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Evolutionary histories for species that cross with one another or exchange genetic material 
can be represented by leaf-labelled, directed graphs called phylogenetic networks. A major 
challenge in the burgeoning area of phylogenetic networks is to develop algorithms for 
building such networks by amalgamating small networks into a single large network. 
The level of a phylogenetic network is a measure of its deviation from being a tree; the 
higher the level of a network, the less treelike it becomes. Various algorithms have been 
developed for building level-1 networks from small networks. However, level-1 networks 
may not be able to capture the complexity of some data sets. In this paper, we present a 
polynomial-time algorithm for constructing a rooted binary level-2 phylogenetic network 
from a collection of 3-leaf networks or trinets. Moreover, we prove that the algorithm will 
correctly reconstruct such a network if it is given all of the trinets in the network as input. 
The algorithm runs in time O (t · n + n4) with t the number of input trinets and n the 
number of leaves. We also show that there is a fundamental obstruction to constructing 
level-3 networks from trinets, and so new approaches will need to be developed for 
constructing level-3 and higher level-networks.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Phylogenetic networks are a generalization of phyloge-
netic trees that are commonly used to represent the evo-
lutionary histories of species that cross with one another 
or exchange genetic material, such as plants and viruses. 
There are several classes of phylogenetic networks and var-
ious ways have been devised to build them – see e.g. [2,15]
for recent surveys. Mathematically speaking, a phylogenetic 
network on a set of species X is basically a directed acyclic 
graph, with a single source or root, such that every sink or 
leaf has indegree 1 and the set of leaves is equal to X . In 
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this paper, we shall only consider recoverable, binary phy-
logenetic networks, which we call networks for short. See 
Section 2 for formal definitions and Fig. 1 for examples.

Recently, there has been growing interest in the prob-
lem of building a network with leaf-set X from a col-
lection of networks each of which having leaf-set equal 
to some subset of X in such a way that the input net-
works are each contained in the final network. Early work 
on this so-called supernetwork problem focused on building 
up networks from phylogenetic trees, that is, phylogenetic 
networks whose underlying graph is a tree. Several results 
have been presented for this problem, including algorithms 
for constructing networks from triplets, which are 3-leaved 
phylogenetic trees, (e.g. [6]) and from collections of phy-
logenetic trees all on leaf-set X (e.g. [17]) – for a recent 
summary of these approaches see [14]. However, an im-
portant issue with this strategy is that phylogenetic trees 
ss article under the CC BY license 
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Fig. 1. Left: Two distinct level-3 networks N1 and N2 on the set X = {a,b, c,d}. Right: The set of trinets T that is contained in both N1 and N2.
do not necessarily encode phylogenetic networks, i.e., there 
are examples of distinct (non-isomorphic) networks that 
contain the same set of phylogenetic trees (see e.g. [3]), 
making it impossible to uniquely reconstruct such net-
works from their trees.

Motivated by this issue, in [4] it was proposed to build 
networks from collections of 3-leaved networks, or trinets. 
In that paper, the authors focused on building level-1 net-
works2 where, in general, level-k networks are networks 
that can be converted into a tree by deleting at most k
arcs from each biconnected component. In particular, they 
showed that level-1 networks are encoded by the trinets 
that they contain, and gave an algorithm for constructing a 
level-1 network on X from its trinets that is polynomial in 
|X | (see also [13] for a more general algorithm). In [9] the 
encoding result was extended to the more general class of 
level-2 networks, and also to the distinct and quite broad 
class of so-called tree-child networks. Recently, in [14] it 
was also shown that orchard networks, which generalise 
tree-child networks, are encoded by their trinets, and an 
algorithm was given for constructing an orchard network 
from its trinets that is polynomial in the size of the vertex 
set of the network (whose size is not necessarily polyno-
mial in |X |).

Intriguingly, in [8] it was shown that, as with trees, 
trinets do not encode networks in general. Indeed, in [14, 
p. 28] it was shown that even level-4 networks are not 
encoded by their trinets and, since level-2 networks are 
encoded by their trinets (see above), it was asked whether 
or not level-3 networks are encoded by their trinets (see 
also [1]). In the first result of this paper we answer this 
question – in particular, the two networks N1 and N2 in 
Fig. 1 are level-3 and are easily seen to be distinct and to 
contain the same set of trinets (see [12]). Hence, level-k
networks are encoded by their trinets only if k ≤ 2. As 
the algorithm in [4] can be used to uniquely reconstruct 
a level-1 network from its trinets, this leaves open the 
question of finding a polynomial algorithm for building a 
level-2 network from its trinets, which is the purpose of 
the rest of this paper. In particular, we shall present an 
algorithm which constructs a level-2 network on X from 
any set of trinets T whose leaf-set union is X that runs 
in O (|T ||X | + |X |4) time (Algorithm 1) and that is guaran-
teed to reconstruct a level-2 network from its set of trinets 
(Theorem 3). We now proceed by presenting some prelimi-
naries, after which we shall describe our level-2 algorithm. 
We will conclude with a brief discussion of our results.

