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Abstract: Ultrasonic guided wave technology has played a significant role in 12 

the field of non-destructive testing as it employs acoustic waves that have 13 

advantages of high propagation efficiency and low energy consumption during 14 

the inspect process. However, theoretical solutions to guided wave scattering 15 

problems using assumptions such as Born approximation, have led to the poor 16 

quality of the reconstructed results. Moreover, scattering signals collected from 17 

industry sectors are often noised and nonstationary. To address these issues, 18 

a novel physics-informed framework (PIF) for quantitative reconstruction of 19 

defects using the integration of data-driven method with the guided wave 20 

scattering analysis has been proposed in this paper. Based on the geometrical 21 

information of defects and initial results obtained by PI-based analysis of 22 

defect reconstructions, a deep learning neural network model is built to reveal 23 

the physical relationship between defects and the noisy detection signals. This 24 

data-driven learning model is then applied to quantitatively assess and 25 

characterize defect profiles in structures, improve the accuracy of the 26 

analytical model and eliminate the impact of noise pollution in the process of 27 

inspection. To demonstrate advantages of the developed PIF for complex 28 

defect reconstructions with the capability of denoising, numerical examples 29 

including basic defect profiles, a stepped defect, a mixed-type defect have 30 

been examined. Results show that PIF has greater accuracy for reconstruction 31 

of defects in structures as compared with the analytical method and provides a 32 

valuable insight into the development of artificial intelligence-assisted 33 

inspection systems with high accuracy and efficiency in the fields of structural 34 

integrity and condition monitoring. 35 
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 42 

1. Introduction 43 

In non-destructive testing of elastic waveguide structures such as rods, plates, 44 

shells and beams, ultrasonic guided wave detection has the advantages of 45 

convenient excitation, long propagation distance, high sensitivity to defects 46 

and low energy consumption[1-4]. Especially for non-destructive testing in 47 

significant areas such as railway transportation, oil pipelines, aircraft airframe 48 

and wings[5], the high efficiency and high precision of ultrasonic guided wave 49 

detection are more important. Therefore, using guided waves for defect 50 

detection and reconstruction has been investigated by many researchers. As 51 

early as the beginning of this century, Rose[1] clarified that ultrasonic guided 52 

waves can be used to detect pores, weak cohesion and delamination, and 53 

have considerable reliability. Eremin et al.[6] studied the Lamb wave properties 54 

and its changes during the cyclic loading of CFRP sandwich panels with 55 

aluminium honeycomb core. Based on Lamb wave analysis, the fatigue failure 56 

and tensile-compressive failure of two specimens were identified. Puthillath et 57 

al.[7] developed a detection method of ultrasonic guided wave linear scanning, 58 

also known as G-scan, which can detect the bonding damage of the patch 59 

during the repair of the aircraft shell, such as adhesive and cohesive 60 

weaknesses similar to that found in adhesively bonded joints. Wang et al.[8] 61 

used the Born approximation to replace the total field near the defect with the 62 

incident field and then derived the mathematical relationship between the 63 

reflection coefficient located in the far field and the defect shape function in the 64 

form of Fourier transform pairs for the thinning defect reconstruction in the 65 

two-dimensional plate. Sikdar[9] used probabilistic damage detection algorithm 66 

to identify the location and size of the disband and high-density core region in 67 

a honeycomb composite sandwich structure(HCSS) utilizing ultrasonic guided 68 

waves and surface-bonded piezoelectric wafer transducers (PWTs). Da et 69 

al.[10] proposed a novel reference model-based method, called QDFT, for the 70 

quantitative reconstruction of pipeline defects using ultrasonic guided 71 

SH-waves in 2018. Based on the boundary integral equation, the Fourier 72 

transform pair of reflection coefficients in the wavenumber domain and the 73 

defect shape function in the spatial domain was analytically obtained using 74 

Born approximation to reconstruct the defect profiles. 75 

Although many researchers have made valuable exploration and 76 

remarkable progress on the applications of guided waves for non-destructive 77 

testing to identify their values, it is difficult to realize high accurate and efficient 78 

defect reconstruction using the guided wave scattering theory due to the 79 

coupling of various modes in the guided wave scattering field. Moreover, the 80 

existing defect detection and reconstruction technologies need to cooperate 81 

with the signal processing system, the actual measurement is inevitably 82 

affected by environmental noise, which will lead to the inaccuracy of defect 83 
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reconstruction. Therefore, it is time to revisit the artificial intelligent technology 84 

for reconstruction of defects with high levels of robustness and reliability.  85 

Artificial intelligence(AI) has been rapidly developed and widely applied for 86 

solving many problems[11,12] with an impressive performance. In the field of 87 

defect detection, Munir et al[13] applied convolutional neural network for noisy 88 

ultrasonic signatures to improve classification performance of weldment 89 

defects and applicability. Xiaocen et al[14] proposed a rapid guided wave 90 

imaging method based on convolutional neural network (CNN) to quantitatively 91 

evaluate the corrosion damage. Also, artificial neural network was used for the 92 

efficient extraction and selection of features in the context of a decision 93 

support system[15]. Zhuang et al[16] proposed a novel deep morphological 94 

convolutional network (DMCNet) for feature learning of gearbox vibration 95 

signals for fault diagnosis. Virkkunen et al[17] developed a modern, deep 96 

convolutional network to detect flaws represented by phased-array ultrasonic 97 

data and they made extensive use of data augmentation to enhance the 98 

learning from initially limited raw data. Besides, Latête et al[18] used Faster 99 

