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Abstract

This thesis studies a generalization of the k-uniform hypergraphons by

working with an arbitrary space. In particular, we offer two different

generalizations: k-uniform hypergraphons and k-uniform mixed

hypergraphons. Motivated by results on graphons, we reduce every

k-uniform hypergraphon to a twin-free separable k-uniform hypergraphon.

Moreover, we prove that every k-uniform hypergraphon is weakly

isomorphic to a twin-free separable k-uniform hypergraphon. However, we

find a counterexample which shows the notion of k-uniform hypergraphon

does not satisfy the purity conditions. Therefore, we construct a new

generalization, the k-uniform mixed hypergraphon, that helps us to prove

every twin-free separable k-uniform mixed hypergraphon is weakly

ismomorphic to a pure k-uniform mixed hypergraphon. Furthermore, we

show that every twin-free separable k-uniform mixed hypergraphon is

isomorphic, up to a null set, to a pure k-uniform mixed hypergraphon.
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Introduction

Many graphs are so large that it is impossible to define or study them by

classical means, especially since they may be repeatedly changing, as in the

example of the internet graph. There are many ways to approximate a large

graph and one of them is by constructing an increasing sequence of graphs

that will get us close to our large graph. We can examine how the graphs

are similar or close to each other using homomorphism densities [13].

Over the past decades, Lovász and Szegedy introduced a new concept called

graphons as limits of sequences of graphs [14]. The new concept opens

new doors for studying large graphs not only in graph theory, but also in

many other fields of mathematics such as measure theory, functional analysis

and probability. Therefore, we introduced in the beginning of Chapter 2

the basic notions and results of graphs, metric space, and measure space.

Moreover, we gave in section 2.4 the definition of graphon and we explained

how a sequence of graphs convergent to a limit, a graphon. We closed this

section by investigated some notions of distance such as cut distance for

graphs and graphons.

Lovász and Szegedy also proved that every graphon is weakly isomorphic

to a pure graphon. What does pure graphon mean? and how can we purify

graphons? We will answer those questions in Chapter 3 using the main

references [12], [13] and [15]. In section 3.2, we presented some examples

for the purification of graphons that will help the readers to understand in
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detail the way how can we find a pure graphon of a given graphon.

A notion of k-uniform hypergraphon is a fascinating and useful object to

study. They have been investigated by Elek and Szegedy [8], and Zhao

[22]. We started Chapter 4 by introducing a brief history of two k-uniform

hypergraphon definitions that made by Elek and Szegedy in 2012 and Zhao

in 2015, and then we explored the relation between those definitions.

In section 4.2, we gave a generalization of a k-uniform hypergraphon

(Definition 4.10) by working with an arbitrary measure space. Thus,

instead of working only with the space r0, 1s, we worked with an arbitrary

space.

The main result of this chapter is in section 4.3. We reduced a given

k-uniform hypergraphon H as defined in Definition 4.10 on a measure

space pJ,A, πq to a twin-free separable k-uniform hypergraphon. Our

proof is inspired by the original work of Borge, Chayes and Lovász with

graphons [6]. We constructed a new concept of twin for a k-uniform

hypergraphon H. Then we transformed H into a twin-free k-uniform

hypergraphon through several steps. First, we made H strong by changing

its value on a set of measure zero. Second, we showed that H is

measurable since there is a countably generated σ-algebra A1 of A. Third,

if H is countably generated, then we can see that a separating k-uniform

hypergraphon H{PrAs is countably generated too. Fourth, we showed that

the completion of H can be embedded into a separable k-uniform

hypergraphon. The last step is that if we have a strong k-uniform

hypergraphon H and P is the partition into the twin-classes of H, then we

see that H{P is twin-free.

We concluded section 4.3 by another result which is every k-uniform

hypergraphon is weakly isomorphic to a twin-free separable k-uniform

hypergraphon.
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In section 4.4, we defined a neighbourhood distance rH. The aim of this

definition is measuring the distance that we want in order to define purity

of k-uniform hypergraphon.

Motivated by the purification of graphons [13], we tried to purify the

k-uniform hypergraphon that we generalized in Chapter 4. However, as we

show by example, it is not straightforward to purify a k-uniform

hypergraphon as defined in Definition 4.10. Therefore, we proposed a new

generalization which is called a k-uniform mixed hypergraphon. Our new

definition allowed us to purify a twin-free separable k-uniform mixed

hypergraphon. Then we proved the main theorem in Chapter 5 that says

every twin-free separable k-uniform mixed hypergraphon is weakly

isomorphic to a pure k-uniform mixed hypergraphon. Furthermore, we

show that for every twin-free separable k-uniform mixed hypergraphon

there is a pure k-uniform mixed hypergraphon isomorphic, up to a null

set, to it.



2

Background Materials
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In this chapter, we will investigate the theory of graphons. In order to

introduce graphons it is first necessary to clarify some notions and results

from several areas of mathematics such as graph theory, measure theory,

and probability. Lovász’s book [13] and [21] will be the main resource for

sections 2.1 and 2.4 while we use [19],[20],[6], and [4] for sections 2.2 and

2.3.

2.1 Graphs and Graph Homomorphisms

A graph G is an ordered pair G “ pV,Eq where V is a finite set of elements

(vertices) and E is a set of ordered pairs of size 2 (edges) of V . If e “ pv, uq

is an edge, we say that e joins v and u, or e connects v and u; we then

say that v and u are adjacent. Also, if an edge e joins a vertex v to itself,

then we call it a loop. However, if there are two or more edges that join

the same two vertices, we say that G has multiple edges. Moreover, if the

graph G does not have loops or multiple edges, we name it a simple graph.

We always work with undirected graphs, so if pv, uq is an edge, so is pu, vq.

Any simple graph that has n vertices with an edge between every pair of

vertices is called a complete graph, denoted by Kn. For example,

K2 K3

If we have graph G “ pV,Eq and a subset of vertices of G, say H then

we say that GrHs is an induced subgraph if for any u, v P H, u and v are

adjacent in GrHs if and only if they are adjacent in G.

There are some special graphs such as a path Pn. We define this to be a

simple graph which has vertices that can be ordered in a sequence

v1, v2, . . . , vn and edges EpPnq “
␣

pv1, v2q, pv2, v3q, . . . , pvn´1, vnq
(

. In

addition, we define a cycle Cn as a simple graph whose vertices can be
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ordered in a cyclic sequence pv1, v2, . . . , vnq and edges

EpCnq “
␣

pv1, v2q, pv2, v3q, . . . , pvn´1, vnq, pvn, v1q
(

Erdös, Renyi and Gilbert in 1959 defined a random graph as follows: Let n

be a positive integer and 0 ď p ď 1. Then, the random graph Gpn, pq on n

vertices is generated by taking n vertices, and connecting any two of them

with probability p, independently of previous choices.

A weighted graph G is a looped-simple graph, that is, a finite graph with

no multiple edges in which any subset of the vertices can have a loop, with

a positive real weight αipGq connected with each vertex i and a real weight

βi,jpGq connected with each edge pi, jq.

There are many large graphs, and it is hard to store or define them in the

traditional way. Moreover, some of those graphs are changing continually

such as the internet graph. We can approximate them by smaller graphs or

find another way to represent them which is easier to study. If we want to

approximate a large graph by another, possibly smaller, graph we need to

know how similar or close two graphs are. This similarity is measured by

homomorphisms.

Let us consider two simple graphs G and G1 with vertex sets V pGq and

V pG1q. Then

• A graph homomorphism from G to G1 is a mapping φ : V pGq Ñ V pG1q

such that
`

φpuq, φpvq
˘

P EpG1q whenever pu, vq P EpGq.

• A graph isomorphism between G and G1 is a bijective map φ : V pGq Ñ

V pG1q such that

pu, vq P EpGq ðñ pφpuq, φpvqq P EpG1
q
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for all u, v P V pGq.

In the next section, we will use homomorphisms to define certain numbers

which will describe how closely related two graphs are.

2.1.1 Homomorphism numbers

For any two simple graphs G and G1, we define the following:

• HompG,G1q: the set of homomorphisms from G to G1.

• hompG,G1q: the number of homomorphisms from G to G1.

• injpG,G1q: the number of injective homomorphisms of G into G1.

• indpG,G1q: the number of embeddings of G into G1 as an induced

subgraph.

If G and G1 are multigraphs, loops and multiple edges are allowed and then

the definition of hompG,G1q can be extended to this context. We use the

idea that a homomorphism must indicate which edge goes on which edge as

well as which vertex goes on which vertex. Let i, j P V pGq be two vertices

which are connected by api,jq edges, and u, v P V pG1q that are connected

by bpu,vq edges. Then, if i maps to u and j maps to v, there are b
api,jq

pu,vq

ways of mapping the i-j edges to u-v edges. That means a vertex-and-edge

homomorphism fromG toG1 is defined as a pair of maps φ1 : V pGq Ñ V pG1q

and φ2 : EpGq Ñ EpG1q such that if e connects i and j in EpG1q then we

see that φ1piq and φ1pjq are connected by φ2peq.

Furthermore, we can extend the definition of homomorphism numbers for

weighted graphs. Let G1 be a weighted graph with vertex weights αvpG
1q

and edge weights βpu,vqpG
1q. For every map ψ : V pGq ÝÑ V pG1q, we have
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the weights

αψ “
ź

uPV pGq

αψpuqpG
1
q

and

homψpG,G1
q “

ź

pu,vqPEpGq

βpψpuq,ψpvqqpG
1
q,

where we take βpx, yq “ 0 if px, yq is not an edge of G1. Note that if ψ is

not a homomorphism then homψpG,G1q “ 0. Thus we define

hompG,G1
q “

ÿ

ψ

αψ homψpG,G1
q

where the sum is over all maps ψ : V pGq Ñ V pG1q,

and

injpG,G1
q “

ÿ

ψ

αψ homψpG,G1
q

where the sum is over all maps ψ where ψ is injective.

If G is a multigraph and G1 is a weighted graph, then we may define

hompG,G1q as above. However, what if G1 is an unweighted multigraph?

Then there is a weighted simple graph F in which each edge is weighted

by its multiplicity in G1. We define

hompG,G1
q “ hompG,F q.

2.1.2 Homomorphism densities

Let G and G1 be simple graphs. To obtain the homomorphism densities, we

normalize their homomorphism number by setting

tpG,G1
q “

hompG,G1q
`

vpG1q
˘vpGq
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where
`

vpG1q
˘vpGq

is the total number of functions from V pGq to V pG1q.

Thus, tpG,G1q is the probability that a random map of V pGq into V pG1q is

a homomorphism. Also we define

tinjpG,G
1
q “

injpG,G1q
`

vpG1q
˘

vpGq

where
`

vpG1q
˘

vpGq
is the number of injective maps from V pG1q to V pGq.

This is the probability that a random injective map from V pGq to V pG1q is

a homomorphism. We also define

tindpG,G1
q “

indpG,G1q
`

vpG1q
˘

vpGq

the probability that a random injective maps from V pGq to V pG1q preserves

both adjacency and non-adjacency.

Example 2.1. Let G “ K2 and G
1 “ K3. Then the homomorphism density

for G and G1 is

tpG,G1
q “

hompG,G1q

|vpG1q||vpGq|
“

6

9
“

2

3

Also, tindpG,G1q “ 6
6

“ 1 since every injective map is a homomorphism.

2.2 Metric Spaces

Let pJ, τq be a topological space. A neighbourhood of a point x P J is a

subset S of J that includes an open subset that contains x, that is x P O Ď S

for some open set O.

Suppose that J1 and J2 are topological spaces, and let f : J1 Ñ J2. Then

• f is a continuous function if f´1pOq is an open set in J1 for every

open set O in J2.
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• f is a homeomorphism if f is a bijection and both f and f´1 are

continuous.

Let pX, dq be a metric space. If x P X and ϵ ą 0, define

Bϵpxq :“ Bϵpx, dq :“ ty P X : dpx, yq ă ϵu.

If S is a subset of a metric space X, then the closure of S, denoted by S,

defined by

S “
␣

x P X : Bϵpxq X S ‰ H for every ϵ ą 0
(

.

The following is a well known theorem.

Theorem 2.2. Suppose X is a metric space. Let τ be the set of open sets

of X. Then pX, τq is a topological space.

Suppose that pX, dq is a metric space. Then

• a set S is called dense in X if for every x P X and ϵ ą 0, we have

s P S such that 0 ă dpx, sq ă ϵ.

• The metric space pX, dq is called separable if it has a countable subset

S, which is dense (i.e. S̄ “ X).

• pX, dq is said to be complete if every Cauchy sequence in X converges

to some point in X.

2.3 Measure Spaces

This section presents some of the main concepts and results in measure

theory, following [20] and [19].
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Definition 2.3. Let J be a set. A nonempty collection A of subsets of J

said to be σ-algebra on J if:

(i) J P A.

(ii) If A P A, then Ac P A where Ac stands for the complement of A.

(iii) If An P A for all n P N then
8
Ť

n“1

An P A.

A measurable space is a tuple pJ,Aq consisting of a set J and a σ-algebra

A on J . Furthermore, if M is an element of the σ-algebra A, then we call

M a measurable set.

Definition 2.4. Suppose that A is a σ-algebra on a set J1 and B is a σ-

algebra on a set J2. We say that A and B are isomorphic as σ-algebras if

there exists a bijective map φ : A Ñ B such that for all A1, A2 P A we have

φpA1q Ď φpA2q ðñ A1 Ď A2.

Suppose that U is a collection of subsets of J . We define σpUq to be the

minimal σ-algebra containing U , which is called the σ-algebra generated by

U (i.e. the intersection of all σ-algebras containing U). We need to show

that such a σpUq exists.

Lemma 2.5. Let U be a collection of subsets of J . Then, there exists a

minimal σ-algebra containing U .

Proof. First of all, let us note the following fact: Consider C to be any

nonempty collection of σ-algebras of subsets of J . Then,

č

C “ tB P J : B P G for every G P Cu

contains of all sets B which belong to each σ-algebra G of C. We see that
Ş

C is a σ-algebra of subsets of J .
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Suppose U is a collection of subsets of J . Define CU to be the collection of all

σ-algebras containing all the sets of U . Note that CU ‰ H since P pJq P CU .

Therefore,
Ş

CU is a σ-algebra which include all the sets of U . Furthermore

if G is a σ-algebra such that U Ď G then
Ş

CU Ď G so
Ş

CU is the minimal

σ-algebra containing U .

We have shown that if U is a collection of subsets of J then there is a

minimal σ-algebra containing U . We denote this σ-algebra by σpUq and

call it the σ-algebra generated by U .

Remark 2.6. If U is itself a σ-algebra, then σpUq “ U .

Definition 2.7 (Borel σ-algebra [20]). Let pJ, τq be a topological space.

The smallest σ-algebra B that contains τ is called the Borel σ-algebra of

pJ, τq. The elements of B are called Borel sets.

The topological space pJ, τq is said to be a Polish space if it is

homeomorphic to a separable complete metric space. A standard Borel

space is a measurable space isomorphic to the Borel σ-algebra over a dense

in itself Polish space.

After we gave the definition of the measurable space, it is important to

know that when a function between two measurable spaces is measurable.

Definition 2.8. [19] Let pJ1,A1q and pJ2,A2q be two measurable spaces.

The function φ : J1 Ñ J2 is said to be measurable if φ´1pAq P A1 for each

A P A2.

It is important to state the definition of a step function.

Definition 2.9 (Step Function [20]). Let J be a set. A function f : J Ñ R

is called a step function if it takes only finitely many values, i.e. the image

fpJq is a finite subset of R.

Definition 2.10. [20] A function π : A Ñ r0,8s on a measurable space

pJ,Aq is called a (positive) measure if:
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• πpHq “ 0,

• π is σ-additive, i.e., Let I be a countable set. Then,

π
`

ď

iPI

Ai
˘

“
ÿ

iPI

πpAiq

for any pairwise disjoint sequence tAiuiPI in A.

A measure space is a triple pJ,A, πq consisting of a nonempty set J , a σ-

algebra A on J , and a measure π on A.

Example 2.11. • We consider a measure space pR,A, πq. Let I be the

set of intervals tpa, bq : a ă bu and let A be the σ-algebra generated

by I. The measure π is determined by setting π
`

pa, bq
˘

“ b´ a for all

pa, bq P I. Then pR,A, πq is a measure space.

• Let J “ t0, 1u. Define A1 to be the power set

P pt0, 1uq “
␣

H, t0u, t1u, t0, 1u
(

,

so that A1 is a σ-algebra. Define the measure π1 by π1pHq “ 0,

π1pt0uq “ π1pt1uq “ 1
2
, and π1pt0, 1uq “ 1. Then pJ,A1, π1q is a

measure space.

These measure spaces are not isomorphic since A is infinite and A1 is finite.

Example 2.12. Let J “ r0, 1s we give two different σ-algebras on the

interval r0, 1s.

• Let A1 “ tH, r0, 1
2
s, r1

2
, 1s, r0, 1su. Define a measure π1 by

π1pHq “ 0, π1pr0, 1
2
sq “ π1pr1

2
, 1sq “ 1

2
, and π1pr0, 1sq “ 1. Note that

for example π1
`

p1
3
, 2
3
q
˘

is not defined.

• Set I “ tpa, bq : 0 ď a ă b ď 1u. Then A2 is the σ-algebra generated

by I, and π2 is the measure determined by setting π2
`

pa, bq
˘

“ b ´ a

for all pa, bq P I.
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In the next sections when we talk about the measure space J “ r0, 1s, we

will use the second of these σ-algebras, that is we will mean pJ,A2, π2q.

Definition 2.13. [20] Let pJ1,A1, π1q and pJ2,A2, π2q be measure spaces.

A function φ : J1 Ñ J2 is called measure preserving if:

• φ´1pAq P A1 for every A P A2,

• π1pφ´1pAqq “ π2pAq for every A P A2.

The next theorem gives an outline of the basic properties of measures.

Theorem 2.14. [20, p. 18] Let pJ,A, πq be a measure space. Then the

following holds.

(i) πpHq “ 0.

(ii) If n P N and A1, . . . , An P A such that Ai X Aj “ H for i ‰ j then

πpA1 Y ¨ ¨ ¨ Y Anq “ πpA1q ` ¨ ¨ ¨ ` πpAnq.

(iii) If A1, A2 P A such that A1 Ď A2 then πpA1q ď πpA2q.

(iv) Let pAiq be a sequence of elements of A such that Ai Ď Ai`1 for all i.

Then

π

ˆ 8
ď

i“1

Ai

˙

“ lim
iÑ8

πpAiq.

(v) Let pAiq be a sequence of elements of A such that Ai Ě Ai`1 for all i.

Then

πpA1q ă 8 ùñ π

ˆ 8
č

i“1

Ai

˙

“ lim
iÑ8

πpAiq.

Now we are going to state the definitions of outer measure and Lebesgue

measure.
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Definition 2.15. [20] Let E be a nonempty set and µ : P pEq Ñ r0,8s,

where P pEq is the power set of E. The function µ is said to be an outer

measure if:

(i) µpHq “ 0;

(ii) If E1 Ď E2 Ď E then µpE1q ď µpE2q;

(iii) For all sequences pEnq8
n“1 of subsets of E, µp

8
Ť

n“1

Enq ď
8
ř

n“1

µpEnq.

Let A be a subset of E. Then, A is called µ-measurable if

µpSq “ µpS X Aq ` µpSzAq

for every S Ď E.

Definition 2.16. If I “ pa, bq is an interval of R, set lpIq “ b´ a. For each

subset E of R, we define the Lebesgue outer measure µ˚pEq of E by

µ˚
pEq “ inf

" 8
ÿ

n“1

lpInq : tInu a sequence of intervals with E Ă

8
ď

n“1

In

*

.

Furthermore, the set E is called a Lebesgue measurable set if, for any A Ď R,

µ˚
pAq “ µ˚

pA X Eq ` µ˚
pAzEq.

