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Abstract

This thesis studies a generalization of the k-uniform hypergraphons by
working with an arbitrary space. In particular, we offer two different
generalizations: k-uniform  hypergraphons and k-uniform mixed
hypergraphons.  Motivated by results on graphons, we reduce every
k-uniform hypergraphon to a twin-free separable k-uniform hypergraphon.
Moreover, we prove that every k-uniform hypergraphon is weakly
isomorphic to a twin-free separable k-uniform hypergraphon. However, we
find a counterexample which shows the notion of k-uniform hypergraphon
does not satisfy the purity conditions. Therefore, we construct a new
generalization, the k-uniform mixed hypergraphon, that helps us to prove
every twin-free separable k-uniform mixed hypergraphon is weakly
ismomorphic to a pure k-uniform mixed hypergraphon. Furthermore, we
show that every twin-free separable k-uniform mixed hypergraphon is

isomorphic, up to a null set, to a pure k-uniform mixed hypergraphon.
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Introduction

Many graphs are so large that it is impossible to define or study them by
classical means, especially since they may be repeatedly changing, as in the
example of the internet graph. There are many ways to approximate a large
graph and one of them is by constructing an increasing sequence of graphs
that will get us close to our large graph. We can examine how the graphs

are similar or close to each other using homomorphism densities [13].

Over the past decades, Lovasz and Szegedy introduced a new concept called
graphons as limits of sequences of graphs [I1]. The new concept opens
new doors for studying large graphs not only in graph theory, but also in
many other fields of mathematics such as measure theory, functional analysis
and probability. Therefore, we introduced in the beginning of Chapter 2
the basic notions and results of graphs, metric space, and measure space.
Moreover, we gave in section 2.4 the definition of graphon and we explained
how a sequence of graphs convergent to a limit, a graphon. We closed this
section by investigated some notions of distance such as cut distance for

graphs and graphons.

Lovasz and Szegedy also proved that every graphon is weakly isomorphic
to a pure graphon. What does pure graphon mean? and how can we purify
graphons? We will answer those questions in Chapter 3 using the main
references [12], [13] and [15]. In section 3.2, we presented some examples

for the purification of graphons that will help the readers to understand in
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detail the way how can we find a pure graphon of a given graphon.

A notion of k-uniform hypergraphon is a fascinating and useful object to
study. They have been investigated by Elek and Szegedy [3], and Zhao
[22]. We started Chapter 4 by introducing a brief history of two k-uniform
hypergraphon definitions that made by Elek and Szegedy in 2012 and Zhao

in 2015, and then we explored the relation between those definitions.

In section 4.2, we gave a generalization of a k-uniform hypergraphon
(Definition 4.10) by working with an arbitrary measure space. Thus,
instead of working only with the space [0, 1], we worked with an arbitrary

space.

The main result of this chapter is in section 4.3. We reduced a given
k-uniform hypergraphon H as defined in Definition 4.10 on a measure
space (J,A,7) to a twin-free separable k-uniform hypergraphon. Our
proof is inspired by the original work of Borge, Chayes and Lovész with
graphons [6]. We constructed a new concept of twin for a k-uniform
hypergraphon H. Then we transformed H into a twin-free k-uniform
hypergraphon through several steps. First, we made H strong by changing
its value on a set of measure zero. Second, we showed that H is
measurable since there is a countably generated o-algebra A’ of A. Third,
if ‘H is countably generated, then we can see that a separating k-uniform
hypergraphon H /P4 is countably generated too. Fourth, we showed that
the completion of H can be embedded into a separable k-uniform
hypergraphon. The last step is that if we have a strong k-uniform
hypergraphon H and P is the partition into the twin-classes of H, then we
see that H/P is twin-free.

We concluded section 4.3 by another result which is every k-uniform
hypergraphon is weakly isomorphic to a twin-free separable k-uniform

hypergraphon.
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In section 4.4, we defined a neighbourhood distance ry. The aim of this
definition is measuring the distance that we want in order to define purity

of k-uniform hypergraphon.

Motivated by the purification of graphons [13], we tried to purify the
k-uniform hypergraphon that we generalized in Chapter 4. However, as we
show by example, it is not straightforward to purify a k-uniform
hypergraphon as defined in Definition 4.10. Therefore, we proposed a new
generalization which is called a k-uniform mized hypergraphon. Our new
definition allowed us to purify a twin-free separable k-uniform mized
hypergraphon. Then we proved the main theorem in Chapter 5 that says
every twin-free separable k-uniform mixed hypergraphon is weakly
isomorphic to a pure k-uniform mixed hypergraphon. Furthermore, we
show that for every twin-free separable k-uniform mixed hypergraphon
there is a pure k-uniform mixed hypergraphon isomorphic, up to a null

set, to it.
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In this chapter, we will investigate the theory of graphons. In order to
introduce graphons it is first necessary to clarify some notions and results

from several areas of mathematics such as graph theory, measure theory,

and probability. Lovéasz’s book [13] and [21] will be the main resource for
sections 2.1 and 2.4 while we use [19],[20],[0], and [1] for sections 2.2 and
2.3.

2.1 Graphs and Graph Homomorphisms

A graph G is an ordered pair G = (V, E') where V is a finite set of elements
(vertices) and F is a set of ordered pairs of size 2 (edges) of V. If e = (v, u)
is an edge, we say that e joins v and wu, or e connects v and u; we then
say that v and u are adjacent. Also, if an edge e joins a vertex v to itself,
then we call it a loop. However, if there are two or more edges that join
the same two vertices, we say that G has multiple edges. Moreover, if the
graph G does not have loops or multiple edges, we name it a simple graph.

We always work with undirected graphs, so if (v, ) is an edge, so is (u,v).

Any simple graph that has n vertices with an edge between every pair of

vertices is called a complete graph, denoted by K,. For example,

K2 ——eo Kg A

If we have graph G = (V, E) and a subset of vertices of G, say H then
we say that G[H] is an induced subgraph if for any u,v € H, v and v are

adjacent in G[H] if and only if they are adjacent in G.

There are some special graphs such as a path P,. We define this to be a
simple graph which has vertices that can be ordered in a sequence
V1, V2, ...,0, and edges FE(P,) = {(vl,w), (v2,v3)y . (Un_1, vn)} In

addition, we define a cycle C),, as a simple graph whose vertices can be
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ordered in a cyclic sequence (v, vg, ..., v,) and edges

E(C,) = {(vl,w), (v2,v3), .+, (Un_1,Vp), (vn,vl)}

Erdos, Renyi and Gilbert in 1959 defined a random graph as follows: Let n
be a positive integer and 0 < p < 1. Then, the random graph G(n,p) on n
vertices is generated by taking n vertices, and connecting any two of them

with probability p, independently of previous choices.

A weighted graph G is a looped-simple graph, that is, a finite graph with
no multiple edges in which any subset of the vertices can have a loop, with
a positive real weight «;(G) connected with each vertex i and a real weight

Bi j(G) connected with each edge (i, 7).

There are many large graphs, and it is hard to store or define them in the
traditional way. Moreover, some of those graphs are changing continually
such as the internet graph. We can approximate them by smaller graphs or
find another way to represent them which is easier to study. If we want to
approximate a large graph by another, possibly smaller, graph we need to
know how similar or close two graphs are. This similarity is measured by

homomorphisms.
Let us consider two simple graphs G and G’ with vertex sets V(G) and
V(G"). Then

e A graph homomorphism from G to G’ is a mapping ¢ : V(G) — V(G')

such that (p(u), ¢(v)) € E(G’) whenever (u,v) € E(G).

e A graph isomorphism between G and G’ is a bijective map ¢ : V(G) —
V(G") such that

(u,v) € B(G) <= (p(u),p(v)) € E(G)
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for all u,v e V(QG).

In the next section, we will use homomorphisms to define certain numbers

which will describe how closely related two graphs are.

2.1.1 Homomorphism numbers

For any two simple graphs G and G’, we define the following:

Hom(G, G'): the set of homomorphisms from G to G.

hom(G, G’): the number of homomorphisms from G to G'.

inj(G,G"): the number of injective homomorphisms of G into G'.

ind(G,G"): the number of embeddings of G into G’ as an induced

subgraph.

If G and G’ are multigraphs, loops and multiple edges are allowed and then
the definition of hom(G, G’) can be extended to this context. We use the
idea that a homomorphism must indicate which edge goes on which edge as
well as which vertex goes on which vertex. Let i,7 € V(G) be two vertices
which are connected by a(; ;) edges, and u,v € V(G’) that are connected
by by edges. Then, if 7 maps to u and j maps to v, there are b?qig))
ways of mapping the i-j edges to u-v edges. That means a vertez-and-edge
homomorphism from G to G’ is defined as a pair of maps ¢, : V(G) — V(G’)
and ¢y 1 E(G) — E(G’) such that if e connects ¢ and j in F(G’) then we
see that o1(i) and ¢q(j) are connected by s (e).

Furthermore, we can extend the definition of homomorphism numbers for
weighted graphs. Let G’ be a weighted graph with vertex weights o, (G")
and edge weights ((,.)(G’). For every map v : V(G) — V(G'), we have
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the weights

vy = () (G')
ueV(G)

and

homy(G,G&) =[] Buwwwwn(@),
(u,0)EE(G)

where we take G(z,y) = 0 if (z,y) is not an edge of G'. Note that if ¢ is

not a homomorphism then hom, (G, G’) = 0. Thus we define
hom(G,G") = Z ay homy (G, G")
P

where the sum is over all maps ¢ : V(G) — V(G'),

and

inj(G,G") = Z a, homy, (G, G")
()
where the sum is over all maps ) where v is injective.

If G is a multigraph and G’ is a weighted graph, then we may define
hom(G, G') as above. However, what if G’ is an unweighted multigraph?
Then there is a weighted simple graph F' in which each edge is weighted
by its multiplicity in G’. We define

hom(G,G’) = hom(G, F).

2.1.2 Homomorphism densities

Let G and G’ be simple graphs. To obtain the homomorphism densities, we

normalize their homomorphism number by setting

~ hom(G, @)

O e
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where (U(G’))U(G) is the total number of functions from V(G) to V(G').
Thus, (G, G') is the probability that a random map of V(G) into V(G’) is

a homomorphism. Also we define

inj(G, G")

tinj<G,G) = ('I}(G/—))U(G)

where (’U(G/))U(G) is the number of injective maps from V(G’) to V(G).
This is the probability that a random injective map from V(G) to V(G') is

a homomorphism. We also define

ind(G,G")

tind(G, G’) = (U<G,))v(G)

the probability that a random injective maps from V' (G) to V(G’) preserves

both adjacency and non-adjacency.

Example 2.1. Let G = K, and G’ = K3. Then the homomorphism density
for G and G' is
hom(G,G") 6 2

GG = e =5 3

Also, tina(G,G') = § = 1 since every injective map is a homomorphism.

2.2 Metric Spaces

Let (J,7) be a topological space. A neighbourhood of a point z € J is a
subset S of J that includes an open subset that contains z, thatisz € O <€ S

for some open set O.

Suppose that J; and J, are topological spaces, and let f : J; — Jy. Then

e [ is a continuous function if f~*(O) is an open set in J; for every

open set O in Js.
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e f is a homeomorphism if f is a bijection and both f and f~! are

continuous.

Let (X, d) be a metric space. If x € X and € > 0, define
B (z) := Be(z,d) :={ye X : d(z,y) < €}.

If S is a subset of a metric space X, then the closure of S, denoted by S,
defined by

S={zeX :B(x)nS# & forevery e>0}.

The following is a well known theorem.
Theorem 2.2. Suppose X is a metric space. Let 7 be the set of open sets
of X. Then (X, ) is a topological space.
Suppose that (X, d) is a metric space. Then
e a set S is called dense in X if for every x € X and ¢ > 0, we have
s € S such that 0 < d(x,s) <e.

e The metric space (X, d) is called separable if it has a countable subset

S, which is dense (i.e. S = X).

e (X,d) is said to be complete if every Cauchy sequence in X converges

to some point in X.

2.3 Measure Spaces

This section presents some of the main concepts and results in measure

theory, following [20] and [19)].
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Definition 2.3. Let J be a set. A nonempty collection A of subsets of J

said to be o-algebra on J if:

(i) Je A.
(i) If A€ A, then A° e A where A° stands for the complement of A.

o0
(iii) If A, € Afor all n e N then J A, € A.
n=1
A measurable space is a tuple (J,.A) consisting of a set J and a o-algebra
A on J. Furthermore, if M is an element of the o-algebra A, then we call

M a measurable set.

Definition 2.4. Suppose that A is a o-algebra on a set J; and B is a o-
algebra on a set J;. We say that A and B are isomorphic as o-algebras if

there exists a bijective map ¢ : A — B such that for all A, As € A we have

QD(A1> - SO(AQ) < Al < AQ.

Suppose that U is a collection of subsets of J. We define o(Uf) to be the
minimal o-algebra containing U/, which is called the o-algebra generated by
U (i.e. the intersection of all g-algebras containing /). We need to show

that such a o(U) exists.

Lemma 2.5. Let U be a collection of subsets of J. Then, there exists a

minimal o-algebra containing U.

Proof. First of all, let us note the following fact: Consider C to be any

nonempty collection of o-algebras of subsets of J. Then,
ﬂCz{BeJ:Beg for every G e C}

contains of all sets B which belong to each o-algebra G of C. We see that
() C is a o-algebra of subsets of J.
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Suppose U is a collection of subsets of .J. Define C;; to be the collection of all
o-algebras containing all the sets of U. Note that Gy # & since P(J) € Cy.
Therefore, (] Cy is a o-algebra which include all the sets of &. Furthermore
if G is a o-algebra such that & < G then () Cy < G so ) Cy is the minimal

o-algebra containing U. [

We have shown that if I/ is a collection of subsets of J then there is a
minimal o-algebra containing U. We denote this o-algebra by o(U/) and
call it the o-algebra generated by U.

Remark 2.6. If U{ is itself a o-algebra, then o(U) = U.

Definition 2.7 (Borel o-algebra [20]). Let (J,7) be a topological space.
The smallest o-algebra B that contains 7 is called the Borel o-algebra of

(J,7). The elements of B are called Borel sets.

The topological space (J,7) is said to be a Polish space if it is
homeomorphic to a separable complete metric space. A standard Borel
space is a measurable space isomorphic to the Borel o-algebra over a dense

in itself Polish space.

After we gave the definition of the measurable space, it is important to

know that when a function between two measurable spaces is measurable.

Definition 2.8. [19] Let (Ji,.4;) and (J2,.A2) be two measurable spaces.
The function ¢ : J; — J, is said to be measurable if ¢='(A) € A; for each
Ae ./42.

It is important to state the definition of a step function.

Definition 2.9 (Step Function [20]). Let J be a set. A function f:J — R
is called a step function if it takes only finitely many values, i.e. the image

f(J) is a finite subset of R.

Definition 2.10. [20] A function 7 : A — [0, 0] on a measurable space

(J,A) is called a (positive) measure if:
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e 7 is o-additive, i.e., Let I be a countable set. Then,
el el

for any pairwise disjoint sequence {4;};c; in A.

A measure space is a triple (J, A, ) consisting of a nonempty set J, a o-

algebra A on J, and a measure 7 on A.

Example 2.11. e We consider a measure space (R, A, 7). Let I be the
set of intervals {(a,b) : a < b} and let A be the o-algebra generated
by I. The measure 7 is determined by setting W((a, b)) = b—a for all
(a,b) € I. Then (R, A, ) is a measure space.

e Let J = {0,1}. Define A’ to be the power set

P({0,1}) = {@, {0}, {1}, {0, 1}},

so that A’ is a o-algebra. Define the measure 7’ by 7'(J) = 0,
7({0}) = 7'({1}) = %, and #/({0,1}) = 1. Then (J, A7) is a

measure space.

These measure spaces are not isomorphic since A is infinite and A’ is finite.

Example 2.12. Let J = [0,1] we give two different o-algebras on the
interval [0, 1].

e Let Ay = {&,[0,3],[5,1],[0,1]}.  Define a measure m by
() = 0,m([0,2]) = m([3,1]) = 3, and m([0,1]) = 1. Note that

2

[
for example ((%,% ) is not defined.

e Set [ = {(a,b): 0 <a<b<1}. Then A, is the o-algebra generated
by I, and 7 is the measure determined by setting m((a,b)) = b —a
for all (a,b) € I.
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In the next sections when we talk about the measure space J = [0,1], we

will use the second of these o-algebras, that is we will mean (J, Ay, o).

Definition 2.13. [20] Let (Ji, A1, m) and (J2, A, m2) be measure spaces.

A function ¢ : J; — Js is called measure preserving if:

o o !(A) e A, for every A€ Ay,

o mi(p 1 (A)) = ma(A) for every A€ As.

The next theorem gives an outline of the basic properties of measures.

Theorem 2.14. [20, p. 18] Let (J, A, 7) be a measure space. Then the

following holds.

(i) =() = 0.

