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Abstract. This study considers year-to-year and decadal
variations in as well as secular trends of the sea–air CO2 flux
over the 1957–2020 period, as constrained by the pCO2 mea-
surements from the SOCATv2021 database. In a first step, we
relate interannual anomalies in ocean-internal carbon sources
and sinks to local interannual anomalies in sea surface tem-
perature (SST), the temporal changes in SST (dSST/dt), and
squared wind speed (u2), employing a multi-linear regres-
sion. In the tropical Pacific, we find interannual variability
to be dominated by dSST/dt , as arising from variations in
the upwelling of colder and more carbon-rich waters into the
mixed layer. In the eastern upwelling zones as well as in cir-
cumpolar bands in the high latitudes of both hemispheres,
we find sensitivity to wind speed, compatible with the en-
trainment of carbon-rich water during wind-driven deepen-
ing of the mixed layer and wind-driven upwelling. In the
Southern Ocean, the secular increase in wind speed leads to
a secular increase in the carbon source into the mixed layer,
with an estimated reduction in the sink trend in the range
of 17 % to 42%. In a second step, we combined the result
of the multi-linear regression and an explicitly interannual
pCO2-based additive correction into a “hybrid” estimate of
the sea–air CO2 flux over the period 1957–2020. As a pCO2
mapping method, it combines (a) the ability of a regression
to bridge data gaps and extrapolate into the early decades
almost void of pCO2 data based on process-related observ-
ables and (b) the ability of an auto-regressive interpolation to
follow signals even if not represented in the chosen set of ex-
planatory variables. The “hybrid” estimate can be applied as

an ocean flux prior for atmospheric CO2 inversions covering
the whole period of atmospheric CO2 data since 1957.

1 Introduction

The atmospheric CO2 content has risen during the recent
decades, primarily due to anthropogenic emissions (IPCC,
2013). However, the actual rise has been co-determined by
the exchange of CO2 between the atmosphere and natural
systems, notably the ocean and the land vegetation. The up-
take of atmospheric CO2 into the ocean is primarily driven by
the solution disequilibrium across the sea–air interface. As
the surface-ocean carbon content is lagging behind the atmo-
spheric rise, the ocean uptake is, to first order, increasing in
parallel with the atmospheric CO2 rise. However, natural cli-
mate variability and anthropogenic climate change alter the
uptake rate on year-to-year and decade-to-decade timescales
as well as in its secular evolution. This leads to a feedback
loop: atmospheric CO2 influences the climate via the green-
house effect, while the climate in turn influences the carbon-
relevant natural systems in the ocean and on land. This feed-
back loop could dampen or accelerate climate change.

In order to understand the future climate trajectory, we
therefore need to quantitatively understand the carbon re-
sponse of the natural systems. For example, how will secular
trends towards higher wind speeds in the Southern Ocean af-
fect the sea–air CO2 exchange in this region (Le Quéré et al.,
2007; Hauck et al., 2013; and many others)? While the rele-
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vant timescale is secular (multi-decadal) trends, year-to-year
or decade-to-decade variability in CO2 fluxes can be used as
“natural experiments” to understand the climatic controls of
the land and ocean carbon cycle. This can be done by quan-
tifying variations in carbon fluxes from suitable observa-
tions and statistically relating them to variations in quantities
describing relevant environmental conditions. Even though
the climate–carbon cycle feedback loop involves the global
CO2 fluxes only (because atmospheric CO2 is mixed glob-
ally within about 1 year), the statistical analysis needs to be
done on a spatial scale fine enough to accommodate the spa-
tial inhomogeneity of the involved processes.

Suitable observational data therefore need to provide suf-
ficient spatial and temporal detail and span several decades.
Regarding ocean CO2 fluxes, there are essentially two types
of such data: (1) sustained atmospheric CO2 measurements
at various locations worldwide (Keeling, 1978; Conway
et al., 1994; Francey et al., 2003; and many more) and
(2) sustained and spatially extensive measurements of the
CO2 partial pressure (pCO2) in the surface ocean (Bakker
et al., 2016). As changes and gradients in atmospheric CO2
reflect the sum of the regional CO2 sources and sinks at
the surface, atmospheric CO2 data have been combined with
simulations of atmospheric tracer transport and inverse tech-
niques to estimate spatial and temporal variations in the CO2
fluxes (“atmospheric inversion”; Newsam and Enting, 1988;
Rayner et al., 1999; Bousquet et al., 2000; Rödenbeck et al.,
2003; Baker et al., 2006; and many others). Even though
most of the atmospheric inversions start in the 1990s or
2000s, when more and more stations became operational, the
longest time series of atmospheric CO2 measurements are
available from 1957 (as used in Rödenbeck et al., 2018a).
However, atmospheric inversions are known to have limited
capability to correctly assign signals to land or ocean (Peylin
et al., 2013). While the resulting error is relatively small for
the land fluxes, it strongly affects the estimated ocean flux
variability because the ocean variability is much smaller than
the land variability.

Therefore, the surface-ocean pCO2 data (Bakker et al.,
2016) currently provide the most detailed information about
the spatio-temporal variability in the sea–air CO2 exchange.
To cope with the very inhomogeneous distribution of these
pCO2 data in space and time, including substantial gaps, sev-
eral methods have been developed to map (interpolate) the
data into continuous spatio-temporal fields of pCO2 (Taka-
hashi et al., 2009; Watson et al., 2009; Valsala and Maksyu-
tov, 2010; Landschützer et al., 2013; Nakaoka et al., 2013;
Rödenbeck et al., 2013; Majkut et al., 2014; Iida et al., 2015;
Jones et al., 2015; Zeng et al., 2015; Denvil-Sommer et al.,
2019; Gregor et al., 2019; and several others). Most of these
mappings employ either (i) an auto-regressive interpolation
that fills unobserved areas or periods based on the neighbour-
ing data within some prescribed correlation radii in space and
time or (ii) a regression of pCO2 against suitable explana-
tory variables that have been observed more densely and over

the entire target period (using linear regression, neural net-
works, or machine learning). These two types of mappings
offer complementary advantages, as regressions against ex-
planatory variables possess predictive skill allowing longer
data gaps to be filled (and potentially extrapolation into data-
void periods), while auto-regressive mappings can reproduce
all signals in the data even if they are not represented in the
chosen explanatory variables (Rödenbeck et al., 2015). From
the mapped pCO2 fields, the sea–air CO2 flux is then cal-
culated via a gas exchange parameterization. In addition to
studying the ocean carbon cycle, these flux estimates have
also been used as an interannually varying ocean prior in at-
mospheric CO2 inversions to potentially improve land CO2
flux estimates (Rödenbeck et al., 2014).

With regard to the aim of understanding how the oceanic
carbon cycle may respond to decadal and secular climatic
changes as laid out above, however, the current pCO2 map-
pings have two limitations. As a first limitation, the current
pCO2 mappings only provide spatio-temporal variations in
the pCO2 field and the sea–air CO2 flux but do not explic-
itly quantify the relationships between these variations and
underlying environmental drivers. This is true even for the
regressions against explanatory variables: even though these
relationships are implicitly contained in the synaptic weights
of neural networks or similar parameters in machine learning
algorithms, they are not accessible from these algorithms in
interpretable form.

The second limitation arises from the fact that very few
pCO2 data exist before the mid-1980s (Bakker et al., 2016).
In the equatorial Pacific, critical due to its large variability,
sufficient coverage does not start before 1992. Despite their
predictive skill, even the available pCO2 regressions against
explanatory variables only cover a time period not longer
or even shorter than the pCO2 data period, some for ex-
ample because chlorophyll a data have only been available
in the satellite era since 1997. Thus, none of the currently
available pCO2 mappings start before 1980. Consequently,
they cannot be used as a data-based ocean prior in atmo-
spheric CO2 inversions over the full period of atmospheric
data (1957–present). Further, the pCO2 mappings do not
cover the 1960–present period considered in ongoing syn-
thesis projects like the annual carbon budget by the Global
Carbon Project (GCP) (Friedlingstein et al., 2020), which so
far exclusively relies on process model simulations during
the first decades.

As a contribution to overcome these two limitations, this
study has a 2-fold aim:

– First, extending the CarboScope pCO2 mapping (Rö-
denbeck et al., 2013, 2014), we have developed a multi-
linear regression explicitly estimating the sensitivities
of the carbon sources and sinks in the oceanic mixed
layer against the variations in relevant explanatory vari-
ables. This allows a data-based view of the processes
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plausibly underlying year-to-year variability in different
parts of the ocean.

– Second, we have combined this multi-linear regres-
sion with an additive auto-regressive correction into a
“hybrid” mapping, inheriting the complementary ad-
vantages of both auto-regressive and regression-based
pCO2 mappings. As the regression extrapolates the
variability back to 1957 by only using explanatory vari-
ables available throughout the entire time frame, the
hybrid mapping yields an observation-based estimate
of the spatio-temporal variability in sea–air CO2 fluxes
since 1957.

After describing the mapping methods (Sect. 2), we
present how the multi-linear regression traces the origin of
interannual variations in the oceanic carbon system to the in-
dividual environmental quantities used as explanatory vari-
ables (Sect. 3.1). We present the spatial patterns in the re-
gression coefficients (sensitivities) and discuss possible un-
derlying mechanisms controlling the oceanic carbon system
(Sect. 3.2). We evaluate the predictive skill of the multi-
linear regression step as one of its most important require-
ments (Sect. 3.3). Finally, we present the interannual varia-
tions in sea–air CO2 fluxes estimated by the hybrid mapping
(Sect. 3.4) and compare it to the variations captured by the
multi-linear regression (Sect. 3.5). In the discussion, we con-
sider whether the presented multi-linear regression indeed
meaningfully reflects biogeochemical processes (Sect. 4.1),
which fraction of interannual variability it is able to cap-
ture (Sect. 4.2), to which extent the sensitivities depend on
the timescale (Sect. 4.3), and how some uncertainties may
affect the result (Sect. 4.4–4.6). In the Appendix, we focus
on the global total sea–air CO2 flux estimated by the hybrid
mapping in terms of its mean (Sect. A1) and secular trend
(Sect. A2), discussing its uncertainty and comparing it with
literature values obtained by other methods.

2 Method

2.1 pCO2 mapping

2.1.1 Overview

The pCO2 mapping schemes used in this study are vari-
ants of the CarboScope pCO2 mapping described in Röden-
beck et al. (2013). The estimates are based on the pCO2
data (converted from the original fugacity data; see Table 1)
in the SOCAT data collection version v2021 (Bakker et al.,
2016, 2020). The elements common to all mapping variants
are summarized in the following and illustrated in Fig. 1; for
details we refer to Rödenbeck et al. (2013).

Parameterizations of sea–air gas exchange (quadratic wind
speed dependence as in Wanninkhof, 1992) and solubility
(Weiss, 1974), a calculation of the chemical equilibrium of
the carbonate chemistry in seawater (Orr and Epitalon, 2015)
as well as a mixed-layer budget of dissolved inorganic car-
bon (DIC) (Rödenbeck et al., 2013), are used to express the
pCO2 field and the sea–air CO2 flux field as a function of the
ocean-internal flux of DIC, fint (Fig. 1). The ocean-internal
DIC flux fint is meant to comprise all sources and sinks of
DIC into or out of the oceanic mixed layer, through biolog-
ical conversion within the mixed layer or through mixing-in
of waters with different DIC concentration. It is expressed as
the sum of a fixed (a priori) flux field and a set of predefined
spatio-temporal patterns of adjustment each scaled by an ad-
justable parameter (the sets of patterns are detailed for each
variant of the mapping below). Then, the mismatch between
the calculated pCO2 field (at the respective pixels and time
steps containing the SOCAT pCO2 samplings) and the cor-
responding measured pCO2 values (black dots in the pCO2
panel of Fig. 1) is gauged by a quadratic cost function. The
(a posteriori) estimates of the mapping are calculated from
those values of the adjustable parameters that minimize this
cost function. In the example of Fig. 1, the two estimates
(coloured) follow the data points (black dots) more closely
than the prior (grey).

