurements of magnetars is that
they could have a twisted, toriodal magnetic field (possibly due to the merger of two
NSs), which due to dynamical instabilities causes magnetic flux to ‘bubble up’ to the
surface and back down again with an irregular node structure (i.e. not a dipole).
Twisting increases the spin-down torque, implying smaller braking index (Thomp-
son et al., 2002). Conversely, a twist-free theory of magnetar spin-down is given by
Contopoulos and Spitkovsky (2006).

Further details concerning these groupings are documented by Soglasnov (2000). A conve-
nient visual way to understand the different pulsar categories is by constructing a P − Ṗ
diagram (e.g. Figure 1.4), which can be overlayed with magnetic field strength and age
estimates. The distinction between the normal and recycled pulsars can be clearly seen
in Figure 1.4 and the magnetars can often be identified from their slow periods. Many
recycled pulsars have been observed in binary systems, leading to the theory that they
have been “spun–up" (Ṗ < 0) during a phase of accretion from the companion (Alpar
et al., 1982). This is known as recycling and somehow contributes to the vast decrease in
surface magnetic field strength observed for recycled pulsars when compared with normal
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pulsars (Bisnovatyi-Kogan and Komberg, 1974); binary evolution is discussed in Sections
1.3 and 3.6 of this thesis. A fourth class of pulsar: the rotating radio transients (RRATs;
McLaughlin et al., 2006) emit sporadically, often only once or twice per day, making them
largely undetectable using Fourier domain searches. Through careful observation, it has
been shown that RRATs are neutron stars (McLaughlin et al., 2006) and possibly magne-
tars.
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Figure 1.4: The P − Ṗ diagram for 2227 radio pulsars with data taken from the ATNF
catalogue v1.64 (Manchester et al., 2005). Binary systems are highlighted by open circles,
magnetars by cyan triangles and RRATs by red crosses. Only RRATs with phase-connected
solutions have been included. Lines of constant magnetic field (in G), characteristic age
(in yr) and spin–down energy loss rate (in erg/s) are overlayed.
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1.2 Pulsar timing

Normal radio pulsars have observed spin–down rates in the 10−17 − 10−12 s s−1 range.
Essentially they can be viewed as stable rotators, but in comparison to MSPs which tend
to display spin–down rates that are orders of magnitude smaller, the normal pulsars are
generally unsuitable for ultra precise clock measurements, although normal pulsars are
useful for population studies. Consequently, pulsar astronomers can rely on the period–
stability of MSPs over a long epoch, implying that any delays with respect to the precise
telescope clock are due to external effects. These timing delays can be the result of many
phenomena such as solar system gravitational effects, the scattering and dispersive effects
of the interstellar medium (ISM) and the relativistic orbital perturbations caused by binary
systems (see e.g. Damour and Esposito-Farèse, 1992; Weisberg and Taylor, 2005, Chapter
3 of this work). It is the therefore the goal of pulsar timing to account for and therefore
enable a precise investigation of a wide range of astrophysical phenomena with relatively
few assumptions; this is the main concern of Chapters 3 and 4 in this work.

The pulse flux we observe due to the sweeping of the radio beam into our line of sight is
referred to as the pulse profile. Most pulsars are not luminous enough to conduct accurate
timing studies using pulses from each rotation. Adding to that, pulse shape from pulse-
to-pulse is generally different but is stable over an long enough observation (see Figure
1.5) meaning that, over enough observations, conclusions can be drawn about the spin
properties of the NS. The number of rotations needed for a stable profile ranges from a few
hundred to a few thousand (Helfand et al., 1975) and is a function of the size, structure and
emission angle of the radio beam. Stacking enough of the time series profiles modulo the
pulse period and correct pulse phase should produce the true pulse shape, which is generally
a function of the observer’s line of sight, the observing frequency (discussed in Section 3.5)
and the true structure of the emission beam. This process, called folding, produces an
integrated pulse profile which is observed to be very stable for pulsars with low spin–down
rate (Helfand et al., 1975). The high signal-to-noise ratio (S/N) of the integrated profile
also results in a reduction in the uncertainty in the measured pulse time-of-arrival (TOA)
that the profile represents. Many pulsar acquisition systems, or backends, offer real-time
folding during observation but extra stacking may sometimes need to be done accompanied
by RFI noise reduction. Pulses must be folded at a certain resolution (usually a power of
2) in phase, known as the sampling interval. Finer resolutions produce lower S/N profiles
but contain more features whereas longer sampling intervals produce high S/N profiles
post-folding.

Standard profile

In order to obtain accurate TOAs, one typically performs a cross-correlation between the
observed profile, p(t), and a very high S/N standard (or template) profile, s(t). The
standard profile is created by averaging many high S/N pulse profiles over an extended
integration time, thus creating a profile averged over tens-of-thousands of rotations. In
general, one ought to create a template that reflects the observing parameters, e.g. different
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Figure 1.5: Schematic overview of a time-of-arrival procedure. Taken from Lorimer
and Kramer (2005) c©Reproduced with permission of Cambridge University Press through
PLSclear.

templates for different frequency bands, telescopes, et cetera (Taylor, 1989). The goal of
the template is to provide a fixed-phase profile against which to compare individual profile,
p(t), phases in order to measure their phase offset, τ , which can trivially be converted to
a time offset by multiplying by the measured pulse period at the epoch corresponding to
the profile. The observation will already have a time stamp associated with it, which is
then added together with the time offset to get the pulse TOA. As more data is acquired
for the pulsar, the standard profiles can be updated and TOAs from previous dates can
be re-calculated given the updated standard profile. In this way, precise timing studies
can assess the quality of updated templates and possibly suggest errors in analysis. The
standard template model in the time domain is given by (Taylor, 1992):

p(t) = a+ bs(t− τ) + g(t) (1.11)

where a is the possible baseline shift from the template to the pulse profile6, b is a flux
scaling factor so that variations in pulse flux are considered, and g(t) encapsulates the
contributions due to external noise in the time domain. The best match for the offset is
found by minimising the output χ2 value (Appendix A.2) of the trial phase offsets. In
addition to the system noise, this method is unfortunately limited by the the sampling
interval, which can often only provide accurate time offsets to the ∼ 10% level of the
sampling interval (Taylor, 1992).

Pulsar timing is moving ever closer to nanosecond timing analyses with projects such
as the ambitious International Pulsar Timing Array attempting to combine the data of
30 precisely timed pulsars in order to detect gravitational waves (Hobbs et al., 2010);
and the Square Kilometer Array7, which will aim to investigate extreme environments for
general relativity (GR) such as exhibited by pulsars orbiting close to the Galactic centre
(Smits et al., 2009). Because of this new era of technology, high precision timing, although

6In practice, a ≈ 0 for properly baseline treated data.
7The SKA is currently not operational and scientific study on the instrument is not expected un-

til 2027. Go to https://www.skatelescope.org/wp-content/uploads/2018/08/16231-Factsheets-operational-
model-v4.pdf for recent news.
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still feasible for most MSPs, can often not be accomplished as practically for normal pul-
sars using time-domain cross-correlation alone. In practice, all TOA calculations undergo
frequency- (or Fourier-) domain cross-correlation as well (Taylor, 1992). This involves a χ2

minimisation that utilises the discrete Fourier-transformed data profile and the template.
The discrete Fourier transform of any pulse profile sampled with Nbin intervals is given by:

p̃(ν) = e−iθν
Nbin∑
k=0

pke
2πikν/Nbin (1.12)

with a similar result for s(t) → s̃(ν). θν is the particular phase of the pulse profile which
will generally be different for s̃(ν), where the phase is denoted by φν . TOAs created in this
way are limited in accuracy by only the baseline noise of the data and template profiles and
therefore enable better precision than time-domain cross correlations. Nuanced features of
a pulse shape (such as sharp or multiple peaks) appear as higher harmonics in the frequency
domain and can therefore be more easily taken into account. This is the reasoning behind
the theory developed for RFI profile filtering.

Standard profiles have the further benefit of being more reliably modelled by a collection
of pure functional forms. Widely used is a Gaussian summation (Foster et al., 1991; Kramer
et al., 1994; Kramer, 1994) approach by which M Gaussian functions of generally different
shapes and amplitudes are fit to the template (which has been created by other means).
This has the added benefit of being able to cast a template into a different bin size (e.g.
if there was any binning down during analysis). Mathematically, the template can now be
represented by:

s(t) =
M∑
k=0

ake
− t−φk

σk (1.13)

where the k subscripted parameters (a, φ and σ) represent their usual Gaussian definitions
of the amplitude, peak phase and the full width at half maximum, respectively, for the kth

Gaussian. This fitting method has been used for analysing templates in Chapters 3 and
4. The cyclic analogue to the Gaussian distribution function is the Von Mises distribution
function (Mardia, 2000), which is related to the Bessel function of the first kind and is
a good approximation to the wrapped Gaussian function. This can be used to create a
template in the same way, with a more nuanced control sequence if the profile evolves
significantly over observations (e.g. for mode-switching pulsars). Care must be taken with
template building that involves the linear combination of several functions, so that one does
not ‘over-fit’ the template; for example, small functional contributions often correspond to
prominent interference features in the profile as opposed to true signal.

Fitting procedure

Arrival times calculated for many observation dates are collectively processed by applying
them to a model that describes the rotation of the NS as a function of time. The resulting
timing residuals denote how well the TOAs match the model that was fit to them. Residuals
for the ith TOA are first calculated before any fitting, known as pre-fit residuals:
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Ri =
φi − bφie

ν
(1.14)

where ν is the spin frequency, bφie denotes the nearest integer8 to the pulse phase, φi. The
time evolution of the pulse phase, with respect to a reference time, t0, can be written as a
Taylor series with t taken to be the pulsar’s proper time:

φ(t) = φ(t0) +

∞∑
k=1

ν(k−1)(t0)

k!
(t− t0)k (1.15)

where ν(k)(t0) is the kth derivative of the spin frequency at the reference epoch and the
relationship between the spin frequency and the phase is ν = dφ/dt.9 Given that it is
unfeasible to measure values for ν̈ for most pulsars except those undergoing rapid spin–
down (see Ferdman et al., 2010, for a striking example of this), the phase evolution is most
often (and usually necessarily) approximated by the first order term. The spin frequency
and its derivatives are among the fittable parameters in this expansion, with the others
arising from the measurement of t. The process of pulsar timing is to then measure
and account for variations in the observed TOA, tobs, from the expected arrival time at a
particular spin phase. In the tempo2 pulsar timing package (Hobbs et al., 2006a; Edwards
et al., 2006), which is used extensively in this work, the post–fit residuals are calculated by
a least–squares algorithm, a lovely in-depth analysis of which is given by Coles et al. (2011).
One can tailor tempo2 to perform non-linear fits but these do not significantly improve the
timing solutions in this thesis. The least–squares approach aims to compartmentalise each
pre-fit timing residual, Ri, into its deterministic component (the vector corresponding to
each known parameter, Pj , together with a matrix describing the model, M), and a random
error component, which is called the post-fit residual, εi, given by:

Ri = MijPj + εi (1.16)

Assuming the TOA uncertainty on the ith pre-fit residual, σi, is roughly symmetrical
about the R = 0 line, the fitting procedure can determine the most likely parameter values
in P by minimizing the χ2 value of the fit. The χ2 does not take into account the degrees
of freedom Γ allowed by the model, which is the number of TOAs minus the number of fit
parameters; however, tempo2 does. The reduced χ2 is given by the sum of the squared
ratios of the pre-fit residuals to their errors, assuming all of the residuals are independent
(not covariant with each other), and further dividing by Γ:

χ2
r =

1

Γ

Ntoa∑
i=1

(
Ri
σi

)2

(1.17)

With these degrees of freedom taken into account, tempo2 uncertainties assume a χ2
r

at unity. A χ2
r greater than 1 implies either an underestimate of parameter uncertainties

in tempo2 which can be due to systematic TOA errors, or unaccounted physics promoting
8Hobbs et al. (2006a) use the notation Ni for the nearest integer. (cf. Hastad, 1988)
9To convert from telescope time to pulsar proper time, see Section 1.2.1 and subsequent sections.
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the search for a better parameter fit. If a suitable minimum χ2
r can be found for the input

data and the pre-fit residuals follow a Gaussian distribution, then the most likely set of
physical parameter estimates, Pfit, can be determined via linear algebra manipulation (see
e.g. Coles et al., 2011):

Pfit = (MTM)−1MTR (1.18)

where T is the transpose matrix and R is the pre-fit timing residual vector. Given a fixed
set of TOAs (implying a fixed R vector), the best parameter estimates are then simply
a function of the model. Models that take into account more astrophysical phenomena,
whilst still agreeing with theory, therefore produce the most accurate and precise parameter
estimates. Ultimately this boils down to a two-pronged attack: the creation of valid TOAs
and the use of a valid model. The pulsar proper time, t, can therefore be expressed
as the sum of the observed TOAs and a series of ‘delays’ (collectively ∆) which can be
implemented into the timing model:

t = tobs + ∆ (1.19)

Delays that are not accounted for cause a significant and often periodic shift in the
timing residuals and each delay parameter comes with a mathematical description to re-
move its effect, a process akin to baseline shifting. It is also in accounting for these delays
that binary parameters may be measured. An outline of the various astrophysical delays
accounted for in this work are outlined in the following sections.

1.2.1 Clock corrections

TOAs are recorded against local observatory clocks which vary significantly in their uni-
formity over long periods of time, making them unsuitable for pulsar timing as is. Clock
corrections, ∆clk, can be applied by the consistent monitoring of terrestrial time (TT) off-
sets between pairs of clocks. Clock corrections have the aim of transforming measurements
into the Geocentric Celestial Reference System whose time co-ordinate (TCG) has the
units of the SI definition of the second (Hobbs et al., 2006a, Section 3.1). Since the Earth
is a rotating body adhering to effects due to relativity, terrestrial clocks do not run at the
same rate as TCG. To overcome this, a realisation of TT containing a constant offset to
take into account the value of the second is often used. The TT clock correction used for
this thesis is the 2019 Bureau des Poids et Mesures, or TT(BIPM19), realisation (Guinot,
1988; Petit, 2004) which takes into account the daily dilation effect on TT and includes
dates up until MJD10 58839. The origin point for TT(BIPM) is defined as the time offset
of +32.184 s from the atomic clock standard, the Temps Atomique International (TAI),
on January 1st 197011. The corrections are on the order of microseconds.

10Modified Julian Date, or MJD, counts the number of days since midnight on November 17th 1858.
11ftp://ftp2.bipm.org/pub/tai/ttbipm/TTBIPM.2019
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1.2.2 Solar system delays

The Solar System contains many bodies which affect our measurements based on the
celestial positions, motions and gravitational effects of those bodies with respect to the
topocentric (telescope) reference frame. The most prominent TOA delays caused by the
Solar System (collectively ∆�) are (Lorimer and Kramer, 2005): the light–time variation
due to the motion of the Earth around the Solar System barycentre (Rømer delay, ∆R�);
the delay due to signals passing through a large gravitational well such as that of the
Sun or Jupiter (Shapiro delay, ∆S�); and delays caused by the proximity of the Earth to
other Solar System bodies manifesting in gravitational redshift and time dilation (Einstein
delay, ∆E�). Delays due to the Solar System are modelled using a Solar System ephemeris
– a set of up-to-date parameters that describe the motions and masses within our Solar
System and the Oort Cloud. The Solar System ephemerides used for timing in this thesis
are the Developmental Ephemerides: DE435 (Folkner et al., 2016), which considers timing
delays caused by Saturn; and DE438 (Folkner and Park, 2018), which provides updated
orbits for Mercury, Mars, Jupiter and Cassini following from the completion of various
planetary missions such as messenger and juno (Solomon et al., 2007; Bolton, 2010).
These ephemerides are both provided by the Jet Propulsion Laboratory. DE435 was used
instead of DE438 for PSR J1829+2456 because DE438 was not out when the main analysis
was run and comparison with DE438 outputs for this pulsar are identical. Compared
with other sources of delay, the delays due to the Solar System carry the most weight
when determining pulsar positions in the sky; the ephemeris must be able to take into
consideration at least the effects in the current line of sight at the time of observation.
Indeed, the location and proper motion (the astrometric parameters) of the pulsar can be
determined by observing the deviation of the pulsar’s position from the model when taking
into account all of the above effects. The converse is also true, however; well timed and
carefully analysed pulsars can be used to calibrate Solar System ephemerides by fitting to
the known pulsar’s parameters (Champion et al., 2010; Caballero et al., 2018).

1.2.3 Interstellar dispersion

Simultaneous pulsar observations taken at different recording frequencies have shown that
emissions at higher frequencies arrive earlier than those at lower frequencies (e.g. Hankins
and Rickett, 1986). This time delay, ∆D, can be explained through the concept of inter-
stellar dispersion of radio waves through the ISM. When EM waves propagate through the
ISM, they have a group velocity, vg, equal to the rate of change of angular frequency with
respect to angular wavenumber; this is due to the slowing of the speed of light, c, in the
interstellar plasma and is a function of the observing frequency (Manchester, 1977):

vg(ν) = c

√
1− q2

ene
πme

1

ν2
(1.20)

where qe ≈ 1.6 × 10−19 C and me ≈ 9.11 × 10−31 kg are the charge and mass of the
electron respectively, and ne is the electron number density of the plasma – arguably the
most difficult parameter to model here as it requires a robust Galactic model. The pre-
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factor in front of the frequency term, ν2
p = q2

ene(πme)
−1, is known as the plasma frequency,

and in the case of radio observing frequencies it is negligible (∼ 2 kHz). If a magnetic dipole
pulsar rotates at a frequency less than the plasma frequency then the refractive index of the
ISM (µ = vg/c for propagating radio waves) will be imaginary and therefore radio waves
will not be able to propagate through the ISM. Using the approximation that νp ∼ 0,
the expected time delay for a wave propagating at frequency νlow, from a distance d, with
respect to a higher frequency, νhigh is:

∆D =

(∫ d

0

dl

vg(νlow)
− d

c

)
−
(∫ d

0

dl

vg(νhigh)
− d

c

)
≈ q2

e

2πmec

(
1

ν2
low
− 1

ν2
high

)∫ d

0
nedl (1.21)

where the vector l is the line of sight from Earth to the pulsar and the constant factor,
stemming from the plasma frequency, is called the dispersion constant and has the approx-
imate value 4.148808 ms (Lorimer and Kramer, 2005, Equation 4.6). Since the time delay
is directly observable by analysing the raw time series over multiple frequencies, the sweep
of the pulse peaks with frequency can be characterised by a single quantity known as the
dispersion measure, DM. In the theoretically ideal case, the DM can be calculated by:

DM =
2πmec

q2
e

∆D

ν−2
low − ν−2

high
≈
∫ d

0
nedl (1.22)

The implication of this is that pulsar distances may be estimated given a measured
DM and a model for the Galactic free electron distribution (Cordes and Lazio, 2002; Yao
et al., 2017). A reliable distance estimate can give workable estimations on the tangential
velocities of pulsars (see Section 3.4.3) which can be used to fuel astrophysical arguments
(e.g. system evolution based on supernova kick velocity). In reality though, DM is not a
constant value due to regions of different electron densities in the ISM passing into and
out of our line of sight over time (Kaspi et al., 1994a) or from the ionised envelope of a
binary companion (Freire et al., 2003).

Precisely knowing the DM for a pulsar is vital to being able to properly fold the data
so as to most accurately reconstruct the true pulse shape. Telescopes can only record data
over a finite bandwidth and folded profiles that have not had the effects of DM accounted
for will be broadened or ‘smeared’ at the trailing end of the pulse, leading to less precise
TOAs. Correcting for the DM across a frequency band, known as dedispersion, has the
effect of aligning the individual time-series pulses in phase, and is essential for high precision
pulsar timing. The time delay, ∆t, due to smearing across a band with bandwidth ∆ν (in
MHz) and centre frequency νctr (in GHz) is given by Cordes (2002):

∆t =
8.3DM∆ν

ν3
ctr

µs (1.23)

As an example of the problematic nature of interstellar dispersion, PSR J1851+0010 (P =

22.8ms; Chapter 4), with a DM of 107.7 cm−3 pc, was observed on MJD 58130 with νctr =
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1.38GHz and a bandwidth of 800MHz containing 512 frequency channels. This amounts
to a 272ms delay over the whole band (although this equation does not generally hold for
such large ∆ν) or a 0.53ms delay over an individual channel – a detectable proportion
of the spin period. Therefore, although further corrections to Equation 1.23 are needed
for 800MHz bandwidths, even the windows in which the equation is valid (over individual
channels) can create unacceptable smearing.

Dedispersion can be carried out using either an incoherent (filterbank or autocorrelator)
method as is seen in the search data in Chapter 4 or a coherent method, as can be seen in
many recent timing studies (see e.g. Hankins, 2017, for a review). Incoherent dedispersion
is the correction achieved by adding an artificial delay, calculated from Equation 1.23, to
the signal in each frequency channel over the whole observing band. However, it does not
account for dispersion within a given channel, and there will inevitably be some residual
intra-channel smearing. In the above example of PSR J1851+0010, incoherent dedispersion
can provide TOA precision of ∼ 1ms as a theoretical minimum, which is not ideal given
its spin period. This cannot be used for timing when the expected pulsar feature sizes are
on the order of this broadening.

Coherent dedispersion (Hankins and Rickett, 1975), such as is currently offered by most
pulsar instruments at radio telescopes around the world, aims to resolve dispersion effects
to the pulse shape within individual frequency channels in order to provide TOAs with
better precision. Lorimer and Kramer (2005) provides an extensive account of coherent
dedispersion but the main theory is as follows. The ISM is treated as a phase-only filter or
transfer function, H. The (generally) complex voltage induced at the telescope receiver,
vrcvr(t), is the result of this phase shift applied to the propagating EM wave as emitted
by the NS. To remove the dispersion, the receiver voltage is first Fourier transformed and
then convolved with the inverse of the transfer function to give the Fourier transform of
the voltage at the NS, ṽNS(ν) (in V µs). These Fourier transform integrals are finitiely
bounded between ±∆ν/2 as the Nyquist sampling (Smith, 1997, Chapter 3) at the receiver
ensures that signals outside this range are identically 0. The full equation is then:

ṽNS(νctr + ν) = ṽrcvr(νctr + ν)H−1(νctr + ν) (1.24)

The dedispersed voltage is then recovered by taking the inverse Fourier transform of
Equation 1.24. The transfer function can be approximated (to the ns level) by:

H(νctr + ν) = exp

(
±i 2πkDDM

(νctr ± ν)ν2
ctr
ν2

)
(1.25)

where kD is the dispersion constant. Although this method ideally removes all smearing,
it is much more computationally expensive than filterbank dedispersion. Dispersion does
also occur within the Solar System due to solar wind and correcting for this is handled
by the Solar System emphemeris which takes the electron density to be constant in time
and spherically symmetrical. Recent LOFAR studies suggest corrections to this model
but these corrections do not affect pulsar timing results at the current level of precision
(Tiburzi et al., 2021) so the electron density due to Solar wind in this work is assumed
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constant in time with a value of 4 cm−3 at 1AU, although Madison et al. (2019) have
recently reported the Solar wind electron density to be 7.9 ± 0.2 cm−3.

1.2.4 Orbital parameters

A binary orbit can be observed as a periodic change in delay in the arrival times, which are
collectively denoted ∆B (in much the same vein as the Solar System delays). Newtonian
mechanics suggests that a binary orbit around a centre of mass can be described by five
measureable orbital quantities known as the Keplerian parameters. These are:

• T0, the epoch of periastron (sometimes the epoch of the ascending node), is the time
stamp for the other orbital parameters. In much the same method as Equation 1.15,
orbital parameters calculated at a previous known T0 can be updated to reflect the
current date.

• ω, the argument of periastron, is the angle between the ascending node of the binary
system and the closest point of the orbit to its centre of mass (periastron). This is
measured in the direction of motion and its reference plane is the orbital plane.

• e, the eccentricity, describes the ellipticity of the orbit as a dimensionless parameter.
A bound system (i.e. a binary) will have values of e ranging from ∼ 0 to < 1 with
lower values for e describing more circular orbits.

• Pb, the orbital period, is the time taken (usually quoted in days) for one complete
orbit of the system. This is generally calculated after long term periodic timing
residual errors are detectable and resolvable as orbits may take a few days so good
orbital coverage is necessary to accurately detect Pb.

• x ≡ ap sin i, the projection of the orbit’s semimajor axis ap onto the plane of the sky
as observed from Earth. Inclination angles are not resolvable by determination of x
alone and the inclination must be calculated independently (see e.g. Equation 1.32).

These, along with the rate of change of the latter four parameters (discussed below)
constitute the binary Rømer delay, ∆RB as they serve to transform from the pulsar’s
reference frame to the centre of mass of the binary system (such as how ∆R� transforms
from topocentric to barycentric).

These measurable quantities can be related to the system masses in a theory–independent
way. A theory–independent timing model measures the timing delays as orbital parameters
and corrections but does not infer masses from these measurements, due to their being no
theory of gravity to relate masses to. To constrain masses from a model like this, one
can measure multiple orbital parameters and calculate the mass function (Lorimer and
Kramer, 2005), which is nominally a function of the pulsar and companion masses, mp

and mc, as follows:

f(mp,mc) =
4π2

T�

x3

P 2
b

M� =
m3

c sin3 i

(mp +mc)2
(1.26)
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where T� ≡ GM�/c3 = 4.9254909476412675µs is the conversion of the Solar mass into
units of time. The mass function alone cannot be used to find the system component masses
because it describes a ratio of masses, and mp cannot generally be disentangled from that
ratio. The component masses can be determined through observation of their effect on the
Keplerian orbits and by employing a suitable theory of gravity (thus the model becomes
theory–dependent). Additionally, the orbital inclination is generally unknown and must
be found independently of at least one of the masses.

Post–Keplerian parameters

Most pulsar binaries fit the Keplerian orbital model well due to the relatively small orbital
speeds predicted in these systems. In the case of two objects in a more compact binary
system such as a double neutron star (DNS) or compact NS-WD, the approximate orbital
speed is given by the Vis–viva equation:

v =

√
GMT

(
2

R
− 1

ap

)
(1.27)

where R is the separation between the two bodies. Close DNS systems (such as e.g.
Hulse and Taylor, 1975) have average orbital separations of only ∼ 2R�12. This gives
them orbital speeds of ∼ 0.2% of the speed of light at their closest approach which, in
combination with the large masses present in compact binaries, result in measurable orbital
relativistic effects on the observed pulse TOAs; these are designated relativistic binaries.
These perturbations to the Keplerian orbits can be measured in a theory–independent
way to give seven ‘post-Keplerian’ parameters (Damour and Deruelle, 1985; Damour and
Deruelle, 1986):

• ω̇, the advance of periastron, is the secular change of the argument of periastron over
time measured in deg yr−1.

• γ, roughly equivalent to the Einstein delay ∆EB, and the binary equivalent of ∆E�.
This parameterises the gravitational redshift and time dilation due to the varying
separation of the pulsar from its companion.

• Ṗb, the orbital decay, is the rate at which the orbital period decreases over time as
the NSs move towards a merger event. This is caused by emission of quadrupolar
gravitational waves (e.g. Abbott et al., 2017) predicted by relativity.

• r and s, the Shapiro “range" and “shape" parameters. r determines the extent of
Shapiro delay due to the mass of the companion, as this determines the magnitude
of the gravitational potential well through which the signal travels. s determines the
extent of Shapiro delay with respect to the system’s orientation and is equivalent to
sin i.

• δr and δθ parameterise the relativistic deformations of the orbit and cannot generally
be measured separately.