(ii) If ne Nand A;,..., A, € Asuch that A; n A; = F for i # j then

T(Ayu--UA,) =7(A)+ - +7(4,).

(111) If Al, AQ € A such that Al - A2 then 7T(A1) < W(AQ).

(iv) Let (A;) be a sequence of elements of A such that A; € A, for all 7.
Then

i=1 e

(v) Let (A;) be a sequence of elements of A such that A; © A, for all 4.

Then

i=1

Now we are going to state the definitions of outer measure and Lebesgue

measure.
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Definition 2.15. [20] Let E be a nonempty set and p : P(E) — [0, 0],
where P(F) is the power set of E. The function pu is said to be an outer

measure if:

o0 o0
(iii) For all sequences (E,)x_; of subsets of E, u( ) E,) < >, u(E,).

n=1 n=1

Let A be a subset of E. Then, A is called p-measurable if
1(S) = p(S N A) + p(S\A)

for every S < FE.

Definition 2.16. If [ = (a,b) is an interval of R, set [(I) = b— a. For each

subset F of R, we define the Lebesgue outer measure p*(E) of E by

0 0
p(E) = inf{ Z I(1,) : {I,} asequence of intervals with FE < U [n}.
n=1 —

n=1

Furthermore, the set E is called a Lebesgue measurable set if, for any A € R,
pi(A) = (A n E) + p*(A\E).

In addition, if F is a Lebesgue measurable set, then we define the Lebesgue

measure of F as pu(F) = p*(E).

Now, we can express the definition of Lebesque integral of a nonnegative
measurable function. However, we need to define the notion of a

characteristic function.

Definition 2.17 (Characteristic Function). Let J be a set and let A < J.
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Then, the characteristic function x4 : J — R is defined by

1 if zeA,
xa(r) =
0 if x¢ A

Definition 2.18 (Lebesgue Integral [20]). Let (J, A, ) be a measure space

and let S € A be a measurable set.

e Let ¢ : J — [0,00) be a measurable step function of the form

Y = Z ;X A,
i=1

where a; € [0,0) and A; € Afori =1,2,...,n. The Lebesgue integral
of ¢ over S is the number (g @dr € [0, 0] defined by

J wdm = Zaﬂr(S N A).
S

i=1

e Let ¢ : J — [0,0] be a measurable function. The Lebesgue integral

of ¥ over S is the number {  ¥dr € [0, 0] defined by

Ydm = supf pdr,
S o<y Js

where the supremum is taken over all measurable step functions ¢ :

J — [0, 00) that satisfy ¢(z) < ¢(x) for all z € J.

We are going to state the basic properties of the Lebesgue integral. For

more details see [20, p. 20].

Theorem 2.19. Suppose we have a measure space (J, A, 7) and measurable

functions ¢, : J — [0,0]. Let S € A. Then

(i) if ¢ <% on S then {  pdr < § 1pdm.

(ii) §gpdm = 1§, pxsdr.
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(iii) if ¢(x) = 0 for all € S then §  pdr = 0.
(iv) if 7(S) = 0 then {  pdr = 0.

(v) if Ae Aand S < A then {¢pdr < §, pdr.
(vi) if c € [0,00) then {, cpdm = ¢ § pdr.

Definition 2.20 (L? spaces). Suppose that (J, A, ) is a measure space. If
1 < p < w0, we define the space LP(J, A, ), simply LP(J), as

Lp(J)z{f:J—ﬁR : f measurable, and f|f|pd7r<w}.
J

Define the LP-norm of f € LP(J) by

1/p
161 = ( [ 1oan)

Now we want to give some important notions of measure theory from [7]

and [20] that we will use later.

Let (J, A, 7) be a measure space, and let £ be a set of subsets of J. Then
we call 0(€) the o-algebra generated by £. If F is a countable subset of
the o-algebra A such that o(E) = A, then we call A countably generated.
Moreover, we say that £ < A is a basis for (J, A, 7) if o(F) is dense in A.

Suppose that (J, A, 7) is a measure space. Let B be a measurable set. Then
B said to be a null set if 7(B) = 0. Let Q be a property of points in J. We
say that Q holds almost everywhere if there is a set B < J of measure zero
such that every b € J\B has the property Q. Note that the set of all points

b € J which have the property Q need not to be measurable.

A measure space (J, A, ) is said to be complete if any subset A of any
B e A with n(B) = 0 is also in \A. For every measure space (J, .4, ) there
is a unique completion (.J, A, 7) that is the smallest complete measure space

such that A € A and 7|4 = 7.
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Theorem 2.21. [20, p. 39] Suppose that (J,.A,7) is a measure space.
Define
N={AeA:rn(A) =0}

to be the collection of its null sets. Then,
JTl:{AUB:AEA and B < N for some NEN}

is a o-algebra. Furthermore, there is a unique measure 7 : A — [0, c0] such
that 7|4 = 7. The complete measure space (.J, A, 7) is called the completion

of (J, A, ).

Let us consider any set S of J. Then S separates two distinct points z1, x5 €
Jifx;e Sandxy ¢ Sorx; ¢ Sandxy € S. A set £ of subsets of J separates
x1 and x4 if there is S' € £ which separates 1 and x,. This defines a partition
Piey of J by setting two points in the same class if and only if they are not
separated by £. Then & is said to be separating if it separates any two
points of J.

For example, if (J, A, ) is a measure space, we will consider the partition

P4 in Chapter 5 and elsewhere.

Lemma 2.22. Let A be a o-algebra on J and let ~4 be the equivalence

relation on J defined by = ~ y if
{AeAd:ze A} ={AecA:ye A}

for all z,y € J. Let [z] :={ye J:y ~ z}.

Let J' be the set of equivalence classes of J under ~ and set B to be the

o-algebra of J' consisting of elements of the form
[A] = {[z] : x € A}

for A € A. Then the function ¢ : A — [A] for A € A is an isomorphism of
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o-algebras.

Proof. It is clear that the map ¢ : A — B which sends A — [A] is a
bijection. Suppose that A;, A; € A.

e Assume that A; € Ay. Let [2] € ¢(Ay). Then, x € A; which implies
that = € Ay. That means [x] € [A3] = ¢(As). Hence, ¢(A;) < p(A,).

e Assume that that ¢(A;) € p(A2). Let € A;. Then, [z] € ¢(A;)
which implies that [z] € ¢(Az). That means x € As. Thus, A; € As.

Suppose that (J, A, 7) and (J', A’, 7') are two measure spaces, and we have
a measure preserving map ¢ : J — J'. We say that ¢ is an isomorphism if
it is one-to-one and onto, and both ¢ and ¢! are measurable and measure
preserving. Moreover, ¢ is said to be an isomorphism mod 0 if there are null
sets N € Aand N’ € A" with 7(N) = 7/(N’) = 0 such that the restriction of
¢ to J\N is an isomorphism between J\N and J"\N’. In particular, we can

say that two measure spaces (J, A, 7) and (J', A’, 7") are isomorphic mod 0.

A measure space (J', A’, 7') is said to be a full subspace of (J, A, m)if J' < J
of outer measure w(J), A" ={AnJ :Ae A}, and 7'(An J) = 7(A) for
all A € A. Moreover, a map ¢ : (J*, A* 1) — (J, A, m) between two
measure spaces is said to be an embedding if it is an isomorphism between

(J*, A* 7*) and a full subspace of (J, A, 7).
We close this section by introducing the notion of conditional expectation.

Consider a measure space (J, A, 7) and a bounded measurable function
f:J — R with respect to A, and let A’ be a sub-o-algebra of A. For every

function f € L'(A), the conditional expectation of f with respect to A’ is
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the unique function F(f].A’) € L'(A) such that
JE(f|.A') dm = Jf dm (2.3.1)
A A

for all A’ e A'.

A special case of a measure space is a probability space. A probability space
is a measure space (J, A, 7) such that 7(J) = 1. The measure 7 : A — [0, 1]

is called a probability measure.

The product o-algebra and the product

measure

Suppose we have two measurable spaces (J,.4;) and (J2,.A2). Then we say
that a rectangle in J; x Jo = {(z,y) :x € J; and y € Jo} is a set of the
form A; x Ay where A; € J; and A, € Js.

The product g-algebra A; ® A, is defined to be the smallest o-algebra on

Jp x Jo that contains
R = {Al X AQ : Al € A17A2 € AQ}

We say that R is the collection of measurable rectangles. Moreover, if
E < J; x Jy then we say that E is elementary if it is the union of finitely

many pairwise disjoint subsets of the form A; x A; where A; € A; and

A2 € AQ.

Lemma 2.23. [20, p. 209] For any E € A; ® As, let E, and EY for x € J;
and y € Jo be defined by

E,={ye Jy: (x,y) e E}
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and

EY ={ze J,: (z,y) € E}

Then, E, € Ay and EY € A;.

We say that a measure m on a measurable space (J,.A) is o-finite or that
the measure space (J, A, 7) is o-finite if and only if there exists a sequence
Ay, As, ... such that (JA; = A and 7(A;) < oo for all . Furthermore, the

measure 7 : A — R = [~o0, +o0] is called a signed measure on J if

o 7 takes at most one of the values +co or —oo.

o () = 0.

m(A,) for every sequence Ai, A,,... of disjoint
1

. w@lAn) _

measurable set

iDM8

wn

Definition 2.24. [20] Let 7 and p be two o-finite measures on a measurable

space (J,.A). Then we say that

(i) p is an absolutely continuous with respect to m, denoted as p << m,

if Ae A then m(A) = 0 implies that u(A) = 0.

(ii) p is a singular with respect to m, denoted as p L 7, if there exists

A € A such that p(A) =0 and 7(A°) = 0.

The idea of a product measure on the product o-algebra is based on the

following theorem.
Theorem 2.25. [20, p. 214] Let (Ji,Ay,m) and (Js, Ay, m2) be o-finite

measure spaces and let £ € A; ® A,. Then the functions

o:Jy > [0,0], b:Jy— [0,0]

x—m2(Ey) y—om (EY)
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are measurable and

Ll T2 By ) :f mi(EY)dms. (2.3.2)

Jo
In order to prove Theorem 2.25, we shall state some useful definitions and
theorems, without proof.

Definition 2.26 (Monotone Class [3]). Suppose we have a nonempty set J

and a set of subsets of J, say M. Then M is called a monotone class if:

0

o If Ay € Ay C ... is an increasing sequence of sets in M, then [ J A, €
M7 n=1
[o0]

o If Ay 2 Ay 2 ... is a decreasing sequence of sets in M, then (] A4, €
M_ n=1

Since o-algebras are closed under arbitrary countable unions and
intersections, then it is obvious that every o-algebra is a nonempty

monotone class.

Recall that if we have a collection U of subsets of a set J then we define
o(U) as the minimal o-algebra containing . We showed in Lemma 2.5 that

such o(U) exists.

Remark 2.27. In particular, if M is a class of functions from a given

measure space J into R, and
U={f"((a,b):feM, a<beR}

then the o-algebra o(U) gives the smallest o-algebra of subsets of J such

that every function in M is measurable with respect to this algebra.

Theorem 2.28 (Monotone class theorem for functions [11]). Suppose that

M is a class of functions mapping a measure space J into R. Suppose that
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M is closed under multiplication (i.e. {f,g} € M = fge M). Further,
suppose that V is a vector space of functions with M < )V containing
the constant functions and such that whenever (f,),>1 is a sequence in V
satisfying 0 < f; < fo < ..., thenif f = T}l_r}olo fn is bounded, it follows that
fev.

Let A denote the smallest o-algebra on J such that all of the functions in
M are measurable with respect to J (such A exists by Remark 2.27). Then

Y contains all bounded functions measurable with respect to A.

Theorem 2.29. (Lebesgue Monotone Convergence Theorem [20, p. 23])
Let (J,.A, ) be a measure space and let f,, : J — [0, 0] be a sequence of

measurable functions such that

fo() < fria(2)
for all z € J and all n € N.

Define f : J — [0,00] by f(z) = lim f,(x) for all z € J. Then, f is
n—aoo
measurable and

lim fndﬂ' = ffdﬂ'

n—00

We note that we use the convention that if (f,(z)), diverges to oo, then

f(z) = o0 and hence if f(z) = o almost everywhere, then §, fdz = oo.

Definition 2.30. (Lebesgue Integrable Functions [20]) Let (J, A, 7) be a
measure space. A function ¢ : J — R is called (Lebesgue) integrable if ¢ is

measurable and { [p]dr < .

Theorem 2.31. (Lebesgue Dominated Convergence Theorem [20, p. 32])
Let (J,A,m) be a measure space, let g : J — [0,00) be an integrable
function, and let f, : J — R be a sequence of integrable functions
satisfying

()] < g()
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for all x € J and all n € N, and converging pointwise to f : J — R (That

means f(z) = lim f,(z) for all x € J).
n—o0

Then, f is integrable and for every E € A, we have

ffdw = lim | f.d~.
n—0oo
E E

Now we can prove Theorem 2.25, see [20, Theorem 7.9].

Proof of Theorem 2.25. Recall that (Ji, Ay, m) and (Jo, Ao, m2) are o-
finite measure spaces. For F € A; ® A, define functions ¢z and ¢g by

QOEiJ1—>[0,00], wE:J2_) [0,00]

z—mo(Ey) yom (EY)

Let
0= {EEA1®A2 cop:J; — [0,00] and g Jy — [0,0]
are measurable and satisfy (2.3.2)}.

We are going to show that Q = A; ® A,.

First of all, we want to show that if we have A; € A; and A, € A, then
E = Ay x Ay € Q. By assumption E, = Ay if r € A; and E, = J otherwise.
Similarly EY = A, if y € Ay and EY = ¢ otherwise.

Define ¢ : J; — [0,0] by ¢(z) = ma(E,) = m2(As)xa,(x) for x € J;, where

1 if xe Al
XA, =
0 if =z ¢ Al,

and also ¢ : Jp — [O,oo] by w(y) = Wl(Ey> = Wl(Al)XAz(y) for y € Jy,
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where

1 if VRS Ag
XAy =

Therefore, by Lemma 2.23 the functions ¢ and ¢ are measurable and it

follows that
J\wdﬂ—l = 7T1(A1)7T2(A2) = J¢dﬂ2.

J1 J2

Thus, E € Q.

Second, we want to show that if £y, Fy € Q and their intersection is empty
then E = E; u Ey € Q. Let us define p;(z) = m((E;).), ¢(z) = m(E;)
and ¥;(y) = m((E;)Y), ¥(y) = m(EY) for x € J; and y € Jy, where
1t =1,2. Then, ¢ = ¢1 + @9 and 1 = 1)1 + 5. Since E; € () we can see that

fori=1,2,
f@idﬂl = f¢idﬂ2 — f@dﬂ'l = deﬂg.

J1 Jo J1 J2

Thus, E € Q.

Third, suppose that E; € Q for all i € N and E; < FE;.1. Then we want to
prove that F = | J;2, E; € Q. We define ¢;, ¢ : J; — [0,00] and ¢, : Jo —
[0, 0], for all i as above. Since E, = | Ji-,(E;), and EY = | 2, (E;)¥ where
(E;)z € Ay and (E;)Y € Ay for all i, we have

o(x) = m(E,) = lim m((E;),) = lim ;(z) forall xe J;

1—00 1—00
Y(y) = mo(EY) = lim mo((E;)Y) = lim ¢y(y) for all ye Js.
1—00 1—00
By the Lebesgue Monotone Convergence Theorem 2.29,
J@dﬂl = hm f@idﬂl = hm Jiﬂﬂiﬂ'l = deﬂl.
1—00 1—00
Ji Jo T2

Ji

Therefore, F € (.

Fourth, suppose A; € A; and Ay € As. Then m(A;) < 0 and m2(Ay) < 0.
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If £, € QforallieNsuchthat Ay x Ay 2 F; 2 E; 2 ... then F = ﬁEie
2, because A; and Ay are o-algebras. Since (F;), € Ay and 772(1451< 0
then ; converge pointwise to . Furthermore, p; < m3(As)x 4,, for all i and
then the function mo(A2)x4, : J1 — [0,00) is integrable since m(A4;) < o

and my(As) < 0. By the Lebesgue Dominated Convergence Theorem 2.31,

ngrl = lim f(pidm.
1—00

Jl Jl

we have

Similarly for § ¢dm = lim; o § ¢dm. Since E; € Q for all ¢, then we have
J. J.

2

2
that § ¢dm = § ¢dm and thus E € Q.
J1 Jo
Finally, by assumption we know that (Ji,.A;,m) and (Jy, Ay, m) are o-

finite. Then there are sequences of measurable sets (J;), € A; and (J5), €

AQ such that (Jl)n - (Jl)n+l and (Jg)n - (JQ)n-H where 7T1((J1)n) < oo and

o) o0
Wg((JQ)n) < o for all n € N such that Jl = U (Jl)n and J2 = U (Jz)n
n=1 n=1

Now let
M = {Ee A ® Ay En (<J1>n X (Jg)n) e forall ne N}.
So, M is a monotone class. Then clearly M < A; ® A;. Since
E n ((J1)n X (Jg)n) e
for all £ € A; ® Ay, we have
E = G (E N ((J1)n x (Jg)n>> Y
n=1

for all £ € Ay ® Ay. Therefore, A; ® A, € Q < A; ® Ay which implies
A ® Ay = Q. ]

The following is a well known theorem.