Spatial and temporal interpolation between the very inho-
mogeneously sampled data is implemented in the following
way. By choosing a set of spatial patterns of adjustment that
are centred at all the individual ocean pixels but simultane-
ously affect the respective neighbouring pixels within some
correlation radius (to be detailed below), in conjunction with
additional Bayesian terms in the cost function that penalize
large adjustments to the adjustable parameters, the param-
eter fields (the ocean-internal DIC flux field or the fields
of sensitivities, respectively; see below) are forced to be
smooth. These smoothness constraints spread the informa-
tion from data-covered pixels to neighbouring unconstrained
pixels (see Fig. 5 of Rödenbeck et al., 2013), thereby inter-
polating spatial data gaps. (The set of patterns of adjustment
indirectly defines the Bayesian a priori covariance matrix;
see Rödenbeck, 2005, for background.) Interpolation in time
is achieved analogously by temporal smoothness constraints
(even though, for practical reasons, a mathematically equiv-
alent Fourier formulation is used).

The four mapping variants used here (Table 2) differ in the
choices of the prior for fint and the set of spatio-temporal
patterns of adjustment. Our development started from a vari-
ant (Sect. 2.1.2) essentially identical to Rödenbeck et al.
(2013) used as the CarboScope pCO2 mapping before ver-
sion v2020, except for some technical changes described
later (Sect. 2.1.6–2.1.7). As an intermediate modification, we
introduced a prior stabilizing the secular trend (Sect. 2.1.3);
the result of this variant will be used to help discuss spe-
cific aspects. The main results of this study come from the
multi-linear regression (Sect. 2.1.4) and the hybrid mapping
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Figure 1. Illustration of the quantities involved in the mixed-layer scheme (time series panels) and the calculations done to connect them
(thick-framed boxes). At the arrows on the right of each calculation box, we give its most important environmental input fields (see Table 1).
The time series represent the example pixel enclosing the TAO140W mooring location (2◦ N, 140◦W) in the tropical Pacific; they are taken
from the results of this study but shown here for illustration only. Left: quantities on the original daily time steps, plotted for five example
years. Right: the same quantities displayed as smoothed yearly averages, which is the way all results are shown in this paper. The background
shading indicates the El Niño–Southern Oscillation (ENSO) phase (multivariate El Niño index (MEI) by Wolter and Timlin, 1993).

(Sect. 2.1.5). Figure 2 summarizes the differences and the
flow of information between the four variants.

2.1.2 The “zero-prior explicitly interannual” pCO2
mapping (ZE)

The starting variant has a general set of (many) patterns of
adjustment, allowing an arbitrary smooth spatio-temporal in-
ternal DIC flux field f ZE

int (Rödenbeck et al., 2013). This field
f ZE

int is implemented as the sum of a constant term (sub-
script “LT” for “long-term”) and terms for seasonal (sub-
script “Seas”) and interannual anomalies (non-seasonal, sub-

script “IAV”):

f ZE
int (x,y, t)= f

adj
int,IAV(x,y, t)

+ f ADJ
int,LT(x,y)+ f

ADJ
int,Seas(x,y,s). (1)

As indicated by the superscript “adj” or “ADJ” (difference
explained below), all these terms involve degrees of freedom
being adjusted in the cost function minimization sketched
above. A priori, all adjustable terms are zero, such that the
prior of f ZE

int is zero as well.
The interannual term f

adj
int,IAV(x,y, t) can represent non-

seasonal anomalies on all month-to-month, year-to-year, or
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Table 1. Input data sets.

Quantity Data set Reference Pre-treatment, original resolution, remarks Used for

pCO2 SOCATv2021 Bakker et al. (2016, 2020),
http://www.socat.info/ (last access:
1 June 2021)

Data are used having WOCE flag = 2 and valid
fields for fugacity, temperature, and salinity.
Values below 200 µatm or above 600 µatm have
been excluded as being local compared to the
grid cells. Values have been transferred from fu-
gacity to partial pressure by dividing by 0.996.

Main constraint

Ocean fraction Earth2014 Hirt and Rexer (2015),
http://ddfe.curtin.edu.au/
(last access: 12 November 2020)

1′× 1′;
using land type 2 (“ocean bathymetry”)

Param.

SST Hadley EN.4.2.1 (g10) Good et al. (2013) Param., expl. var.

Ice-free fraction HadISST 2.2.0.0. Titchner and Rayner (2014),
https://www.metoffice.gov.uk/hadobs/
hadisst2/ (last access: 5 June 2020)

1◦× 1◦, monthly Param.

MLD LOCEAN de Boyer Montégut et al. (2004) 2◦× 2◦, monthly climatology;
using “temperature criterion”

Param.

u JRA55-do v1.5.0 Tsujino et al. (2018) 0.5625◦× 0.5625◦, 3-hourly Param., expl. var.

Sea-level press. JRA55-do v1.5.0 Tsujino et al. (2018) 0.5625◦× 0.5625◦, 3-hourly Param.

Atm. XCO2 Jena CarboScope Rödenbeck et al. (2018b) 5◦× 3.83◦, daily; Param.
sEXTALL_v2021 atmospheric inversion

Alkalinity CDIAC Lee et al. (2006) 1◦× 1◦, monthly climatology Param.

Salinity WOA01 Conkright et al. (2002) 1◦× 1◦, monthly climatology;
via Lee et al. (2006)

Param.

PO4, Si WOA05 Garcia et al. (2006) 1◦× 1◦, monthly Param.

Sea–air CO2 flux OCIM DeVries (2022) 2◦× 2◦, monthly;
using “total flux”, decadally smoothed

Prior

SST: sea surface temperature; MLD: mixed-layer depth; LOCEAN: Laboratoire d’océanographie et du climat: expérimentations et approches numériques; NCEP: National Centers for Environmental
Prediction; SOCAT: Surface Ocean CO2 Atlas; WOCE: World Ocean Circulation Experiment; WOA: World Ocean Atlas; param.: parameterizations; expl. var.: explanatory variable.

decadal timescales, including secular trends. The level of
its temporal smoothness corresponds to a priori correlation
length scales of about 4 weeks, implemented through a math-
ematically equivalent Fourier series with dampened higher-
frequency components (where Fourier terms dampened to
less than 2 % are discarded entirely). This amounts to 722
scalable Fourier terms for our 71-year calculation period
1951–2021. The seasonal term f ADJ

int,Seas only contains sea-
sonal Fourier components; thus it only depends on the time
s within the year and repeats itself every year. Along the
seasonal cycle, it has the same temporal correlation length
as the interannual term of about 4 weeks, amounting to 10
scalable Fourier terms. The constant term f ADJ

int,LT is not time-
dependent by definition (1 temporal degree of freedom).

Spatially, the level of smoothness in all three terms corre-
sponds to a priori correlation length scales of about 640km
in longitude and latitude.

As symbolized by the capitalized superscript “ADJ”, the
a priori uncertainties in the seasonal Fourier terms of f ADJ

int,LT
and f ADJ

int,Seas are chosen to be enlarged relative to the non-

seasonal Fourier terms of f adj
int,IAV, corresponding to larger

expected amplitudes of seasonal variations in fint compared
to non-seasonal ones. In terms of the implied a priori auto-

correlation function, these enhanced a priori uncertainties in
seasonal variations are equivalent to non-zero temporal cor-
relations between the flux at any given time of year and the
same time of year in all other years (in addition to the 4-
week decaying correlations mentioned above). Due to these
periodic correlations, fint in time periods without data does
not fall back to the prior (here zero) but to the mean seasonal
cycle f ADJ

int,Seas as constrained by the data-covered periods.

2.1.3 The “explicitly interannual” pCO2 mapping (E)

In order to stabilize the secular trend in the early decades (as
discussed in Sect. A2 below), we now add a fixed (i.e. non-
adjustable) term (superscript “fix”):

f E
int(x,y, t)= f

adj
int,IAV(x,y, t)

+ f ADJ
int,LT(x,y)+ f

ADJ
int,Seas(x,y,s)

+ f fix=OCIM
int,Decad (x,y, t). (2)

Consequently, the prior of f E
int is given by this fixed term.

It is obtained from the sea–air flux product by DeVries
(2022), which is based on an abiotic carbon cycle model
that captures the rising atmospheric CO2 boundary condi-
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Table 2. Mapping runs used in this study. The main results are given in bold; the other runs are used to assess uncertainty (“uncertainty cases”;
Sect. 2.2), to illustrate specific points of discussion (“test cases”; Sect. 2.2), or to assess predictive skill (“cross-validation”; Sect. 2.3).