2 In fact they considered the somewhat more general class of 1-nested 
networks.
2

2. Preliminaries

We refer the reader to [15, Chapter 10] for more infor-
mation on the terminology and basic results on phyloge-
netic networks that we summarise in this section.

Definition 1. Let X be some finite set (corresponding to a 
set of species, say). A binary phylogenetic network (on X) is a 
directed acyclic graph with the following types of vertices: 
a single root with indegree 0 and outdegree 2; tree-vertices
with indegree 1 and outdegree 2; reticulations with inde-
gree 2 and outdegree 1; and leaves with indegree 1 and 
outdegree 0, where the leaves are in one-to-one correspon-
dence with the elements of X .

Let N be a binary phylogenetic network on X , and sup-
pose that u, v are two vertices in the vertex set of N . If 
there is a directed path from u to v (including the case 
that u = v), then we say that u is an ancestor of v and 
that v is a descendant of u. When (u, v) is an arc, we say 
that u is a parent of v and that v is a child of u. We say 
that (u, v) is a cut-arc if deleting (u, v) disconnects N . A 
set A ⊆ X is called a cut-arc set in N if A = X or A is the 
set of descendant leaves of v for some cut-arc (u, v). A 
cut-arc set A is minimal if |A| > 1 and there is no cut-arc 
set B with |B| > 1 and B � A. A network is simple if it has 
no minimal cut-arc set except for X .

Now, suppose A ⊆ X . A lowest stable ancestor (LSA) of A
in N is a vertex v such that, for all a ∈ A, all paths from 
the root to a contain v , and such that there is no descen-
dant u of v with u �= v that satisfies this property. It is 
not difficult to see that the lowest stable ancestor is al-
ways unique for any A ⊆ X [15, p. 263]. We say that N
is recoverable if L S A(X) is the root of X . In this paper, for 
simplicity, we shall call a recoverable, binary phylogenetic 
network on X a network. Only in statements of theorems 
we will mention these restrictions explicitly.

A biconnected component of a network is a maximal sub-
graph not containing any cut-arcs. A network is level-k if 
each biconnected component contains at most k reticula-
tions. A level-k network is strictly level-k if it is not level-k′
for any k′ < k. This paper will mainly focus on level-2 net-
works; see Fig. 3 for an example.

A network on A is a trinet if |A| = 3 and a binet if |A| =
2. If T is a trinet or binet on A then we also use L(T ) to 
denote the set A. Furthermore, for a set of trinets and/or 
binets T , we define L(T ) = ∪T ∈T L(T ). We will now define 
the restriction of a network to a subset of X , which will be 
used to define the set of trinets contained in a network.
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Definition 2. Let N be a network on X and A ⊆ X . The 
restriction of N to A, denoted N|A, is the network on A
obtained from N by deleting all vertices that are not on a 
path from L S A(A) to an element of A and subsequently 
replacing parallel arcs by single arcs and suppresssing 
indegree-1 outdegree-1 vertices, until neither of these op-
erations is applicable.

The set of trinets T (N) of a network N on X is de-
fined as {N|A | A ⊆ X, |A| = 3}. The set of binets and 
trinets T (N) of a network N on X is defined as {N|A |
A ⊆ X, 2 ≤ |A| ≤ 3}. Observe that T (N) can be obtained 
from T (N).

We say that two networks N, N ′ on X are equal and 
write N = N ′ if there is an isomorphism f : V (N) → V (N ′)
such that, for all x ∈ X , f (x) has the same label as x.

The following theorem forms the basis for our new 
level-2 algorithm.

Theorem 1 ([9]). Let N be a recoverable, binary level-2 net-
work on X with |X | ≥ 3. Then there exists no recoverable net-
work N ′ �= N with T (N) = T (N ′).

2.1. Generators

Our algorithm will make heavy use of the underlying 
structure of biconnected components, which is called a 
“generator” (introduced in [16]) and defined as follows.