In addition, if E is a Lebesgue measurable set, then we define the Lebesgue

measure of E as µpEq “ µ˚pEq.

Now, we can express the definition of Lebesgue integral of a nonnegative

measurable function. However, we need to define the notion of a

characteristic function.

Definition 2.17 (Characteristic Function). Let J be a set and let A Ď J .



Chapter 2: Background Materials 16

Then, the characteristic function χA : J Ñ R is defined by

χApxq “

$

’

&

’

%

1 if x P A,

0 if x R A.

Definition 2.18 (Lebesgue Integral [20]). Let pJ,A, πq be a measure space

and let S P A be a measurable set.

• Let φ : J Ñ r0,8q be a measurable step function of the form

φ “

n
ÿ

i“1

aiχAi

where ai P r0,8q and Ai P A for i “ 1, 2, . . . , n. The Lebesgue integral

of φ over S is the number
ş

S
φdπ P r0,8s defined by

ż

S

φdπ :“
n
ÿ

i“1

aiπpS X Aiq.

• Let ψ : J Ñ r0,8s be a measurable function. The Lebesgue integral

of ψ over S is the number
ş

S
ψdπ P r0,8s defined by

ż

S

ψdπ :“ sup
φďψ

ż

S

φdπ,

where the supremum is taken over all measurable step functions φ :

J Ñ r0,8q that satisfy φpxq ď ψpxq for all x P J .

We are going to state the basic properties of the Lebesgue integral. For

more details see [20, p. 20].

Theorem 2.19. Suppose we have a measure space pJ,A, πq and measurable

functions φ, ψ : J Ñ r0,8s. Let S P A. Then

(i) if φ ď ψ on S then
ş

S
φdπ ď

ş

S
ψdπ.

(ii)
ş

S
φdπ “

ş

J
φχSdπ.
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(iii) if φpxq “ 0 for all x P S then
ş

S
φdπ “ 0.

(iv) if πpSq “ 0 then
ş

S
φdπ “ 0.

(v) if A P A and S Ď A then
ş

S
φdπ ď

ş

A
φdπ.

(vi) if c P r0,8q then
ş

S
cφdπ “ c

ş

S
φdπ.

Definition 2.20 (Lp spaces). Suppose that pJ,A, πq is a measure space. If

1 ď p ă 8, we define the space LppJ,A, πq, simply LppJq, as

LppJq “

"

f : J Ñ R : f measurable, and

ż

J

|f |
pdπ ă 8

*

.

Define the Lp-norm of f P LppJq by

||f ||Lp “

ˆ
ż

J

|f |
pdπ

˙1{p

.

Now we want to give some important notions of measure theory from [5]

and [20] that we will use later.

Let pJ,A, πq be a measure space, and let E be a set of subsets of J . Then

we call σpEq the σ-algebra generated by E . If E is a countable subset of

the σ-algebra A such that σpEq “ A, then we call A countably generated.

Moreover, we say that E Ď A is a basis for pJ,A, πq if σpEq is dense in A.

Suppose that pJ,A, πq is a measure space. Let B be a measurable set. Then

B said to be a null set if πpBq “ 0. Let Q be a property of points in J . We

say that Q holds almost everywhere if there is a set B Ď J of measure zero

such that every b P JzB has the property Q. Note that the set of all points

b P J which have the property Q need not to be measurable.

A measure space pJ,A, πq is said to be complete if any subset A of any

B P A with πpBq “ 0 is also in A. For every measure space pJ,A, πq there

is a unique completion pJ,A, πq that is the smallest complete measure space

such that A Ď A and π|A “ π.
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Theorem 2.21. [20, p. 39] Suppose that pJ,A, πq is a measure space.

Define

N “ tA P A : πpAq “ 0u

to be the collection of its null sets. Then,

A “
␣

A Y B : A P A and B Ď N for some N P N
(

is a σ-algebra. Furthermore, there is a unique measure π : A Ñ r0,8s such

that π|A “ π. The complete measure space pJ,A, πq is called the completion

of pJ,A, πq.

Let us consider any set S of J . Then S separates two distinct points x1, x2 P

J if x1 P S and x2 R S or x1 R S and x2 P S. A set E of subsets of J separates

x1 and x2 if there is S P E which separates x1 and x2. This defines a partition

PrEs of J by setting two points in the same class if and only if they are not

separated by E . Then E is said to be separating if it separates any two

points of J .

For example, if pJ,A, πq is a measure space, we will consider the partition

PrAs in Chapter 5 and elsewhere.

Lemma 2.22. Let A be a σ-algebra on J and let „A be the equivalence

relation on J defined by x „ y if

tA P A : x P Au “ tA P A : y P Au

for all x, y P J . Let rxs :“ ty P J : y „ xu.

Let J 1 be the set of equivalence classes of J under „ and set B to be the

σ-algebra of J 1 consisting of elements of the form

rAs “ trxs : x P Au

for A P A. Then the function φ : A ÞÑ rAs for A P A is an isomorphism of
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σ-algebras.

Proof. It is clear that the map φ : A Ñ B which sends A ÞÑ rAs is a

bijection. Suppose that A1, A2 P A.

• Assume that A1 Ď A2. Let rxs P φpA1q. Then, x P A1 which implies

that x P A2. That means rxs P rA2s “ φpA2q. Hence, φpA1q Ď φpA2q.

• Assume that that φpA1q Ď φpA2q. Let x P A1. Then, rxs P φpA1q

which implies that rxs P φpA2q. That means x P A2. Thus, A1 Ď A2.

Suppose that pJ,A, πq and pJ 1,A1, π1q are two measure spaces, and we have

a measure preserving map φ : J Ñ J 1. We say that φ is an isomorphism if

it is one-to-one and onto, and both φ and φ´1 are measurable and measure

preserving. Moreover, φ is said to be an isomorphism mod 0 if there are null

sets N P A and N 1 P A1 with πpNq “ π1pN 1q “ 0 such that the restriction of

φ to JzN is an isomorphism between JzN and J 1zN 1. In particular, we can

say that two measure spaces pJ,A, πq and pJ 1,A1, π1q are isomorphic mod 0.

A measure space pJ 1,A1, π1q is said to be a full subspace of pJ,A, πq if J 1 Ď J

of outer measure πpJq, A1 “ tA X J 1 : A P Au, and π1pA X J 1q “ πpAq for

all A P A. Moreover, a map φ : pJ˚,A˚, π˚q Ñ pJ,A, πq between two

measure spaces is said to be an embedding if it is an isomorphism between

pJ˚,A˚, π˚q and a full subspace of pJ,A, πq.

We close this section by introducing the notion of conditional expectation.

Consider a measure space pJ,A, πq and a bounded measurable function

f : J Ñ R with respect to A, and let A1 be a sub-σ-algebra of A. For every

function f P L1pAq, the conditional expectation of f with respect to A1 is
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the unique function Epf |A1q P L1pAq such that

ż

A1

Epf |A1
q dπ “

ż

A1

f dπ (2.3.1)

for all A1 P A1.

A special case of a measure space is a probability space. A probability space

is a measure space pJ,A, πq such that πpJq “ 1. The measure π : A Ñ r0, 1s

is called a probability measure.

The product σ-algebra and the product

measure

Suppose we have two measurable spaces pJ1,A1q and pJ2,A2q. Then we say

that a rectangle in J1 ˆ J2 “ tpx, yq : x P J1 and y P J2u is a set of the

form A1 ˆ A2 where A1 Ď J1 and A2 Ď J2.

The product σ-algebra A1 b A2 is defined to be the smallest σ-algebra on

J1 ˆ J2 that contains

R “ tA1 ˆ A2 : A1 P A1, A2 P A2u.

We say that R is the collection of measurable rectangles. Moreover, if

E Ď J1 ˆ J2 then we say that E is elementary if it is the union of finitely

many pairwise disjoint subsets of the form A1 ˆ A2 where A1 P A1 and

A2 P A2.

Lemma 2.23. [20, p. 209] For any E P A1 b A2, let Ex and Ey for x P J1

and y P J2 be defined by

Ex “ ty P J2 : px, yq P Eu
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and

Ey
“ tx P J1 : px, yq P Eu

Then, Ex P A2 and Ey P A1.

We say that a measure π on a measurable space pJ,Aq is σ-finite or that

the measure space pJ,A, πq is σ-finite if and only if there exists a sequence

A1, A2, . . . such that
Ť

Ai “ A and πpAiq ă 8 for all i. Furthermore, the

measure π : A Ñ R “ r´8,`8s is called a signed measure on J if

• π takes at most one of the values `8 or ´8.

• πpHq “ 0.

• πp
8
Ť

n“1

Anq “
8
ř

n“1

πpAnq for every sequence A1, A2, . . . of disjoint

measurable sets.

Definition 2.24. [20] Let π and µ be two σ-finite measures on a measurable

space pJ,Aq. Then we say that

(i) µ is an absolutely continuous with respect to π, denoted as µ ăă π,

if A P A then πpAq “ 0 implies that µpAq “ 0.

(ii) µ is a singular with respect to π, denoted as µ K π, if there exists

A P A such that µpAq “ 0 and πpAcq “ 0.

The idea of a product measure on the product σ-algebra is based on the

following theorem.

Theorem 2.25. [20, p. 214] Let pJ1,A1, π1q and pJ2,A2, π2q be σ-finite

measure spaces and let E P A1 b A2. Then the functions

φ : J1 Ñ r0,8s
x ÞÑπ2pExq

, ψ : J2 Ñ r0,8s
y ÞÑπ1pEyq
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are measurable and

ż

J1

π2pExqdπ1 “

ż

J2

π1pEy
qdπ2. (2.3.2)

In order to prove Theorem 2.25, we shall state some useful definitions and

theorems, without proof.

Definition 2.26 (Monotone Class [3]). Suppose we have a nonempty set J

and a set of subsets of J , say M. Then M is called a monotone class if:

• If A1 Ď A2 Ď . . . is an increasing sequence of sets in M, then
8
Ť

n“1

An P

M,

• If A1 Ě A2 Ě . . . is a decreasing sequence of sets in M, then
8
Ş

n“1

An P

M.

Since σ-algebras are closed under arbitrary countable unions and

intersections, then it is obvious that every σ-algebra is a nonempty

monotone class.

Recall that if we have a collection U of subsets of a set J then we define

σpUq as the minimal σ-algebra containing U . We showed in Lemma 2.5 that

such σpUq exists.

Remark 2.27. In particular, if M is a class of functions from a given

measure space J into R, and

U “ tf´1
`

pa, bq
˘

: f P M, a ď b P Ru

then the σ-algebra σpUq gives the smallest σ-algebra of subsets of J such

that every function in M is measurable with respect to this algebra.

Theorem 2.28 (Monotone class theorem for functions [11]). Suppose that

M is a class of functions mapping a measure space J into R. Suppose that
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M is closed under multiplication (i.e. tf, gu Ď M ùñ fg P M). Further,

suppose that V is a vector space of functions with M Ă V containing

the constant functions and such that whenever pfnqně1 is a sequence in V

satisfying 0 ď f1 ď f2 ď . . . , then if f “ lim
nÑ8

fn is bounded, it follows that

f P V .

Let A denote the smallest σ-algebra on J such that all of the functions in

M are measurable with respect to J (such A exists by Remark 2.27). Then

V contains all bounded functions measurable with respect to A.

Theorem 2.29. (Lebesgue Monotone Convergence Theorem [20, p. 23])

Let pJ,A, πq be a measure space and let fn : J Ñ r0,8s be a sequence of

measurable functions such that

fnpxq ď fn`1pxq

for all x P J and all n P N.

Define f : J Ñ r0,8s by fpxq “ lim
nÑ8

fnpxq for all x P J . Then, f is

measurable and

lim
nÑ8

ż

J

fndπ “

ż

J

fdπ.

We note that we use the convention that if pfnpxqqn diverges to 8, then

fpxq “ 8 and hence if fpxq “ 8 almost everywhere, then
ş

J
fdx “ 8.

Definition 2.30. (Lebesgue Integrable Functions [20]) Let pJ,A, πq be a

measure space. A function φ : J Ñ R is called (Lebesgue) integrable if φ is

measurable and
ş

J
|φ|dπ ă 8.

Theorem 2.31. (Lebesgue Dominated Convergence Theorem [20, p. 32])

Let pJ,A, πq be a measure space, let g : J Ñ r0,8q be an integrable

function, and let fn : J Ñ R be a sequence of integrable functions

satisfying

|fnpxq| ď gpxq
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for all x P J and all n P N, and converging pointwise to f : J Ñ R (That

means fpxq “ lim
nÑ8

fnpxq for all x P J).

Then, f is integrable and for every E P A, we have

ż

E

fdπ “ lim
nÑ8

ż

E

fndπ.

Now we can prove Theorem 2.25, see [20, Theorem 7.9].

Proof of Theorem 2.25. Recall that pJ1,A1, π1q and pJ2,A2, π2q are σ-

finite measure spaces. For E P A1 b A2 define functions φE and ψE by

φE : J1 Ñ r0,8s
x ÞÑπ2pExq

, ψE : J2 Ñ r0,8s
y ÞÑπ1pEyq

.

Let

Ω “

"

E P A1 b A2 : φE : J1 Ñ r0,8s and ψE : J2 Ñ r0,8s

are measurable and satisfy (2.3.2)

*

.

We are going to show that Ω “ A1 b A2.

First of all, we want to show that if we have A1 P A1 and A2 P A2, then

E “ A1 ˆA2 P Ω. By assumption Ex “ A2 if x P A1 and Ex “ H otherwise.

Similarly Ey “ A1 if y P A2 and Ey “ H otherwise.

Define φ : J1 Ñ r0,8s by φpxq “ π2pExq “ π2pA2qχA1pxq for x P J1, where

χA1 “

$

’

&

’

%

1 if x P A1

0 if x R A1,

and also ψ : J2 Ñ r0,8s by ψpyq “ π1pE
yq “ π1pA1qχA2pyq for y P J2,
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where

χA2 “

$

’

&

’

%

1 if y P A2

0 if y R A2.

Therefore, by Lemma 2.23 the functions φ and ψ are measurable and it

follows that
ż

J1

φdπ1 “ π1pA1qπ2pA2q “

ż

J2

ψdπ2.

Thus, E P Ω.

Second, we want to show that if E1, E2 P Ω and their intersection is empty

then E “ E1 Y E2 P Ω. Let us define φipxq “ π2ppEiqxq, φpxq “ π2pExq

and ψipyq “ π2ppEiq
yq, ψpyq “ π2pE

yq for x P J1 and y P J2, where

i “ 1, 2. Then, φ “ φ1 `φ2 and ψ “ ψ1 `ψ2. Since Ei P Ω we can see that

for i “ 1, 2,
ż

J1

φidπ1 “

ż

J2

ψidπ2 ùñ

ż

J1

φdπ1 “

ż

J2

ψdπ2.

Thus, E P Ω.

Third, suppose that Ei P Ω for all i P N and Ei Ď Ei`1. Then we want to

prove that E “
Ť8

i“1Ei P Ω. We define φi, φ : J1 Ñ r0,8s and ψi, ψ : J2 Ñ

r0,8s, for all i as above. Since Ex “
Ť8

i“1pEiqx and Ey “
Ť8

i“1pEiq
y where

pEiqx P A2 and pEiq
y P A1 for all i, we have

φpxq “ π2pExq “ lim
iÑ8

π2ppEiqxq “ lim
iÑ8

φipxq for all x P J1

ψpyq “ π2pEy
q “ lim

iÑ8
π2ppEiq

y
q “ lim

iÑ8
ψipyq for all y P J2.

By the Lebesgue Monotone Convergence Theorem 2.29,

ż

J1

φdπ1 “ lim
iÑ8

ż

J1

φidπ1 “ lim
iÑ8

ż

J2

ψidπ1 “

ż

J2

ψdπ1.

Therefore, E P Ω.

Fourth, suppose A1 P A1 and A2 P A2. Then π1pA1q ă 8 and π2pA2q ă 8.
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If Ei P Ω for all i P N such that A1 ˆA2 Ě E1 Ě E2 Ě . . . then E “
8
Ş

i“1

Ei P

Ω, because A1 and A2 are σ-algebras. Since pEiqx Ď A2 and π2pA2q ă 8

then φi converge pointwise to φ. Furthermore, φi ď π2pA2qχA1 , for all i and

then the function π2pA2qχA1 : J1 Ñ r0,8q is integrable since π1pA1q ă 8

and π2pA2q ă 8. By the Lebesgue Dominated Convergence Theorem 2.31,

we have
ż

J1

φπ1 “ lim
iÑ8

ż

J1

φidπ1.

Similarly for
ş

J2

ψdπ1 “ limiÑ8

ş

J2

ψidπ1. Since Ei P Ω for all i, then we have

that
ş

J1

φdπ1 “
ş

J2

ψdπ1 and thus E P Ω.

Finally, by assumption we know that pJ1,A1, π1q and pJ2,A2, π2q are σ-

finite. Then there are sequences of measurable sets pJ1qn P A1 and pJ2qn P

A2 such that pJ1qn Ď pJ1qn`1 and pJ2qn Ď pJ2qn`1 where π1ppJ1qnq ă 8 and

π2ppJ2qnq ă 8 for all n P N such that J1 “
8
Ť

n“1

pJ1qn and J2 “
8
Ť

n“1

pJ2qn.

Now let

M “

"

E P A1 b A2 : E X
`

pJ1qn ˆ pJ2qn
˘

P Ω for all n P N
*

.

So, M is a monotone class. Then clearly M Ď A1 b A2. Since

E X

ˆ

pJ1qn ˆ pJ2qn

˙

P Ω

for all E P A1 b A2, we have

E “

8
ď

n“1

ˆ

E X ppJ1qn ˆ pJ2qnq

˙

P Ω

for all E P A1 b A2. Therefore, A1 b A2 Ď Ω Ď A1 b A2 which implies

A1 b A2 “ Ω.

The following is a well known theorem.

Theorem 2.32. [2] Suppose we have two measurable spaces pJ1,A1, π1q
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and pJ2,A2, π2q, where π1 and π2 are σ-finite measures. Then, there exists

a unique σ-finite measure π on pJ1 ˆ J2,A1 b A2q such that πpA1 ˆ A2q “

π1pA1qπ2pA2q for all A1 P A1 and A2 P A2.

Proof. We start our proof by showing that any measure π satisfying the

condition above must be σ-finite. Since π1 and π2 are σ-finite, then we have

pAnq8
n“1 P A1 and pBnq8

n“1 P A2 such that
8
Ť

n“1

An “ J1 and
8
Ť

n“1

Bn “ J2,

thus π1pAnq and π2pBnq are finite for all n. Suppose that
Ť

pi,jqPN2

Ai ˆ Bj,

and for any px, yq P J1 ˆ J2 we have i, j such that x P Ai and y P Bj. Thus

px, yq P Ai ˆBj which implies that
Ť

pi,jqPN2

Ai ˆBj “ J1 ˆ J2. For pi, jq P N2

we have πpAi ˆ Bjq “ π1pAiqπ2pBjq ă 8. Since N2 is a countable set then

π is σ-finite.

Now, let us consider σ-finite measures π and π1 which satisfy the condition

above. We define collection of measurable rectangles R by

R “ tA1 ˆ A2 : A1 P A1, A2 P A2u.

R is closed under finite intersection. Moreover, the two σ-finite measures

π and π1 agree on this R. That means they also agree on the generated

σ-algebra A1 b A2, so π “ π1. Thus the measure must be unique.

Suppose that A P A1 b A2, and let πpAq “
ş

J1

π2pAxqdπ1pxq where

Ax “ ty P J2 : px, yq P J1 ˆ J2u.