Run Representation Special feature (if any) CarboScope run ID
of fint

Pre-mapping Eq. (3) Linearization of C chemistry around paCO2 ocP_v2021
Zero-prior explicitly interannual pCO2 mapping Eq. (1) ocZE_v2021
Explicitly interannual pCO2 mapping Eq. (2) ocE_v2021
Explicitly interannual mapping (cross-validation) Eq. (2) No pCO2 data 1995–1999 ocE_CrossVal5yr1995_v2021
Multi-linearpCO2regression Eq. (3) ocR_v2021
Multi-linear regression (uncertainty case RegrSSTNOAA) Eq. (3) SST from NOAA_ER ocR_RegrSSTNOAA_v2021
Multi-linear regression (uncertainty case RegrU2NCEP) Eq. (3) u2 from NCEP reanalysis ocR_RegrU2NCEP_v2021
Multi-linear regression (uncertainty case RegrAdddSSTdt2) Eq. (3) Added (dSST/dt)2 regression term ocR_RegrAdddSSTdt2_v2021
Multi-linear regression (uncertainty case RegrAddU4) Eq. (3) Added u4 regression term ocR_RegrAddU4_v2021
Multi-linear regression (uncertainty case RegrAddpaCO2) Eq. (3) Added paCO2 regression term ocR_RegrAddpaCO2_v2021
Multi-linear regression (uncertainty case RegrLoose) Eq. (3) 4-fold a priori sigma of regression terms ocR_RegrLoose_v2021
Multi-linear regression (uncertainty case RegrShort) Eq. (3) 3-fold shorter a priori correlation length ocR_RegrShort_v2021
Multi-linear regression (uncertainty case RegrNoDecad) Eq. (3) No decadal variability in explanatory variables ocR_RegrNoDecad_v2021
Multi-linear regression (uncertainty case MLDq2) Eq. (3) Halved mixed-layer depth ocR_MLDq2_v2021
Multi-linear regression (uncertainty case MLDx2) Eq. (3) Doubled mixed-layer depth ocR_MLDx2_v2021
Multi-linear regression (uncertainty case GasexLow) Eq. (3) Reduced gas transfer velocity ocR_GasexLow_v2021
Multi-linear regression (uncertainty case GasexHigh) Eq. (3) Enhanced gas transfer velocity ocR_GasexHigh_v2021
Multi-linear regression (uncertainty case GasexU1) Eq. (3) Gas transfer velocity proportional to |u| ocR_GasexU1_v2021
Multi-linear regression (uncertainty case GasexU3) Eq. (3) Gas transfer velocity proportional to |u|3 ocR_GasexU3_v2021
Multi-linear regression (test case RegrOnlySST) Eq. (3) SST regression term only ocR_RegrOnlySST_v2021
Multi-linear regression (test case RegrOnlydSSTdt) Eq. (3) dSST/dt regression term only ocR_RegrOnlydSSTdt_v2021
Multi-linear regression (test case RegrOnlyU2) Eq. (3) u2 regression term only ocR_RegrOnlyU2_v2021
Multi-linear regression (test case RegrAddChl_98r19) Eq. (3) Added Chl a regression term∗ ocR_RegrAddChl_98r19_v2021
Multi-linear regression (test case 98r19) Eq. (3) Regression 1998–2019 only ocR_98r19_v2021
Multi-linear regression (test case RegrHeat_85r09) Eq. (3) Replacing dSST/dt by the sea–air heat flux∗ ocR_RegrHeat_85r09_v2021
Multi-linear regression (test case 85r09) Eq. (3) Regression 1985–2009 only ocR_85r09_v2021
Multi-linear regression (test case RegrCurl_88r18) Eq. (3) Replacing u2 by wind stress curl∗ ocR_RegrCurl_88r18_v2021
Multi-linear regression (test case 88r18) Eq. (3) Regression 1988–2018 only ocR_88r18_v2021
Multi-linear regression (cross-validation) Eq. (3) No pCO2 data 1985–1989 ocR_CrossVal5yr1985_v2021
Multi-linear regression (cross-validation) Eq. (3) No pCO2 data 1990–1994 ocR_CrossVal5yr1990_v2021
Multi-linear regression (cross-validation) Eq. (3) No pCO2 data 1995–1999 ocR_CrossVal5yr1995_v2021
Multi-linear regression (cross-validation) Eq. (3) No pCO2 data 2000–2004 ocR_CrossVal5yr2000_v2021
Multi-linear regression (cross-validation) Eq. (3) No pCO2 data 2005–2009 ocR_CrossVal5yr2005_v2021
Multi-linear regression (cross-validation) Eq. (3) No pCO2 data 2010–2014 ocR_CrossVal5yr2010_v2021
HybridpCO2mapping Eq. (4) oc_v2021
Hybrid mapping (uncertainty case RegrSSTNOAA) Eq. (4) SST from NOAA_ER oc_RegrSSTNOAA_v2021
Hybrid mapping (uncertainty case RegrU2NCEP) Eq. (4) u2 from NCEP reanalysis oc_RegrU2NCEP_v2021
Hybrid mapping (uncertainty case RegrLoose) Eq. (4) 4-fold a priori sigma of regression terms oc_RegrLoose_v2021
Hybrid mapping (uncertainty case RegrShort) Eq. (4) 3-fold shorter a priori correlation length oc_RegrShort_v2021
Hybrid mapping (uncertainty case RegrNoDecad) Eq. (4) No decadal variability in explanatory variables oc_RegrNoDecad_v2021
Hybrid mapping (uncertainty case MLDq2) Eq. (4) Halved mixed-layer depth oc_MLDq2_v2021
Hybrid mapping (uncertainty case MLDx2) Eq. (4) Doubled mixed-layer depth oc_MLDx2_v2021
Hybrid mapping (uncertainty case GasexLow) Eq. (4) Reduced gas transfer velocity oc_GasexLow_v2021
Hybrid mapping (uncertainty case GasexHigh) Eq. (4) Enhanced gas transfer velocity oc_GasexHigh_v2021
Hybrid mapping (uncertainty case GasexU1) Eq. (4) Gas transfer velocity proportional to |u| oc_GasexU1_v2021
Hybrid mapping (uncertainty case GasexU3) Eq. (4) Gas transfer velocity proportional to |u|3 oc_GasexU3_v2021
Hybrid mapping (cross-validation) Eq. (4) No pCO2 data 1995–1999 oc_CrossVal5yr1995_v2021

∗ Regression run only over 1998–2019, 1985–2009, or 1988–2018, respectively.
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Figure 2. Information flow between the presented mapping runs. Thick-framed boxes denote calculations, with arrows denoting their input
and output data sets (mostly spatio-temporal fields). The violet, green, orange, and blue arrows represent the spatio-temporal sea–air CO2
fluxes estimated by our main mapping runs MZE, ME, MR, and MH (these same four colours are also used in all line plots in this paper).
All mapping runs use the SOCAT database of pCO2 measurements (point data, black) as their primary information source. The runs are
algorithmically identical, except for the representation of the ocean-internal DIC sources and sinks (fint) and the corresponding set of
adjustable unknowns; this part of the mapping algorithm has therefore been represented explicitly as separate parts of the boxes at their left-
hand sides, labelled by the respective equation number. Runs MZE and ME are using the representations with explicit interannual degrees
of freedom, either without fint prior (Eq. 1) or using the decadally smoothed OCIM result as fint prior (cyan; Eq. 2). Run MR is using
the representation involving regression terms (Eq. 3), which requires the explanatory variables (magenta) as further input fields; it uses the
same fint prior as the run ME. The representation of fint in the “hybrid” run MH again has explicit interannual degrees of freedom but no
long-term and seasonal degrees of freedom (Eq. 4). Importantly, it uses the ocean-internal DIC sources and sinks estimated by the “multi-
linear regression” MR as its fint prior (cyan again). All mapping calculations use the various input fields shown in Fig. 1, which are however
omitted here for clarity. More technically, the mappings also need a linearization of the non-linear dependence of pCO2 on DIC, consisting
of three fields (the derivatives dpCO2 / dDIC as well as reference fields for pCO2 and DIC) together depicted by the grey arrows. Box L
denotes the calculation of dpCO2 / dDIC and the reference DIC field from a reference pCO2 field (light blue) as described in Sect. 2.1.6 (the
further input fields required by this calculation are not depicted). For the main mappings MZE, ME, MR, and MH, the reference pCO2 field
comes from the data-based estimate of the pre-mapping MP. The linearization for MP, in turn, uses the atmospheric pCO2 field as pCO2
reference (light blue again).

tion and is embedded in a data-driven model of time-mean
ocean circulation (OCIM). The OCIM fluxes have been
decadally smoothed (indicated by subscript “Decad”) be-
cause the OCIM result originally represents sea–air fluxes
including SST-related interannual variations, which are cre-
ated by our parameterizations already (Fig. 1).

2.1.4 The “multi-linear regression” (R)

In the third variant, the ocean-internal DIC flux is represented
as

f R
int(x,y, t)=

∑
i

γ
adj
i (x,y) ·Vi(x,y, t)

+ f ADJ
int,LT(x,y)+ f

ADJ
int,Seas(x,y,s)

+ f fix=OCIM
int,Decad (x,y, t). (3)

Compared to Eq. (2), the degrees of freedom representing
interannual variations (fint,IAV) are replaced here by a multi-
linear function involving three explanatory fields (Vi):

– sea surface temperature (SST),

– its temporal change (dSST/dt), and

– squared wind speed (u2).

There is a 2-fold motivation behind this choice of explana-
tory variables: (1) variations in carbon-relevant processes
(e.g. carbon and nutrient input into the mixed layer, strati-
fication, mixing, entrainment, wind-driven deepening of the
mixed layer) are expected to also be related to these vari-
ables, and (2) observation-based data sets for SST and u are
available over our entire calculation period 1951–2021 (u at
least from reanalysis). The specific input data sets used in our
base case are given in Table 1.

The simultaneous use of SST and dSST/dt is motivated
as it is changes in SST that are related to DIC fluxes (i.e.
changes in DIC). Moreover, the sum of SST and dSST/dt
mathematically allows a temporal shift between SST and
fint for a dominant Fourier mode (similar to sine and cosine
terms).

To prevent confusion, we point out that the multi-linear
regression as introduced here is set up in terms of the ocean-
internal DIC flux fint (see Sect. 2.1.1), not in terms of pCO2
or sea–air flux as done in various other studies in the litera-
ture. This also means that important processes (SST depen-
dence of solubility and carbonate chemistry, wind speed de-
pendence of gas exchange) are not included into the regres-
sion Eq. (3) but are already taken care of by the parameteri-
zations listed in Sect. 2.1.1 and Fig. 1.
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All the explanatory fields Vi are implemented on a
monthly timescale, smoothly transformed onto our daily time
steps. The scaling factors γ adj

i between the internal DIC flux
and these explanatory fields Vi are taken as the adjustable
degrees of freedom in the cost function minimization (very
analoguous to the “NEE-T inversion” of Rödenbeck et al.,
2018b). These unknown scaling factors are allowed to vary
spatially (with correlation length of about 2000km in longi-
tude and 1000km in latitude, thus more smoothly than the di-
rect adjustments of fint in the explicitly interannual mapping
of Sect. 2.1.3), but are constant in time (1 temporal degree
of freedom per explanatory field per pixel). All three regres-
sion terms are normalized such that the a priori uncertainty
in their global integral on 1 July (averaged over the 1 July
time steps of all years within the analysis period 1957–2020)
is the same as that of fint,IAV in Eq. (2) (1 July is an arbitrary
choice, in line with the normalization with respect to the flux
in the middle of the final year used in CarboScope so far.)

In order to avoid influences of the spin-up transient on the
regression coefficients (estimated sensitivities), the regres-
sion terms (first line of Eq. 3) only cover the analysis pe-
riod 1957–2020, while the remaining years before and after
are filled by explicitly interannual degrees of freedom just as
f

adj
int,IAV in Eq. (2). For clarity, this detail has been omitted

from Eq. (3).

2.1.5 The “hybrid” pCO2 mapping (H)

The final variant aims to combine the temporal extrapola-
tion capability of the multi-linear regression (Sect. 2.1.4) and
the flexibility to reproduce observed signals of the explicitly
interannual mapping (Sect. 2.1.3). Technically being an ex-
plicitly interannual mapping itself, its representation of the
ocean-internal DIC flux,

f H
int(x,y, t)= f

adj
int,IAV(x,y, t)

+ f
adj
int,LT(x,y)+ f

adj
int,Seas(x,y,s)

+ f fix=R
int (x,y, t), (4)

is similar to Eq. (2), but with the following two changes:

– As the essential change, the interannually varying result
of the multi-linear regression (Sect. 2.1.4) is used as a
prior for the internal DIC flux (f fix=R

int (x,y, t)) instead
of the decadally smoothed OCIM result only containing
decadal variations and the secular trend.

– As a merely technical change, the a priori uncertain-
ties in the mean flux f

adj
int,LT(x,y) and the seasonal-

ity f
adj
int,Seas(x,y,s) are not enhanced with respect to

non-seasonal variability f adj
int,IAV(x,y, t) any more (in-

dicated by the lower-case superscript “adj” in all three
terms) because the prior f fix=R

int (x,y, t) already contains
a long-term mean and a mean seasonal cycle.

In essence, the hybrid mapping thus adds an interannually
varying correction to the multi-linear regression. Due to this
construction, the hybrid result will fall back to the multi-
linear regression during periods without data, but it is nev-
ertheless able to fit pCO2 signals on month-to-month, year-
to-year, and decadal timescales that have not yet been repro-
duced via the explanatory variables of the multi-linear re-
gression.

Methodological note. Mathematically, the hybrid run is
equivalent to estimating the additive correction to the multi-
linear regression from the pCO2 residuals of the multi-linear
regression. That is, the signals being used by the hybrid run
are those that could not yet be explained by the multi-linear
regression. The hybrid run is thus similar to a hypothetical
joint run simultaneously having regression degrees of free-
dom (like the multi-linear regression) and explicitly interan-
nual degrees of freedom (like the explicitly interannual esti-
mate). We abandoned the concept of such a joint run, how-
ever, because it would face two problems: (1) its result would
depend on the relative a priori weighting between the two
groups of degrees of freedom, for which there is no clear in-
formation, and (2) the explicitly interannual degrees of free-
dom would necessarily also absorb part of the signals actu-
ally proportional to the explanatory variables. Running the
multi-linear regression and the hybrid step sequentially, as
done here, reduces both problems.

