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Abstract 

A consequence of our progressively ageing global population is the increasing prevalence of worldwide age-related 
cognitive decline and dementia. In the absence of effective therapeutic interventions, identifying risk factors asso-
ciated with cognitive decline becomes increasingly vital. Novel perspectives suggest that a dynamic bidirectional 
communication system between the gut, its microbiome, and the central nervous system, commonly referred to 
as the microbiota-gut-brain axis, may be a contributing factor for cognitive health and disease. However, the exact 
mechanisms remain undefined. Microbial-derived metabolites produced in the gut can cross the intestinal epithelial 
barrier, enter systemic circulation and trigger physiological responses both directly and indirectly affecting the central 
nervous system and its functions. Dysregulation of this system (i.e., dysbiosis) can modulate cytotoxic metabolite 
production, promote neuroinflammation and negatively impact cognition. In this review, we explore critical con-
nections between microbial-derived metabolites (secondary bile acids, trimethylamine-N-oxide (TMAO), tryptophan 
derivatives and others) and their influence upon cognitive function and neurodegenerative disorders, with a particu-
lar interest in their less-explored role as risk factors of cognitive decline.
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Background
Age is the predominant risk factor for cognitive decline. 
Whilst some decline in cognition is considered an inevi-
table part of healthy ageing, deleterious changes in cog-
nition, including mild cognitive impairment (MCI) and 
age-related dementias (e.g., Alzheimer’s disease, AD), 
are estimated to impact approximately 15% and 11% of 
the population over 65 years respectively [1, 2]. By 2050, 
the global elderly population is expected to increase by 
21% [2], increasing incidences of cognitive decline [3]. 
Cognitive decline exacerbates broad social and eco-
nomic issues, including depression, social withdrawal, 
difficulties performing everyday tasks, drastic reductions 

in quality of life and greater reliance on others (social 
care) [4]. Understanding how to promote healthy ageing 
whilst resisting aberrant changes in cognition is therefore 
becoming a priority.

Addressing modifiable risk factors can delay the onset, 
or even ameliorate cognitive decline [5], whilst assisting 
with the identification of asymptomatic individuals with 
an increased chance of developing the condition in the 
future [6]. Currently, hypertension [7], diabetes mellitus 
[8, 9], arteriosclerosis [10], obesity [11] and hypercholes-
terolemia [12] are the most significant risk factors asso-
ciated with age-related cognitive decline among others 
[13]. Given the connection between cognition and these 
metabolic diseases, it is perhaps unsurprising that dietary 
factors can elicit a substantial influence upon cognitive 
function [14] through the modulation of a microbiota-
gut-brain axis [15]. The microbiota-gut-brain axis is a 
complex communication system bridging the gut, liver 
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and the central nervous system (CNS) that is modulated 
by the microbiome, a collection of  1014 microorganisms 
with an extensive functional gene repertoire [16]. These 
microorganisms predominantly reside in the gut, metab-
olising dietary compounds into a vast range of metabo-
lites. Metabolites can cross the intestinal epithelial 
barrier; a structure connected by tight junction proteins, 
lamina propria and reinforced by mucosal secretions 
[17], primarily via active transport, and enter systemic 
circulation. From here, metabolites can directly initiate 
physiological responses by crossing the blood–brain bar-
rier (BBB) and influencing the CNS [18], or indirectly via 
vagus nerve stimulation (Fig. 1) [19].

The capability of microbial-derived bioactive metab-
olites to influence the CNS provides a novel mecha-
nistic pathway for cognitive decline, warranting its 
further exploration. Within the gastrointestinal (GI) 
tract, microbiota populations are in part reflective of 
their local physiological conditions. The small intes-
tine, due to its proximity with the stomach, contains 
high concentrations of acids, oxygen and antimicrobials, 
thereby restricting bacterial growth to predominantly 