By Theorem 2.25, π is a measure. Now, let us consider that A1 P A1 and

A2 P A2, then

πpA1 ˆ A2q “

ż

J1

π2ppA1 ˆ A2qxqdπ1pxq “

ż

J1

1A1π2pA2qdπ1pxq

“ π2pA2q

ż

J1

1A1dπ1pxq “ π1pA1qπ2pA2q.
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We call the unique measure that satisfies

πpA1 ˆ A2q “ π1pA1qπ2pA2q for all A1 P A1 and A2 P A2

the product measure. We write it as π “ π1 b π2. The product measure

satisfies

pπ1 b π2qpA1 ˆ A2q “ π1pA1qπ2pA2q

for A1 P A1 and A2 P A2.

Suppose that pJ1,A1, π1q and pJ2,A2, π2q be measure spaces. Let φ is a

function from J1 to J2. Define φ b φ : J2
1 Ñ J2

2 by

φ b φpx, yq “ pφpxq, φpyqq.

We want to show that if the function φ is measurable then φ b φ is

measurable.

Lemma 2.33. If the function φ : J1 Ñ J2 is measurable, then the function

φb φ : J2
1 Ñ J2

2 is measurable. Further, if φ is measure preserving then so

is φ b φ.

Proof. Suppose that we have two measure spaces pJ1,A1, π1q and

pJ2,A2, π2q. By the definition of product spaces, the σ-algebra of J2
1 is

σptA ˆ B : A,B P A1uq. Similarly, the σ-algebra on J2
2 is

σptAˆB : A,B P A2uq. To show φb φ is measurable it is enough to show

that for A,B P A2, we have

pφ b φq
´1

pA,Bq P A1 b A1.
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Now φ´1pAq P A1 and φ´1pBq P A1, since φ is measurable. Therefore,

pφ´1
pAq, φ´1

pBqq P A1 b A1

Then, we get pφ b φq´1pA,Bq P A1 b A1, so φ b φ is measurable.

Now, let A,B P A2, and let π1 b π1 be the product measure of J1. If

pφ b φq´1pA,Bq “ φ´1pAq ˆ φ´1pBq, then

π1 b π1ppφ b φq
´1

pA,Bqq “ π1 b π1pφ
´1

pAq ˆ φ´1
pBqq

“ π1pφ
´1

pAqq ¨ π1pφ´1
pBqq

“ π2pAq ¨ π2pBq psince φ is measure preservingq

“ π2 b π2pA ˆ Bq

2.4 Graphons

In the previous sections we explored the idea that two graphs G and G1 are

close together if the homomorphism densities tpF,Gq and tpF,G1q are close

to each other, for all graphs F . We can look for sequences of graphs that

will get the graphs closer and closer to each other.

The rational sequence 1, 1.4, 1.41, . . . is a Cauchy sequence but it is

convergent to irrational number
?
2. So we see that a sequence of rational

numbers can converge to the irrational number. Therefore, it is not

unexpected if we have a sequence of graphs that converges to something

other than a graph. Graphons are the limits of Cauchy sequences of

graphs. They are symmetric, Lebesgue measurable functions from r0, 1s2

to r0, 1s.

In this section we introduce one of the important objects in graphs. An

adjacency matrix is an essential tool where we can visualize the pixel picture
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of any graph and then its limit function.

Suppose we have a simple graph G “ pV,Eq with V “ rns “ t1, . . . , nu.

The adjacency matrix A “ pAGq is the n ˆ n symmetric matrix defined by

Aij “

$

’

&

’

%

1 if pi, jq P E,

0 otherwise.

(2.4.1)

Example 2.34. Suppose the graph A is

Then the adjacency matrix of A is

¨

˚

˚

˚

˝

0 1 1

1 0 1

1 1 0

˛

‹

‹

‹

‚

The graphon corresponding to a graph is closely related to the graph’s

adjacency matrix. We can build the adjacency matrix of graph by labeling

the graph’s vertices rns “ t1, 2, . . . , nu. Then, we defined the adjacency

matrix to be the n ˆ n matrix of 0’s and 1’s as in (2.4.1).

Example 2.35. Let G be the following graph:
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The adjacency matrix of G is

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 1 0 1

1 0 0 1 0

1 0 0 1 1

0 1 1 0 0

1 0 1 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

We can see the graphon forG by making the adjacency matrix a stepfunction

on the unit square. Thus, the graphon for G is

As we see in Example 2.35 a graphon can be represented as a pixelation of

the adjacency matrix of the graph.

Now we see an example how sequence of graphs tends to a graphon.

Example 2.36. Let Hn be the half graph, that is, the bipartite graph on 2n

vertices t1, . . . , n, 11, . . . , n1u where the edge pi, j1q is present if i ď j1. Then

we can see the sequence of graphs Hn converges to a limit W as in Figure

2.4.1.

‚

1
‚

2
‚

3
‚

4
‚

5

‚

11

‚

21

‚

31

‚

41

‚

51

1

51

2

41

3

31

4

21

5

11

11

5

21

4

31

3

41

2

51

1

Figure 2.4.1: The half-graph H5, its pixel picture WH5 , and its limit W “

limnÑ8 WHn .
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Note that as n Ñ 8 limit of the graph sequence is a mapW : r0, 1sˆr0, 1s Ñ

r0, 1s. This map is a graphon.

Now we want to introduce graphons in a formal way and find how a sequence

of graphs converges to a graphon. Thus, we should consider graphons as

generalization of graphs.

Definition 2.37. [13, p. 115] Let W be the space of all bounded symmetric

measurable functions W : r0, 1s2 ÝÑ R. The elements of the space W will

be called kernels. Also, define the subspace

W˝ :“ tW P W : 0 ď W px, yq ď 1, for all x, y P r0, 1su.

Then we call any W P W˝ a graphon.

Given a graph G, we now explain how to construct a graphon WG.

Definition 2.38. [13, p. 116] Let G be any graph and

V pGq “ t1, 2, . . . , vpGqu. For x P
“

i´1
vpGq

, i
vpGq

˘

and y P
“

j´1
vpGq

, j
vpGq

˘

we define

WGpx, yq :“

$

’

&

’

%

1 if pi, jq P EpGq,

0 if pi, jq R EpGq.

(2.4.2)

Recall that we defined homomorphism densities for graphs in section 2.1.2.

We want to expand the homomorphism densities in graphs to

homomorphism densities in graphons, generally in kernels. We should

notice that we are moving from discrete to continuous objects so we

should use integrals instead of counting and sums.

Suppose that W is a kernel pW P W q, and let F “ pV,Eq be a multigraph

with no loops. Then, we define the homomorphism density of F into W as

tpF,W q :“

ż

r0,1sV

ź

pi,jqPE

W pxi, xjq
ź

sPV

dxs.



Chapter 2: Background Materials 33

If W “ WG is a kernel corresponding to a graph G then tpF,W q measures

the homomorphism density between F and G.

Proposition 2.39. [13, p. 116] If G and H are graphs, then

tpG,Hq “ tpG,WHq.

Example 2.40. In this example Steele in [21] shows that

tpK2, Hnq “ tpK2,WHnq.

First of all, we calculate tpK2, Hnq using the definition from section 2.1.2:

tpK2, Hnq “
2epHnq

vpHnqvpK2q
“

2p
npn`1q

2
q

p2nq2
“
n ` 1

4n
,

where epHnq is the number of edges in Hn, and we denote the number

of vertices in Hn and K2 by vpHnq and vpK2q. Now, we will calculate

tpK2,WHnq:

tpK2,WHnq “

2n
ÿ

i“1

2n
ÿ

j“1

ż i
2n

i´1
2n

ż
j
2n

j´1
2n

W px1, x2qdx1dx2

“ 2
n
ÿ

i“1

n`1´i
ÿ

j“1

ż i
2n

i´1
2n

ż
j
2n

j´1
2n

W px1, x2qdx1dx2

“ 2
n
ÿ

i“1

n`1´i
ÿ

j“1

ˆ

i

2n
´
i ´ 1

2n

˙ˆ

j

2n
´
j ´ 1

2n

˙

“ 2
n
ÿ

i“1

n`1´i
ÿ

j“1

1

4n2

“
1

2n2

n
ÿ

i“1

n`1´i
ÿ

j“1

1

“
1

2n2

n
ÿ

i“1

n ` 1 ´ i

“
1

2n2

˜

pn ` 1qn ´
pn ` 1qn

2

¸

“
n ` 1

4n
.
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We notice that n`1
4n

goes to 1
4
as n goes to 8. That means the homomorphism

densities of K2 in Hn converge as n goes to 8.

We mentioned that a sequence of graphs convergent to a limit which is

graphon. However, we need to know what it means for a sequence of graphs

be convergent. Thus, we define convergence by taking a sample, k vertices,

from graphs in the sequence and then if this sampling converges that means

the sequence of graphs also converges.

Definition 2.41. [13, p. 173] Let pGnq be a sequence of graphs where

the number of vertices of Gn goes to infinity, vpGnq Ñ 8. Then pGnq

is convergent if the induced subgraph densities tindpF,Gnq converge for all

finite graphs F .

We can also define convergence by using the homomorphism densities

tpF,Gnq. It is the same as defining convergence as above. Referring to the

relationship between homomorphism numbers in ([13], section 5.2.3),

tinjpF,Gnq can be expressed as a linear combination of tindpF,Gnq and vice

versa, thus tinjpF,Gnq tends to a limit as n ÝÑ 8 if and only if tindpF,Gnq

does. Moreover,

tpF,Gq ´ tinjpF,Gq

tends to zero as vpGq ÝÑ 8. Therefore, tpF,Gnq tends to a limit as n ÝÑ 8

if and only if tinjpF,Gnq does.

Theorem 2.42. [13, p. 173] A sequence pGnq of simple graphs with

vpGnq ÝÑ 8 is convergent if and only if tpF,Gnq is convergent for every

finite graph F .

We will see later (Theorem 2.58) that every convergent sequence of graphs

converges to a graphon.

Since we are talking about convergent sequences, we define some notions of

distance.
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2.4.1 Cut distance of graphs

Let G be a bipartite graph. That means we can partition its vertices V pGq

into two sets, say G1 and G2, where all edges in EpGq are between G1 and

G2. Then we call pG1, G2q a cut of G.

We can ask ourselves that how close, approximately, a graph G is being

bipartite. We are going to measure how close to a cut we obtain when

we partition V pGq by means of various pG1, G2q. Then we can get a cut

distance of these pieces by measuring how good their cut is.

We can represent the cut distance between arbitrary graphs as a measure

of their similarity.

Now, let us review the notion of cut distance for graphs and graphons of

Chapter 8 in [13].

Definition 2.43 (Cut norms of graphs). Suppose we have a graph G with

V pGq “ rns. Let S, T Ď rns, we need not assume that S X T “ H. If

we want to study how close pS, T q is to being a cut, we need to count the

number of edges between S and T compared to the total number of edges.

We say that pS, T q will be the closest to the cut if it has the largest value

between all possible pairs. We represent a density parameter of the graph

G as follows:

||G||
l

“
1

n2
max
S,TĎrns

ˇ

ˇ

ˇ

ˇ

tpi, jq P EpGq : i P S, j P T u

ˇ

ˇ

ˇ

ˇ

.

We can rewrite this in terms of the adjacency matrix of G, denoted by AG.

Then, we have

||G||
l

“
1

n2
max
S,TĎrns

ˇ

ˇ

ˇ

ˇ

ÿ

iPS,jPT

pAGqij

ˇ

ˇ

ˇ

ˇ

.

Frieze and Kannan in [9] generalized this to any n ˆ n matrix, say A, to
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define a cut norm as a following:

||A||
l

“
1

n2
max
S,TĎrns

ˇ

ˇ

ˇ

ˇ

ÿ

iPS,jPT

Aij

ˇ

ˇ

ˇ

ˇ

.

Definition 2.44. (Two graphs on the same set of vertices [13]) If we have

two graphs G1 and G2 on the same set of vertices, we can define their

distance through the norm of the difference of the adjacency matrices of the

cut norm above.

Let A and A1 be n ˆ n matrices, then

dlpA,A1
q “ ||A ´ A1

||
l

“
1

n2
max
S,TĎrns

ˇ

ˇ

ˇ

ˇ

ÿ

iPS,jPT

Aij ´ A1
ij

ˇ

ˇ

ˇ

ˇ

.

By adapting this to graphs case we get a distance between two graphs

on the same set of vertices. Suppose G1 and G2 are simple graphs with

V pG1q “ V pG2q “ rns. Define

dlpG1, G2q “ max
S,TĎrns

|eG1pS, T q ´ eG2pS, T q|

n2
“ ||AG1 ´ AG2 ||

l
,

where eGi
pS, T q for i “ 1, 2 is the number of edges in Gi with one vertex in

S and the other in T .

Example 2.45. Suppose we have two graphs G1 “ K3 and G2 is an empty

graph on 3 vertices. For any S, T Ď r3s, we get eG2pS, T q “ 0. We realize

that if |T | “ H or |S| “ H, then eG1pS, T q “ 0. However, if |T | “ |S| “ 3,

then eG1pS, T q “ 6 is maximal. Therefore, dlpG1, G2q “ 6
9

“ 2
3
.

Let G1 and G2 be isomorphic graphs. Then, let us ask ourselves that what

will we get if we relabel the vertices of G1 and G2? Clearly, they are the

same graph. Thus, their dl-distance should be zero. So, we need to define

the following:

Definition 2.46. [13] Let G1 and G2 be graphs on n vertices. Then, their
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cut distance is

δ̂lpG1, G2q “ min
Ĝ1,Ĝ2

dlpĜ1, Ĝ2q

where Ĝ1 and Ĝ2 are range over all possible labelings of the vertices of G1

and G2.

Previously, we explained the way how to find the distance between graphs

that have the same number of vertices. However, here we need to define the

distance of two arbitrary graphs. Therefore, we need to introduce a new

notion called blow-up.

Definition 2.47. [13] Let G be a graph and m P N. Then, we get the

graph Gpmq from G by replacing each vertex of G by m vertices vpmq and

connecting all vertices in vpmq with all vertices in v1pmq if and only if there

is an edge in G between v and v1.

Example 2.48. In this example we can see how a graph G blowing up to

Gp2q.

G G(2)

Now we can define the distance of two arbitrary graphs.

Definition 2.49. (Two arbitrary graphs [13]) Let us consider two graphs

G1 and G2, where G1 “ pV1, E1q and G2 “ pV2, E2q with two sets of vertices

V1 “ rn1s and V2 “ rn2s. By using the blow-up operation, we have G1pn2q

and G2pn1q. More generally, we have G1pkn2q and G2pkn1q for k P N, so we

define the distance between G1 and G2 by using the δ̂l distance as

δlpG1, G2q “ lim
kÝÑ8

δ̂lpG1pkn2q, G2pkn1qq

Note that if n1 “ n2, then it is not necessarily true that

δlpG1, G2q “ δ̂lpG1, G2q.
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However,

δlpG1, G2q ď δ̂lpG1, G2q.

In fact δl is not a metric, it is only a pseudometric since δlpG1, G2q might

be zero for different graphs G1 and G2.

2.4.2 Cut norm and cut distance of kernels

Previously, we explored the cut distance for graphs and now we want to

extend this to kernels.

Definition 2.50. (Cut norm of kernels [13]) We define a cut norm of kernel

W as

||W ||
l

“ sup
S,TĎr0,1s

ˇ

ˇ

ˇ

ˇ

ż

SˆT

W px, yqdxdy

ˇ

ˇ

ˇ

ˇ

where the supremum is taken over all measurable subsets S and T . Since

S ˆ T and W px, yq are bounded, the supremum exists.

The cut metric is defined as

dlpU,W q “ ||U ´ W ||
l
,

where U and W are kernels.

Representing a graph as a kernel depends on the labelling of the graph.

Actually, we label the kernel by intervals r k
n
, k`1

n
s through copying the

labelling of the graph. Just as for graphs, we need to represent an

“unlabeled” version of the cut norm. We let Sr0,1s to be the set of all

invertible measure preserving maps φ : r0, 1s ÝÑ r0, 1s. Since the inverse

of the map φ is a measure preserving as well, Sr0,1s is a group.

Definition 2.51. (Cut distance of kernels [13]) For two kernels U,W and
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φ P Sr0,1s, define the cut distance of them as

δlpU,W q “ inf
φPSr0,1s

dlpU,Wφ
q

where Wφpx, yq “ W
`

φpxq, φpyq
˘

.

Moreover, let S̄r0,1s be the set of measure preserving maps r0, 1s ÝÑ r0, 1s

and then

δlpU,W q “ inf
φPSr0,1s

dlpUφ,W q “ inf
φPS̄r0,1s

dlpU,Wφ
q “ inf

ψ,φPS̄r0,1s

dlpUψ,Wφ
q

Note that δlpU,W q is a pseudometric since the different kernels U and W

can have distance zero.

The next theorem shows that the δl distance does not change when we

replace a graph G by WG.

Theorem 2.52. For any two weighted graphs G1 and G2 we have

δlpG1, G2q “ δlpWG1 ,WG2q

Proof. See Lemma 8.9 in [13].

Now we can define what it means for a sequence of graphs to be

convergent through the cut distance and homomorphism densities by

stating some results of Lovász. However, we need to state the Counting

Lemma and the Inverse Counting Lemma. For more details see [[13]

Chapter 10].

Lemma 2.53. [13, p. 167] (Counting Lemma for Graphs). For any three

simple graphs G1, G2 and G3

|tpG1, G2q ´ tpG1, G3q| ď epG1qδlpG2, G3q.
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The lemma extends to graphons:

Lemma 2.54. [13, p. 167] (Counting Lemma for Graphons). Let G be a

simple graph, and let W1 and W2 be graphons. Then

|tpG,W1q ´ tpG,W2q| ď epGqδlpW1,W2q.

Lemma 2.55. [13, p. 169] (Inverse Counting Lemma). Let n P Z`. Suppose

we have two graphons W1 and W2, and assume that for every simple graph

G on n vertices, we have

|tpG,W1q ´ tpG,W2q| ď 2´n2

.

Then

δlpW1,W2q ď
50

?
log n

.

Lemma 2.56. Suppose that W1 and W2 are graphons. Then for all finite

simple graphs F ,

tpF,W1q “ tpF,W2q ðñ δlpW1,W2q “ 0.

Proof. Follows from Lemmas 2.54 and 2.55.

The following theorem is proved using the Counting Lemma for graphs 2.53

and the Inverse Counting Lemma 2.55.

Theorem 2.57. [13, p. 174] A sequence pGnq of simple graphs with

vpGnq ÝÑ 8 is convergent with respect to induced subgraph density if

and only if it is a Cauchy sequence in the metric δl.

The next two theorems tell us that a graphon is the limit to every convergent

sequence of graphs.

Theorem 2.58. [13, p. 180] For any convergent sequence pGnq of simple

graphs there exists a graphon W such that tpG,Gnq ÝÑ tpG,W q for every
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simple graph G. The graphon W is the limit of the graph sequence, and

write Gn ÝÑ W .

Theorem 2.58 has three different methods of proof. It was first proved

by Lovász and Szegedy in 2006. They used Szemerédi partitions and the

Martingale Convergence Theorem. We sketch their proof below.

The second method of proof was given by Diaconis and Janson in 2008

[7]. The proof used results of Aldous [1] and Hoover [10] on exchangeable

random variables, identifying a basic connection to probability theory.

The last way of proving Theorem 2.58 was given by Elek and Segedy in 2012

[8]. They gave a different proof by using an ultraproduct, and they extended

their work to many other structures such as hypergraphs and hypergraphons.

Recall that

W˝ :“ tW P W : 0 ď W px, yq ď 1, for all x, y P r0, 1su

is a set of graphons. We can identify two graphons whose cut distance is

zero to get the set ĂW˝ of unlabeled graphons.

Theorem 2.59. [16] The space p ĂW˝, δlq is compact.

The proof of Theorem 2.58 below depends on this theorem.