Theorem 2.32. [2] Suppose we have two measurable spaces (Ji,.4y, )
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and (J2, A, m3), where m; and my are o-finite measures. Then, there exists
a unique o-finite measure 7 on (J; x Ja, A; ® As) such that m(A; x Ag) =
7T1(A1)7T2(A2) for all A1 € .Al and A2 € .AQ.

Proof. We start our proof by showing that any measure 7 satisfying the
condition above must be o-finite. Since m; and w9 are o-finite, then we have

(An), € Ay and (B,)y_, € Ay such that | J A, = J; and | B, = Jo,
n=1 =1

n=1 n=1

thus 7 (A,) and my(B,,) are finite for all n. Suppose that O_ ] A; x By,
and for any (z,y) € J; x Jo we have i, j such that x € A; angjy,)eg B;. Thus
(x,y) € A; x B; which implies that [ J ] A; x B; = J; x Jy. For (i,7) € N?
we have m(A; x Bj) = m (Ai)ﬁg(Bj)(Zi)e:jo. Since N? is a countable set then

7 1s o-finite.

Now, let us consider o-finite measures w and 7’ which satisfy the condition

above. We define collection of measurable rectangles R by
R = {Al X AQ : Al EAl,AQ EAQ}.

R is closed under finite intersection. Moreover, the two o-finite measures
7w and 7' agree on this R. That means they also agree on the generated
o-algebra A; ® A,, so m = 7w’. Thus the measure must be unique.

Suppose that A € A} ® Ay, and let m(A) = § mo(A,)dm (x) where

Ji

A, ={ye Jo: (x,y) e i x Jo}.

By Theorem 2.25, 7 is a measure. Now, let us consider that A; € A; and

Ay € A,, then

m(A; x Ap) = fﬂ'g((Al X Ay)yg)dmi(x) = flAlﬂg(Ag)dﬂl(fL')

Jl Jl

= 7'('2(142) J ].Aldﬂ'l(l’) = 7T1(A1)7T2(A2).

Ji
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We call the unique measure that satisfies

7T(A1 X AQ) = 7T1(A1)7T2(A2) for all Al € ./41 and AQ € ./42

the product measure. We write it as 7 = m; ® my. The product measure

satisfies

(71 ® ma) (A1 x Az) = m1(A1)T2(As)

for Al S Al and AQ S AQ.

Suppose that (Ji,.A;,m) and (Js,. Az, m2) be measure spaces. Let ¢ is a
function from J; to Jo. Define o ® o : J2 — J3 by

e ®p(z,y) = (0(x), 0(y))-

We want to show that if the function ¢ is measurable then ¢ ® ¢ is

measurable.

Lemma 2.33. If the function ¢ : J; — J5 is measurable, then the function
©® p: JE — JZ is measurable. Further, if ¢ is measure preserving then so

is p® .

Proof. Suppose that we have two measure spaces (Ji,.4;,7) and
(Jo, Ay, o). By the definition of product spaces, the o-algebra of J? is
oc{A x B : AB € A;}). Similarly, the o-algebra on JZ is
c({Ax B:A,Be Ay}). To show ¢ ® ¢ is measurable it is enough to show
that for A, B € Ay, we have

(p®p) (A, B)e A ® A
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Now ¢~ 1(A) € A; and ¢~ !(B) € Ay, since ¢ is measurable. Therefore,
(@ (A, ¢ (B) e i@ A

Then, we get (¢ ® @) H(A, B) € A; ® Ay, 50 ¢ ® ¢ is measurable.
Now, let A,B € A, and let m; ® m be the product measure of J;. If
(p®@¢) (A, B) = ¢7'(A) x ¢~ (B), then

m@m((e®¢) (A B) =m@m(e ' (A) x ¢ '(B))

= mi(p ' (4)) m(e ' (B))
= my(A) - m(B) (since ¢ is measure preserving)

= 7TQ®7T2(A X B)

2.4 Graphons

In the previous sections we explored the idea that two graphs G and G’ are
close together if the homomorphism densities ¢(F, G) and ¢(F,G’) are close
to each other, for all graphs F. We can look for sequences of graphs that

will get the graphs closer and closer to each other.

The rational sequence 1,1.4,1.41,... is a Cauchy sequence but it is
convergent to irrational number V2. So we see that a sequence of rational
numbers can converge to the irrational number. Therefore, it is not
unexpected if we have a sequence of graphs that converges to something
other than a graph. Graphons are the limits of Cauchy sequences of
graphs. They are symmetric, Lebesgue measurable functions from [0, 1]?

to [0, 1].

In this section we introduce one of the important objects in graphs. An

adjacency matriz is an essential tool where we can visualize the pixel picture
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of any graph and then its limit function.

Suppose we have a simple graph G = (V, E) with V' = [n] = {1,...,n}.

The adjacency matriz A = (Ag) is the n x n symmetric matrix defined by

1 if (i,§)eB,
Ajj = (5.J) (2.4.1)

0 otherwise.

Example 2.34. Suppose the graph A is

Then the adjacency matrix of A is

011
1 01
1 10

The graphon corresponding to a graph is closely related to the graph’s
adjacency matrix. We can build the adjacency matrix of graph by labeling
the graph’s vertices [n] = {1,2,...,n}. Then, we defined the adjacency

matrix to be the n x n matrix of 0’s and 1’s as in (2.4.1).

Example 2.35. Let GG be the following graph:

<IN
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The adjacency matrix of G is

01101
10010
1 0011
01100
10100

We can see the graphon for G by making the adjacency matrix a stepfunction

on the unit square. Thus, the graphon for G is

As we see in Example 2.35 a graphon can be represented as a pixelation of

the adjacency matrix of the graph.

Now we see an example how sequence of graphs tends to a graphon.

Example 2.36. Let H,, be the half graph, that is, the bipartite graph on 2n
vertices {1,...,n,1’, ..., n'} where the edge (i, j) is present if i < j’. Then
we can see the sequence of graphs H,, converges to a limit W as in Figure

2.4.1.

123451234%’

N~

Figure 2.4.1: The half-graph Hj, its pixel picture Wy, , and its limit W =
limn_ﬂx) WHn .
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Note that as n — oo limit of the graph sequence is a map W : [0, 1] x[0, 1] —
[0,1]. This map is a graphon.

Now we want to introduce graphons in a formal way and find how a sequence
of graphs converges to a graphon. Thus, we should consider graphons as

generalization of graphs.

Definition 2.37. [13, p. 115] Let # be the space of all bounded symmetric
measurable functions W : [0, 1]? — R. The elements of the space # will

be called kernels. Also, define the subspace

Wo ={WeW . 0<W(x,y) <1, foral z,ye]l0,1]}.

Then we call any W € #, a graphon.

Given a graph GG, we now explain how to construct a graphon W.

Definition 2.38. [l3, p. 116] Let G be any graph and
i-1 i -1
V(G)={1,2,...,v(G)}. For x € [v(Gl), U(G)) and y € [%, ﬁ) we define

1 if (i,j) € E(G),
Welz,y) 7)€ B(G) (2.4.2)

0 if (i,5)¢ EQ).

Recall that we defined homomorphism densities for graphs in section 2.1.2.
We want to expand the homomorphism densities in graphs to
homomorphism densities in graphons, generally in kernels. We should
notice that we are moving from discrete to continuous objects so we

should use integrals instead of counting and sums.

Suppose that W is a kernel (W € #), and let F' = (V, E) be a multigraph

with no loops. Then, we define the homomorphism density of F' into W as

tEF,W) = fmv [ Wi ] | de.

(i.j)eE seV/
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If W = W is a kernel corresponding to a graph G then t(F, W) measures

the homomorphism density between F' and G.

Proposition 2.39. [13, p. 116] If G and H are graphs, then

HG, H) = H(G, W),

Example 2.40. In this example Steele in [21] shows that
t(Ks, Hy) = t(Ky, Wy,).

First of all, we calculate t(K>s, H,) using the definition from section 2.1.2:

2e(H,) _2("57) _n+1
v(H,)*®2) — (2n)2  4n

t(K27 H’n) =

where e(H,,) is the number of edges in H,, and we denote the number
of vertices in H, and Ky by v(H,) and v(K,). Now, we will calculate
t(Kg, WHn):

2n 2n

KQ,WHn ZZJ% _7 W l‘l,l'z)dl‘ldl'Q

i=1j=1 -

Z; 231 fzn - le’xQ)dxldffg
g J
n n+l—i i i1 j ] 3
:22 Z (%_ 2n )(%_ on )
i=1 j=1
n n+l—i 1
=20 2 g
i=1 j=1
n n+l—:

Il
[\
S
[\
ind
—
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We notice that %21 goes to i as n goes to c0. That means the homomorphism

densities of Ky in H,, converge as n goes to co.

We mentioned that a sequence of graphs convergent to a limit which is
graphon. However, we need to know what it means for a sequence of graphs
be convergent. Thus, we define convergence by taking a sample, k vertices,
from graphs in the sequence and then if this sampling converges that means

the sequence of graphs also converges.

Definition 2.41. [13, p. 173] Let (G,) be a sequence of graphs where
the number of vertices of G, goes to infinity, v(G,) — o. Then (G,)
is convergent if the induced subgraph densities ti,q(F, G,,) converge for all

finite graphs F'.

We can also define convergence by using the homomorphism densities
t(F,Gy). It is the same as defining convergence as above. Referring to the
relationship between homomorphism numbers in ([13], section 5.2.3),
tinj(F, G,) can be expressed as a linear combination of ¢,q(F, G,,) and vice
versa, thus t,;(F, G,) tends to a limit as n — o0 if and only if ti,q(F, G)
does. Moreover,

t(F, G) — tinj (F, G)

tends to zero as v(G) —> co. Therefore, t(F, G},) tends to a limit as n — o

if and only if ¢;,;(F, G),) does.

Theorem 2.42. [13, p. 173] A sequence (G,) of simple graphs with
v(G,) — o is convergent if and only if ¢(F,G,,) is convergent for every

finite graph F.

We will see later (Theorem 2.58) that every convergent sequence of graphs

converges to a graphon.

Since we are talking about convergent sequences, we define some notions of

distance.
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2.4.1 Cut distance of graphs

Let G be a bipartite graph. That means we can partition its vertices V(QG)
into two sets, say G and Go, where all edges in E(G) are between G; and
Go. Then we call (G1,G2) a cut of G.

We can ask ourselves that how close, approximately, a graph G is being
bipartite. We are going to measure how close to a cut we obtain when
we partition V(G) by means of various (G1,G2). Then we can get a cut

distance of these pieces by measuring how good their cut is.

We can represent the cut distance between arbitrary graphs as a measure

of their similarity.

Now, let us review the notion of cut distance for graphs and graphons of

Chapter 8 in [13].

Definition 2.43 (Cut norms of graphs). Suppose we have a graph G with
V(G) = [n]. Let S,T < [n], we need not assume that S n T = &. If
we want to study how close (S,7) is to being a cut, we need to count the
number of edges between S and T' compared to the total number of edges.
We say that (S,7") will be the closest to the cut if it has the largest value
between all possible pairs. We represent a density parameter of the graph

G as follows:

1
Gl = —
G| F gnax

{(i,j) e E(G):i€ S,je T}’

We can rewrite this in terms of the adjacency matrix of GG, denoted by Ag.
Then, we have

1
Gl = —
G| 2 snax

> (Ac)y

i€S,jeT

Frieze and Kannan in [J] generalized this to any n x n matrix, say A, to
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define a cut norm as a following:

14|l = —2 max. DAyl
ns srein i€S,jeT
Definition 2.44. (Two graphs on the same set of vertices [13]) If we have

two graphs GG; and Gy on the same set of vertices, we can define their
distance through the norm of the difference of the adjacency matrices of the

cut norm above.

Let A and A’ be n x n matrices, then

do(A, A') = [[A - A

2 Ay -

i€S,jeT

— max

||D 77,2 S, T<[n

By adapting this to graphs case we get a distance between two graphs

on the same set of vertices. Suppose GGy and G, are simple graphs with

V(G1) = V(G3) = [n]. Define

dn(G1,Gz) = max lec, (S, T) — e, (S, T)]

— ||Ag, — A

s

where e, (S,T') for i = 1,2 is the number of edges in G; with one vertex in

S and the other in 7.

Example 2.45. Suppose we have two graphs G; = K3 and G5 is an empty
graph on 3 vertices. For any S,T < [3], we get eq,(S,T) = 0. We realize
that if |T'| = & or |S| = &, then eq, (S,T) = 0. However, if |T'| = |S| = 3,
then eg, (S,T) = 6 is maximal. Therefore, do(G1,Gs) = § = .

Let G; and G5 be isomorphic graphs. Then, let us ask ourselves that what
will we get if we relabel the vertices of G; and G5? Clearly, they are the
same graph. Thus, their d-distance should be zero. So, we need to define

the following:

Definition 2.46. [13] Let G; and G5 be graphs on n vertices. Then, their
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cut distance is

0n(G1, G2) = min do(G1, Go)
G1,G2

where le and G’g are range over all possible labelings of the vertices of G

and Gs.

Previously, we explained the way how to find the distance between graphs
that have the same number of vertices. However, here we need to define the
distance of two arbitrary graphs. Therefore, we need to introduce a new

notion called blow-up.

Definition 2.47. [13] Let G be a graph and m € N. Then, we get the
graph G(m) from G by replacing each vertex of G by m vertices v(m) and
connecting all vertices in v(m) with all vertices in v'(m) if and only if there

is an edge in G between v and v'.

Example 2.48. In this example we can see how a graph G blowing up to

G(2).
G / G(2) / /

Now we can define the distance of two arbitrary graphs.

Definition 2.49. (Two arbitrary graphs [13]) Let us consider two graphs
G1 and Go, where Gy = (Vi, Ey) and Gy = (V,, Es) with two sets of vertices
Vi = [n1] and V4 = [ny]. By using the blow-up operation, we have G(ns)
and Ga(n1). More generally, we have Gy (kny) and Ga(kn,) for k € N, so we
define the distance between GG; and G5 by using the SD distance as

05(Gh, Go) = lim oGy (kna), Ga(kmi))

Note that if ny = ng, then it is not necessarily true that

55(G1, Gs) = 6(Gy, Ga).
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However,

55(G1, Gs) < 6(Gy, Ga).

In fact 0 is not a metric, it is only a pseudometric since 05(G1, G2) might

be zero for different graphs GGy and Gb.

2.4.2 Cut norm and cut distance of kernels

Previously, we explored the cut distance for graphs and now we want to

extend this to kernels.

Definition 2.50. (Cut norm of kernels [13]) We define a cut norm of kernel
W as

Wll- = sup
| HD 5,7<0,1]

W (z, y)da:dy'

SxT
where the supremum is taken over all measurable subsets S and 7. Since

S x T and W (x,y) are bounded, the supremum exists.

The cut metric is defined as
do(U,W) = ||U = W||,

where U and W are kernels.

Representing a graph as a kernel depends on the labelling of the graph.

kbl

n’ n

Actually, we label the kernel by intervals [ | through copying the
labelling of the graph. Just as for graphs, we need to represent an
“unlabeled” version of the cut norm. We let Sjp; to be the set of all
invertible measure preserving maps ¢ : [0,1] — [0,1]. Since the inverse

of the map ¢ is a measure preserving as well, Spg 1} is a group.

Definition 2.51. (Cut distance of kernels [13]) For two kernels U, W and
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@ € Sjo,1], define the cut distance of them as

(SD(U, W) = inf dD(U, WW)

(,DES[OJ]
where W¥#(z,y) = W(@(@ﬂo(y))

Moreover, let Sp 17 be the set of measure preserving maps [0,1] — [0, 1]

and then

o(UW) = inf do(U?, W)= inf dg(U,W¥) = inf do(U"Y W¥)

¥€S[0,1) PES[0,1] P,0€S[0,1]

Note that é5(U, W) is a pseudometric since the different kernels U and W

can have distance zero.

The next theorem shows that the 5 distance does not change when we

replace a graph G by Wg.

Theorem 2.52. For any two weighted graphs G'; and G we have
5D<G17 GQ) = 6D(WG17 WGz)
Proof. See Lemma 8.9 in [13]. O

Now we can define what it means for a sequence of graphs to be
convergent through the cut distance and homomorphism densities by
stating some results of Lovasz. However, we need to state the Counting
Lemma and the Inverse Counting Lemma. For more details see [[13]

Chapter 10].