2.1.6 The pre-mapping (P): determining the
linearization of the carbonate chemistry

In contrast to Rödenbeck et al. (2013), we now allow for
the secular trend in the Revelle factor. We deem this nec-
essary due to our longer period of interest 1957–2020, dur-
ing which the mixed-layer carbon content notably increased,
leading to shifts in the relation between variations in the
ocean-internal DIC flux (fint) and the sea–air CO2 flux. As
our scheme extrapolates the seasonality (and in the “multi-
linear regression” also the interannual variations) from the
data-constrained recent decades to the almost unconstrained
earlier decades through correlations in fint (see the last para-
graph of Sect. 2.1.2), the shifting relation has the potential to
alter the amplitude of flux variations in the earlier decades.

As in Rödenbeck et al. (2013), the non-linear depen-
dence of pCO2 on DIC is linearized around reference fields
pCO2Ref and DICRef:

pCO2 = pCO2Ref+

(
dpCO2

dDIC

)
(DIC−DICRef). (5)

The linearization is needed to be able to use the fast mini-
mization algorithm in the CarboScope software. Previously
in Rödenbeck et al. (2013), the reference fields pCO2Ref
and DICRef were temporally constant and had been taken
from observation-based data sets not guaranteed to be mutu-
ally consistent, and the derivative (dpCO2/dDIC) had been
calculated from these via approximation formulas. In or-
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der to now include the secular trend in Revelle factor (and
simultaneously to remove the mentioned approximations),
we employ the mocsy package (Orr and Epitalon, 2015),
which provides routines to accurately calculate pCO2 and
(dpCO2/dDIC) from a given field of DIC (and from fields
of alkalinity, SST, salinity, silicate, phosphate, and air pres-
sure, which we take from external sources; Table 1). Us-
ing an adjusted Newton algorithm calling mocsy iteratively,
we obtain an algorithm to calculate (reference) DIC and
(dpCO2/dDIC) from a given (reference) pCO2 value at each
location and time (box L in Fig. 2). The pCO2Ref field is ob-
tained as the posterior pCO2 field of a “pre-mapping” run (P,
the leftmost one in Fig. 2). The pCO2Ref and (dpCO2/dDIC)
fields used in this pre-mapping run, in turn, are calculated
from a preliminary reference identical to atmospheric pCO2.
This yields a reasonable starting point because the atmo-
spheric pCO2 field does already contain the secular CO2 rise,
which is the most important feature in this context.

Potentially, we might expect to need a loop with further
pre-mappings, each getting its pCO2Ref field from the poste-
rior pCO2 field of the respective previous one. However, we
confirmed by explicit testing that the fields are not apprecia-
bly altered any more after the first pre-mapping; thus a single
pre-mapping is sufficient.

All other mapping runs of this study use the same
spatio-temporal linearization fields pCO2Ref, DICRef, and
(dpCO2/dDIC) as calculated by the pre-mapping.

2.1.7 Technical details common to all variants

As in Rödenbeck et al. (2013), the pCO2 data comprise the
individual observations from file https://www.ncei.noaa.gov/
data/oceans/ncei/ocads/data/0235360/SOCATv2021.tsv, last
access: 1 June 2021, including all observations flagged A–D.
The additional file flagged E was not used.

In contrast to Rödenbeck et al. (2013), the analysis period
now starts in 1957 (chosen in light of the potential use of
the results as a prior in atmospheric inversions). The actual
calculation period of all runs starts in 1951. According to
explicit tests, this allows the initial transient of the mixed-
layer DIC budget equation to decay by 1957.

As in Rödenbeck et al. (2013), the calculation period in-
cludes 1 more year (“spin-down”, here 2021) after the valid
period constrained by the data (until end of 2020), in order to
avoid numerical edge effects.

In order to cover the entire calculation period since 1951,
we now use SST from Hadley EN.4.2.1 (Good et al., 2013)
and sea ice concentration from HadISST 2.2.0.0. (Titchner
and Rayner, 2014, https://www.metoffice.gov.uk/hadobs/
hadisst2/data/HadISST.2.2.0.0_sea_ice_concentration.nc.gz,
last access: 5 June 2020).

Compared to Rödenbeck et al. (2013), the spatial resolu-
tion of all the mapping calculations has been increased to
2.5◦ longitude× 2◦ latitude (previously on the grid of the
TM3 atmospheric transport model, 5◦× 4◦). Moreover, the

adjustments are now done over the entire ocean (i.e. we do
not fix part of the temporally ice-covered regions any more).

2.2 Uncertainty and test cases

In order to explore how robust the results of the multi-linear
regression (Sect. 2.1.4) are, we also perform uncertainty
cases where certain set-up parameters are modified within
ranges deemed as plausible as the base case (Table 2):

RegrSSTNOAA – using SST from NOAA_ERSST v5
(Huang et al., 2017) as an alternative data set for the
explanatory variables SST and dSST/dt (but no change
to any other SST-dependent items such as solubility);

RegrU2NCEP – using wind speeds from NCEP reanalysis
(Kalnay et al., 1996) as an alternative data set for the ex-
planatory variable u2 (but no change to wind-dependent
gas exchange);

RegrAdddSSTdt2 – additional regression term based on
(dSST/dt)2;

RegrAddU4 – additional regression term based on u4;

RegrAddpaCO2 – additional regression term based on
decadally smoothed paCO2;

RegrNoDecad – removing any decadal variability and sec-
ular trends from the explanatory fields Vi , such that the
multi-linear regression term only represents interannual
variability on a timescale of a few years;

RegrShort – shorter spatial correlation lengths for the sen-
sitivities γ adj

i (Supplement Fig. S5);

RegrLoose – a priori uncertainty in the sensitivities in-
creased by a factor of 4 (i.e. the strength of the math-
ematical regularization is reduced);

MLDq2 – dividing mixed-layer depth by 2;

MLDx2 – multiplying mixed-layer depth by 2 (lacking a
clear uncertainty range of mixed-layer depth, MLDq2
and MLDx2 represent a rather strong change, maybe al-
ready outside the actual uncertainty);

GasexLow – weaker gas exchange by scaling the gas trans-
fer velocity field such that its global mean matches the
lower limit of the range 16.5± 3.2 cm h−1 (Naegler,
2009) rather than the central value;

GasexHigh – stronger gas exchange (analogously, using up-
per limit);

GasexU1 – replacing the u2 dependence of gas exchange by
a |u| dependence (while keeping the global mean gas
transfer velocity the same).
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GasexU3 – replacing the u2 dependence of gas exchange by
a |u|3 dependence (while keeping the global mean gas
transfer velocity the same).

To help in the discussion of specific aspects, we performed
further test cases (not necessarily as plausible as the base
case):

RegrOnlySST, RegrOnlydSSTdt, RegrOnlyU2 – the ex-
planatory variables used individually (i.e. the regression
terms of the remaining two were omitted);

RegrAddChl_98r19 – addition of Chl a as a further ex-
planatory variable (Fig. S7; chlorophyll concentration
has been taken from the GlobColour project (Mari-
torena et al., 2010), which combined retrievals from the
SeaWiFS (NASA), MODIS (NASA), MERIS (ESA),
OLCI (ESA), and VIIRS (NOAA/NASA) satellites into
a harmonized data set; as the Chl a data are only avail-
able for the years 1998–2019, the regression is restricted
to this period, plus spin-up and spin-down periods);

RegrHeat_85r09 – replacing dSST/dt with the net sea–air
heat flux taken from the OAFlux project (Yu and Weller,
2007); regression period restricted to 1985–2009 ac-
cording to the availability of the heat flux data set;

RegrCurl_88r18 – replacing u2 with wind stress curl cal-
culated from Cross-Calibrated Multi-Platform (CCMP)
v2.0 wind speeds (Atlas et al., 2011); regression period
restricted to 1988–2018 according to the availability of
CCMP;

98r19, 85r09, 88r18 – using the same regression terms as
in the base case but restricting the time period of regres-
sion to the same years as used for RegrAddChl_98r19,
RegrHeat_85r09, and RegrCurl_88r18, respectively.

Uncertainties in the hybrid mapping (Sect. 2.1.5) were ex-
plored analogously by re-running the hybrid step with sev-
eral of the uncertainty cases of the regression listed above
(Table 2). Part of the involved set-up changes (mixed-layer
depth, gas exchange) also affect the hybrid calculation itself.

2.3 Gauging the predictive skill of the multi-linear
regression

In order to test whether the multi-linear regression against ex-
planatory variables (Sect. 2.1.4) is actually meaningful, we
determine its predictive skill. For this, the multi-linear re-
gression is re-run six times, each time omitting the pCO2
data from one of the 5-year periods 1985–1989, 1990–1994,
1995–1999, 2000–2004, 2005–2009, or 2010–2014. That is,
each of the six test runs possesses an artificial data gap of 5
years, a duration chosen to be longer than typical features of
year-to-year variability like El Niño. We can then compare
the predictions during the data gaps with the results of the
completely constrained run.

3 Results

The main results of this study are of two different types:

– From the multi-linear regression, we obtain spatial
maps of the sensitivities γi (Eq. 3) relating the varia-
tions in the surface-ocean carbon system to variations
in SST, dSST/dt , and u2 (Sect. 3.2).

– The hybrid mapping yields a spatio-temporal estimate
of the sea–air CO2 flux over 1957–2020, in particular
its evolution from year to year (Sect. 3.5).

Further results are presented for illustration and to elucidate
the robustness of the main results.

3.1 Origin of interannual variations as estimated by
the multi-linear regression

The multi-linear regression attempts to trace the interannual
variations in the surface-ocean carbon system (and hence in
the sea–air CO2 flux) to the interannual variations in the cho-
sen explanatory variables SST, dSST/dt , and u2. In Fig. 3
(left panels), the estimated contributions of the three explana-
tory variables to the ocean-internal DIC flux are depicted for
a subdivision of the ocean into five latitudinal bands. In the
centre panels, the resulting contributions to the sea–air CO2
flux are shown, as calculated by the parameterizations and
the budget equation in our mapping scheme (Sect. 2.1.1).
These contributions and the prior sum up to the total sea–
air CO2 flux, shown in the right panels together with our set
of uncertainty results (Sect. 2.2).