fast-growing anaerobes that can adhere to epithelia or 
mucus [20]. Conversely, colonic regions promote much 
denser bacterial communities, dominated by anaerobes 
such as Prevotellaceae and Lachnospiraceae, that can 
digest complex carbohydrates [21]. Numerous intrinsic 
factors (e.g., genetics, immune response, metabolites) 
and extrinsic factors (e.g., diet, lifestyle) also impact gut 
microbial composition, making it an attractive thera-
peutic intervention target [22]. The composition of these 
microbial communities determines the concentration 
of neurotransmitters or neuromodulators (including 
microbial-derived metabolites) released into circulation. 
Broad deviations in these microbial compositions, often 
referred to as “dysbiosis”, condition distinctly differ-
ent metabolic profiles that may contribute to cognitive 
decline [23, 24]. Gut microbial composition is known to 
be significantly altered in patients with MCI, a transi-
tional stage preceding AD, suggesting microbial changes 
may occur in the early stages of cognitive decline and 
influence its progression [25–29].

Intestinal microbiota possess the capacity to pro-
duce hundreds of metabolites [30, 31], yet the influence 

Fig. 1 Microbial metabolites can directly and indirectly modulate the CNS through immune, neuronal and direct metabolite mediated pathways 
within the microbiota-gut-brain axis. In the gut lumen, dietary products can be metabolised by microbiota into neuroactive compounds, including 
neurotransmitters, (e.g., serotonin, dopamine), amino acids (e.g., tryptophan, tryptamine) and other microbial-derived metabolites (e.g., short-chain 
fatty acids, trimethylamine (TMA)). These compounds subsequently communicate with the central nervous system either directly, travelling 
through the portal vein, liver and crossing the blood–brain barrier, or indirectly via the production of neurotransmitters by enterochromaffin cells 
(ECC) or immune pathways (stimulated immune cells produce cytokines that can enter the blood or stimulate the vagus nerve)
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of these compounds on cognitive health have not been 
uncovered. The present review details the roles of newly 
emerging microbial-derived metabolites that are less-
explored in the current literature in the context of cogni-
tive health and provide an additional in-depth discussion 
of their use as potential indicative factors of cognitive 
decline.

Age‑related cognitive declines
As we age, some of our cognitive abilities decline. Cog-
nitive capabilities such as verbal skills, remain largely 
unaffected by brain ageing and can even improve over 
time [32]. Other essential capabilities, including men-
tal reasoning, memory (in particular episodic, working 
and recognition memory) and processing speed, steadily 
deteriorate with age (See review [33] for further informa-
tion). During ageing, the brain undergoes various struc-
tural and functional changes. The most apparent being a 
gradual shrinkage of the brain, alongside an increase in 
ventricular space and cerebrospinal fluid (CSF) [34, 35]. 
Brain atrophy increases in the elderly in an anterior–pos-
terior gradient, with the most severe consequences tak-
ing place in the prefrontal regions [36, 37]. A reduction in 
white matter (the nerve fibres connecting different brain 
regions) integrity has been linked with normal cognitive 
ageing, impairing the transfer of information between 
cortical regions [38], an essential process for higher cog-
nitive functioning [39].

Structural neuroimaging highlights differing trends in 
the neurobiology of pathological ageing and detrimen-
tal cognitive decline. Here, individuals are more likely 
to experience reductions in gray matter in the dorsolat-
eral and medial prefrontal, parietal, and lateral temporal 
regions [40, 41], alongside a loss of white matter integrity 
in the cingulum, corpus callosum, and superior longitu-
dinal fasciculus [42–44]. This is instead of a decline in the 
frontal regions that typically occurs in healthy ageing.

AD is also associated with volume loss in the medial 
temporal lobe, a brain region highly associated with 
memory functions. Reduction typically starts in the ante-
rolateral entorhinal cortex and advances medially across 
the remaining entorhinal cortex to the hippocampus 
[45, 46], with atrophy occurring at rates of 4.9–8.2%. In 
healthy ageing, atrophy in these regions occurs at a lower 
rate, diverging from pathological ageing, at 0.2–3.8% [46]. 
More recently, using longitudinal MRI and PET data, a 
similar divergence in volume loss has been noted in the 
locus coeruleus [47].