Lemma 2.53. [13, p. 167] (Counting Lemma for Graphs). For any three
simple graphs G, Gy and Gj3

’t(Gl, GQ) — t(Gl, G3)| < €(G1>5D(G2, Gg)
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The lemma extends to graphons:

Lemma 2.54. [13, p. 167] (Counting Lemma for Graphons). Let G be a
simple graph, and let W; and W5 be graphons. Then

|t(G, Wl) - t(G, W2)| < €(G)5D(W1, Wg)

Lemma 2.55. [13, p. 169] (Inverse Counting Lemma). Let n € Z*. Suppose
we have two graphons W; and W5, and assume that for every simple graph

G on n vertices, we have

2

(G, W) — H(G, Wa)| < 27

Then
50

Vlogn'

Lemma 2.56. Suppose that W; and W5 are graphons. Then for all finite

(W, Wy) <

simple graphs F,

t(F, Wl) = t(F, WQ) — 5D<W1,W2) = 0.

Proof. Follows from Lemmas 2.54 and 2.55. [

The following theorem is proved using the Counting Lemma for graphs 2.53

and the Inverse Counting Lemma 2.55.

Theorem 2.57. [13, p. 174] A sequence (G,) of simple graphs with
v(G,) —> o0 is convergent with respect to induced subgraph density if

and only if it is a Cauchy sequence in the metric d.

The next two theorems tell us that a graphon is the limit to every convergent

sequence of graphs.

Theorem 2.58. [13, p. 180] For any convergent sequence (G,,) of simple
graphs there exists a graphon W such that ¢(G,G,,) — t(G, W) for every
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simple graph G. The graphon W is the limit of the graph sequence, and
write G,, — W.

Theorem 2.58 has three different methods of proof. It was first proved
by Lovasz and Szegedy in 2006. They used Szemerédi partitions and the

Martingale Convergence Theorem. We sketch their proof below.

The second method of proof was given by Diaconis and Janson in 2008
[7]. The proof used results of Aldous [!| and Hoover [10] on exchangeable

random variables, identifying a basic connection to probability theory.

The last way of proving Theorem 2.58 was given by Elek and Segedy in 2012
[8]. They gave a different proof by using an ultraproduct, and they extended

their work to many other structures such as hypergraphs and hypergraphons.

Recall that
W, ={WeW . 0<W(x,y) <1, forall z,yel0,1]}

is a set of graphons. We can identify two graphons whose cut distance is

zero to get the set VZ of unlabeled graphons.

Theorem 2.59. [16] The space (VZ, dp) is compact.

The proof of Theorem 2.58 below depends on this theorem.

Proof of Theorem 2.58. [13, Theorem 11.21]. From Theorem 2.59 we know
that (VZ, dp) is compact. Then, the sequence (W,, = Wg, :n =1,2,...)
has a convergent subsequence (W, : j = 1,2,...) with limit W e . By

using the Counting lemma for graphons Lemma 2.54, we have
[H(G, W) = G )| < e(G)o( Wy, W) = 0, when j — o,

for every simple graph G. Thus, t(G,W,,) = t(G,G,,;) — t(G,W). Since
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(t(G,Gr)),n =1,2,...,is a Cauchy sequence, then ¢(G,G,) — t(G,W) for

every simple graph G. [

The next theorem show that how the distance function can be used to

describe the convergence to the limit object.

Theorem 2.60. [13, Theorem 11.22]. For a sequence (G,) of graphs with
v(G,) — o and a graphon W, we have G,, — W if and only if
5[|(WGn, W) — 0.

Proof. Assume that G,, — W. Then t(G,G,,) — t(G,W) for every simple
graph GG. By using Theorem 2.55, for every fixed m we have

(G, We,) — (G W) <27

Then
20

v/1ogm
if n is large enough. Thus, oq(We,,, W) — 0.

5|:|(WGn ) W) <

Conversely, assume that 65(We, , W) — 0. Then by using the Counting

Lemma, Lemma 2.54, we have

t(G, We,) —t(G,W)] < e(G)on(Wg,, W) — 0

n?

for every simple graph G. Thus,

HG W) = HG, Gn) — HG W) = Gy — W,
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In the previous section, we worked with graphons over the space [0, 1]. In
general, it is convenient to define a graphon on an arbitrary space rather
than [0,1]. Let us consider a probability space J = (J, A, 7). A graphon

on J is a symmetric measurable function W : J x J — [0, 1].

In this chapter we explore a significant notion which is called a pure graphon.
The main references in this chapter are [13] and [12]. We first need to
investigate two essential concepts which are a pull-back of a graphon and a

weak 1somorphism between two graphons.

Let us consider two probability spaces (Ji,.41,m) and (J3,. Az, m5), and a
measure preserving function ¢ : (J1, A1, m) — (Ja, Az, o). Let W and W’
be graphons on (Ji,.A;,7) and (Js, As, m3) respectively. Then a pull-back
(W")# can be defined as

(W)?(x,y) = W'(p(x), o(y))

for all x,y € J;. In addition, the function ¢ above is said to be a weak
isomorphism from W to W' if ¢ is a measure preserving from A; to A, and

W = (W')# almost everywhere.

Furthermore, we say that W and W' are weakly isomorphic if there is a

third graphon W” and weak isomorphisms from W and W’ to W”.

3.1 Pure graphons

We introduce a pure graphon. This pure version of graphon is uniquely
determined up to a permutation of [0, 1]. Before we state the definition of

pure graphon, we need to describe an important notion, the notion of twins.

Given a graphon W on a probability space (J, A, ), we say following [13]
that two points = and 2’ in J are twins if W (z,y) = W(2',y) for almost all
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y in J. However, if no two distinct points in J are twins then we call W a

twin-free graphon.

Moreover, we say that the graphon W is almost twin-free if there exists a

null set N € J such that there are no twins x and 2’ in J\N with = # 2’.

Example 3.1. Let W : [0,1] x [0,1] — [0,1]. Then

o If W(z,y) = xy where z,y € [0, 1], then W is a twin-free graphon.

o If

1 if 0<z<i Oéyél
27 2
”(xay)*

0 otherwise,
then we can see that W is not twin-free graphon since for example %
and i are twin points for W. In fact, x and 2’ are twin points for W

if and only if z,2’ € [0, 1] or x, 2’ € (5,1].

Theorem 3.2. [13, p. 219] For every graphon W on (J, A, 7) there is a
twin-free graphon W’ on a probability space (J', A’,7’), and a measure

preserving map ¢ : J — J' such that W = (W’)¢ almost everywhere.

Proof. Let W be a graphon on (J, A, 7). Define F to be the sub o-algebra
of A consisting of sets F' such that if x,y € J are twins for W then F does
not separate = and y. We get a new probability space (J, F, 7).

Now, let us define U = E(W|F x F). Then we want to show that W = U

almost everywhere. That means we need to show that for all A, B € A,

Wd7r><d7r=f Udr x dr.

AxB AxB

Suppose that z and y are twin points and A € A. Then we define a function

X4 - jAWc,y)dw(y)
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that is measurable with respect to F. Similarly, we can define a measurable
functions g4 = E(14]F) where 14 is the indicator (characteristic) function,
and Yy = {W(-,y)ga(y)dr(y). By using the measurable functions X, g4

and Y4, we have

-
Wdn x dm = | X lgdr = fXAgBdW
AxB J

-
= YBlAdT(' = JYBgAdW

r

= | Wgupdnr x dn = ngABdW x dm

-
= UleBdﬂXdWZJ Udr x dm.
J AxB

Thus, W = U almost everywhere.

Now, suppose that J’ is the set of equivalence classes of being twins on .J,

and for z € J let p(x) be the equivalence class containing x. Define
A ={p(C): Ce F},

and for C' € A’ we define 7/(C) = w(p~}(C)). Then we get a new probability
space (J', A', 7).

Let S1, S5 € J'. Then we define
Wl(‘gl?SQ) = U(ZC,:I/) = W(iC,y)

for any x € Sy and y € Sy. Since ¢ : J — J and W' : J x J' — [0,1], we
can see that

Jx J25 7 s 7 Y 0, 1).

Therefore, (W')¢ : J x J — [0,1], where (W)Y = U = W almost

everywhere. O

Lovész and Szegedy in [15] define a neighbourhood distance as follows. Let



Chapter 3: The Purification of Graphons 47

W be a graphon on a probability space (J, A, 7). For any z,y € J,

W) = (W) =W, = | W(r2) = Wiy, 2)jde)=

Definition 3.3. [15] A graphon W on a probability space (J, A, ) is pure
if i is a metric and the metric space (J,ry ) is complete and separable,

and 7 has full support.

Let us consider a probability space (J, A, 7). A measurable set A of J is
called an atom if m(A) > 0, and for every measurable subset B of A we have
m(A) = n(B) or n(B) = 0. If (J, A, 7) has no atom, we call it atomless. If
the measure space (J, A, ) is atomless, then it is said to be standard if it

is isomorphic to [0, 1] with the Lebesgue measure, modulo null sets.

Suppose that we have a graphon W : J x J — [0, 1] on a probability space
J. For each x € J, we have a function W, : J — [0, 1] defined by

W,(y) = W(x,y), forall yeJ

That means W, is a measurable function from J to [0, 1] and

| Wty = [Wie,pyizay <o

Thus, W, € L*(J).

Define a function oy : J — LY(J) by pw(z) = W,. By a standard
argument in the monotone class theorem for functions, ¢y is measurable

(for more details [11]).

We define my (A) = 7(py (A)) for A < LY(J), so that my (A) is the measure

on L'(J) induced by the measure m on J.
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Now we define
Jw = {f e L'(J): for every open set O that contains f, my(O) > O}

to be the support of my,. Thus, Jy < L(J).

Lemma 3.4. [12, p. 34] For a graphon W on (J, A, ), the function ¢

from J to Jy is injective if and only if W is twin-free.

Proof. Assume that ¢y : J — Jy is injective. Then, for any zq, 25 € J we
have ry (z1,22) > 0 if and only if x; # x5. That means J has no twins,
thus W is twin-free. Conversely, let W be a twin-free graphon. That implies

rw(z1,x2) > 0 for x1, 29 € J, then @y is injective. O

Lemma 3.5. A graphon W on (J, A, ) is pure if and only if oy : J — Jy

is a bijection.

Proof. Suppose that W is a pure graphon. Then by Definition 3.3, (J, rw)
is a complete separable metric space and my, has full support. That means
J is twin-free, then by Lemma 3.4 ¢y : J — Jy is injective. If we have
aset {z € J: ¢, (x) = I}, then its measure is zero. That means gy is

bijective.

Conversely, suppose that oy : J — Jy is a bijection. If ¢y is measurable
and my (X) = 7w(py (X)) for each X < L'(J), then gy is measure
preserving bijection. Since Jyr < L'(J) then Jy is a complete separable

metric space and 7y has full support. Hence, W is a pure graphon. O

Note that if we consider two equivalent graphons W and W;, where W is
pure, then it is not necessarily true that W; is pure. However, we can say

that W7 is pure if for every z, not just for almost every =,

m({y : W(z,y) # Wi(z,y)}) = 0.
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Theorem 3.2 showed that for every graphon W there is a twin-free graphon
W’ and a measure preserving map ¢ : J — J' such that W = (W’)¢ almost
everywhere. Now, we are going to see how Lovasz in [13] proves that for
every twin-free graphon we can find a pure graphon weakly isomorphic to

it.

Theorem 3.6. [13, p. 223] For every twin-free graphon W there is a pure
graphon W’ such that W and W’ are weakly isomorphic.

Proof. Suppose we have a twin-free graphon W. For each x € J, we define

W, :J —[0,1] by W,(y) = W(xz,y) for all y € J. Note that W, € L*(J).

Now, let us define a measurable function oy : J — L'(J) by pw(z) = W,.
For A < L'(J), we define my (A) = m(py (A)) where my (A) is measurable
on L'(J). Define

Jw = {feL'(J): for every open set O that contains f, 7y (O) > 0}

to be the support of my, then Jyr < L'(J). Note that Jyy is a separable

Banach space and my has full support on Jy since Jy < L'(J).

Suppose that J' = {x e J: W, € Jw}, and let Jj;,, = {W, : x € J'}. Then,
we define a map ¢’ : J' — Jj, by x — W, which is bijective since W has

no twins. We need to show that the measure of J\J' is zero.

If I € L'(J)\Jw, then there is a neighbourhood U; of [ such that the
intersection of U; and Jy is empty and the measure my of U, is zero.

Then, U; € LYJ)\Jw and 7({z € J : W, € U;}) = 0.

Suppose that U is the union of the neighbourhood Uj, where [ ¢ Jy,. Then,
U equals the union of some countable subfamily {U;, : i € N} if L!(J)
is separable, thus 7({x € J : W, € U}) = 0 by countably additive of 7.
Therefore, we can see that the measure m of J\J' is zero due to the fact

that J\J' < U.
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We know that Jy, is a complete separable metric space and 7y, has full

support. Then 7(J\J') = 0 implies that 7'(Jy\Jj,;) = 0, where 7’ =

mo ()"

Now, we can define a new graphon W : Jy x Jy — [0,1] as follows. Let

fi, fa e Jw.

o If f; € Jj, then f; = W,, for some 1 € J. We define
W(f1. f2) = fa(a).

o If fy € Jj, then fo = W,, for some x5 € J. We define
W(f1, f2) = fi(wa).

o If f1, fo € Jjy then

W(fr. f2) = filws) = folan) = W (a1, 22).
o If fi, fo ¢ Jjy then W(f1, fo) =0

Now, we want to show that the graphon W is pure by proving that rg and

the L' norm are equal. That means they will have the same properties.

For any fi, fo € Jj, = J' there are x; and x5 such that f; = W,, and
f2 = W,,. Then,

ri(ffo) = | [Wh(g) = Wrig)| dr'(g)

f
_ [ W(fr.g)— W(farg) dr'()

= E|W T1,Y) (:Eg,y)] dm(y)
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Therefore,

7’1717(flvf2) = TW(xlva) = HWlﬂl - Wﬂcz”l = Hfl _f2H1'

Since r and the L' norm are equal, then we can see that W is pure.

Note that W is a pullback of W and we see that

W (f1, f2) = Wlew(@1), ow (@) = (W) (21, 25) = W (a1, z2).

Thus, W and W are weakly isomorphic. O

3.2 Some examples of graphon’s purification

We would like to give some examples which shows the purification of
graphons. In the beginning, we need to check whether a given graphon W
is pure. If so, then we are done. If not, then we have to find a pure

graphon which is weakly isomorphic to W.

Example 3.7. In this example we study the purification of the following

graphon
( 1 1
T +y, 0<z<gs3 0<y<;
(z—131)+v, lor<l, O<y<i
W(z,y) = : i :
z+(y—3), O<z<j 3<y<lI
\((T—%)‘F(y—%), %<Q§'<1, %<y<1a

where W : [0,1] x [0,1] — [0, 1].

The first step is to check whether ry, the neighbourhood distance function,
defines a metric on W. We have three cases to study by using the definition

of the neighborhood distance:
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: 1
Case 1: If 7,y < 3, then

i) = [a+ )=+l | Narz-3)—+z- gl

2 ! 1 1
:f |ac—|—z—y—z]dz+f|m—i—z———y—z+§|dz
0 1

f 9
% 1
=(r—y)z| +(x—y)=
0 3
|z —y| |z —y|
— + J— —
2 | | 2
= |z —y|

Case 2: If z,y > %, then we have
Tw(m,y) = |.I' _y|

) 1 1
Case 3: If r > 5 and y < 3, then

1
(2 1 ! 1
mrley) = | Cletz- )= alds | fatz-1) - e - )l
JO 5
(3 1 1 1
= |x+z—§—y—z|dz+J|x+z—1—y—z+§|dz
JO %
& 1 ! 1
= |x—y—§|dz—|—f\m—y—§|dz
JO %
12 1|
=(@-y-3) +le-y-7)z
0 3
|z —y — 5 1 o —y—3
-ty
1
=\x—y—§\.

Therefore,

lz—y| if 0<z,y<j; or 3<umzy<l
rw(x,y) = (3.2.1)
|z —y — 3 otherwise.
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The graphon W is not twin-free and therefore not pure. However, W is
weakly isomorphic to a pure graphon. Thus, we are going to find this pure

graphon.

First of all, let us modify the o-algebra of the probability space

J = (J, A, 7). Suppose C is the collection of all Borel sets of (0, %] Then

we define a new o-algebra
, 1 1
A = cu(c+§)u{0},cu(c+§):ceC .

Thus, we have another probability space J = (J, A', 7).

Now, let W/ = E(W|A' x A’). Then, W = W' is A’-measurable, so W = W’
almost everywhere. Define J; to be the set of equivalence classes of being

twins on J. That is

le{O}u{{x,x+%}:O<x<%}.

If 2 € [0,3], then p(z) is the equivalence class containing z € J. Let

A = {p(X) : X € A} and define m(X) = 7w(p (X)) for X € A;.

For instance, take X = (3,3) u (3,2) € A;. Then

We get a probability space J; = (J1, A1, m1).

For S,T € Jy, we define Wy (S,T) = W'(z,y) = W(z,y) foranyx € S,y e T.
Now, ¢ : J — Jy and Wy : J; x J; — [0, 1].