12R� is the Solar radius: the radius at which the Sun’s optical depth is at 2/3. R� = 6.957× 105 km
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Once measured in a theory–independent way, these PK parameters can be held at a
fixed value in order to determine the system masses under specific theories of gravity. In
the case of GR, the PK parameters can be parametrised in terms of the Keplerian orbital
elements and the masses as follows (e.g. Edwards et al., 2006):

ω̇GR = 3T
2/3
�

(
Pb
2π

)−5/3 (mp +mc)
2/3

1− e2
(1.28)

γGR = T
2/3
�

(
Pb
2π

)1/3

e
mc(mp + 2mc)

(mp +mc)4/3
(1.29)

ṖGR
b = −192π

5
T

5/3
�

(
Pb
2π

)−5/3 mpmc

(mp +mc)1/3
f(e) (1.30)

rGR = T�mc (1.31)

sGR ≡ sin i = T
−1/3
�

(
Pb
2π

)−2/3

x
(mp +mc)

2/3

mc
(1.32)

δGR
r = T

2/3
�

(
Pb
2π

)−2/3 3m2
p + 6mpmc + 2m2

c

(mp +mc)4/3
(1.33)

δGR
θ = T

2/3
�

(
Pb
2π

)−2/3 7
2m

2
p + 6mpmc + 2m2

c

(mp +mc)4/3
(1.34)

where f(e) in Equation 1.30 is defined as:

f(e) ≡
(

1 +
73

24
e2 +

37

96
e4

)
(1− e2)−7/2 (1.35)

Under GR then, it is possible to determine the total system mass from a significant
measurement of one PK parameter and the individual component masses if a measurement
of two or more are made. The PK-parameter for which the least data is needed is ω̇ and
this parameter is often used to infer a GR-derived total mass (Equation 1.28). Depending
on the orbital geometry, the second most easy to measure PK parameters are either Shapiro
delay (for orbits with sin i ≈ 1) or Einstein delay. A measurement of Ṗb due to gravitational
wave emission requires great orbital coverage and is therefore usually not detectable for
the first few years of observation. Once the pulse properties are known, orbital coverage
can be increased through planned dense campaigns in which the pulsar is observed more
frequently than in a typical observing campaign (see Chapters 3 and 4).

Expanding on Equation 1.19, the total contribution to the delays as probed in this
thesis is therefore:

t = tobs + ∆clk −∆D + ∆� + ∆B (1.36)

This is the equation that defines the model used for timing analyses.
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1.3 Binary systems containing pulsars

The observational study of NSs in binary systems began with the discovery of the binary
pulsar PSR B1913+16 (PSR J1915+1606, 59.03ms; Hulse and Taylor, 1975), also known
as the Hulse–Taylor binary. Binary systems, which can sometimes be recognised as such
directly from TOA residual deviations, can allow for precise tests of the predictions of
GR in the strong-field regime (Taylor and Weisberg, 1989), as well as providing tests
for alternative theories of gravity (e.g. Damour and Esposito-Farèse, 1992; Damour and
Esposito-Farèse, 1993; Damour and Esposito-Farèse, 1996). Recently, the merger of close
dense binaries containing NSs has been the topic of much scientific interest, owing to the
first direct detection of a NS-NS merger from gravitational wave (GW) analysis (Abbott
et al., 2017). GWs are ripples in spacetime caused by the close orbit of two very massive
bodies. These waves solve the weak-field approximation of the Einstein equations in the
vaccuum radiative regime, displaying linear propagation in this regime, but become highly
non-linear in the strong-field regime around NSs and black holes, possibly violating GR in
this regime (see e.g. Villatoro, 2018). GR suggests that orbits of compact bodies should
shrink over time due to emission of GWs, a theory that is incredibly well constrained
by the precise timing of the Hulse-Taylor binary – the impressive agreement with the Ṗb
of PSR B1913+16 and the theoretical Ṗb due to GW emission is known simply as “the
result”. Extensive overviews of binary systems and NS binary evolution can be found in,
e.g., Bhattacharya and van den Heuvel (1991), Tauris and van den Heuvel (2006), van den
Heuvel (2007), and Tauris et al. (2017); a few fundamental concepts of binaries and their
evolution are outlined below.

The life cycle of any NS binary system starts with two main sequence stars orbiting
a common barycentre. The more massive of these stars, which is likely to be a massive
but short-lived O or B-type star, terminates its main sequence in a core-collapse Type
Ib/c supernova (Yoon et al., 2010), or possibly a Type II supernova. This leaves behind
a NS, which may briefly be seen as a radio pulsar, orbiting a MS companion (as has been
observed from e.g. PSR J0045−7319 (Kaspi et al., 1994b; Bell et al., 1995)), before being
observable as an X-ray binary (XB). The type of XB formed after the first supernova is
determined by the nature of the companion star and binary properties, which dictate the
rate and volume of mass accretion, and are both strongly correlated with the final NS spin
period, leading to the theory that current spin-orbit trends suggest categories of evolution
groups (e.g. Tauris et al., 2012, and Figure 4.8 in this work). XBs are categorised by their
companion masses, into high, intermediate and low-mass X-ray binaries (HMXB, IMXB,
LMXB).

The XB stage sees the evolution of the MS companion which causes it to expand past its
Roche Lobe if the Roche Lobe is smaller that the expa nsion limit (Roche-lobe overflow –
RLO). To conserve angular momentum between the newly formed NS and the low-mass MS
companion, a mass accretion process occurs from the MS companion to the NS via either
a long-duration, stable mass transfer through the L1 Lagrangian point (in the case of most
LMXBs), or via unconservative stellar wind (in the case of many HMXBs). This accretion
process emits very strong X-ray signals as predicted via blackbody emission calculations.
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Pulsars observed in binary systems do not have spin periods that would be expected for
the majority of isolated pulsars13 that have undergone spin-down since birth. Furthermore,
most pulsars are thought to eventually reach spin periods so high (P ∼ 5 – 10 s for a normal
pulsar) that EM emission becomes unfavorable due to the diminished magnetic field being
unable to align charged particles at the NS surface, and the pulsars would “turn off".
What, then, is one possible explanation for pulsars which appear to have spin periods
much shorter than their proposed birth period? The answer is recycling via mass accretion
due to RLO of the companion star. This process can be divided into three main categories:

• Case A RLO occurs when the mass donor (companion) star is still burning hydrogen
when RLO starts. Since LMXBs have low-mass (< 8M�) companions that usually
only burn hydrogen and helium (He), the majority of these binaries can only proceed
via Case A RLO, eventually becoming a NS-He WD binary (see e.g. Podsiadlowski et
al., 2002) and make up the majority of observed NS-WD binaries. The mass transfer
in Case A RLO is a slow and conservative process through the L1 Lagrangian point
(the point between the two bodies where the gravitational influence of each are
effectively cancelled) which results in efficient spin-up to millisecond periods. Hence,
most of the MSPs most likely resulted from Case A RLO. Case A RLO can also give
rise to NS-CO WD binaries if the progenitor system is a short (∼ 1d) period IMXB
with donor star initial masses of 3 − 5M� (Tauris et al., 2000) and, in rare cases,
IMXBs can form NS-He WDs if Case A RLO is initiated early enough.

• Case B RLO occurs if the RLO starts when the donor’s core hydrogen burning phase
is over. This happens when wider IMXBs of about 3 − 10 days with donor masses
> 2.5M� fill their Roche Lobe after evolving off the MS (Tauris et al., 2000). In
the case where the donor star is < 5M�, the resulting system is a NS-CO WD
binary with orbital periods of about 3− 50 days (Tauris et al., 2000). IMXB donors
exceeding 5M� can undergo dynamically unstable RLO (Tauris et al., 2011) in which
the expanded Roche Lobe of the donor completely engulfs the NS in its hydrogen
rich environment, leading to a common envelope (CE) phase (Paczyński, 1976) and
subsequent inspiraling of the donor. This most likely causes a merger, likely resulting
in either an isolated NS or a black hole. LMXBs in some cases can also undergo a
late Case B RLO, leading to a very wide (Pb > 1000 days) NS-CO WD system with
slow (P ∼ 1 second) pulsar and a WD companion mass of 0.47 − 0.67M� (Tauris
et al., 2012).

• Case C RLO occurs if a relatively massive (∼ 3M�) donor is at or beyond the core
helium burning stage of its life and is clmbing the giant branch for a second time.
This is rarely observed in comparison to Case A or B RLO as it requires the pre-mass
transfer progenitor system to have an extremely wide orbit (Pb 100 − 1000 days).
Case C RLO describes the situation where the initial Case A or B RLO triggers a
‘chain reaction’ of accretion to the NS followed by orbital shrinking due to mass-loss.

13Some isolated pulsars are theorised to have once been in binary systems (see e.g. McLaughlin et al.,
2005)
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This leads to further RLO and, eventually, an unstable mass transfer followed by a
CE. Within the CE, the inspiraling NS causes large dynamical friction and, in a wide
binary (Pb & 1 yr), often leads to severe loss of angular momentum and ejection of
the envelope. Many potential binary systems merge during the unstable CE phase
(Glebbeek et al., 2013) as in Case B RLO; however, for Case C RLO, the CE is less
tightly bound than in Case B so there is a greater chance that the MS will survive
the inspiral phase. Those that survive as binaries go on to form a NS–He (neutron
star – helium star) system, where the He-star is the naked He–burning core from
the former MS companion. The final result of NS-He binaries being possible DNS
progenitors is outlined below.

Low and intermediate XBs that result in NS-WD systems do so because the MS com-
panion does not have enough mass to end its life in a core-collapse and supernova and
instead moves up the red giant branch eventually becoming a white dwarf. On the other
hand, HMXBs that have undergone Case B or C RLO after the first supernova may con-
tain MS companions that are massive enough to result in a supernova. If a sufficiently
massive NS–He binary is in a close orbit, a second RLO may occur. In the majority of
cases this is achieved via Case BB RLO (Tauris et al., 2015; Tauris et al., 2017) if the donor
mass has less than approximately 3M� following Case B RLO. This will be a lengthy and
stable accretion process through the L1 Lagrangian point. Case BB RLO causes the NS
to “spin–up" due to its now increased angular momentum, sometimes to rotation periods
of milliseconds to tens of milliseconds (Alpar et al., 1982). This also sees a decrease in
magnetic field strength by up to 5 orders of magnitude, possibly due to the accretion pro-
cess (Bisnovatyi-Kogan and Komberg, 1974), which would explain the low magnetic field
strengths observed for MSPs. The larger NS rotation periods observed for DNS systems
in comparison to NS-WDs imply that recycling is not as efficient for HMXBs as it is for
LMXBs. Globular clusters contain a dense population of massive stars and thus many
pulsars observed in them are in binary systems with extremely low spin periods (see Ja-
coby et al., 2006, for a discussion about the DNS B2127+11C). The evolution for binaries
in globular clusters, where Case C RLO is expected more often leads to long-period blue
stragglers. This is rather different from Galactic binary evolution and will not be discussed
further.

The Case BB RLO may have the effect of tidally stripping the companion He star if the
orbital separation is small enough. If the XB results in a late, deeply convective, Case B
RLO, and the post-CE He core is less than ∼ 1.375M�, the core will become an O-Ne WD
(Postnov and Yungelson, 2014) and the resulting system will be a NS-O-Ne WD binary.
However if the progenitor IMXB/HMXB results in an early, radiative, Case B RLO and
minimal mass loss occurs during the relatively stable Case BB RLO, eventually either free
electrons are rapdily captured by 24Mg and 20Ne in the former He-star core (ECSN; Miyaji
et al., 1980) or, for more massive companions (which are more likely to form a NS instead
of a WD), the ultra-stripped iron core undergoes rapid core-collapse (FeCCSN; Tauris
et al., 2013), eventually leading the star to go supernova. This results in another young
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NS14. The new system comprises two NSs and is thus called a double neutron star (DNS)
system. This does not explain highly eccentric systems with high transverse velocity, such
as PSRs B1913+16 and B1534+12, in which the companions are thought to have resulted
from a Type II SN.

Because recycled NSs typically have much weaker magnetic fields than young NSs,
based on a purely dipole emission model, they have much longer observable lifetimes which
explains why all but two pulsars in Galactic DNS population are known to be recycled.
The two exceptions are PSR J1906+0746 (P = 144.1 ms; van Leeuwen et al., 2015), in
which the companion is likely the recycled NS, not seen due to beam geometry15; and
the companion (B) star of the “double pulsar" (PSR J0737−3039A/B, PA = 22.70 ms,
PB = 2.773 s; Burgay et al., 2003), so called because both of its constituents were dis-
covered as pulsars. Observations of DNS systems for which the pulsar is the recycled NS
have shown a strong correlation between the measured space velocity and the mass of
the second-formed (companion) NS. It is believed that DNSs with lower space velocities
(< 100 km s−1) developed from symmetric second supernovae which imparted a small na-
tal kick onto the system following Case BB RLO (Tauris et al., 2017), usually resulting
in relatively low eccentricities. DNSs with higher space velocity and eccentricity are likely
to have formed in an asymmetric second supernova which imparted a large kick, as is
observed in the estimated space velocities of PSRs B1913+16 (vLSR = 150 km s−1) and
B1534+12 (vLSR = 120 km s−1; Haniewicz et al., 2021). Another observed correlation is
between the spin period of the recycled NS and the orbital eccentricity (McLaughlin et al.,
2005). The correlations concerning eccentricity are presumably both a consequence of the
slow Case BB RLO mass transfer phase16, in which the stable mass transfer would result
in lower mass loss during the second supernova, leading to a lower eccentricity if the sec-
ond supernova is symmetric. The observed correlation between the eccentricity with spin
and companion mass could also be due to a selection effect favoring low-P/low-e systems
because more eccentric close binaries will merge quicker (Chaurasia and Bailes, 2005) and
therefore no longer be observable. Globular cluster pulsars, pulsars in triple systems (e.g.
PSR J0337+1715; Archibald et al., 2018), as well as pulsar–planet systems (Sigurdsson,
2003) do not fit these evolutionary scenarios well due to the added dynamical complexities
arising in these environments.

With so many types of stellar remnant systems all having undergone slightly different
evolution scenarios, it is vital that observations of pulsars in binaries be made to high
precision in order to best constrain the evolutionary parameters mentioned.

14Another proposed supernova theory for DNSs concerning a double core evolution is given by Dewi
et al. (2006)

15It is not ruled out that this system might be a NS-WD.
16The longer the transfer phase, the more spun–up the recycled NS will be and the less massive the He

star will be.
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1.4 This thesis

This thesis is organised into three main chapters which highlight the range and depth of
pulsar timing studies.

In Chapter 2, the data collection and down stream signal processing methods are dis-
cussed. New methods of RFI excision via neural network image recognition are compared
with traditional methods such as sigma–clipping, which are often biased due to inevitable
TOA component mixing in the resulting residuals. Methods concerning signal calibration
are also explored.

Chapter 3 documents the most up-to-date timing analysis of a pulsar in a relativistic
DNS system: PSR J1829+2456, where significant measurements have been made for
both the component masses and the system proper motion. The chapter concludes with a
discussion of the evolution of the system based on the new timing solution.

In Chapter 4, four pulsars recently discovered by the PALFA pulsar survey are inves-
tigated: PSRs J1851+0010, J1853+0008, J1936+1805 and J1936+2142, three of
which are believed to be in binary systems. This chapter presents the best current timing
solution and physical interpretation for each pulsar.
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Chapter 2

Observation setup and data
processing

O
bservations made for the purposes of this thesis were all taken with the spherical
305-m primary dish at the Arecibo Observatory (AO) in Puerto Rico, and us-
ing the Puerto Rico Ultimate Pulsar Processing Instrument (PUPPI) backend.

Although the telescope is now due to be demolished, at the time of writing the basic obser-
vational setup and metadata for the telescope’s receivers1 and the backend2 can be found
on the AO website. A brief description of the specific setup for AO observations is given
here:

1. Each of the ten receivers at AO have two dipole feeds, set up at orthogonal (for
linear) or opposite-handed (for circular) bases. Data for this thesis was taken with
the 430 MHz and L–wide receivers, with the dipole feeds set to be dual linear. In
reality, pulsar emission is elliptically polarised but by characterising the beam in
terms of the Stokes parameters, one can determine the total beam intensity which
determines the total power output, so it does not matter which orthogonal basis is
used. Polarisation at the telescope will be expanded upon in Section 2.3.

2. Raw radio signal from the sky at the dipole feeds (call this νsrc) is down–converted
to an intermediate frequency (IF – νIF) signal to reduce internal signal loss due
to pipeline elements (cables, etc.). This signal loss is roughly proportional to the
square of the signal frequency, so that a lower frequency suffers less overall loss. The
telescope at the AO uses a superheterodyne system (Armstrong, 1921) to mix νsrc
with a monochromatic local oscillator (LO) of frequency νLO set to the Hydrogen
Maser Frequency Standard of 1,420,405,751.77 Hz. This creates a high–mix frequency
and a low–mix frequency, shown in Equation 2.1 as the sum and difference of the
frequencies respectively.

νIF = νsrcνLO ≈ sin (ωsrct) sin (ωLOt)

∼ cos ([ωsrc − ωLO] t) + cos ([ωsrc + ωLO] t)
(2.1)

1http://www.naic.edu/~astro/RXstatus/rcvrtabz.shtml
2https://www.cv.nrao.edu/~pdemores/puppi/
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3. Once mixed, the IF signal is put through a low–pass3 filter to obtain the signal
relative to the LO’s frequency. Stages 2 and 3 are collectively known as the IF/LO
chain4.

4. The new frequency at νIF was then digitised and passed to the PUPPI backend where
further processing, such as online dedispersion and profile folding, took place.

2.1 Initial data processing

The datasets were downloaded to the local UEA file server from Arecibo’s ‘puppimaster’
server and with some having been obtained from the servers at McGill University. For
this work, a combination of both incoherent search-mode data and coherently dedispersed
fold-mode data were used to obtain timing solutions for five pulsars. The search-mode
data were first divided into subbands of 256 or 512 frequency channels and initial times-of-
arrival (TOAs) were obtained through the get_toas routine in the PRESTO pipeline. This
involved two main steps: a rough method for radio frequency interference (RFI) excision
(rfifind), in which the time series was divided into segments of 0.5 s and each segment
analysed for RFI; followed by a folding routine (prepfold) set to the best-fit folding period
for each session of observation (see Ransom, 2001, Section 5.1) at a profile resolution of
128 or 256 bins. These incoherent TOAs were then phase connected iteratively using
tempo5 by removing artificial constant phase jumps (manually input phase corrections
designed to artifiially align the pulse phases) between sets of different observing epochs
and fitting physically motivated parameters as necessary until all the TOAs could be
described by a spin model that was free from inter-epoch phase offsets. This is called a
phase-coherent solution and takes into account every rotation of the NS, assuming that
parameter measurements do not contribute to integer numbers of rotation period offsets.
Once phase-connected, this initial phase-coherent solution is called the initial solution. To
obtain the solutions as reported in this work, the search and fold-mode data were refolded
using the initial solution to achieve more accurate TOAs, and therefore a more precise
solution. Re-folding the data with a correct ephemeris can also bring out more nuanced
features in the pulse profile and is often done iteratively over older data as new data
becomes available after the initial discovery.

During refolding, the raw search-mode data was directly folded with the initial solution
using the fold_psrfits routine in the psrfits_utils package6, with a minimum of 256
bins per profile. These now-folded data, together with the other fold-mode data, were
analysed using the PSRVoid pipeline, which is now described below and further detailed
in Appendix C, in order to remove further RFI contamination.

3Radio astronomers use low/high–pass to refer to frequency, whereas optical astronomers refer to wave-
lengths. Here, we obviously use the radio nomenclature.

4A full set of schematics for the entire IF/LO chain used at the Arecibo Observatory is available at
http://www.naic.edu/~astro/techinfo/iflo/

5http://tempo.sourceforge.net
6https://github.com/demorest/psrfits_utils
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2.2 RFI excision

The ability to make accurate and reliable TOA measurements is dependent on the quality
of profiles that are averaged to form the integrated profile. During an observation, data is
sometimes overshadowed by noise and unwanted signal which can be broadly categorised
into three main areas of interest:

• Instrumental (or system) noise, which is due to system components such as amplifier
setup and receiver component temperature (e.g. see above).

• Astrophysical noise, which describes any noise source that is astrophysical in origin.
This category includes red timing noise due to unmodelled physics within the data
(Hobbs et al., 2006b), the cosmic microwave background noise, and other porminent
local backgrounds.

• Interference, which is due to unwanted signals (of usually unknown origin) degrading
the quality of the true signal. In astrophysics, interference is most often in the form
of electromagnetic interference, and for radio astronomy: RFI.

RFI is a common source of interference in pulsar data and can be frequency specific
(irreconcilable at a certain frequency over the entire observation), or epoch specific (hap-
pening over a short burst of time). Narrowband RFI is interference that takes place over
(theoretically) one frequency channel and is often due to small communication devices such
as mobile phones. Broadband RFI exists over a much larger range of frequency channels
and, whilst often at a lower amplitude, is more difficult to fully disentangle from the signal
than in the case of narrowband RFI. After averaging, RFI in unclean datasets can some-
times reduce an otherwise good signal to a null profile (a profile that is ‘flat’ and often
close to 0 over the phase-space), and other times narrowband RFI far exceeds the pulse
flux density and the only visible signal is that from the interference source. This can be
explained by receiver saturation in which the limiting output voltage of the analog receiver
is exceeded by the interference source power input. Profiles such as this are said to saturate
the radio source, making it undetectable until the interference is removed (or clipped). An
added caveat with saturated profiles are that, due to harmonics created by clipping the
RFI regions, even narrow-band RFI can affect the total input frequency band. Including
especially these latter types of profiles when refolding may shift the integated profile max-
imum by some non-negligible fraction, producing TOAs that no longer effectively model
the emission or rotation. The effective output of the routines described in this section is
an ASCII file containing a list of pairs of sub-integrations and frequencies, corresponding
to individual polarisation–averaged profiles, which meet a specific criterion for flagging the
profile for removal due to RFI.

Removing RFI from folded profiles can sometimes be ‘too late’ in the sense that the
RFI is persistent throughout the entire band (due to harmonics, etc.). In this case, small
chunks of time on the order of a few hundred ms may need to be removed. In the most
extreme cases, entire bands may need to be abandoned for a particular observing day,
although this is rare.
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In this thesis, three models were exploited for identifying RFI in folded pulsar data
and developed in code: Gaussian σ–clipping, image recognition via machine learning, and
overtone matching. The models were then compared against each other by using the timing
solutions resulting from the TOAs produced with the corresponding integrated profiles (see
Section 2.2.4).

2.2.1 Gaussian σ–clipping

The most simplistic model used to identify RFI assumes a box–like structure for the on
and off-pulse regions as determined by a template profile and further assumes that mean
flux density RMS in the off-pulse region follows roughly a Gaussian distribution (or a set
of Gaussian distributions). These assumptions are valid if care is taken to remove known
sources of RFI; if there is an extreme bias across multiple channels, the off-pulse signal
will often not be well modelled by a Gaussian. In these clear-cut cases, the known sources
of RFI can be manually removed before further processing. σ–clipping works by removing
profiles that lie outside some multiple of the standard deviation for some given statistic
(here that is the off-pulse RMS). There are two fundamentally different statistical criteria
that the PSRVoid package uses for σ–clipping: Chauvenet’s criterion (Chauvenet, 1863)
and double median absolute deviation (DMAD), which are described below.

Chauvenet’s criterion assumes a single Gaussian, with mean µrms, and is the least
computationally expensive of these two methods. The mean RMS for N profiles, from the
frame of reference of a whole profile, xi, is given by:

µrms =
1

N

N∑
i

wixi,rms-opw (2.2)

where wi is the frequency density of the RMS value for the ith profile and the OPW
subscript stands for the off-pulse window: the aforementioned ‘box–like’ region as deter-
mined by profile bins where the template profile is identically 0. Chauvenet’s criterion
suggests that any profiles whose specific off-pulse RMS is not in-between ±aσ, for some
user-defined tolerance a, is either a null profile at the lower extreme or a high-flux density
affected channel due to narrowband RFI at the higher extreme. Thus, any profile that
is outside this range is given a weight of zero for further analysis. To the keep the same
resolution of significance throughout the timing process, RMS values outside the range for
a = 2, which corresponds to a 95% Gaussian confidence, were rejected. Considering the
number of profiles per observing day (∼ 60000), this was decided as an appropirate limit.

The second approach, DMAD, assumes that prominent sources of interference are often
independent of each other and therefore may exhibit local Gaussian flux density distribu-
tions; however these local interference distributions will generally not comprise a global
Gaussian flux density distribution. This is generally true and is not taken into account
in Chauvenet’s criterion. Taking a single value of µrms for a multi-peaked interference
distribution using Equation 2.2 may, in the most extreme cases, omit every profile due to
the aσ cut-off boundaries being unrepresentative of the data. DMAD instead calculates
the median of each local distribution (or more practically, the n most prevalent local dis-
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tributions) and compares pairs of medians via calculation of the modified Z-score (Iglewicz
and Hoaglin, 1993), which is a standardised score that measures outlier strength from the
median in units of standard deviation. For an interference distribution with n Gaussian
signals, the modified Z-score for the ith profile, Zi, is given by:

Zi = 0.6745(xi − x̄)

 n∑
j

|xi − x̄j |

−1

(2.3)

where a bar over an element represents its median and xi ≡ xi,rms-opw from above. The
modified Z-score is compared against a user-defined threshold, with modified Z-score values
less than the threshold signifying a strong outlier signal, among which RFI is expected to
lie. In effect, this determines how the local distribution compares with respect to the over-
all RMS population (Leys et al., 2013). If the local distribution is centred around a highly
noisy source, then the denominator of Equation 2.3 will be large, making it less likely that
the resulting modified Z-score will exceed the imposed threshold, and thus more likely to
be classified as an outlier interference source (such as RFI). Iglewicz and Hoaglin (1993)
suggest a threshold value of 3.5 for 95% confidence (for a boundless number of samples) so
this value has been adopted for this work. This method also somewhat removes the need to
manually omit known sources of RFI beforehand, as was the case using a single Gaussian
approach (assuming that the known source of RFI is itself roughly Gaussian-distributed).
Although the DMAD Python implementation is slower than using Chauvenet’s criterion
by about 25% for the case of a two-component off-pulse RMS distribution (the theoreti-
cal best case scenario) and significantly slower for more sensitive DMAD tests, the time
saved in reducing manual intervention makes this a faster method for any multi-Gaussian
interference distributions.

2.2.2 Image recognition excision via deep learning

Gaussian σ–clipping can rapidly result in broad statements about large data volumes,
however RFI–riddled ‘inlier’ profiles may still persist if their off-pulse RMS coinicidentally
lies within the acceptable threshold, despite not contributing to the true pulsar signal in a
meaningful way. Dedispersed L–band data for PSR J1829+2456 taken for this thesis (see
Chapter 3) contained several profiles that displayed this property, mainly residing on the
outskirt edges of particularly noisy sub-bands. One solution to this might be to increase the
cut-off threshold and concede to a greater measurement uncertainity; however, to preserve
the 95% significance tests used in this work, a different approach was necessary.

Machine learning (ML) for pattern recognition has already been used for image and
speech recognition on platforms such as Facebook (Pinheiro et al., 2015; Pinheiro et al.,
2016; Baevski et al., 2020), and is a growing topic in the astrophysical community. This
includes pulsar astronomy, for wide reaching studies, such as profile evolution and emission
in particularly complex situations (e.g. Devine et al., 2016; Kwofie, 2018), as well for pulsar
candidate searches (Zhu et al., 2014). Given the success of ML in these instances, it has
been explored here as a potential improvement on Gaussian σ–clipping in order to detect
and excise RFI.
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Machine learning (Samuel, 1959) represents the defiance of ‘conventional programming’,
in which the behavior of the algorithm is a function of the input variables, as opposed to
a set of static protocols programmed by a user, in order to predict patterns in a way that
a human programmer could not, and therefore could not programme for. Classical ML
has often been a process of a feature-matching. In this type of ML, a predetermined set
of macro-features from an image, spanning more than one pixel, is preprogrammed as a
validator to compare to the input pixels and decide if the input matches any known macro-
feature (e.g. Taylor et al., 2009). This is generally the least computationally expensive ML
approach so is preferred for well-understood images and patterns; however the often ill-
understood sources of interference in PSRFITS data require an approach that is able to
determine relevant features without already having access to a look-up table. In contrast,
modern ML must be trained with ‘live’ examples. This involves creating a training set,
in which the outcomes from each example in the set are known, and comparing that with
the responses given by the artificial intelligence (AI) algorithm for the same set. If the
AI’s setup caused it to categorise many examples incorrectly the AI changes its behavior,
based on metrics outlined below, until its responses better match those of the training set’s
outcomes. Since the training set can be any sequence of data points and the rest of the
algorithm evolves through training, modern ML algorithms can adapt to many situations
and are therefore more economical than classical systems overall. This makes them better
suited than feature-matching ML algorithms to the problem of classifying pulse profiles,
which requires a great deal of flexibility.