Proof of Theorem 2.58. [13, Theorem 11.21]. From Theorem 2.59 we know

that p ĂW˝, δlq is compact. Then, the sequence pWn “ WGn : n “ 1, 2, . . . q

has a convergent subsequence pWnj
: j “ 1, 2, . . . q with limit W P ĂW˝. By

using the Counting lemma for graphons Lemma 2.54, we have

|tpG,Wnj
q ´ tpG,W q| ď epGqδlpWnj

,W q Ñ 0, when j Ñ 8,

for every simple graph G. Thus, tpG,Wnj
q “ tpG,Gnj

q Ñ tpG,W q. Since



Chapter 2: Background Materials 42

ptpG,Gnqq, n “ 1, 2, . . . , is a Cauchy sequence, then tpG,Gnq Ñ tpG,W q for

every simple graph G.

The next theorem show that how the distance function can be used to

describe the convergence to the limit object.

Theorem 2.60. [13, Theorem 11.22]. For a sequence pGnq of graphs with

vpGnq ÝÑ 8 and a graphon W , we have Gn ÝÑ W if and only if

δlpWGn ,W q ÝÑ 0.

Proof. Assume that Gn Ñ W . Then tpG,Gnq Ñ tpG,W q for every simple

graph G. By using Theorem 2.55, for every fixed m we have

|tpG,WGnq ´ tpG,W q| ď 2´m2

.

Then

δlpWGn ,W q ď
20

?
logm

if n is large enough. Thus, δlpWGn ,W q ÝÑ 0.

Conversely, assume that δlpWGn ,W q ÝÑ 0. Then by using the Counting

Lemma, Lemma 2.54, we have

|tpG,WGnq ´ tpG,W q| ď epGqδlpWGn ,W q Ñ 0

for every simple graph G. Thus,

tpG,WGnq “ tpG,Gnq Ñ tpG,W q ùñ Gn Ñ W.



3

The Purification of Graphons
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In the previous section, we worked with graphons over the space r0, 1s. In

general, it is convenient to define a graphon on an arbitrary space rather

than r0, 1s. Let us consider a probability space J “ pJ,A, πq. A graphon

on J is a symmetric measurable function W : J ˆ J Ñ r0, 1s.

In this chapter we explore a significant notion which is called a pure graphon.

The main references in this chapter are [13] and [12]. We first need to

investigate two essential concepts which are a pull-back of a graphon and a

weak isomorphism between two graphons.

Let us consider two probability spaces pJ1,A1, π1q and pJ2,A2, π2q, and a

measure preserving function φ : pJ1,A1, π1q Ñ pJ2,A2, π2q. Let W and W 1

be graphons on pJ1,A1, π1q and pJ2,A2, π2q respectively. Then a pull-back

pW 1qφ can be defined as

pW 1
q
φ

px, yq “ W 1
pφpxq, φpyqq

for all x, y P J1. In addition, the function φ above is said to be a weak

isomorphism from W to W 1 if φ is a measure preserving from A1 to A2 and

W “ pW 1qφ almost everywhere.

Furthermore, we say that W and W 1 are weakly isomorphic if there is a

third graphon W 2 and weak isomorphisms from W and W 1 to W 2.

3.1 Pure graphons

We introduce a pure graphon. This pure version of graphon is uniquely

determined up to a permutation of r0, 1s. Before we state the definition of

pure graphon, we need to describe an important notion, the notion of twins.

Given a graphon W on a probability space pJ,A, πq, we say following [13]

that two points x and x1 in J are twins if W px, yq “ W px1, yq for almost all
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y in J . However, if no two distinct points in J are twins then we call W a

twin-free graphon.

Moreover, we say that the graphon W is almost twin-free if there exists a

null set N Ď J such that there are no twins x and x1 in JzN with x ‰ x1.

Example 3.1. Let W : r0, 1s ˆ r0, 1s Ñ r0, 1s. Then

• If W px, yq “ xy where x, y P r0, 1s, then W is a twin-free graphon.

• If

W px, yq “

$

’

&

’

%

1 if 0 ď x ď 1
2
, 0 ď y ď 1

2

0 otherwise,

then we can see that W is not twin-free graphon since for example 1
3

and 1
4
are twin points for W . In fact, x and x1 are twin points for W

if and only if x, x1 P r0, 1
2
s or x, x1 P p1

2
, 1s.

Theorem 3.2. [13, p. 219] For every graphon W on pJ,A, πq there is a

twin-free graphon W 1 on a probability space pJ 1,A1, π1q, and a measure

preserving map φ : J Ñ J 1 such that W “ pW 1qφ almost everywhere.

Proof. Let W be a graphon on pJ,A, πq. Define F to be the sub σ-algebra

of A consisting of sets F such that if x, y P J are twins for W then F does

not separate x and y. We get a new probability space pJ,F , πq.

Now, let us define U “ EpW |F ˆ Fq. Then we want to show that W “ U

almost everywhere. That means we need to show that for all A,B P A,

ż

AˆB

Wdπ ˆ dπ “

ż

AˆB

Udπ ˆ dπ.

Suppose that x and y are twin points and A P A. Then we define a function

XA “

ż

A

W p¨, yqdπpyq
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that is measurable with respect to F . Similarly, we can define a measurable

functions gA “ Ep1A|Fq where 1A is the indicator (characteristic) function,

and YA “
ş

W p¨, yqgApyqdπpyq. By using the measurable functions XA, gA

and YA, we have

ż

AˆB

Wdπ ˆ dπ “

ż

XA1Bdπ “

ż

XAgBdπ

“

ż

YB1Adπ “

ż

YBgAdπ

“

ż

WgABdπ ˆ dπ “

ż

UgABdπ ˆ dπ

“

ż

U1AˆBdπ ˆ dπ “

ż

AˆB

Udπ ˆ dπ.

Thus, W “ U almost everywhere.

Now, suppose that J 1 is the set of equivalence classes of being twins on J ,

and for x P J let φpxq be the equivalence class containing x. Define

A1
“ tφpCq : C P Fu,

and for C P A1 we define π1pCq “ πpφ´1pCqq. Then we get a new probability

space pJ 1,A1, π1q.

Let S1, S2 P J 1. Then we define

W 1
pS1, S2q “ Upx, yq “ W px, yq

for any x P S1 and y P S2. Since φ : J Ñ J 1 and W 1 : J 1 ˆ J 1 Ñ r0, 1s, we

can see that

J ˆ J
φˆφ
ÝÝÑ J 1

ˆ J 1 W 1

ÝÝÑ r0, 1s.

Therefore, pW 1qφ : J ˆ J Ñ r0, 1s, where pW 1qφ “ U “ W almost

everywhere.

Lovász and Szegedy in [15] define a neighbourhood distance as follows. Let
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W be a graphon on a probability space pJ,A, πq. For any x, y P J ,

rW px, yq “
›

›W px, ¨q ´ W py, ¨q
›

›

1
“

ż

J

ˇ

ˇW px, zq ´ W py, zq
ˇ

ˇdpπqz.

Definition 3.3. [15] A graphon W on a probability space pJ,A, πq is pure

if rW is a metric and the metric space pJ, rW q is complete and separable,

and π has full support.

Let us consider a probability space pJ,A, πq. A measurable set A of J is

called an atom if πpAq ą 0, and for every measurable subset B of A we have

πpAq “ πpBq or πpBq “ 0. If pJ,A, πq has no atom, we call it atomless. If

the measure space pJ,A, πq is atomless, then it is said to be standard if it

is isomorphic to r0, 1s with the Lebesgue measure, modulo null sets.

Suppose that we have a graphon W : J ˆ J Ñ r0, 1s on a probability space

J . For each x P J , we have a function Wx : J Ñ r0, 1s defined by

Wxpyq “ W px, yq, for all y P J.

That means Wx is a measurable function from J to r0, 1s and

ż

Wxpyqdy “

ż

W px, yqdxdy ă 8.

Thus, Wx P L1pJq.

Define a function φW : J Ñ L1pJq by φW pxq “ Wx. By a standard

argument in the monotone class theorem for functions, φW is measurable

(for more details [11]).

We define πW pAq “ πpφ´1
W pAqq for A Ď L1pJq, so that πW pAq is the measure

on L1pJq induced by the measure π on J .
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Now we define

JW “

"

f P L1
pJq : for every open set O that contains f, πW pOq ą 0

*

to be the support of πW . Thus, JW Ď L1pJq.

Lemma 3.4. [12, p. 34] For a graphon W on pJ,A, πq, the function φW

from J to JW is injective if and only if W is twin-free.

Proof. Assume that φW : J Ñ JW is injective. Then, for any x1, x2 P J we

have rW px1, x2q ą 0 if and only if x1 ‰ x2. That means J has no twins,

thusW is twin-free. Conversely, letW be a twin-free graphon. That implies

rW px1, x2q ą 0 for x1, x2 P J , then φW is injective.

Lemma 3.5. A graphon W on pJ,A, πq is pure if and only if φW : J Ñ JW

is a bijection.

Proof. Suppose that W is a pure graphon. Then by Definition 3.3, pJ, rW q

is a complete separable metric space and πW has full support. That means

J is twin-free, then by Lemma 3.4 φW : J Ñ JW is injective. If we have

a set tx P J : φ´1
W pxq “ Hu, then its measure is zero. That means φW is

bijective.

Conversely, suppose that φW : J Ñ JW is a bijection. If φW is measurable

and πW pXq “ πpφ´1
W pXqq for each X Ď L1pJq, then φW is measure

preserving bijection. Since JW Ď L1pJq then JW is a complete separable

metric space and πW has full support. Hence, W is a pure graphon.

Note that if we consider two equivalent graphons W and W1, where W is

pure, then it is not necessarily true that W1 is pure. However, we can say

that W1 is pure if for every x, not just for almost every x,

πpty : W px, yq ‰ W1px, yquq “ 0.
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Theorem 3.2 showed that for every graphon W there is a twin-free graphon

W 1 and a measure preserving map φ : J Ñ J 1 such that W “ pW 1qφ almost

everywhere. Now, we are going to see how Lovász in [13] proves that for

every twin-free graphon we can find a pure graphon weakly isomorphic to

it.

Theorem 3.6. [13, p. 223] For every twin-free graphon W there is a pure

graphon W 1 such that W and W 1 are weakly isomorphic.

Proof. Suppose we have a twin-free graphon W . For each x P J , we define

Wx : J Ñ r0, 1s by Wxpyq “ W px, yq for all y P J . Note that Wx P L1pJq.

Now, let us define a measurable function φW : J Ñ L1pJq by φW pxq “ Wx.

For A Ď L1pJq, we define πW pAq “ πpφ´1
W pAqq where πW pAq is measurable

on L1pJq. Define

JW “ tf P L1
pJq : for every open set O that contains f, πW pOq ą 0u

to be the support of πW , then JW Ď L1pJq. Note that JW is a separable

Banach space and πW has full support on JW since JW Ď L1pJq.

Suppose that J 1 “ tx P J : Wx P JW u, and let J 1
W “ tWx : x P J 1u. Then,

we define a map φ1 : J 1 Ñ J 1
W by x ÞÑ Wx which is bijective since W has

no twins. We need to show that the measure of JzJ 1 is zero.

If l P L1pJqzJW , then there is a neighbourhood Ul of l such that the

intersection of Ul and JW is empty and the measure πW of Ul is zero.

Then, Ul Ď L1pJqzJW and πptx P J : Wx P Uluq “ 0.

Suppose that U is the union of the neighbourhood Ul, where l R JW . Then,

U equals the union of some countable subfamily tUli : i P Nu if L1pJq

is separable, thus πptx P J : Wx P Uuq “ 0 by countably additive of π.

Therefore, we can see that the measure π of JzJ 1 is zero due to the fact

that JzJ 1 Ď U .
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We know that JW is a complete separable metric space and πW has full

support. Then πpJzJ 1q “ 0 implies that π1pJW zJ 1
W q “ 0, where π1 “

π ˝ pφ1q´1.

Now, we can define a new graphon ĂW : JW ˆ JW Ñ r0, 1s as follows. Let

f1, f2 P JW .

• If f1 P J 1
W then f1 “ Wx1 for some x1 P J . We define

ĂW pf1, f2q “ f2px1q.

• If f2 P J 1
W then f2 “ Wx2 for some x2 P J . We define

ĂW pf1, f2q “ f1px2q.

• If f1, f2 P J 1
W then

ĂW pf1, f2q “ f1px2q “ f2px1q “ W px1, x2q.

• If f1, f2 R J 1
W then ĂW pf1, f2q “ 0.

Now, we want to show that the graphon ĂW is pure by proving that r
ĂW and

the L1 norm are equal. That means they will have the same properties.

For any f1, f2 P J 1
W – J 1 there are x1 and x2 such that f1 “ Wx1 and

f2 “ Wx2 . Then,

r
ĂW pf1, f2q “

ż

J 1
W

|ĂWf1pgq ´ ĂWf2pgq| dπ1
pgq

“

ż

J 1
W

|ĂW pf1, gq ´ ĂW pf2, gq| dπ1
pgq

“

ż

J

|ĂW px1, yq ´ ĂW px2, yq| dπpyq

“ rW px1, x2q.
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Therefore,

r
ĂW pf1, f2q “ rW px1, x2q “ ||Wx1 ´ Wx2 ||1 “ ||f1 ´ f2||1 .

Since r
ĂW and the L1 norm are equal, then we can see that ĂW is pure.

Note that ĂW is a pullback of W and we see that

ĂW pf1, f2q “ ĂW pφW px1q, φW px2qq “ pĂW q
φW px1, x2q “ W px1, x2q.

Thus, W and ĂW are weakly isomorphic.

3.2 Some examples of graphon’s purification

We would like to give some examples which shows the purification of

graphons. In the beginning, we need to check whether a given graphon W

is pure. If so, then we are done. If not, then we have to find a pure

graphon which is weakly isomorphic to W .

Example 3.7. In this example we study the purification of the following

graphon

W px, yq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

x ` y, 0 ď x ď 1
2
, 0 ď y ď 1

2

px ´ 1
2
q ` y, 1

2
ă x ď 1, 0 ď y ď 1

2

x ` py ´ 1
2
q, 0 ď x ď 1

2
, 1

2
ă y ď 1

px ´ 1
2
q ` py ´ 1

2
q, 1

2
ă x ď 1, 1

2
ă y ď 1,

where W : r0, 1s ˆ r0, 1s Ñ r0, 1s.

The first step is to check whether rW , the neighbourhood distance function,

defines a metric on W . We have three cases to study by using the definition

of the neighborhood distance:
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Case 1: If x, y ď 1
2
, then

rW px, yq “

ż 1
2

0

|px ` zq ´ py ` zq|dz `

ż 1

1
2

|px ` z ´
1

2
q ´ py ` z ´

1

2
q|dz

“

ż 1
2

0

|x ` z ´ y ´ z|dz `

ż 1

1
2

|x ` z ´
1

2
´ y ´ z `

1

2
|dz

“ px ´ yqz

ˇ

ˇ

ˇ

ˇ

1
2

0

` px ´ yqz

ˇ

ˇ

ˇ

ˇ

1

1
2

“
|x ´ y|

2
` |x ´ y| ´

|x ´ y|

2

“ |x ´ y|.

Case 2: If x, y ě 1
2
, then we have

rW px, yq “ |x ´ y|.

Case 3: If x ě 1
2
and y ď 1

2
, then

rW px, yq “

ż 1
2

0

|px ` z ´
1

2
q ´ py ` zq|dz `

ż 1

1
2

|px ` z ´ 1q ´ py ` z ´
1

2
q|dz

“

ż 1
2

0

|x ` z ´
1

2
´ y ´ z|dz `

ż 1

1
2

|x ` z ´ 1 ´ y ´ z `
1

2
|dz

“

ż 1
2

0

|x ´ y ´
1

2
|dz `

ż 1

1
2

|x ´ y ´
1

2
|dz

“ px ´ y ´
1

2
qz

ˇ

ˇ

ˇ

ˇ

1
2

0

` px ´ y ´
1

2
qz

ˇ

ˇ

ˇ

ˇ

1

1
2

“
|x ´ y ´ 1

2
|

2
` |x ´ y ´

1

2
| ´

|x ´ y ´ 1
2
|

2

“ |x ´ y ´
1

2
|.

Therefore,

rW px, yq “

$

’

&

’

%

|x ´ y| if 0 ď x, y ď 1
2

or 1
2

ă x, y ď 1

|x ´ y ´ 1
2
| otherwise.

(3.2.1)
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The graphon W is not twin-free and therefore not pure. However, W is

weakly isomorphic to a pure graphon. Thus, we are going to find this pure

graphon.

First of all, let us modify the σ-algebra of the probability space

J “ pJ,A, πq. Suppose C is the collection of all Borel sets of p0, 1
2
s. Then

we define a new σ-algebra

A1
“

"

c Y pc `
1

2
q Y t0u, c Y pc `

1

2
q : c P C

*

.

Thus, we have another probability space J 1 “ pJ,A1, πq.

Now, letW 1 “ EpW |A1 ˆA1q. Then,W “ W 1 is A1-measurable, soW “ W 1

almost everywhere. Define J1 to be the set of equivalence classes of being

twins on J . That is

J1 “ t0u Y

"

tx, x `
1

2
u : 0 ă x ď

1

2

*

.

If x P r0, 1
2
s, then φpxq is the equivalence class containing x P J . Let

A1 “ tφpXq : X P A1u and define π1pXq “ πpφ´1pXqq for X P A1.

For instance, take X “ p1
4
, 1
3
q Y p3

4
, 5
6
q P A1. Then

π1pXq “ πpφ´1
pXqq “ p

1

4
,
1

3
q Y p

3

4
,
5

6
q “

1

12
`

1

12
“

1

6
.

We get a probability space J1 “ pJ1,A1, π1q.

For S, T P J1, we defineW1pS, T q “ W 1px, yq “ W px, yq for any x P S, y P T .

Now, φ : J Ñ J1 and W1 : J1 ˆ J1 Ñ r0, 1s.

For example, consider S “ t1
4
, 3
4
u and T “ t1

3
, 5
6
u. If we choose any x P S

and y P T , we will have the same result.

W1

ˆ

t
1

4
,
3

4
u, t

1

3
,
5

6
u

˙

“ W p
1

4
,
1

3
q “

1

4
`

1

3
“

7

12
.
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Also,

W1

ˆ

t
1

4
,
3

4
u, t

1

3
,
5

6
u

˙

“ W p
1

4
,
5

6
q “

1

4
` p

5

6
´

1

2
q “

7

12
.

Now we can say that r0, 1s ˆ r0, 1s
φˆφ
ÝÝÑ J1 ˆ J1

W1
ÝÝÑ r0, 1s then we get

Wφ
1 : J ˆ J Ñ r0, 1s where Wφ

1 “ W is the pullback of W1. Thus, we

have Wφ
1 “ W 1 “ W almost everywhere. Now, we have a twin-free graphon

W1 : J1 ˆ J1 Ñ r0, 1s and we want to see that is W1 pure? To study

the purifying of W1 we need to show that pJ1, rW1q is a complete separable

metric space and π1 has full support.

We know that for S, T P J1, we define W1pS, T q “ W 1px, yq “ W px, yq for

almost all x P S, y P T . That implies rW1pS, T q “ rW px, yq for x P S, y P T .

Let us again consider S “ t1
4
, 3
4
u and T “ t1

3
, 5
6
u then

rW1pS, T q “ rW p
1

4
,
1

3
q “

1

12
.

We notice that rW1pS, T q “ 0 if and only if S “ T . Therefore, rW1 is a

metric. Is the metric space pJ1, rW1q complete and separable? Recall that

J1 is the set of equivalence classes,

J1 “ t0u Y

"

tx, x ` 1{2u : 0 ă x ď
1

2

*

,

then let Sx “ tx, x ` 1
2
u and S0 “ t0u. Thus we can rewrite J1 as

J1 “ tSx : 0 ď x ď
1

2
u,

and also we have the formula rW1pSx1 , Sx2q “ |x1 ´ x2|.