For example, consider S = {i, %} and T = {%, %} If we choose any = € S

and y € T', we will have the same result.

13, 15 11 1 1
(i ) WGP -1t 15
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Also,

1 3 15 15 1 5 1 7
Wi ({Z’Z}’{§’6}> = W(Z’E) =77 (6 — )= —.

Now we can say that [0,1] x [0,1] % J; x J; LN [0,1] then we get
W7 . Jx J — [0,1] where WY = W is the pullback of Wi. Thus, we
have WY = W' = W almost everywhere. Now, we have a twin-free graphon
Wy @ Jp x J; — [0,1] and we want to see that is W; pure? To study
the purifying of W; we need to show that (Ji,7y,) is a complete separable

metric space and m; has full support.

We know that for S,T € Jy, we define W1(S,T) = W'(z,y) = W(x,y) for
almost all z € S,y € T. That implies ry, (S,T) = rw(x,y) for v € S,y e T.
Let us again consider S = {1, 2} and T = {3, 2} then

11 1
rw, (S, T) = TW(Zg) =I5

We notice that ry, (S, T) = 0 if and only if S = T. Therefore, ry, is a
metric. Is the metric space (Ji, 7y, ) complete and separable? Recall that

J1 is the set of equivalence classes,
1
Ji = {0} u {{1:,x+ 1/2}:0 <z < 5},

then let S, = {z,x + 1} and Sy = {0}. Thus we can rewrite J; as

}7

DO | —

J1={Sx20<$<

and also we have the formula ry, (S;,, Sz,) = |21 — x2|.

Take a Cauchy sequence in (Ji, 7w, ). The distance formula is the same as
a Cauchy sequence in [0, 1]. Let X be a set of representatives of Ji, i.e. for

every equivalence class in .J;, we choose an element. Consider Sy, 5, € Jj,
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then let x1 and x5 be the respective representatives. Then,

7”W1(51752) = TW(56’17902) = J ’W(xlaz) - W(xz,z)|dz.

Now suppose we have a Cauchy sequence in (Jy, rw, ), say (S1,S2,53,...),
we want to show that for some € > 0 there exists N € N such that for all

1,7 > N we have

W, (SZ, SJ> < E.

That is,
J W (xi, z) = W(xj, z)|dz < €

for all i,5 > N.

We want to know if this Cauchy sequence converges to an element of
(J1,7w,). ie. is there S € (Jy,rw,) such that (Sy,S2,...) — S7 Suppose
that (Sz,, Szgs Sus,- .- ) is a Cauchy sequence where 0 < z; < % Since the
Cauchy sequence (x1,Ts,x3,...) converges to x in the standard metric
space then (S.,,Ss,, Sz, ... ) converges to S, in (Ji,7w,). That means

(J1,mw,) is complete.

Now we want to show that (Jy,ry,) is separable metric space. That means
we need to find a countable dense subset of J;. Let J2 = {S, : 0 < z <
s,z € Q}. Let T € J; and take € > 0. Consider the open set L = {S € J; :
rw, (S,T) < €}, we show that L n J2 # 5.

Suppose z is the representative of T. Given € > 0, then there exists y € Q

such that [z —y| <e. Then S, = {y,y + 3} € J2 and
IS, —T| =]z —y|l <e

Hence the metric space (J1,7w,) is separable.

Finally, we want to show that m; has full support (i.e. we need to show that

every open set has a positive measure zero). Take any point x of an open
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set A in Ji. Then, there exists € > 0 such that B.(x) < A. Thus
T(A) = 7(B(x)) =2 >0 = 0 <7w(A).

Since (J1, rw, ) is a complete separable metric space and 7, has full support,

W1y is a pure graphon which is weakly isomorphic to .

Example 3.8. Let W(z,y) be the graphon W (xz,y) = z%y* where z,y €
[0,1]. We show that W(z,y) is twin-free. We want to find ry (z,y) and

then study whether the metric space ([0, 1], ) is complete and separable.

First of all, let us find ryy.

rw(z,y) = f W, 2) — Wy, 2)|dz

To show ([0, 1], 7w/) is a complete metric space, we need to show ([0, 1], ry)
is compact. Suppose we have two metric spaces the standard metric space
X =([0,1],d) and Y = ([0, 1], 7w ). Note that if ¢ : X — Y is a continuous

function, then p[ K] is compact in Y for every compact subset K < X.

Claim. Let ¢ : X — Y be the identity function. We claim that ¢ is

continuous. In particular, every open set in Y is also open in X.

Proof: Let B, (z,¢) = {y € [0,1] : rw(x,y) < €} be an arbitrary open ball

in Y. We want to show that B, (z,€) is an open in X. Indeed, notice that

B, (z,€) = (V22 — 3¢,1/3¢ + 2) is an open interval in X where x # 0 and
x # 1.

e If v =0, then B, (0,¢) = [0,v/3¢) is open in X.
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o If z =1, then B, (1,¢) = (v/1 — 3¢, 1] is also open in X.
We can conclude that ¢ is continuous and thus Y = ¢[X] is compact since
X = ([0, 1], d) is compact. |

Now, we can say that Y = ([0,1],ry) is complete since it is a compact

metric space.

The metric space ([0, 1],7y) is separable since it is homeomorphic to the

standard topology of ([0, 1],d).

Now we want to show that ([0, 1], 7y) has full support. Let A be any open
set in [0,1]. Then, there exists e > 0 and = € A such that B.(z) < A. We
want to show that w(B(x)) > 0.

T(Be(z)) =2 >0 = 7(A) > 0.

Thus, every open set of ([0, 1], 7y) has positive measure and therefore W

is pure.

Example 3.9. Let W : [0, 1] x [0,1] — [0, 1] be the graphon defined by

r

: 1 1
I if 0<z<g3 0O<y<sj;
Wiy =491 if L<z<l, l<y<i (3.2.2)
0 otherwise.

\

First of all, we want to see if the graphon W is pure. Therefore, the first
thing to do is to see if ry is a metric. Let 0 < z,y < %, then by the

definition of the neighborhood distance we get that
1 1
rW(x,y)zf |1—1|dz+J |0 —0|dz = 0.
0 >

Similarly, if 3 < 2,y < 1 then ry(z,y) = 0. Also, let 0 < = < 3 and

1
2
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: <y <1, thus

N

L 1
Tw(x,y)—f |1—0|dz+f |0 —1|dz = 1.
3

0
In the same way, if 0 < y < % and % <z <1, then ry (z,y) = 1.

Therefore,

0 if Oéx,yéé or %<:U7y<1
rw(z,y) = (3.2.3)
1 otherwise.

Thus, r is not a metric since we can have ry (z,y) = 0 for z # y. That
means the graphon W is not pure. However, W is weakly isomorphic to a

pure graphon. Thus, we are going to find this pure graphon.

First of all, let us modify the o-algebra of the probability space
J = (J,A,7). Define the new o-algebra A" = {&, [0, 1], (3,1],[0,1]} and
let J = (J,A,7). Define W' = E(W|A" x A"). In fact, W = W’ is
A’-measurable so we can have W’ = W almost everywhere. Let J; be the
set of equivalence classes of being twins on J. That is J; = {[0, 1], (3,1]}.

If z € [0,1], then p(z) is the equivalence class containing x € J. Let

Av = {210,301 10,31 5 1)

and define 71(X) = 7(¢ (X)) where X € A;. Thus,

N~ DN~

Thus, we get a probability space J; = (J1,A1,m). From the above
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calculation we notice that all the sets in A; have positive measure except

. Hence, m; has full support.

For S,T € Jy, we define W(S,T) = W/(z,y) for any z € S,y € T. Now,
¢ J — Jy and define W, : J; x J; — R. Let us consider any point z € [0, 1],
say = 1, then ¢(z) = [0, 3]. Then

11 1 1

W{"(Z, Z_l) = W ([0, 5], [0, 5]) =1= W/(Z’ 1)7

where W¥ is the pullback of Wi, i.e [0,1] x [0,1] 2% J; x J; 25 R then
we get WY : J x J — R. Thus, we have W}/ = W’ = W almost everywhere.
Now, we have a twin-free graphon W; : J; x J; — R and we want to see
that is this twin-free graphon pure? To show that Wj is pure we need to

show (Jy, rw,) is a complete separable metric space and m; has full support.

We already knew that 7; has full support. We only need to prove that
(J1,mw,) is complete and separable metric space. Since our metric space
(J1,mw,) is finite, then it is compact (every open cover of (Ji,ry,) has a
finite subcover). Then, the metric space (Ji,rw,) is complete. Moreover,
the metric space (Ji, ry, ) is separable because it is compact. Therefore, the

twin-free graphon W is a pure graphon which is weakly isomorphic to W.
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This chapter explores a notion of k-uniform hypergraphon from different
perspectives such as Elek and Szegedy in [8] and Zhao in [22]. We give a
new definition of k-uniform hypergraphon on arbitrary measure space.
Furthermore, we show that every k-uniform hypergraphon is weakly
isomorphic to a twin-free separable k-uniform hypergraphon by following

the work of Borge, Chayes and Lovasz with graphons [0].

4.1 History/Known results

According to Lovasz’s book [13], a hypergraph is a pair H = (V, E') where
V is a finite set and E < V* for some k > 2. We consider exclusively
k-uniform hypergraphs where H = (V| F) is a k-uniform hypergraph if and

only if £ € V* is symmetric in the sense that
(:El, R ,{Ek) el = (fpg(l), R ,:L"U(k)) el

for every permutation o of {1,...,k} = [k]. In particular, 2-uniform
hypergraphs are equivalent to simple graphs. That means graphs are a

special case of hypergraphs.

Suppose we have two k-uniform hypergraphs F' and H, and a map
e V(F) - V(H). If e = {v,v9,...,0x} € E(F), then we define
w(e) = {p(v1),p(ve), ..., p(vp)} € V(H)®. We say that ¢ is a k-uniform
hypergraph homomorphism if ¢(e) € E(H) for every e € E(F). The
number of homomorphisms from F to H is denoted hom(F, H). The
homomorphism density of F' in H

WP H) — hom(F, H)

I = e
denotes the probability that a random map of V(F) into V(H) is a

homomorphism [, p. 1735].
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Zhao in [22] states that a sequence of k-uniform hypergraphs Hy, Hy, ... is
called convergent if the sequence t(F, Hy),t(F, Hs),... converges for every
k-uniform hypergraph F'. From this definition, it would seem that we could
define a hypergraphon as a function W : [0, 1]¥ — [0, 1] which is the limit of
a sequence of hypergraphs. However, as Zhao explains this definition does

not work. We give Zhao’s definition below.

Elek and Szegedy built up the theory of limit hypergraphs from scratch
using an ultraproduct, and they defined a k-uniform hypergraphon as a limit
object of convergent sequences of k-uniform hypergraphs. For more details
see [3]. Below we discuss the relation between two definitions of k-uniform

hypergraphon, the first by Elek and Szegedy and the second by Zhao.

First of all, let us introduce some notation. We will then describe a k-
uniform hypergraphon. For a set A, define r(A) to be the set of all nonempty
subsets of A, and r~(A) to be the set of all nonempty proper subsets of A.

If X is a set and R is a finite set, we define X% to be |R| copies of X with

each copy indexed by an element of R.

Definition 4.1. The symmetric group Sy acts naturally on a power set
P([k]). Suppose that ¢ < P([k]) is closed under the action of Si. This
induces a bijection X¢ — X¢ for any set X. We say that a function f :
X¢ > Y is symmetric if f(z) = f(o(x)) for all 0 € Sy and all x € X¢,

Definition 4.2. [8] A k-uniform ES-hypergraphon is a symmetric, under
the action of S;, measurable function # : [0, 1]"*D) — {0, 1}.

Definition 4.3. [22] A k-uniform Z-hypergraphon is a symmetric, under
the action of S;, measurable function # : [0, 1]"<{*) — [0, 1]

We notice a difference between Elek and Szegedy’s Definition 4.2 and Zhao’s
Definition 4.3 of k-uniform hypergraphons. Therefore, our purpose here is

to explore the relationship between those definitions.
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Definition 4.4. We say that a ES-hypergraphon H is well-behaved if for

every ¥ € [0,1]"<(*D there exactly one x € [0, 1] such that H(7,z) = 1.

Proposition 4.5. From every k-uniform Z-hypergraphon we can produce

a k-uniform FS-hypergraphon.

Proof. Notice that for a finite set A,

r(A) = P(AN{@} = r<(A) u {A}

Hence [0, 1]"(FD = [0, 1]7<I*D x [0, 1].

e Subsets of [0,1]"(*) can be represented as functions [0, 1]"(*¥D to

{0,1} by identifying every subset B < [0,1]"(*) by the characteristic

function yg, where

1 if 7e B,

XB(T) = (4.1.1)

0 otherwise,

for & e [0,1]").

e Every function f : [0,1]"<(I*) — [0, 1] can be understood as a subset

of [0,1]"<(FD x [0, 1] by identifying f with its graph {(7, f(¥)) :

U e

[0,1]7<(*D}. Hence every k-uniform Z-hypergraphon is a k-uniform

ES-hypergraphon.

]

Proposition 4.6. If H is a well-behaved E'S-hypergraphon, then we can

produce a Z-hypergraphon.

We prove this proposition by reversing the argument of the Proposition 4.5

proof.
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Proof. Suppose H is a well-behaved ES-hypergraphon H : [0,1]"(*) —
{0,1} such that for every @ € [0,1]"<(*D there exactly one x € [0, 1] such
that H (v, z) = 1. Identify H with the subset of [0, 1]¥]) given by

{Ze[0,1]"™D 3 (z) = 1}.

Then, we identify this with a subset L of [0, 1]"<(¥D x [0, 1]. Since H is well-
behaved, for each @ € [0, 1]"<(*D there is a unique z € [0, 1] with (7, ) € L.

Define a Z-hypergraphon Hz(¥) = x. O

Note that if H is not well-behaved then we have H (v, x) = H (v, y) for some
v e [0,1]"<U*) and z # y € [0,1]. In this case, we can identify the function
[0,1]7 (D) — {0, 1} with a subset of [0, 1]"<(¥D x [0, 1] but not with a unique
map [0, 1]"<D — [0,1].

Proposition 4.7. [8] Suppose H is an ES-hypergraphon. Then we can
define a Z-hypergraphon Hz by setting

Hz(z) = f H(z, z)dx

for z e [0, 1]7<*D,

4.1.1 A hypergraphon from Zhao’s point of view

Here we give a brief explanation about the definition of hypergraphon by

Zhao [22] with more details and examples.

For aset A, r(A,m) = [A]S™\J, which is the set of all nonempty subsets of
A with size at most m . Any permutation ¢ on a set A induces a permutation

on r(A,m).
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Example 4.8. Let A = {1,2,3} = [3] and m = 2. Then,

r(3]) = {{1},{2}, (3}, (1.2}, (1.3}, {2,3}}

Suppose 0 : A — A is the permutation that maps 1 — 3,2 +— 2, and 3 — 1.

Then o induces the permutation on (A, m) given by

{1} — {3}, {1,2} — {2,3},
{2} — {2}, {1,3} = {1,3},
{3 — {1}, {2,3} — {1,2}.

A function H : [0, 1]"I¥7™) — [0, 1] is symmetric if it is invariant under any

permutation of r([k], m) induced by permutations of k.

Example 4.9. We work out what it means exactly for a function H :
[0,1]7(B12) — [0, 1] to be symmetric . Now we have to consider all possible

permutations of {1,2,3} which are given by

Sy ={1,(12),(13),(23), (123), (132)}.

We view our function H as H : [0,1]% — [0, 1] where the copies of [0, 1] are
indexed by the elements of r_([3]).

In Zhao’s paper [22] the notation for a typical element of [0, 1]® reflects this:
we write (1, T, T3, T12, T13, To3) for a typical element of [0, 1]¢ = [0, 1]7<(2D.

So, a symmetric H should satisfy:

H<xlax27‘r37x127x137x23> = H(x17x37x27x137x127$23)
= H(»’Uz, $27$1737237$13>£C12) = 7‘[(1172, L1, 95373512,%23,9013)

= H(CEQ, 51737331751723@1273313) = 7‘[(553, Zy, 93273513,352379512)

We note that being symmetric does not imply being invariant under all
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permutations of r~([k]). For example, it is not necessary to have

%(xlu X2, T3,T12,L13, 'r23) = H<x137 X2,x3,T12,T1, x23>

4.2 k-uniform hypergraphons from our point

of view

After we discussed the relationship between Elek and Szegedy’s definition
and Zhao’s definition of k-uniform hypergraphon in the previous sections,
we would like to introduce our definition. Rather than working only with
the space [0, 1], we will work with an arbitrary measure space. This will
enable us to construct twin-free hypergraphons. We can see in Example 3.9
why changing the space is sometimes necessarily. From now on we fix k > 2
and we let [ = 2¥ — 2. Hence [ is the number of proper nonempty subsets

of [k].