There are many radically different types of infrastructure for modern ML algorithms
which have been explored in this work. Two main competing types of ML algorithms are the
recurrent neural network (RNN), an infinite impulse response network useful for analysing
analog signals where the continuous nature of the data does not require a zero-time, and
the convolutional neural network (CNN; neural network – NN) (LeCun et al., 1989), a finite
impulse response network designed to mimic the neuron pathways in the human brain for
discrete (digital) systems. As such, CNNs were chosen for analysing the digitised pulsar
data. CNNs are also sometimes known as shift invariant NNs owing to their shared-weight
architecture, as will be discussed in this chapter. An excellent overview of CNNs is given
by Goodfellow et al. (2016, Chapter 9). CNNs are often easier to design than RNNs when
particular responses are known (such as known patterns or desired responses) but RNNs
are generally more efficient to implement owing to a smaller list of initial assumptions.

Abstractly, neurons in a CNN that fire action potentials more often for certain inputs
end up end up being ‘reinforced’ when presented with that those inputs multiple times.
Conversely, neurons that fire less over the same experiences are not nurtured and become
undermined. Thus, when a comparable situation arises again, the neurons fire those po-
tentials more efficiently due to stablised and strengthed neuron-to-consequence mapping7.
This can be represented by the input vector and a series of one-dimensional vectors, known
as layers, comprising an output layer and an intermediate set of hidden layers which are
mathematically coupled to each of the input and output nodes, as shown in Figure 2.1.

7This is how the human brain learns, but it is currently impossible to replicate the complixity of a
brain.
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The connections between one node in a layer and a node in an adjacent layer are called
folds8.

During the feed-forward process, there will eventually and necessarily be a reduction
in the number of nodes. If there is not, and the number of categories equals the number
of input nodes, the CNN will not be able to associate regions as effectively. This node
reduction can be seen as a filter for the input, simplfying it down to more rudimentary
patterns, until one value is output as the test result. The output volume can be controlled
via three hyperparameters: the depth, the stride and the zero-padding – outlined below:

• The depth, n, is the connective scope of the NN architecture. As a CNN learns from
analysing feed-forward results, recurrent features in the input space, when seen by
the AI, begin to ‘fire’ recurrent patterns through the layers. The longer the chain
of layers, the more neurons there are in your system holding information about the
input space and the more complex that optimal feature search can become. In most
cases, depth can be thought of as the number of layers, with a depth slice, or node,
denoting a value in a given layer.

• The stride, s, determines the vector length change from layer to layer. In the n = 3

case, the stride of the only hidden layer in a CNN is the same as the search window
used in Gaussian σ-clipping. This is because all points within the search window are
averaged in Gaussian σ-clipping, with is much the same process here. For a deep
CNN, the stride determines the speed at which the network learns per layer, although
this is necessarily a mean value.

• The zero-padding parameter, q ≡ s/2 is used to compensate for clustering effects
due to averaging at image edges with constant stride. For a layer-layer connection of
stride s, the first and last q depth slices in the first layer will each have less values
over which to average than the other values in that layer. The effect is a cumulative
mean in those particular depth slices meaning that the first and last few nodes in
the resulting layer will not be mutually exclusive which leads to biased weightings
between those layers. To overcome this, q null values are applied to either side of the
image. This is not suitable for every layer if the exact spatial size of the input image
is important to preserve.

Generally, the feed-forward output, Y, for an n–layer NN can be written recursively in
terms of the input nodes, X, the weight matrices, W(i) (for layer i) and bias nodes, b(i),
which are preprogrammed constant offsets to apply to nodes in a given layer, as described
below:

Y = fn

(
W(n)fn−1(Z(n−1)) + b(n)

)
(2.4)

where fi is some non-linear function designed to model non-linear behavior in the output,
and

8Not to be confused with the pulsar astronomy definition of folding!
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Z(i) = W(i)fi−1(Z(i−1)) + b(i) (2.5)

with

Z(1) = W(1)XT + b(1) (2.6)

...

...
... ...
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Figure 2.1: A general overview for a deep-learning, n–layer neural network. Each layer has
a shape independent of the other layers (i.e. in general, m 6= i 6= j 6= k, etc.). Layers are
all linked together by (generally non-square) weight and bias matrices. The dashed lines
represent potentially many hidden layers connected linearly. The input nodes do not count
as a layer. For example, the input layer is the individual data points in a pulse profile and
each subsequent layer is, in effect, a binning-down of these data points, not too dissimilar
from classic smoothing procedures.

The term ‘deep learning’ is most often attributed to NNs where the number of hidden
layers > 1, as it has been shown that increasing the number of hidden layers increases
accuracy, so is frequently conflated with a higher degree of learning. Although it is pos-
sible to set specific initial weights, the point of using CNNs is to be able to start from
essentially a random uniform distribution of weights and create ‘order from the chaos’
by way of ‘back-propagation’. The training is achieved via two training sets: the normal
training set, (Xtr,Ytr), and the validation set, (Xval,Yval), which contains profiles that
are representative of the normal training set population but independent of that set and
generally contains only 20% of the content, a split determined by minimizing the validation
and training set error rates (Guyon, 1997). In general, the number of validation set profiles
should be roughly inversely proportional to the square-root of the number of free parame-
ters. These training sets contain individual pulse profiles as inputs with a key to designate
them as either containing RFI (0) or clean (1). Training, then, is a process of reading the
training set inputs, applying the initially ‘random’ weights, comparing the output result
with the known training output and back-propagating down the neurons in order to update
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the weights if necessary, to better match the expected output result. A final metric used
for effective NN design is the Vapnik-Chervonenkis dimension (Vapnik and Chervonenkis,
1971), which is the overall measure of NN complexity and will be discussed later in the
chapter.

Loss

A further set of values representing the current rate of success, the loss, is also calculated.
The loss is an important property which determines how well the NN learns over many
iterations with respect to a given loss function9. For binary classification, the most widely
used loss function is the binary categorical cross-entropy (BCCE) function, which works by
comparing the output node values with each other and then assigning the input nodes as
belonging to one or the other category based on a given threshold for one. This means that
it strongly penalises confident yet wrong predictions. PSRVoid (Appendix C) implements
BCCE, for loss L, and a given training set (signified by the subscript ‘tr’) as follows:

L = − 1

Ntr

(
Ytr · [logY]T + (1−Y) · [1− logYtr]

T
)

(2.7)

where Ntr is the number of samples in the training set. The ‘1’s are identity matrices with
the same shape as Y. This loss function is identical to the one calculated for the validation
set with subscript ‘tr’ replaced with ‘val’.

Amending the weights during back-propagation is conducted by a process of ‘steepest
gradient descent’ (SGD10) analysis (Curry, 1944) with the goal of minimizing the loss
function on the typically multi–dimensional loss surface. The updated position, pi+1, of
the point in loss-space at step i+1, can then be expressed in terms of an arbitrary learning
rate, l, as:

pi+1 = pi + l∇g (2.8)

for arbitrary function g whose gradient is defined as being negative. The learning rate is a
positive scalar that codifies the loss-space step-size of the gradient search from one point to
the next. A learning rate that is too large may pass over narrow but deep troughs, whereas
a NN with a learning rate that is too small may get stuck in a broad but shallow trough
and therefore stop improving. In this work, l is kept constant and small (∼ 0.001− 0.01)
to achieve a good resolution-to-time ratio; however, gradient line-search methods in which
the learning rate is also a function of the current gradient (e.g. Nocedal and Wright, 2006)
can be used to determine more optimal learning rate values at each iteration. This is was
not implemented for testing the models for RFI excision, as line-search implementation on
a subset of the data made little difference on the quality of the NN outputs for a given
training set over a constant l method11.

9Also called the objective function (cf. Goodfellow et al., 2016, p. 80)
10The NN community use SGD to mean ‘stochastic gradient descent’ (cf. Goodfellow et al., 2016) which

involves splitting the data up into sub-sections to optimize large NNs. This work does not require such
optimisations and they are not used, so the term SGD stands for ‘steepest gradient descent’.

11The line search takes a lot longer to run however.
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Table 2.1: Properties of various activation functions used for testing, including their deriva-
tives, ranges and descriptions.

Name f(x) f ′(x) Range Description

Sigmoid
σ(x)

(1 + e−x)−1 σ(x)(1− σ(x)) (0, 1)

Useful for binary classification.
Gradient is gentle but
can flatten altogether.

Computationally expensive.

Hyperbolic tangent
tanh(x)

2(1 + e−2x)−1 − 1 1− tanh2(x) (−1, 1)

Zero-centred, meaning better
classification for strong

negative values. Otherwise,
it is a scaled Sigmoid.

Rectified linear
unit∗, ReLU(x)

max(0, x)


0 x < 0

undef x = 0

1 x > 0

[0,∞)

Computationally efficient. Back-
propagation fails if input
approaches 0 because of
the undefined derivative.

Softmax†

s(x)
ex
(∑N

j=1 e
xj
)−1

∂si
∂qj

= si(δij − sj) (0, 1)
Normalises input vector, x.
Can be used for classification
of more than two categories.

Swish
ς(x)

xσ(bx) ς(x) + σ(bx)(1− ς(x)) [≈ −0.278/b,∞)
Smooth throughout entire domain.

b is a constant scalar.

∗A slight modification to ReLU is the Leaky ReLU function (LReLU(x) = max(ax, x)), in which the
scalar, a, can be fine tuned to model negative value behavior in the input, however results from
LReLU–driven nodes vary wildy depending on the nature of the negative values.
†It makes no sense to talk about the Softmax function with an isolated node, x, within a fold as can be
done with the other activation functions mentioned here. Therefore, the vector x = {x | x ∈ Z(j)} is used
as the argument instead.

Activation functions

The set of functions in Equation 2.4, {fi}, are known as activation functions and can be
categorised into three main groups: binary step functions, where the input is compared to
a threshold and the neuron is activated if the criteria is met; linear functions, where the
output is a linear combination of the input; and non-linear functions. The first two of these
groups are unsuitable for deep learning; binary step activation functions cannot support
mutliple categories of data, and linear activation functions are both always collapsible to
a 2–layer network and cannot support back-propagation due to the constant nature of the
derivative (i.e. there is no ‘steepest gradient’). The non-linear activation functions are the
only choice for back-propagated deep learning algorithms, as these can model the generally
non-linear behavior of neurons with a linear system of equations (e.g. Equation 2.5).

The choice of non-linear activation functions is dependent on the particular design of the
NN, with some functions being preferable at certain layers. For the purposes of this work,
the choices for the functions were decided based mainly on qualitative grounds from the
successes of many previous studies, however recent research has yielded promising results
for determining the optimal type of activation function via a ML approach (Manessi and
Rozza, 2018; Nader and Azar, 2020). There are a vast collection of optimised activation
functions for specific types of NN, five of which are explored for this thesis (Table 2.112),
often (and here) quoted as functions of one node, x, unless stated otherwise.

To determine the most effective activation architecture for the RFI excision NN, six
unique 4–layer CNNs were constructed with node structure (|X|, 32, 16, 32, 2) where each

12For a full derivation of the derivatives, see Appendix A.3
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number is the number of nodes in that layer. Weight matrix elements were all initialised
with NumPy’s (van der Walt et al., 2011) random seed generator with a seed of ‘1’ (although
this choice is arbitrary), and bias elements all set to 0. The acceptance tolerance, the value
that the output must be equal to or greater than to be labelled as ‘clean’, was set at 0.7

although lower tolerances were also explored. The first activation function in the feed-
forward was chosen to be either the ReLU or the Swish function, the second function was
kept fixed on the ReLU, and the output layer was determined by either the sigmoid, the
hyperbolic tangent or the softmax function. The positional choices for these activation
functions were based on each function’s specific ability to handle the incoming data: the
initial hypothesis was that the Swish + sigmoid approach would produce the ‘smartest’
and least time-demanding NNs. This is due to Swish’s ability to negotiate negative values
from the input layer instead of simply nullifying them, whilst otherwise behaving mostly
like the ReLU function, and sigmoid’s effectiveness at binary classification. The softmax
normalisation property helps to handle vanishing gradients present in the output layer, but
may have a difficult time with binary classifications due to limited input nodes when back-
propgating. The softmax function can be used to more easily compare data on different
scales13.

The training data for this experiment was created from pre-averaged PUPPI obser-
vations of PSR J1829+2456 at 430MHz taken on MJDs 58402, 58404, 58406 and 58408.
This made for a total of 375 profiles in the training set and 75 profiles in the validation
set. Within each set, 20 null profiles with their output flag set to 0 were included in order
for the networks to more easily learn the structure of null profiles. During training, the
loss was monitored over 100, 000 iterations, or until convergence to four decimal places, for
each CNN at six different learning rates. The final loss values are recorded in Table 2.2
and the full loss profiles are given in Appendix B.2. For effective and realistic learning, the
loss profile should be a smooth decrease with increasing iterations, however some disconti-
nuities remain and appear more frequently as a function of increasing l. This is a result of
the learning rate being too high to stick to a particular potential well in the L-landscape
– although, the ReLU/tanh CNN structure produced an excellent learner at l = 0.0003

despite the loss profile’s deviation from smoothness.
A confusion matrix (Stehman, 1997), Cij (for i, j ∈ {0, 1, ..., n}), was then calculated

using the Scikit-learn Python package (Pedregosa et al., 2011) – Cij visually represents the
number of correct and incorrect predictions made by the weight and bias matrices obtained
from the final iteration of training. The confusion matrix has four defined performance
metrics (Kwofie, 2018) for which higher values all-round suggest a more effective NN:

• The accuracy, the fraction of all correct predictions,

• The sensitivity (also called the ‘true positive rate’), the fraction of clean profiles that
were correctly predicted,

• The specificity (also called the ‘true negative rate’), the fraction of all noisy profiles
that were correctly identified,

13A common occurence is the conversion from counts to Jy (see Section 2.3 for a different approach).
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• The precision, the probability of a correct prediction given that the prediction was a
1 (clean profile).

These metrics, for a binary output system, are outlined as functions of Cij in Equations
2.9a – 2.9d respectively. The four metrics were calculated for each activation setup at the
specific learning rate which produced the minimum loss for that activation setup (Table
2.3 – see Table 2.2 for the learning rates).

Table 2.2: The loss for each unique 4–layer CNN after 100, 000 iterations, or less depending
on convergence, of training at six different constant learning rates. The second activation
function (always ReLU) is implied and therefore omitted from the setup, so the setup is
quoted for the first and third functions in that order. The ReLU function is here denoted
R(x).

Loss, L Learning rate, l
0.0001 0.0002 0.0003 0.0004 0.0005 0.001

A
ct
iv
at
io
n

se
tu
p

R(x), σ(x) 0.1437 0.1309 0.1240 0.1166 0.1088 0.0954
ς(x), σ(x) 0.1411 0.1296 0.1223 0.1143 0.1065 0.0968

R(x), tanh(x) 0.1318 0.1334 0.1333 0.1320 0.1484 0.1328
ς(x), tanh(x) 0.1408 0.1203 0.1211 0.1374 0.1465 0.132
R(x), s(x) 1.9670 1.9689 1.9774 1.9774 1.9774 1.9647
ς(x), s(x) 1.9542 1.9767 1.9493 1.9492 1.9493 1.9492

Table 2.3: The performance metrics (in %) for the 4–layer CNN as calculated from Equa-
tions 2.9a – 2.9d for six types of activation architectures.

Architecture l (×10−4) Accuracy Sensitivity Specificity Precision
R(x), σ(x) 1 97.9 93.6 100 100
ς(x), σ(x) 1 97.9 93.6 100 100

R(x), tanh(x) 3 95.7 87.2 100 100
ς(x), tanh(x) 3 96.5 89.6 100 100
R(x), s(x) 1 66.7 0 100 0
ς(x), s(x) 4 77.6 32.8 100 100

Accuracy =

∑
i=j

Cij

∑
i=0

∑
j=0

Cij

−1

(2.9a)

Sensitivity = C11

∑
j=0

C1j

−1

(2.9b)

Specificity = C00

∑
j=0

C0j

−1

(2.9c)

Precision = C11

(∑
i=0

Ci1

)−1

(2.9d)

The networks as described in Table 2.3 were then compared against the validation set
in the same manner where the ς(x), tanh(x) architecture performed the best with 94.9%
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accuracy, 84.8% sensitivity, 100% specificity and 100% precision. The results of Table 2.3
imply that the basic setup of all the networks tend to give false negatives as opposed to
false positives which means good data can sometimes be rejected but bad data will always
be identified. This is most likely due to the high acceptance threshold of 0.7, however a
more canonical BCCE threshold of 0.5 gave rise to more false positives – a much more
serious issue. More training data or a more complex NN architecture might resolve this
issue at 0.7 acceptance tolerance.

With this current architecture, the softmax function did not produce effective learning
(> 95% accuracy and > 85% in other categories) due to eventual gradient explosion caused
by some of the ∂is(x) differentials during back-propagation. In fact, at best sensitivity, it
predicted every training profile as ‘bad’ – not desirable for signal processing! This is most
likely caused by the condensation of the 32 inputs overfitting to the output layer (Caruana
et al., 2000) due to the open positive ranges of both the hidden and output layers. More
sensitive CNN architectures were explored in the hopes of avoiding overfitting and to en-
sure that ex ∼ ∑ exj (see Table 2.1). These architectures were (2048, 256, 32, 16, 32, 2),
(2048, 128, 64, 16, 32, 2) and (2048, 128, 32, 16, 32, 2), with the central nodes being activated
by the ReLU function. These were run for 20, 000 iterations on the same training set as be-
fore at a threshold of 0.7 and learning rate of 0.0004. Of these, the third arcitecture showed
the most improvement for both the R and ς input activation functions with, respectively,
90.4/92.3% accuracy, 71.2/76.8% sensitivity, 100% specificity and 100% precision. This is
still an undesirable level of error after this amount of training and, although the precision
and specificity imply that no unwanted noise will enter the final TOA calculations, the
relatively low sensitivity implies that a lot of good data is still being rejected.

The first four CNN architectures in Table 2.3 were arranged in a 5–layer node structure
identical to the third architecture in the paragraph above. An identical training set to the
430MHz set was made using L-band data, again using data from MJD 58402−58408, with
a learning rate of 0.0004 and threshold 0.7. These sets were then tested against L-band
data for PSR J1829+2456 taken on MJD 58235 and used to excise potential RFI from that
observing day. This day in particular was chosen because the uncleaned integrated pulse
profile shows incredible baseline variation that leads to TOAs with high uncertainty that
may not be very accurate. A crude S/N of each integrated pulse profile was calculated as
the maximum signal in the profile divided by the off-pulse RMS and the S/N of the non-
excised control profile. This allows for the direct quantifiable diagnostic of the effectiveness
of each architecture; results are shown in Table 2.4. The profiles were also manually
inspected (by eye) to ensure the individual outputs led to pulse profiles suitable for timing.
These integrated profiles are shown in Figure 2.2.

Overall, the CNN architecture best suited for RFI excision was the ς(x), σ(x) setup with
node structure: (|X|, 128, 32, 16, 32, 2). Although more advanced architectures have been
designed for pulsar analysis (e.g. Zhu et al., 2014, who deal with the far more voluminous
search-mode data so the number of neurons in a layer ∼ 9000), these often require the use
of a server or cluster whereas the setup explored above is completed in a reasonable time
on a home computer.
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Table 2.4: The signal-to-noise ratios for the integrated profile of PSR J1829+2456, observed
by the Arecibo telescope on 58235 at a center frequency of 1400 MHz, after RFI excision
based on four types of CNN architectures. These are compared with the raw ‘uncleaned’
integrated pulse profile. The profiles were dedispersed using the DM given in Table 3.2
and excised of RFI using the 5–layer NN activation architectures given below.

Architecture S/N
No excision method 1.00

R(x), σ(x) 1.63
ς(x), σ(x) 1.90

R(x), tanh(x) 1.52
ς(x), tanh(x) 1.30

Figure 2.2: The integrated pulse profiles for each neural network architecture explored
in Table 2.4. From top left to bottom right: No RFI excision; R(x), σ(x); ς(x), σ(x);
R(x), tanh(x) and ς(x), tanh(x). Each x-axis represents one full phase rotation and the
y-axes are all in arbitrary flux density units.
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As mentioned, the CNN training administered here does not use pre-defined features
but instead determines the best performance by comparison to the four metrics described
throughout the section. All CNNs start off equal, with randomly assigned weights and then
the output of successive training ‘guides’ the NN in the right direction, akin to a black
box. As such, every pulsar put through this pipeline needs to undergo an initial training
process. Weights and biases from one pulsar do not generally translate to other pulsars.
However, effective training can be reached with ∼ 100 profiles so this is not usually an
issue.

Analysis of the Vapnik–Chervonenkis dimension

As a final test of the overall effectiveness of the aforementioned NNs, a measure of the NN
classifier’s ‘capacity’ was made. Capacity is a blanket term for a network’s complexity:
how it learns, thinks and potentially overfits. The criterion used to measure the capacity
was the Vapnik–Chervonenkis (VC) dimension for probabilistic classifiers (Vapnik and
Chervonenkis, 1971); however it works well here due to the ‘straight-line’ threshold cut-off
at the output layer. The VC dimension is formally the cardinality of the largest set that
can perfectly divide (or shatter) an input set. For nodes, V , and node connections, E,
Shalev-Shwartz and Ben-David (2014) give the scaling bounds of the VC dimension, D,
for a sigmoid-like activated NN with initially random weights to be:

Ω(|E|2) ≤ D ≤ O(|E|2 · |V |2) (2.10)

where the |...| means ‘number of’ and Ω and O are the lower and upper asymptotic func-
tionals respectively14. Essentially, this means that a CNN with a high number of nodes
in the jth layer and a comparatively low number of nodes in the (j + 1)st layer (i.e. high
V , low E) will asyptotically have a constant VC dimension with decreasing V . On the
other hand, a CNN with a large number of connections, regardless of node structure, will
increase D with the square of the increase in connections. It is favorable to have a high VC
dimension at each layer but not exceeding the number of training examples (in this case,
375). If D > N , overfitting may occur because there are more connections than examples
so the network cannot be entirely resolved during back-propagation. The two layers which
display the most issue at input are the input layer (D ∼ Ω(|E|2)) and the final hidden
layer (D ∼ log2(|E|)) which could potentially explain the softmax function’s inability to
create an effective learner. The VC dimension is therefore also a measure of NN stability.

Further work into tweaking the CNN architecture could be done to increase all the
metrics towards 100% however the NNs described here would not give rise to any difference
in parameter measurements for the pulsars in this work. Given the small difference between
the results shown here and a 100% efficient CNN, TOA precision is predicted to increase
by only a few nanoseconds: far below the sensitivity of the telescope, so these results are
as physically significant as the ‘perfect’ CNN.

14For Ω, the Knuth definition has been used (Knuth, 1976).
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2.2.3 Excision via inverse phase–space analysis: a theoretical model

So far, RFI methods as explored in this thesis have employed statistically motivated meth-
ods for data excision. This means that each profile is observed as a whole and com-
pared with the standard profile either by statistically determining RMS cut-off points
(Section 2.2.1) and by determining the best cost function and applying the best case sce-
nario (Section 2.2.2). The following section outlines a theoretical process for potential
non-statistically motivated RFI excision to take place.

Assume that the standard profile of a set of pulsar observations can be expressed as
approximately the sum of a number of Gaussian functions with general form:

g(t) = ae−
(x−b)2

c2 (2.11)

where a is the maximum flux density of that Gaussian, b is the mean and c is the standard
deviation. The continuous Fourier transform of an unnormalised Gaussian function, such
as is described above, is given by (making use of Eqs. 7.4.2 and 7.4.3 in Abramowitz and
Stegun, 1972, p. 302):

g̃(k) =

∫ ∞
−∞

g(t)e−iktdt (2.12)

=

∫ ∞
−∞

ae−
(x−b)2

c2 e−iktdt (2.13)

= a

∫ ∞
−∞

e−
x2

c2 e−i(t+b)kdt (2.14)

= ac2e−ibk
√
πe−

c2k2

4 (2.15)

In other words, the Fourier transform of a Gaussian is itself a Gaussian – this is true
for the discrete case as well. It follows that this is true for Gaussian summation, meaning
that the Fourier transform of the standard profile with arbitrarily many components is a
Gaussian with a set of overtones. It should therefore be possible to compare the Fourier
transform of the standard profile, s̃(k), with the Fourier transform of an individual profile,
p̃(k), in order to determine whether the profile contains a significant degree of RFI. This
can be achieved by baseline removal with baseline s̃(k). Profiles that follow roughly the
same wave pattern as the standard profile, after baseline removal, will be on the order
of a null profile whereas profiles with considerable RFI will display different fundamental
frequencies when compared with s̃(k). This is akin to fast-Fourier transform (FFT) RFI
methods for pulsar search data (e.g. Ransom, 2001), however this theory takes the limit
as the step size, dt → 0, in essence removing the discrete aspect of the calculation. For
non-zero dt, there is a resolution ‘trade-off’ in which nuanced signal information is lost and
smoothed, however designing the FFT step size to be significantly less than an individual
profile bin size becomes computationally expensive very quickly. FFT works well with
highly factorisable data sizes (powers of 2) and, at best, can achieve a cost of O(N logN).
The theoretical possibility of such a model is within the realms of quantum computing
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however the FFT precision needed to satisfy the goals of this investigation remain within
the realms of the discrete Fourier transform. The continuous aspect of this investigation
comes from the Gaussian fitting procedure which returns function parameters as opposed
to a set of output points (see Appendix B.1). Since these function parameters apply to
continuous space, one can take the continuous form of the Fourier transform as valid for
any initial bin size so long as the resolution of the observation was fine enough to obtain
the desired features in the fit.

At the present time, we are limited in how to implement this method and it is not
explored further expect for one comparison later on. However, as computing power gets
better, we can hope to see developments in the continuous Fourier transform regime. One
might argue that this method interpolates data that may not be there. This may be true,
but it is not a smoothing of the data. Every data point is still present but added in with
intermediate values. It is the hope of this section that others in years to come may attempt
something similar on a much more massive scale.

2.2.4 Discussion of the models

A wide variety of methods have been explored to deal with the seemingly permanent
problem of RFI in radio pulsar data, and the methods in this work by no means cover the
entire breadth of study into noise handling. Since data for this thesis was taken in both
incoherent search-mode and coherent fold-mode, the RFI excision methods investigated
take into account both types of dataset. Search-mode data already has a number of RFI
excision techniques that can be applied to it, such as pre-dedispersion zero-DM filtering
(Eatough et al., 2009) and fast RMS σ–clipping via PRESTO (Ransom, 2001). Fold-mode
RFI excision is a post-folding process, which means that the quality of the initial solution
can greatly affect the pulse shape and therefore the ability of RFI excision software to
accurately determine RFI-riddled channels.

In order to determine the optimum method of those discussed in this section, a set
of TOAs were generated using PALFA search-mode data for PSR J1936+1805 spanning
MJD 57924−58895, refolded using the most up-to-date model ephemeris. These were then
fit with tempo2 using the DE438 Solar System ephemeris. For the preprocessing, each
set was excised of RFI using each technique as described in the above sections. All other
variables (e.g. calibration factors and number of TOAs created per observation) were kept
consistent between models, although not all excision techniques produced the same number
of fittable TOAs. This is because TOAs below 1100MHz were omitted due to the receiver
cut-off for ALFA, and because the maximum allowed TOA uncertainty was set to 100 µs
to account for the small number (< 10 for the entire data span) of TOAs above 1100MHz,
for which no method could excise RFI from effectively. In each case, the reduced χ2 and
the residual RMS, Tres, were monitored with the number of fit parameters remaining as
five throughout. The five fit parameters were the pulse frequency F0, the pulse frequency
derivative F1, the right ascension, the declination, and the dispersion measure. The results
are outlined in Table 2.5 and the residuals are plotted in Figure 2.3. The training sets for
the CNNs were made using data from MJD 58330 − 58359, with null profiles amounting
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Figure 2.3: Post-fit timing residuals representing the results of using four RFI excision
methods for the isolated pulsar PSR J1936+1805. From top to bottom: Chauvenet’s
criterion (σ = 2); ς(x), σ(x) CNN; ς(x), tanh(x) CNN and Fast Fourier transform (δt = 1
phase bin).
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to 5% of the number of true profiles in the training sets.

Table 2.5: A comparison of four RFI excision algorithms for use on refolded data from
PSR J1936+1805 observed by AO between MJD 57924− 58895. The threshold for Chau-
venet was set to 2σ and the NN was given the same 5–layer node structure as shown in
Table 2.4. The TOAs were fit using tempo2 using the DE438 Solar System ephemeris. In
each instance, five timing parameters were fit (see text for specifics).