Take a Cauchy sequence in pJ1, rW1q. The distance formula is the same as

a Cauchy sequence in r0, 1s. Let X be a set of representatives of J1, i.e. for

every equivalence class in J1, we choose an element. Consider S1, S2 P J1,
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then let x1 and x2 be the respective representatives. Then,

rW1pS1, S2q “ rW px1, x2q “

ż

z

|W px1, zq ´ W px2, zq|dz.

Now suppose we have a Cauchy sequence in pJ1, rW1q, say pS1, S2, S3, . . . q,

we want to show that for some ϵ ą 0 there exists N P N such that for all

i, j ą N we have

rW1pSi, Sjq ă ϵ.

That is,
ż

z

|W pxi, zq ´ W pxj, zq|dz ă ϵ

for all i, j ą N .

We want to know if this Cauchy sequence converges to an element of

pJ1, rW1q. i.e. is there S P pJ1, rW1q such that pS1, S2, . . . q Ñ S? Suppose

that pSx1 , Sx2 , Sx3 , . . . q is a Cauchy sequence where 0 ď xi ď 1
2
. Since the

Cauchy sequence px1, x2, x3, . . . q converges to x in the standard metric

space then pSx1 , Sx2 , Sx3 , . . . q converges to Sx in pJ1, rW1q. That means

pJ1, rW1q is complete.

Now we want to show that pJ1, rW1q is separable metric space. That means

we need to find a countable dense subset of J1. Let JQ
1 “ tSx : 0 ď x ď

1
2
, x P Qu. Let T P J1 and take ϵ ą 0. Consider the open set L “ tS P J1 :

rW1pS, T q ă ϵu, we show that L X JQ
1 ‰ H.

Suppose x is the representative of T . Given ϵ ą 0, then there exists y P Q

such that |x ´ y| ă ϵ. Then Sy “ ty, y ` 1
2
u P JQ

1 and

|Sy ´ T | “ |x ´ y| ă ϵ.

Hence the metric space pJ1, rW1q is separable.

Finally, we want to show that π1 has full support (i.e. we need to show that

every open set has a positive measure zero). Take any point x of an open
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set A in J1. Then, there exists ϵ ą 0 such that Bϵpxq Ď A. Thus

πpAq ě πpBϵpxqq “ 2ϵ ą 0 ùñ 0 ă πpAq.

Since pJ1, rW1q is a complete separable metric space and π1 has full support,

W1 is a pure graphon which is weakly isomorphic to W .

Example 3.8. Let W px, yq be the graphon W px, yq “ x2y2 where x, y P

r0, 1s. We show that W px, yq is twin-free. We want to find rW px, yq and

then study whether the metric space pr0, 1s, rW q is complete and separable.

First of all, let us find rW .

rW px, yq “

ż

z

|W px, zq ´ W py, zq|dz

“

ż 1

0

|x2z2 ´ y2z2|dz

“
z3

3
|x2 ´ y2|

ˇ

ˇ

ˇ

ˇ

1

0

“
1

3
|x2 ´ y2|.

To show pr0, 1s, rW q is a complete metric space, we need to show pr0, 1s, rW q

is compact. Suppose we have two metric spaces the standard metric space

X “ pr0, 1s, dq and Y “ pr0, 1s, rW q. Note that if φ : X Ñ Y is a continuous

function, then φrKs is compact in Y for every compact subset K Ď X.

Claim. Let φ : X Ñ Y be the identity function. We claim that φ is

continuous. In particular, every open set in Y is also open in X.

Proof: Let BrW px, ϵq “ ty P r0, 1s : rW px, yq ă ϵu be an arbitrary open ball

in Y . We want to show that BrW px, ϵq is an open in X. Indeed, notice that

BrW px, ϵq “ p
?
x2 ´ 3ϵ,

?
3ϵ ` x2q is an open interval in X where x ‰ 0 and

x ‰ 1.

• If x “ 0, then BrW p0, ϵq “ r0,
?
3ϵq is open in X.
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• If x “ 1, then BrW p1, ϵq “ p
?
1 ´ 3ϵ, 1s is also open in X.

We can conclude that φ is continuous and thus Y “ φrXs is compact since

X “ pr0, 1s, dq is compact. ■

Now, we can say that Y “ pr0, 1s, rW q is complete since it is a compact

metric space.

The metric space pr0, 1s, rW q is separable since it is homeomorphic to the

standard topology of pr0, 1s, dq.

Now we want to show that pr0, 1s, rW q has full support. Let A be any open

set in r0, 1s. Then, there exists ϵ ą 0 and x P A such that Bϵpxq Ď A. We

want to show that πpBϵpxqq ą 0.

πpBϵpxqq “ 2ϵ ą 0 ùñ πpAq ą 0.

Thus, every open set of pr0, 1s, rW q has positive measure and therefore W

is pure.

Example 3.9. Let W : r0, 1s ˆ r0, 1s Ñ r0, 1s be the graphon defined by

W px, yq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1 if 0 ď x ď 1
2
, 0 ď y ď 1

2

1 if 1
2

ă x ď 1, 1
2

ď y ď 1

0 otherwise.

(3.2.2)

First of all, we want to see if the graphon W is pure. Therefore, the first

thing to do is to see if rW is a metric. Let 0 ď x, y ď 1
2
, then by the

definition of the neighborhood distance we get that

rW px, yq “

ż 1
2

0

|1 ´ 1|dz `

ż 1

1
2

|0 ´ 0|dz “ 0.

Similarly, if 1
2

ă x, y ď 1 then rW px, yq “ 0. Also, let 0 ď x ď 1
2
and
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1
2

ă y ď 1, thus

rW px, yq “

ż 1
2

0

|1 ´ 0|dz `

ż 1

1
2

|0 ´ 1|dz “ 1.

In the same way, if 0 ď y ď 1
2
and 1

2
ă x ď 1, then rW px, yq “ 1.

Therefore,

rW px, yq “

$

’

&

’

%

0 if 0 ď x, y ď 1
2

or 1
2

ă x, y ď 1

1 otherwise.

(3.2.3)

Thus, rW is not a metric since we can have rW px, yq “ 0 for x ‰ y. That

means the graphon W is not pure. However, W is weakly isomorphic to a

pure graphon. Thus, we are going to find this pure graphon.

First of all, let us modify the σ-algebra of the probability space

J “ pJ,A, πq. Define the new σ-algebra A1 “
␣

H, r0, 1
2
s, p1

2
, 1s, r0, 1s

(

and

let J 1 “ pJ,A1, πq. Define W 1 “ EpW |A1 ˆ A1q. In fact, W “ W 1 is

A1-measurable so we can have W 1 “ W almost everywhere. Let J1 be the

set of equivalence classes of being twins on J . That is J1 “
␣

r0, 1
2
s, p1

2
, 1s

(

.

If x P r0, 1s, then φpxq is the equivalence class containing x P J . Let

A1 “

"

H, tr0,
1

2
su, tr

1

2
, 1su,

␣

r0,
1

2
s, r

1

2
, 1s

(

*

,

and define π1pXq “ π
`

φ´1pXq
˘

where X P A1. Thus,

π1pHq “ π
`

φ´1
pHq

˘

“ 0

π1
`

tr0,
1

2
su
˘

“ π
`

φ´1
ptr0,

1

2
suq

˘

“
1

2

π1
`

tr
1

2
, 1su

˘

“ π
`

φ´1
ptr

1

2
, 1suq

˘

“
1

2

π1
`

tr0,
1

2
s, r

1

2
, 1su

˘

“ π
`

φ´1
ptr0,

1

2
s, r

1

2
, 1suq

˘

“ 1.

Thus, we get a probability space J1 “ pJ1,A1, π1q. From the above
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calculation we notice that all the sets in A1 have positive measure except

H. Hence, π1 has full support.

For S, T P J1, we define W1pS, T q “ W 1px, yq for any x P S, y P T . Now,

φ : J Ñ J1 and defineW1 : J1ˆJ1 Ñ R. Let us consider any point x P r0, 1s,

say x “ 1
4
, then φpxq “ r0, 1

2
s. Then

Wφ
1

`1

4
,
1

4

˘

“ W1

`

r0,
1

2
s, r0,

1

2
s
˘

“ 1 “ W 1
`1

4
,
1

4

˘

,

where Wφ
1 is the pullback of W1, i.e r0, 1s ˆ r0, 1s

φˆφ
ÝÝÑ J1 ˆ J1

W1
ÝÝÑ R then

we get Wφ
1 : J ˆJ Ñ R. Thus, we have Wφ

1 “ W 1 “ W almost everywhere.

Now, we have a twin-free graphon W1 : J1 ˆ J1 Ñ R and we want to see

that is this twin-free graphon pure? To show that W1 is pure we need to

show pJ1, rW1q is a complete separable metric space and π1 has full support.

We already knew that π1 has full support. We only need to prove that

pJ1, rW1q is complete and separable metric space. Since our metric space

pJ1, rW1q is finite, then it is compact (every open cover of pJ1, rW1q has a

finite subcover). Then, the metric space pJ1, rW1q is complete. Moreover,

the metric space pJ1, rW1q is separable because it is compact. Therefore, the

twin-free graphon W1 is a pure graphon which is weakly isomorphic to W .



4

k-Uniform Hypergraphs and

k-Uniform Hypergraphons
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This chapter explores a notion of k-uniform hypergraphon from different

perspectives such as Elek and Szegedy in [8] and Zhao in [22]. We give a

new definition of k-uniform hypergraphon on arbitrary measure space.

Furthermore, we show that every k-uniform hypergraphon is weakly

isomorphic to a twin-free separable k-uniform hypergraphon by following

the work of Borge, Chayes and Lovász with graphons [6].

4.1 History/Known results

According to Lovász’s book [13], a hypergraph is a pair H “ pV,Eq where

V is a finite set and E Ď V k for some k ě 2. We consider exclusively

k-uniform hypergraphs where H “ pV,Eq is a k-uniform hypergraph if and

only if E Ď V k is symmetric in the sense that

px1, . . . , xkq P E ðñ pxσp1q, . . . , xσpkqq P E

for every permutation σ of t1, . . . , ku “ rks. In particular, 2-uniform

hypergraphs are equivalent to simple graphs. That means graphs are a

special case of hypergraphs.

Suppose we have two k-uniform hypergraphs F and H, and a map

φ : V pF q Ñ V pHq. If e “ tv1, v2, . . . , vku P EpF q, then we define

φpeq “ tφpv1q, φpv2q, . . . , φpvkqu P V pHqk. We say that φ is a k-uniform

hypergraph homomorphism if φpeq P EpHq for every e P EpF q. The

number of homomorphisms from F to H is denoted hompF,Hq. The

homomorphism density of F in H

tpF,Hq “
hompF,Hq

|V pHq||V pF q|
,

denotes the probability that a random map of V pF q into V pHq is a

homomorphism [8, p. 1735].
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Zhao in [22] states that a sequence of k-uniform hypergraphs H1, H2, . . . is

called convergent if the sequence tpF,H1q, tpF,H2q, . . . converges for every

k-uniform hypergraph F . From this definition, it would seem that we could

define a hypergraphon as a functionW : r0, 1sk Ñ r0, 1s which is the limit of

a sequence of hypergraphs. However, as Zhao explains this definition does

not work. We give Zhao’s definition below.

Elek and Szegedy built up the theory of limit hypergraphs from scratch

using an ultraproduct, and they defined a k-uniform hypergraphon as a limit

object of convergent sequences of k-uniform hypergraphs. For more details

see [8]. Below we discuss the relation between two definitions of k-uniform

hypergraphon, the first by Elek and Szegedy and the second by Zhao.

First of all, let us introduce some notation. We will then describe a k-

uniform hypergraphon. For a set A, define rpAq to be the set of all nonempty

subsets of A, and răpAq to be the set of all nonempty proper subsets of A.

If X is a set and R is a finite set, we define XR to be |R| copies of X with

each copy indexed by an element of R.

Definition 4.1. The symmetric group Sk acts naturally on a power set

P prksq. Suppose that c Ď P prksq is closed under the action of Sk. This

induces a bijection Xc Ñ Xc for any set X. We say that a function f :

Xc Ñ Y is symmetric if fpxq “ fpσpxqq for all σ P Sk and all x P Xc.

Definition 4.2. [8] A k-uniform ES-hypergraphon is a symmetric, under

the action of Sk, measurable function H : r0, 1srprksq Ñ t0, 1u.

Definition 4.3. [22] A k-uniform Z-hypergraphon is a symmetric, under

the action of Sk, measurable function H : r0, 1srăprksq Ñ r0, 1s

We notice a difference between Elek and Szegedy’s Definition 4.2 and Zhao’s

Definition 4.3 of k-uniform hypergraphons. Therefore, our purpose here is

to explore the relationship between those definitions.
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Definition 4.4. We say that a ES-hypergraphon H is well-behaved if for

every v⃗ P r0, 1srăprksq there exactly one x P r0, 1s such that Hpv⃗, xq “ 1.

Proposition 4.5. From every k-uniform Z-hypergraphon we can produce

a k-uniform ES-hypergraphon.

Proof. Notice that for a finite set A,

rpAq “ P pAqztHu “ răpAq Y tAu

Hence r0, 1srprksq “ r0, 1srăprksq ˆ r0, 1s.

• Subsets of r0, 1srprksq can be represented as functions r0, 1srprksq to

t0, 1u by identifying every subset B Ď r0, 1srprksq by the characteristic

function χB, where

χBpx⃗q “

$

’

&

’

%

1 if x⃗ P B,

0 otherwise,

(4.1.1)

for x⃗ P r0, 1srpkq.

• Every function f : r0, 1srăprksq Ñ r0, 1s can be understood as a subset

of r0, 1srăprksq ˆ r0, 1s by identifying f with its graph tpv⃗, fpv⃗qq : v⃗ P

r0, 1srăprksqu. Hence every k-uniform Z-hypergraphon is a k-uniform

ES-hypergraphon.

Proposition 4.6. If H is a well-behaved ES-hypergraphon, then we can

produce a Z-hypergraphon.

We prove this proposition by reversing the argument of the Proposition 4.5

proof.
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Proof. Suppose H is a well-behaved ES-hypergraphon H : r0, 1srprksq Ñ

t0, 1u such that for every v⃗ P r0, 1srăprksq there exactly one x P r0, 1s such

that Hpv⃗, xq “ 1. Identify H with the subset of r0, 1sprksq given by

tx⃗ P r0, 1s
rprksq : Hpx⃗q “ 1u.

Then, we identify this with a subset L of r0, 1srăprksq ˆr0, 1s. Since H is well-

behaved, for each v⃗ P r0, 1srăprksq there is a unique x P r0, 1s with pv⃗, xq P L.

Define a Z-hypergraphon HZpv⃗q “ x.

Note that if H is not well-behaved then we have Hpv⃗, xq “ Hpv⃗, yq for some

v⃗ P r0, 1srăprksq and x ‰ y P r0, 1s. In this case, we can identify the function

r0, 1srprksq Ñ t0, 1u with a subset of r0, 1srăprksq ˆ r0, 1s but not with a unique

map r0, 1srăprksq Ñ r0, 1s.

Proposition 4.7. [8] Suppose H is an ES-hypergraphon. Then we can

define a Z-hypergraphon HZ by setting

HZpxq “

ż 1

0

Hpx, xqdx

for x P r0, 1srăprksq.

4.1.1 A hypergraphon from Zhao’s point of view

Here we give a brief explanation about the definition of hypergraphon by

Zhao [22] with more details and examples.

For a set A, rpA,mq “ rAsďmzH, which is the set of all nonempty subsets of

A with size at mostm . Any permutation σ on a set A induces a permutation

on rpA,mq.
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Example 4.8. Let A “ t1, 2, 3u “ r3s and m “ 2. Then,

răpr3sq “

"

t1u, t2u, t3u, t1, 2u, t1, 3u, t2, 3u

*

Suppose σ : A Ñ A is the permutation that maps 1 ÞÑ 3, 2 ÞÑ 2, and 3 ÞÑ 1.

Then σ induces the permutation on rpA,mq given by

t1u ÞÑ t3u, t1, 2u ÞÑ t2, 3u,

t2u ÞÑ t2u, t1, 3u ÞÑ t1, 3u,

t3u ÞÑ t1u, t2, 3u ÞÑ t1, 2u.

A function H : r0, 1srprks,mq Ñ r0, 1s is symmetric if it is invariant under any

permutation of rprks,mq induced by permutations of k.

Example 4.9. We work out what it means exactly for a function H :

r0, 1srpr3s,2q Ñ r0, 1s to be symmetric . Now we have to consider all possible

permutations of t1, 2, 3u which are given by

S3 “
␣

I, p12q, p13q, p23q, p123q, p132q
(

.

We view our function H as H : r0, 1s6 Ñ r0, 1s where the copies of r0, 1s are

indexed by the elements of răpr3sq.

In Zhao’s paper [22] the notation for a typical element of r0, 1s6 reflects this:

we write px1, x2, x3, x12, x13, x23q for a typical element of r0, 1s6 “ r0, 1srăpr3sq.

So, a symmetric H should satisfy:

Hpx1, x2, x3, x12, x13, x23q “ Hpx1, x3, x2, x13, x12, x23q

“ Hpx3, x2, x1, x23, x13, x12q “ Hpx2, x1, x3, x12, x23, x13q

“ Hpx2, x3, x1, x23, x12, x13q “ Hpx3, x1, x2, x13, x23, x12q

We note that being symmetric does not imply being invariant under all
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permutations of răprksq. For example, it is not necessary to have

Hpx1, x2, x3, x12, x13, x23q “ Hpx13, x2, x3, x12, x1, x23q

4.2 k-uniform hypergraphons from our point

of view

After we discussed the relationship between Elek and Szegedy’s definition

and Zhao’s definition of k-uniform hypergraphon in the previous sections,

we would like to introduce our definition. Rather than working only with

the space r0, 1s, we will work with an arbitrary measure space. This will

enable us to construct twin-free hypergraphons. We can see in Example 3.9

why changing the space is sometimes necessarily. From now on we fix k ě 2

and we let l “ 2k ´ 2. Hence l is the number of proper nonempty subsets

of rks.

Definition 4.10. Consider an arbitrary measure space pJ,A, πq. We say

that a k-uniform hypergraphon is a map H : J l Ñ r0, 1s which is symmetric

under the action of Sk and is a bounded measurable function with respect

to pJ l,Al, πlq.

Suppose we have a sequence x “ px1, x2, . . . , xrq. We denote

xpĵq “ px1, x2, . . . , xj´1, xj`1, . . . , xrq

the sequence obtained by removing the jth term from x. Furthermore, we

denote

xypǰq “ px1, x2, . . . , xj´1, y, xj, . . . , xrq

the sequence obtained by inserting y before the jth term of x. When we

integrate over multiple terms, we will use the notation dpxq to denote

dx1dx2 . . . dxr; similarly for dpxpĵqq and dpxpǰqq.



Chapter 4: k-Uniform Hypergraphs and k-Uniform Hypergraphons 67

We identify x P J l as x “ px1, x2, . . . , xk, x12, x13, . . . , x23...kq where the

subscripts correspond to the nonempty proper subsets of rks. For 1 ď i ď

k ´ 1, set

ϱpiq “

«

i´1
ÿ

j“1

ˆ

k

j

˙

ff

` 1

which is the coordinate where x1...i lies. Then xpyϱpiqq denotes the sequence

x “ px1, x2, . . . , xk, x12, . . . , x23...kq with the term x1...i removed.

Now we are going to define some notions that are related to how “nice” a

k-uniform hypergraphon and the underlying measure space are.

Let H be a k-uniform hypergraphon on an arbitrary measure space

pJ,A, πq. Then H is strong if it is measurable with respect to the

σ-algebra Al. The completion of H, denoted by H, is the same function of

the k-uniform hypergraphon H but considered with respect to the

completion of A, which is A. If a k-uniform hypergraphon equal to its

completion, then it is complete. We say that the k-uniform hypergraphon

H is separable if the measure space pJ,A, πq is separable.