R-CNN to identify, locate and size flat bottom holes (FBM) and side-drilled 100 

holes (SDH) in an immersed test specimen using a single plane wave 101 

insonification. Recently, a kernel-based machine learning model has been 102 

proposed to achieve automatic flaws detection, localization and 103 

characterization[19] and a dynamic radius support vector data description 104 

(DR-SVDD) has been proposed by Zhao et al.[20] for fault detection of aircraft 105 

engines. In the area of computer tomography(CT), Jin et al.[21] combined the 106 

deep convolutional neural network with the filtered back projection algorithm 107 

(FBP), which is the classical analytical models in image reconstruction. First, 108 

FBP was applied to process the sub-sampled sinogram for obtaining a 109 

preliminary reconstructed image, and then the reconstructed image as the 110 

input data was used to train the convolutional neural network for the output of a 111 

high-quality reconstructed image. In order to solve the problem of multiple 112 

scattering in image reconstruction, Sun et al.[22] divided the scattering inversion 113 

process into two steps: first, a theoretical model was employed to design a 114 

back propagation algorithm that was used to transform the data in the 115 

measurement domain into the image domain. Then, a deep convolutional 116 

neural network with U-net structure was generated as a scattering decoder to 117 

complete the reconstruction task using image domain data. The study found 118 

that the deep learning-based image reconstruction method has higher 119 

computational efficiency and reconstruction quality than other methods when 120 

dealing with multiple scattering problems. Boublil et al.[23] studied the 121 

combination of FBP algorithm and PWLS iterative algorithm with convolutional 122 

neural network to reconstruct images. It was concluded that the local fusion 123 
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between these two algorithms can improve the balance between the resolution 124 

and the variance in the image reconstruction process, so it can improve the 125 

quality of the CT image. At the same time, two different types of image 126 

reconstruction methods (In the field of image reconstruction, FBP is a typical 127 

algorithm for directly negating forward operators, and PWLS is a typical 128 

iterative negation algorithm) in this study illustrated the universality of the local 129 

fusion of these algorithms. If the reconstruction algorithm changes, followed by 130 

modifying the subsequent neural network structure and then retraining it, the 131 

purpose of improving the quality of the reconstructed image can still be 132 

achieved. In[24], extensive research work using deep learning algorithms for 133 

scattering inversion was given, and it was concluded that in the field of image 134 

scattering inversion, due to the lack of sample data, the mainstream method of 135 

deep learning algorithms for scattering inversion was to combine the traditional 136 

reconstruction algorithm with the deep learning algorithm. Usually, traditional 137 

theoretical methods are used for pre-reconstruction, and then the 138 

reconstruction results as input data are collected to train the machine learning 139 

model for prediction of high-quality reconstruction results.    140 

Considering the application of deep learning algorithms, especially the 141 

convolutional neural network algorithm in the field of image reconstruction, a 142 

quantitative defect reconstruction physics-informed framework (PIF) 143 

combining the existing theoretical model of guided wave defect reconstruction 144 

with deep learning algorithm is proposed in this paper. Using the results 145 

obtained by the PI-based analysis of defect reconstructions as training data, 146 

feature representations of defect profiles are extracted by an effective deep 147 

learning neural network, which is created using augmented datasets for its 148 

computational efficiency and robustness. To demonstrate the ability of the 149 

developed PIF for defect reconstructions in terms of the accuracy and 150 

denoising capability, numerical examples have been examined to evaluate the 151 

overall performance of the intelligent model by comparison of the published 152 

results. 153 

 154 

2. PI-based analysis of defect reconstruction 155 

 156 

Fig.1 Reflection and transmission of an incident guided SH-wave by a plate thinning. 157 
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 158 

The process of incident waves travelling through the thinning structures can be 159 

described in Fig.1. First, the ultrasonic guided SH-wave is excited on the right 160 

side of the plate, and the reflection coefficient can be calculated from the 161 

reflected wave signal. Following this, the inverse Fourier transform of the 162 

reflection coefficient is then applied to analytically obtain the shape function of 163 

the defect for defect reconstruction[8]. The brief introduction of interactions 164 

occurred when waves propagate in cracked frame structures steps can be 165 

depicted as follows: 166 

Assuming that the incident guided SH-wave in this problem has a single nth 167 

mode, propagating from right to left and being reflected back by the thinning 168 

part, and the reflected wave with the same mode as the incident wave mode is 169 

observed in the far field. Starting from the wave equation in the plate and the 170 

corresponding boundary conditions[8], the displacement field in the plate has 171 

been determined by Eq (1): 172 

𝑢̃inc = 𝐴𝑛
inc𝑓𝑛(𝛽𝑛𝑥2)𝑒+𝑖𝜉𝑛𝑥1   ,   𝑢̃ref = 𝐴𝑛

ref𝑓𝑛(𝛽𝑛𝑥2)𝑒−𝑖𝜉𝑛𝑥1 173 

𝛽𝑛 = 𝑛𝜋/2𝑏, 𝜉𝑛 = √
𝜔2

𝑉𝑠
2 − 𝛽𝑛

2                    (1) 174 

where 𝑢̃inc and 𝑢̃ref depict the displacement fields of incident and reflected 175 