Model # TOAs χ2
r Tres (µs)

Chauvenet 158 1.171 68.761
CNNς,σ 159 1.056 64.257
CNNς,t 156 1.137 67.400
FFT 138 1.263 73.039

In the above analysis, FFT performed the worst at accurately determining which pro-
files to omit from the averaging process. Upon inspection of each averaged profile respon-
sible for each TOA in the FFT TOA set, it was clear that the FFT method fails to identify
subtle cases of RFI. This is due to the limiting resolution that discrete Fourier transform
allows when compared with a continuous Fourier transform; this, alongside its long compu-
tation time, make it the least desirable option. As expected, the ς(x), σ(x) CNN performed
best and was the basis for the fold-mode RFI excision used in Chapter 4.

2.3 Flux calibration

Another facet of downstream data analysis for pulsars is that of flux calibration. The
orthogonal dipole feeds at the telescope receiver accept signals that are propagated through
separated channels in the IFLO chain, subject to e.g. amplification, filtering, etc.

Flux calibration will scale each polarisation channel seperately based on a reference
source of known polarisation and flux density thereby allowing for any discrepancy between
the received signal from each feed to be accounted for. This process also allows for the
conversion of flux units from arbitrary instrumental signal units (hereon referred to as
‘counts’) to more conventional units, such as Jy. The flux density recorded at a particular
feed is a function of the specific telescope aperture temperature efficiency, known as the
telescope gain, (Gtele, where ‘tele’ is replaced by the relevant telescope name), and the
polarisability of the night sky at the time of observation. Calculating an accurate value for
the signal flux density ensures the proper scaling of the orthogonal polarisation components
post–observation, with the end goal of recreating the intrinsic pulse profile. With much
of the same motivation as for RFI mitigation (see Section 2.2), flux calibration therefore
attempts to correct for any sources of flux density error. It should be noted that flux
calibration is often not necessary for pulsar timing as TOAs are calculated as horizontal
offsets from the pulse peak, however flux calibration was administered in this work in order
to fully characterise each pulsar’s emission so that they are ready for any further analyses.

When performing flux calibrations on radio sources, one can compare the pulsar signal
against that of a source of known flux density and stable spectral index such as a quasar or
radio galaxy. Unpolarised standard calibrators are often preferred so that it can be assumed
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that the flux density is equal for both hands of polarisation. There are two standard ways
to record flux densities of standard calibrators. The first method requires information of
the continuum source’s flux density, Sc in Jy, at a given frequency, ν0 in MHz as well as its
spectral index, α, which is assumed to be constant in the pulsar’s observation frequency
range. To calibrate the flux density to the observing frequency, νobs, the transformation is
given by

Sc (νobs) = Sc (ν0)

(
νobs
ν0

)α
(2.16)

The second way of calibrating flux contains a list of polynomial coefficients {a0, a1, ...},
satisfying

log10 Sc =
n∑
k=0

ak logk10 (νG) (2.17)

where νG is the centre frequency in GHz. Most calibrations that use Equation 2.17, such
as the calibrations made in this thesis, are quoted at the n = 3 level as this level gives flux
densities to within ∼ 1% and adding a fourth polynomial parameter often does not show
an appreciable difference in the fit (see Baars et al., 1977, for a more engaging account of
polynomial flux calibration.). Continuum source data for this thesis was provided by the
North American Nanohertz Observatory for Gravitational Waves (NANOGrav) and the
pulsar data files were matched to the closest available calibrator observation.

Flux calibration as performed in this thesis also uses a phase-correlated pulsed signal
from a noise diode, with a stable oscillating frequency νND = 25 Hz, injected at the receiver.
This is much more accurate than calibration via S/N or from the system noise as it does
not assume that the contribution to the system noise temperature, Tsys (= GteleSsys), is
the same for both the calibration source and the pulsar source. This is often not the case
and cannot be ignored, even approximately. The pulsar was observed for a small amount
of time (typically 90 seconds) with the noise diode switched ‘on’, and then observed again
for an equal duration with the noise source switched ‘off’. This allows the contribution of
the noise source to the observed flux density to be calculated. These calibration profiles
were folded at a period of 1/νND = 0.04 s, resulting in a square-wave profile that switches
between ‘on’ and ‘off’ signal levels at a phase of 0.5. The characteristic temperature, Tcal,
due to the diode is then given as a function of the average flux counts, K (for ‘kount’), by:

Tcal = Tsys

(
K

(25Hz)
off −K(0Hz)

off

K
(0Hz)
off

)
(2.18)

where the superscripts on K denote the noise diode frequency with 0 Hz corresponding to
the non-diode state. The K subscripts ‘off’ and ‘on’ (below) denote whether the telescope
is viewing the continuum source or not. Similarly, the characteristic temperature due to
the radio signal, Tsrc, is given by:

Tsrc = Tsys

(
K

(0Hz)
on −K(0Hz)

off

K
(0Hz)
off

)
(2.19)
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The calibration flux density is found by combining Equations 2.18 and 2.19 and dividing
the resultant Tcal expression by the telescope gain, which is 11KJy−1 at AO for both
observing frequencies15. After mathematical manipulation, Scal is therefore given by:

Scal = Ssrc

(
K

(25Hz)
off −K(0Hz)

off

K
(0Hz)
on −K(0Hz)

off

)
(2.20)

where S is in Jy. The qualitative relationship between Equations 2.18, 2.19 and 2.20 are
shown in Figure 2.4, which has been created from real calibration data although the time
(x) axis is not to scale.
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Figure 2.4: Schematic of the continuum source flux density contributions for QSO B1442
(J1445+0958). This observation was taken on MJD 58067 at a center frequency of 1380
MHz with an oscillating noise diode set to 25 Hz. The profile seen here is that of the first
polarisation channel.

To obtain the calibration factor, η, in Jy count−1, Scal is divided by the flux density
contribution of the noise diode when the telescope is pointing at the pulsar. This aids to ac-
count for effects arising from e.g. variable telescope elevations and atmospheric conditions
if necessary. This is given by:

η =
Scal

K
(25Hz)
on-psr −K(0Hz)

on-psr
Jy count−1 (2.21)

15The general system parameters for all of the Arecibo receivers can be found at http://www.naic.edu/
~astro/RXstatus where the value of 11 for the gain was obtained. More specific measurements for gain
can be obtained from each receiver’s homepage but the variance in gain is insignificant compared to the
timing uncertainties in this work.
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This has the effect of normalising the intensity between each hand of polarisation
(see Figure 1.3) before obtaining the total intensity power profile. The relevant calibration
factor was calculated for all frequency channels, which were then interpolated via 1D cubic-
spline fitting using SciPy (Virtanen et al., 2020). The interpolated functions were applied
to each polarisation channel of the data giving the flux density conversion factors. The
resulting factors were applied to the data (along with the RFI mask) before the polarisation
components were combined to obtain a total power signal.

In the rare cases where observations were conducted & 30 d from the nearest continuum
source observation and therefore no value for Tcal could be calculated, the calibration factor
was taken to be the reciprocal of the off-pulse RMS for each polarisation channel. This
also has the effect of essentially dividing the profile by the S/N to ensure a more accurate
pulse profile.

To further develop the calibration as described here for each polarisation channel,
one can use the more computationally expensive ‘polarisation calibration’ method. This
method transforms each Stokes vector independently via a Mueller matrix (Mueller, 1948).
Until the 21st century, computing power was insufficient to perform the back-and-forth
matrix inversions necessary for polarisation calibration, however this is no longer the case.
Polarisation calibration is arguably more useful for highly polarised pulsars and is not
needed in this work as the vast majority (> 95%) of signal, with respect to the four Stokes
vectors, lies in the intensity (I) for all five pulsars discussed and so only intensity was used
to make TOAs. Polarisation calibration was administered before flux calibration for all
of the fold mode timing data used in this work using the pac command in the PSRchive
software suite (Hotan et al., 2004), specifically using the SingleAxis model which assumes
that the polarisations of the receivers are orthogonal.
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Chapter 3

PSR J1829+2456: a highly
relativistic neutron star binary

M
ore than 2600 neutron stars presenting as radio pulsars have been found since
their first discovery. This large population has given a wealth of physical and
universe-wide tests through continued pulsar timing (see Section 1.2). Timing

studies have resulted in: robust models for the free electron density in the Local region
(Cordes and Lazio, 2002; Cordes and Lazio, 2003; Yao et al., 2017), which can be used
to estimate pulsar distances from the dispersion measure; a beam model for the EM jet
(Dyks, 2017); and the improvement of solar system ephemerides by way of fitting the planet
masses to precise timing results (Champion et al., 2010). Despite our collective effort over
the past 50 years, the physics and chemistry within and surrounding neutron stars is still
poorly understood due to their highly exotic nature and cataclysmic birth mechanisms.
There is added complexity in these stellar evolution models when the pulsar exists in a
binary system – mass is accreted either stably or unstably, ultimately depending on the
timescale of interaction (see Section 1.3).

Since neutron stars in binary systems are very gravitationally active, it is reasonable
to suggest that obtaining precise mass measurements for NSs will lead to a more complete
understanding of the evolution of these types of stars as well as provide tests for theories
of gravity. In GR, gravity is modelled entirely by the spacetime metric however in the
strong-field regime, it is possible, for instance, that non-linear scalarisation effects can
take place due to the NS matter (Damour and Esposito-Farèse, 1993, the so-called ‘DEF’
model, which is energetically more favourable than GR) or spontaneous scalarisation due
to the extreme space-time curvature in these regions (Silva et al., 2018, the so-called
‘Gauss-Bonnet Coupling’). These scalar-tensor theories of gravity satisfy the Einstein
field equations in the weak field (in which any scalar field is essentially 0) but are, at
present, not well constrained in the strong-field. This is due to wide uncertainties on DNS
masses and the many possible choices for NS equation-of-state (see Shao et al., 2017, for an
overview of why binary pulsar timing can aid in our understanding of these perturbations).

Much of the work detailed in this chapter has been published as (Haniewicz et al., 2021).
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Binary systems can be observed in order to find NS masses through a modelled theory
of gravity (such as GR) however only about 4% of all known pulsars exist in binaries, with
only 21 such systems known to be double neutron stars. The evolution of DNSs is thought
to be a highly selective set of events, which is echoed in the observed tight constraints of
astrometric and orbital parameters for these systems.

Presented here are the findings from continued studies on the double neutron star
system containing PSR J1829+2456 (Champion et al., 2004; Champion et al., 2005) which
include a precise measurement of the component masses as well as more precise observations
of the dispersion measure, eccentricity and proper motion. These values are compared
against the DNS population in order to better constrain the current evolution models.

3.1 Mass and velocity distribution among Galactic DNS sys-
tems

The mass distribution of DNSs has been studied by many groups. Of the only 21 known
DNS systems, 19 are Galactic and only a handful of these have precise mass measurements.
This is unfortunate as the evolution and supernova mechanism leading to these systems
is closely tied to their current masses (Pejcha et al., 2012). The first widely accepted
comprehensive mass distribution study (Thorsett and Chakrabarty, 1999) found a NS
mass distribution of 1.38+0.1

−0.06M� to the 1σ level. This distribution was fit to a Gaussian
(Özel et al., 2012) which was later updated (Özel and Freire, 2016) and found the most
likely values of the mass to the 1σ level to be (1.33 ± 0.09)M�, however this is likely
skewed slightly by the low population size. The NS mass distribution for all binary pulsar
systems (i.e. including NS–WD systems) was found to be 1.54 ± 0.23M� for recycled NSs
and 1.49 ± 0.19M� for slow pulsars, although the validity of the mean in these latter fits is
contested by a two-peak distribution model (for a compelling argument of the distribution
bimodality, see Antoniadis et al., 2016; Farrow et al., 2019). In any case, the distribution
of NS masses is far narrower in DNS systems, implying that the conditions required to
sustain a DNS system after supernova are tightly constrained.

Recently, two DNSs with highly asymmetric NS masses have been discovered (Martinez
et al., 2015; Ferdman et al., 2020). This has not only expanded the range of NS masses
observed in DNSs, but showed the existence of asymmetric DNS systems. The latter system
is expected to merge within 470 Myr which suggests that the population of such merging
asymmetric DNSs might be substantial, occupying about 10% of the known merging DNS
population. Establishing more firmly the size of this population will be of particular
importance for the interpretation of DNS mergers in future data from LIGO, Virgo and
Kagra.

3D space velocities are difficult to estimate due to the way velocity is determined:
through the precise measurement of proper motion components. This 2D motion is ob-
served as a secular change in the pulsar’s position in the sky over a number of observations
and is observed as a ‘smearing’ effect in the pulsar profile if the positions are left un-
changed. Tangential (or transverse) velocities can be calculated directly from the proper
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motion measurement and the distance, which can be best estimated to 20% (Yao et al.,
2017) using interstellar dispersion, or on the order of the parallax error if known; radial
velocities along our line of sight are far harder to accurately assess. Taking the extreme
case where the pulsar is moving away from Earth in only a radial direction would re-
sult in a proper motion measurement of 0 – the pulsar appears not to move at all! So
calculation of the radial velocity is highly dependent on measurement of the tangential
velocity (Helfand and Tademaru, 1977). NSs in Galactic DNSs are mostly observed to
have low tangential velocities (∼ 10 km s−1), although some, such as the Hulse–Taylor bi-
nary (PSR B1913+16, vtrans ≈ 150 km s−1; Hulse and Taylor, 1975) and PSR B1534+12
(vtrans ≈ 120 km s−1; Fonseca et al., 2014) have been shown to have much higher space
velocities (∼ 100 km s−1). The implications of this will be discussed further in Section 3.6.

3.2 Observations

PSR J1829+2456 is a relatively old (τc ≈ 13Myr) recycled pulsar with a rotational period
of 41.0 ms, found in the constellation Hercules. It was initially discovered from data taken
during a 1999 drift-scan survey using the 430MHz Gregorian dome receiver system at the
Arecibo Observatory (AO). At the time of its discovery, the dispersion measure (DM) was
found to be 13.9 pc cm−3, which estimated a distance of 1.2 ± 0.36 kpc to the system using
the NE2001 Galactic ionised electron distribution model (Cordes and Lazio, 2003). This
distance is likely overestimated due to the dispersive effects of the Gould Belt, a dense
3000 ly span of O and B type stars that eclipses our line of sight to the system (Gehrels
et al., 2000; Grenier, 2000). The NE2001 does not take this region into full account and a
more reliable estimated distance may come from using the YMW16 electron distribution
model (Yao et al., 2017), which models corrections for a fourth spiral arm in the Milky
Way and to the Local Bubble. The YMW16 gives the distance to be 0.91 ± 0.18 kpc,
however, given that population studies on this region are still on-going, the estimate given
by this model is likely a slight underestimate (see Kerr et al., 2019, for some recent Gould
Belt developments). Given this distance estimate, it is possible that the distance may
be measureable using Very Long Baseline Interferometry (VLBI), but this has not been
attempted since the pulsar’s discovery.

Upon initial timing, the advance of periastron, ω̇, was the only significant post-Keplerian
parameter measured, found to be 0.2919 ± 0.0016 deg yr−1. This measurement determined
the total binary mass to be 2.59± 0.02M�. As component masses can only be disentangled
with a measurement of two or more PK parameters, only limiting values of mp < 1.38M�
and 1.22M� < mc < 1.38M� could be placed on the system for the pulsar and compan-
ion masses respectively, making use of the mass function value reported to be 0.2942M�.
These mass boundaries do not conclusively determine the companion to be a NS as the
maximum companion mass is well below the Chandrasekhar Mass of 1.4M� (Mazzali et
al., 2007), however the moderate orbital eccentricity along with the mass bounds implies
a DNS for reasons outlined in Sections 1.3 and 3.6.

Initial timing observations of PSR J1829+2456 began on MJD 52785 (26 May 2003)
using the Penn State Pulsar Machine (PSPM) at a centre frequency of 430MHz, and the
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Wideband Arecibo Pulsar Processor (WAPP) centerd at 1400MHz at Arecibo. Several
observations were carried out using the Green Bank telescope (GBT) at 350MHz in August
2006, but due to low signal-to-noise, only 10 time-of-arrival (TOA) measurements could
be salvaged due to overly pervasive radio frequency interference in that data set. A full
description of the former data set and its analysis can be found in (Champion et al., 2004)
for the discovery and (Champion et al., 2005) for the follow-up.

The most recent observing campaign for PSR J1829+2456 ran since July 2017 until
August 2020 after a nearly ten year hiatus in observations. Two dense campaigns of
four epochs within one week were also conducted between 58402 – 58408 and 58748 –
58752 in order to provide better orbital phase sampling. All these observations were
conducted at the 305-m Arecibo radio telescope roughly every 4 weeks using the Puerto
Rico Ultimate Pulsar Processing Instrument (PUPPI) coherent de-dispersion backend.
Preliminary calibration procedures were undertaken with νND = 25 Hz over a 90 second
calibration window (45s with the diode turned “on" and 45s with it turned “off").

Two frequency bands were used during the observations with centre frequencies of
∼ 1400MHz, known as the L–band, and ∼ 430MHz. These receivers had bandwidths
of 800MHz and 100MHz, respectively, at the time of observing although it is noted that
the L–band receiever cut-off is at around 1100MHz. The data from each receiver was
compartmentalised into 1.5625MHz–wide channels, giving 512 total channels for the L–
band observations and 64 channels for the 430.

A few physically significant things were taken into account to ensure the most precise
measurements:

• The spin period, P , was updated for the current epoch of each observation based on
the last known parameter of P using the Taylor expansion outlined in Section 1.2.
An inaccurate spin period will not create a correct pulse profile when the time series
is folded. Sometimes this is not an issue as pulsar spin–down rates are so slow when
compared to gaps between observations, although spin–down rates are measurable
and ought to be taken into account. Updating P using an expansion was necessary
to do for PSR J1829+2456 because the ephemeris file was not updated after each
observation, but rather every now and then. This, combined with the narrow pulse
shape for PSR J1829+2456, requires P to be as accurately determined as possible.

• The data were coherently dedispersed using the procedure outlined in Section 1.2.3
to negate the sub–band frequency effects of the beam structure and the ISM to the
pulse arrival time.

• Data from the 9 GPUs at Arecibo were combined and folded to create a series of
profiles, varying in both frequency and time offset, to be used for timing.

A standard profile (Section 1.2) was created in an iterative manner, beginning with
averaging all the folded data from a particular backend together and using the resulting
profile’s total intensity as the template. RFI excision was conducted on data from the
correct frequency band by cross-referencing against this profile using the method explored
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in Section 2.2.1. This was done by fitting the current template to four Gaussian curves to
obtain a smooth standard profile, allowing for a clear distinction between on-pulse and off-
pulse regions. Individual profiles were then accepted or rejected based on a 95% Gaussian
confidence in the distribution of off-pulse region root mean squared (RMS) values. After
RFI excision, a new profile was made in the same way as described above by averaging the
newly RFI excised data.
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Figure 3.1: The integrated profile of PSR J1829+2456 at 430 MHz constructed from data
taken between MJD 57950 and 58948.
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Figure 3.2: The integrated profile of PSR J1829+2456 at 1380 MHz (L–band) constructed
from data taken between MJD 57950 and 58948.

The cleaned data were flux calibrated using the method outlined in Section 2.3 by
comparing against observations of the stably polarised quasar QSO B1442 (J1445+0958)
as a continuum source at the closest available dates to the PSR J1829+2456 observations;
the largest time difference between the timing data and calibration data sets was nine days.
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Data for this source was provided by the NANOGrav collaboration. After flux calibration,
the fully processed data were once again used to create a standard profile for the band.
Following this, an initial set of pulse times of arrival (TOAs) were generated, and a timing
solution was fit to these TOAs. This was used to re-fold and phase-realign the PUPPI
data.
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Figure 3.3: The noise-free standard profiles of PSR J1829+2456 constructed from all data
taken with the PUPPI coherent dedispersion backend at Arecibo, up to and including MJD
58948. Top: L-band profile. Bottom: 430-MHz profile. Both standard profiles were fit
with four Gaussians and are visually to scale relative to each other.

Using the same RFI excision masks and calibration factors as calculated in the previous
step, the phase-aligned profiles were used to create the final standard profiles for each
observing band, Tν (where ν is the band centre frequency), by fitting the resulting points to
another set of four Gaussian curves. This final step was done in order to ensure the template
accurately reflected the intrinsic pulse shape, resulting in minimised timing residual errors.
The raw integrated profiles for the 430 and the L–band data are given in Figures 3.1 and
3.2, respectively, and the Gaussian-smoothed standard profiles for both the 430 and the
L–band are shown in Figure 3.3 and the breakdown of the Gaussians used to create them
are detailed in Appendix B.1. All data manipulation was administered using the PSRVoid
Python package (see Appendix C).
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3.3 Timing analysis

In all, 1246 new pulse times-of-arrival were calculated from the data set by determining
a phase offset for each resulting data profile through cross-correlation with the standard
profile for each observing band. A careful analysis of the validity of TOAs created with
this template so generally will be discussed further in Section 3.5. This phase shift was
then converted to a time offset using the rotation period at the specific epoch correspond-
ing to the individual data profile (Taylor, 1992). TOAs were created from time averaged
sub-integrations of the complete Fourier transformed time series of about 9 minutes for
the 430 MHz data, corresponding to 10 TOAs per observation, and about 3 minutes for
the L-band data. The accurate time stamp of the pulse arrival time is given by the local
H–maser correction in Puerto Rico with respect to UTC given by GPS satellite data. This
is the time stamp that is compared against when cross-correlating the pulse. Details on
pulsar timing and observation setup can be found in Section 1.2 and more specifically in
Chapter 2. The L-band data were further divided into four frequency subbands centered at
approximately 1680MHz, 1480MHz, 1280MHz and 1080MHz, however due to the afore-
mentioned receiever cut-off, the TOAs created from the 1080MHz subband were omitted
from further analysis as well as TOAs with uncertainties larger than 25µs. In total, this
resulted in 934 L–band and 314 430MHz TOAs.

The TOAs were then appended to the 153 existing TOAs reported by Champion et al.
(2005). These were fit within the tempo2 pulsar timing software package (Hobbs et al.,
2006a; Edwards et al., 2006) using the JPL DE435 planetary emphemeris model (Folkner
et al., 2016) and the TT(BIPM19) clock correction (Guinot, 1988) to calibrate to the Solar
System barycenter (SSB) which is, to good approximation, an inertial reference frame.
Where TT(BIPM19) could not be used (i.e. for the final three days of data), a correction
was made in accordance with BIPM guidelines1. tempo2 fits all TOAs to an existing model
ephemeris via a weighted least-squares fit, and outputs a set of timing residuals, which are
the differences between the observed TOAs and those predicted from the current model.
In all, 1399 TOAs were fit, spanning 17.1 years in total, at frequencies centred around
350MHz, 430MHz, 1280MHz, 1480MHz and 1680MHz. tempo was occasionally used to
verify parameter estimates, although not extensively.

Data taken from different telescopes and telescope frontends is essential to carrying out
precise pulsar timing. In total, five different receiver frontends from two different telescopes
have been used to obtain the current timing fit. The new PUPPI backend at the AO has
provided this study with excellent data as have the older Arecibo hardwares. This, in
combination with the TOAs made at the GBT, has given a good fit. One issue is that
different telescopes and backends all have different operating systems as well as different
engineering (as deep as them having used cables of differing resistivity). Most observatories
use a different TOA calculation approach; for example, the coherent online folding at the
AO provides a cleaner standard profile than the incoherent folding undertaken for the GBT
data. As such, the UTC clock corrections to the SSB made above cannot fully account
for all time delays. tempo2 has the option to fit for constant time offset “jumps”, based

1ftp://ftp2.bipm.org/pub/tai/ttbipm/TTBIPM.2019
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on the backend, in relation to a reference site. These are usually on the order of ∼ 100µs,
whereas typical TOA uncertainties are much less than this (on the order of the RMS). The
jump fits for the observations were made against the PSPM–327 MHz TOAs for reference,
although jumps fit to every other backend gave the same timing solution. All post–fit
jumps were within the range 10 − 50µs but are not reported. Theoretically, the WAPP
data could be phase-connected with the PUPPI data however due to the time between each
set of observations, determining phase connection is near-impossible so jumps were made
between PUPPI and WAPP data. Residual errors were calculated from the propagation
of uncertainty in the phase shift calculated in the cross-correlation process. A breakdown
of each observation campaign is shown in Table 3.1.
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Figure 3.4: Post-fit residuals in milliseconds, as a function of TOA in MJD, for
PSR J1829+2456 determined by the DDGR timing model. Top: all available Times-
of-Arrival. Bottom: the new observations in green (430 MHz) and gold (1400 MHz).

Binary models

tempo2 offers a variety of binary fitting models with which to fit the current ephemeris
to new TOAs. The Damour–Deruelle timing model (DD, Damour and Deruelle, 1985;
Damour and Deruelle, 1986) allows for five individual post-Keplerian (PK) binary pa-
rameters to be measured in a theory-independent way using observation: the advance of
periastron, ω̇, the orbital period decay, Ṗb, the Einstein delay, γ, the Shapiro delay range
parameter, r, and the Shapiro shape parameter, s(≡ sin i). These PK parameters may then
be re-cast under specific theories of gravity so that measuring two of these parameters can
give direct individual mass measurements. The DDGR binary model (Taylor, 1987; Taylor
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Table 3.2: Timing solution for PSR J1829+2456.

Fit and data-set
Data span (yr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.1
Date range (MJD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52785.3− 59015.3
Number of TOAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1399
Solar System ephemeris . . . . . . . . . . . . . . . . . . . . . . . . DE435
Clock correction procedure . . . . . . . . . . . . . . . . . . . . . TT(BIPM19)
Reference timing epoch (MJD) . . . . . . . . . . . . . . . . . 55899.8
Binary model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDH DDGR
RMS timing residual (µs) . . . . . . . . . . . . . . . . . . . . . . 3.967 3.964

Observed quantities
Right ascension, αJ2000 . . . . . . . . . . . . . . . . . . . . . . . . . 18h29m34.s66838(6)
Declination, δJ2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24◦56.′18.′′2007(12)
Rotation frequency, ν (s−1) . . . . . . . . . . . . . . . . . . . . 24.384401411044(6) 24.384401411040(6)
First derivative of rotation frequency, ν̇ (s−2). . . −2.9403(13)× 10−17 −2.9395(14)× 10−17

Dispersion measure, DM (cm−3pc) . . . . . . . . . . . . . 13.706(2) 13.707(2)
˙DM (cm−3 pc yr−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.0019(4) −0.0022(4)

D̈M (cm−3 pc yr−2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.00023(4) 0.00024(4)...
DM (cm−3 pc yr−3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . −7.0(1.6)× 10−6 −7.1(1.6)× 10−6

Proper motion in right ascension, µα (mas yr−1) −5.51(5) −5.51(6)
Proper motion in declination, µδ (mas yr−1) . . . . −7.75(7) −7.82(8)
Binary period, Pb (d) . . . . . . . . . . . . . . . . . . . . . . . . . . 1.176027952868(11) 1.17602795281(15)
Orbital eccentricity, e . . . . . . . . . . . . . . . . . . . . . . . . . . 0.13914374(13) 0.13914387(11)
Projected semi-major axis of orbit, x (lt-s) . . . . . 7.236845(2) 7.236844(5)
ẋ (lt-s s−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −2.3(5)× 10−14

Longitude of periastron, ω (deg) . . . . . . . . . . . . . . . 229.9353(2)
Epoch of periastron, T0 (MJD) . . . . . . . . . . . . . . . . . 52848.5797762(7)
Advance of periastron, ω̇ (deg yr−1) . . . . . . . . . . . . 0.293189(14) –
Orbital period decay, Ṗb . . . . . . . . . . . . . . . . . . . . . . . −2.9(1.2)× 10−14 –
Non–GR contribution to orbital decay, ṖX

b . . . . – −2.3(1.1)× 10−14

Ratio of Shapiro harmonics, ς . . . . . . . . . . . . . . . . . 0.778(2)
Companion mass, mc (M�) . . . . . . . . . . . . . . . . . . . . – 1.299(4)
Total system mass, Mtot (M�) . . . . . . . . . . . . . . . . . – 2.60551(19)

Derived quantities
Rotation period, P , (ms) . . . . . . . . . . . . . . . . . . . . . . . 41.009823581203(11) 41.009823581195(11)

First derivative of rotation period, Ṗ . . . . . . . . . . . 4.945(2)× 10−20 4.944(2)× 10−20

Intrinsic spin-down rate, Ṗint . . . . . . . . . . . . . . . . . . 4.36(9)× 10−20 4.35(9)× 10−20

Galactic longitude, ` . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.◦3426(11)
Galactic latitude, b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.◦6119(12)
NE2001 DM-derived distance (kpc) . . . . . . . . . . . . 1.20(36)
YMW16 DM-derived distance (kpc) . . . . . . . . . . . . 0.91(18)
Height above Galactic plane, z (kpc) . . . . . . . . . . . 0.24(5)
Total proper motion, µtot (mas yr−1) . . . . . . . . . . . 9.52(7) 9.56(7)
Transverse velocity, vtrans ( km s−1). . . . . . . . . . . . . 43+51

−34
Total peculiar velocity, vtot ( km s−1) . . . . . . . . . . . 49+77

−30
Characteristic age, τc (Gyr) . . . . . . . . . . . . . . . . . . . . 13
Surface magnetic field strength, Bs (109 G) . . . . . 1.44
Mass function, f (M�) . . . . . . . . . . . . . . . . . . . . . . . . 0.2942356(3) 0.2942355(5)
Einstein delay, γ (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.001441
Inclination of orbit, i (deg) . . . . . . . . . . . . . . . . . . . . . – 75.8(7)∗

Orthometric amplitude of Shapiro delay, h3 (µs) – 3.02
Pulsar mass, mp (M�) . . . . . . . . . . . . . . . . . . . . . . . . . – 1.306(4)†

PK parameters ω̇, Ṗb and ς were measured using the orthometric parameterised Shapiro delay Damour-Deruelle
timing model (DDH, Freire and Wex, 2010) in tempo2 whereas the quoted masses, γ and the inclination angle
were measured and derived assuming GR as the correct theory of gravity (DDGR, Damour and Deruelle, 1986).
Figures in parentheses represent the nominal 1σ (68%) uncertainties in the least-significant digits quoted. Time
offsets between telescopes and different instruments were also fit for using Arecibo’s PSPM backend at 430MHz as
a reference, however they are not astrophysical, so they are not shown here. Using any other backend as the basis
for our jumps gave consistent results.
∗Calculated using the binary mass function and the component masses in the relation f = (mc sin i)3/M2

tot. The
reported uncertainty is a result of error propagation on the masses and mass function.
†Derived from Mtot −mc.
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Figure 3.5: The DDGR solution post–fit timing residuals for PSR J1829+2456 as a function
of orbital phase. The blue points correspond to TOAs from the first dense campaign (58402
– 58408) and the red points correspond to TOAs from the second dense campaign (58748
– 58752).

and Weisberg, 1989) has the PK parameters re-cast due to the constraints as imposed by
the theory of general relativity (Equations 1.28 - 1.32). The PK parameters found by DD
are not fittable in the DDGR model as mtot and mc are fit instead, these PK parameters
can be used to compare the DD model with the DDGR model.