Definition 3. Let N be a simple network. The underly-
ing generator of N is the directed multigraph G obtained 
from N by deleting all leaves and suppressing all indegree-
1 outdegree-1 vertices. The arcs and indegree-2 outdegree-
0 vertices of G are called sides. The arcs are also called arc 
sides and the indegree-2 outdegree-0 vertices also reticu-
lation sides. We say that leaf x is on side S (or that side S
contains x) if either

• S is a reticulation side of G and the parent of x in N , 
or

• S is an arc side of G obtained by suppressing indegree-
1 outdegree-1 vertices of a path P in N and the parent 
of x lies on path P .

See Fig. 2 for all underlying generators of simple level-1 
and level-2 networks.

To attach leaf x to a reticulation side S means adding x
with an arc from S to x. To attach a list (x1, . . . , xl)

of leaves to an arc side S means subdividing S to a 
path with l internal vertices p1, . . . , pl and adding leaves 
x1, . . . , xl with arcs (p1, x1), . . . , (pl, xl).

A trinet T ∈ T (N) is called a crucial trinet of a simple 
network N if it contains a leaf on each reticulation side 
of the underlying generator G of N and, for each pair of 
parallel arcs in G , a leaf on at least one of these two sides. 
Crucial trinets are of special interest because they have the 
same underlying generator as the network N .

Two reticulation sides u, v of a generator G = (V , A)

are symmetric if there exists an automorphism f : V → V
3

Fig. 2. The only underlying generator of a simple level-1 network and 
the four underlying generators of simple level-2 networks [9]. Generator 
2c has three sets of symmetric arc sides {L1, R1}, {L2, R2}, {L3, R3} while 
generators 1 and 2d have one set of symmetric arc sides {L, R}. Genera-
tor 2c is the only level-2 generator with symmetric reticulation sides.

of G with f (u) = v . The equivalence classes under this no-
tion of symmetry are called sets of symmetric reticulation 
sides.

Two arc sides (u, v), (u′, v ′) of a generator G = (V , A)

are symmetric if there exists an automorphism f : V → V
of G with f (r) = r for each reticulation side r and such 
that u′ = f (u) and v ′ = f (v). The equivalence classes un-
der this notion of symmetry are called sets of symmetric arc 
sides, see Fig. 2. The idea behind this definition is that the 
reticulation sides of G are parents of leaves in N . In our al-
gorithm, we will make heavy use of crucial trinets, which 
contain those leaves. Since they are labelled, we can dis-
tinguish them.

3. Algorithm

3.1. Outline

We work with multisets of trinets and binets because 
these may arise when collapsing or restricting trinet sets. 
Hence, let T be a multiset of binets and trinets. The high-
level idea of the algorithm is to first find a minimal cut-arc 
set A. Then we construct T ∗ by collapsing A to a single 
leaf a∗ and find a network N∗ for T ∗ recursively. The next 
step is to construct T ′ from T by restricting to the taxa 
in A and to find a simple network N ′ for T ′ . Finally, we 
construct N from N∗ and N ′ by replacing a∗ by N ′ . The 
pseudo code is in Algorithm 1.

Within our explanation of the algorithm we will also 
explain why in case the underlying set of T is T (N) for 
some recoverable level-2 network N , the algorithm cor-
rectly reconstructs N .

3.2. Finding a minimal cut-arc set

We first find a minimal cut-arc set of the level-2 net-
work that we are constructing from T . We find these sets 
using the following digraphs �i(T ) (see Fig. 3), which 
were introduced in [13] for level-1 networks.



L. van Iersel, S. Kole, V. Moulton et al. Information Processing Letters 178 (2022) 106300

Fig. 3. A level-2 network N , its set of trinets T = T (N) and the digraph �0(T ) = D(T ). The set {c, d} is the only minimal sink set in �0(T ) and the only 
minimal cut-arc set in N .
Algorithm 1: Constructing level-2 networks from 
trinets.

Data: Multiset T of level-2 trinets and (possibly) binets on taxon 
set X .

Result: Level-2 phylogenetic network N on X .
1 Find a cut-arc set A using Algorithm 2;
//Find network N∗ with A collapsed

2 Initialize T ∗ = ∅ and let a∗ /∈ X be a new taxon;
3 for T ∈ T with L(T ) \ A �= ∅ do
4 if L(T ) ∩ A = ∅ then Add T to T ∗;
5 else
6 Pick a ∈ L(T ) ∩ A;
7 Construct T |(L(T ) \ A ∪ {a});
8 Relabel a to a∗ and add the resulting trinet or binet 

to T ∗;

9 Construct N∗ from T ∗ by recursively running Algorithm 1;
//Find simple network N ′ on A

10 T ′ = {T |(L(T ) ∩ A) | T ∈ T , |L(T ) ∩ A| ≥ 2};
11 Construct a simple network N ′ for T ′ using Algorithm 3;

//Combine N ′ and N∗
12 if A �= X then
13 return the network constructed from N∗ and N ′ by identifying a∗

with the root of N ′

14 else return N ′ ;

Definition 4. Given a multiset T of binets and trinets 
and i ≥ 0, �i(T ) is the digraph with vertex set L(T ) and 
an arc (x, y) if at most i trinets T ∈ T with x, y ∈ L(T )

have a minimal cut-arc set not containing y.