waves, respectively, 𝑛  represents the 𝑛th  guided SH-wave mode ( 𝑛 =176 

0,1,2, ⋯), 𝐴𝑛
inc and 𝐴𝑛

ref are the amplitude coefficients and 𝑓𝑛(𝑥) is defined 177 

as: 178 

𝑓𝑛(𝑥) = {
cos 𝑥  for 𝑛 = 0,2,4
sin 𝑥 for 𝑛 = 1,3,5

       (2) 179 

Subsequently, the reflection coefficient is defined as the ratio of the two 180 

coefficients: 181 

𝐶ref = 𝐴𝑛
ref/𝐴𝑛

inc          (3)     182 

Applying the reciprocal theorem of dynamics[25] and the Green’s function 183 

𝑈̃(𝒙, 𝑿) in the plate, the scattered displacement field is analytically derived 184 

using the boundary integral equation: 185 

𝑢̃sca(𝒙) = ∫ [𝑢̃tot(𝑿)𝜇
𝜕𝑈̃(𝑿,𝒙)

𝜕𝑛(𝑿)
− 𝜇

𝜕𝑢tot(𝑿)

𝜕𝑛(𝑿)
𝑈̃(𝑿, 𝒙)]𝑑𝑠(𝑿)

 

𝑆
        (4) 186 

where 𝑢̃sca and 𝑢̃tot represent the scattered and total displacement fields, 187 

respectively. As the defect boundary is free, 𝜕𝑢̃𝑡𝑜𝑡/𝜕𝑛 = 0 can be easily 188 

derived. For a weak scattering defect, the Born approximation can be applied 189 

to replace the total wave displacement field 𝑢̃tot(𝑿) in Eq.(4) with the incident 190 

wave field 𝑢̃inc(𝑿). One has 191 

𝑢̃sca(𝒙) ≈ ∫ 𝑢̃inc(𝑿)
 

𝑆
𝜇

𝜕𝑈̃(𝑿,𝒙)

𝜕𝑛(𝑿)
𝑑𝑠(𝑿)          (5) 192 



6 

 

Using the Gauss theorem, the surface integral of the defect is converted into 193 

the integral over the volume of the defect： 194 

𝑢̃sca(𝒙) ≈ ∫ [−𝑘2𝑢̃inc(𝑿)𝜇𝑈̃(𝑿, 𝒙) + 𝜇
𝜕𝑈̃(𝑿,𝒙)

𝜕𝑋𝑖

𝜕𝑢inc(𝑿)

𝜕𝑋𝑖
]

 

𝑉
𝑑𝑉(𝑿)     (6) 195 

where the Green’s function 𝑈̃(𝒙, 𝑿) represents the anti-plane displacement at 196 

the field point 𝒙 = (𝑥1, 𝑥2) due to a harmonic point force exerted at the source 197 

point 𝑿 = (𝑋1, 𝑋2) in an intact plate. The Green’s function 𝑈̃(𝒙, 𝑿) satisfies 198 

the equation of motion: 199 

∇2𝑈̃(𝒙, 𝑿) + 𝑘2𝑈̃(𝒙, 𝑿) = −𝛿(𝑥 − 𝑋)/𝜇            (7) 200 

And the traction free boundary condition can be written as: 201 

𝑇̃(𝒙, 𝑿) = 𝜇
𝜕

𝜕𝑛(𝒙)
𝑈̃(𝒙, 𝑿) = 0 on 𝑥2 = ±𝑏           (8) 202 

where 𝑘 = 𝜔/𝑉𝑆 is the shear wave number and 𝜕/𝜕𝑛 indicates the normal 203 

derivative. The solution to Eq.(7), that is the Green’s function 𝑈̃(𝒙, 𝑿), can be 204 

expressed as: 205 

𝑈̃(𝒙, 𝑿) = 𝑈̃inc(𝒙, 𝑿) + 𝑈̃ref(𝒙, 𝑿) 206 

=
1

4𝜋𝜇
∫

𝑒−𝑅|𝑥2−𝑋2|

𝑅

∞

−∞
𝑒−𝑖𝜉(𝑥1−𝑋1)𝑑𝜉 +

1

4𝜋𝜇
∫ (𝐴+𝑒−𝑅𝑥2 + 𝐴−𝑒+𝑅𝑥2)𝑒−𝑖𝜉(𝑥1−𝑋1)𝑑𝜉

∞

−∞
(9) 207 

where 𝑈̃inc(𝒙, 𝑿) is the fundamental solution; 𝑈̃ref(𝒙, 𝑿) means the additional 208 

term. 𝑅 = √𝜉2 − 𝑘2(|𝜉| ≥ 𝑘) 𝑜𝑟  𝑖√𝑘2 − 𝜉2 (|𝜉| ≤ 𝑘). 209 

Substituting Eq.(9) into Eq.(8), the undetermined amplitudes 𝐴+ and 𝐴− can 210 

be solved. Thus, 𝑈̃(𝒙, 𝑿) can be rewritten as: 211 

𝑈̃(𝒙, 𝑿) =
1

4𝜋𝜇
∫ [

𝑒−𝑅|𝑥2−𝑋2|

𝑅
+

𝑒−2𝑅𝑏

2𝑅(1+𝑒−2𝑅𝑏)
(𝑒−𝑅𝑋2 − 𝑒+𝑅𝑋2)(𝑒−𝑅𝑥2 − 𝑒+𝑅𝑥2) +

∞

−∞
212 

𝑒−2𝑅𝑏

2𝑅(1−𝑒−2𝑅𝑏)
(𝑒−𝑅𝑋2 + 𝑒+𝑅𝑋2)(𝑒−𝑅𝑥2 + 𝑒+𝑅𝑥2)] 𝑒−𝑖𝜉(𝑥1−𝑋1)𝑑𝜉    (10) 213 

For |𝑥1| ≫ |𝑋1|, the far-field expression for the Green’s function is given as 214 