When disregarding the secular increase in the ocean car-
bon sink, the largest year-to-year variations in the region-
ally integrated sea–air carbon flux are found in the trop-
ics (Fig. 3, middle right), in particular the tropical Pacific
(Fig. S4). Correspondingly, the year-to-year variations in the
ocean-internal carbon flux (fint) from the three terms in the
multi-linear regression (Eq. 3) are largest in the tropics as
well (Fig. 3, middle left). Of the three explanatory variables,
the contribution of year-to-year variability in temporal SST
changes (dSST/dt , black) is the largest. Concurrent with
the warming (dSST / dt > 0) at the onset of each El Niño
event (grey background stripes), we find a negative carbon
flux anomaly (reduction in the carbon source in this region)
because smaller amounts of cold, carbon-rich water are up-
welling. At the end of each El Niño event, we find an anal-
ogous coupling of the cooling (dSST / dt < 0) and an addi-
tional carbon source to the mixed layer. The contribution of
year-to-year variability in SST itself (red) is second-largest in
the tropics, causing anomalous carbon sinks during El Niño
events and anomalous carbon sources during La Niña condi-
tions afterwards. This could be interpreted as a small correc-
tion to the dSST/dt contribution: the sum of the dSST/dt and
SST contributions (not shown) is similar to the dSST/dt con-
tribution alone but slightly shifted in time by a few months.
The smallest contribution to the year-to-year variability in the
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Figure 3. Left: estimated contributions of the three explanatory variables in the multi-linear regression (as well as the prior, plotted here
without its mean) to the ocean-internal DIC flux in five latitudinal bands (top to bottom). Centre: corresponding contributions to the sea–air
CO2 flux. Right: total sea–air CO2 flux estimated by the multi-linear regression (base case, orange) together with the uncertainty cases listed
in Sect. 2.2 (the cases with the largest impact on interannual variability – RegrSSTNOAA, RegrU2NCEP, RegrAddpaCO2, RegrNoDecad –
are plotted explicitly in different colours; since the cases related to gas exchange – GasexLow, GasexHigh, GasexU1, GasexU3 – shift the
long-term mean of the flux, the range of this shift has been indicated by the length of the vertical orange bars just to the right of each panel
for clarity; the remaining uncertainty cases having rather small impact – RegrAdddSSTdt2, RegrAddU4, RegrLoose, RegrShort, MLDq2,
MLDx2 – have been subsumed into the pale orange band depicting their envelope). All curves show interannual variations. The background
shading indicates the El Niño phase according to the multivariate El Niño index (MEI) by Wolter and Timlin (1993). In the left and centre
panels, fluxes are given in per-area units to emphasize the local process perspective, while fluxes in the right panels are given as regional
integrals to emphasize their share in the total ocean flux.

tropics is estimated for squared wind speed (u2, light blue),
with a temporal pattern relatively similar to that of the SST
contribution. Due to the co-variation between SST and u2

on a year-to-year timescale, these two explanatory variables
could be partly confounded by the regression, though the de-
tailed locations where their respective sensitivities are high
do not actually overlap much (see Sect. 3.2 below).

In the high-latitude bands (top and bottom left panels of
Fig. 3), the wind speed contribution is estimated to be larger
than in the tropics, now on the same order of magnitude as
the SST and dSST/dt contributions or even larger. As a no-
table feature in the Southern Ocean (bottom left), the secular
increase in wind speed leads to a secular increase in the car-
bon source into the mixed layer. Across our set of uncertainty
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cases (Sect. 2.2), the linear trend of the wind speed contribu-
tion over the 1960–2019 period in the ocean south of 45◦ S
is estimated in the range 0.002 to 0.005 (PgCyr−1)yr−1 (see
Supplement Fig. S3, bottom, light-blue bars). As a secular
trend in fint (bottom left in Fig. 3) causes a secular trend
in sea–air flux of the same size (bottom centre), it repre-
sents a reduction by 17 % to 42% of the trend towards an in-
creasing Southern Ocean sink strength (relative to the trend
of −0.012 (PgCyr−1)yr−1 estimated by OCIM over 1960–
2019). A slowing-down of the Southern Ocean sink increase
(compared to the increase expected from rising atmospheric
CO2) has also been found in model simulations and attributed
to an increase in upwelling of old carbon by the accelerat-
ing winds (Le Quéré et al., 2007; Hauck et al., 2013; and
many others). We need to note, however, that our multi-
linear regression estimates the wind-speed-related trend only
indirectly: as the sensitivities γu2 are presumably largely
constrained by year-to-year variations (because they do not
change much if the linear trend of the explanatory variables
is removed; see sensitivity case RegrNoDecad, Sect. 4.3), the
slope of the secular trend can only be correct to the extent
that the sensitivity γu2 is identical for year-to-year and secu-
lar variations.

The year-to-year anomalies from the fint contributions
(Fig. 3, left) carry through to the sea–air CO2 flux (centre)
in a delayed and dampened fashion due to the buffer effect
of carbonate chemistry in combination with the limited gas
exchange. We also note again that the sea–air CO2 flux con-
tains additional year-to-year variability from solubility and
gas exchange anomalies as represented by the involved pa-
rameterizations (also see Fig. 1 and Sect. 3.2.4 below).

3.2 Patterns of the sensitivity of ocean-internal DIC
sources and sinks to interannual variations in SST,
dSST/dt , and u2 estimated by the multi-linear
regression – which underlying processes do they
suggest?

The estimated sensitivities of the ocean-internal DIC flux
(fint) against interannual variations in the chosen explana-
tory variables of the multi-linear regression (sea surface tem-
perature SST, temporal changes in sea surface temperature
dSST/dt , and squared wind speed u2) are shown in Fig. 4.
Here we consider the most prominent features in these sen-
sitivity patterns and mention oceanic processes that are com-
patible with these and may thus control surface-ocean bio-
geochemistry. Even though regression analysis cannot prove
causation, we argue later (Sect. 4.1) why such a tentative at-
tribution may be meaningful here. Also see Sect. 4.3–4.6 for
further discussion on uncertainties.

3.2.1 Sensitivity of fint to dSST/dt

We start with dSST/dt (Fig. 4, top) as the explanatory
variable contributing the largest year-to-year variability

Figure 4. Estimated sensitivities of the ocean-internal DIC flux fint
against interannual variations in the temporal changes in sea sur-
face temperature (a), in the sea surface temperature itself (b), and
in squared wind speed (c). Positive (negative) sensitivities mean that
increases in the respective explanatory variable are associated with
a stronger source (stronger sink) of DIC in the mixed layer.

(Sect. 3.1). Events of decreasing SST are estimated to be as-
sociated with more positive ocean-internal DIC fluxes in the
tropical Pacific (within a tilted band located around the Equa-
tor in the western tropical Pacific and around about 15◦ S in
the eastern tropical Pacific) and in most parts of the higher
latitudes in both hemispheres (blue and cyan areas in Fig. 4a).
Such a correlation would arise from variations in the up-
welling of waters that are both colder and more carbon-rich
than the mixed layer.

In the rest of the ocean, the absolute value of the sensi-
tivity γdSST/dt is small (light blue or light red). We assume
that these sensitivities mainly reflect insignificant correla-
tions, especially due to the higher uncertainty in regions of
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sparse data coverage or in regions where dSST/dt is mainly
driven by atmospheric heating or cooling. In particular, posi-
tive sensitivities are not compatible with any known oceanic
mechanism.

3.2.2 Sensitivity of fint to SST

The estimated sensitivity γSST between the interannual vari-
ations in the ocean-internal DIC flux and SST itself is rather
patchy, with both positive and negative areas (Fig. 4, middle).
This may reflect the fact that various biological processes
contribute to fint, depending on temperature in different ways
and thus potentially cancelling each other. For example, car-
bon fixation (net primary productivity, NPP) will invigorate
with increasing temperature (until a threshold is reached); as
NPP represents a sink (i.e. a negative contribution to fint),
it would thus cause negative γSST sensitivities. Carbon ex-
port (or export ratio at least) is generally anticorrelated with
temperature (Laws et al., 2000), thus causing positive γSST
sensitivities, though also the opposite behaviour seems pos-
sible.

Positive interannual sensitivity to SST would also be com-
patible with a nutrient effect. Upwelling and mixing-in from
below both decreases SST and increases the availability of
nutrients. Thus, negative anomalies in SST tend to be asso-
ciated with higher biological production and thus enhanced
removal of carbon (negative anomalies in fint). However, up-
welling also brings up carbon, which is usually assumed to
dominate the carbon signal. For example, Hauck et al. (2013)
showed that – in the model – in the Southern Ocean south of
55◦ S, there would be more biological export per increase in
the Southern Annular Mode (SAM), which goes along with
more upwelling. Yet, whether the carbon effect or the op-
posing nutrient effect dominates the upwelling signal is still
controversially discussed.

As the statistical inference by our regression can only re-
spond to the sum of all contributing processes, we therefore
cannot draw specific conclusions from the estimated γSST
pattern. In addition, the regression may adjust γSST to effec-
tively shift the dSST/dt contribution in time (Sect. 3.1).

3.2.3 Sensitivity of fint to u2

Higher wind speeds are estimated to be associated with more
positive ocean-internal DIC fluxes (stronger sources into or
weaker sinks out of the mixed layer) along the Equator in the
Pacific; in the eastern upwelling zones of the North Pacific,
South Pacific, and South Atlantic; and in circumpolar bands
in the high latitudes of both hemispheres (red and yellow ar-
eas in Fig. 4c). Such a positive sensitivity is compatible with
wind-driven deepening of the mixed layer, Ekman pumping,
or speeding-up of the wind-driven upwelling, such that more
carbon-rich waters are mixed in from below during stronger
winds.

In contrast, higher wind speeds tend to be associated with
more negative ocean-internal DIC fluxes (i.e. weaker sources
or stronger sinks) at the western extratropical fringes of all
ocean basins (blue areas). In these regions of mode water
formation, higher wind speeds lead to more subduction of
anthropogenic CO2 away from the surface into the ocean in-
terior.

3.2.4 Additional variability in the sea–air flux

We note again that the sensitivities discussed here are those
of the ocean-internal DIC sources and sinks fint (Fig. 1 bot-
tom or Fig. 3 left). The sea–air CO2 fluxes (Fig. 1 top or
Fig. 3 centre) contain additional variability also driven by
interannual variations in SST (e.g. via the changes in CO2
solubility and chemical equilibrium) or in wind speed (via
the gas transfer velocity of gas exchange). As this additional
variability is already generated by the parameterizations con-
tained in our algorithm (Sect. 2.1.1), these processes are,
within uncertainties, not reflected in the sensitivities against
SST or u2 again.

Even though the sea–air CO2 flux is the quantity most di-
rectly relevant to the atmospheric CO2 budget and its conse-
quences for global climate, this additional variability partly
disguises the variability caused by ocean-internal processes
as those discussed above. This also means that the ocean-
internal DIC sources and sinks fint are potentially easier to
be related to environmental variables than the sea–air CO2
flux or the pCO2 field traditionally chosen as a target vari-
able of linear or non-linear regressions because it is a directly
observed quantity.

3.3 How much predictive skill does the multi-linear
regression have?

The results of the multi-linear regression are only meaning-
ful if the regression actually possesses some predictive skill
to bridge unconstrained periods. Only then can they be con-
sidered to represent generalizing relationships.

In order to test this, we performed runs with artificial data
gaps of 5 years length (Sect. 2.3). Figure 5 illustrates this
using runs discarding all pCO2 data during 1995–1999. For
context, we first consider the explicitly interannual mapping
(E), which draws all information about year-to-year varia-
tions from the data and therefore does not have any predic-
tive skill. Indeed, it essentially defaults to the prior (having
upside-down El Niño response as it misses any variations
related to the ocean-internal sources and sinks) during the
data gap (Fig. 5a), except for a shift in long-term mean (see
Sect. 2.1.2, last paragraph, for explanation). In contrast, the
multi-linear regression (Fig. 5b) almost completely recon-
structs the 1995–1999 flux variations based on the relation-
ships between the ocean-internal DIC flux and the driving
variables learned on the basis of the remaining data outside
1995–1999.
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Figure 5. Interannual variations in the sea–air CO2 flux in the tropical Pacific estimated by the explicitly interannual mapping (a), the multi-
linear regression (b), and the hybrid mapping (c), using either all pCO2 data (base cases, colour) or all data but the ones during 1995–1999
(black).

As demonstrated by Fig. S1 in the Supplement, this predic-
tive skill generally holds for all parts of the ocean and other
5-year data gaps. This means that no particular pCO2 data
point is causing features in the variability and the estimated
sensitivities (Sect. 3.2 above) by its own.