More recently, the DD model has been reparametrised to better probe effects of Shapiro
delay on timing residuals. This DDH model (DDH, Freire and Wex, 2010) fits a new
observable, ς, which is linearly related to s in DD (so as to maintain theory–independence),
in tandem with higher harmonics of that observable, h3 and h4 (see Equations 3.1 –
3.3). The advantage of the DDH model is that the covariance between its Shapiro delay
parameters is generally much lower than between r and s in the DD model for larger orbital
inclinations and can therefore be used to more reliably determine mass constraints in lieu
of any additional PK parameter measurement (such as γ or Ṗb).

ς =
s√

1− s2
(3.1)

h3 = rς3 (3.2)

h4 = rς4 (3.3)

The full set of post–fit timing residuals as a function of date for the DDGR fit are
shown in Figure 3.4. Plotting the residuals against orbital phase and highlighting the
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dense campaigns (Figure 3.5) has shown their value in providing orbital coverage although
there are still major gaps, especially around 0.1 − 0.2 and 0.5 − 0.55 phase. The TOAs
made from the dense campaigns cover a wide range of the total orbit, which can potentially
allow for concise measurements of some of the more difficult to measure orbital parameters,
such as γ or any effects due to Shapiro delay. Further timing campaigns could possibly
resolve this feature in the residuals.

Parameter covariance

Realistic independent measurements of certain parameters in the timing fit are sometimes
impossible due to how those parameters manifest in the timing model. These covariant
parameters get absorbed into other delays in the timing solution (e.g. r and s for head–on
orbits; van Straten, 2013). In particular, frequency dependent parameters, such as ν̇ and
DM, will depend on each other in the model to some degree and the effect of frequency
on one parameter cannot always be fully disentangled from the effect of frequency on the
other. Highly covariant parameters reduce the likelihood of making definitive conclusions
as to whether the significance of those parameters is real or whether it is produced by
other effects. From Table 3.3, calculated using the “matrix" output plugin in tempo2,
there appears to be a high covariance between T0 and the orbital parameters Pb and ω.
This is expected due to how these parameters are updated in the model. Once a significant
ω̇ measurement is made in a theory independent way, subsequent ω measurements in GR
can be calculated from the reference epoch and the argument of periastron at that epoch,
ω0, as:

ω = ω0 +
Pbω̇

π
tan−1

[(
1 + e

1− e

)2

tan
u

2

]
(3.4)

where u is given by numerically solving Equation 3.5 at the pulsar proper time, t:

2π

Pb
(t− T0) = u− e sinu (3.5)

from Damour and Deruelle (1986), so ω can never be truly disentangled from Pb or T0, and
to a lesser extent, e. There is also expected covariance between the position and proper
motion which is observed here. Extra red noise uncertainty for all of these parameters
was applied using the method from Coles et al. (2011) before reporting values. The mass
measurements, which are also often covariant with orbital parameters, displayed little
covariance so the mass constraints can still be relied upon without need for much extra
error. A good indicator for high covariance is the ‘number of nines’ approach where the
number of consecutive nines from the decimal point in the square regression are counted.
A higher ‘N.o.N’ value than 1 (cov ∼ 0.99) implies severe covariance and is often implicit
of an incorrect timing solution if too many parameters display this degree of covariance.
In the case of PSR J1829+2456, no parameter obtained a ‘N.o.N’ score greater than 1.

Parameters that are naturally covariant, such as all parameters that share frequency
dependency (e.g. ˙DM and ν̇) show minor, although expected, levels of covariance in the
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model. Further timing campaigns at different frequency bands could certainly reduce this
covariance.

3.4 Results

Newly measured properties of PSR J1829+2456 have shown the system to be similar to
several other DNS systems for which component masses and proper motion have been
measured. Given the evolutionary relationship between the masses and the parameters
discussed, it is believed that these systems underwent similar evolutionary processes (Tau-
ris et al., 2017). Table 3.4 compares the known recycled DNS systems for which mass
measurements have been made or bounded.

3.4.1 Post–Keplerian parameters

The Keplerian description of orbital mechanics is irreconcilable with observations of orbits
containing sufficiently massive orbits, such as NS–WD and DNS binaries. As mentioned
in Section 1.2.4, there are several “post–Keplerian" (PK) parameters all of which can
be directly observed given enough orbital coverage for a system. It was the goal (and
partial success) of the dense campaign observations to help constrain the Keplerian and
PK parameters of the system. As such, the best timing solution has found a significant
Shapiro delay measurement with ς = 0.778 ± 0.004 and h3 fixed at its GR-derived value
of 3.02µs. The new timing analysis also provided better constraints for ω̇ leading to a
more precise total mass measurement. A significant value for Ṗb has also been measured
to be −2.9(2.4) × 10−14, however the uncertainty in this measurement means Ṗb cannot
constrain mass measurements as precisely as ω̇ and ς and the measurement is, at best, a
weak test for GR.

3.4.2 Mass measurements

Measuring any two post–Keplerian parameters and formulating them in terms of GR allows
for constraints to be put on the component masses. In the DDGR model, the fittable mass
parameters are the companion’s mass and the total mass with any previously measured
PK parameters held fixed. If the only measured PK parameter is ω̇ and the DDGR model
finds a solution for the masses, it is highly likely that Shapiro delay is present in the
system and that it is responsible for the component mass constraints, otherwise the masses
would be unbounded in GR. This must be the case because the current estimate for γ,
as quoted by both DD and DDH, is not sufficiently accurate for PSR J1829+2456 and
so cannot explain the observed uncertainties. Using the theory–independently observed ω̇
and ς, the total and companion mass have been measured to be 2.60551 ± 0.00038M� and
1.299 ± 0.007M�, respectively. Assuming the pulsar mass is equal to the total mass minus
the companion mass implies mp = 1.306 ± 0.007M�. These masses are fully consistent
with the values and constraints as determined by Champion et al. (2005).

It has been shown that, for sufficiently wide orbits, the derivative of the projected semi-
major axis can be highly covariant with γ, which itself is covariant with the current value
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for x as well as the proper motion (Ridolfi et al., 2019, equations 25 and 43 respectively).
The absolute maximum contribution to ẋ due to proper motion has been determined to be
2.6×10−15 lt-s s−1. However, this estimate is one order of magnitude smaller than the value
for ẋ as given by the DDGR fit, which is 4σ significant – a rather large significance. The
contribution to ẋ due to the Lense-Thirring effect (Krishnan et al., 2020) was also found
to be insignificant when compared with the uncertainty in ẋ. Because of this unexplained
value of ẋ, γ cannot be reliably measured. Given the masses determined by the DDGR
model, γ is predicted by GR to have a value of 1.44ms.

In order to ensure that the GR fit obtained was the best fit possible, the post–fit χ2

values were probed. The main setup, using arbitrary parameters p1 and p2, was to fix those
parameters (i.e. set the fit parameter to 0) at regular intervals and run tempo2 with those
fixed values, measuring the χ2 of the output fit. Splaver et al. (2002) use a procedure to
calculate the Bayesian joint posterior probability density. In this method, the likelihood,
Π, that the ith set of values for the tuple (p1,i, p2,i) gives the lowest χ2 (χ2

min) is given by
a normalised Bayesian likelihood function:

Π ({X}|(p1,i, p2,i)) = exp

(
χ2
i − χ2

min
2

)
/
∑
i

exp

(
χ2
i − χ2

min
2

)
(3.6)

where X is the data set. This gives a maximum at χ2
min, as desired. Calculating the

posterior probability density of p1 and p2 given the data set makes use of Bayes’ theorem
(e.g. Kendall, 1994, Section 8.9):

Π ((p1,i, p2,i)|{X}) = Π (p1, p2)×Π ({X}|(p1,i, p2,i)) (3.7)

where Π (p1, p2) is the prior probability for p1 and p2 and is the product of the reciprocal
differences of their extreme values. A grid of posterior probabilities can be created from this
and contour lines drawn at chosen % likelihoods, as well as the corresponding probability
distribution functions. For the purposes of this work, the nominal 1− 3σ limits of 68.3%,
95.4% and 99.83% respectively were chosen to showcase the likelihood. This method was
applied to two cases:

Case 1. The parameters of interest were mc and Mtot. The value for mp was deter-
mined as the difference between the total mass and companion mass, meaning
its uncertainty is on the order of the companion mass. The prior spaces were:
1.285M� ≤ mc ≤ 1.310M� and 2.605M� ≤Mtot ≤ 2.606M�. The grid resolu-
tion was 200× 200. The contour and PDF plots can be seen in Figure 3.6.

Case 2. The parameters of interest were mc and mp where the total mass was calcu-
lated using the precise value for ω̇ in the DDH solution. This puts a much tighter
constraint on the component masses as the total mass is essentially fixed to the
ω̇ line. The prior spaces were: 1.290M� ≤ mc ≤ 1.310M� and 1.295M� ≤
mp ≤ 1.315M� and the grid resolution was, again, 200 × 200. These contours
and PDFs can be seen in Figure 3.7.
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Figure 3.6: The GR–derived mass distribution for the system component masses assuming
fixed Mtot after initial determination via GR. The vertical lines in the PDFs are the three
confidence levels as determined by Gaussian variance.

It is clear that Case 2 provides a much more precise probability distribution in (mp,mc)

space and therefore it is explored further. Since the GR–derived mass distributions as
found by Case 2 are fundamentally linked to the independently observed PK parameters,
as found using the DDH binary model, the contours and PK parameters can plotted to
better constrain the allowed mass values. If GR is to be believed, then Figure 3.8 and its
inset show the allowed mass constraints when comparing both the DDH and DDGR fit.
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Figure 3.7: The GR–derived mass distribution for the system component masses assuming
fixedMtot as derived in a theory independent way using ω̇ from the Shapiro-delay harmonic
Damour–Deruelle (DDH) binary model. The vertical lines in the PDFs are the three
confidence levels as determined by Gaussian variance.

3.4.3 Proper motion

As a result of the latest timing campaigns, the proper motion for the system has been
significantly detected in both binary models. For the DDH and DDGR models respectively,
the proper motion in the right ascension, µα, was found to be −5.51 ± 0.10mas yr−1 or
−5.51± 0.12mas yr−1 and the proper motion in the declination, µδ was found to be−7.75±
0.14mas yr−1 and −7.82 ± 0.16mas yr−1. This gives a total proper motion, given by the
length of the additive vector of the two component proper motions, of 9.52 ± 0.14mas yr−1

or 9.56 ± 0.14mas yr−1 for the DDH and DDGR models respectively.
As mentioned in Section 3.1, calculating 3D, or even transverse, space velocity from

proper motion is not often feasible for radio pulsars due to the the high uncertainties
involved in DM–derived distance estimates, and very few NSs have precise parallax mea-
surements. In order to combat this uncertainty, Monte–Carlo simulations were carried out
to find both the tangential and radial components of the space velocity.

The proper motion was first converted to the co–ordinates of the “Local Standard of
Rest" (LSR). This is a fictitious circular orbital path in the Galactic plane going clockwise
around the Galactic centre at the current Galactocentric Solar distance, R0. An object’s
velocity with respect to the LSR is known as its peculiar velocity. Even the Sun has
been observed to ascend and descend through the Galactic plane and thus has a non–zero
peculiar velocity which must be taken ito account (McMillan and Binney, 2010). The LSR
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Figure 3.8: Main window: Mass-mass diagram for PSR J1829+2456 showing the GR-
derived mass constraints from each PK-parameter fit. The blue region is ω̇ and the maroon
region is ς, as reported by tempo2. The dashed line represents the s = 1 constraint. Inset:
The green contoured region represents the 95% confidence region for the pulsar and and
companion masses based on the DDGR model, which assumes general relativity for the
timing fit.

is a good model for the general motion of object’s around the Galaxy but care must be
taken when interpreting LSR velocity calculations; depending on the position of the star,
the co-ordinate transformation may no longer be realistic enough to disentangle from the
simulated velocities’ uncertainties. To convert the Earth–observed proper motion to the
LSR, the method as given by McMillan (2017) was employed with solar peculiar velocity
〈U�, V�, W�〉 = 〈−11.1, 12.24, 7.25〉 km s−1.

For the simulations, two random priors were chosen: the DM–derived distance, d, cal-
culated using the YMW16 electron density model, and the cosine of the orbital inclination,
cos i. The distance was chosen from a Gaussian distribution with the 1σ level set to be
equal to 20% of the distance estimate, in accordance with the uncertainties given by Yao
et al. (2017). The transverse velocity is calculated by:

vtrans = 4.74047µtotd (3.8)

where the scaling factor of 4.74047 is the factor that converts pc km s−1 to mas yr−1 assum-
ing that the proper motion is small enough to use the small–angle approximation. This was
done over 20,000 iterations to create a distribution of transverse velocities from which the
median was taken to be the nominal value and the uncertainties were propagated from the
original distance estimate and the uncertainty in the proper motion. The distribution for
vtrans can be seen in Figure 3.9a. The estimated transverse velocity is then 43+51

−34 km s−1.
The prior for cos i was selected from a uniform distribution between 0 and 1, giving a

low–biased skew to the distribution of i. The radial velocity can be calculated by:
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vr = vtrans cot(i) (3.9)

where the uncertainties for vr were linearly propagated from the uncertainty in vtrans over
100,000 iterations. 100,000 was chosen as optimal taking into account the uncertainty in
the 20,000 iterations to calculate vtrans. The full distribution for vr can be seen in Figure
3.9b. Using these two velocity distributions, the total 3D space velocity was calculated as
49+77
−30 km s−1.

10 20 30 40 50 60 70

Tangential velocity (km s−1)

(a)

0 50 100 150 200 250
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Figure 3.9: Distributions for the tangential (left) and radial (right) velocities for
PSR J1829+2456. The dashed lines are the nominal 1σ uncertainties as obtained via
error propagation from the prior uncertainties.

Until a significant parallax is observed for the system, the prospects of improving the
precision on this velocity measurement are slim and the current velocity estimates are too
high to draw definitive conclusions on binary evolution however the velocity estimates for
PSR J1829+2456 are consistent with a low-kick evolution model.

3.4.4 Kinematic effects

The component kinematic contributions for Ṗ were then calculated. These are given by
the second derivative of the line-of-sight distance from the pulsar to the Earth, or the first
derivative of the Doppler factor. The transverse motion of a pulsar with respect to the
SSB results in an ever–growing distance between the SSB and the pulsar, meaning that
changes in pulse period, Ṗ , as measured on Earth are generally not correct, displaying a
secular increase (Shklovskii, 1970). The intrinsic spin–down rate due to this effect is given
by:

Ṗint = Ṗobs −
Pµ2

totd

c
(3.10)

where c is the vacuum speed of light. Using calculations in (Stovall and et al., 2019),
three main contributions were obtained: 8.28× 10−21 for the Shklovskii effect (Shklovskii,
1970), −1.23×10−21 for the difference in rotational accelerations between the Solar System
and the pulsar, projected along the direction between the two, and −1.09× 10−21 for the
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difference in vertical accelerations between the Solar System and the pulsar, projected
along this same direction. The total correction to the spin period is then 5.97 × 10−21.
Subtracting this from Ṗ , the intrinsic Ṗ was found to be (4.35 ± 0.09)×10−20, and values
for the pulsar characteristics as described in Table 3.2.

The equivalent kinematic contributions to Ṗb are 2.0 × 10−14 (Shklovskii), −3.0 ×
10−15 (rotation acceleration) and −2.6×10−15 (vertical acceleration difference). The total
predicted kinematic contribution to Ṗb is then (1.5 ± 0.2)×10−14. The DDH measurement
for Ṗb gives (−2.9 ± 1.1) × 10−14 (1σ). With the DDGR model, the contribution to Ṗb
that is in excess of the GR mass prediction, ṖX

b (XPBDOT in tempo2) gave a significant
measurement of (−2.3 ± 1.1) × 10−14 (1σ). The difference between the prediction and
observation is therefore (−3.8 ± 1.1) × 10−14, which is more than 3σ significant. As for
the anomalous value of ẋ, this could be caused by systematic errors in the data, but if the
effect is real, there may be some nearby mass accelerating the system. Continued timing
will be necessary in order to verify this.

3.4.5 Dispersion measure

Owing to the broader frequency range of data, the dispersion measure (DM) has seen
an observed improvement in precision at 13.707 ± 0.004 cm−3 pc. Furthermore, the first,
second and third order rates of change in the DM have been found to be −0.0022 ±
0.0008 cm−3 pc yr−1, −0.00024± 0.00008 cm−3 pc yr−2 and (−7.1± 3.2)×10−6 cm−3 pc yr−3

respectively. The most recent timing campaigns were conducted simultaneously at two fre-
quencies (430 MHz and 1400 MHz) for the entire length of the campaign, which in theory
can allow for time–sensitive DM variations to be detected. Added to this are the subband
divisions present in the L-band TOAs. DM variations from the solar system have all but
been absorbed into the current emphemeris, but interstellar medium (ISM) DM variations
are much harder to characterize. Pulsars in binary systems with high inclination angles
can show DM variations from the envelope of the companion in a similar physical principle
to Shapiro delay (Freire et al., 2003). Some of these pulsars show DM variations that are
independent of a constant first derivative measurement (You et al., 2007) implying higher
order corrections are necessary, so now that PSR J1829+2456 has an observed DM rate of
change, this is worth investigating.

In order to probe measured variations in DM, the “Stridefit2" plugin for tempo2 was
used. Stridefitting is the process of fitting a particular parameter (in this case the DM),
whilst keeping all other parameters constant, within a small segment of time. The time
segment has a user–defined ‘window size’, t, and an offset value, δt, which determines
the time step to the next segment. Segments should overlap (t > δt) to ensure minimal
interpolation. One must choose a suitable t and δt to not make the resolution too fine
so as to detect random noise glitches but not too coarse as to average out meaningful
DM measurements. The values chosen were t = 100 days and δt = 50 days. Thee values
were chosen based on the mode time between observing days being about 30 days, giving
three observations per segment. Not all TOAs could be used in the stridefit as only dates
with two frequency measurements could be used; therefore only TOAs spanning dates
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57950 − 58900 were chosen for the fit with dates 58050 − 58200 omitted owing to the
lack of L-band data for those dates. As one can see from Figure 3.10, the variations are
rather complex with a gentle increase, consistent with the measured DM first derivative.
This implies that there are no significant inexplicable trends in DM variation over this
time period when accounting for the measured DM derivatives. The best fit was found
using all available and valid TOAs. This method did not affect the fit from the control fit
in a significant way, implying that all observed segmented DM variations can indeed be
explained by the apparent DM–derivative observation.
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Figure 3.10: The “Stridefit2" solution for DM using tempo2, with dates spanning 57950−
58900. The window around each point was 100 days with time steps of 50 days. The
vertical dashed lines (blue) represent constant offsets of 3 months.

The significant measurement of higher-order DM derivatives were initially included in
the model as they brought the χ2 in Tempo2 closer to unity. Adding more timing data
did not change the nominal value of these parameters but removing them worsened the fit
for the complete data set as well as subsets, however whether or not these measurements
describe real phenomena remains to be seen. As previously mentioned with regards to the
significant measurement of ẋ, a nearby masses could be accelerating the system which may
cause non-linear propagation effects, or a small dust cloud may be periodically entering the
line of sight due to the pulsar’s orbit. Further work should include a DM-stridefit which is
dependent on orbital phase to confirm / reject this hypothesis. These measurements may
also be covariant with an unmodelled parameter (such as γ). This is likely given the results
of Table 3.3 although no other parameters (with the DM derivative fits removed) gave as
good a fit to the timing residuals. It should be noted however that removing the DM
derivatives from the model does not significantly affect the orbital parameters or masses,
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which were the main focus of this chapter.

3.4.6 Eccentricity

A more precise value for the orbital eccentricity has also been measured and compared
against the population. Much like the space velocities, there is a clear increase in eccen-
tricity with respect to the companion mass (Figure 3.15), with many currently known DNS
binaries having low eccentricities. Low eccentricity implies a low mass-loss event and many
of the lowly eccentric pulsars with above median companion masses have, or are predicted
to have, smaller kick-velocities. This suggests a symmetric, low mass-loss SN, since the
companion is similar in mass to the pulsar. These findings also agree with the theory that a
larger resulting DNS eccentricity corresponds to those systems which also have undergone
a large natal kick post-supernova as described in Figure 3.11.
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Figure 3.11: The space velocities of DNS systems with respect to the orbital eccentricity.
The red (diamond) points represent those systems believed to have been formed from a
violent asymmetric SN, whereas points in blue (triangles) represent the symmetric pathway.
The golden (triangle) point is PSR J1829+2456.

3.5 Profile evolution

Most pulsars exhibit an increase of pulse width and profile component separation at lower
frequencies, a phenomenom which has been attributed to higher frequency emission being
produced closer to the NS surface (Komesaroff, 1970). This radius–frequency mapping
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(Cordes, 1978) is not observed as readily for millisecond pulsars as it is for slower pulsars
due to the proposed smaller size of the emission region in millisecond pulsars. In the
emission picture as outlined by Komesaroff (1970), plasma flows from the NS surface along
the open magnetic field lines (see Figure 1.1) and the emitted photons travel tangentially to
these fields lines. The field line opening angles are dependent on the height of emission in
the classic geometrical way: the closer the emission is to the surface, the smaller the opening
angle of the field lines will be for the photons to emit tengentially off from. Assuming this
is correct, the emission height separation can be given by the width differences between
the higher and lower frequencies, Wh and Wl:

∆rem = 2πc
(Wh −Wl)

2 (φ0 − φl)2 sin2 α

2.25PW 2
l

(3.11)

from Nowakowski (2000), where α is the misalignment angle between the rotation and
magnetic axes. This is by no means the only effect on observed pulse width and it has
been determined that pulse width is also a function of the “slice" of the beam the observer is
looking at, however assuming this does not change much over the course of one observation,
Equation 3.11 holds for a single observation.

403.4 MHz

453.4 MHz

Figure 3.12: The sub-banded profiles for PSR J1829+2456 for data taken with the 430MHz
receiver at Arecibo. The date of observation was 58751 representing a total integration
time of 69 minutes. These plots were made after RFI excision using most effective method
and setup as determined in Section 2.2.4.

PSR J1829+2456 has been observed as having a wider profile in the 430MHz region
when compared with the L-band region, so it is worth investigating to see if subtle pro-
file variations occur within sub–bands of frequency. Both the 430MHz and the L-band
data for MJD 58751 were divided into subbands representing 50MHz and 200MHz blocks
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repectively, amounting to 2 frequency channels for the former and 4 channels for the latter.
The sub-banding was performed after local dedispersion and strict RFI excision (Section
2.2.4). Figures 3.12 and 3.13 show the average profile shape in each frequency block.

1681.6 MHz 1481.6 MHz

1281.6 MHz 1081.6 MHz

Figure 3.13: The sub-banded profiles for PSR J1829+2456 for data taken with the L-band
receiver at Arecibo. The date of observation was 58751 representing a total integration
time of 60 minutes. These plots were made after RFI excision using most effective method
and setup as determined in Section 2.2.4.

Although the interference at high frequencies in the L–band is too great to get any
discernible profile, there may be some subtle profile shape changes over both frequency
bands. The phase error of each sub–banded standard profile with respect to the band-
centred template was always less than one phase bin, meaning that precision timing is not
affected by the profile shape change. The profiles do not get much wider or broader at
lower frequencies in both bands, and a subtle change in FWHM is in line with expected
frequency-dependent trends in MSPs (e.g. Pennucci, 2019). The ISM is also responsible
for some profile evolution in the frequency domain (Craft and Comella, 1968) and not
taking into account these profile shape changes has resulted in sub–optimal TOAs in the
past (cf. NANOGrav Collaboration et al., 2015; Lentati et al., 2017), although here there
is no such profile variation. Time dependent profile variation PSR J1829+2456 was not
explored in detail but estimates on pulse width variations over time suggests that the
profile shape has been stable across the most recent three year campaign to within the
mean TOA uncertainty for that time period. This is expected as the main contributor
to apparent changes in pulse shape is gyroscopic precession about the rotation axis. For
PSR J1829+2456, the gyroscopic precession period is calculated to be approximately 42
centuries, so undetectable through observation at this precision. Further study on profile
evolution must be conducted in order to confirm these qualitive analyses.
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3.6 Evolution of the system

This system is a great resource for studies concerning DNS formation and evolution sce-
narios. A complete analysis of our understanding of DNS evolution is given by Tauris et al.
(2017) and a more detailed introduction is given in Section 1.3, but the relevant parts to
the argument of this section are reproduced, starting from the second supernova event of
the helium star.