𝑈̃(𝒙, 𝑿) ≅ 𝑈̃far(𝒙, 𝑿) =
𝑖

4𝑏𝜇𝜉0
𝑒−𝑖𝜉0|𝑥1−𝑋1| − ∑

𝑖

2𝑏𝜇𝜉𝑗
𝑓𝑗(𝛽𝑗𝑥2)𝑗 𝑓𝑗(𝛽𝑗𝑋2)𝑒−𝑖𝜉𝑗|𝑥1−𝑋1|  215 

(11) 216 

where the functions 𝑓𝑛(𝑥) is defined in Eq.(2).  217 

Based on the far field approximation[8], the Green’s function 𝑈̃(𝒙, 𝑿)  in a 218 

traction-free plate waveguide for SH-wave can be expressed as: 219 

𝑈̃(𝑿, 𝒙) ≈ 𝑈̃far(𝑿, 𝒙) = −
𝑖

2𝑏𝜇𝜉𝑛
cos(𝛽𝑛𝑥2) cos(𝛽𝑛𝑋2)𝑒−𝑖𝜉𝑛(𝑥1−𝑋1)    (12) 220 

Substituting Eq.(1) and (12) into Eq.(6), the displacement field of the reflected 221 

wave can be formulated as follows: 222 

𝑢̃ref(𝒙) =
𝑖

2𝑏
𝐴𝑛

inc ∫
𝜉𝑛

2+𝑘2 cos(2𝛽𝑛𝑋2)

𝜉𝑛
𝑒2𝑖𝜉𝑛𝑋1𝑑𝑉(𝑿)

 

𝑉
× cos(𝛽𝑛𝑥2)𝑒−𝑖𝜉𝑛𝑥1   (13) 223 
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Comparing Eq.(1) with Eq.(13), it is noted that the integral term in Eq.(13) 224 

corresponds to the reflection coefficients, and the volume integral represents 225 

the multiple integrals. Thus, one obtain: 226 

𝐶ref =
𝐴𝑛

ref

𝐴𝑛
inc =

𝑖

2𝑏

𝜉𝑛
2+𝑘2

𝜉𝑛
∫ 𝑑(𝑋1)𝑒2𝑖𝜉𝑛𝑋1𝑑𝑋1

+∞

−∞
              (14) 227 

where 𝐶ref  is the reflection coefficients and 𝑑(𝑋1)  describes the defect 228 

profile.  229 

In Eq.(14), it can be observed that 𝐶ref and 𝑑(𝑋1) form a Fourier transform 230 

pair. Applying the inverse Fourier transform on Eq.(14), the defect profile 231 

𝑑(𝑋1) is determined by Eq.(15) 232 

𝑑(𝑋1) =
1

2𝜋
∫

−2𝑖𝑏𝜉𝑛

𝜉𝑛
2+𝑘2 𝐶ref𝑒−2𝑖𝜉𝑛𝑋1𝑑(2𝜉𝑛)

+∞

−∞
               (15) 233 

As 𝑑(𝑋1) is described in the spatial domain and 𝐶ref in the wavenumber 234 

domain, the defect reconstruction method aforementioned is called the 235 

wavenumber spatial transformation(WNST)[8]. To derive Eq.(15), there are 236 

some assumptions applied including the thinning defect as a weak scattering 237 

source (𝑑 ≪ 𝑏), Born approximation to replace the total field near the defect 238 

with the incident field, and the use of the far field approximation for calculating 239 

the Green function of the bounded plate. These approximations can help 240 

simplify the physics-informed formulations for defect reconstruction in an 241 

efficient way, while it is inevitable to introduce model errors and reduce the 242 

accuracy of reconstruction results.  243 

     244 

3. A novel physics-informed framework 245 

In order to improve the accuracy of the physics-informed modelling and 246 

eliminate the impact of noise pollution in the process of defect inspection and 247 

reconstruction, the fusion of a data-driven convolutional neural network (CNN) 248 

with the physics-informed analysis by the wavenumber spatial transformation 249 

method, called the WNSTConvNet framework, has been proposed in this 250 

paper for defect reconstruction.  251 

 The physical process of using ultrasonic waves to detect defects can be 252 

described as follows: In the process of propagation of sound waves along the 253 

medium, scattering will occur when encountering defects and this results in the 254 

transmission wave field and reflection wave field. Using the defect information 255 

from the transmitted and reflected signals, defect detection or reconstruction 256 

can be achieved. Therefore, guided wave defect reconstruction can be 257 

attributed to a scattering problem. For a scattering problem, it can be simply 258 