Definition 4.10. Consider an arbitrary measure space (J, A, 7). We say
that a k-uniform hypergraphon is a map H : J' — [0, 1] which is symmetric
under the action of S and is a bounded measurable function with respect

to (J', AL, 7).

Suppose we have a sequence x = (1,2, ...,x,). We denote

g(]) = (1‘1,1'2, Ce ,J?j_1,$j+1, . 73%)

the sequence obtained by removing the j* term from z. Furthermore, we

denote

Ey(j) = (Il,xg, ey Lj—1,Y, Ty - ,JJT)

the sequence obtained by inserting y before the j** term of z. When we
integrate over multiple terms, we will use the notation d(z) to denote

drydxsy . . . dx,; similarly for d(z(7)) and d(z(j)).
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We identify z € J' as ¢ = (x1,22,..., %, T12,T13, - . ., T3 ) Where the

subscripts correspond to the nonempty proper subsets of [k]. For 1 < i <

o(t) = L_Zjl (f)] +1

which is the coordinate where x; ; lies. Then g(g/(z\)) denotes the sequence

k—1, set

x = (r1,%9,..., Tk, T12, - .., Toz. k) With the term x;_; removed.

Now we are going to define some notions that are related to how “nice” a

k-uniform hypergraphon and the underlying measure space are.

Let H be a k-uniform hypergraphon on an arbitrary measure space
(J,A,m). Then H is strong if it is measurable with respect to the
o-algebra A'. The completion of #, denoted by #, is the same function of
the k-uniform hypergraphon H but considered with respect to the
completion of A, which is A. If a k-uniform hypergraphon equal to its
completion, then it is complete. We say that the k-uniform hypergraphon

H is separable if the measure space (J, A, ) is separable.

If Sisaset and z = (z; : i€ S) € J, then if T < S, we write 2, = (z; :
ieT)e J'. In particular, we will consider the case where F' = (V, E) is a
k-uniform hypergraph and S = r(V(F),k —1) and T' = r(A, k — 1) where
Ae E(F).

The next definitions are analogues of the definitions given in [0].

Definition 4.11. Let F' = (V, E) be a k-uniform hypergraph and let H be
a k-uniform hypergraphon. We define the homomorphism density

tIFH) = J HH(ZN(A))C@-

Jr(Fk—1) AeE

For example, let F\®) = {123,124, ... 156,234, ...,256,345,. .., 356,456}

be the complete 3-uniform hypergraph on 6 vertices and H a 3-uniform



Chapter 4: k-Uniform Hypergraphs and k-Uniform Hypergraphons 68

hypergraphon. Then,

t<F6(3)a H) = J‘ H(I’l,[EQ,IB, X112, $1371723)H($1,$2, Ly, T12,T14, 1'24) cee

J21

.. .7—[($3, Ts5,T6, L35, 36, 91356)7{(554, L5, L6, L45, T46, $56) did; . . . dse.

We can obtain a new k-uniform hypergraphon by applying a “pull-back”
using a measure preserving function. Let (J,.A,7) and (J', A’, ") be two
measure spaces. Suppose that H’' is a k-uniform hypergraphon on
(J, A7), and ¢ : (J,A,7m) — (J, A 7') is a measure preserving

function. If z = (21, 2o, ..., 2o3.1) € J, we define

Qp(i) = ((,0(:['1), 90<x2)7 s 7@(‘%123---1?)) € (‘]/>l‘

Then we define the pull-back H = (H')¥ to be the k-uniform hypergraphon

on (J, A, ) given by
(H')?(z) = H'(#(2))

for all x € J*.

We say that two k-uniform hypergraphons H and H’' on (J, A, 7) and

J', A, 7') are isomorphic mod 0 if there exists a measure preserving map
g

¢ : J — J such that ¢ is an isomorphism mod 0 and (H')? = H almost

everywhere in J'.

Definition 4.12. Let H and K be two k-uniform hypergraphons on the
measure spaces (J, A, 7) and (A, B,v). If p : J — A is a measure preserving
function from A into B such that H = K¥ almost everywhere, then ¢ is a

weak 1somorphism from H to K.

Definition 4.13. Two k-uniform hypergraphons H and H' are weakly
isomorphic if we have another k-uniform hypergraphon K and weak

isomorphism functions from H and H’ into K.

Now we are going to generalize the definition of a twins of a graphon given
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in [0].
Definition 4.14. Let H be a k-uniform hypergraphon on a measure space

(J,A, ). For p € S; and z € J!, we define 2# to be z with the entries

permuted by p. We say that z, 2’ € J are twins if

H(l', Y2, ... 7y23...k>p = H(xla Y2, ... 7923...19)[)

for almost all y = (2,3, ..., Y23..k) € J'=1 and all p e S;.

We call the k-uniform hypergraphon H twin-free if no two points in J are
twins in H. Furthermore, we say that the k-uniform hypergraphon H is
almost twin-free if there exists a null set N of J such that no two points in

J\N are twins.

We are going to investigate how can we convert a k-uniform hypergraphon

into a twin-free separable k-uniform hypergraphon.

4.3 Reduction of k-uniform hypergraphons

Analogously to [0, Theorem 3.2] we want to show that every k-uniform
hypergraphon is weakly isomorphic to a twin-free separable k-uniform
hypergraphon. To show this we are going to manipulate the corresponding
o-algebra and modify the k-uniform hypergraphon. However, we need to

recall Theorem 2.32.

Suppose that (J;, A;, 7;), where ¢ = 1,... [, are finite measure spaces. Then
there exists a unique measure m ® - - - ® m on the product space (J; x - -« x

Jp, Ay x -+ x A;) with the property that
(M® - @m)(A; x - x A)) =m(A1)...m(A4)

for all A; x --- x A; € A,.
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The following lemma allows us to change a o-algebra to a countably

generated one.

Lemma 4.15. Suppose (J, A) is a measurable space, and let
F:J" >R

be a measurable function with respect to A™. Then there exist a countably

generated o-algebra B < A such that F is measurable with respect to B™.

The proof of this lemma is similar to the graphon case in [(] by using the

monotone class theorem for functions, Theorem 2.28.

Proof. Let G be the set of all bounded functions f which are measurable
with respect to A™ such that Lemma 4.15 is true. The set G is a vector
space since it is closed under linear combinations, so that af; + bfy € G
where fi, fo € G and a,b € R, and it contains the multiplicative identity 1.
Furthermore, G is closed under bounded increasing limits, meaning that for

any bounded sequence from G with F,, < F, . for all n, we have 7}1_1)1010 F.€gq.

By the monotone class theorem 2.28, G contains all bounded functions that

are measurable with respect to the o-algebra generated by A™. O

Next we explore how to construct a new k-uniform hypergraphon from a
given k-uniform hypergraphon using the idea of a push-forward, as we

explain.

Suppose we have two measure spaces, say (J, A, m) and (J', A',7’), and
let ¢ : J — J' be a measure preserving map. We say that a k-uniform

hypergraphon M, on (J',H', ') is the push-forward of H by ¢ if

[ #w) )= [ #w dnw )
(ANt )

e ()
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holds for all A’ € A’.

In order to prove next lemma we need to state a theorem of Radon-Nikodym

[15].

Theorem 4.16 (Radon-Nikodym Theorem). Let (J, A, 7) be a o-finite
measure space and p a o-finite measure defined on the space (J,.A) that is
absolutely continuous with respect to m. Then there exists a nonnegative

m-measurable function H such that
pu(A) = ferﬂ'
A

for all A € A. The function H is unique in the sense that if h is any
nonnegative m-measurable function on J that also has this property, then
h = H almost everywhere with respect to w. The function H is called the

Radon-Nikodym derivative of p and is denoted by H = Z—;‘.

The following lemma says that the push-forward H, is well defined and it
gives the relation between the push-forward and the pull back (H,)?.

Lemma 4.17. Suppose that we have two measure spaces (J, A, 7) and
(J', A',7") and a measure preserving map ¢ : J — J'. Let H be a given

k-uniform hypergraphon on (J, A, 7). Then

(i) There is a function H,, : (J')" — R which is measurable with respect to
(A')! and the measure 7’ which satisfies H,, = du/d(7’). In particular,
p is the measure on (A’)! defined by

(A x - x A)) = f Hdn’

for A7,..., A€ A". The function H,, is unique up to changes on a set

of 7/~ measure zero in (J')".
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(i) If A, = {¢7'(4) : A e A}, then (H,)? = E(H|A,) almost

everywhere.
(iii) If ¢ is actually a measure preserving embedding of (J, A, 7) into

(J', A", "), then (H,)? = H almost everywhere.

Proof. (i) Let us define a measure p on (A’)! by
(A x - x A)) = J Hdr
(A X xpTH(A))

for A},..., Aj € A. Since H takes values in [0, 1] we have
(AL x A < w7 (A7) x o x T (A)).
Since ¢ is a measure preserving map from J to J’, we have
H(AL o x A < (AL x e x A

for all A} x -+ x A] € A’. That means p is absolutely continuous with
respect to 7’ and hence the Radon-Nikodym derivative of p with respect to
7’ is well defined and is equal to H,, i.e.

_ du

Ho= L.

The uniqueness of H,, follows from the Radon-Nikodym theorem.

(i) Assume that Aj,..., A € A, where A; = ¢ 1(A}),..., A = o 1(4)
for some A},..., Aj € A'. Since ¢ is measure preserving, and H, : (J')! - R

we show that H = (H,)? almost everywhere. It suffices to show that
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| o o= [ ) @)

A XX A Al X x Aj

- [ ) aw- [ erw e

Apx--xA; A XX A
Therefore, (H,)? = E(H|AL) almost everywhere.

(7i1) Now suppose that ¢ is embedding. Then ¢ is an isomorphism between
(J, A, m) and a subspace of (J', A', 7). For any A € A we get A’ € A’ such
that A" n ¢(J) = p(A). However, o 1(A") = o' (p(A)) = A which means
AeA,. Hence, A=A, — H = (H,)? almost everywhere. O

Definition 4.18. Suppose that (J, A, 7) and (J', A’, 7') are measure spaces,
and ¢ : J — J' is a measure preserving map. Let H and H, be k-uniform
hypergraphons on (J, A, ) and (J', A', ") respectively. We say that ¢ is
an embedding of H into H,, if ¢ is embedding of (J, A, ) into (J', A’, ')

and (H,)? = H almost everywhere.

Now by using the construction of the push-forward we can define quotients

of k-uniform hypergraphons.

Definition 4.19. Let H be a k-uniform hypergraphon on a measure space
(J, A, ). Let P be an arbitrary partition of J into disjoint sets. For z € J,
we let [z] be the class in P which contains . Then we define a k-uniform
hypergraphon

H/P = (J/P,A/P,7/P)

and a measure preserving map ¢ : J — J/P as follows:

e the points in J/P are the classes of the partition P.
e  is the map = — [z].

e A/P is the o-algebra consisting of the sets A’ < J/P such that
e 1(A) e A
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o (m/P)(A) = m(e™H(A).
Then ¢ is measure preserving. We define H/P = H,, as in (4.3.1).

Analogously to the graphon case in [0] we are going to express several
lemmas that describe how we can reduce every k-uniform hypergraphon to

a twin-free separable k-uniform hypergraphon.

Lemma 4.20. Suppose H is a k-uniform hypergraphon on a measure space
(J, A, ). Then we can obtain a strong k-uniform hypergraphon by changing

the value of H on a set of measure zero with respect to .

Proof. Let H be a k-uniform hypergraphon. We want to find a strong k-
uniform hypergraphon H’ equivalent to H. Define H' = E(H|A'). That
means H' is measurable with respect to .A'. Then it is sufficient to show
that H = H' almost everywhere. For all A € A, define the measurable

functions

X = f Hdr, ga=E(1a|lA), Ya= J Hgadn.
A A
Thus,

-
J’H dry x - xdm = | Xalg dmp x - xdm_y
Al

-
= | Xaga—1 dmy x - xdm_

-
= | Xagagar= dm x - xdm_1

r
= YAgAl*21A d7T1><'--><d7Tl,1

r
= YAgAzagA d7T1 X - X dﬂ'l_l

-
= | Hgagai-29a dm x - x dm

r
= %gAl dﬂ'lX--'Xdﬂ'l
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— J’H’gAz dmy x -+ x dm
:JH/].AZ d’ﬂ'lx'”Xd’ﬂ'l

=J7—[' dmy x -+ x dm
Al

for all Al e Al

Similarly for all sets S in A! we have that

JH’ dW:JH dr.
s s

Therefore, H = H' almost everywhere. O]

Lemma 4.21. If H is a k-uniform hypergraphon on (J, A, ), then there
exists a countably generated o-algebra A’ < A such that H is measurable

with respect to (A’)".

Proof. 1t is enough to use Lemma 4.15. m

Definition 4.22. Let H be a k-uniform hypergraphon on (J, A, 7). The o-
algebra A of subsets of .J induces a partition Pp4j of J by using the relation

of equivalence, r; ~ x5 if and only if for every A € A either x,75 € A or

L1, T2 ¢ A.

Lemma 4.23. Let H be a k-uniform hypergraphon on (J, A, 7). Then, the
k-uniform hypergraphon H /P4 is separating. If H is countably generated,
then so is H/Pp4).

Proof. Let B = A/Pp4 be the o-algebra of J/Pp4. Then by construction, B
is separating so H /P[] is separating. Moreover, if H is countably generated

then its o-algebra A is countably generated.

Now, if we identify elements in the same class of the partition P4}, then B

isomorphic to A. Thus, we can see that H /P4 is countably generated. [



Chapter 4: k-Uniform Hypergraphs and k-Uniform Hypergraphons 76

Lemma 4.24. If H is a separating k-uniform hypergraphon on a measure
space with a countable basis, then H can be embedded in a separable k-

uniform hypergraphon.

Proof. Let ‘H be a separating k-uniform hypergraphon on (J, A, 7). Suppose
that A is generated by a countable set C', then C'is a basis for the completion
of (J, A, 7). Thus, we have an embedding map ¢ from the completion of
(J, A, ) to a separable measure space (J', A', ). If we take H' to be the
push-forward of H, then H' = H,. By Lemma 4.17 we get that (H')¥ =
(H,)? = H almost everywhere. That means ¢ is an embedding of H into

the separable k-uniform hypergraphon H’. ]

Lemma 4.25. Suppose that H is a k-uniform hypergraphon, and let P
be the partition into the twin-classes of H. Then H/P is twin-free. If
H is separable, then H/P is separable as well. Moreover, the projection

H — H/P is a weak isomorphism.

Proof. Let ‘H be a k-uniform hypergraphon on (J, A, 7). By using Lemma
4.21, we can choose a countably generated o-algebra A; instead of A. Note
that the relation of being twins remains the same. Since H is measurable
with respect to (A;)!, then z and 2’ are twins with respect to H if and only

if they are twins with respect to the hypergraphon 4, obtained by replacing

Now define D to be the sub-o-algebra of A consisting of sets D such that
if 21,25 € J' are twins for H then D does not separate z; and z,. Define

H' = E(H|D'). Then we are going to show that H = H’ almost everywhere.
Claim: H = H’' almost everywhere.

Similarly to Lemma 4.20 above, we show that

H dm = f H' dr

A1><---><Al A1><---><Al
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for all Ay,..., A€ A.

Recall that H' = E(H|D!), then we are going to see that H’ on the measure
space (J, D, 7) is a k-uniform hypergraphon which is weakly isomorphic to

H.

Let J' be the set of equivalence classes with respect to the relation of being
twins on J, and for = € J let ¢(x) be the equivalence class containing x.
Let (A) = {¢(X) : X € D}, and for X € (A')! we define (7/){(X) =
7 (¢ (X)). Then, we have a measure space ((J')!, (A")", (7')").

If (S1,Ss,...,5) € (J), then we define

~

H(Sl,SQ, .- '7Sl) = H/(l'l,l’g, s 7':El) = H(Qfl,fﬂg, s 7$l)

for any x; € S; where 1 <7 <.

If o:J — (J) and H : (J')! — [0,1], we can see that (H)? : J' — [0, 1].

Thus, (H)? = H' = H almost everywhere.

Now define N to be the set of points x € J for which

{Z/h vy k€ H (Y, w e yesk) #EHYL 2 ,y23...k)}

has positive measure. Thus, N is a null set, and x,2’ € J\N are twins in
‘H if and only if they are twins in H'. Therefore, we obtained a k-uniform

hypergraphon H /P from H' which is twin-free.

Now, we need to prove that if H is separable, then H /P is separable too.
Consider B to be a countable set generating A, closed under finite

intersections. For Ae A, x € J, let

A (A) = f?-[(yl, ey Xy Y3 k)dT(Yr) - dT (Y3 k)
A
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Because H is a bounded measurable function with respect to A', then the
function A — M\, (A) is a finite measure for all x € J, and the function

x +— Az (A) is a measurable function with respect to A on J for each A € A.

Then equivalently we can say that z and 2’ are twins if and only if A\,(A) =
A (A) for all A € A, and since each measure A, (+) is uniquely determined

by sets in B, x and 2’ are twins if and only if A,(B) = A\./(B) for all B € 5.