3.4 Sea–air CO2 flux variations estimated by the
hybrid mapping

After presenting the interannual sensitivities from the multi-
linear regression, we now turn to interannual flux variations
as estimated by the hybrid mapping involving an additional
interannually varying correction (Sect. 2.1.5). Figure 6 (blue)
shows its estimated interannual (i.e. slower-than-seasonal)
variations in the sea–air CO2 flux, subdividing the ocean into
basins and latitude bands.

The most prominent feature of interannual variability is
the secular trend towards more CO2 uptake in all ocean re-
gions. Considering variations around this secular trend, the
tropical Pacific is the region providing the largest contribu-
tion to total ocean variability (compare Le Quéré et al., 2000)
on both a decadal timescale and a year-to-year timescale. The
year-to-year variations are strongly tied to El Niño as indi-
cated by the background stripes (Feely et al., 1999). When
considering trends within individual decades, the decadal in-
crease in the CO2 sink slowed down in the 1990s and early
2000s and accelerated again afterwards (Landschützer et al.,
2016; DeVries et al., 2019), even though it may be ques-
tioned whether such trends over chosen 10-year periods truly
represent decadal variations rather than apparent trends aris-
ing from high-amplitude anomalies on the faster year-to-year
timescale.

3.5 How do the year-to-year sea–air CO2 flux
variations estimated by regression and hybrid
mapping compare with each other?

In addition to the variations in the sea–air CO2 flux estimated
by the hybrid mapping (blue), Fig. 6 also shows those es-
timated by the multi-linear regression (Sect. 2.1.4, orange)
and the explicitly interannual pCO2 mapping (Sect. 2.1.3,
green). From the late 1980s onwards, when progressively
more pCO2 data are available to constrain interannual varia-
tions explicitly, the hybrid mapping (blue) shows some cor-
rections over the multi-linear regression (orange). For the
large El Niño-related variability in the tropical Pacific, these
corrections are generally small compared to the estimated
variations themselves. This indicates that the multi-linear re-
gression already captures a notable fraction of the year-to-
year flux variations in this region, even though it underesti-
mates the size of most of these anomalies (the interannual
standard deviation between 1985 and 2019 from the multi-
linear regression is only about 82 % of that from the hybrid
mapping in the tropical Pacific). Figure 7 (dots) confirms that
the hybrid mapping fits the pCO2 data closely (the blue dots
are located right under the black dots), while the multi-linear
regression (orange dots) also follows the variability in the
data (black dots) but does not match them as closely as the
hybrid mapping.

In the intermediate and high latitudes (top and bottom pan-
els of Fig. 6), in contrast, the multi-linear regression (orange)
does not pick up most of the year-to-year anomalies. This
may indicate that the set of explanatory variables used in the
regression misses essential modes of variability there. How-
ever, some of the variations estimated with explicitly interan-
nual degrees of freedom (green and blue) may also be spuri-
ous effects from the temporally very uneven data coverage.

Although the hybrid mapping (blue) has the same inter-
annual degrees of freedom (i.e. the same flexibility) as the
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Figure 6. Yearly sea–air CO2 flux as estimated from pCO2 data by the explicitly interannual mapping (green; discarded before 1985, when
the data constraint is very weak), the multi-linear regression (orange), and the hybrid mapping (blue). Fluxes have been integrated over a set
of regions subdividing the ocean into basins (left to right) and latitude bands (top to bottom). For better temporal orientation across panels,
the grey vertical background stripes indicate the positive phases of El Niño–Southern Oscillation according to the multivariate El Niño index
(MEI) by Wolter and Timlin (1993).

explicitly interannual mapping, it does not always bring the
fluxes back to the explicitly interannual result (green), es-
pecially in the region south of the tropical Pacific (Fig. 6).
Since the two estimates are actually very close to each other
where data exist (as illustrated in Fig. 7; the green dots are
essentially invisible under the co-located blue and black dots,
despite the differences between the green and blue lines), the
differences in areal averages as in Fig. 6 reflect differences
in data-void areas and periods being filled by the mappings.

However, while the explicitly interannual mapping falls back
to the prior not constrained by pCO2 data, the hybrid map-
ping falls back to the multi-linear regression, which is at
least indirectly constrained via the statistical relationships
between the ocean-internal DIC flux and the chosen explana-
tory variables (Sect. 3.3 above). This may also prevent some
undue spatial extrapolation from the tropical Pacific into un-
constrained areas by the explicitly interannual scheme. Thus,
we expect the hybrid mapping (blue) to be more realistic
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Figure 7. Estimated pCO2 in the tropical Pacific, averaged spa-
tially and over calendar years. The coloured lines give full re-
gional averages from the explicitly interannual mapping (green),
the multi-linear regression (orange), and the hybrid mapping (blue).
The coloured dots are from the same estimates but averaged only
over the pixels and time steps covered by pCO2 data in the respec-
tive year. The smaller black dots give the corresponding averages
over the data. We note that the green, blue, and black dots are not
visible individually because they are almost exactly located on top
of each other, indicating that the model–data residuals of the explic-
itly interannual and hybrid mappings are very small. The differences
between dots and lines reflect the bias of the incompletely sampled
average compared to the full regional average, which the mapping
algorithm is trying to address.

than the multi-linear regression and the explicitly interannual
mapping in terms of their detailed interannual anomalies.

In view of applying the multi-linear regression as a prior
of the hybrid mapping, its predictive skill (Sect. 3.3) is only
meaningful to the extent that it is actually able to explain all
signals in the data. For example, since the regression under-
estimates the year-to-year anomalies in the tropical Pacific
compared to the explicitly interannual estimate as discussed
above, it will fill data gaps with somewhat too small an am-
plitude (Fig. 5c). This indicates that the variability extrapo-
lated into the earlier decades without data will likely be un-
derestimated, too, even though this is still a clear qualitative
improvement compared to the explicitly interannual mapping
(Fig. 5a).

3.6 What can the pCO2 mappings say about the
secular flux trend?

In light of climate change, quantitative information about the
secular flux trend is relevant. Unfortunately, as discussed in
more detail in the appendix (Sect. A2), the secular trend in
our mapping results is mostly determined through the prior
derived from the OCIM estimate based on ocean interior
data (DeVries, 2022). Due to the lack of pCO2 data in the

early decades, the mapping does not add credible informa-
tion about the secular trend. Due to some slight inconsistency
in the use of the prior, the secular trend is even slightly over-
estimated (Sect. A2); this remains to be addressed in future
versions of our flux product.

4 Discussion: robustness of the multi-linear regression

4.1 How meaningful is the multi-linear regression in
terms of biogeochemical processes?

Statistical inferences by multi-linear regression are at the risk
of overfitting, i.e. adjustment of coefficients to follow minor
signals in the data, or even noise. If that was the case, the
estimated sensitivities would not reflect underlying biogeo-
chemical processes. Various findings indicate however that
the results of the presented multi-linear regression do reflect
actual signals:

– The patterns of the sensitivities (Fig. 4), at least those
with respect to dSST/dt and u2, are quite systematic
spatially and in many respects interpretable (Sect. 3.2).
This is especially true in the tropical Pacific, but also
throughout the entire ocean.

– Test regression runs only using one of the ex-
planatory variables (RegrOnlySST, RegrOnlydSSTdt,
RegrOnlyU2) yield sensitivities very similar to the
base case using all explanatory variables (Supplement
Fig. S2). This indicates that the regression terms are es-
sentially mutually independent, such that each explana-
tory variable picks up a more or less unique portion of
the signals contained in the data.

– The regression possesses predictive skill (Sect. 3.3
above), which also means that it does not depend on any
particular portion of the pCO2 data or the explanatory
fields alone.

– The estimates are relatively robust against alterna-
tive data sets for the explanatory variables (cases
RegrSSTNOAA and RegrU2NCEP in Supplement
Fig. S4). This corroborates the notion that the regres-
sion is likely not dominated by any particular feature in
these fields.

– The regression hardly responds to a 4-fold change in the
regularization strength (case RegrLoose in Supplement
Fig. S4). In the overfitting regime, one would expect a
substantial dampening effect when the regularization is
stronger.

– The regression results are quite robust against further
changes in the set-up (Supplement Figs. S4, S5, and S6).

The relatively small set of explanatory variables used here
(Sect. 2.1.4) is certainly helpful to avoid overfitting as it
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means a relatively small number of degrees of freedom (cf.
Thacker, 2012). Also the use of temporally constant sensitiv-
ity coefficients helps to keep the number of degrees of free-
dom sufficiently low. For example, in test runs with season-
ally resolved sensitivity coefficients, the data could be fitted
more closely but the predictive skill deteriorated (not shown).

Clearly, for any given spatial area, the presence of pCO2
data over a sufficient variety of environmental conditions
is a prerequisite to estimate meaningful sensitivity coeffi-
cients. The “reduction in uncertainty” diagnostic for inter-
annual variations given in Rödenbeck et al. (2014) provides
at least a rough indication. A reduction-in-uncertainty diag-
nostic could also be performed for the sensitivity coefficients
directly, which however remains for follow-on work.

4.2 Which fraction of the year-to-year variability can
be captured by the multi-linear regression?

As seen in Fig. 6 and quantified explicitly in Fig. 8 (top),
the amplitude of year-to-year variability in the global sea–air
CO2 flux estimated by our multi-linear regression (orange)
is lower than that estimated by the hybrid mapping possess-
ing the degrees of freedom to follow any interannual signals
(blue). This indicates that the pCO2 data also contain sig-
nals of year-to-year variability that cannot be represented in
terms of the variations contained in the set of explanatory
variables used in the regression. Possibly, however, the hy-
brid mapping may also exaggerate the amplitude of signals
by spreading them over too large an area in data-poor parts
of the ocean.

The situation is different in the tropical Pacific (Fig. 8, bot-
tom). Here, the multi-linear regression (orange) already cap-
tures a large part of the variability found in the hybrid map-
ping (blue). This indicates that our explanatory variables are
reasonably suited to represent the ENSO-related variability
dominating in this region.

To elucidate the ability of the multi-linear regression to
capture year-to-year anomalies, we compare it with other
pCO2 mappings based on linear or non-linear regressions of
pCO2 (itself) against various sets of explanatory variables
(Landschützer et al., 2013; Iida et al., 2020; Denvil-Sommer
et al., 2019; Gregor et al., 2019). Globally (Fig. 8, top), the
variability obtained by the other pCO2 mappings (salmon)
is larger than that from our multi-linear regression (orange).
Closer inspection (not shown) reveals that these larger am-
plitudes mostly reflect variability on multi-year (decade-to-
decade) timescales occurring coherently in both northern and
southern extratropics, while the multi-linear regression does
not involve such globally correlated contributions. Accord-
ingly, when splitting up the global flux into regional contribu-
tions, the amplitudes from the other pCO2 mappings and our
multi-linear regression are quite comparable. For example,
in the tropical Pacific (Fig. 8, bottom) our regression yields
year-to-year variability larger than any of the other pCO2
mappings considered. Based on reconstructions of model-

Figure 8. Amplitudes of variability in the sea–air CO2 flux on year-
to-year timescales around its secular trend, from the multi-linear re-
gression (orange group of bars; solid: base case; hashed: uncertainty
cases) and the hybrid mapping (blue), compared to other pCO2
mapping methods (salmon; CMEMS v2020, Denvil-Sommer et al.,
2019; CSIR-ML6 v2020, Gregor et al., 2019; JMA-MLR v2020,
Iida et al., 2020; and MPI-SOMFFN v2020, Landschützer et al.,
2013) as well as the ocean biogeochemical process models collated
in Friedlingstein et al. (2020) (mint green). The amplitudes are rep-
resented by temporal standard deviations of detrended yearly fluxes
over the 1990–2019 period. The top panel gives the global flux, the
bottom panel the tropical Pacific.

based pseudo-data, Gloege et al. (2021) found for one of the
other methods included in Fig. 8 that the amplitude of South-
ern Ocean decadal variability was overestimated by 15 % to
58%.