expressed by the following equation: 259 

𝑦 = 𝑇𝑥 + 𝜉                            (16) 260 
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where 𝑥 represents the scattering source that is assumed a thinning defect in 261 

this study, 𝑦 represents the scattering field signal, 𝑇 is an operator and its 262 

properties depend on the specific scattering problem, and 𝜉 is the error. The 263 

task of inverse scattering problems is to calculate 𝑥  based on 𝑦 . The 264 

traditional methods to solve this class of problems are divided into two 265 

categories: The first group aims to directly construct the inverse problem 266 

model, such as the wavenumber spatial transformation method (WNST) 267 

aforementioned. The corresponding mathematical formulation can be given as 268 

follows: 269 

𝑥 = 𝑇̂−1𝑦                  (17) 270 

where 𝑇̂−1 is the theoretical reconstruction operator. The advantage of this 271 

method lies in that for the reconstruction of defects in simple structures, the 272 

calculation of the inverse scattering can be performed in a short time, while the 273 

disadvantage of this method could be difficult to obtain accurate results due to 274 

the ill-posed inverse problems. In particular, when the scattering problem 275 

becomes complex, it will be extremely difficult to develop the reconstructed 276 

model, therefore the reconstruction accuracy and reliability will be affected.             277 

The second class of methods for solving the inverse scattering problem is 278 

called the iterative-based method, such as the QDFT[10] and the mathematical 279 

formulation can be expressed as: 280 

𝑂{𝑦} = arg min
𝑥

𝑓(𝑇{𝑥}, 𝑦)                       (18) 281 

Where the function 𝑓 is used to characterize the error between 𝑇{𝑥} and 𝑦. 282 

The iterative-based method has the ability to obtain accurate results and its 283 

disadvantage is that the efficiency of defect reconstruction is low due to a lot of 284 

computational time required by the iterative process. 285 

  In this paper, the approach based on machine learning is proposed to solve 286 

the inverse scattering problem. The inverse problem model, which is 287 

constructed through the training session, can be created in a mathematical 288 

form as follows:  289 

𝐿 = arg min
𝜃

∑ 𝑀(𝑥𝑛 , 𝐻𝜃{𝑦𝑛}) + 𝑟(𝜃)𝑁
𝑛=1                  (19) 290 

where 𝑥𝑛  is the exact defect; 𝑦𝑛  denotes the reflection coefficients; the 291 

symbol 𝑀  is the loss function for characterizing the difference between 292 

samples 𝑥𝑛 and 𝐻𝜃{𝑦𝑛}; 𝐻𝜃 is the neural network built for solving the inverse 293 

problem, 𝜃 is the parameter in the neural network and is iteratively updated 294 

during the entire training process; 𝑁 represents the total number of pairs in 295 

training samples; 𝑟 is a regularization term, which prevents over-fitting and 296 

also limits the value of parameter 𝜃 to reduce the complexity of the trained 297 



9 

 

network model 𝐻𝜃. After training is completed, the network can achieve high 298 

reconstruction accuracy with a high level of efficiency.  299 

  In order to make full use of the existing defect reconstruction theory, the 300 

integration of the theoretical model (WNST) with machine learning methods is 301 

proposed in a manner of local fusion to efficiently and accurately solve defect 302 

reconstruction problem using the ultrasonic guided waves. The mechanism of 303 

this novel WNSTConvNet framework can be mathematically described as: 304 

𝐿 = arg min
𝜃

∑ 𝑃(𝑥𝑛 , 𝐿𝜃{𝑇̂−1𝑦𝑛})𝑁
𝑛=1 + 𝑔(𝜃)             (20) 305 

where the training sample pair is (𝑥𝑛, 𝑇̂−1𝑦𝑛), in which 𝑥𝑛 is the exact defect 306 

and 𝑇̂−1𝑦𝑛  represents the defect constructed by the physics-informed 307 

construction model; The mean square error (MSE) is selected to evaluate the 308 

performance function 𝑃 during the training session; 𝐿𝜃 is the WNSTConvNet 309 

framework, but its argument is the pre-reconstruction；𝐿2  regularization 310 

function is adopted to determine the regularization term 𝑔(𝜃) to reduce the 311 

complexity of the model and prevent overfitting. In this study, the initial results 312 

obtained by the physics-informed model are treated as training data for the 313 

generation of the machine learning model to improve the accuracy of defect 314 

reconstruction.  The developed framework architecture and training process 315 

designed in this paper are shown in Fig.2. 316 

 317 

Fig.2 Schematic illustration of the reconstruction pipeline and the WNSTConvNet convolutional architecture. First, 318 

a set of reflection coefficients 𝑦𝑛 have been calculated in the scattering process for the given different exact 319 

defects 𝑥𝑛. Then, the input of the reflection coefficients 𝑦𝑛 for the theoretical model WNST has been to obtain 320 

the pre-reconstruction defects. Next, the pairs of {(𝑥𝑛, 𝑇̂−1𝑦𝑛)}𝑛=1
𝑁  have been used to train the WNSTConvNet 321 

network  𝐿𝜃 with the performance function 𝑃 and the regularization method 𝑔 (L2 regularization indeed). 322 
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Once the training is completed, the deep-learning network 𝐿𝜃  has the ability to efficiently predict the 323 

high-quality reconstruction of defects for an unknown defect signal 𝑇̂−1𝑦. 324 

 325 

Since the input samplings are one-dimensional signals, a one-dimensional 326 

deep learning network is constructed. The training process in Fig.2 could be  327 