A sink set in a digraph D = (V , A) is a set U ⊆ V such 
that there is no arc (u, v) ∈ A with u ∈ U and v /∈ U . A 
sink set U is minimal if |U | > 1 and there is no sink set W
with |W | > 1 and W � U . A strongly connected component
of a digraph is a maximal subgraph D ′ = (V ′, A′) contain-
ing, for any u, v ∈ V ′ , a directed path from u to v and 
from v to u.

If N is a level-1 network, minimal sink sets in �i(T (N))

correspond to minimal cut-arc sets in N [13]. To extend 
this result to level-2 networks, we will use the following 
theorem, which is a special case of [5, Theorem 7.3]. It uses 
the closure digraph D(T ) of a set T of trinets, which was 
introduced in [13] and is defined as follows. Its vertex set 
is X = ∪T ∈T L(T ) and it has an arc (x, y) if, for all z ∈
X \ {x, y}, there exists a trinet on {x, y, z} in T in which y
is a descendant of L S A(x, z).
4

Theorem 2. [5] Let N be a binary level-2 network on X and A ⊆
X. Then A is minimal cut-arc set of N if and only if A is a mini-
mal sink set of the closure digraph D(T (N)).

The next lemma shows that the closure digraph D(T )

is equal to �0(T ) if T is the set of trinets of some net-
work.

Lemma 1. If T = T (N) for some network N on X, then �0(T )

=D(T ).

Proof. First let (x, y) be an arc of �i(T ). Assume that (x,
y) is not an arc of D(T ). Then there exists a z ∈ X \ {x, y}
such that y is not a descendant of L S A(x, z) in the trinet T
on {x, y, z}. We now claim that the arc entering L S A(x, z)
is a cut-arc of T . If it is not, then there is some arc (u, v)

of T with v �= L S A(x, z) such that u is not a descen-
dant of L S A(x, z) and v is a descendant of L S A(x, z). This 
arc (u, v) must lie on a path from the root to at least one 
of x, y, z. However, it cannot be on a path from the root 
to x or z because each such path passes through L S A(x, z). 
Also, it cannot be on a path from the root to y because 
such a path does not contain any descendants of L S A(x, z). 
Hence, we can conclude that {x, z} is a cut-arc set, which 
contradicts the assumption that (x, y) is an arc of �i(T ).

Now let (x, y) be an arc of D(T ) and let z ∈ X \
{x, y}. Then y is a descendant of L S A(x, z) in the trinet 
on {x, y, z} in T . Hence, {x, z} is not a cut-arc set. Since a 
minimal cut-arc set contains at least two leaves, it follows 
that T has no minimal cut-arc set not containing y. It now 
follows that (x, y) is an arc of �0(T ). �

Since we consider trinet sets that are not necessarily 
exactly the trinet set of some network, we cannot always 
simply use the digraph �0(T ) = D(T ). In particular, it 
may happen that �0(T ) has no arcs. We therefore use the 
strategy described in Algorithm 2, based on [13], which 
finds a minimal sink set in the digraph �i(T ) for the 
smallest i for which �i(T ) contains at least one arc.

From Theorem 2 and Lemma 1 follows that Algorithm 2
produces a minimal cut-arc set if the input set is equal 
to T (N) for some level-2 network N . Since �0(T ) is not 
affected by binets or multiple copies of trinets, the same 
holds when T is a multiset of binets and trinets with un-
derlying set T (N).
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Algorithm 2: Finding a cut-arc set.
Data: Multiset T of level-2 trinets and (possibly) binets on taxon 

set X .
Result: Set A ⊆ X .

1 for i = 0, . . . , |X | − 2 do
2 Construct �i(T ) (see Definition 4);
3 if �i(T ) has at least one arc then
4 Let S be the set of strongly connected components of 

�i(T );
5 if S contains a minimal sink set then return a smallest 

such set ;
6 else
7 For S ∈ S , let ν(S) be the set of vertices of �i(T )

that are a descendant of a vertex in S;
8 return a smallest such set ν(S) containing at least two 

elements

For a general input multiset of binets and trinets, the 
output of Algorithm 2 is a minimal cut-arc set of the net-
work that will be constructed (by Algorithm 1).