The Hulse–Taylor binary, the first DNS ever discovered, has a high 3D space velocity
and a very eccentric orbit (Table 3.4). These observations fit a later theory concerning
high velocity isolated pulsars as having been ejected from former binaries to suggest that
supernovae imparted an asymmetric high kick velocity on the remnant NS (Bailes, 1989).
This high kick velocity can be estimated from measurements of the tangential velocity
which have been observed above 100 km s−1 in other DNSs suchs as those containing PSRs
B1534+12 (vtrans ≈ 135 km s−1; Fonseca et al., 2014) and J1913+1102 (vtrans ≈ 110 km s−1;
Ferdman et al., 2020). However many DNSs have now been observed to have low space ve-
locities (. 100 km s−1) such as those containing PSRs J1756−2251 (vtrans ≈ 29 km s−1; Fer-
dman et al., 2014), J0453+1559 (vtrans ≈ 25 km s−1; Martinez et al., 2015)2, J1518+4904
(vtrans ≈ 18 km s−1; Janssen et al., 2008), as well as the double pulsar (PSR 0737−3039A/B,
vtrans ≈ 30 km s−1; Ferdman et al., 2013). A revision of the theory suggests that the or-
bital, chemical and mass properties of NSs in a DNS lead to different evolutionary pathways
(Podsiadlowski et al., 2004; van den Heuvel, 2007). Low-kick DNSs in close binaries are
thought to have been formed via a mechanism of rapid electron capture onto an O-Ne-Mg
or possibly iron core of the helium star in a NS-He binary. In both scenarios, the time scale
for this rapid capture is much faster than the timescales for non-radial hydrodynamical
instabilities to occur (Zha et al., 2019). If the core is iron, it will undergo a core collapse
from all points on the surface simultaneously so the resulting supernova is believed to be
symmetric. The lack of a neutrino gradient on the core surface leads to a small kick velocity
in which not much mass is ejected from the system. Currently, the preferred mechanism
for low-kick DNS evolution is FeCCSN (Tauris et al., 2017) as it predicts NS masses of
1.1 − 1.8M�, consistent with the current population. Furthermore, many NS masses fail
to meet the constraints as determined via ECSN which predicts the DNS NS mass window
to be ∼ 0.2M� (Tauris et al., 2015). Bhattacharya and van den Heuvel (1991) show that
the orbital eccentricity from a symmetric Type I supernova can be expressed as the ratio of
the mass lost during the explosion to the current total system mass, although this equation
assumes a roughly circular orbit:

e =
∆M

MT
(3.12)

Thus systems with lower eccentricities and velocities with respect to their mass are are
believed to have undergone far more stable supernovae events, only possible if the electron
implosion was rapid. This is believed to be the case with J1829+2456 system. With a

2There is some debate as to whether this system is a DNS as opposed to a NS–WD system (Tauris and
Janka, 2019)
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space velocity of ∼ 50 km s−1, it is traveling faster than the other binaries in the “symmetric
supernova camp" however it has medium-to-low eccentricity (≈ 0.139) and the mass of the
companion has been found to be in a medium-to-high range with respect to these other
systems (See either Figure 3.14 or 3.15). This follows known trends about companion mass
and velocity (van den Heuvel, 2007) although the companion mass for PSR J1829+2456
is quite a bit higher than their prediction that second-formed NSs should have low masses
of around 1.25(6)M�. Table 3.4 documents all of the Galactic DNSs with known orbital
or proper motion parameters and Figures 3.14 and 3.15 show the population of velocities
and eccentricities respectively for Galactic DNSs with known companion masses.

From Equation 3.12, the change in mass for the J1829+2456 system after the second
supernova event is calculated to be (0.3625 ± 0.0004)M� leading to a core-progenitor mass
of (1.662 ± 0.007)M�, putting it at the lowest end of estimated He star core-progenitor
masses (Woosley, 2019), although it cannot be understood to be the true progenitor mass
owing to PSR J1829+2456’s relatively large eccentricity, so it is best to consider this a
ballpark figure. This mass and the systemic velocity estimates are consistent with pre-
dictions made for the system via simulation (Tauris et al., 2017, Figure 33). Specifically
in the case of DNS systems, the minimum total accretion mass to the pulsar (from the
companion pre-second SN) can be determined via the current spin period and can act as
a measure of the extent of recycling. This is approximated by (Tauris et al., 2017):

∆M ' 0.22
3

√
MNS

P 4
(3.13)

with P measured in ms. Using this estimate, the minimum accretion mass is calculated
to be (1.700 ± 0.007) × 10−3M�. This lies well within the (0.2 − 4) × 10−3M� range
observed with the total DNS population.

The relatively wide orbit of this system (Pb ≈ 1.176 days) along with the low estimated
mass-loss imply that its orbital parameters have not changed much since formation (Tauris
et al., 2017, Section 8.9). The companion mass of 1.299M�, as well as the mass ratio
q = 0.995 ± 0.007, support this further as they imply very little mass transfer to the
pulsar during the X-ray emitting accrection stage.

Another evolutionary scenario based on neutrino driven kick (Janka, 2013) was ruled
out due to PSR J1829+2456’s surface magnetic field being 1.44×109 G – about six orders of
magnitude too low to fit either neutrino kick formation scenario. This pathway of evolution
is mostly saved for magnetars in binary systems.
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Table 3.4: Parameters for various DNS systems in which the pulsar is the recycled NS. This
list does not include systems in globular clusters, which were likely formed via exchange
encounters.

PSR∗ P
(ms)

Pb
(days) e

Companion
mass (M�)

µtot
(mas yr−1) d (kpc)× vLSR

( km s−1)†

J0453+15591 45.8 4.072 0.113 1.174(4) 7.997 0.52 29+44
−19

J0509+38012 76.5 0.380 0.586 1.46(8) – 7.08 –

J0737−3039A3 22.7 0.102 0.088 1.2489(7) 3.885 1.17 55+86
−36

J1411+25514 62.5 2.616 0.170 > 0.92 ∼ 12 1.13 85+120
−51

J1518+49045 40.9 8.634 0.249 1.05+1.21
−0.11 8.512 0.96 36+55

−22

B1534+126 37.9 0.421 0.274 1.3455(2) 25.34 0.93 120+184
−78

J1753−22407 95.1 13.638 0.304 – – 6.93 –

J1756−22518 28.5 0.320 0.181 1.230(7) 5.928 0.95 42+63
−25

J1757−18549 21.5 0.183 0.606 1.3946(9) – 19.6 –

J1811−173610 104.2 18.779 0.828 > 0.93 – 10.16 –

J1829+2456 41.0 1.176 0.139 1.299(7) 9.560 0.91 49+77
−30

J1913+110211 27.3 0.206 0.090 1.27(3) 9.286 7.14 112+175
−73

B1913+1612 59.0 0.323 0.617 1.389(1) 1.404 5.25 157+242
−100

J1930−185213 185.5 45.060 0.399 > 1.30 – 2.48 –

J1946+205214 17.0 0.078 0.064 > 1.18 – 3.51 –

∗References: (1) Martinez et al. (2015), (2) Lynch et al. (2018), (3) Kramer et al. (2006), (4)
Martinez et al. (2017), (5) Janssen et al. (2008), (6) Fonseca et al. (2014), (7) Keith et al. (2009),
(8) Ferdman et al. (2014), (9) Cameron et al. (2018), (10) Corongiu et al. (2007), (11) Ferdman
et al. (2020), (12) Weisberg and Huang (2016), (13) Swiggum et al. (2015), (14) Stovall et al.
(2018).
×Distances used were derived from the YMW16 Galactic free electron distribution model (Yao
et al., 2017) with DMs found using the ATNF Pulsar Catalogue (Manchester et al., 2005) except
in the case of PSR J1756−2251, where the distance is given by Ferdman et al. (2014).
†Median vLSR and 2σ (95% confidence level) errors were calculated using the Monte-Carlo
method described in section 3.4.3 and rounded to the nearest integer.
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Figure 3.14: Companion mass compared with the estimated 3D velocities for Galactic DNS
systems. The blue points represent those systems that are thought to have undergone a
rapid electron capture onto an iron or possibly an O-Ne-Mg progenitor core leading to
a low-kick, symmetric supernova. The red points represent systems theorised to have
undergone a high-kick, asymmetric supernova.

3.7 Future prospects

The goal of follow up timing for PSR J1829+2456 will be to further constrain the PK
parameters, the proper motion and the DM. It is estimated that, within two more years of
data, including at least one carefully organised dense campaign, a significant and accurate
value for γ will be measureable. Adding to this, the relatively short distance to the system
with respect to other DNSs mean that measuring the parallax may soon become possible,
although it is not expected to be measureable to within 0.3 mas until five more years of
observation. Alternatively, a VLBI distance measurement is possible now if the YMW16
distance is close to the true value. The author suggests dual frequency follow up timing
campaigns for two years to investigate these predictions. Although almost all of the TOAs
obtained for this pulsar were conducted with Arecibo, that is unfortunately no longer an
option3, so other telescope options must now be explored for follow up observations.

3See Witze (2020) for an informative but ultimately upsetting read.

Chapter 3 Henryk T. Haniewicz 76



0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Companion mass (M�)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
cc

en
tr

ic
it

y

Figure 3.15: Companion mass compared with the eccentricity of Galactic DNS systems.
The blue points are the symmetric supernovae systems, the red points are the asymmetric
and the grey points are currently un-determined, however it is likely that they are both
asymmetric supernovae remnants. Errorbars for the eccentricity are smaller than the points
themselves and have been omitted for this reason.



Chapter 4

Timing of four millisecond pulsars
discovered by the PALFA survey

T
he discovery and timing of radio pulsars is essential in order to place ever tighter
constraints on NS physics, their population, formation and evolution. Due to
the effect of increased dispersion and scattering from the ISM in the Galactic

plane and the generally steep spectral nature of pulsars, many pulsars in the Galactic
plane appear extremely faint, so a middle-range frequency (∼ 1GHz) is the best option:
not too large as to whiten the pulsar signal out, but not too low as to redden the signal
with ISM dispersion. The known pulsar population is increasing rapidly with the help of
surveys being conducted at major observatories around the world, many of which operate
at ∼ 1GHz. Several recent and prominent pulsar surveys include: the Pulsar Arecibo
L-band Feed Array (PALFA; Cordes et al., 2006), the High Time Resolution Universe
survey at Parkes (HTRU; Keith et al., 2010), the Arecibo all-sky 327MHz drift pulsar
survey (AO327; Deneva et al., 2013), the Green Bank Telescope drift scan survey (Boyles
et al., 2013), the Green Bank Northern Celestial Cap survey (GBNCC; Stovall et al.,
2014) and the GMRT High Resolution Southern Sky survey (GHRSS; Bhattacharyya et
al., 2016). These surveys have given rise to discoveries of several interesting DNSs such as:
PSR J1757−1854 from HTRU (Cameron et al., 2018), which has provided three separate
tests for general relativity through measurement of all five post-Keplerian parameters;
PSR J1913+1102 from PALFA (Ferdman et al., 2020), whose component masses are the
most asymmetric among the compact NS binary population; and PSR J1946+2052 from
PALFA (Stovall et al., 2018), which has a short (4.4-hr) orbital period and is the most
relativistic system discovered – it is expected to merge in only 46Myr. As well as new
DNS discoveries, many NS-WD binaries have been discovered and characterised. These
are especially important in probing orbital effects on relatively circular orbits and offering
insight into the formation of these binary systems.

Pulsars in binaries with other compact objects such as NSs can provide the most
stringent tests of GR (Kramer et al., 2006) and other theories of gravity (Freire et al.,
2012). Most relativistic binaries are expected to be found in the low-latitude Galactic
plane region (e.g. Belczynski et al., 2002) where stellar populations are more numerous
and generally older. It is therefore imperative that at least a handful of pulsar surveys
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should be focused on this region. In this chapter, I will introduce the PALFA Galactic
plane survey in more detail and the discovery of four pulsar systems. I will then discuss
the follow-up timing and analysis of these pulsars and the results that arise from these
observations.

4.1 The PALFA survey

The Pulsar Arecibo L-band Feed Array (PALFA) survey began in 2004 and used the seven-
beam ALFA receiver at a centre frequency of 1375.5MHz with a bandwidth of 322.6MHz, in
order to search for radio pulsars that lie close to the Galactic plane (|b| < 5◦) (Cordes et al.,
2006; Lazarus et al., 2015). It was designed to be the deepest pulsar search to date in the
Galactic disk, since the thin disk is host to the majority of young stars, and therefore NSs.
PALFA surveyed within two regions of Galactic longitude: the inner Galactic region (32◦ <

l < 77◦), with integration times of 268-s, and the outer Galactic region (168◦ < l < 214◦),
with 180-s integration times (Parent et al., 2019). PALFA generally searched the incoming
signal for pulsars using three methods: The “Quicklook" pipeline (Stovall, 2013) processes
a lower-resolution version of the data, and is often used to find particularly bright pulsars
and can be applied in quasi-real time, however weaker pulsars are not typically detected
via this method. The PRESTO pipeline (Ransom, 2001) is used for full-resolution searches
in either Fourier space, which also uses acceleration searches to account for the Doppler
effect due to pulsars in potential binary orbits, or in the time domain, by making use of so-
called Fast-Folding Algorithms (e.g. Parent et al., 2018); this method is sensitive to weaker
radio sources and also has a single-pulse mode for detection of RRATs and FRBs (Patel
et al., 2018). The final major search method used in PALFA is Einstein@Home (Anderson
et al., 2006), a distributed-processing project combining the resources of millions of home
computers worldwide. Einstein@Home also processes data from the LIGO gravitational-
wave detectors (Steltner et al., 2021) and the Fermi gamma-ray satellite (Pletsch et al.,
2013) as well as from the PALFA survey (e.g. Allen et al., 2013).

The PALFA collaboration has discovered a total of 203 pulsars (as of April 2021), 43 of
which have observed spin periods < 100 ms, potentially ideal for probing binary character
due to the high chance of previous recycling from a companion star (see Section 1.3 for
details). The general survey statistics (Figure 4.1) show a roughly Gaussian spread in DM
with median 224 pc cm−3 and a logarithmically linear decay in spin period discoveries.
Treating this distribution as a heavily skewed Gaussian, about 20.5% of PALFA discoveries
should have spin periods . 30 ms, classifying them as true MSPs; indeed, 40 out of the
203 (∼ 20%) do have this property. This is in contrast with the proportion of all of
the discovered Galactic MSPs with P < 30 ms which amounts to 9% of the total pulsar
population (using data from Konar and Chahal, 2019). This could be an observational
selection effect due to the narrow Galactic latitude window that PALFA uses, but it may
also hint at an astrophysical selection criteria governing NS populations. In any case, due
to this high number of MSPs discovered, PALFA has so far discovered many pulsars in
binary systems, with three having been identified as DNS systems (van Leeuwen et al.,
2015; Lazarus et al., 2016; Stovall et al., 2018).
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Figure 4.1: The current (as of April 2021) spin period (in ms) and dispersion measure (in
pc cm−3) population statistics for confirmed PALFA discoveries.

4.2 Discovery

All the PALFA pulsars analysed for this work were observed in the inner Galactic region
using the 305-m Arecibo radio telescope at the full 268-s integration time using the PUPPI
data acquisition backend in incoherent search-mode.

PSR J1851+0010 and PSR J1853+0008 were discovered by Einstein@Home, as part of
the Binary Radio Pulsar (BRP4) search1, in data taken on MJDs 57166 and 57168 (May
2015), respectively. PSR J1936+1805 and PSR J1936+2142 were discovered using the
Quicklook pipeline on MJDs 57233 (July 2015) and 57868 (May 2017), respectively. The
discovery plots for each pulsar are given in Figures 4.2 and 4.3. These are displayed as the
output from prepfold in the PRESTO suite after refolding from the initial solution.

PSR J1851+0010 is a pulsar with a spin period of 22.8ms and DM of 107.6 pc cm−3,
found in the constellation Aquila. PSR J1853+0008 is a pulsar with a spin period of 34.4ms
and a DM of 192.2 pc cm−3, also found in the constellation Aquila. PSR J1936+1805 is a
pulsar in the constellation Sagitta with a spin period of 58.3ms and a DM of 126.1 pc cm−3.
PSR J1936+2142 is a pulsar with a spin period of 31.59ms and a DM of 74.8 pc cm−3, found
in the constellation Vulpecula. Using the YMW16 Galactic electron density model (Yao
et al., 2017), these DM measurements give respective distances of 3.0, 3.9, 3.6 and 3.0 kpc.

1For a complete catalogue of the Einstein@Home BRP4 pulsar discoveries, refer to einsteinath-
ome.org/radiopulsar/html/BRP4_discoveries
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(a) PSR J1851+0010. Top: basic information of the pulsar. Right: the statistical liklihood that
the folding period and its derivative are correct. Middle: the DM fold. Left: the best profile from
the folded profiles (duplicated for clarity).

(b) PSR J1853+0008

Figure 4.2: Discovery profiles for PSRs J1851+0010 and J1853+0008, found using the Ein-
stein@Home project.



(a) PSR J1936+1805

(b) PSR J1936+2142

Figure 4.3: Discovery profiles for PSRs J1936+1805 and J1936+2142, found using the Quicklook
pipeline.
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4.3 Follow-up timing

Follow-up incoherent-dedispersion observations for PSR J1851+0010 and PSR J1853+0008
ran from 57222−57315 and on 57341, initially once monthly for approximately 10 minutes
per observation, followed by a dense campaign conducted from MJD 57311 − 57330 in
10− 15-minute observations per epoch.

PSR J1851+0010 was also observed approximately monthly in coherent fold-mode be-
tween MJD 57330− 58680 (November 2015 – August 2019) at a centre frequency of about
1400MHz over 800MHz of total bandwidth. Most observations were conducted in a ∼ 15

minute window except for those observations taken on MJDs 57556 and 57558, which were
each conducted over a duration of approximately 40 minutes. A linear polarisation basis
was used for the receiver feeds leading to four polarisation channels in AABBCRCI for-
mat (see Section 1.1.1). Noise source calibration observations were conducted for 90 s for
each pulsar at an oscillation frequency of 25Hz and a duty cycle of 0.5 in-pulse phases
(this method is identical to the noise source calibration outlined in Section 3.2). The time
series data were initially folded online at Arecibo using the discovery pulse frequency of
43.785206579Hz, a dispersion measure of 107.6727 pc cm−3, divided into 512 frequency
channels of width 1.5625MHz and into subintegrations representing 10.25 s of time. To
obtain more precise coherent solutions for PSR J1851+0010, the search-mode data for that
pulsar were refolded at a 2048-bin resolution after a solution was found with the fold-mode
data.

PSR J1853+0008 was sparsely observed in coherent fold-mode between MJD 57362−
58680, mostly during the same session as PSR J1851+0010, at a centre frequency of
1380MHz and over 600− 800MHz of bandwidth (depending on the observing day). Noise
source calibration was administered as above and the data was folded online at the discov-
ery pulse frequency of 29.93763513Hz and a dispersion measure of 192 pc cm−3. Much like
PSR J1851+0010, this fold-mode data was divided into 448 or 512 frequency channels of
1.5625MHz and into subintegrations of 10.25 s.

To find an initial solution, both pulsars were folded at a resolution of 256 profile bins;
these were then refolded using the initial solution ephemeris at 512 profile bins each (rep-
resenting 4.096× 10−5 s per bin) for further timing analysis. For each of these two pulsars,
one final incoherent search observation was made on MJD 59014. These were not included
in the initial phase connection process due to their vast distance in time from the original
search-mode data, but were folded with the initial solution’s ephemeris and subsequently
included in the set of refolded TOAs.

Follow-up incoherent search-mode observations were conducted from MJD 57924 −
58895 for PSR J1936+1805 and from MJD 57595 − 58680 for PSR J1936+2142. Within
these observing periods, dense campaigns for PSRs J1936+1805 and J1936+2142 were
conducted on MJD 58330−58359 and MJD 57670−57716, respectively. Initial incoherent
folds were made for both pulsars at 128 and 64 bins per profile, respectively, using prepfold
in PRESTO before an initial timing solution was found. After this initial solution was
found, the search data for PSR J1936+1805 and PSR J1936+2142 were refolded at 512-
bin resolution to obtain more precise TOAs and parameter measurements. The integrated
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pulse profiles for each pulsar, following this complete method, are displayed in Figures B.3,
B.5, B.8 and B.10 in Appendix B.1.

4.4 Timing analysis

Standard template profiles (Figure 4.4) for each pulsar were created for each observing
mode to ensure optimal cross-correlation during TOA calculation. For the search-mode
data, template profiles were created by fitting up to two Gaussian functions to the days
with the highest S/N in the integrated profile. For coherent fold-mode data, template
profiles were made by first administering polarisation calibration via the 90 second noise-
diode pulsar calibrators and then performing flux calibration using the stably polarised
QSO B1442 as a continuum calibration source (see Section 2.3). This was followed by RFI
excision via a mix of CNN training with (ς, σ) architecture (see Chapter 2) and manual
zapping of the raw data. The profile data were then dedispersed, aligned with the current
ephemeris, and finally added together over many days. The templates are of much higher
S/N than their search-mode counterparts. This means that, on average, the coherent fold-
mode TOAs have smaller RMS residual error. Multiple Gaussians were then fit to the
averaged profiles for all four pulsars using the Gaussian fitting routines in PSRVoid (with
off-pulse regions determined by PyPulse; Lam, 2017). All resulting templates were kept at
their original phase. For templates made using Gaussian fitting, the individual Gaussian
components are given in Appendix B.1.

TOAs created from seperate template profiles are fundamentally different, due to the
template-dependent cross-correlation process and therefore cannot be directly compared.
This requires the fitting of arbitrary phase offsets between sets of TOAs that were created
with between different template profiles. These ‘jumps’ are fit in tempo and tempo2 with
respect to a reference set of TOAs. In every case throughout this chapter, the coherent
fold-mode TOAs were jumped with respect to the search-mode TOAs.

The search-mode template for PSR J1851+0010 was made after RFI excision by fitting
three Gaussian functions to the integrated profile for MJD 57251 at a resolution of 512
profile bins (for the refold). The fold-mode template for PSR J1851+0010 was made first
through calibration and RFI excision and then by profile addition of sixteen observations
spanning dates 57330 − 58680 also at a bin resolution of 512. The search-mode template
for PSR J1853+0008 was made by fitting two Gaussian functions to the integrated profile
for MJD 57303 at a resolution 512 profile bins (for the refold). The fold-mode template
for PSR J1853+0008 was made first through the same method of calibration and RFI
excision as previously described, follow by the addition of eight observations spanning
dates 57362 − 58680. The only templates made for PSRs J1936+1805 and J1936+2142
were search-mode templates (reflecting the unitary data type) made from dates 57924

and 57679 at 256 and 64 profile bin resolution respectively. These were both fit to a
two-Gaussian function.

Phase-connection for PSR J1851+0010 and PSR J1853+0008 was achieved by first
phase connecting around MJDs 57556 and 57558 until as many dates as possible were
phase-connected. For PSR J1936+1805, prelimary phase connection was first made for the
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Figure 4.4: The noise-free standard profiles for PSRs J1851+0010, J1853+0008,
J1936+1805 and J1936+2142. Those displayed here are the coherent fold-mode data tem-
plates for PSRs J1851+0010, J1853+0008, constructed using all available fold-mode data;
and the incoherent search-mode templates for PSRs J1936+1805 and J1936+2142, con-
structed from the integrated profile from observation dates 57924 and 57679, respectively.
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dense campaign TOAs in isolation. These now phase-connected sets of TOAs were added to
their respective full TOA set and, in conjuction with the phase connected dense campaign
ephemeris, were used as the starting point for further phase connection. In the case of
PSR J1936+2142, a phase-connected solution was first found for the dense campaign. The
partial solutions were used as an initial starting point for Dracula (Freire and Ridolfi,
2018) to find a phase-connected solution for each full data set.

Dracula attempts to phase-connect TOAs by first starting with completely uncon-
nected TOAs separated by jumps which are designed to ensure coherence. Starting from
densely populated regions (i.e. dense campaigns), Dracula removes one arbitrary jump
at a time and updates the timing model to reflect the jump removal by attempted to reduce
the reduced-χ2 to unity. One-by-one, more observations are linked together in the timing
model until all phase jumps are removed and the solution is considered phase-connected.
This means that all NS rotations are accounted for between observations. Sometimes
Dracula will give two or three valid solutions for partially phase-connected TOAs and
it is always worth exploring all cases. In the case of all pulsars in this work, Dracula

output only one timing solution when all TOAs were phase-connected.
Once phase connection was achieved for each pulsar using TOAs spread in both fre-

quency and time (roughly 2−4 subbands and subintegrations for each observation), TOAs
made from the refolded data were fully scrunched in time and split into usually two, but
at most four, subbands each representing ∼ 400 or 200MHz bandwidths respectively. This
was done in order to get the most precise astrometric parameter measurements, espe-
cially in the case of the short period binaries. Subbands with a center frequency of below
1100MHz were omitted in all cases due to reciever cut-off; although this was only an issue
on days split into four subbands. For PSR J1936+1805, TOAs with uncertainties greater
than 100µs were omitted from further analysis however, in almost all cases these omissions
coincided with TOAs centered below 1100MHz. In the few instances that a TOA centered
at 1680MHz was omitted due to the TOA uncertainty cut-off, the profile was checked
manually in order to ensure a poor-quality signal. In all cases, high-frequency omitted
TOAs displayed faint to no signal.

After the undergoing the refolding process in order to improve the profile (and therefore
parameter) resolution, 76 phase connected TOAs were calculated for PSR J1851+0010, 52
for PSR J1853+0008, 164 for PSR J1936+1805 and 55 for PSR J1936+2142. These TOAs
were timed in tempo2 using a least-squares fit to calculate the parameter uncertainties.
The Solar system and clock corrections used were, respectively, the JPL’s DE438 (Folkner
and Park, 2018) and TT(BIPM19) (Guinot, 1988). Where the standard clock correction
could not be used, clock corrections were made in accordance with BIPM guidelines2 post-
fit. Residual plots for all four pulsars are given in Figure 4.5 with Tables 4.1 and 4.2 giving
the timing parameters for the best timing solution in each case.

The mean pulsar fluxes, as well as various pulse profile properties are tabulated in Table
4.3. The parameters probed were the pulse widths at 10 and 50% peak amplitude, w10

and w50; the mean 1400MHz phase-averaged flux density, S1400, averaged from all profiles
2See ftp://ftp2.bipm.org/pub/tai/ttbipm/TTBIPM.2019
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Figure 4.5: Post-fit timing residuals, in milliseconds, as a function of MJD for
PSRs J1851+0010, J1853+0008, J1936+1805 and J1936+2142 as reported by tempo2,
corresponding to the best solution after refolding the data. All observations were taken at
a centre frequency of 1400MHz.



Table 4.1: Timing solution for PSRs J1851+0010 and J1853+0008.

Fit and data-set
Pulsar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSR J1851+0010 PSR J1853+0008
Date range (MJD) . . . . . . . . . . . . . . . . . . . . . . . . . . 57222.1− 59071.1 57168.3− 59071.1
Data span (yr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.06 5.21
Number of TOAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 52
Solar System ephemeris . . . . . . . . . . . . . . . . . . . . . DE438
Clock correction procedure . . . . . . . . . . . . . . . . . . TT(BIPM19)
Reference timing epoch (MJD) . . . . . . . . . . . . . . 57313.0 57924.0
Binary model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDGR
RMS timing residual (µs) . . . . . . . . . . . . . . . . . . . 6.412 18.63
Reduced-χ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.79 1.07

Observed quantities
Right ascension, αJ2000 . . . . . . . . . . . . . . . . . . . . . . 18h51m02.s73753(8) 18h53m40.s4560(2)
Declination, δJ2000 . . . . . . . . . . . . . . . . . . . . . . . . . . +00◦10.′15.′′721(3) +00◦08.′03.′′915(8)
Rotation frequency, ν (s−1) . . . . . . . . . . . . . . . . . 43.785206576441(12) 29.93763478447(5)
First derivative of rotation frequency, ν̇ (s−2) −2.3026(14)× 10−16 −6.635(8)× 10−16

Dispersion measure, DM (cm−3pc) . . . . . . . . . . 107.6195(17) 192.242(6)
˙DM (cm−3 pc yr−1) . . . . . . . . . . . . . . . . . . . . . . . . . −0.0047(16) –

Binary period, Pb (d) . . . . . . . . . . . . . . . . . . . . . . . 2.003462167(11) 9.6129409(3)
Orbital eccentricity, e . . . . . . . . . . . . . . . . . . . . . . . 0.0820775(5) 0.1601099(5)
Projected semi-major axis of orbit, x (lt-s) . . 9.177168(9) 26.582298(6)
Longitude of periastron, ω (deg) . . . . . . . . . . . . 298.3296(5) 160.9474(9)
Epoch of periastron, T0 (MJD). . . . . . . . . . . . . . 57234.858566(3) 57920.83266(2)
Total system mass, Mtot (M�) . . . . . . . . . . . . . . 2.588(11) 2.6(2)
Companion mass, mc (M�) . . . . . . . . . . . . . . . . . 1.15(2) 1.3(6)

Derived quantities
Rotation period, P (ms) . . . . . . . . . . . . . . . . . . . . 22.838764007066(6) 33.4027723699(10)

First derivative of rotation period, Ṗ . . . . . . . . 1.2010(7)× 10−19 7.403(15)× 10−19

Galactic longitude, ` . . . . . . . . . . . . . . . . . . . . . . . . 33.◦03942(8) 33.◦3064(3)
Galactic latitude, b. . . . . . . . . . . . . . . . . . . . . . . . . . 0.◦165(3) −0.◦44(14)
NE2001 DM-derived distance (kpc) . . . . . . . . . 3.0(9) 5.2(1.6)
YMW16 DM-derived distance (kpc) . . . . . . . . . 3.0(6) 3.9(8)
Height above Galactic plane, z (kpc) . . . . . . . . 0.0086(17) −0.029(10)
Characteristic age, τc (Gyr) . . . . . . . . . . . . . . . . . 3 0.7

Spin-down luminosity, Ė† (1032 erg s−1) . . . . . −3.98 −7.84
Surface magnetic field strength, Bs (109 G) . . 1.68 5.03
Advance of periastron, ω̇∗ (deg yr−1) . . . . . . . . 0.1186(4) 0.0081(5)
Mass function, f (M�) . . . . . . . . . . . . . . . . . . . . . 0.2067502(8) 0.21835(18)
Pulsar mass, mc (M�) . . . . . . . . . . . . . . . . . . . . . . 1.43(2) 1.3(6)

Figures in parentheses indicate the 1σ (68%) uncertainties in the least significant digits.
†Calculated using Equation 1.5 with I = 1045 g cm2.
∗Measured using the DDFWHE (DDH) Shapiro-delay model in tempo.