described as follows: First, the pre-reconstructed defects 𝑇̂−1𝑦𝑛 are obtained 328 

by WNST and utilized as the network inputs. Then, the mean square errors 329 

(MSE) between the exact defects 𝑥𝑛  and the predicted profiles by the 330 

intelligent network are calculated to update the network parameter 𝜃 until the 331 

average MSE value of the entire sample set converges. Once the training 332 

session is completed, the deep-learning network has the ability to efficiently 333 

predict the high-quality reconstructed defect for a given defect signal 𝑇̂−1𝑦𝑛. In 334 

this developed network, ReLU[26] activation function is used for each 335 

convolutional layer. In order to address the problem of gradient disappearance 336 

encountered during the training session, the batch normalization is performed 337 

before the activation[27] to improve the training efficiency. To prevent overfitting, 338 

a dropout layer[28] is added at the end of the network to discard some training 339 

parameters and improve its robustness. At the same time, 𝐿2 regularization 340 

terms are applied to limit the training parameters and improve the 341 

generalization performance of the developed network for defect reconstruction. 342 

Based on the fusion of physics-informed calculations and predictions by 343 

deep-learning intelligent network, the developed WNSTConvNet framework 344 

which has been implemented in Python using the TensorFlow library[29] 345 

demonstrates the outperformance over its rivals for defect reconstructions 346 

throughout the complex examples in the following section. 347 

 348 

4. Experimental validation 349 

In this paper, two sets of sample data are generated to train the intelligent 350 

network in the WNSTConvNet framework for defect reconstruction with high 351 

levels of accuracy and robustness. 352 

4.1. Data preparation 353 

A mixed defect dataset that contains 1200 defect profiles including randomly 354 

isosceles triangular defects, rectangular defects and stepped defects, is 355 

created. Each type of predefined defect shapes comprises two groups of data: 356 

one is the input sample 𝑇̂−1𝑦𝑛 , and the other is the referenced real defect 𝑥𝑛. 357 

Each sample is represented as a vector with the dimension of 100 × 1, and 358 

the items in the vector depicts the depth information of the defect. For the input 359 

data of the WNSTConvNet framework, it is obtained by analytical calculations 360 

as follows: The reflection coefficients of the 0th SH-wave mode corresponding 361 

to the exact defect are obtained by the modified boundary element 362 

method[30](MBEM) for all the examples in this paper. In practice, 363 

multi-dimensional Fourier Transforms and the frequency-wavenumber filtering 364 
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can be applied for the incident wave removal and mode separation[31-32]. 365 

Following that, the shape function 𝑑(𝑋1) of the defect is constructed by the 366 

wavenumber spatial transformation (Eqs.14-15), which deals with the input 367 

data required. Among 1200 sets of sampling data, the dataset split ratio (0.9) 368 

has been applied. That is to say, 900 samples are used for network training, 369 

210 samples are used for the verification purpose during the training process 370 

and 90 samples are used for performing the unbiased evaluation of a final 371 

model once the training session is completed. 372 

To further improve the performance of network and reconstruct more 373 

complex defect, the augmented dataset is generated. First, the 374 

pre-reconstruction isosceles triangular and rectangular defects with random 375 

sizes and shapes have been created using the wavenumber spatial 376 

transformation method formulated by Eqs. (14-15). Then, the augmented data 377 

has been generated by randomly shifting the signals in the horizontal direction. 378 

Summarily, there are 2800 sets of sampling data including 800 original inputs 379 

and 2000 augmented data for the network training, verification and testing. 380 

   381 

4.2. Experimental results 382 

  Once the network training is completed, the reconstruction of defects with 383 

simple defective geometries, the stepped geometries and a mixed type of 384 

profiles will be conducted. In order to quantify the difference between the 385 

reconstructed defect and the real defect, the signal-to-noise ratio(SNR)[33] used 386 

as loss function to measure the reconstruction quality is proposed as follows: 387 

𝑆𝑁𝑅(𝒙, 𝒙̂) ≜ max
𝑎∈𝑅

{10𝑙𝑜𝑔10(
‖𝒙‖𝑙2

2

‖𝒙−𝑎𝒙̂‖𝑙2
2 )}              (21)         388 

where 𝒙 is the real defect, and 𝒙̂ is the predicted reconstruction of defect. A 389 

higher SNR value corresponds to a better reconstruction. Note that the vector 390 

𝒙 or 𝒙̂ used to characterize the defect shape in this study is actually the 391 

spatial distribution of the defect shape in the entire detection range, including 392 

the defect region and the defect-free region. The purpose of this proposed 393 

measure criteria lies in not only the investigation of the influence of the noise 394 

and error on the reconstructed defect quality in the defective area, but also the 395 

impact on the reconstruction result in the non-defective area. 396 

 397 

4.2.1. A mixed dataset of defects 398 

The convolutional neural network is initially constructed during the training 399 

session using the mixed type of defects described in Section 4.1. The 400 

reconstructed results of triangular defects, rectangular defects and stepped 401 

defects have been shown in Fig.3 and the SNR values obtained are provided 402 

in Table 1. It is noted that the WNSTConvNet framework has the ability to 403 

achieve defect reconstruction with a high level of accuracy. Especially, for 404 

rectangular and stepped defects, the SNR value reached about 28dB. The 405 
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average SNR value of the reconstruction results across the entire testing 406 

dataset is 23.95dB, which enables the improvement of reconstruction results 407 

and leads to nearly 200% higher precision than the result by WNST. 408 

 409 

Fig.3 Reconstruct triangular defect (a), rectangular defect (b) and stepped defect (c) using the proposed 410 