For every B € B and r € Q, let us have the sets

Spr={xeJ:\(B)=r}

These are countably many, Sg, € D.

Suppose that 2 and " are not twins. Then B € B such that \,(B) # A\ (B).
Now, assume that \,(B) > A\y(B), then for any r € Q with A\, (B) > r >
A (B), we get that x € Sp, but 2’ ¢ Sp,. That means the countable family

of sets Sp, separates x and 2’ O

Theorem 4.26. Every k-uniform hypergraphon has a weak isomorphism

into a twin-free strong separable k-uniform hypergraphon.

Proof. Let H be a k-uniform hypergraphon. From Lemma 4.20, we can
change the value of H and obtain a strong k-uniform hypergraphon ;.
Then the identity map on (J, A, ) will be a measurable weak isomorphism
o1+ H — Hy . From Lemmas 4.21,4.23, and 4.24, the completion of
‘H, has an embedding map ¢ : H; — Hy, where H, is a separable k-
uniform hypergraphon. Finally, by using Lemma 4.25 we get a twin-free
separable k-uniform hypergraphon H’' such that o3 : Hy — H' is a weak
isomorphism. Because ¢ = p3opo0¢ is a measurable map between (J, A, 7)

and (J', A',7") , there is a weak isomorphism from # into H'. ]

Conjecture 4.3.1. Let us consider two k-uniform hypergraphons, H and
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H' on measure spaces (J, A, ) and (J', A',7"), which satisfy
tHF,H) =t(F,H)

for all k-uniform hypergraphs F. By Lemmas 4.20 to /.25 and Theorem
4.26, we can find twin-free separable k-uniform hypergraphons W and W'
on (,B,\) and (Y, B, \) and weak isomorphisms ¢ : H — W and ¢ :
H — W'. Then t(F, W) = t(F,W') holds for every k-uniform hyperhraph
F if and only if W is isomorphic mod 0 to W', i.e. W = W'.

4.4 Neighbourhood distance in a k-uniform

hypergraphon

Recall that a k-uniform hypergraphon is a symmetric function # : J' — R

where [ = 2¥ — 2 which is measurable with respect to a given measure space

(J, A, m).

Definition 4.27. For each 1 < s < k — 1 we define a distance r, as follows.

Let x,y € J. Then
o) = | \Hw(g(vs))) CH@(0W)| dr(w)

Example 4.28. Let k = 3 then 1 < s < 2. Thus,

7"1(1’, y) = J ‘H(Ia To,T3,T12,T13, 3723)
J5

- H(y, T2,x3,T12,213, .Z’Qg) dﬂ'(ﬂfz)d7T(Ig)dﬂ'(%m)dﬂ(ﬂfgg)dﬂ(l’gg)

7“2(% y) = J ‘H(xl, T2,T3,T,T13, $23)
J5

— H(w1, 22,23, Y, 013, T23)|  dr(xy)dm(ve)dm(zs)dm(xi3)dn(2a3).




Chapter 4: k-Uniform Hypergraphs and k-Uniform Hypergraphons 80

Then x and y are twins if and only if ri(x,y) = 0 = ra(x,y).

We note that the distance 7, is not necessarily a metric on J, but it is easily

seen that r4 is a pseudometric.

Definition 4.29. Let x,y € J. We define the neighbourhood distance

ru(,y) = max {ry(z,y)}.

Lemma 4.30. Let z,y € J, then

(i) = and y are twins if and only if ry(z,y) = 0.

(i) r4(z,y) is a metric if and only if H is twin-free.
Proof. (i) (=>): Assume that = and y are twins. Then by Definition 4.14
H(w,2)" =H(y.2)"

for almost all z € J', and all p € S;. Then,

—~—

) = | \H@(@)—W(@(sm dn(2) = 0
Jl—l

for all s. By definition 4.29 we have that r4(x,y) = 0.

(«<=): Assume that ry(z,y) = 0. That implies | nax 1{7"5(93, y)} = 0. That
SSSKk—

means rs(z,y) =0 forall 1 <s<k—1

Suppose that p € S; and z € J'=!. Let s be the position of # and v in
(x,2)” and (y,z)". Then ry(z,y) = 0 implies that H(x,z)? — H(y,z)" =0

for almost all z. Hence, x and y are twins.
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(17) (=>): Assume that ry is a metric. If z,y € J, then

ru(z,y) >0 < x #y.

Hence, H is twin-free.

(«<=): Suppose H is twin-free. Then each pseudometric r, is a metric. Now,

we show that in this case ry is a metric.

Since H is twin-free, then there are no twins z and y in J with  # y. Then,

ry(x,y) > 0 for every = ¢ y in J. Furthermore,

ry(z,y) = Kl]sflggl{'r’s(x,y)} = KI?SL{“(Z” z)} = ruly, x).

Now, we are going to show that ry(x, z) < ry(x,y) +ru(y, 2) for all z,y, z €
J. Let us suppose that
TH(‘TJ y) = TS('IJ y)v

TH(ya Z) = Ti(ya 2)7

for some 1 < s,7,7 < k— 1. Then,

TH(£7Z) = 7"]'(113,2)
< iz, y) + 15y, 2)
< Ts(x7y) + Ti(yaz>

=ry(z,y) + ruly, 2).

Thus, ry satisfies the metric conditions, hence it is a metric. O

The advantage of having ry defined is that it is a way of measuring the

distance which we can use to define purity.



The Purification of k-uniform

Mixed Hypergraphons
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5.1 Motivation and a new definition of

k-uniform hypergraphon

In this chapter, we come up with a new generalization of a k-uniform
hypergraphon which is called a k-uniform mixed hypergraphon. Moreover,
we are going to define the notion of a pure k-uniform mixed hypergraphon
and then show that for every twin-free separable k-uniform mixed
hypergraphon, there is a pure k-uniform mixed hypergraphon isomorphic,

up to a null set, to it.

The following example shows that the analogous result cannot be applied
with the definition of k-uniform hypergraphon that we adopted in Definition
4.10.

Example 5.1. Let H : [0,1]® — [0, 1] be the hypergraphon defined by
H(x1, T2, T3, T12, T13, Ta3) = T17273
If x,y € [0, 1], then

rl(xay) =0 < r =Y,

ro(z,y) =0 for all z and y

so that r(x,y) > 0 for all x # y and according to the current definition H
is twin-free. This would cause problems when we look at the purification

because ry(z,y) definitely isn’t a metric!

We get round this with another generalization of a hypergraphon and

another definition of twins.

Definition 5.2. Suppose that (J;, &%, ;) are measure spaces where 1 < i <
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k —1. A k-uniform mixed hypergraphon is a function
k k k
H Jl(l) X J2(2) X oo X Jk(ﬁ’ll) — [0, 1]
which is symmetric in the sense of Definition 4.1. We say that J¢ is a

k-uniform mixed hypergraphon with respect to Jy,..., Jp_1.

Definition 5.3. Fix 1 <i < k — 1. We say that x,y € J; are twins for ¢ if

(@) ) = o ()

k kY k
for almost all z € Jl(l) X e X Jl() P x J,Si’f). We say that 7 is a
twin-free k-uniform mized hypergraphon if there is no 1 < ¢ < k — 1 such

that there are x # y twins for J;.

With this new definition, Example 5.1 is no longer twin-free. However,

with Definition 5.2 we can remove the twins for ¢ = 2 but keep J; the same.

Namely set J; = [0,1] and J; = {e} and define

~

%ZjlXJ1XJ1XJ2XJ2XJ2—>[O,].],

~

% : (Ih Z2,T3,9,0, .) = X1X2T3.

A Ek-uniform mixed hypergraphon 2 with respect to Ji,Ja, ..., JJp_1 is
strong if it is measurable with respect to the o-algebra
o = @) x - x 1. For a k-uniform mixed hypergraphon .7, we define
its completion s as being the same function of .# but considered with
respect to the completion of o-algebra 7. We say that a k-uniform mixed

hypergraphon is complete if it is equal to its completion.

A k-uniform mixed hypergraphon is separable if the measure space J; x

- x Jp_1 is separable.

Suppose that (J;, %, m;) and (J!, o/ m.) are measure spaces where

i
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i =1,...,k—1, and let s’ be a k-uniform mixed hypergraphon with
respect to Ji,J5, ..., Ji_;. Suppose that ¢ = (¢1,p2,...,9r_1) is a tuple

of measure preserving maps where ¢; : J; — J/. Then we define
k k k
@ Jl(l) X J2(2) X oo X Jk(ﬁ’ll) — J{(If) X Jé(];) X e X J,;_1<kﬁl) as follows; if
k k k
x = (x1,%9,...,%o3. k) € Jl(l) X J2(2) X - X J,Sf}l), then

p(z) = (801@1)7 ©1(x2), . .. ,SOk—1($23...k))

We define the pull-back (#")% to be the k-uniform mixed hypergraphon on
Ji, Ja, ..., Ji_1 defined by

(A" (z) = H'(p(z))

k k k
for all x € Jl(l) X J2<2) X oo X Jk(i‘ll).
Suppose that 7 is a k-uniform mixed hypergraphon on Jy, Jo, ..., Jr_1. If
for all i the function ¢; is measure preserving from & to <7 and J# =

(A")% almost everywhere, then we call ¢ a weak isomorphism from S to

I

We say that two k-uniform mixed hypergraphons 5 and ¢’ are weakly
isomorphic if there is another k-uniform mixed hypergraphon #” and weak

isomorphisms from 2 and " into J".

5.2 Reduction of the Ek-uniform mixed

hypergraphon

The main goal of this section is to explore how can we adapt a k-uniform
mixed hypergraphon into a twin-free separable k-uniform mixed
hypergraphon. We use the same measure theory notions and results from

section 4.3.
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In the next lemma we modify o-algebra to a countably generated one.

Lemma 5.4. Let (J;,4),...,(J;, %) be measurable spaces, and suppose
LT x--xJ —-R

is a function which is measurable with respect to @ X - -- x 7. Then, there
exist countably generated o-algebras %, € &, ..., B, < o, such that &

is measurable with respect to #; x - -- x %,.
Proof. The proof of this lemma is similar to the proof of Lemma 4.15. [

Now, we investigate how can we come by a new k-uniform mixed
hypergraphon from a given k-uniform mixed hypergraphon by applying

the idea of a push-forward as follows.

Let (J;, o, m;) and (J!, <7/ ) be measure spaces where i = 1,...,k — 1,
and let ¢ = (1, @9, ...,k 1) be a tuple of measure preserving maps where
w; + J; — J{. Suppose that .7 is a k-uniform mixed hypergraphon on
Ji,J2, ..., Jy—1. A k-uniform mixed hypergraphon J¢, on Ji, J5, ..., J;_; is

said to be the push-forward of H by ¢ if

| ) @)= | ) arw G21)
c v~ 1(e)

for all c € o' where ' — <%/)(§) N (%_ﬁ(kfl)'
As in Lemma 4.17 we are going to show that the push-forward 7, is well

defined and that there is a relation between s, and the pull back (7).

Lemma 5.5. Let (J;, o, m;) and (€, %, ;) be measure spaces where
i =1,....,k—1, and let ¢ = (p1,¢2,...,0x_1) be a tuple of measure
preserving maps where ¢; : J; — ;. Suppose that 7 is a k-uniform

mixed hypergraphon with respect to Ji, Js, ..., Ji_1. Then
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(i) There is a bounded, symmetric function

k

k k
%:le)ngz)x--~xQ£’i}1)—>R

k k
which is measurable with respect to & = ,%’1(1) X e X f%’,gfll) and the
measure p which satisfies J7, = g—:. In particular, v is a measure on

A defined by
) = | A

for all c € Z. Thus J7Z, is a unique up to changes on a set of yi-measure

zero in le) X Q§2> X oo X Q,E’“:ll).
(ii) If o, = {¢ " Y(B) : B € A}, then

k

(%)@ = E(%‘('@{l(l))% X oo X (@{k(—klﬁl))@kA)

almost everywhere.
(iii) If ¢ is a measure preserving embedding of (J;, <7, 7;) into (€2, %, ),
then (J7,)? =  almost everywhere.
k k
Proof. (i) Define a measure v on & = 95’1(1) X -ee X %]gﬁ‘ll) by
V(C) = J %(l‘l,.. .,Jﬁk,...,l'ggmk) d’/Tl(x1>...d7Tk_1(.T23mk>
v~ 1(c)

for c € . Because S takes values in [0, 1], we have
vic) <m x - x me1 (9 ().

Since ¢; : J; — Q; is measure preserving map, then v(c) < p(c) for all
c € B. Thus the measure v is absolutely continuous with respect to u,
denoted as v(c) << u(c). Hence, the Radon-Nikodym derivative of v with
respect to p is well defined and is equal to J7,.
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Note that by the Radon-Nikodym Theorem 4.16, JZ, is unique.

(i) Assume that e € o, where e = ¢~ !(c) for some ¢ € . From the
function
k k k
%:le) xQéQ) X oo X ng’i‘ll) — R
where ¢ is a tuple of measure preserving maps, and the pull-back of JZ,

i.e. (J,)%, we show that
|#@ @ - [ ) @)

=J%€(¢(z)) dﬂ(£)=J(%)"°(£) dr(z)

e

Thus,

k

()7 = B\ (D) x - x () )

almost everywhere.

(1i1) Let ¢ = (1,92, ..., ¢r—1) be an isomorphism between (J;, %%, ;) and
a subspace of (Q;, %;, ;). For any e € o/, we have ¢ € A such that the
intersection of ¢ and ¢(J) is p(e) where J = Jl(];) X - X Jk(ﬁﬁll). However,
¢ (c) = ¢ (p(e)) = e, thus e € o,. Hence, & = o, which implies that

S = ()¢ almost everywhere. O

As a result, the function ¢ is said to be an embedding of J# into J7 if it

satisfies the following conditions:

e ¢ is an embedding of (J;, o, m;) into (€, B, 1),

o W = (J,)¥ almost everywhere.

Now, we can define quotients of k-uniform mixed hypergraphons.
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Definition 5.6. Let .77 be a k-uniform mixed hypergraphon with respect to
measure spaces Ji, Jo, ..., Jp_1. For each i, let &; be an arbitrary partition
of J; into disjoint sets. For z € J;, we let [z] be the class in &; which
contains x. Let & = H; x --- x H_1, and we define a k-uniform mixed
hypergraphon

k

)P (Jl/ﬁl)(l> Koo x (Jkl/@k1)<kﬁl) . [0,1]

where (J;/ %, o) P;, 7;/ ;) is the measure space defined as follows:

e the points in J;/Z?; are the classes of the partition ;.

e (; is the measure preserving map = — [z].

o of;/P; is the o-algebra consisting of the sets A" < J;/Z; such that
P () €

o (mi/Pi)(A) = milo;  (A)).

So ¢ is measure preserving, and we define J¢/ & = J, as in (5.2.1).

In a similar way to section 4.3, we show that every k-uniform mixed
hypergraphon is weakly isomorphic to a twin-free separable k-uniform

mixed hypergraphon.

Theorem 5.7. Let 57 be a k-uniform mixed hypergraphon with respect
to Ji, Jo, ..., Jy_1 where each J; stands for a measure space (J;, o, ;). Let

k k
J = Jl(l) X -ee X Jk(i’ll), similarly for &/ and 7. Then

(i) We can define a strong k-uniform mixed hypergraphon by changing

the value of 7 on a set of measure zero with respect to .

(ii) There exists a countably generated o-algebra % < o such that JZ is
k k
measurable with respect to % where & = %1(1> X - X %’,gi’ll).
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(iii) The o-algebra o/ is separating. If &/ is countably generated,
then so is @/ P

(iv) If 2 is a separating k-uniform mixed hypergraphon on a measure
space with a countable basis, then # can be embedded into a

separable k-uniform mixed hypergraphon.

(v) Suppose that # is a k-uniform mixed hypergraphon, and let &7 be
the partition into the twin-classes of .#°. Then /< is twin-free.
If 57 is separable, then /% is separable as well. Moreover, the
projection S — /2 is a weak isomorphism.

Proof. Here we sketch our proof since this theorem is analogous to the

Lemmas from 4.20 to 4.25.

We explain how we can find a strong k-uniform mixed hypergraphon
which is equal to .7 almost everywhere. We define 7’ = E(5|</) the
conditional expectation with respect to o7. Clearly 7" is measurable with

respect to &/ and in a similar way to Lemma 4.20 we have

J% dﬂ'l...dﬂ'k_lzjjfl dﬂ'l...dﬂ'k_l

for all e € o7. This implies J# = " almost everywhere. This proves (i).
Next, if 77 is a k-uniform mixed hypergraphon with respect to
Ji, Ja, ..., Jk—1, then by Lemma 5.4 we have (ii).

Consider the partition &, of J induced by the o-algebra o7. If we identify
elements in the same class of &[q, we obtain the o-algebra &7/ Z[,q. By
Lemma 2.22, the o-algebras &7 and &/ /% are isomorphic. Then clearly
if &7 is countably generated so is &/ / P, which proves (ii1).