3.3. Constructing a simple network

Once we have found a minimal cut-arc set A, we need 
to construct the part of the network below this cut-arc. 
To do this, we restrict T to T ′ = {T |(L(T ) ∩ A) | T ∈
T , |L(T ) ∩ A| ≥ 2} and find a simple network for T ′ .

If the underlying set of T is T (N) with N a level-2 
network and A is a minimal cut-arc set of N , then the 
underlying set of T ′ is T (N ′) with N ′ either a tree with 
two leaves or a simple network.

3.3.1. The number of reticulations
Let T ′′ be the set containing all trinets from T ′ and 

let p2 be the fraction of the trinets in T ′′ that are strictly 
level-2 and let n = |L(T ′)|. If n = 2, we construct a net-
work equal to a binet with maximum multiplicity in T ′ . 
Otherwise, if p2 < n−2

2(n
3)

, we set the number of reticula-

tions k to 1, else we set k to 2.
Suppose T ′ has underlying set T (N ′) with N ′ either 

a tree with two leaves or a level-2 network that is simple 
(note that it may also be level-1). If N ′ has two leaves then 
all binets in T ′ are equal to N ′ and the algorithm correctly 
constructs N ′ . This holds in particular when N ′ is a tree 
with two leaves. Now assume n ≥ 3. If N ′ is a simple level-
1 network, then p2 = 0, so the algorithm correctly sets the 
number of reticulations to 1. Finally, suppose N ′ is a sim-
ple strictly level-2 network. Then, |T ′′| = (n

3

)
. Furthermore, 

observe that in a level-2 generator the number of reticu-
lation sides plus the number of parallel arcs is at most 2. 
Hence, there are at least n − 2 crucial trinets because there 
are n −2 choices for the third leaf. Since each crucial trinet 
is strictly level-2, at least n − 2 trinets in T ′′ are strictly 
level-2. Therefore, we have p2 ≥ n−2

(n
3)

≥ n−2
2(n

3)
and the algo-

rithm correctly sets the number of reticulations to 2.

3.3.2. Leaves on reticulation sides
Let k be the number of reticulations determined in 

the previous subsection. Let G be a generator that is the 
underlying generator of the maximum number of strictly 
5

level-k trinets in T ′ . Let TG be the set of trinets in T ′ that 
have underlying generator G .

For each x ∈ L(TG) and for each set of symmetric retic-
ulation sides C of G , let px,C denote the fraction of trinets 
in TG that have leaf x on a side in C . We proceed greed-
ily as follows. Pick x, C maximizing px,C over all leaves x
that have not been assigned to a side yet and over all C
containing at least one side that has not been assigned a 
leaf yet. Assign x to an arbitrary side in C . Repeat until all 
reticulation sides have been assigned a leaf. Attach each 
leaf assigned to a reticulation side to this side.

Let T r
G be the set of trinets in T ′ that have underly-

ing generator G and that have an automorphism such that 
each reticulation side of G contains its assigned leaf. From 
now on, we assume that each reticulation side of the gen-
erator of each trinet in T r

G contains its assigned leaf.
Suppose the underlying set of T ′ is T (N) for some 

simple, strictly level-k, network N . Then all strictly level-k
trinets have the same underlying generator as N . Moreover, 
for each set C of symmetric reticulation sides, px,C = 1 for 
all leaves x that are on a side in C in N and px,C = 0 other-
wise. Hence, the algorithm correctly assigns leaves to sets 
of symmetric reticulation sides. It can assign leaves to an 
arbitrary side within this set since level-2 generators have 
at most one set of symmetric reticulation sides (see Fig. 2), 
and those are symmetric.

3.3.3. Leaves per set of symmetric arc sides
For each leaf x ∈ L(T r

G ) that has not been assigned to a 
reticulation side, assign x to a set of symmetric arc sides C
of G , maximizing the fraction of trinets in T r

G that have 
leaf x on a side in C .

Suppose the underlying set of T ′ is T (N) for some sim-
ple level-2 network N . Then it can be argued as in the 
previous subsection that the algorithm assigns each leaf to 
the set of symmetric arc sides corresponding to its location 
in N .

3.3.4. Leaves per arc side
Consider a set of symmetric arc sides C and the set of 

leaves XC assigned to C . For x, y ∈ XC , let Txy denote the 
set of simple trinets in T ′ containing both x and y, and 
let qxy denote the fraction of trinets in Txy in which x
and y are on the same side of the underlying generator, 
with qxx = 1. We define the following score for x �= y:

rxy = 3
∑

z∈XC

min{qxz,qyz} −
∑

z∈XC

qxz −
∑

z∈XC

qyz.