WNSTConvNet framework 411 

 412 

Table 1 Comparison of SNR (dB) values of reconstruction results of the two methods 413 

Reconstruction 

methods 

Triangular 

defects 

Rectangular 

defects 

Stepped 

Defects 

Average SNR over 

the dataset 

WNST 

WNSTConvNet 

9.25 

20.29 

8.13 

28.40 

7.88 

28.03 

8.20 

23.95 

 414 

4.2.2. Augmented datasets 415 

Insufficient data is a critical issue that limits the application of machine 416 

learning methods in engineering subjects. In this situation, the generation of an 417 

augmented dataset by data augmentation method can fully dig out the 418 

information hidden owing to the limited data. In this experiment, the 2800 sets 419 

of augmented data have been used to train and verify the intelligent network. 420 

During the training session, the hyperparameters of the network have been 421 

finely tuned to reconstruct the asymmetric defects that are created by the 422 

combination of triangular and rectangular defects to improve the network with 423 

better generalization performance. The reconstruction results of two 424 

asymmetric combined defects have been shown in Fig.4a and Fig.4b. In Table 425 

2, the obtained SNR values have been provided as compared to results from 426 

WNST. It can be observed that the network trained using triangular defects, 427 

rectangular defects, and their augmented data has the ability to reconstruct 428 

general asymmetric defects and the reconstruction accuracy has been 429 

remarkably improved by comparison of the results from the WNST method. It 430 

has been concluded that the network designed by the WNSTConvNet 431 

framework has demonstrated good generalization ability throughout the 432 

examples and the developed data-driven model that fuses the geometrical 433 

information of defects and initial results by the physics-informed analysis of 434 

defect reconstructions, has the capability to efficiently and effectively assess 435 

and characterize defects with complex profiles. 436 
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The major bottleneck in engineering applications of deep learning is the 437 

limited amounts of the effective data. In this study, the data-driven network 438 

model has been trained using defects with the basis profiles to realize the 439 

reconstruction of defects with complex profiles. However, it is very challenging 440 

to achieve the reconstruction with a high level of precision. In order to address 441 

this issue, additional 28 (about 1% of the original number of samples) defects 442 

with complex profiles representing the combination of triangular and 443 

rectangular shapes have been added to the training set for the improvement of 444 

the network with better generalization performance. This also empowers the 445 

network with the learning capability by taking the advantage of transfer 446 

learning[34].Therefore, there are 2828 sets of training data to build the effective 447 

machine learning model for the high-precision defect reconstruction. The 448 

reconstruction results of complex defect profiles have been shown in Fig.4c 449 

and the SNR value of the reconstruction result which is 22.52dB has been 450 

given in Table 3. 451 

 452 

Fig.4 a, b Two reconstruction samples using neural network trained with 2800 augmentation samples. c 453 

Reconstruction result using neural network trained with 2828 augmentation samples which including 28 454 

combination defects samples. 455 

 456 

Table 2  Comparison of SNR (dB) values of reconstruction results of the two methods 457 

Reconstruction 

methods 
Sample a Sample b 

Average SNR over 

the dataset 

WNST 

WNSTConvNet 

8.79 

21.62 

8.87 

16.65 

7.54 

17.03 

 458 
Table 3 SNR(dB) values of reconstruction results of neural network trained with additional 28 combination 459 

defects samples 460 

Reconstruction 

methods 
Sample c 

Average SNR over 

the dataset 

WNST 

WNSTConvNet 

7.64 

22.52 

7.54 

21.33 

 461 

 462 

 463 
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4.2.3. Reconstruction of noisy defects 464 

In order to ensure the robustness of this data-driven defect reconstruction 465 

model, the network trained by the augmented datasets, which include 2800 466 

defect samples, is constructed to detect defects using signals in Gaussian 467 

white noise. First, Gaussian white noise with a signal-to-noise ratio of 15dB 468 

has been added to the input signals of WNSTConvNet, and then the trained 469 

deep-learning network has been examined for the denoising capability and 470 

defect reconstruction ability. In Fig.5a, defects with the noisy fringe and the 471 

predicted results by WNST and the developed deep-learning network have 472 

been provided. Table 4 shows the average SNR values (7.13dB and 13.86dB) 473 

of reconstructed results over the entire testing data by WNST and the 474 

WNSTConvNet framework, respectively. It is noted that the accuracy has been 475 

improved by nearly 100%, which demonstrates that the WNSTConvNet 476 

framework has great self-learning denoising capability. In order to further 477 

improve the denoising capability of the WNSTConvNet framework, a dataset of 478 

2800 augmented signals containing 15dB of Gaussian white noise has been 479 

labelled as the training data to generate a more powerful, intelligent network. It 480 

can be observed that the denoising capability of the updated WNSTConvNet 481 

framework has been much improved as the reconstructed defect by the 482 

WNSTConvNet framework is in good agreement with the real defect and 483 

outperforms the result by WNST shown in Fig.5b and the accuracy of defect 484 

reconstruction can reach 17.66dB provided in Table 5. 485 

 486 

Fig.5 a Reconstruction result of defect from noisy signals using neural network trained with 2800 487 

augmentation samples. b Reconstruction result of defect from noisy signals using neural network trained with 488 