Table 4.2: Timing solution for PSRs J1936+1805 and J1936+2142.

Fit and data-set
Pulsar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSR J1936+1805 PSR J1936+2142
Date range (MJD) . . . . . . . . . . . . . . . . . . . . . . . . . . 57924.3− 58895.6 57594.2− 58681.2
Data span (yr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.66 2.97
Number of TOAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 55
Solar System ephemeris . . . . . . . . . . . . . . . . . . . . . DE438
Clock correction procedure . . . . . . . . . . . . . . . . . . TT(BIPM19)
Reference timing epoch (MJD) . . . . . . . . . . . . . . 57924.0 58137.0
Binary model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – ELL1
RMS timing residual (µs) . . . . . . . . . . . . . . . . . . . 67.636 103.66
Reduced-χ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.15 1.02

Observed quantities
Right ascension, αJ2000 . . . . . . . . . . . . . . . . . . . . . . 19h36m05.s6040(3) 19h36m54.s2712(10)
Declination, δJ2000 . . . . . . . . . . . . . . . . . . . . . . . . . . +18◦05.′35.′′634(7) +21◦42.′19.′′37(2)
Rotation frequency, ν (s−1) . . . . . . . . . . . . . . . . . 17.139401819995(14) 31.65670154435(4)
First derivative of rotation frequency, ν̇ (s−2) −2.75(3)× 10−17 −4.6(3)× 10−17

Dispersion measure, DM (cm−3pc) . . . . . . . . . . 126.129(9) 74.90(3)
Binary period, Pb (d) . . . . . . . . . . . . . . . . . . . . . . . – 0.757222866(3)
1st Laplace-Lagrange parameter, η . . . . . . . . . . – 0.000028(16)
2nd Laplace-Lagrange parameter, κ . . . . . . . . . . – 0.000009(16)
Projected semi-major axis of orbit, x (lt-s) . . – 3.13795(2)
Epoch of ascending node, Tasc (MJD) . . . . . . . – 58136.5277278(15)

Derived quantities
Rotation period, P (ms) . . . . . . . . . . . . . . . . . . . . 58.34509339955(5) 31.5888880147147(4)

First derivative of rotation period, Ṗ . . . . . . . . 9.36(10)× 10−20 4.6(3)× 10−20

Galactic longitude, ` . . . . . . . . . . . . . . . . . . . . . . . . 54.◦0571(3) 57.3
Galactic latitude, b. . . . . . . . . . . . . . . . . . . . . . . . . . −1.◦271(7) 0.354
NE2001 DM-derived distance (kpc) . . . . . . . . . 4.7(1.4) 3.6(1.1)
YMW16 DM-derived distance (kpc) . . . . . . . . . 3.6(7) 3.0(6)
Height above Galactic plane, z (kpc) . . . . . . . . −0.07(2) 0.018(4)
Characteristic age, τc (Gyr) . . . . . . . . . . . . . . . . . 9.9 11

Spin-down luminosity, Ė∗ (1030 erg s−1) . . . . . −19 −0.0000005
Surface magnetic field strength, Bs (109 G) . . 2.36 1.21
Orbital eccentricity, e . . . . . . . . . . . . . . . . . . . . . . . – 0.000030(15)
Longitude of periastron, ω (deg) . . . . . . . . . . . . – 71.2(30.0)
Epoch of periastron, T0 (MJD). . . . . . . . . . . . . . – 58136.68(6)
Mass function, f (M�) . . . . . . . . . . . . . . . . . . . . . – 0.0578592(13)

Figures in parentheses indicate the 1σ (68%) uncertainties in the least significant digits.
∗Calculated using Equation 1.5 with I = 1045 g cm2.



Observations of radio pulsars

where both polarisation and flux calibration have been applied; the YMW16 distance (Yao
et al., 2017) and the 1400MHz luminosity, L1400, approximated as S1400d

2. The widths
and fluxes were calculated using the pdv program in PSRchive (Hotan et al., 2004). Pulse
widths for PSR J1853+0008 and PSR J1936+1805 are discussed further in Section 4.6.

Table 4.3: Mean single pulse properties for the four pulsars taken across the date range in
Tables 4.1 and 4.2.

PSR w10

(ms)
w50

(ms)
S1400

(mJy)
d∗

(kpc)
L†1400

(mJy kpc2)
J1851+0010 0.63 0.36 0.14 3.0(6) 1.3(3)

J1853+0008 2.6 1.0 0.21 3.9(8) 3.2(6)

J1936+1805× 2.3 1.4 0.53 3.6(7) 6.9(1.4)

J1936+2142× 4.0 2.0 0.09 3.0(6) 0.81(16)

∗Derived from the YMW16 Galactic free electron distribution model with a 1σ (68% confidence)
statistical error of 20%.
†Calculated from the approximation: L1400 ≈ S1400d

2. Uncertainties in L1400 are propagated
from the distance under the assumption that the uncertainty in distance far exceeds any
uncertainty in the flux.
×Profiles were divided through the off-pulse RMS for each hand of polarisation to obtain the
quoted flux values (see Section 2.3 for an explaination).

4.4.1 Binary fitting

TOAs used for timing are input in the topocentric (telescope) frame of reference. This
allows the user to convert to more useful frames of reference dynamically during the timing
procedure instead of relying on a static, pre-determined barycentric conversion of the
TOAs. However, for the purposes of probing NS spin parameters, barycentric folding
periods can be made using Solar System distance estimates and geometry as given by a
Solar system ephemeris such as DE438 (Folkner and Park, 2018).

In order to determine any possible binary character for the initial solutions to the
PALFA pulsars, manually-determined barycentric folding periods were used to fit a general
sinusoid (Equation 4.1) to the incoherent barycentric folding periods.

f(t) = t0 sin

(
2πt

Pb
+ a

)
+ 〈P 〉 (4.1)

where t0 is the first epoch of the data set, a is the pulse phase, found through a least-squares
fit on the folding spin periods, and 〈P 〉 is the mean spin period across all observations.
This initial guess produces a binary solution for a circular Keplerian orbit with e = ω = 0

and the other three parameters: T0, x and Pb non-zero, where the initial guesses for T0

and Pb were made using a range of values spanning a year (from MJD 57100− 57465) for
T0 and from 0.1− 10 days for Pb. The initial guess for x was obtained via Kepler’s third
law and the guess for Pb. These guesses were made until the fit sinusoid produced the
lowest χ2.

To obtain the full binary solutions, a grid was created in e − ω space with e running
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from 0.0 to 1.0 in 0.00001 increments and ω running from 0 to 360deg in 2.5deg increments
for 14,400,000 total iterations. Each cell of the grid was combined with the three binary
parameters in the circular solution and attached to a temporary ephemeris file, which
was then analysed through tempo using the incoherent (not phase-connected) TOA file.
Any fits that resulted in a reduced-χ2 < 2 were investigated further by attempting phase
connection in tempo with the Blandford-Teukolsky (BT, Blandford and Teukolsky, 1976)
or, in the case of PSR J1936+2142, the ELL13 (Lange et al., 2001) binary model, until
a solution was found that minimised both the residual RMS and the reduced-χ2. In the
case of PSR J1936+2142, the final phase-connected solution was achieved through use of
the phase-connecting program Dracula (Freire and Ridolfi, 2018), which can accurately
determine the number of rotations from one TOA to the next by adding unit rotations, N ,
between incoherent TOAs until the value of N produces the lowest residual χ2.

The final phase connected solution was tested against a sample of 10 points, drawn
from a Gaussian distribution with the folding barycentric rotation periods as the mean
and the 2σ Gaussian width as the uncertainty. For an example of this, see Figure 4.6,
which shows that the solution describes each period within that variance.

Once refolded with the intial solution, the TOAs for PSR J1851+0010 and PSR J1853+0008
were fit to the DDGR (Taylor, 1987) binary model in order to find component masses, and
then to the DDH (Freire and Wex, 2010) model in order to find the extent of Shapiro delay
contributing to those mass constraints. These models are discussed in Section 3.3.

3ELL1 uses the 1st and 2nd Laplace-Lagrange parameters which are coefficients of the small-eccentricity
first order Roemer delay expansion and are orthogonal projections of the eccentricity (η ≡ e sinω and
κ ≡ e cosω) and have the relation η2 + κ2 = e2, and also parametrises the epoch of the ascending node,
Tasc, as opposed to the epoch of periastron.
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Figure 4.6: A local point zoom of the full orbital fit for PSR J1936+2142. Each panel
represents one observing epoch. In each panel, ten points (blue) centered around the local
folding period were sampled. The red solid line represents the best binary fit obtained via
tempo.

4.5 Results and discussions

As a result of the timing analyses administered on these four pulsars, the P−Ṗ diagram has
been updated to reflect the derived periods and spin-down rates (Figure 4.7), as determined
by tempo2. Generally, all four pulsars appear to lie in the P − Ṗ region consistent with
both the DNSs and the growing population of intermediate mass binary pulsars (IMBPs),
binaries with high-mass WD companions (e.g. Ferdman et al., 2010). In all cases, their
spin periods suggest some degree of recycling; this is to be expected for PSRs J1851+0010,
J1853+0008 and J1936+2142 as their best-fit timing solutions account for a binary orbit,
however PSR J1936+1805 shows no such binary trends in the best-fit residuals, despite
ample data for such a trend (see Section 4.5.3). This region of the P − Ṗ diagram also
implies the ages of all the pulsars are on the order of 1Gyr – consistent with the ages
of known recycled pulsars and the timescales in which recycling needs to occur (see e.g.
Tauris et al., 2017). For the three binary systems, their position on the Pb − P diagram
is given in Figure 4.8, which shows them to be typical of other partially-recycled binary
pulsar systems.
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Figure 4.7: The P−Ṗ diagram, including the four pulsars: PSRs J1851+0010, J1853+0008,
J1936+1805 and J1936+2142.



0.01 0.1 1 10 100

Orbital period (days)

10−2

10−1

2× 10−2

3× 10−2

4× 10−2

6× 10−2

S
p

in
p

er
io

d
(s

)

Non-DNS binary pulsars

PSR J1851+0010

PSR J1853+0008

PSR J1936+2142

DNSs

Figure 4.8: The Pb − P diagram outlining the three binary pulsars: J1851+0010,
J1853+0008 and J1936+2142. The gold stars represent the DNS population as given
in Table 3.4. Note that the orbital period is on a logarithmic scale whereas the spin period
is on a linear scale.



Observations of radio pulsars

4.5.1 PSR J1851+0010

PSR J1851+0010 has been discovered to be a member of a relatively compact (x ≈
9.17 lt-s), moderately circular (e ≈ 0.08) binary of orbital period 2 d (48.1 hr). Neither
the measured Keplerian orbital parameter, nor the pulsar’s 22.8ms spin period, give away
the exact nature of this binary with absolute certainty. On the one hand, the eccentricity
is high for a low-mass NS-WD system, but on the low end of expected DNS eccentricities.
Given its compact orbit, it more likely falls under the umbrella of the DNSs although
some IMBPs have compact orbits. The eccentricity is however notably similar to some
DNSs; both the spin period and eccentricity are notably similar to several DNS systems
(e.g. PSR J0737−3039 (e ≈ 0.088; Kramer et al., 2006) and PSR J1756−2251 (e ≈ 0.18;
Ferdman et al., 2014)).

Timing has yielded a significant value for the relativistic advance of periastron as
0.1185 ± 0.0008 deg yr−1. According to GR (Equation 1.28), this gives a precise total
mass measurement of 2.58 ± 0.03M�, which is more indicative of a DNS system than
an IMBP although some NS-WD systems have been found in this total mass region (e.g.
PSR J1614−2230; Arzoumanian et al., 2018). To determine the component masses of
the system, another PK-parameter must be measured. Assuming that the orbit is not
highly inclined, the obvious candidate to try will be γ. If the first-born NS (usually the
observed pulsar) mass is assumed to be the “canonical” value of 1.4M� (Thorsett and
Chakrabarty, 1999), γ is expected to be 0.90ms (from Equation 1.29). Although, if this
system is indeed a DNS system, a more accurate value for γ may be given by assuming
mp = 1.33 ± 0.09M� (Özel and Freire, 2016). In this case, γ is expected to be 0.97ms,
with a simulated uncertainty of ± 74µs.

The DDGR binary model gives precise component mass boundaries of 1.43 ± 0.04M�
and 1.15 ± 0.04M� for the pulsar4 and its companion, respectively. If these mass con-
straints are to be believed, this would make the companion to PSR J1851+0010 the lightest
NS currently known (cf. Martinez et al., 2015), although this low companion mass does
not require a reconsideration of the proposed evolution pathway, which is likely heavy tidal
stripping followed by an iron core-collapse supernova (see below and also Chapter 3). Us-
ing the DDH Shapiro delay timing model, the orthometric h3 parameter was found to be
2.70 ± 0.19µs. The masses derived from this model adequately explain the component
masses as determined by the DDGR model and both models are presented in Figure 4.9,
which contains overlayed mass-mass contour plots, calculated using Bayesian joint posterior
probability density theory (see Splaver et al., 2002, for more information and Section 3.4.2
in this work for the method of implementation), for both the DDH and DDGR models.

The period spin-down rate, Ṗ , was found to be (1.2010 ± 0.0014)×10−19 s s−1, placing
the pulsar in the region of the P − Ṗ diagram containing the IMBPs and the DNSs.
This Ṗ cannot yet be interpretted as the true spin-down rate of the NS, as no significant
proper motion has been observed. Therefore, any kinematic effects on Ṗ could not be
accounted for. Assuming that the measured value for Ṗ is entirely due to the proper
motion (Shklovskii, 1970) so that the intrinsic spin period, Ṗint = 0, Equation 3.10 places

4Pulsar mass is obtained from Mtot −mc, which is allowed if σMtot << σmc so that σmc ∼ σmp .
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Figure 4.9: Mass diagrams for PSR J1851+0010 showing the GR-derived mass constraint
contours (68%, 95% and 98.5% confidence levels) together with ω̇ and h3, fit in the DDH
model, with companion mass plotted against cos i (left panels) and pulsar mass (right
panels). The orange region is ω̇ and the blue region is h3, as reported by tempo2. The
gray area represents sin i > 1. The three plots on the outside are the three 2D probability
density functions for each set of variables.

an upper limit of 27mas yr−1 on the total proper motion for this system. Using the
median YMW16 DM-derived distance of 3.0 kpc, Equation 3.8 gives an upper bound to
the transverse velocity of ∼ 380 km s−1, corresponding to a Local Standard of Rest velocity,
vLSR, of ∼ 350 km s−1; this is concurrant with high-kick SN models, although it is ofcourse
very unlikely that all of the observed period derivative is due to proper motion, so this
velocity is likely to be a vast overestimate.

Taking a more conservative estimate for the proper motion (µtot ∼ 10mas yr−1) and
also taking into account the measured total mass, eccentricity and spin properties, there
is a high liklihood that this system is a DNS. If the proper motion is measured to be
small (. 6mas yr−1), this would place it firmly in the group of DNS systems that probably
evolved due to ultra-stripped iron core-collapse (FeCCSN; Tauris et al., 2017) of the He-
shell during the second supernova, similar to e.g. PSRs J0737−3039 (Kramer et al., 2006;
Ferdman et al., 2013), J1756−2251 (Ferdman et al., 2014) and J1829+2456 (Haniewicz et
al., 2021). If the proper motion is found to be large, the binary will share some properties,
and therefore possibly some evolutionary links, with e.g. PSRs B1534+12 (Fonseca et al.,
2014) and possibly J1913+11025 (Ferdman et al., 2020). At the current level of precision,
now that the component masses have been measured, TOA simulations made with the
libstempo Python package6 predict that two more years of four-weekly cadence timing

5Although, the evolution of PSR J1913+1102 may actually be symmetric.
6http://vallis.github.io/libstempo/
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data will produce proper motion measurements with a 95% confidence, which will allow a
more precise estimate of the space velocity.

The first derivative to the DM has also been measured to be (−0.0047 ± 0.0032) cm−3

pc yr−1, which implies that the dispersion is weakening over time. If this is true and the
second derivatives are negligible, then the system could be moving towards us in space due
to the second supernova kick. However, DNS systems with these orbital parameters tend
to have small predicted natal kicks (Tauris et al., 2017) so it is unlikely that a DNS would
shift the DM by this much per year even if the direction of motion was completely radial.
Another possible situation is that our relative position to PSR J1851+0010 in the galaxy
is changing our line of sight significantly to present a noticable change in DM over time.

An extremely light neutron star

The mass for the companion to PSR J1851+0010 measures at 1.15 ± 0.04M�. As men-
tioned, this could entail the lightest NS known to date. The first argument one may
suggest is that this companion is a massive WD, however owing to the orbital eccentricity
and binary separation, no NS-WD evolutionary channels fit whereas DNS evolutionary
channels do. A NS this light could have potentially evolved from zero-age main sequence
stars of very asymmetric mass. A comparison can be made to the zero-age evolution of
PSR J0751+1807 (Fortin et al., 2016) in which it is conjectured that the initial main se-
quence binary has masses of 15M� and 1.6M�. Following a CE phase and tidal stripping,
the lower mass NS could have been born with a mass as low as 1.05−1.30M� when taking
into account accretion during spin-up. In the case of PSR J1851+0010, the companion NS
must have been born with a similar mass to this or a mass slightly below 1M�.

A metallicity (post-He) study on PSR J1851+0010 and its surroundings could support
these claims. Metallicity is proportional to opacity and high opacity is indicative of a high
mass-loss period (for example, very tidal stripping) (see e.g. Pejcha and Thompson, 2015,
and references therein). Also compare to the low-mass companion of PSR J1411+2551,
supernova simulations of which have shown it to have possibly been born from a main
sequence star of ≈ 2.5M� and a low kick (Martinez et al., 2017); akin to the discussion
above for PSR J1851+0010. Follow up timing should concentrate on constraining the
masses of PSR J1851+0010 further. Current NS equations-of-state predict spun-up NS
masses in the range 1.1 − 1.8M� so if the mass of the companion is lower than 1.1M�,
this could rule out many equations-of-state.

4.5.2 PSR J1853+0008

PSR J1853+0008 has been found to be a member of a wide (Pb = 9.61 d) binary with
moderately high eccentricity (e ≈ 0.16). Although high eccentricity is often indicative of
two compact bodies (i.e. a DNS), such a wide orbit in relation to this eccentricity may
be more suggestive of an NS-WD binary with a high-mass WD companion (see analyses
by Tauris et al., 2013). The advance of periastron for the system has been measured to
be 0.0081 ± 0.001 deg yr−1, which gives a GR-derived total mass of 2.6 ± 0.4M�. Given
the uncertainity in this mass measurement, it is not yet possible to conclude whether the
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system is either a DNS or an IMBP (or possibly a NS-main sequence binary, although
there is no known evidence of any potential optical counterpart). However, the relatively
high eccentricity coupled with the observed 33.4-ms spin period make this system a strong
DNS candidate. More confirmation is provided by the minimum possible mass, derived
to be ∼ 1M� from the orbital constraints – high for a WD, although still under the
Chandrasekhar mass of 1.4M�.

The DDGR fit for companion mass and total mass gives rather wide 95% confidence
component mass constraints, with a total mass of 2.6 ± 0.4M� and a companion mass of
1.3 ± 1.1M� inferring a pulsar mass of 1.3 ± 1.1M�. These mass constraints cannot be
used to make any definitive predictions on evolution or on the nature of the companion.
In order to determine a possible explaination for these mass constraints, the DDH model
was applied to the TOAs and the value for h3 was found to have the expected nominal
value (∼ 1µs), with a 2σ upper bound of approximately 8µs. More data will be needed in
order to disentangle parameters within the models.

The YMW16 DM-derived distance model gives d = 3.9 ± 0.8 kpc (68%), meaning
that any space velocity estimates made will be quite broad (as velocity estimate errors, as
determined by Monte-Carlo simulations, scale with the error in the distance (see Section
3.4.3)). The proper motion for this system is still not directly measurable, but the upper
limit, again assuming a maximum Shklovskii contribution (Shklovskii, 1970) is calculated
to be 48mas yr−1. This leads to an upper bound estimate on the transverse velocity of
∼ 890 km s−1 and on vLSR of ∼ 800 km s−1, which implies a large natal kick most likely
imparted through a second supernova event, if the system is indeed a DNS. This maximum
velocity estimate cannot be accounted for from the first supernova alone and it is clear that
a good deal of mass transfer recycling occurred at the X-ray binary accretion stage.

Future timing campaigns for this pulsar should focus on constraining orbital param-
eters. Much like PSR J1851+0010, the current orbital coverage for PSR J1853+0008 is
poor due to the sparseness of the dataset and the manner in which most of the data was
taken7. A more precise value for ω̇ as well as further PK-parameters is essential for deter-
mining the nature of this binary system and it is predicted that 10% precision on ω̇ will
be possible with 1 − 2 more years of timing. It is unlikely that any other PK-parameters
will be measureable for some time unless the inclination of the orbit happens to be ad-
vantageous (i ≈ 90deg) due to the width of the orbit. Applying the orthometric Shapiro
delay parametrisation (DDH) to the DD model did not give statistically significant results;
even after refolding. Ṗb is not expected to be measureable, even after five years of timing
without the use of possibly multiple dense campaigns to achieve near-full orbital coverage.
The upper bound on γ is derived to be ≈ 9ms under GR and the median delay effect due
to γ is expected to be 3.4ms.

7i.e. not at optimally devised times based on orbital calculations but rather during a routine sky scan
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4.5.3 PSR J1936+1805

PSR J1936+1805 is an isolated pulsar with a high spin period (58.3ms) relative to the
normal pulsar population. It also has a very stable observed spin-down rate, Ṗ , of 9.36 ±
0.18 × 10−20, implying that this pulsar is very old (∼ 10Gyr). These values imply this
pulsar was partially recycled. At the current time, proper motion measurements cannot be
made so corrections for kinematic effects cannot yet be made. Due to careful subbanding
of the data, a precise value for the DM is determined to be 126.13 ± 0.02 cm−3 pc, leading
to a YMW16 DM-derived distance estimate of 3.6 ± 0.7 kpc (68%). Although this distance
estimate has a somewhat large statistical uncertainty (20% at 1σ), there is little hope for
an improvement to this, as a parallax measurement is unlikely for a system potentially so
far away.

It is likely that this pulsar is a disrupted recycled pulsar (DRP): a pulsar that would
have otherwise been the first-formed NS in a DNS, except that the resulting kick and
mass-loss from the second supernova disrupted the system (e.g. Lorimer et al., 2004). If
this is the case, then the observed spin parameters would fit well with other DRPs such
as PSR J0609+2130 (Lorimer et al., 2004) and PSR J2053+1718 (Camilo et al., 1993;
Brinkman et al., 2017).

There may be plausible alternative evolution pathways that could lead to the observed
spin parameters. NSs observed in the center of supernova remnants are obviously young,
however some still have relatively small (∼ 109 G) surface magnetic field strengths and
large characteristic ages, similar to the observed DRP population, in a class of stellar rem-
nant known as a central compact object (CCO; Halpern and Gotthelf, 2010). CCOs are
characterised as strong thermal X-ray emitters and, so far, no confirmed DRP has been
observed as an X-ray source (Gotthelf et al., 2013) nor have any radio pulsars been found
as CCOs. This implies that CCOs and DRPs have evolved through different mechanisms
despite having similar spin properties. Calculating limits on thermal emission for radio
pulsars relies heavily on the NS equation-of-state and has not been explored in this work
although a population study on DRP thermal emission is a proposed next step. Tight con-
traints on the proper motion of this system, from further timing, will help to determine the
evolution scenario of PSR J1936+1805 more precisely using subsequent velocity estimates.

4.5.4 PSR J1936+2142

When investigating the barycentric folding periods of the incoherent data for PSR J1936+2142,
the best fit (before any attempt at phase connection) occurs when accounting for a binary
orbit with Pb ≈ 0.757 d. To ensure this was the best possible binary period fit, 99,900

equally spaced values for Pb ranging from 0.1 − 100 days (0.001-d steps) were fit to the
barycentric periods. This was obtained using a least-squares fit on the set of barycentred
epochs and barycentric folding periods and by fitting these to a general sinusoid (4.1).

The reduced-χ2 was calculated for each combination of spin period and modelled orbital
period, and an orbital period of ≈ 0.757 d produced a χ2

r closest to one (Figure 4.10). This
Pb was then iteratively fit to a non-circular orbit as described in Section 4.4.1, providing
excellent agreement at each epoch when compared with ten evenly sampled points centered
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around the barycentric folding period (see Figure 4.6 and the explaination of this method
in Section 4.4.1).
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Figure 4.10: A periodogram displaying reduced-χ2 with respect to the trial orbit periods
for PSR J1936+2142 after having been fit to Equation 4.1. Orbital periods ranging from
0.1 − 100 days were tested in 0.001 day increments. The red dashed line represents the
Pb that produced the lowest χ2

r (0.757 days). A harmonic can also be seen at double this
orbital period.

When the binary orbit was confirmed, phase connection was attempted iteratively: first
with the dense campaign TOAs in order to get a preliminary solution, and then to the
rest of the data using Dracula. The first binary model applied to the TOAs was the
DD model, which gave a low eccentricity (∼ 3 × 10−5); the ELL1 binary model (Lange
et al., 2001) was therefore used in order to potentially avoid covariances between T0, ω
and e. The ELL1 model reparametrises these three orbital quantities in terms of three
new parameters: the epoch of the ascending node Tasc, and the first and second Laplace-
Lagrange parameters, η and κ:

Tasc ≡ T0 −
Pbω

2π
(4.2)

η ≡ e sinω (4.3)

κ ≡ e cosω (4.4)

Under this transformation, the eccentricity was found to be 0.000029 ± 0.000016. The
ELL1 results also give a derived value for ω as 71 ± 30 deg and T0 as 58136.68 ± 0.06MJD.
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PSR J1936+2142 is in a near-circular orbit that has an old characteristic age (∼ 11Gyr)
– further evidence against it being a DNS system. Its circularity implies no second super-
nova having taken place and its age implies the second supernova should have happened
by now if there was going to be one. The upper bound on the proper motion is found to be
14mas yr−1 (95%) implying a maximum transverse velocity of ∼ 200 km s−1; this is in stark
constrast to the other binary pulsars in this chapter; PSRs J1851+0010 and J1853+0008,
which both have much larger maximum velocity upper limits than PSR J1936+2142. This
may suggest that PSR J1936+2142 is a low mass binary pulsar (LMBP) or an IMBP,
having had no second supernova, whereas the other two are likely DNSs.

It has been suggested that IMBPs ought to have lower Galactic heights compared with
the LMBP population (see Camilo et al., 2001). This can plausibly be attributed to the
relative difference in combined progenitor mass for these two types of system. An IMBP
will likely have a smaller peculiar velocity than a LMBP assuming a similar kick force from
their respective supernovae due to its larger total mass. PSR J1936+2142’s height above
the Galactic plane is 0.018 ± 0.08 kpc, which is low even for the observed IMBPs and much
lower than the median scale height for the LMBPs. The transverse velocity estimate above
is also indicative of a more massive progenitor than expected for LMBPs, adding to the
evidence that this pulsar is a member of an IMBP. This observed Galactic scale height re-
lationship may also be a selection bias due to recent pulsar searches being more sensitive to
the near-Galactic-plane region, although this relationship has also been observed between
the HMXBs and the LMXBs (van Paradijs and McClintock, 1995). PSR J1936+2142 has
a DM-derived distance of ≈ 3 kpc; similar to pulsars in known IMBP systems such as
PSR J1802−2124 (d = 2.94 kpc; Ferdman et al., 2010) and PSR J1435−6100 (d = 3.3 kpc;
Camilo et al., 2001; Manchester et al., 2001), so is expected to follow similar Galactic scale
height, component mass and velocity trends as these pulsars.