Could alternative or additional explanatory variables help
to capture a larger fraction of variability by the multi-linear
regression?

– As the explanatory variables of the base case
are all physical variables, we tested using chloro-
phyll a concentration as a biological variable (run
RegrAddChl_98r19; Supplement Fig. S7). A practical
problem with chlorophyll a is that data sets are only
available for the most recent years (from 1998); there-
fore it is not used in our base case. The test suggests,
however, that chlorophyll is not actually adding much
information about the year-to-year variations in the sea–
air CO2 flux beyond what is already provided by the
explanatory variables of the base case (SST, dSST/dt ,
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and u2). A reason may be that chlorophyll variability
is already covered in the other variables as nutrients
are also a function of upwelling, stratification, etc. It
is also important to keep in mind that chlorophyll con-
centration is not directly observed but only indirectly
inferred from optical properties of the seawater. Due to
that, part of the variability in the chlorophyll data may
originate from processes unrelated to the carbonate sys-
tem, which makes it less helpful as a predictor in the
regression considered here.

– Conceivably, more general non-linear relationships be-
tween pCO2 and the explanatory variables may allow
the capturing of signals not represented in linear rela-
tionships as used in our base case. Uncertainty cases
involving additional regression terms proportional to
(dSST/dt)2 (run RegrAdddSSTdt2) and (u2)2 (run Re-
grAddU4), respectively, only marginally increase year-
to-year variability (within the narrow band in Fig. S4).
Also from the set of other pCO2 mappings (salmon
in Fig. 8), there is no indication that the non-linear
regressions (CMEMS-FFNN, CSIR-ML6, and MPI-
SOMFFN) would generally capture more variability
than the linear ones (JMA-MLR and ours). We con-
clude that non-linearities in the pCO2 relationships are
not essential for explaining year-to-year anomalies in
the pCO2 field on a regional scale.

– Using heat flux as an explanatory variable instead of
dSST/dt (RegrHeat_85r09) deteriorates the ability of
the multi-linear regression to reproduce ENSO-related
variability (Supplement Fig. S8).

– Replacing u2 by the wind stress curl (RegrCurl_88r18)
does not change the flux IAV much (Supplement
Fig. S10). A further alternative explanatory variable
may be “Ekman pumping”, which however diverges at
the Equator and was not tested.

A common methodological feature of all present-day
regression-based pCO2 mappings including ours is that the
carbon variables are only related to the concurrent values
of the explanatory variables, disregarding any dependence
on past values of the explanatory variables possible due to
memory effects. This might be a serious limitation, but al-
lowing for memory effects is not straightforward. For ex-
ample, regression terms with lagged explanatory variables
would only allow discrete lag times, and using an exten-
sive spectrum of lag times would possibly exceed the number
of well-determined degrees of freedom. Theoretically, fitting
comprehensive process models to the pCO2 data would in-
clude emerging memory effects, but this faces various con-
ceptual and computational challenges (see a recent applica-
tion of a low-dimensional Green’s function approach by Car-
roll et al., 2020). (Note that the amplitudes simulated by the
hindcast ocean biogeochemical models included in Fig. 8 are

roughly similar to those from our multi-linear regression and
smaller than those from the hybrid scheme.) We notice that
our algorithm involves some elements that do represent his-
tory effects (the budget equation Eq. A18 in Rödenbeck et al.,
2013, accumulating past fint contributions; the seasonal “his-
tory flux” Eq. A20 in Rödenbeck et al., 2013; and the use of
both SST and dSST/dt as explanatory variables; see Sect. 3.1
above). However, if memory effects are important, they are
evidently not yet adequately captured by those elements.

4.3 To which extent do the sensitivities γi depend on
the timescale?

In our formulation of the regression (Eq. 3), the sensitivities
γi are applied to the fields Vi of the explanatory variables in-
cluding all their variations on year-to-year, decadal, and sec-
ular timescales. Conceivably, however, the relationships be-
tween fint and the explanatory variables may differ for year-
to-year, decadal, or secular variations. In ocean areas where
the data period is long enough to possibly constrain decadal
timescales directly, the estimates may therefore reflect some
mixture of timescales, which would be hard to interpret.

We assessed this by the uncertainty case RegrNoDecad,
where any decadal variability (including any secular trend)
has been removed from the three explanatory variables. As
this case can only pick up year-to-year signals to constrain
the sensitivities, any changes compared to the base case may
indicate such potential timescale conflicts. In most regions,
this is not evident (Supplement Fig. S6). Exceptions are
the southern Pacific and the tropical Indian (for the wind-
speed sensitivity γu2 ) and the western tropical Pacific (for the
SST sensitivity γSST). As the explanatory variable dSST/dt ,
which dominates the large tropical variability, does not have
much secular trend, it is not prone to timescale dependence
anyway.

An alternative way to assess the impact of secular trends
in the explanatory variables is the uncertainty case RegrAd-
dpaCO2 having an additional regression term proportional to
decadally smoothed atmospheric CO2 (paCO2). As paCO2 is
rising steadily over the calculation period, this run is able to
adjust the secular trend independently of the trends in SST,
dSST/dt , or u2, thus breaking any potential timescale con-
flicts. Indeed, the sensitivities estimated by RegrAddpaCO2
(not shown) are similar to those from the base case as well,
and any differences from the base case are similar to those of
RegrNoDecad.

We note that in ocean areas with data periods of a few
years only, a possible timescale dependence will not affect
the sensitivities themselves, but it may still affect secular
trends in the fluxes if sensitivities estimated for year-to-year
variations are applied to secular trends in the explanatory
variable. We do not have a means to detect whether this is
the case.
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4.4 Spurious effects from uncertainties in the
parameterizations

Errors in the sea–air CO2 flux resulting from deficiencies in
our chosen parameterizations of solubility and gas exchange
lead to compensating spurious contributions to fint because it
is the sum of both fluxes which changes the mixed-layer car-
bon content in our budget equation (see Fig. 1 or Rödenbeck
et al., 2013). This will then also lead to spurious contribu-
tions to the estimated sensitivities γi . For example, spurious
u2 sensitivity may arise if the wind speed dependence of our
gas exchange parameterization is not strong enough such that
it is reinforced by additional changes in the ocean-internal
carbon flux (or vice versa).

Luckily, the interannual variability in the sea–air CO2 flux
is much smaller than that of fint due to the buffer effect (see
Fig. 1). Therefore, in relative terms, the error in the sea–air
CO2 flux translates into a much smaller error in fint and in
the sensitivities γi .

4.5 Spurious effects from missing interannual
alkalinity variations

The estimated ocean-internal DIC flux fint – and thus the
estimated sensitivities γi in the regression – contains some
spurious contributions to compensate any errors in our rep-
resentation of carbonate chemistry because the pCO2 data
constrain the pCO2 field rather than the DIC field (Fig. 1).
Even though we represent the carbonate chemistry – up to
the linearization – by exact equations (Sect. 2.1.6), some er-
ror arises because we only use a seasonal alkalinity clima-
tology, while alkalinity also varies interannually due to (1)
changing degrees of dilution due to freshwater fluxes (evap-
oration, precipitation, ice formation, and ice melt) as well as
(2) mixing-in of alkalinity-rich deep waters and possibly bi-
ological influences.

1. Freshwater fluxes dilute not only alkalinity but also
DIC, in equal proportions. At the same time, the sen-
sitivities of pCO2 to changes in alkalinity and DIC
are almost equal in absolute value but of opposite sign
(Sarmiento and Gruber, 2006). Therefore, the total ef-
fect of freshwater fluxes on pCO2 is small compared to
that on alkalinity and DIC, respectively. Therefore, as
we neglect both the freshwater contributions to fint and
the freshwater-related alkalinity variations, the com-
bined error in pCO2 should be small.

2. Alkalinity variations related to mixing from below are
linked to DIC variations as well because deep waters
are rich in both DIC and alkalinity, compared to the
mixed layer. In contrast to the freshwater effects, how-
ever, the regression terms γiVi in Eq. (3) do contain
mixing contributions to fint, such that the absence of
the corresponding alkalinity variations does affect our
pCO2 field being matched to the data. On the seasonal

timescale (where there is no problem anyway as we are
using a monthly alkalinity climatology), alkalinity vari-
ations in the tropical and subtropical oceans are dom-
inated by freshwater effects; only at higher latitudes
are alkalinity variations increasingly affected by mixing
(Lee et al., 2006). For the interannual timescales rele-
vant here, the relative role of mixing is unclear. A better
understanding – and hopefully solution – of this prob-
lem remains for further work.

We note that the spurious compensatory contributions to
fint do not affect the pCO2 field being constrained by the ob-
servations. Thus, they essentially do not affect the estimated
sea–air CO2 fluxes either.

4.6 Further sources of uncertainty

The interannual variations estimated before the pCO2 data
period (i.e. before about 1990) represent extrapolations based
on the estimated sensitivities γi and the variations in the ex-
planatory variables. As the data sets used for the explanatory
variables are generally based on fewer and more uncertain
observations in the earlier decades, the uncertainty in our re-
sults is expected to be larger in the earlier decades as well. A
meaningful quantification of this uncertainty is deemed im-
possible.

5 Conclusions

In this study, we considered the interannual variability in the
sea–air CO2 flux over the 1957–2020 period, constrained by
the pCO2 measurements from the SOCATv2021 database
(Bakker et al., 2016). Extending the pCO2 mapping scheme
of Rödenbeck et al. (2013, 2014), we employed (1) a multi-
linear regression against interannual anomalies of sea surface
temperature (SST), the temporal changes in SST (dSST/dt),
and squared wind speed (u2), yielding maps of interannual
sensitivities, and (2) a subsequent explicitly interannual ad-
ditive correction, yielding a “hybrid” estimate of spatio-
temporal variations in the contemporary sea–air CO2 flux
(formal resolution 2.5◦ longitude× 2◦ latitude× 1 d).

– According to our multi-linear regression, interannual
variability in the tropical Pacific is dominated by a
positive correlation of ocean-internal DIC fluxes to
dSST/dt , as arising from variations in the upwelling of
colder and more carbon-rich waters into the mixed layer.

– In the eastern upwelling zones as well as in circum-
polar bands in the high latitudes of both hemispheres,
we find a positive sensitivity to wind speed, compatible
with the entrainment of carbon-rich water during wind-
driven deepening of the mixed layer. To the extent that
this sensitivity inferred from year-to-year variations also
applies to secular trends, the wind trend in the Southern
Ocean (south of 45◦ S) implies a wind-related reduction
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in the flux trend by about 17 % to 42% (weaker increase
in sink).

– As a pCO2 mapping method, the hybrid mapping com-
bines (a) the ability of regression to bridge data gaps and
extrapolate into the early decades without much pCO2
data constraint and (b) the ability of an auto-regressive
interpolation to follow signals even if not represented
in the chosen set of explanatory variables. This way, at
least the large contributions of the tropical Pacific to the
global year-to-year variability in the oceanic CO2 ex-
change can be extrapolated over the entire 1957–2020
period, even though the extrapolated variability prior to
about 1985 is probably underestimated.

Appendix A: The global ocean carbon sink estimated by
the hybrid mapping

Here we discuss the global total of the sea–air CO2 flux as
estimated by the hybrid mapping and compare it to various
literature estimates. In order to allow a quantitative compar-
ison, we focus on specific features, namely the mean flux
(Sect. A1) and the secular flux trend (Sect. A2).