For (iv), suppose that the k-uniform mixed hypergraphon 7 is separating
with respect to Ji,Jo,...,Jr_1. Let o-algebra o/ be generated by a
countable set . = {%, %,..., %% 1}. That means . is a basis for
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(o, 7;) where i = 1,2,...,k — 1. Thus we have an embedding functions
¢; from the completion of (J;, <%, m;) to a separable measure space
(Q, B, i) for each i. If we let £ to be the push-forward of 7, then
H = H,. By using part (iii) of Lemma 5.5, the pull-back of J# equals to
the pull-back of JZ, which is equal to /" almost everywhere. Hence, ¢ is
an embedding of JZ into 7 .

To show (v), suppose that J# is a k-uniform mixed hypergraphon with
respect to Ji, Ja, ..., Jg_1. Then, by (i7) there exists a countably generated
o-algebra # < o/ such that J is measurable with respect to % where
B = ,%’1@) X e X %’,Efﬁll) That means any two points in & < & are
twins with respect to 7 if and only if they are twins with respect to the

k-uniform mixed hypergraphon 7 obtained by replacing &/ with 4.

k k
Define ' = E(X|9 = .@1(1) X oo X .@(f’ll)) where ¥ < &/ that
consisting of those sets in &/ that do not separate any twin points. By (i),
we can see S is equal to ' almost everywhere, and .77 with respect to

Ji,Ja, ..., Jp_1 and Z is weakly isomorphic to .77.

Now, let us consider a null set N; < J;. Then for any two points in J;\N;
are twins in ¢ if and only if they are twins in J#”’. If we identify
indistinguishable elements in partition &, then we can get a k-uniform

mixed hypergraphon .7/ % from "'. Thus /27 is twin-free.

Finally, in the same way to Lemma 4.25 we can see that if the k-uniform

mixed hypergraphon % is separable then /& is separable.

The proof of the main theorem in this section follows immediately.

Theorem 5.8. Every k-uniform mixed hypergraphon admits a weak

isomorphism into a twin-free separable k-uniform mixed hypergraphon.
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5.3 The purification of twin-free separable k-

uniform mixed hypergraphons

Let 47 be a twin-free separable k-uniform mixed hypergraphon. Fix 1 <
i < k—1. For each z € J; we have a function (section) s : T; — [0,1]

defined by

k kY _ %
forieﬂwhereTizjl(l) x...le(i) 1X"'><Jk(f}1).

(2

We see that 527 : T; — [0, 1] is measurable function since . is measurable,

and we see that

J<J‘%ﬂ d<y(@)>d$: J A dly) <o (5.3.1)

e D

1 X ) X X
for each 7. That means ' € L'(T;).

Now, let us define @i : J; — LYT}) by pupi(z) =

z

which is a

measurable function.

For A < LY(T;), we define

which is the measure on L'(T}) induced by the measure 7; on J;.

Now let us define
Jypi = {f e L'(T;) : for every open set U that contains f, 7 :(U) > 0}

This is the support of 7. Thus, J,: is a subset of L(T}).

Proposition 5.9. For each i, J,: is a separable Banach space, and the

measure 7y has full support on J .



Chapter 5: The Purification of k-uniform Mixed Hypergraphons 93

To prove this proposition we need to state the following theorem.

Theorem 5.10. Let (¥, i) be a measure space. The metric space L'() is

separable if and only if the measure y is separable.

Proof of Proposition 5.9. First of all, we want to show that J,: is
closed. We are going to show that J,: is closed by proving that
LY(T;)\J : is open.

Let f € LY(T;)\J:. There is a neighbourhood Uy of f such that 7.:(Uy) =
0. Then for every g € Uy, Uy itself is a neighbourhood of g such that
7i(Us) = 0 and therefore g ¢ J . This shows Uy © L'(T;)\J:. Hence,

LY(T;)\J i is open set and so J - is closed set.

Now we want to show that .J: is complete. Let {f,} be a Cauchy sequence
in J,:. That means this Cauchy sequence is also in L'(T;). Thus, f is a
limit point of {f,} in L'(T}). However, since J: is closed then it contains

all of its limit points. Thus, f € J:, so it is complete.

For separability of J,: by using Theorem 5.10 we see that (Jpi, m i) is
separable if 7 4 is separable, which follows from our assumption. Therefore,

J i 18 a complete separable metric space for each .

Now, we want to show that for each i, 74 has full support on J,:. Assume
that we have an open subset U of J ;i with 7, (U) = 0. Then, U = DN J i
for some open subset D of L'(T;). That means 7i(D) = 74 (U) = 0.
Hence, D is subset of LY(T;)\J: and U = D N J i = . O

Definition 5.11. Let y1,y, € J;. Then we define

i (Y1, Y2) =’ f«%’; (21,22, -+ T3 k—1)dmy (1) .. dm1 (T3, 1)

T;

- J%@; (21,22, ..o, w3 k—1)dmi (1) ... dT—1 (T3, 1)

T;

-

7 7
‘%1_%2“L1
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Lemma 5.12. The function r 4 is a metric.

Proof. We have assumed that J; does not contain any twin points of JZ.
Thus, 7 i (y1,y2) > 0 for every y; # yo in J; . Furthermore, for y1,ys € J;

we see that

T (?Jb yz) = Tupi (3/2, yl)

Moreover, in the same way as in Lemma 4.30 the triangle inequality holds

Twi (Y1, Y2) < Towi(Y1, 2) + 1 wi(2, 142)

for all z € J;. Hence, r 4 is a metric. O

Now we are going to state the definition of a pure k-uniform mixed

hypergraphon.

Definition 5.13. We say that the twin-free Fk-uniform mixed
hypergraphon 7 is pure if, for all i,

e The metric space (J;, 74:) is complete and separable,

e 7, has full support with respect to r:, i.e. for every x € J; and
e >0,
dm i(x) > 0
{yr pi (T,y) <e}
Lemma 5.14. A k-uniform mixed hypergraphon # is pure if and only if

wi © Ji = Jui is a bijection, for all 7.

Proof. (=>): Assume that J# is a pure k-uniform mixed hypergraphon.
That means (J;,74:) is complete and separable metric space and 7 4 has
full support for all 7. Then, J; is twin-free since the metric 7 (y1,y2) > 0
iff y; # yo for all yy,yo € J;. That means @i @ J; — J i is injective. Now,

let us consider a set S = {z € J; : ¢ };(z) = &}. Then the measure of S is
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zero, hence o 4 is bijective for all 7.

(«<=): Assume that @i : J; — Jui is a bijection for all i. Since @i is
measurable and 7 i(A) = (¢, (A)) for each A = LY(T;), then @i is
measure preserving bijection. We know that J,: is a subset of L'(T}) so
J i is a complete separable metric space and 74 has full support on J .

Therefore, S is a pure k-uniform mixed hypergraphon. O

Theorem 5.15. Every twin-free separable k-uniform mixed hypergraphon

is weakly isomorphic to a pure k-uniform mixed hypergraphon.

Proof. Let 7 be a twin-free separable k-uniform mixed hypergraphon.
That means there is no 1 < ¢ < k — 1 such that x # y with z and y are
twins for J;. For each x € J;, we have a function s’ : T; — [0, 1] where
T = Jlm X oo X Ji(lz)_1 X e X Jk(fﬁll). From (5.3.1) we see that 27 is

measurable since 5 is measurable. Then, 5/ € L*(T;).

Now, let wui : J; — LYT;) be defined by @ i(z) = ! which is

measurable. Let A < L'(T;), then
Twi(A) = m(w;éi (4))

defines a measure on L(T;).

Recall that
Jwi = {f € LY(T}) : for every open set U that contains f, i (U) > 0}

is the support of 7. Then, J,: < L'(T;). From the Proposition 5.9 we
can see that J . is a separable Banach space, and 7 4: has full support on

Jpi.

Suppose that Q; is the set of elements in J; for which ! € J,:, and let
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Qi = {0 . x e Q). We define ¢; : Q; — Qi by x — S which is

bijective for all ¢ since 7 is twin-free.

Proof: Suppose that g € L'(T;)\J:. That means there is a neighbourhood
U, of g such that U, N J i = &, and 7 (U,) = 0. Thus, U, LY (T;)\J -,
and m;({x € J; : A e U,}) = 0.

Let U = |J U,. Since L(T;) is separable, then U equals the union of

9¢J spi
some countable subfamily {U,, : s € N}, and so m;({z € J; : # € U}) =0

by countable additive of ;. We know that for each x € J;, the function

A e LYNT;). Since J;\S; € U, then we see that m;(J;\$;) = 0. ]

The function v; and the measure 7; induce a measure v; on J,: given by
v, = m;oY; ! Equipped with this measure, J,: is a complete separable
metric space and every open set has a positive measure. Since v); is a

bijection, we see that m;(J;\§2;) = 0 implies that v;(J»i\Qyi) = 0.

Now, we define a k-uniform mixed hypergraphon

k

ol o

~ k

PR

t%;QX..

as follows. Set T = {A < {1,2,...,k}: 1 <|A| <k —1}. Let

k k

k
£= (fufor oo fios oo it oo fan) € Q<0 b))

For each I € 7 there exists z; € J;, where ¢ = |I|, such that
f1 = A = ppilar).

Set @ = (1, 02, ppe—1) where i = J; — L'(T;). Define H to
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be the pullback of 7 by ¢, that is

~ ~ ~

H(£) = H(on(x)) = ()7 () = H(2) (5.3.2)

where x = (21, 29,..., Tk, T12, ..., To3_k)-

~

For instance, if k = 2 then J2(fi, f2) is defined as follows; if fi, fo € Qm

then fi = ' and f, = A, for some z1,x, € J; and we set

H(fr. f2) = (0001 (1), 01 (03)) = AP (w1, 13) = H (w1, 22)

We claim that 2 is pure. We shall actually prove that r ; agrees with the

L' norm on 7 Let us recall an important notation.

Suppose we have a sequence z = (x1, s, ..., ). We denote

2Y(7) = (z1, 22, . .. y Lj—1,Y, Ty - , Ty

the sequence obtained by inserting y before the j* term of z. Then if we

have x;, € T;, we define gf(g(z)) to be the sequence obtained by putting y

before the (’f) + (S) +- 4 (Zfl) + 1 term of z.

Now, for each f € €2, we have a function (section) L%/;? . T, — [0, 1] where

~ o) (5)-1 (:51) ~
Ti= Q0 x - x Qi X oo X Q%k,l defined as follows. Let h; € T;. Then

A () = A (b (0(0)))-

Now, for any f,g € Qi = €, there are x and y such that f = 5% and
g = E%Z’ By Definition 5.11 we have that
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rh0) = [ |20~ )| avn)
) :” P @) - (@) avtny
_ :P A (22 (0(0))) —%(g?(£7(7)>)' dm(z;)
= f H(2;) — ) (z)| dm(z;)
o
Hence,
r i (2, y) ‘%” — Ay (z)| dr(z)
”f 9(z;)| dm(z;)
=If —gll.

Since we have shown that r 2 agrees with the norm L', we conclude that

A satisfies the conditions of purity in Definition 5.13. Hence, A is pure.

To conclude, from (5.3.2) above we can see that the twin-free separable
k-uniform mixed hypergraphon .7 and the pure k-uniform mixed

hypergraphon A are weakly isomorphic. O

Recall that a standard measure space is the measure space that is the
completion of a Borel space. By the completion we mean adding all
subsets of sets of measure zero to the g-algebra. If we have a twin-free
k-uniform mixed hypergraphon on a standard measure space, we call it a

standard twin-free k-uniform mixed hypergraphon.

In the next theorem we are going to show that any two weakly isomorphic
standard twin-free separable k-uniform mixed hypergraphons are

isomorphic up to a null set. However, we need to define what it means for
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two k-uniform mixed hypergraphons to be isomorphic.

Definition 5.16. Let 57 and 2’ be two k-uniform mixed hypergraphons
with respect to Ji, Ja, ..., Jy—1 and Ji, J5, ..., J;_;. Then we say that ¢
and ' are isomorphic up to a null set if there are invertible measure

preserving functions ¢; : J; — J; such that

H'(p1(21), 02(22), - .., oro1(Ta3. k) = H (21,22, ..., Tz k)

almost everywhere.

Theorem 5.17. If two standard twin-free separable k-uniform mixed
hypergraphons are weakly isomorphic, then they are isomorphic up to a

null set.

Proof. Assume that 2 and ¢ are two weakly isomorphic twin-free separable
k-uniform mixed hypergraphons on standard measure spaces (€2;, %;, ;)
and (A, %;,7;) where 1 < ¢ < k — 1. We shall show that then there is a
third k-uniform mixed hypergraphon 5 on (J;, <%, m;) such that there are
weak isomorphisms ¢gi : €; — J; and g : A; — J; making 2,9, and S

are weakly isomorphic to each other.

Recall that ¢y = (ga@l, P2, <p9k71) is a sequence of measure preserving

maps. Then, we define

k k k k
0g : le) X e X Q]E’ial) — Jl(l) X e X J]g(iEl)

k

k
as follows; let g = (91,92, ..., 923..k) € le) X o X Q,S,’“_]l), then

0a(9) = (a1 (g1), 022(92), - - - Par-1(9g23..8))

Now, we can define a pullback ¥ = %2 as

H77(g) = A (pa(9))
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For all i, the function ¢4 is measure preserving from %; to <7 and 2 =

%2 and hence g is a weak isomorphism from & to 7.

By a similar argument to that of the proof of the Claim in Theorem 5.15,

we can see that for each ¢, the measure y; has full support on ;.

Since ¥ is a twin-free separable k-uniform mixed hypergraphon, the
function @g: is injective. Furthermore, the set {z € J; : ¢ !(z) = &} has

measure zero. That means @gi : ; — J; is bijective (up to a null set).

By similar arguments as above, we have that ¢g: : A; — J; is bijective.

Therefore, ¢4 and pg: are isomorphisms between 2, ¢ and J7. O
Theorem 5.18. Every twin-free separable k-uniform mixed hypergraphon

is isomorphic, up to a null set, to a pure k-uniform mixed hypergraphon.

Proof. Let € be a twin-free separable k-uniform mixed hypergraphon with
respect to Jy, Jo, ..., Jy_1. From Theorem 5.15 there exists a pure k-uniform
mixed hypergraphon A which is weakly isomorphic to . By Theorem
5.17, we see that 2 and A are isomorphic up to a null set. O

5.4 Future work

In the theory of graphons, Lovdsz and Szegedy in [I7] defined an

automorphism for any graphon. They made the following definition:

Definition 5.19. An automorphism of a given graphon W on J is an

invertible measure preserving function ¢ : J — J such that
W(2?,y?) = W(z,y)

for almost all z,y € J.
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However, if this definition is used, we may have weakly isomorphic graphons

which have very different automorphism groups.

Example 5.20. Suppose that W; and W, are graphons on J; and J;. Let
Ji =[0,1], and define W (z,y) = 3 for all z,y € J;. Let J, = {X}. Define
Wo(x,z) = L.

2

Let F' be a graph. Then

r
t(F, W1> = H W1<xi7xj)des
[o,Jl]V (i,j)EE seV
i 1
= ] H 5 ndxs
[0.1]" (i,5)eE seV
-
= Wo(z;, x; dx,
[ I wen]
[0,1]V (i,5)eE seV
= t(F, W)

Therefore, t(F,W,) = t(F, Ws) for all simple graph F'. Hence, W, and W5

are weakly isomorphic.

Lovasz and Szegedy motivated the definition of automorphism so that it

only held for pure graphons. They made the following definition:

Definition 5.21. [17] Let W be a pure graphon on J. A measure preserving
bijection ¢ : J — J is called an automorphism of W if for every z € J, we

have W (x¥,y%) = W (x,y) for almost all y € J.

When it comes to pure graphons, the second definition is stronger than the
first. It means that one cannot interchange two arbitrary points in J and

obtain an automorphism.

Lovész stated in [17] an important theorem.

Theorem 5.22. The automorphism group of a pure graphon is compact.



Chapter 5: The Purification of k-uniform Mixed Hypergraphons 102

This theorem is a result of the following fact which is proved in [17] Lemma

11.

Fact : The automorphisms of a pure graphon W on J form a closed

subgroup of the isometry group of (J, 7y )

where J is the completion of J and 7y is called the similarity metric (2-

neighborhood metric). That is

P () = P (2, ) = j f (W (2 w) — W () VW (o, =) dz

J

We write dz instead of drn(z), where 7 is the probability measure of the

graphon.

Now, in the theory of k-uniform mixed hypergraphon we may ask several

questions.

(1) How do we define the similarity distance for a pure k-uniform mixed

hypergraphon?
(2) What is the definition of the automorphism group of a k-uniform
mixed hypergraphon?
If we answer those questions, then we may have the opportunity to prove

the following conjecture.

Conjecture 5.4.1. The automorphism group of a pure k-uniform mized

hypergraphon is compact.
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