Further data for PSR J1936+2142 may allow a significant of ω̇, although simulations
do not support this. More timing may give reasonable bounds on the proper motion of
this system and hence an estimate on the peculiar velocity, which will allow for tighter
constraints on the evolution scenario of this system.

4.6 Profile analysis of PSRs J1853+0008 and J1936+1805

PSRs J1853+0008 and J1936+1805 show significant double peaks in their standard profile
at all but the lowest of resolutions. It is therefore worth investigating any time-dependent
variations in the integrated pulse profile and determine whether these variations lead to
significant TOA inaccuracies, compared with a single standard profile for the enitre data
set. In order to determine possible profile variations, the search-mode data for each pulsar
were scrunched fully in time, frequency and polarisation to obtain an integrated profile.
To set up a direct comparison between epochs, the profiles were: crudely flux calibrated by
dividing them by their off-pulse RMS in each hand of polarisation; normalised, by dividing
them by their maximum value; and finally, centred in phase. These integrated profiles were
fit to two Gaussians to reflect the dual-peak pulse structure observed. The Gaussian-fit
profiles are plotted as waterfall plots in Figures 4.11 and 4.12.

Chapter 4 Henryk T. Haniewicz 101



0.0 0.2 0.4 0.6 0.8 1.0
Pulse Phase

57222

57251

57291

57303

57311

57312

57313

57315

57317

57320

57330

59071

Figure 4.11: A waterfall plot displaying all the search-mode data for PSR J1853+0008
as Gaussian-smoothed integrated profiles. All profiles have been normalised with respect
to their maximum value and vertically offset for visual clarity. As such, the y-axis is in
arbitrary flux units.
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Figure 4.12: A waterfall plot displaying all the search-mode data for PSR J1936+1805
as Gaussian-smoothed integrated profiles. All profiles have been normalised with respect
to their maximum value and vertically offset for visual clarity. As such, the y-axis is in
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In both cases, it is clear that the double-peak pulse structure exists and is not just
a product of poor folding or RFI. In order to determine possible variation, w10 and w50

were calculated for each date as well as their ratio, with uncertainties determined via a
bootstrap method (see Appendix A.4) with 10,000 iterations. A high w10 : w50 ratio
implies a broad pulse whereas a ratio close to unity is suggestive of a narrow pulse. A
significant change in these widths and their ratio over time may be due to gyroscopic
precession, the conic precession of the rotation axis, and can potentially allow an estimate
of the spin-emission misalignment angle under certain beam geometry theories (e.g. Perera
et al., 2014). Investigation showed that profile shape change over time, determined by the
ratio of widths, is consistent with zero (at a 95% confidence) for both PSR J1853+0008
and PSR J1936+1805 (Figures 4.13 and 4.14). This is to be expected for PSR J1853+0008
as the gyroscopic precession period is expected to be approximately 1400 centuries. The
biggest issue comes from the fact that profiles from some days are significantly worse
Gaussian fits than other dates (see e.g. 57315 for PSR J1853+0008), but this is accounted
for in the uncertainty estimates.

In order to compare the integrated pulse profiles directly for PSR J1936+1805, the raw
integrated (not Guassian fitted) profile for each day was subtracted from the integrated
profile from 57924 (Figure 4.15), all in units of ‘local maximum profile flux’. Difference
profile RMS values close to zero confirm negligible change in the pulse profile and signifi-
cant spikes in the difference profile, especially in the on-pulse region, imply profile shape
variation as any noise contributions should average out to approximately zero.
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Figure 4.13: The time-evolution of pulse width, in milliseconds, at 10% maximum
(green solid line) and 50% maximum (red dashed line) for PSR J1853+0008 (left) and
PSR J1936+1805 (right). Data was taken from search-mode observations only.

Using an epoch-specific standard profile for each day of observation, instead of us-
ing one standard profile over the whole data sets, did not change TOA values by more
than a few microseconds and TOA errors also improved by less than a few microseconds,
confirming that the time evolution of the pulse shapes for both PSR J1853+0008 and
PSR J1936+1805 is negligible. The difference plot also implies little variation in the pulse
shape of PSR J1936+1805. This correlates well with the stable width ratios observed
above. In the case of PSR J1853+0008, the time-stability of the pulse profile may hint
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Figure 4.14: The time-evolution of pulse width ratios for PSR J1853+0008 (left) and
PSR J1936+1805 (right). Data was taken from search-mode observations only.
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Figure 4.15: A difference plot, in ‘maximum peak units’, showing the raw flux (not Gaus-
sian fit) offset of each observing day for PSR J1936+1805 with respect to the first timing
epoch: 57924. Each day is superimposed on each other in order to compare baselines.
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at a small spin-orbit misalignment angle (Farr et al., 2011) which supports evidence that
suggests this system formed from a low-kick, symmetric supernova.

4.7 Summary

The pulsars showcased in this chapter represent the broad interests of the PALFA survey
collaboration, as well as the wider pulsar community. This analysis has given rise to at least
two potential double neutron star candidates (PSRs J1851+0010 and J1853+0008), adding
to the growing tapestry of known compact binaries, with a third being a potential IMBP
candidate — certainly all three binaries lie within both the expected Pb − P evolutionary
region (Figure 4.8) and the expected P − Ṗ evolutionary region for their proposed binary
categories. The mass of PSR J1851+0010’s companion is potentially the lowest NS mass
recorded to-date. This could have been due to a violent tidal stripping period or heavy
mass-loss during its supernova. It is unlikely that the companion to PSR J1851+0010 is a
WD considering the orbital parameters of the system being inconsistent with NS-WD evo-
lution models. The survey has also unearthed an isolated pulsar whose rotation frequency
and frequency derivative closely resemble that of a DNS binary (PSR J1936+1805) hinting
that it is part of the population of so-called DRPs. Linking these types of disrupted binary
systems with known compact binaries will hopefully give tighter constraints on the evolu-
tionary channels that give rise to these exotic systems. Recently, the Canadian Hydrogen
Intensity Mapping Experiment (CHIME; CHIME/Pulsar Collaboration et al., 2020) has
begun observing PSRs J1851+0010 and J1853+0008 although, at the present time, it is
unclear as to whether these pulsars are bright enough to be seen by CHIME. If there is a
detectable pulsar signal in the data, it may give rise to proper motion measurements for
these systems, although this is just speculation. If successful, this may help us to constrain
the evolution of these systems.

Although it is clear that PSR J1936+2142 is a member of a short-period binary system,
most likely comprising a NS and WD (possibly an IMBP); further analysis (from e.g. Green
Bank Telescope) may aid in precisely determining the mass and proper motion parameters
which will give key indicators as to its previous evolution. As previously mentioned, this
pulsar’s position on both the P − Ṗ diagram (Figure 4.7) and the Pb−P diagram (Figure
4.8) imply that it is closer in nature to the heavier binaries, such as the DNSs or the
IMBPs, than it is to low-mass NS-WD binaries. Together with its relatively circular orbit
and low Galactic scale height, an IMBP is the most likely system for this pulsar to reside
in.
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Chapter 5

Concluding remarks

T
he observed pulsar population shows a diverse range of spin and astrometric
parameters. It is for this reason that current binary evolution models involving
neutron stars are also rich and diverse but ultimately disconnected (e.g. Tauris

et al., 2012; Tauris et al., 2017; van den Heuvel, 2007). Neutron stars exist in many
different forms – some are isolated and slow, some are isolated and relatively fast; some
exist in extremely circular binaries and others in very eccentric ones. Some have even
been found with planets orbiting them (Wolszczan and Frail, 1992). The list of nuances to
classification one could explore is endless, although some groupings amongst the population
are more progressive than others (cf. e.g. Figures 3.11 and 3.14). What is clear is that
there is still a gap in data which will be necessary to obtain in order to understand the true
pathways of NS evolution. Adding to the pulsar “melting pot” through either long term
high precision timing (Chapter 3) or targeted pulsar searches (Chapter 4) will eventually
close those current gaps in understanding.

As radio pulsar timing becomes evermore precise, methods of treating data, such as
removal of radio frequency interference and the accurate determination of pulse shape and
flux, are inevitably becoming more sophisticated. To overcome the added computational
cost that smart noise detection algorithms require, many researchers use rudimentary RFI
excision algorithms and then ‘clean’ the rest of the data manually or some make use of
server clusters for more expensive batch signal processing. The former is a problem as the
accidental inclusion of specific regions of RFI can have a profound effect on pulse times-
of-arrival. The latter is a problem due to the limited access many people have to those
servers. In Chapter 2, the concept of 2D image recognition was applied to known 1D pulse
profiles via a series of convolutional neural networks. These CNNs were designed with
the previous issues in mind and subsequently tackled them via a three-pronged attack
– heavily penalize strong results, compare results against more than one validator, and
determine CNN architecture based on local machine memory capacities. This was done to
good success although it is unclear at what level of precision the algorithms truly fail as
robust tests have only been done on pulsars with P > 20ms.

In Chapter 3, the compact binary evolution of DNS systems post-second-supernova
was explored using the pulsar PSR J1829+2456 through an extensive pulsar timing cam-
paign spanning over 17 years. This system is now among the few DNS binaries which
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have precise component mass measurements. Component masses can give us a significant
amount of information about the potential initial conditions of the stellar progenitors and
their supernova explosions, the caveat being that only binary systems can hope to have
measureable masses. The timing campaign has given another clue that the second-formed
NS in this system probably evolved out of a low-kick symmetric supernova (much like
e.g. PSRs J0737−3039B and J1756−2251; Kramer et al., 2006; Ferdman et al., 2014).
This evolutionary subclass of DNS is becoming relatively more populous (than the other
DNS subclass) as more component masses are measured. This may indicate a selection
bias which allows mass measurements of certain types of orbit to be more feasible than
with others. However, if the observed distribution of DNS types reflects a real trend, then
measuring more DNS masses, orbital parameters and astrometric parameters will lead to
a better understanding of these evolutionary mechanisms.

Probing the Universe for pulsar signals is of importance to many population and high-
energy physics studies. Pulsars (namely NSs) are the conclusion of a series of violent
reactions and unlikely interactions. Surveys that look towards the Galactic plane find
many binary pulsars owing to the higher matter density at lower Galactic height. Chapter
4 discussed four new radio pulsar discoveries from the PALFA low-Galactic-plane survey
(Cordes et al., 2006) in which three have been found to be in binary systems and the fourth
pulsar having once been part of a binary system. The timing of PSRs J1851+0010 and
J1853+0008 have shown them to have a relatively large total mass (∼ 2.6M�) and a mod-
erate eccentricity. This, along with their spin periods being in the tens of milliseconds and
spin-down rates of∼ 10−19, implies that these two systems are DNS systems, although com-
ponent mass measurements for PSR J1853+0008 are still too uncertain to make definitive
conclusions. If these are both DNS systems, the second-formed NS may also have formed
like in the system containing PSR J1829+2456: with a low-kick, symmetric supernova from
an iron core-collapse. The component masses measured for PSR J1851+0010 indicate that
the companion could be the lowest-mass NS discovered to-date, although the mass still fits
into an iron core-collapse scenario for the second supernova. This low mass is intriguing
however as it puts tighter constraints on NS equations-of-state, given now the very wide
mass ranges observed in DNS binaries, and puts constraints on scalarisation effects in the
strong-field regime. The companion was most probably born with a mass even lower than
this as the current mass is expected to have been developed after a period of mass accretion
from the older NS. The birth mass associated with the companion to PSR J1851+0010 is
hypothesised to be in the realms of ≈ 1M� with an initial main sequence mass of 2−3M�.

The low eccentricity observed for PSR J1936+2142, along with its partially-recycled
rotation period in the 10s of milliseconds, low upper transverse velocity estimate and low
Galactic scale height, imply that this system is probably an IMBP: a population of NS-
WD binary systems such that MWD & 0.4M� in which relatively few component masses
have been measured. Unfortunately, the 50+ year mission at Arecibo has come to an end
and, with it, the life of many of the PALFA discovered pulsars, which are potentially not
bright enough at any other site for follow-up timing. The CHIME project (CHIME/Pulsar
Collaboration et al., 2020) has so far attempted to observe many PALFA-discovered pulsars,

Chapter 5 Henryk T. Haniewicz 108



Observations of radio pulsars

including PSR J1851+0010 and PSR J1853+0008, however there are currently no published
results for these projects.

The field of radio astronomy is by no means slowing down – if anything, the radio
Universe becomes evermore alive the more precise our instrumentation gets. Newly dis-
covered, previously inexplicable, phenomena such as fast radio bursts (FRBs; Keane et al.,
2012), some of which have been observed to repeat (e.g. FRB121102; Cruces et al., 2020),
and other transient species only add to the mysteries of the Universe. Even more recently,
a FRB was claimed as being detected from within our own Galaxy which has led to the
idea that at least some FRBs are magnetars (Bochenek et al., 2020). In any case, the
proposed evolution mechanisms governing the currently observed pulsar population are
poorly understood to the level of detail that these tests now demand. As a community,
we have a base understanding of binary evolution that correlates reasonably well with the
observed population of stellar remnant binaries, X-ray binaries, and high-mass main se-
quence binaries, however as these evolution categories become narrower in scope, so too
do the necessary minimum constraints on measureable binary parameters. It is the hope
that this work has contributed to tightening these contraints to some degree, even if all of
the systems discussed lie within currently accepted evolutionary pathways. After all, as
we climb higher, so too does the base platform beneath our feet.
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Appendix A

Derivations and methods

A.1 Braking index

Assume that the change in pulse frequency can be expressed as a power law in the fre-
quency:

ν̇ = kνn

where n is defined as the braking index and k is a constant. Taking the second derivative
of the frequency, one finds:

ν̈ = knνn−1ν̇

= n

(
kνn

ν

)
ν̇

= n

(
ν̇

ν

)
ν̇

=
nν̇2

ν

In terms of n:

n =
νν̈

ν̇2
(A.1)

Since ν = P−1, ν̇ = −P−2Ṗ and ν̈ = −P−2P̈ + 2P−3Ṗ 2, combining these with Equation
A.1, one arrives at the braking index in terms of the period:

n =

(
1

P

)(
2Ṗ 2

P 3
− P̈

P 2

)(
− Ṗ

P 2

)−2

= 2− PP̈

Ṗ 2
(A.2)

110



Observations of radio pulsars

A.2 χ2 formulation

Using the formulation by Lancaster (Lancaster, 1969), first consider the binomial distrubi-
tion which can be well approximated by a normal distribution. Specifically, for m observed
successes occurring with probability p over N trials, the asymptotic case in normality for
the binomial distribution, χ, can be given by:

χ =
m−Np√
Npq

(A.3)

where q is the probability of failure (q ≡ 1− p). Squaring both sides gives:

χ2 =
(m−Np)2

Npq
(A.4)

Converting this to partial fractions, and using the identities N = Np+N(1−p) = Np+Nq

and N = m+ (N −m), one arrives at:

χ2 =
(m−Np)2

Np
+

(N −m−Nq)2

Nq
(A.5)

Extending this to a distribution of n types of observation (as opposed to just one), the
expression becomes:

χ2 =

n∑
i=1

(mi −Npi)2

Npi
(A.6)

where mi is the observation value and Npi is the theoretical value for observation i. The
numerators in the above expression are identical to the model residuals squared. In pulsar
astronomy, the reduced χ2 over N TOAs is given by summing the pre-fit residuals, Ri,
divided by the error in those residuals, σi, assuming all observations are independent.
This is further divided by the degrees of freedom in model, Γ:

χ2
r =

1

Γ

Ntoa∑
i=1

(
Ri
σi

)2

(A.7)
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A.3 Activation function derivatives

Sigmoid

σ(x) = (1 + e−x)−1

Letting u = 1 + e−x, one then has:

σ′(x) = −u−2u′

= e−x(1 + e−x)−2

= e−xσ2(x)

Noticing that 1 + e−x = 1/σ(x), the above can be transformed into:

σ′(x) =

(
1− σ(x)

σ(x)

)
σ2(x)

= σ(x)− σ2(x)

= σ(x)(1− σ(x))

Hyperbolic tangent

via quotient rule.

tanh(x) = 2(1 + e−2x)−1 − 1

=
2− (1 + e−2x)

1 + e−2x

=
1− e−2x

1 + e−2x
=
e2x − 1

e2x + 1

=
ex − e−x
ex + e−x

∴ [tanh(x)]′ =
(ex + e−x)(ex + e−x)− (ex − e−x)(ex − e−x)

(ex + e−x)2

= 1− (ex − e−x)2

(ex + e−x)2

= 1− tanh2(x)

Rectified linear unit

From the definition of ReLU(x):

ReLU(x) = max(0, x)

the range can be split into two regions of x < 0 and x > 0 with one pole at = 0. The former
region is not dependent on x so has a derivative of 0. In the latter region, ReLU(x) = x
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so the gradient is 1. At the pole it is undefined.

Softmax

From Bendersky’s derivation1:

s(x) =
ex∑N
k=1 e

xk

Let Σ =
∑N

k=1 e
xk . Then, for i = j:

∂si
∂qj

=
∂ e

xi

Σ

∂xj

=
exiΣ− exjexi

Σ2

=
exi

Σ

Σ− exj
Σ

= si(1− sj)

Similarly for i 6= j:

∂ e
xi

Σ

∂xj
=

0− exjexi
Σ2

=
−exj

Σ

exi

Σ

= −sjsi

Combining these two cases, one obtains:

∂si
∂qj

= si(δij − sj)

where δ is the Kronecker delta function.

Swish

via product rule.

ς(x) = xσ(bx)

∴ ς ′(x) = σ(bx) + xσ(bx) (1− σ(bx))

= ς(x)−
(
xσ2(bx)− σ(bx)

)
= ς(x)− (ς(x)σ(bx)− σ(bx))

= ς(x) + σ(bx) (1− ς(x))

1https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/
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Figure A.1: Flowchart outlining the bootstrap algorithm.

A.4 Bootstrap algorithm

The bootstrap algorithm for finding measurement uncertainties (see Section 4.6) is given
as follows (with examples):

Integrated pulse profiles, Pi, of b number of data points are made for each date of
observation, i. These are fit to a Gaussian function, Gi. Profile residuals, ri, are calculated
by subtracting the Gaussian fit from the observed integrated profile. From these residuals,
b values are chosen at random with replacement using a uniform distribution to create a
new set of residuals, mij , where j is the iteration number. These model residuals are then
subtracted from Pi in order to obtain a statistically created profile, Sij . In the case of this
thesis, the on-pulse widths at 10% and 50% of the maximum is calculated from this model
profile. The random selection part (and subsequent steps) is done n times. An example of
this procedure is given in Figure A.1.

The widths from n iterations are then plotted on a histogram and fit to a single Gaussian
(see Figure A.2). The reported uncertainty in the width measurement of Pi is then taken
to be the 2σ (95%) confidence interval of the histogram Gaussian fit.
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Figure A.2: Example histogram of 10% pulse widths for PSR J1936+1805. The Gaussian
fit is given in red.



Appendix B

Supplementary information

B.1 Standard profile breakdown

The general theory behind Gaussian profile summation can be found in Foster et al. (1991).
Gaussians take the general form:

g(x) = ae
(x−b)2

2c2 (B.1)

for vector, x, with a, b and c corresponding to the shape parameters in the following tables.
All values are given in arbitrary flux on the y-axis and in phase bins on the x-axis, except in
the instances of the fold mode templates for PSRs J1851+0010 and J1853+0008, where the
pav output displays the templates in terms of fractional pulse phase. All profiles have been
centered for the plots but their original center fitting value is preserved in the tabulation.

PSR J1829+2456

900 1000 1100 1200
Pulse phase (bins)

Figure B.1: Individual Gaussian curves for the L–band standard profile of PSR J1829+2456
fit from data spanning dates 57950− 58948.
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Table B.1: Parameters for the individual Gaussians comprising the L–band standard profile
of PSR J1829+2456.

g(x) a b c

1 81608.5 1101.6 29.779
2 73995.2 1006.6 3.140
3 652525 1029.2 14.356
4 414676 986.8 13.658

900 950 1000 1050 1100 1150 1200
Pulse phase (bins)

Figure B.2: Individual Gaussian curves for the 430MHz standard profile of
PSR J1829+2456 fit from data spanning dates 57950− 58948.

Table B.2: Parameters for the individual Gaussians comprising the standard profile of
PSR J1829+2456.

g(x) a b c

1 0.582 1030.3 29.94
2 0.528 1038.8 9.704
3 0.446 1023.4 5.164
4 0.287 1009.1 5.736



Observations of radio pulsars

PSR J1851+0010

The raw integrated profile (uncentred):
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Phase

1380 MHz

Figure B.3: The L-band raw integrated profile for PSR J1851+0010, averaged from data
spanning dates 57330− 58680.

The search mode template for PSR J1851+0010 has a three-Gaussian fit where maybe
one or two Gaussians would have sufficed. As such, the profile is not shown as it is
practically identical to Figure 4.4, panel 1. Also included here is the fold mode template
used, created from all available fold mode observations using psradd in PSRchive.

Table B.3: Parameters for the individual Gaussians comprising the standard profile of
PSR J1851+0010.

g(x) a b c

1 4667.5 450.8 3.589
2 4639.0 450.8 3.587
3 4777.9 450.8 3.589
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Figure B.4: The L-band fold mode template for PSR J1851+0010, summed together from
data spanning dates 57330− 58680 and fit using routines in PSRchive.

PSR J1853+0008

The raw integrated profile (uncentred):
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Phase

1380 MHz

Figure B.5: The L-band raw integrated profile for PSR J1853+0008, averaged from 2 hours
of data from MJD 57303.
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Figure B.6: Individual Gaussian curves for the L-band search mode template of
PSR J1853+0008, fit from data taken on 57303.

Table B.4: Parameters for the individual Gaussians comprising the standard profile of
PSR J1853+0008.

g(x) a b c

1 171394 176.9 2.570
2 250356 195.0 13.61
3 274232 186.0 3.827

Figure B.7: The L-band fold mode template for PSR J1853+0008, summed together from
data spanning dates 57330− 58680 and fit using routines in PSRchive.
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PSR J1936+1805

The raw integrated profile (uncentred):

0.0 0.2 0.4 0.6 0.8 1.0

Phase

1380 MHz

Figure B.8: The L-band raw integrated profile for PSR J1936+1805, averaged from 1 hour
of data from MJD 57924.

110 120 130 140 150
Pulse phase (bins)

Figure B.9: Individual Gaussian curves for the L-band template of PSR J1936+1805, fit
from search mode data taken on 57924.

Table B.5: Parameters for the individual Gaussians comprising the standard profile of
PSR J1936+1805.

g(x) a b c

1 440325 232.0 1.587
2 754052 236.8 1.531
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PSR J1936+2142

The raw integrated profile (uncentred):
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Phase

1380 MHz

Figure B.10: The L-band raw integrated profile for PSR J1936+2142, averaged from 1
hour of data from MJD 57679.

The template file for PSR J1936+2142 was fit to one Gaussian; as such, a repeat of
Figure 4.4, panel 4, is not necessary. Detailed below are the Gaussian parameters that give
that panel.

Table B.6: Parameters for the individual Gaussians comprising the standard profile of
PSR J1936+2142, which is based on the integrated profile from an observation taken on
date 57679.

g(x) a b c

1 153777 51.37 2.111
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B.2 Loss profiles for NN optimisation

The following section documents the post-training loss profiles that lead to the loss values as
reported in Table 2.2. The plots are organised by the specific CNN activation architecture
with each subplot corresponding to a specific learning rate. All training was conducted
over 100, 000 iterations with a threshold of 0.7. The ‘bumpy’ nature of the trailing end
of some profiles gives the learning ability limit (the iteration at which the loss displays
chaotic behavior) of the setup.
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Figure B.11: Loss profiles for ReLU(x), σ(x) CNN architecture.
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Figure B.12: Loss profiles for ς(x), σ(x) CNN architecture.
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Figure B.13: Loss profiles for ReLU(x), tanh(x) CNN architecture.
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Figure B.14: Loss profiles for ς(x), tanh(x) CNN architecture.
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Figure B.15: Loss profiles for ReLU(x), s(x) CNN architecture.
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Figure B.16: Loss profiles for ς(x), s(x) CNN architecture.



Appendix C

PSRVoid

The software built for the purposes of this work is called PSRVoid1 (Haniewicz, 2020) and
is responsible for the RFI exicision (via all the methods discussed in Chapter 2), profile
flux calibration and time-of-arrival calculations. It is written in Python 3.8 but has a lot
of backward compatibility with Python 2 outputs. PSRVoid’s main I/O infrastructure
is based on the PSRFITS processing package PyPulse (Lam, 2017) however the data
manipulation methods employed in PSRVoid deviate from PyPulse’s current implemen-
tations. PSRVoid is a fast, local alternative to processes that would usually be done on
more specialist servers.

Flux calibration is administered on fold mode data via the cal.py program in the fol-
lowing syntax: cal.py [file] [continuum] [continuum-directory] [verbose]. Stan-
dard setup for flux calibration using cal.py is via Format 2 (see Chapter 2) with a telescope
gain of 11.0KJy−1 although these values can be changed by the user. Interpolation for
the least-squares fit is conducted via a 1D cubic spline in SciPy’s interpolate package.
The output is an ASCII file with five column headers: Frequency (in MHz), A2, B2, CR,
CI; the latter four values being given in Jy/count. This ASCII file can then be loaded on
the original file by PSRVoid ready for RFI excision.

RFI excision is conducted via the rfi.py program with neural network training being
done via nn.py. The former has the syntax: rfi.py [file] [template] [method] [cal];
and the latter: nn.py [training-file] [validation-file], although in both cases,
many options (such as which curves to attempt to fit to histograms) are customisable
by the user within the code. The neural network training outputs a series of NumPy ar-
rays each representing a layer of the neural network which can be loaded into a feed-forward
routine in rfi.py in order to determine which frequency channels to omit. rfi.py can also
be used for more traditional auto-RFI excision techniques such as Gaussian noise distribu-
tion σ-clipping. The output of rfi.py is an ASCII file containing a list of subintegrations
and frequencies (in MHz) to omit when calculating TOAs.

PSRVoid has many tools for the average radio astronomer. These include: a data
plotter which is capable of not only plotting profiles in phase space, but can also plot
off-pulse RMS in time-frequency space; numerous data miners for both the ATNF Pulsar
Database (Manchester et al., 2005) and other useful astrophysical websites; and routines

1https://github.com/HenrykHaniewicz/PSRVoid – not pip installable
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to estimate kinematic effects in pulsar timing residuals. PSRVoid also contains a Perl
script to convert right ascension and declination into galactic coordinates.

The aim of PSRVoid is to show the breadth of what a pulsar suite can potentially do.
One can use it as a complete software package to perform flux calibration, RFI excision
and timing or as a set of functions and routines to use in further work (this was indeed the
initial goal of PSRVoid). The latter prospect allows PSRVoid to act as an arbitrary data
miner – it can even be used to mine cryptocurrency with some small tweaks (although this
is not its intended functionality), and the routines can certainly be used to mine resources
from other pulsar websites that are not the ATNF (such as https://www3.mpifr-bonn.
mpg.de/staff/pfreire/NS_masses.html).

The future of PSRVoid is uncertain although one idea I have had is as follows: PSR-

Void could be run in the background when the computer is booted, using extremely low
memory, with the program constantly searching through given directories for any files it
has not yet analysed. Once a FITS file is downloaded to one of these directories, it would
eventually be seen by PSRVoid which would then read the FITS file, sort it into a cor-
rect pulsar folder (or create a new one), perform relevant data analysis (calibration, RFI
excision, etc.) and, if it determines there are enough TOAs, attempt to create / update
the timing model. Then, all the user would have to do would be to see the output timing
models after a few hours and possibly add tweaks if necessary. This would leave more time
for the user to tackle the more important astrophysical implications of the data instead of
spending time devising timing models. This is ambitious but is already in its alpha stage
of development.
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