If S is a set and x “ pxi : i P Sq P JS, then if T Ď S, we write xT “ pxi :

i P T q P JT . In particular, we will consider the case where F “ pV,Eq is a

k-uniform hypergraph and S “ rpV pF q, k ´ 1q and T “ rpA, k ´ 1q where

A P EpF q.

The next definitions are analogues of the definitions given in [6].

Definition 4.11. Let F “ pV,Eq be a k-uniform hypergraph and let H be

a k-uniform hypergraphon. We define the homomorphism density

tpF,Hq “

ż

JrpF,k´1q

ź

APE

HpxrăpAqqdx.

For example, let F
p3q

6 “ t123, 124, . . . , 156, 234, . . . , 256, 345, . . . , 356, 456u

be the complete 3-uniform hypergraph on 6 vertices and H a 3-uniform
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hypergraphon. Then,

tpF
p3q

6 ,Hq “

ż

J21

Hpx1, x2, x3, x12, x13, x23qHpx1, x2, x4, x12, x14, x24q . . .

. . .Hpx3, x5, x6, x35, x36, x56qHpx4, x5, x6, x45, x46, x56q d1d2 . . . d56.

We can obtain a new k-uniform hypergraphon by applying a “pull-back”

using a measure preserving function. Let pJ,A, πq and pJ 1,A1, π1q be two

measure spaces. Suppose that H1 is a k-uniform hypergraphon on

pJ 1,A1, π1q, and φ : pJ,A, πq Ñ pJ 1,A1, π1q is a measure preserving

function. If x “ px1, x2, . . . , x23...kq P J l, we define

φpxq “
`

φpx1q, φpx2q, . . . , φpx23...kq
˘

P pJ 1
q
l.

Then we define the pull-back H “ pH1qφ to be the k-uniform hypergraphon

on pJ,A, πq given by

pH1
q
φ

pxq “ H1
`

φpxq
˘

for all x P J l.

We say that two k-uniform hypergraphons H and H1 on pJ,A, πq and

pJ 1,A1, π1q are isomorphic mod 0 if there exists a measure preserving map

φ : J Ñ J 1 such that φ is an isomorphism mod 0 and pH1qφ “ H almost

everywhere in J l.

Definition 4.12. Let H and K be two k-uniform hypergraphons on the

measure spaces pJ,A, πq and pΛ,B, νq. If φ : J Ñ Λ is a measure preserving

function from A into B such that H “ Kφ almost everywhere, then φ is a

weak isomorphism from H to K.

Definition 4.13. Two k-uniform hypergraphons H and H1 are weakly

isomorphic if we have another k-uniform hypergraphon K and weak

isomorphism functions from H and H1 into K.

Now we are going to generalize the definition of a twins of a graphon given
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in [6].

Definition 4.14. Let H be a k-uniform hypergraphon on a measure space

pJ,A, πq. For ρ P Sl and z P J l, we define zρ to be z with the entries

permuted by ρ. We say that x, x1 P J are twins if

Hpx, y2, . . . , y23...kq
ρ

“ Hpx1, y2, . . . , y23...kq
ρ

for almost all y “ py2, y3, . . . , y23...kq P J l´1, and all ρ P Sl.

We call the k-uniform hypergraphon H twin-free if no two points in J are

twins in H. Furthermore, we say that the k-uniform hypergraphon H is

almost twin-free if there exists a null set N of J such that no two points in

JzN are twins.

We are going to investigate how can we convert a k-uniform hypergraphon

into a twin-free separable k-uniform hypergraphon.

4.3 Reduction of k-uniform hypergraphons

Analogously to [6, Theorem 3.2] we want to show that every k-uniform

hypergraphon is weakly isomorphic to a twin-free separable k-uniform

hypergraphon. To show this we are going to manipulate the corresponding

σ-algebra and modify the k-uniform hypergraphon. However, we need to

recall Theorem 2.32.

Suppose that pJi,Ai, πiq, where i “ 1, . . . , l, are finite measure spaces. Then

there exists a unique measure π1 b ¨ ¨ ¨ b πl on the product space pJ1 ˆ ¨ ¨ ¨ ˆ

Jl,A1 ˆ ¨ ¨ ¨ ˆ Alq with the property that

pπ1 b ¨ ¨ ¨ b πlqpA1 ˆ ¨ ¨ ¨ ˆ Alq “ π1pA1q . . . πlpAlq

for all A1 ˆ ¨ ¨ ¨ ˆ Al P Ai.
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The following lemma allows us to change a σ-algebra to a countably

generated one.

Lemma 4.15. Suppose pJ,Aq is a measurable space, and let

F : Jm Ñ R

be a measurable function with respect to Am. Then there exist a countably

generated σ-algebra B Ď A such that F is measurable with respect to Bm.

The proof of this lemma is similar to the graphon case in [6] by using the

monotone class theorem for functions, Theorem 2.28.

Proof. Let G be the set of all bounded functions f which are measurable

with respect to Am such that Lemma 4.15 is true. The set G is a vector

space since it is closed under linear combinations, so that af1 ` bf2 P G

where f1, f2 P G and a, b P R, and it contains the multiplicative identity 1.

Furthermore, G is closed under bounded increasing limits, meaning that for

any bounded sequence from G with Fn ď Fn`1 for all n, we have lim
nÑ8

Fn P G.

By the monotone class theorem 2.28, G contains all bounded functions that

are measurable with respect to the σ-algebra generated by Am.

Next we explore how to construct a new k-uniform hypergraphon from a

given k-uniform hypergraphon using the idea of a push-forward, as we

explain.

Suppose we have two measure spaces, say pJ,A, πq and pJ 1,A1, π1q, and

let φ : J Ñ J 1 be a measure preserving map. We say that a k-uniform

hypergraphon Hφ on pJ 1,H1, π1q is the push-forward of H by φ if

ż

pA1ql

Hφpx1
q dπ1

px1
q “

ż

φ´1ppA1qlq

Hpxq dπpxq (4.3.1)
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holds for all A1 P A1.

In order to prove next lemma we need to state a theorem of Radon-Nikodym

[18].

Theorem 4.16 (Radon-Nikodym Theorem). Let pJ,A, πq be a σ-finite

measure space and µ a σ-finite measure defined on the space pJ,Aq that is

absolutely continuous with respect to π. Then there exists a nonnegative

π-measurable function H such that

µpAq “

ż

A

Hdπ

for all A P A. The function H is unique in the sense that if h is any

nonnegative π-measurable function on J that also has this property, then

h “ H almost everywhere with respect to π. The function H is called the

Radon-Nikodym derivative of µ and is denoted by H “
dµ
dπ
.

The following lemma says that the push-forward Hφ is well defined and it

gives the relation between the push-forward and the pull back pHφqφ.

Lemma 4.17. Suppose that we have two measure spaces pJ,A, πq and

pJ 1,A1, π1q and a measure preserving map φ : J Ñ J 1. Let H be a given

k-uniform hypergraphon on pJ,A, πq. Then

(i) There is a functionHφ : pJ 1ql Ñ R which is measurable with respect to

pA1ql and the measure π1 which satisfies Hφ “ dµ{dpπ1q. In particular,

µ is the measure on pA1ql defined by

µpA1
1 ˆ ¨ ¨ ¨ ˆ A1

lq “

ż

A1
1ˆ¨¨¨ˆA1

l

Hφdπ
1

for A1
1, . . . , A

1
l P A1. The function Hφ is unique up to changes on a set

of π1- measure zero in pJ 1ql.
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(ii) If Aφ “ tφ´1pAq : A P A1u, then pHφqφ “ EpH|Al
φq almost

everywhere.

(iii) If φ is actually a measure preserving embedding of pJ,A, πq into

pJ 1,A1, π1q, then pHφqφ “ H almost everywhere.

Proof. piq Let us define a measure µ on pA1ql by

µpA1
1 ˆ ¨ ¨ ¨ ˆ A1

lq “

ż

φ´1pA1
1qˆ¨¨¨ˆφ´1pA1

lq

Hdπ

for A1
1, . . . , A

1
l P A. Since H takes values in r0, 1s we have

µpA1
1 ˆ ¨ ¨ ¨ ˆ A1

lq ď πpφ´1
pA1

1q ˆ ¨ ¨ ¨ ˆ φ´1
pA1

lqq.

Since φ is a measure preserving map from J to J 1, we have

µpA1
1 ˆ ¨ ¨ ¨ ˆ A1

lq ď π1
pA1

1 ˆ ¨ ¨ ¨ ˆ A1
lq

for all A1
1 ˆ ¨ ¨ ¨ ˆ A1

l P A1. That means µ is absolutely continuous with

respect to π1 and hence the Radon-Nikodym derivative of µ with respect to

π1 is well defined and is equal to Hφ, i.e.

Hφ “
dµ

dπ1
.

The uniqueness of Hφ follows from the Radon-Nikodym theorem.

piiq Assume that A1, . . . , Al P Aφ where A1 “ φ´1pA1
1q, . . . , Al “ φ´1pA1

lq

for some A1
1, . . . , A

1
l P A1. Since φ is measure preserving, and Hφ : pJ 1ql Ñ R

we show that H “ pHφqφ almost everywhere. It suffices to show that
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ż

A1ˆ¨¨¨ˆAl

Hpxq dπpxq “

ż

A1
1ˆ¨¨¨ˆA1

l

Hφpx1
q dπ1

px1
q

“

ż

A1ˆ¨¨¨ˆAl

Hφpφpxqq dπpxq “

ż

A1ˆ¨¨¨ˆAl

pHφq
φ

pxq dπpxq

Therefore, pHφqφ “ EpH|Al
φq almost everywhere.

piiiq Now suppose that φ is embedding. Then φ is an isomorphism between

pJ,A, πq and a subspace of pJ 1,A1, π1q. For any A P A we get A1 P A1 such

that A1 X φpJq “ φpAq. However, φ´1pA1q “ φ´1pφpAqq “ A which means

A P Aφ. Hence, A “ Aφ ùñ H “ pHφqφ almost everywhere.

Definition 4.18. Suppose that pJ,A, πq and pJ 1,A1, π1q are measure spaces,

and φ : J Ñ J 1 is a measure preserving map. Let H and Hφ be k-uniform

hypergraphons on pJ,A, πq and pJ 1,A1, π1q respectively. We say that φ is

an embedding of H into Hφ if φ is embedding of pJ,A, πq into pJ 1,A1, π1q

and pHφqφ “ H almost everywhere.

Now by using the construction of the push-forward we can define quotients

of k-uniform hypergraphons.

Definition 4.19. Let H be a k-uniform hypergraphon on a measure space

pJ,A, πq. Let P be an arbitrary partition of J into disjoint sets. For x P J ,

we let rxs be the class in P which contains x. Then we define a k-uniform

hypergraphon

H{P “ pJ{P ,A{P , π{Pq

and a measure preserving map φ : J Ñ J{P as follows:

• the points in J{P are the classes of the partition P .

• φ is the map x ÞÑ rxs.

• A{P is the σ-algebra consisting of the sets A1 Ď J{P such that

φ´1pA1q P A.
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• pπ{PqpA1q “ πpφ´1pA1qq.

Then φ is measure preserving. We define H{P “ Hφ as in (4.3.1).

Analogously to the graphon case in [6] we are going to express several

lemmas that describe how we can reduce every k-uniform hypergraphon to

a twin-free separable k-uniform hypergraphon.

Lemma 4.20. Suppose H is a k-uniform hypergraphon on a measure space

pJ,A, πq. Then we can obtain a strong k-uniform hypergraphon by changing

the value of H on a set of measure zero with respect to π.

Proof. Let H be a k-uniform hypergraphon. We want to find a strong k-

uniform hypergraphon H1 equivalent to H. Define H1 “ EpH|Alq. That

means H1 is measurable with respect to Al. Then it is sufficient to show

that H “ H1 almost everywhere. For all A P A, define the measurable

functions

XA “

ż

A

Hdπ, gA “ Ep1A|Aq, YA “

ż

A

HgAdπ.

Thus,

ż

Al

H dπ1 ˆ ¨ ¨ ¨ ˆ dπl “

ż

XA1Al´1 dπ1 ˆ ¨ ¨ ¨ ˆ dπl´1

“

ż

XAgAl´1 dπ1 ˆ ¨ ¨ ¨ ˆ dπl´1

“

ż

XAgAgAl´2 dπ1 ˆ ¨ ¨ ¨ ˆ dπl´1

“

ż

YAgAl´21A dπ1 ˆ ¨ ¨ ¨ ˆ dπl´1

“

ż

YAgAl´2gA dπ1 ˆ ¨ ¨ ¨ ˆ dπl´1

“

ż

HgAgAl´2gA dπ1 ˆ ¨ ¨ ¨ ˆ dπl

“

ż

HgAl dπ1 ˆ ¨ ¨ ¨ ˆ dπl



Chapter 4: k-Uniform Hypergraphs and k-Uniform Hypergraphons 75

“

ż

H1gAl dπ1 ˆ ¨ ¨ ¨ ˆ dπl

“

ż

H11Al dπ1 ˆ ¨ ¨ ¨ ˆ dπl

“

ż

Al

H1 dπ1 ˆ ¨ ¨ ¨ ˆ dπl

for all Al P Al.

Similarly for all sets S in Al we have that

ż

S

H1 dπ “

ż

S

H dπ.

Therefore, H “ H1 almost everywhere.

Lemma 4.21. If H is a k-uniform hypergraphon on pJ,A, πq, then there

exists a countably generated σ-algebra A1 Ď A such that H is measurable

with respect to pA1ql.

Proof. It is enough to use Lemma 4.15.

Definition 4.22. Let H be a k-uniform hypergraphon on pJ,A, πq. The σ-

algebra A of subsets of J induces a partition PrAs of J by using the relation

of equivalence, x1 „ x2 if and only if for every A P A either x1, x2 P A or

x1, x2 R A.

Lemma 4.23. Let H be a k-uniform hypergraphon on pJ,A, πq. Then, the

k-uniform hypergraphon H{PrAs is separating. If H is countably generated,

then so is H{PrAs.

Proof. Let B “ A{PrAs be the σ-algebra of J{PrAs. Then by construction, B

is separating so H{PrAs is separating. Moreover, if H is countably generated

then its σ-algebra A is countably generated.

Now, if we identify elements in the same class of the partition PrAs, then B

isomorphic to A. Thus, we can see that H{PrAs is countably generated.
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Lemma 4.24. If H is a separating k-uniform hypergraphon on a measure

space with a countable basis, then H can be embedded in a separable k-

uniform hypergraphon.

Proof. LetH be a separating k-uniform hypergraphon on pJ,A, πq. Suppose

thatA is generated by a countable set C, then C is a basis for the completion

of pJ,A, πq. Thus, we have an embedding map φ from the completion of

pJ,A, πq to a separable measure space pJ 1,A1, π1q. If we take H1 to be the

push-forward of H, then H1 “ Hφ. By Lemma 4.17 we get that pH1qφ “

pHφqφ “ H almost everywhere. That means φ is an embedding of H into

the separable k-uniform hypergraphon H1.

Lemma 4.25. Suppose that H is a k-uniform hypergraphon, and let P

be the partition into the twin-classes of H. Then H{P is twin-free. If

H is separable, then H{P is separable as well. Moreover, the projection

H Ñ H{P is a weak isomorphism.

Proof. Let H be a k-uniform hypergraphon on pJ,A, πq. By using Lemma

4.21, we can choose a countably generated σ-algebra A1 instead of A. Note

that the relation of being twins remains the same. Since H is measurable

with respect to pA1q
l, then x and x1 are twins with respect to H if and only

if they are twins with respect to the hypergraphon H1 obtained by replacing

A with A1.

Now define D to be the sub-σ-algebra of A consisting of sets D such that

if x1, x2 P J l are twins for H then D does not separate x1 and x2. Define

H1 “ EpH|Dlq. Then we are going to show that H “ H1 almost everywhere.

Claim: H “ H1 almost everywhere.

Similarly to Lemma 4.20 above, we show that

ż

A1ˆ¨¨¨ˆAl

H dπ “

ż

A1ˆ¨¨¨ˆAl

H1 dπ
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for all A1, . . . , Al P A.

Recall that H1 “ EpH|Dlq, then we are going to see that H1 on the measure

space pJ,D, πq is a k-uniform hypergraphon which is weakly isomorphic to

H.

Let J 1 be the set of equivalence classes with respect to the relation of being

twins on J , and for x P J let φpxq be the equivalence class containing x.

Let pA1ql “ tφpXq : X P Dlu, and for X P pA1ql we define pπ1qlpXq “

πlpφ´1pXqq. Then, we have a measure space
`

pJ 1ql, pA1ql, pπ1ql
˘

.

If pS1, S2, . . . , Slq P pJ 1ql, then we define

rHpS1, S2, . . . , Slq “ H1
px1, x2, . . . , xlq “ Hpx1, x2, . . . , xlq

for any xi P Si where 1 ď i ď l.

If φ : J l Ñ pJ 1ql and rH : pJ 1ql Ñ r0, 1s, we can see that p rHqφ : J l Ñ r0, 1s.

Thus, p rHqφ “ H1 “ H almost everywhere.

Now define N to be the set of points x P J for which

␣

y1, . . . , y23...k P J : H1
py1, . . . , x, . . . , y23...kq ‰ Hpy1, . . . , x, . . . , y23...kq

(

has positive measure. Thus, N is a null set, and x, x1 P JzN are twins in

H if and only if they are twins in H1. Therefore, we obtained a k-uniform

hypergraphon H{P from H1 which is twin-free.

Now, we need to prove that if H is separable, then H{P is separable too.

Consider B to be a countable set generating A, closed under finite

intersections. For A P A, x P J , let

λxpAq “

ż

A

Hpy1, . . . , x, . . . , y23...kqdπpy1q . . . dπpy23...kq
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Because H is a bounded measurable function with respect to Al, then the

function A ÞÑ λxpAq is a finite measure for all x P J , and the function

x ÞÑ λxpAq is a measurable function with respect to A on J for each A P A.

Then equivalently we can say that x and x1 are twins if and only if λxpAq “

λx1pAq for all A P A, and since each measure λxp¨q is uniquely determined

by sets in B, x and x1 are twins if and only if λxpBq “ λx1pBq for all B P B.

For every B P B and r P Q, let us have the sets

SB,r “ tx P J : λxpBq ě ru.

These are countably many, SB,r P D.

Suppose that x and x1 are not twins. Then B P B such that λxpBq ‰ λx1pBq.

Now, assume that λxpBq ą λx1pBq, then for any r P Q with λxpBq ą r ą

λx1pBq, we get that x P SB,r but x
1 R SB,r. That means the countable family

of sets SB,r separates x and x1.

Theorem 4.26. Every k-uniform hypergraphon has a weak isomorphism

into a twin-free strong separable k-uniform hypergraphon.

Proof. Let H be a k-uniform hypergraphon. From Lemma 4.20, we can

change the value of H and obtain a strong k-uniform hypergraphon H1.

Then the identity map on pJ,A, πq will be a measurable weak isomorphism

φ1 : H Ñ H1 . From Lemmas 4.21,4.23, and 4.24, the completion of

H1 has an embedding map φ2 : H1 Ñ H2, where H2 is a separable k-

uniform hypergraphon. Finally, by using Lemma 4.25 we get a twin-free

separable k-uniform hypergraphon H1 such that φ3 : H2 Ñ H1 is a weak

isomorphism. Because φ “ φ3˝φ2˝φ1 is a measurable map between pJ,A, πq

and pJ 1,A1, π1q , there is a weak isomorphism from H into H1.