Finally, the default mode network (DMN), a resting-
state network associated with cognitive processes of 
oneself (e.g., autobiographical memory), demonstrates 
connectivity patterns that distinguish healthy ageing 
from AD. Results from a task free-fMRI suggest AD 

patients have an accelerated ageing pattern of connec-
tivity [48] and decreased resting-state activity in the 
posterior cingulate and hippocampus when compared 
with age-matched controls [49]. However, the biological 
mechanisms behind the heterogeneity of age-related cog-
nitive decline are complex and not well understood.

The microbiota‑gut‑brain axis in the context 
of ageing and cognitive decline
The human gut microbiome represents a complex com-
munity of microbes that live in a mutualistic relationship 
with their host. Initially, these microorganisms were con-
sidered to be solely responsible for intestinal processes 
(fermentation of carbohydrates, synthesis of vitamins 
and xenobiotic metabolism) [50]. However, over the last 
15 years, this notion has been revised, owing to increas-
ing evidence of a bidirectional communication system 
between the CNS and the GI tract, more commonly 
referred to as the ‘gut-brain axis’.

The gut-brain axis encompasses the CNS, the auto-
nomic and enteric nervous system, and peripheral nerves 
and is vital for maintaining homeostasis. Signals from the 
brain control the secretory and sensory function of the 
gut, whilst the brain and gut communicate via physiolog-
ical channels including the neuroendocrine, autonomic 
nervous system, neuroimmune pathways and molecules 
synthesised from gut microbes [51]. Since the gut micro-
biota is integral to the modulation of this communication 
at different levels (from the gut lumen to the CNS) and 
chronologically as we age, many have broadened the term 
to ‘microbiota-gut-brain axis’ [52]. Indeed, the existence 
of the microbiota-gut-brain axis is supported by sub-
stantial preclinical and human evidence, highlighting 
its effect on different cognitive domains. Firstly, germ-
free (GF) mice show that the brain is markedly affected 
by the absence of microbiota, exhibiting deficiencies in 
learning, memory recognition and emotional behaviours 
[53–56]. These behavioural changes were accompanied 
by altered brain-derived neurotrophic factor (BDNF) 
expression in the hippocampus [54, 57, 58], a molecule 
inherently linked with synaptic plasticity and cognitive 
function [59–61], and significant microbiota-associated 
changes in the quantity of dopamine and activation of 
serotonin synthesis pathways [62–65], suggesting an 
important role of microbiota in memory, brain health 
and behaviour. Secondly, chronic antibiotic depletion of 
microbiota populations alters tryptophan metabolism 
and the expression of key cognitive signalling molecules 
in the brain such as BDNF, N-methyl-d-aspartate recep-
tor subunit 2B (NR2B), serotonin transporter, neuropep-
tide Y system, oxytocin and vasopressin [66, 67]. These 
changes are associated with long-lasting effects on cogni-
tion and increases in anxiety-related behaviours [66, 68]. 
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Finally, administering specific prebiotics/probiotics mod-
ulates behaviour in both rodents and humans, including 
changes in depression, anxiety and stress [57, 69–73], 
alongside changes in immune markers, hippocampal syn-
aptic efficacy and tryptophan metabolism [74, 75].