The main idea of this score function is that, assuming 
the trinets come from some level-2 network, rxy ≥ 0 if and 
only if x and y are on the same side.

The algorithm proceeds as follows. Create a parti-
tion PC of XC , initially consisting of only singletons. 
While |PC | > |C | or there exist x �= y with rxy > 0, pick 
a pair X, Y ∈PC maximizing

rXY = 1

|X ||Y |
∑

x∈X,y∈Y

rxy . (1)

Merge sets X and Y in PC .
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Finally, assign, injectively at random, the parts of PC to 
the sides in C .

Suppose the underlying set of T ′ is T (N) for some sim-
ple level-2 network N . The only level-2 generators with 
symmetric arc sides (see Fig. 2) are 1 and 2d with C =
{L, R} and 2c with C = {Li, Ri}, i ∈ {1, 2, 3}. If x, y are on 
the same side then qxy = 1 and otherwise we have qxy = 0. 
We can now see that if x, y are on the same side then 
rxy is equal to the number of leaves on that side (since 
each of the three sums is equal to the number of leaves 
on that side) which is at least 2. If, on the other hand, x, y
are on different sides, then rxy ≤ −2 (since the first sum 
is 0 and the other two sums are at least 1). Hence, the 
algorithm correctly splits the leaves in XC into two sets 
corresponding to the leaves on side Li and Ri (or L and R). 
For generators 1 and 2d it does not matter which set is as-
signed to which side, by symmetry. For generator 2c, this 
does matter. It is done randomly here and corrected if nec-
essary in the next subsection.

3.3.5. Side alignment
The following is only necessary when the underlying 

generator G is generator 2c, see Fig. 2, since it contains 
more than one set of symmetric arc sides. Call its sets of 
symmetric arc sides C1 = {L1, R1}, C2 = {L2, R2} and C3 =
{L3, R3}. We have to consider swapping sides L2, R2 and/or 
L3, R3 (i.e., assign the leaves assigned to L2 to R2 and vice 
versa and/or assign the leaves assigned to L3 to R3 and 
vice versa). From the four possibilities, we choose the one 
maximizing the following score:

uL1,L2 + uL1,L3 + uL2,L3 + uR1,R2 + uR1,R3 + uR2,R3 (2)

with

uS,T =
∑

x∈X S y∈XT

qxy − |XS ||XT |, (3)

and XU the set of leaves assigned to side U .
Suppose the underlying set of T ′ is T (N) for some sim-

ple level-2 network N with underlying generator 2c. Then 
we have that qxy = 1 if x ∈ Li, y ∈ L j or x ∈ Ri, y ∈ R j , 
and qxy = 0 if x ∈ Li, y ∈ R j or vice versa. Hence, uLi L j =
uRi R j = 0 and uLi R j , uRi L j < 0. Therefore, choosing the as-
signment maximizing (2), out of all possible assignments, 
chooses the assignment corresponding to N .

3.3.6. Ordering the leaves on the arc sides
Consider an arc side S and the set of leaves X S assigned 

to side S . Let T s
xy denote the set of simple trinets in T

containing both x and y and both on the same side of the 
underlying generator. Let axy denote the fraction of trinets 
in T s

xy in which the parent of x is an ancestor of y. Let π

be an ordered list of leaves, which is initially empty. Find 
a leaf x ∈ X S \ π maximizing

∑

y∈X S\π
axy − ayx. (4)

Append leaf x to π and continue until π is a permutation 
of X S . The permutation π then describes the ordering of 
the leaves on side S . Attach the list of leaves π to side S .
6

Suppose the underlying set of T ′ is T (N) for some sim-
ple level-2 network N . For two leaves x, y on the same arc 
side S of N , we have that axy = 1 if the parent of x is an 
ancestor of y and axy = 0 otherwise. Hence, (4) is equal 
to the number of leaves that have not been added to the 
permutation π yet and are below x on side S , minus the 
number of leaves that have not been added to the per-
mutation π yet and are above x on side S . Therefore, the 
algorithm constructs the ordering π of leaves on side S
in N .

The pseudo code for constructing a simple network is 
in Algorithm 3.

Algorithm 3: Constructing a simple level-2 net-
work.

Data: Multiset T ′ of level-2 trinets and (possibly) binets on taxon 
set X .