Conjecture 4.3.1. Let us consider two k-uniform hypergraphons, H and
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H1 on measure spaces pJ,A, πq and pJ 1,A1, π1q, which satisfy

tpF,Hq “ tpF,H1
q

for all k-uniform hypergraphs F . By Lemmas 4.20 to 4.25 and Theorem

4.26, we can find twin-free separable k-uniform hypergraphons W and W 1

on pΩ,B, λq and pΩ1,B1, λ1q and weak isomorphisms φ : H Ñ W and φ1 :

H1 Ñ W 1. Then tpF,Wq “ tpF,W 1q holds for every k-uniform hyperhraph

F if and only if W is isomorphic mod 0 to W 1, i.e. W – W 1.

4.4 Neighbourhood distance in a k-uniform

hypergraphon

Recall that a k-uniform hypergraphon is a symmetric function H : J l Ñ R

where l “ 2k ´ 2 which is measurable with respect to a given measure space

pJ,A, πq.

Definition 4.27. For each 1 ď s ď k´ 1 we define a distance rs as follows.

Let x, y P J . Then

rspx, yq “

ż

J l´1

ˇ

ˇ

ˇ

ˇ

Hpxxp}ϱpsqqq ´ Hpxyp}ϱpsqqq

ˇ

ˇ

ˇ

ˇ

dπpxq.

Example 4.28. Let k “ 3 then 1 ď s ď 2. Thus,

r1px, yq “

ż

J5

ˇ

ˇ

ˇ

ˇ

Hpx, x2, x3, x12, x13, x23q

´ Hpy, x2, x3, x12, x13, x23q

ˇ

ˇ

ˇ

ˇ

dπpx2qdπpx3qdπpx12qdπpx23qdπpx23q

r2px, yq “

ż

J5

ˇ

ˇ

ˇ

ˇ

Hpx1, x2, x3, x, x13, x23q

´ Hpx1, x2, x3, y, x13, x23q

ˇ

ˇ

ˇ

ˇ

dπpx1qdπpx2qdπpx3qdπpx13qdπpx23q.
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Then x and y are twins if and only if r1px, yq “ 0 “ r2px, yq.

We note that the distance rs is not necessarily a metric on J , but it is easily

seen that rs is a pseudometric.

Definition 4.29. Let x, y P J . We define the neighbourhood distance

rHpx, yq “ max
1ďsďk´1

trspx, yqu.

Lemma 4.30. Let x, y P J , then

(i) x and y are twins if and only if rHpx, yq “ 0.

(ii) rHpx, yq is a metric if and only if H is twin-free.

Proof. piq pùñq: Assume that x and y are twins. Then by Definition 4.14

H
`

x, z
˘ρ

“ H
`

y, z
˘ρ

for almost all z P J l´1, and all ρ P Sl. Then,

rspx, yq “

ż

J l´1

ˇ

ˇ

ˇ

ˇ

Hpzxp}ϱpsqqq ´ Hpzyp}ϱpsqqq

ˇ

ˇ

ˇ

ˇ

dπpzq “ 0

for all s. By definition 4.29 we have that rHpx, yq “ 0.

pðùq: Assume that rHpx, yq “ 0. That implies max
1ďsďk´1

trspx, yqu “ 0. That

means rspx, yq “ 0 for all 1 ď s ď k ´ 1.

Suppose that ρ P Sl and z P J l´1. Let s be the position of x and y in

px, zqρ and py, zqρ. Then rspx, yq “ 0 implies that Hpx, zqρ ´ Hpy, zqρ “ 0

for almost all z. Hence, x and y are twins.
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piiq pùñq: Assume that rH is a metric. If x, y P J , then

rHpx, yq ą 0 ðñ x ‰ y.

Hence, H is twin-free.

pðùq: SupposeH is twin-free. Then each pseudometric rs is a metric. Now,

we show that in this case rH is a metric.

Since H is twin-free, then there are no twins x and y in J with x ‰ y. Then,

rHpx, yq ą 0 for every x R y in J . Furthermore,

rHpx, yq “ max
1ďsďk´1

trspx, yqu “ max
1ďsďk´1

trspy, xqu “ rHpy, xq.

Now, we are going to show that rHpx, zq ď rHpx, yq`rHpy, zq for all x, y, z P

J . Let us suppose that

rHpx, yq “ rspx, yq,

rHpy, zq “ ripy, zq,

rHpx, zq “ rjpx, zq,

for some 1 ď s, i, j ď k ´ 1. Then,

rHpx, zq “ rjpx, zq

ď rjpx, yq ` rjpy, zq

ď rspx, yq ` ripy, zq

“ rHpx, yq ` rHpy, zq.

Thus, rH satisfies the metric conditions, hence it is a metric.

The advantage of having rH defined is that it is a way of measuring the

distance which we can use to define purity.



5

The Purification of k-uniform

Mixed Hypergraphons
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5.1 Motivation and a new definition of

k-uniform hypergraphon

In this chapter, we come up with a new generalization of a k-uniform

hypergraphon which is called a k-uniform mixed hypergraphon. Moreover,

we are going to define the notion of a pure k-uniform mixed hypergraphon

and then show that for every twin-free separable k-uniform mixed

hypergraphon, there is a pure k-uniform mixed hypergraphon isomorphic,

up to a null set, to it.

The following example shows that the analogous result cannot be applied

with the definition of k-uniform hypergraphon that we adopted in Definition

4.10.

Example 5.1. Let H : r0, 1s6 Ñ r0, 1s be the hypergraphon defined by

Hpx1, x2, x3, x12, x13, x23q “ x1x2x3

If x, y P r0, 1s, then

r1px, yq “ 0 ðñ x “ y,

r2px, yq “ 0 for all x and y

so that rpx, yq ą 0 for all x ‰ y and according to the current definition H

is twin-free. This would cause problems when we look at the purification

because r2px, yq definitely isn’t a metric!

We get round this with another generalization of a hypergraphon and

another definition of twins.

Definition 5.2. Suppose that pJi,Ai, πiq are measure spaces where 1 ď i ď
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k ´ 1. A k-uniform mixed hypergraphon is a function

H : J
pk
1q

1 ˆ J
pk
2q

2 ˆ ¨ ¨ ¨ ˆ J
p k
k´1q

k´1 Ñ r0, 1s

which is symmetric in the sense of Definition 4.1. We say that H is a

k-uniform mixed hypergraphon with respect to J1, . . . , Jk´1.

Definition 5.3. Fix 1 ď i ď k ´ 1. We say that x, y P Ji are twins for i if

H

ˆ

xxp}ϱpiqq

˙

“ H

ˆ

xyp}ϱpiqq

˙

for almost all x P J
pk
1q

1 ˆ ¨ ¨ ¨ ˆ J
pk
iq´1

i ˆ ¨ ¨ ¨ ˆ J
p k
k´1q

k´1 . We say that H is a

twin-free k-uniform mixed hypergraphon if there is no 1 ď i ď k ´ 1 such

that there are x ‰ y twins for Ji.

With this new definition, Example 5.1 is no longer twin-free. However,

with Definition 5.2 we can remove the twins for i “ 2 but keep J1 the same.

Namely set J1 “ r0, 1s and J2 “ t‚u and define

ĂH : J1 ˆ J1 ˆ J1 ˆ J2 ˆ J2 ˆ J2 Ñ r0, 1s,

ĂH : px1, x2, x3, ‚, ‚, ‚q ÞÑ x1x2x3.

A k-uniform mixed hypergraphon H with respect to J1, J2, . . . , Jk´1 is

strong if it is measurable with respect to the σ-algebra

A “ A1 ˆ ¨ ¨ ¨ ˆ Ak´1. For a k-uniform mixed hypergraphon H , we define

its completion H as being the same function of H but considered with

respect to the completion of σ-algebra A . We say that a k-uniform mixed

hypergraphon is complete if it is equal to its completion.

A k-uniform mixed hypergraphon is separable if the measure space J1 ˆ

¨ ¨ ¨ ˆ Jk´1 is separable.

Suppose that pJi,Ai, πiq and pJ 1
i ,A

1
i , π

1
iq are measure spaces where
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i “ 1, . . . , k ´ 1, and let H 1 be a k-uniform mixed hypergraphon with

respect to J 1
1, J

1
2, . . . , J

1
k´1. Suppose that φ “ pφ1, φ2, . . . , φk´1q is a tuple

of measure preserving maps where φi : Ji Ñ J 1
i . Then we define

φ : J
pk
1q

1 ˆ J
pk
2q

2 ˆ ¨ ¨ ¨ ˆ J
p k
k´1q

k´1 Ñ J 1
1
pk
1q ˆ J 1

2
pk
2q ˆ ¨ ¨ ¨ ˆ J 1

k´1
p k
k´1q as follows; if

x “ px1, x2, . . . , x23...kq P J
pk
1q

1 ˆ J
pk
2q

2 ˆ ¨ ¨ ¨ ˆ J
p k
k´1q

k´1 , then

φpxq “
`

φ1px1q, φ1px2q, . . . , φk´1px23...kq
˘

We define the pull-back pH 1qφ to be the k-uniform mixed hypergraphon on

J1, J2, . . . , Jk´1 defined by

pH 1
q
φ

pxq “ H 1
`

φpxq
˘

for all x P J
pk
1q

1 ˆ J
pk
2q

2 ˆ ¨ ¨ ¨ ˆ J
p k
k´1q

k´1 .

Suppose that H is a k-uniform mixed hypergraphon on J1, J2, . . . , Jk´1. If

for all i the function φi is measure preserving from Ai to A 1
i and H “

pH 1qφ almost everywhere, then we call φ a weak isomorphism from H to

H 1.

We say that two k-uniform mixed hypergraphons H and H 1 are weakly

isomorphic if there is another k-uniform mixed hypergraphon H 2 and weak

isomorphisms from H and H 1 into H 2.

5.2 Reduction of the k-uniform mixed

hypergraphon

The main goal of this section is to explore how can we adapt a k-uniform

mixed hypergraphon into a twin-free separable k-uniform mixed

hypergraphon. We use the same measure theory notions and results from

section 4.3.
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In the next lemma we modify σ-algebra to a countably generated one.

Lemma 5.4. Let pJ1,A1q, . . . , pJt,Atq be measurable spaces, and suppose

L : J1 ˆ ¨ ¨ ¨ ˆ Jt Ñ R

is a function which is measurable with respect to A1 ˆ¨ ¨ ¨ˆAt. Then, there

exist countably generated σ-algebras B1 Ď A1, . . . ,Bt Ď At such that L

is measurable with respect to B1 ˆ ¨ ¨ ¨ ˆ Bt.

Proof. The proof of this lemma is similar to the proof of Lemma 4.15.

Now, we investigate how can we come by a new k-uniform mixed

hypergraphon from a given k-uniform mixed hypergraphon by applying

the idea of a push-forward as follows.

Let pJi,Ai, πiq and pJ 1
i ,A

1
i , π

1
iq be measure spaces where i “ 1, . . . , k ´ 1,

and let φ “ pφ1, φ2, . . . , φk´1q be a tuple of measure preserving maps where

φi : Ji Ñ J 1
i . Suppose that H is a k-uniform mixed hypergraphon on

J1, J2, . . . , Jk´1. A k-uniform mixed hypergraphon Hφ on J 1
1, J

1
2, . . . , J

1
k´1 is

said to be the push-forward of H by φ if

ż

c

Hφpx1
q dπ1

px1
q “

ż

φ´1pcq

H pxq dπpxq (5.2.1)

for all c P A 1 where A 1 “ pA 1
1qpk

1q ˆ ¨ ¨ ¨ ˆ pA 1
k´1q

p k
k´1q.

As in Lemma 4.17 we are going to show that the push-forward Hφ is well

defined and that there is a relation between Hφ and the pull back pHφqφ.

Lemma 5.5. Let pJi,Ai, πiq and pΩi,Bi, µiq be measure spaces where

i “ 1, . . . , k ´ 1, and let φ “ pφ1, φ2, . . . , φk´1q be a tuple of measure

preserving maps where φi : Ji Ñ Ωi. Suppose that H is a k-uniform

mixed hypergraphon with respect to J1, J2, . . . , Jk´1. Then
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(i) There is a bounded, symmetric function

Hφ : Ω
pk
1q

1 ˆ Ω
pk
2q

2 ˆ ¨ ¨ ¨ ˆ Ω
p k
k´1q
k´1 Ñ R

which is measurable with respect to B “ B
pk
1q

1 ˆ ¨ ¨ ¨ ˆ B
p k
k´1q
k´1 and the

measure µ which satisfies Hφ “ dν
dµ
. In particular, ν is a measure on

B defined by

νpcq “

ż

c

Hφdµ

for all c P B. Thus Hφ is a unique up to changes on a set of µ-measure

zero in Ω
pk
1q

1 ˆ Ω
pk
2q

2 ˆ ¨ ¨ ¨ ˆ Ω
p k
k´1q
k´1 .

(ii) If Aφ “ tφ´1pBq : B P Bu, then

pHφq
φ

“ E
`

H
ˇ

ˇpA
pk
1q

1 qφ1 ˆ ¨ ¨ ¨ ˆ pA
p k
k´1q

k´1 qφk´1

˘

almost everywhere.

(iii) If φ is a measure preserving embedding of pJi,Ai, πiq into pΩi,Bi, µiq,

then pHφqφ “ H almost everywhere.

Proof. piq Define a measure ν on B “ B
pk
1q

1 ˆ ¨ ¨ ¨ ˆ B
p k
k´1q
k´1 by

νpcq “

ż

φ´1pcq

H px1, . . . , xk, . . . , x23...kq dπ1px1q . . . dπk´1px23...kq

for c P B. Because H takes values in r0, 1s, we have

νpcq ď π1 ˆ ¨ ¨ ¨ ˆ πk´1pφ
´1

pcqq.

Since φi : Ji Ñ Ωi is measure preserving map, then νpcq ď µpcq for all

c P B. Thus the measure ν is absolutely continuous with respect to µ,

denoted as νpcq ăă µpcq. Hence, the Radon-Nikodym derivative of ν with

respect to µ is well defined and is equal to Hφ.
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Note that by the Radon-Nikodym Theorem 4.16, Hφ is unique.

piiq Assume that e P Aφ where e “ φ´1pcq for some c P B. From the

function

Hφ : Ω
pk
1q

1 ˆ Ω
pk
2q

2 ˆ ¨ ¨ ¨ ˆ Ω
p k
k´1q
k´1 Ñ R

where φ is a tuple of measure preserving maps, and the pull-back of Hφ,

i.e. (Hφqφ, we show that

ż

e

H pxq dπpxq “

ż

c

Hφpx1
q dµpx1

q

“

ż

e

Hφpφpxqq dπpxq “

ż

e

pHφq
φ

pxq dπpxq

Thus,

pHφq
φ

“ E
`

H
ˇ

ˇpA
pk
1q

1 qφ1 ˆ ¨ ¨ ¨ ˆ pA
p k
k´1q

k´1 qφk´1

˘

almost everywhere.

piiiq Let φ “ pφ1, φ2, . . . , φk´1q be an isomorphism between pJi,Ai, πiq and

a subspace of pΩi,Bi, µiq. For any e P A , we have c P B such that the

intersection of c and φpJq is φpeq where J “ J
pk
1q

1 ˆ ¨ ¨ ¨ ˆ J
p k
k´1q

k´1 . However,

φ´1pcq “ φ´1
`

φpeq
˘

“ e, thus e P Aφ. Hence, A “ Aφ which implies that

H “ pHφqφ almost everywhere.

As a result, the function φ is said to be an embedding of H into Hφ if it

satisfies the following conditions:

• φ is an embedding of pJi,Ai, πiq into pΩi,Bi, µiq,

• H “ pHφqφ almost everywhere.

Now, we can define quotients of k-uniform mixed hypergraphons.
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Definition 5.6. Let H be a k-uniform mixed hypergraphon with respect to

measure spaces J1, J2, . . . , Jk´1. For each i, let Pi be an arbitrary partition

of Ji into disjoint sets. For x P Ji, we let rxs be the class in Pi which

contains x. Let P “ P1 ˆ ¨ ¨ ¨ ˆ Pk´1, and we define a k-uniform mixed

hypergraphon

H {P :

ˆ

J1{P1

˙pk
1q

ˆ ¨ ¨ ¨ ˆ

ˆ

Jk´1{Pk´1

˙p k
k´1q

ÝÑ r0, 1s

where pJi{Pi,Ai{Pi, πi{Piq is the measure space defined as follows:

• the points in Ji{Pi are the classes of the partition Pi.

• φi is the measure preserving map x ÞÑ rxs.

• Ai{Pi is the σ-algebra consisting of the sets A1 Ď Ji{Pi such that

φ´1
i pA1q P Ai.

• pπi{PiqpA1q “ πipφ
´1
i pA1qq.

So φ is measure preserving, and we define H {P “ Hφ as in (5.2.1).

In a similar way to section 4.3, we show that every k-uniform mixed

hypergraphon is weakly isomorphic to a twin-free separable k-uniform

mixed hypergraphon.

Theorem 5.7. Let H be a k-uniform mixed hypergraphon with respect

to J1, J2, . . . , Jk´1 where each Ji stands for a measure space pJi,Ai, πiq. Let

J “ J
pk
1q

1 ˆ ¨ ¨ ¨ ˆ J
p k
k´1q

k´1 , similarly for A and π. Then

(i) We can define a strong k-uniform mixed hypergraphon by changing

the value of H on a set of measure zero with respect to π.

(ii) There exists a countably generated σ-algebra B Ď A such that H is

measurable with respect to B where B “ B
pk
1q

1 ˆ ¨ ¨ ¨ ˆ B
p k
k´1q
k´1 .
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(iii) The σ-algebra A {PrA s is separating. If A is countably generated,

then so is A {PrA s.

(iv) If H is a separating k-uniform mixed hypergraphon on a measure

space with a countable basis, then H can be embedded into a

separable k-uniform mixed hypergraphon.

(v) Suppose that H is a k-uniform mixed hypergraphon, and let P be

the partition into the twin-classes of H . Then H {P is twin-free.

If H is separable, then H {P is separable as well. Moreover, the

projection H Ñ H {P is a weak isomorphism.

Proof. Here we sketch our proof since this theorem is analogous to the

Lemmas from 4.20 to 4.25.

We explain how we can find a strong k-uniform mixed hypergraphon H 1

which is equal to H almost everywhere. We define H 1 “ EpH |A q the

conditional expectation with respect to A . Clearly H 1 is measurable with

respect to A and in a similar way to Lemma 4.20 we have

ż

e

H dπ1 . . . dπk´1 “

ż

e

H 1 dπ1 . . . dπk´1

for all e P A . This implies H “ H 1 almost everywhere. This proves piq.

Next, if H is a k-uniform mixed hypergraphon with respect to

J1, J2, . . . , Jk´1, then by Lemma 5.4 we have piiq.

Consider the partition PrA s of J induced by the σ-algebra A . If we identify

elements in the same class of PrA s, we obtain the σ-algebra A {PrA s. By

Lemma 2.22, the σ-algebras A and A {PrA s are isomorphic. Then clearly

if A is countably generated so is A {PrA s, which proves piiiq.

For pivq, suppose that the k-uniform mixed hypergraphon H is separating

with respect to J1, J2, . . . , Jk´1. Let σ-algebra A be generated by a

countable set S “ tS1,S2, . . . ,Sk´1u. That means S is a basis for



Chapter 5: The Purification of k-uniform Mixed Hypergraphons 91

pA i, πiq where i “ 1, 2, . . . , k ´ 1. Thus we have an embedding functions

φi from the completion of pJi,Ai, πiq to a separable measure space

pΩi,Bi, µiq for each i. If we let K to be the push-forward of H , then

K “ Hφ. By using part piiiq of Lemma 5.5, the pull-back of K equals to

the pull-back of Hφ which is equal to H almost everywhere. Hence, φ is

an embedding of H into K .