As we age, microbiota composition and function 
changes [76]. In humans, this has been associated with 
a decrease in species diversity, a reduction in Clostridi-
ales and Bifidobacterium and a rise in Proteobacteria and 
pathobionts such as Enterobacteriaceae [76, 77]. How-
ever, abnormal alterations in intestinal microbiota com-
position, as seen in early cognitive decline and AD [25, 
78], are associated with local and systemic inflammation, 
and dysregulation of the microbiota-gut-brain axis [79]. 
Advances in sequencing technologies have enabled us 
to investigate the association between cognitive decline 
and gut dysbiosis at the phylum level. These studies have 
highlighted differences in taxonomic levels of Bacte-
roides, Firmicutes, Actinobacteria, Ruminococcus, Lach-
nospiraceae, and Selenomonadales between AD patients 
in comparison to controls [25, 78, 80–82].Such dysregu-
lation has been associated with an increase in inflamma-
tory markers, cytokines and the permeability of the gut 
epithelial barrier (‘leaky gut’), resulting in excessive leak-
age of bioactivate molecules, such as short-chain fatty 
acids (SCFAs), kynurenines, melatonin, histamine, bile 
acids, and neurotransmitters, into the blood. The result-
ing increase in neuroactive products can no longer effi-
ciently be removed by the body’s next barrier; the liver, 
and therefore can cause a variety of physiological changes 
directly and indirectly affecting the CNS, including fur-
ther decrease in BBB function. In the elderly popula-
tion, this dysregulation becomes particularly relevant, 
as the BBB becomes more permeable with age [83]. A 
more permeable BBB allows an increased influx of harm-
ful blood components, including microbial metabolites, 
into the brain; a feature seen in AD patients (reviewed 
by [84]). This process promotes neuroinflammation and 
macrophage dysfunction, leading to neural injury and 
ultimately a reduction in cognitive function [85, 86].

As previously outlined, the gut can also influence the 
brain indirectly through the vagus nerve activation. The 
vagus nerve consists of 80% afferent and 20% efferent 
fibres [87]. Afferent fibres connect to all four layers of the 
digestive tract, but do not cross the epithelial layer and 
therefore are not in direct contact with gut microbiota. 
As a result, the microbiota activates these fibres indi-
rectly via the release of metabolites or bacterial products. 
Enteroendocrine cells (ECCs) make up approximately 1% 
of intestinal epithelial cells and can detect signals from 
the microbiota through toll-like receptors (TLR), capa-
ble of identifying bacterial compound such as lipopoly-
saccharides (LPS) [88], or through receptors activated 

by microbiota-derived metabolites such as SCFAs [89]. 
ECCs can subsequently interact with vagal afferent fibres 
through the release of serotonin or gut hormones [90, 
91]. This indirect signalling between the gut microbiota 
and the brain via the vagus nerve can modulate certain 
cognitive functions. For example, rodents fed with the 
probiotic L. rhamnosus for 28 days had a decrease in anx-
iety-related behaviour, whilst inducing region-depend-
ent alterations in γ-aminobutyric acid (GABA) receptor 
[92]. Importantly, this result only occurred with an intact 
vagus nerve, as mice undergoing a vagotomy did not 
display these behavioural and neurochemical changes. 
Similarly, in a colitis model, the normalisation of anxiety-
like behaviours by the probiotic Bifidobacterium longum 
NCC3001 was found to be vagally dependent [93]. How-
ever, the total effects of the microbiome are not solely 
dependent on the vagus nerve stimulation, as mice orally 
receiving a mixed antimicrobial treatment had altered 
exploratory behaviour and hippocampal BDNF, indepen-
dently of vagal integrity [94]. Together, these data empha-
sise that while the vagus nerve provides a crucial bridge 
allowing communication between the gut, its microbi-
ome and brain, there are also other essential routes of 
communication comprising the microbiota-gut-brain 
axis, indicating its complex connectivity.