2800 augmentation noise-containing samples. 489 

 490 

Table 4 SNR(dB) values of reconstruction results of defect from noisy signals using neural network trained with 491 

2800 augmentation samples 492 

Reconstruction methods Sample a Average SNR over the dataset 

WNST 

WNSTConvNet 

7.35 

14.62 

7.13 

13.86 
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 493 
Table 5 SNR(dB) values of reconstruction results of defect from noisy signals using neural network trained with 494 

2800 augmentation noise-containing samples 495 

Reconstruction methods Sample b Average SNR over the dataset 

WNST 

WNSTConvNet 

7.35 

18.04 

7.13 

17.66 

 496 

5. Discussion 497 

Simulation results prove the effectiveness and robustness of the 498 

WNSTConvNet framework for defect reconstruction with remarkable denoising 499 

capability. As compared with results by the WNST method based on the 500 

guided wave scattering theory, the WNSTConvNet framework which integrates 501 

the data-driven model with the physics-informed analysis has greater 502 

performance in terms of efficiency and denoising capability, while the 503 

reconstructed result is closer to the real defect profile. This is of great 504 

significance to the area of high-precision defect detection in engineering. At 505 

the same time, the great robustness of the WNSTConvNet framework can be 506 

demonstrated by the effective removal of samples mixed with noise during the 507 

defect reconstruction process. Therefore, it can improve the quality of 508 

reconstructed defects. On the other hand, removing the noise from the signals 509 

representing the features of the defect-free area also benefits the identification 510 

of the exact location of defects. It is noted that using the WNSTConvNet 511 

framework for reconstruction of defects, it takes less than one second to 512 

achieve the defect reconstruction with a high level of accuracy.  513 

The limitation of the defect reconstruction method based on the supervised 514 

learning algorithm lies in the fact that the generated network architecture can 515 

only work on information that is either provided in the initial guess or extracted 516 

from the training data. For example, the neural network trained using the 517 

triangular datasets has a poor capability of prediction for reconstruction of 518 

rectangular defects. According to the first experimental test, one of the 519 

solutions to address this problem in practical applications is to train the neural 520 

network with datasets of a variety of typical geometrical information. Moreover, 521 

a classification layer followed by the reconstruction layer can be elaborately 522 

added in the design of network architecture so that the ensemble of different 523 

types of pre-reconstruction defects predicted by the corresponding 524 

convolutional neural network can be further developed in the network 525 

architecture for the improvement of computational accuracy. Another 526 

constraint on using neural networks to reconstruct defects is the need for a 527 

large amount of training data to guarantee the reliability of the predicted results. 528 

At present, the amount of relevant training data obtained from practical 529 

engineering applications is inadequate and the cost of obtaining data through 530 

experiments is also prohibitively expensive. Therefore, simulation results as a 531 
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source of data to train a neural network is a feasible method in practice to 532 

solve data problems.  533 

The WNSTConvNet framework proposed in this paper is the fusion of the 534 

physics-informed wave scattering analysis and the data-driven approach for 535 

defect reconstruction and its working mechanism has not been constrained by 536 

the type of theoretical model and the machine learning model. In this paper, 537 

the wavenumber spatial transformation(WNST) and the convolutional neural 538 

network (CNN) are selected as representative models to demonstrate the 539 

effectiveness and correctness of the proposed framework for reconstruction of 540 

complex defects. 541 

 542 

6. Conclusion 543 

This paper proposes a novel physics-informed quantitative defect 544 

reconstruction framework (WNSTConvNet), which integrates the wavenumber 545 

spatial transformation method (WNST) with a convolutional neural network in a 546 

local fusion manner. Throughout three complex experiments by comparison of 547 

the reconstruction results between WNSTConvNet and WNST, it has 548 

demonstrated that the WNSTConvNet framework is more effective, accurate 549 

and robust for reconstruction of complex defects. Results by WNSTConvNet 550 

have an average reconstruction accuracy of 20dB for the three types of 551 

defects, which demonstrates its good generalization performance. Especially, 552 

for the reconstruction of rectangular defects and stepped defects, the accuracy 553 

of reconstructions by WNSTConvNet has been improved by nearly 200% than 554 

the result by WNST. Moreover, considering the signal with Gaussian noise for 555 

the combined defect profiles, the WNSTConvNet framework has great 556 

denoising capability, which proves that the developed framework has good 557 

robustness for reconstruction of defects. Usually, the defect reconstruction 558 

process by WNSTConvNet can be completed within 1 second. Therefore, it’s a 559 

high-precision and high-efficiency quantitative defect reconstruction technique 560 

as compared to the analytical methods. In future work, experimental tests will 561 

be performed as an alternative to numerical simulations for the validation of 562 

the defect reconstruction method. Currently, the proposed framework has 563 

provided both useful guidelines to experimental tests throughout the numerical 564 

examples and valuable insights into the development of artificial 565 

intelligence-assisted inspection systems with high accuracy and efficiency in 566 

the fields of structural health monitoring and product life cycle prediction. 567 
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