Result: Simple level-2 network N ′ on X .
//Determine the level k

1 n = |L(T ′)|;
2 T ′′ = the set of trinets contained in T ′;
3 p2 = the fraction of trinets in T ′′ that are strictly level-2;
4 if n = 2 then
5 return an arbitrary network with maximum multiplicity in T ′

6 if p2 < n−2
2(n

3)
then

7 k = 1

8 else
9 k = 2

//Determine the generator
10 G = the underlying generator of the maximum number of strictly 

level-k trinets in T ′;
11 N ′ = G;

//Assign leaves to reticulation sides
12 TG = the set of trinets in T ′ that have underlying generator G;
13 while there is a reticulation side of G that has not been assigned a leaf

do
14 Let px,C be the fraction of trinets in TG that have leaf x on a 

side in set C ;
15 Find x ∈ L(TG ) that has not been assigned to a side and a set 

of symmetric reticulation sides C that have not all been 
assigned a leaf, maximizing px,C ;

16 Assign x to an arbitrary side in C and attach x to this side 
in N ′;

17 T r
G = the set of trinets in T ′ that have underlying generator G
and that have an automorphism such that each reticulation side 
of G contains its assigned leaf;

18 Relabel the sides of the generators of the trinets in T r
G such that 

each reticulation side contains its assigned leaf;
//Assign leaves to sets of symmetric arc sides

19 for each leaf x that has not been assigned to a reticulation side do
20 Assign x to a set of symmetric arc sides C maximizing the 

fraction of trinets in T r
G that have leaf x on a side in C ;

//Continued on Page 7

3.4. Theoretical result

The following theorem shows that the algorithm is 
guaranteed to reconstruct a level-2 network from its set 
of trinets.

Theorem 3. If N is a recoverable, binary level-2 network on X
with |X | ≥ 3, then Algorithm 1 will output N when applied to 
input T = T (N).
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//Assign leaves to arc sides
21 for each set of symmetric arc sides C do
22 PC = partition of XC containing only singletons;
23 qxy = the fraction of simple trinets containing x, y in 

which x, y are on the same side of the underlying generator;

24 rxy = 3 
∑

z∈XC

min{qxz, qyz} −
∑

z∈XC

qxz −
∑

z∈XC

qyz ;

25 rXY = 1

|X ||Y |
∑

x∈X,y∈Y

rxy ;

26 while there exist X, Y ∈ PC with rXY > 0, or |PC | > |C | do
27 Find a pair X, Y ∈ P maximizing rXY ;
28 Merge sets X and Y in PC ; update rXY ;

29 while there is a leaf in XC that has not been assigned to a side do
30 Pick a set Z ∈ PC containing a leaf that has not been 

assigned to a side;
31 Pick a side S ∈ C that has not been assigned any leaves;
32 Assign the leaves from Z to side S;

//Align sides
33 if G is generator 2c from Fig. 2 then
34 Find bijections f : {L2, R2} → {L2, R2} and 

g : {L3, R3} → {L3, R3} maximizing uL1, f (L2) + uL1,g(L3) +
u f (L2),g(L3) + uR1, f (R2) + uR1,g(R3) + u f (R2),g(R3);

35 with uS,T =
∑

x∈XS ,y∈XT

qxy − |X S ||XT |;

36 Assign the leaves assigned to L2, R2, L3, R3 to 
f (L2), f (R2), g(L3), g(R3), respectively;

//Order leaves on arc sides
37 for each arc side S with set X S of assigned leaves do
38 T s

xy = the set of simple trinets in T ′ containing x and y on 
the same side of the underlying generator;

39 axy = the fraction of trinets in T s
xy in which the parent of x is 

an ancestor of y;
40 π = ();
41 while π is not a permutation of X S do
42 Find a leaf x ∈ X S \ π maximizing ∑y∈XS \π axy − ayx and 

append x to π ;

43 Attach the list of leaves π to side S in N ′;
44 return N ′

Proof. We use induction on the number of vertices of N . 
The base case is that N is a tree with 3 leaves and 5 ver-
tices, say X = {x, y, z} and {x, y} is the minimal cut-arc set. 
The algorithm will generate A = {x, y} (see Section 3.2). 
The set T ′ contains only the tree on {x, y} and hence this 
is constructed as N ′ (see Section 3.3.1). The set T ∗ con-
tains only the tree on {a∗, z} and hence N∗ is this tree. 
Combining N ′ and N∗ gives N (Section 3.1).