To show pvq, suppose that H is a k-uniform mixed hypergraphon with

respect to J1, J2, . . . , Jk´1. Then, by piiq there exists a countably generated

σ-algebra B Ď A such that H is measurable with respect to B where

B “ B
pk
1q

1 ˆ ¨ ¨ ¨ ˆ B
p k
k´1q
k´1 . That means any two points in B Ď A are

twins with respect to H if and only if they are twins with respect to the

k-uniform mixed hypergraphon H1 obtained by replacing A with B.

Define H 1 “ EpH |D “ D
pk
1q

1 ˆ ¨ ¨ ¨ ˆ D
p k
k´1q

k´1 q where D Ď A that

consisting of those sets in A that do not separate any twin points. By piq,

we can see H is equal to H 1 almost everywhere, and H 1 with respect to

J1, J2, . . . , Jk´1 and D is weakly isomorphic to H .

Now, let us consider a null set Ni Ď Ji. Then for any two points in JizNi

are twins in H if and only if they are twins in H 1. If we identify

indistinguishable elements in partition P, then we can get a k-uniform

mixed hypergraphon H {P from H 1. Thus H {P is twin-free.

Finally, in the same way to Lemma 4.25 we can see that if the k-uniform

mixed hypergraphon H is separable then H {P is separable.

The proof of the main theorem in this section follows immediately.

Theorem 5.8. Every k-uniform mixed hypergraphon admits a weak

isomorphism into a twin-free separable k-uniform mixed hypergraphon.
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5.3 The purification of twin-free separable k-

uniform mixed hypergraphons

Let H be a twin-free separable k-uniform mixed hypergraphon. Fix 1 ď

i ď k ´ 1. For each z P Ji we have a function (section) H i
z : Ti Ñ r0, 1s

defined by

H i
z pxq “ H pxz}ϱpiqq

for x P Ti where Ti “ J
pk
1q

1 ˆ ¨ ¨ ¨ ˆ J
pk
iq´1

i ˆ ¨ ¨ ¨ ˆ J
p k
k´1q

k´1 .

We see that H i
z : Ti Ñ r0, 1s is measurable function since H is measurable,

and we see that

ż

Ji

ˆ
ż

Ti

H i
z dpypyϱpiqq

˙

dx “

ż

J
pk
1q

1 ˆJ
pk
2q

2 ˆ¨¨¨ˆJ
p k
k´1q

k´1

H dpyq ă 8 (5.3.1)

for each i. That means H i
z P L1pTiq.

Now, let us define φH i : Ji Ñ L1pTiq by φH ipzq “ H i
z , which is a

measurable function.

For A Ď L1pTiq, we define

πH ipAq “ πipφ
´1
H ipAqq

which is the measure on L1pTiq induced by the measure πi on Ji.

Now let us define

JH i “

"

f P L1
pTiq : for every open set U that contains f, πH ipUq ą 0

*

This is the support of πH i . Thus, JH i is a subset of L1pTiq.

Proposition 5.9. For each i, JH i is a separable Banach space, and the

measure πH i has full support on JH i .
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To prove this proposition we need to state the following theorem.

Theorem 5.10. Let pΨ, µq be a measure space. The metric space L1pΨq is

separable if and only if the measure µ is separable.

Proof of Proposition 5.9. First of all, we want to show that JH i is

closed. We are going to show that JH i is closed by proving that

L1pTiqzJH i is open.

Let f P L1pTiqzJH i . There is a neighbourhood Uf of f such that πH ipUf q “

0. Then for every g P Uf , Uf itself is a neighbourhood of g such that

πH ipUf q “ 0 and therefore g R JH i . This shows Uf Ď L1pTiqzJH i . Hence,

L1pTiqzJH i is open set and so JH i is closed set.

Now we want to show that JH i is complete. Let tfnu be a Cauchy sequence

in JH i . That means this Cauchy sequence is also in L1pTiq. Thus, f is a

limit point of tfnu in L1pTiq. However, since JH i is closed then it contains

all of its limit points. Thus, f P JH i , so it is complete.

For separability of JH i by using Theorem 5.10 we see that pJH i , πH iq is

separable if πH i is separable, which follows from our assumption. Therefore,

JH i is a complete separable metric space for each i.

Now, we want to show that for each i, πH i has full support on JH i . Assume

that we have an open subset U of JH i with πH ipUq “ 0. Then, U “ DXJH i

for some open subset D of L1pTiq. That means πH ipDq “ πH ipUq “ 0.

Hence, D is subset of L1pTiqzJH i and U “ D X JH i “ H.

Definition 5.11. Let y1, y2 P Ji. Then we define

rH ipy1, y2q “

ˇ

ˇ

ˇ

ˇ

ż

Ti

H i
y1

px1, x2, . . . , x23...k´1qdπ1px1q . . . dπk´1px23...k´1q

´

ż

Ti

H i
y2

px1, x2, . . . , x23...k´1qdπ1px1q . . . dπk´1px23...k´1q

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇH i
y1

´ H i
y2

ˇ

ˇ

ˇ

ˇ

L1
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Lemma 5.12. The function rH i is a metric.

Proof. We have assumed that Ji does not contain any twin points of H .

Thus, rH ipy1, y2q ą 0 for every y1 ‰ y2 in Ji . Furthermore, for y1, y2 P Ji

we see that

rH ipy1, y2q “ rH ipy2, y1q

Moreover, in the same way as in Lemma 4.30 the triangle inequality holds

rH ipy1, y2q ď rH ipy1, zq ` rH ipz, y2q

for all z P Ji. Hence, rH i is a metric.

Now we are going to state the definition of a pure k-uniform mixed

hypergraphon.

Definition 5.13. We say that the twin-free k-uniform mixed

hypergraphon H is pure if, for all i,

• The metric space pJi, rH iq is complete and separable,

• πH i has full support with respect to rH i , i.e. for every x P Ji and

ϵ ą 0,
ż

ty:rH i px,yqăϵu

dπH ipxq ą 0

Lemma 5.14. A k-uniform mixed hypergraphon H is pure if and only if

φH i : Ji Ñ JH i is a bijection, for all i.

Proof. pùñq: Assume that H is a pure k-uniform mixed hypergraphon.

That means pJi, rH iq is complete and separable metric space and πH i has

full support for all i. Then, Ji is twin-free since the metric rH ipy1, y2q ą 0

iff y1 ‰ y2 for all y1, y2 P Ji. That means φH i : Ji Ñ JH i is injective. Now,

let us consider a set S “ tx P Ji : φ
´1
H ipxq “ Hu. Then the measure of S is
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zero, hence φH i is bijective for all i.

pðùq: Assume that φH i : Ji Ñ JH i is a bijection for all i. Since φH i is

measurable and πH ipAq “ πipφ
´1
H ipAqq for each A Ď L1pTiq, then φH i is

measure preserving bijection. We know that JH i is a subset of L1pTiq so

JH i is a complete separable metric space and πH i has full support on JH i .

Therefore, H is a pure k-uniform mixed hypergraphon.

Theorem 5.15. Every twin-free separable k-uniform mixed hypergraphon

is weakly isomorphic to a pure k-uniform mixed hypergraphon.

Proof. Let H be a twin-free separable k-uniform mixed hypergraphon.

That means there is no 1 ď i ď k ´ 1 such that x ‰ y with x and y are

twins for Ji. For each x P Ji, we have a function H i
x : Ti Ñ r0, 1s where

Ti “ J
pk
1q

1 ˆ ¨ ¨ ¨ ˆ J
pk
iq´1

i ˆ ¨ ¨ ¨ ˆ J
p k
k´1q

k´1 . From (5.3.1) we see that H i
x is

measurable since H is measurable. Then, H i
x P L1pTiq.

Now, let φH i : Ji Ñ L1pTiq be defined by φH ipxq “ H i
x , which is

measurable. Let A Ď L1pTiq, then

πH ipAq “ πipφ
´1
H ipAqq

defines a measure on L1pTiq.

Recall that

JH i “ tf P L1
pTiq : for every open set U that contains f, πH ipUq ą 0u

is the support of πH i . Then, JH i Ď L1pTiq. From the Proposition 5.9 we

can see that JH i is a separable Banach space, and πH i has full support on

JH i .

Suppose that Ωi is the set of elements in Ji for which H i
x P JH i , and let
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ΩH i “ tH i
x : x P Ωiu. We define ψi : Ωi Ñ ΩH i by x ÞÑ H i

x which is

bijective for all i since H is twin-free.

Claim. πipJizΩiq “ 0

Proof: Suppose that g P L1pTiqzJH i
x
. That means there is a neighbourhood

Ug of g such that Ug XJH i “ H, and πH ipUgq “ 0. Thus, Ug Ď L1pTiqzJH i ,

and πiptx P Ji : H i
x P Uguq “ 0.

Let U “
Ť

gRJH i

Ug. Since L1pTiq is separable, then U equals the union of

some countable subfamily tUgs : s P Nu, and so πi
`

tx P Ji : H i
x P Uu

˘

“ 0

by countable additive of πi. We know that for each x P Ji, the function

H i
x P L1pTiq. Since JizΩi Ď U , then we see that πipJizΩiq “ 0. ■

The function ψi and the measure πi induce a measure νi on JH i given by

νi “ πi ˝ ψ´1
i . Equipped with this measure, JH i is a complete separable

metric space and every open set has a positive measure. Since ψi is a

bijection, we see that πipJizΩiq “ 0 implies that νipJH izΩH iq “ 0.

Now, we define a k-uniform mixed hypergraphon

ĂH : Ω
pk
1q

H 1 ˆ Ω
pk
2q

H 2 ˆ ¨ ¨ ¨ ˆ Ω
p k
k´1q

H k´1 Ñ r0, 1s

as follows. Set I “
␣

A Ă t1, 2, . . . , ku : 1 ď |A| ď k ´ 1
(

. Let

f “ pf1, f2, . . . , fk, f12, . . . , fk´1k, . . . , f12...k´1, . . . , f23...kq P Ω
pk
1q

H 1ˆΩ
pk
2q

H 2ˆ¨ ¨ ¨ˆΩ
p k
k´1q

H k´1

For each I P I there exists xI P Ji, where i “ |I|, such that

fI “ H i
xI

“ φH ipxIq.

Set φH “
`

φH 1 , φH 2 , . . . , φH k´1

˘

where φH i : Ji Ñ L1pTiq. Define ĂH to
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be the pullback of H by φH , that is

ĂH pfq “ ĂH
`

φH pxq
˘

“ p ĂH q
φH pxq “ H pxq (5.3.2)

where x “ px1, x2, . . . , xk, x12, . . . , x23...kq.

For instance, if k “ 2 then ĂH pf1, f2q is defined as follows; if f1, f2 P ΩH 1

then f1 “ H 1
x1

and f2 “ H 1
x2

for some x1, x2 P J1 and we set

ĂH pf1, f2q “ ĂH
`

φH 1px1q, φH 1px2q
˘

“ ĂH φH 1 px1, x2q “ H px1, x2q

We claim that ĂH is pure. We shall actually prove that r
ĂH i agrees with the

L1 norm on Ω
ĂH i . Let us recall an important notation.

Suppose we have a sequence x “ px1, x2, . . . , xrq. We denote

xypǰq “ px1, x2, . . . , xj´1, y, xj, . . . , xrq

the sequence obtained by inserting y before the jth term of x. Then if we

have xi P Ti, we define xyi
`

}ϱpiq
˘

to be the sequence obtained by putting y

before the
`

k
1

˘

`
`

k
2

˘

` ¨ ¨ ¨ `
`

k
i´1

˘

` 1 term of x.

Now, for each f P ΩH i , we have a function (section) ĂH i
f : rTi Ñ r0, 1s where

rTi “ Ω
pk
1q

H 1 ˆ ¨ ¨ ¨ ˆΩ
pk
iq´1

H i ˆ ¨ ¨ ¨ ˆΩ
p k
k´1q

H k´1 defined as follows. Let hi P rTi. Then

ĂH i
f phiq “ ĂH

`

hfi
`

}ϱpiq
˘˘

.

Now, for any f, g P ΩH i – Ωi there are x and y such that f “ H i
x and

g “ H i
y . By Definition 5.11 we have that
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r
ĂH ipf, gq “

ż

rTi

ˇ

ˇ

ˇ

ˇ

ĂH i
f phiq ´ ĂH i

g phiq

ˇ

ˇ

ˇ

ˇ

dνphiq

“

ż

rTi

ˇ

ˇ

ˇ

ˇ

ĂH
`

hfi
`

}ϱpiq
˘˘

´ ĂH
`

hgi
`

}ϱpiq
˘˘

ˇ

ˇ

ˇ

ˇ

dνphiq

“

ż

Ti

ˇ

ˇ

ˇ

ˇ

H
`

zxi p}ϱpiqq
˘

´ H
`

zyi p
}ϱpiqq

˘

ˇ

ˇ

ˇ

ˇ

dπpziq

“

ż

Ti

ˇ

ˇ

ˇ

ˇ

H i
x pziq ´ H i

y pziq

ˇ

ˇ

ˇ

ˇ

dπpziq

“ rH ipx, yq

Hence,

rH ipx, yq “

ż

Ti

ˇ

ˇ

ˇ

ˇ

H i
x pziq ´ H i

y pziq

ˇ

ˇ

ˇ

ˇ

dπpziq

“

ż

Ti

ˇ

ˇ

ˇ

ˇ

fpziq ´ gpziq

ˇ

ˇ

ˇ

ˇ

dπpziq

“ ||f ´ g||L1

Since we have shown that r
ĂH i agrees with the norm L1, we conclude that

ĂH satisfies the conditions of purity in Definition 5.13. Hence, ĂH is pure.

To conclude, from (5.3.2) above we can see that the twin-free separable

k-uniform mixed hypergraphon H and the pure k-uniform mixed

hypergraphon ĂH are weakly isomorphic.

Recall that a standard measure space is the measure space that is the

completion of a Borel space. By the completion we mean adding all

subsets of sets of measure zero to the σ-algebra. If we have a twin-free

k-uniform mixed hypergraphon on a standard measure space, we call it a

standard twin-free k-uniform mixed hypergraphon.

In the next theorem we are going to show that any two weakly isomorphic

standard twin-free separable k-uniform mixed hypergraphons are

isomorphic up to a null set. However, we need to define what it means for
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two k-uniform mixed hypergraphons to be isomorphic.

Definition 5.16. Let H and H 1 be two k-uniform mixed hypergraphons

with respect to J1, J2, . . . , Jk´1 and J 1
1, J

1
2, . . . , J

1
k´1. Then we say that H

and H 1 are isomorphic up to a null set if there are invertible measure

preserving functions φi : Ji Ñ J 1
i such that

H 1
`

φ1px1q, φ2px2q, . . . , φk´1px23...kq
˘

“ H px1, x2, . . . , x23...kq

almost everywhere.

Theorem 5.17. If two standard twin-free separable k-uniform mixed

hypergraphons are weakly isomorphic, then they are isomorphic up to a

null set.

Proof. Assume that D and G are two weakly isomorphic twin-free separable

k-uniform mixed hypergraphons on standard measure spaces pΩi,Bi, µiq

and pΛi,Ci, τiq where 1 ď i ď k ´ 1. We shall show that then there is a

third k-uniform mixed hypergraphon H on pJi,Ai, πiq such that there are

weak isomorphisms φDi : Ωi Ñ Ji and φG i : Λi Ñ Ji making D ,G , and H

are weakly isomorphic to each other.

Recall that φD “
`

φD1 , φD2 , . . . , φDk´1

˘

is a sequence of measure preserving

maps. Then, we define

φD : Ω
pk
1q

1 ˆ ¨ ¨ ¨ ˆ Ω
p k
k´1q
k´1 Ñ J

pk
1q

1 ˆ ¨ ¨ ¨ ˆ J
p k
k´1q

k´1

as follows; let g “ pg1, g2, . . . , g23...kq P Ω
pk
1q

1 ˆ ¨ ¨ ¨ ˆ Ω
p k
k´1q
k´1 , then

φDpgq “
`

φD1pg1q, φD2pg2q, . . . , φDk´1pg23...kq
˘

Now, we can define a pullback D “ H φD as

H φD pgq “ H pφDpgqq
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For all i, the function φDi is measure preserving from Bi to Ai and D “

H φD and hence φDi is a weak isomorphism from D to H .

By a similar argument to that of the proof of the Claim in Theorem 5.15,

we can see that for each i, the measure µi has full support on Ωi.

Since D is a twin-free separable k-uniform mixed hypergraphon, the

function φDi is injective. Furthermore, the set tx P Ji : φ
´1
Di pxq “ Hu has

measure zero. That means φDi : Ωi Ñ Ji is bijective (up to a null set).

By similar arguments as above, we have that φG i : Λi Ñ Ji is bijective.

Therefore, φDi and φG i are isomorphisms between D , G and H .

Theorem 5.18. Every twin-free separable k-uniform mixed hypergraphon

is isomorphic, up to a null set, to a pure k-uniform mixed hypergraphon.

Proof. Let H be a twin-free separable k-uniform mixed hypergraphon with

respect to J1, J2, . . . , Jk´1. From Theorem 5.15 there exists a pure k-uniform

mixed hypergraphon ĂH which is weakly isomorphic to H . By Theorem

5.17, we see that H and ĂH are isomorphic up to a null set.

5.4 Future work

In the theory of graphons, Lovász and Szegedy in [17] defined an

automorphism for any graphon. They made the following definition:

Definition 5.19. An automorphism of a given graphon W on J is an

invertible measure preserving function φ : J Ñ J such that

W pxφ, yφq “ W px, yq

for almost all x, y P J .
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However, if this definition is used, we may have weakly isomorphic graphons

which have very different automorphism groups.

Example 5.20. Suppose that W1 and W2 are graphons on J1 and J2. Let

J1 “ r0, 1s, and define W1px, yq “ 1
2
for all x, y P J1. Let J2 “ tXu. Define

W2px, xq “ 1
2
.

Let F be a graph. Then

tpF,W1q “

ż

r0,1sV

ź

pi,jqPE

W1pxi, xjq
ź

sPV

dxs

“

ż

r0,1sV

ź

pi,jqPE

1

2

ź

sPV

dxs

“

ż

r0,1sV

ź

pi,jqPE

W2pxi, xjq
ź

sPV

dxs

“ tpF,W2q

Therefore, tpF,W1q “ tpF,W2q for all simple graph F . Hence, W1 and W2

are weakly isomorphic.

Lovász and Szegedy motivated the definition of automorphism so that it

only held for pure graphons. They made the following definition:

Definition 5.21. [17] LetW be a pure graphon on J . A measure preserving

bijection φ : J Ñ J is called an automorphism of W if for every x P J , we

have W pxφ, yφq “ W px, yq for almost all y P J .

When it comes to pure graphons, the second definition is stronger than the

first. It means that one cannot interchange two arbitrary points in J and

obtain an automorphism.

Lovász stated in [17] an important theorem.

Theorem 5.22. The automorphism group of a pure graphon is compact.
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This theorem is a result of the following fact which is proved in [17] Lemma

11.

Fact : The automorphisms of a pure graphon W on J form a closed

subgroup of the isometry group of pJ̄ , r̄W q

where J̄ is the completion of J and r̄W is called the similarity metric (2-

neighborhood metric). That is

r̄W px, yq “ rW˝W px, yq “

ż

J

ˇ

ˇ

ˇ

ˇ

ż

J

pW px, uq ´ W py, uqqW pu, zqdu

ˇ

ˇ

ˇ

ˇ

dz

We write dz instead of dπpzq, where π is the probability measure of the

graphon.

Now, in the theory of k-uniform mixed hypergraphon we may ask several

questions.

(1) How do we define the similarity distance for a pure k-uniform mixed

hypergraphon?

(2) What is the definition of the automorphism group of a k-uniform

mixed hypergraphon?

If we answer those questions, then we may have the opportunity to prove

the following conjecture.

Conjecture 5.4.1. The automorphism group of a pure k-uniform mixed

hypergraphon is compact.
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