A1 The mean sink (1994–2007)

Figure A1 shows the contemporary global sea–air CO2 flux
estimated by the hybrid mapping (solid blue bar) averaged
over the 1994–2007 period. According to the set of uncer-
tainty cases shown (hashed blue bars), the uncertainty in the
mean flux from the hybrid mapping is dominated by the
uncertainty in gas exchange (cases GasexLow, GasexHigh,
GasexU1, and GasexU3; diagonally hashed bars), while all
other uncertainty cases do not affect the mean sink estimate
very much.

The spread between the flux estimates from other pCO2
mapping methods (group of salmon bars) together with the
base case of our hybrid mapping (solid blue bar) only in-
dicates uncertainties due to the mapping algorithms as all
the estimates use the same global scaling of the gas transfer
velocity from Naegler (2009). Notably, this spread does not
exceed the differences due to scaling sea–air gas exchange
within the uncertainty range of Naegler (2009) (cases Ga-
sexLow, GasexHigh).

The comparison between the results of the hybrid map-
ping and further literature values is hampered as pCO2 map-
pings are estimating the total contemporary net CO2 flux
(Fnet) through the sea–air interface, while other methods may
only include certain components of it. Adopting the notation
by Hauck et al. (2020), Table A1 gives the six components
of Fnet and their respective inclusion in the literature esti-
mates considered here (note that the terms “anthropogenic”
or “contemporary” are also defined differently in part of the
literature).

Figure A1. Mean global sea–air CO2 flux over 1994–2007 from the
hybrid mapping (blue group of bars; solid: base case; hashed: uncer-
tainty cases), compared to other pCO2 mapping methods (salmon;
CMEMS v2020, Denvil-Sommer et al., 2019; CSIR-ML6 v2020,
Gregor et al., 2019; JMA-MLR v2020, Iida et al., 2020; and MPI-
SOMFFN v2020, Landschützer et al., 2013), and the ocean biogeo-
chemical process models collated in Friedlingstein et al. (2020) (not
including a river-induced sea–air flux (see Table A1); mint green).
To the left of the hybrid mapping, we also give OCIM (DeVries,
2022; total contemporary flux) as well as intermediate results from
this study. The long-dashed horizontal line indicates the estimate of
−2.6±0.4PgCyr−1 from ocean interior data by Gruber et al. (2019)
(anthropogenic carbon only) and the dotted line the same estimate
shifted by 0.62PgCyr−1 (average of Jacobson et al., 2007 and Re-
splandy et al., 2018) as an assumed contribution from outgassing of
terrestrial carbon transported to the ocean by rivers. Positive fluxes
denote oceanic CO2 outgassing into the atmosphere; negative fluxes
denote CO2 sinks into the ocean.

From the increase in the anthropogenic carbon inventory
in the ocean between the extensive ocean surveys in 1994
and 2007, Gruber et al. (2019) estimate an anthropogenic
CO2 uptake of Fant,ss+Fant,ns =−2.6±0.3PgCyr−1 over the
interjacent period, shown in Fig. A1 as a long-dashed line.
This estimate conceptually differs from the hybrid mapping
by the river-induced flux Friv,ss+Friv,ns and the non-steady-
state modifications Fnat,ns to the natural sea–air fluxes, while
Fnat,ss is zero at the global scale (Table A1). The river-
induced flux is very uncertain, with literature estimates rang-
ing between 0.45± 0.18PgCyr−1 (Jacobson et al., 2007)
and 0.78± 0.41PgCyr−1 (Resplandy et al., 2018), though
the real uncertainty may be even larger. If the Gruber et al.
(2019) estimate is shifted by a mid-range river-induced value
of 0.62PgCyr−1 (resulting in the dotted line), the base case
value from the hybrid estimate is matched more closely. Nev-
ertheless, given the uncertainty ranges of gas exchange, river-
induced outgassing, and the Gruber et al. (2019) estimate, we
cannot draw any conclusions from the remaining difference.
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Table A1. The components of the contemporary net sea–air CO2 flux (Fnet = Fant,ss+Fant,ns+Fnat,ss+Fnat,ns+Friv,ss+Friv,ns) according
to Hauck et al. (2020) and whether or not they are included in the individual estimates shown in Figs. 8, A1, and A2.

Component of Fnet Definition Included in

This study (Fnet) OCIM “anthr.” GOBMs Gruber et al. (2019) 2

Fant,ss CO2 uptake in direct response to the anthropogenic increase in
atmospheric CO2 hypothetically under constant pre-industrial
circulation

X X X X

Fant,ns Modifications of Fant,ss due to anthropogenic climate change
and natural climate variability

X (X)1 X X

Fnat,ss Steady-state natural fluxes under constant pre-industrial climate
conditions, supposed to be zero in the global sum

X X

Fnat,ns Modifications of Fnat,ss due to anthropogenic climate change
and natural climate variability

X (X)1 X

Friv,ss Steady-state outgassing of carbon transported into the ocean by
rivers, minus the carbon sedimented at the ocean floor

X

Friv,ns Modifications of Friv,ss due to climate change and variability as
well as anthropogenic land-use changes

X

1 For a mean ocean circulation over the industrial era; i.e. the variations are due to temperature and gas transfer velocity variations only. 2 Mean 1994–2007 flux only.

The CO2 flux difference between the hybrid estimate and
the dotted line in Fig. A1 may also contain a contribution
from systematic differences between pCO2 in the bulk ocean
water (as typically measured at a few metres depth) and
pCO2 at the diffusive surface layer (as relevant for gas ex-
change), arising due to systematic differences in water tem-
perature and salinity (Woolf et al., 2016). Further, the cooler
ocean skin temperature translates the atmospheric pCO2 to a
different equilibrium DIC concentration than that implicitly
calculated based on bulk temperature (Robertson and Wat-
son, 1992). Watson et al. (2020) estimated that the sum of
these two effects would shift pCO2-based estimates of the
mean global CO2 flux by −0.8 to −0.9PgCyr−1 (stronger
sink). So far, however, it is unclear how well the water tem-
perature at the relevant vertical positions can actually be de-
termined (an important source of uncertainty not included in
the range of Watson et al., 2020) and how it varies in space
and time. In any case, we note that our study mainly consid-
ers the variability in the flux, for which the effect of a time-
constant correction as in Watson et al. (2020) would cancel
out.

Figure A1 further shows the global fluxes simulated by
a set of global ocean biogeochemical models (GOBMs) col-
lated in the annual global carbon budget (Friedlingstein et al.,
2020; mint green). Like OCIM or Gruber et al. (2019), the
GOBMs’ results do not include the river-induced flux com-
ponent, but they do conceptually include the non-steady-
state modification Fnat,ns of carbon uptake and natural car-
bon cycling (Table A1). The range of results covered by the
GOBMs slightly exceeds the range of the hybrid estimates
due to the gas exchange uncertainty. The medians of the
GOBM ensemble and the pCO2 mapping ensemble differ by
less than the mid-range river-induced value of 0.62PgCyr−1.

A2 The secular sink trend (1960–2019)

Regarding the 1960–2019 secular sink trend, our estimate
from the hybrid mapping (1) is not able to add much inde-
pendent information and (2) even slightly overestimates this
trend relative to OCIM used in the prior:

1. According to Fig. A2a, the 1960–2019 trend from the
base case (solid blue bar) is quite similar to that of
the base case prior (open grey bar). Among the uncer-
tainty cases (hashed blue bars), the largest deviations are
seen when mixed-layer depth is changed (MLDq2 and
MLDx2); these deviations are in fact mostly inherited
from their respective priors as well (not shown).

2. Figure A2a further reveals that the prior (open grey
bar) has a slightly steeper trend than the OCIM esti-
mate (magenta) even though the prior has been derived
from OCIM (Sect. 2.1.3). This discrepancy arises be-
cause we are using OCIM’s sea–air fluxes as a prior of
the ocean-internal flux fint even though these two quan-
tities differ by the carbon accumulation in the mixed
layer. Since the carbon accumulation accelerates (fol-
lowing the accelerating increase in atmospheric pCO2),
this leads to a difference not only in mean flux (Fig. A1)
but also in trend. Due to the lack of information to cor-
rect the 1960–2019 secular trend from the pCO2 data
as discussed under (1), this issue leads to an overes-
timation of the trend in the hybrid estimate compared
to OCIM. Most GOBMs (mint green) simulate an even
flatter 1960–2019 trend than OCIM.

Looking at the linear trend over the better-constrained,
more recent period 1990–2019 (Fig. A2c), the estimate from
the hybrid mapping becomes more independent from the
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Figure A2. Secular linear trend of the global sea–air CO2 flux over
1960–2019 (a) and over the more recent 1990–2019 period bet-
ter constrained by pCO2 data (b), from the same estimates as in
Fig. A1. The error bars give the formal error in the slope calculated
from 5-year flux averages; i.e. they reflect the uncertainty due to the
pentadal variability around the linear trend, thereby roughly taking
into account the serial correlations of the flux, e.g. on the El Niño
timescale.

prior. The pCO2-based hybrid estimates tend to show steeper
trends than both OCIM and the GOBM simulations. Most
other pCO2 mappings (salmon) estimate the trend to be even
more negative than the hybrid mapping. However, given the
substantial pentad-to-pentad variations in the global flux (as
reflected in the error bars), it is not fully clear how well de-
fined the trend over the 1990–2019 period actually is.

The level of constraint in the trend over the different peri-
ods is corroborated by the “zero-prior” mapping not using the
secular trend from OCIM as a prior (Fig. A3). Even though
the zero-prior explicitly interannual mapping (violet) and the
explicitly interannual mapping (green) start from priors with
very different secular trends (shown in dark and light grey,
respectively), their estimated multi-decadal trends during the
recent decades are still very close. In well-constrained re-
gions like the tropical Pacific (bottom panel) they are prac-
tically identical, while some deviations occur in poorly con-
strained regions such as the Indian Ocean, adding up to the
slight deviations in the global total flux (top). Only in the
early decades where there are hardly any pCO2 data to con-
strain the estimates do the two mappings stick to the differing

Figure A3. Interannually filtered sea–air fluxes as in Fig. 6 (two
example panels only) estimated by the zero-prior explicitly interan-
nual pCO2 mapping (violet) and the explicitly interannual pCO2
mapping (green) as well as their respective priors (dark and light
grey, respectively; note that the designation “zero-prior” refers to
f

ZE,pri
int = 0, while the a priori sea–air fluxes shown here are in fact

non-zero owing to the rise in atmospheric CO2 and the variations
in SST). The line width roughly distinguishes the early period with
insufficient data constraint (thin) and the more recent period with
better constraint (thick). Vertical background stripes as in Fig. 6.

multi-decadal trends (and also to the year-to-year variations)
of their respective priors.

As the better-constrained trend over the recent decades (af-
ter about 1992) is essentially the same as that in the prior
of the explicitly interannual mapping, the flat multi-decadal
trend of the zero-prior mapping in the early decades is very
unlikely to be true. This illustrates that a prior with the cor-
rect secular trend (such as the OCIM result used here) is in-
deed needed to extrapolate the ocean CO2 sink into the data-
poor first decades of our extended period of interest 1957–
2020.

Data availability. The sea–air CO2 flux estimates and the mapped
pCO2 field of the hybrid mapping are available from http:
//www.bgc-jena.mpg.de/CarboScope/?ID=oc_v2021 (Jena Carbo-
Scope, 2021). Results of all other runs are available by replacing
“oc_v2021” in this URL by the respective run IDs as given in Ta-
ble 2. Auxiliary data can be made available upon request.
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