If N has at least 6 vertices, the algorithm finds a mini-
mal cut-arc set A of N by Section 3.2. If A �= X , let (u, v)

be the corresponding cut-arc of N and let N ′ be the sub-
network of N rooted at v . If A = X , let N ′ = N . In either 
case, the underlying set of T ′ is T (N ′). By Section 3.3, the 
algorithm constructs N ′ (which is either a tree with two 
leaves or a simple network) from T ′ . If A = X then this 
completes the proof. Otherwise, let N∗ be the network ob-
tained from N by deleting all vertices of N ′ except for v
and labelling v by a∗ . The underlying set of T ∗ is T (N∗)
and N∗ contains fewer vertices than N . If N∗ has at least 
three leaves, the algorithm constructs N∗ from T ∗ by in-
duction. If N∗ has two leaves, then T ∗ only contains N∗
and hence the algorithm constructs N∗ (see Section 3.3.1). 
In both cases, combining N ′ and N∗ gives N (see Sec-
tion 3.1). �
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Algorithm 2 can be implemented efficiently to run 
in O (|T | + |X |2) time (similarly to [13] for level-1). The 
main idea here is to first compute φ(x, y), the number of 
trinets containing x and y that have a minimal cut-arc set 
not containing y. This can be done in O (|T | + |X |2) time 
since we need to loop through the set of trinets only once 
and update the values φ(x, y) affected by this trinet T , i.e., 
with x, y ∈ L(T ). Finding a minimal cut-arc set in a trinet 
can be done in constant time as the size of each trinet 
is bounded by a constant (as any trinet that is not recov-
erable can be ignored). After that, the digraph �i can be 
constructed in O (|X |2) time, and this only needs to be 
done for the smallest i for which φ(x, y) ≤ i for at least 
one pair x, y. The condensed digraph can be found with 
Tarjan’s algorithm for computing strongly connected com-
ponents in O (|X |2) time. Since the number of generators, 
and the number of sides of each generator, is bounded 
by a constant, the bottleneck of Algorithm 3 is Line 26. 
The values qxy can be computed in O (|T | + |X |2) time 
and the values rxy in O (|X |3) time. The values rXY can 
be computed in O (|X |2) time by looping through all x, y
and updating the values of rXY with x ∈ X and y ∈ Y . 
This last step has to be repeated O (|X |) times. So Algo-
rithm 3 takes O (|T | + |X |3) time. Computing T ′ and T ∗
can be done in O (|T | + |X |) time since the size of the 
trinets is bounded by a constant. All of this has to be re-
peated O (|X |) times. Hence, the algorithm runs in time 
O (|T ||X | + |X |4).

4. Discussion

We have presented an algorithm that, for an input set 
T of trinets (and possibly binets) with leaf-set X , outputs a 
level-2 network on X with run time O (|T ||X | + |X |4) and 
that is guaranteed to reconstruct a level-2 network from 
its set of trinets. Note that a variant of this algorithm is 
presented in [11]. It should also be noted that our level-
2 algorithm cannot be used to decide whether or not an 
arbitrary set of trinets is contained in some level-2 net-
work or not. Indeed, if a set of level-1 trinets is input into 
the algorithm, then it will output a level-1 network. But 
it is known that deciding whether or not an arbitrary set 
of level-1 trinets is contained in a level-1 network is NP-
complete [7].

In addition, our algorithm can be used to build level-1 
networks for more general inputs than the level-1 TriLoNet 
algorithm described in [13], since TriLoNet’s input is re-
stricted to collections in which there is a trinet on every 
3-subset of the leaf-set. The main innovation in our algo-
rithm lies in Algorithm 3. The high-level idea is to split 
the process up in different stages: determine the level, de-
termine the generator, assign leaves to reticulation sides, 
assign leaves to sets of symmetric arc sides, assign leaves 
to arc sides, align sides and order leaves on arc sides. Most 
of these steps are not necessary for the level-1 case, or are 
much simpler.

In terms of potential applications of our level-2 algo-
rithm, in [13] a method is presented to derive collections 
of level-1 trinets from molecular sequence data; it would 
be interesting to see if this approach could be extended to 
derive level-2 trinets as well. We expect that this could be 
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quite complicated, and so it may be necessary to restrict 
the level-1/level-2 building blocks to some subset of the 
list of potential 3-leaved networks.

In another direction, in this paper we have shown 
that level-3 networks are not necessarily encoded by their 
trinets. However, Fig. 1 is essentially the only case in which 
a level-3 network is not encoded [12], and so it would 
be interesting to investigate if there is a polynomial-time 
algorithm for constructing level-3 networks from trinets 
modulo this symmetry. Alternatively, it can be shown that 
the collection of 4-leaved networks (or quarnets) contained 
in a level-3 network encode the network [12], and so 
new algorithms could be potentially developed to build 
level-3 networks from quarnets. Another interesting open 
question is whether a level-k network is always encoded 
by its (k + 1)-nets. Some partial results are presented 
in [10].
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