The microbiota‑gut‑liver‑brain axis
The relationship between the gut, liver and brain has 
increasingly been highlighted in recent years due to a 
high prevalence of liver disease, which is commonly 
accompanied by clear and global cognitive impair-
ment (hepatic encephalopathy) [95, 96]. The gut and 
liver are linked by the portal vein, biliary tract and sys-
temic circulation, allowing microbial and host-derived 
metabolites to influence liver function. Conversely, the 
liver acts as a vital barrier, removing potentially harm-
ful compounds from the blood using a range of hepatic 
immune cells, including Kupffer cells, hepatic stellate 
cells and natural killer cells [97], modulating the con-
centration of metabolites directly and indirectly influ-
encing the CNS. The liver also controls unrestricted 
bacterial growth in the gut, maintaining gut eubiosis, 
through the transport of bile salts through the biliary 
tract into the intestinal lumen leading to the secretion 
of antimicrobial compounds [98, 99]. For example, bile 
acids can bind to the FXR receptor in enterocytes, ini-
tiating the production of antimicrobial peptides such 
as angiogenin 1 and RNAse family member 4, which 
can inhibit bacterial overgrowth in the gut and intes-
tinal barrier dysfunction [100]. Gut dysbiosis causes 
an imbalance of microbial and host-derived products, 
reducing the epithelial barrier function and caus-
ing increased leakage in the system. Long-term, this 
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process can initiate metabolic disorders in the liver, 
promoting liver damage (reviewed by [101]). As such, 
liver damage has been found to correlate with the 
severity of gut dysbiosis [102]. Since a diseased liver 
cannot effectively remove harmful products from the 
blood or inhibit the overgrowth of bacteria [103–105], 
this process can accelerate microbiota-gut-brain axis 
dysregulation and ultimately cognitive decline. Thus, 
when considering the occurrence of cognitive decline 
associated with microbial-derived metabolites, the role 
and function of the liver cannot be ignored.

Microbial‑derived metabolites and cognitive 
decline
Bile acids
Humans produce large, hydrophilic pools of primary bile 
acids (BA) from cholesterol in the liver that are secreted 
into bile (Fig. 2). BAs are largely synthesised via two bio-
synthetic pathways: the classical pathway and the alter-
native pathway [106]. The classic pathway produces 
the majority of BAs in humans (~ 90%) and is initiated 
by the cholesterol 7α-hydroxylase (CYP7A1) enzyme 
to synthesise the primary BAs cholic acid (CA) and 

Fig. 2 Bile acids, TMAO and tryptophan metabolic pathways and their links to the brain. Primary bile acids are produced from cholesterol 
breakdown in the liver. They can be conjugated with taurine or glycine residues before travelling to the gut, where they are deconjugated and 
converted to secondary bile acids via microbial action. Bile acids have been found in the brain of humans and rodents suggesting they can cross 
the blood–brain barrier via either diffusion (unconjugated) or active transport (conjugated) and influence the central nervous system. TMAO is 
produced via a two-stage process. TMA is first formed from the microbial conversion of choline in the gut. TMA then travels to the liver, where the 
FMO1/3 enzyme converts it to TMAO. Recent evidence found TMAO in human brains, indicating it can cross the blood–brain barrier. Tryptophan 
can be metabolised via three key pathways. Firstly, via gut microbial action, tryptophan can be converted via the indole pathway into numerous 
indole derivatives, or into the amino acid, tryptamine. Indoles and tryptamine are known to cross the BBB. Secondly, around 3% of dietary 
tryptophan is metabolised into serotonin and melatonin via numerous enzymes in the serotonin pathway. Notably, serotonin produced in the 
gut cannot cross the blood–brain barrier. However, the serotonin precursor, 5-hydroxytryptophan, and serotonin derivatives, N-acetylserotonin 
and melatonin, can cross the blood–brain barrier and influence the central nervous system. Finally, the majority of tryptophan (~ 90–95%) is 
metabolised via the kynurenine pathway, of which 90% occurs in the liver. This pathway is initiated by the TDO enzyme in the liver and the IDO 
enzyme in the brain. Only kynurenine, 3-hydroxykynurenine and tryptophan itself can cross the blood–brain barrier. However, once in the brain, 
tryptophan can be metabolised via both the kynurenine and serotonin pathways to form the pathway’s intermediates
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chenodeoxycholic acid (CDCA) [107]. The alternative 
pathway contributes less than 10% of BA synthesis (with 
more minor pathways contributing the remainder) and is 
initiated by sterol 27-hydroxylase (CYP27A1) [108]. After 
synthesis in the liver, CA and CDCA can be conjugated 
with hydrophilic taurine or glycine residues before they 
are secreted from hepatocytes into the bile canaliculi. 
They are stored in the gallbladder ready to be distrib-
uted into the small intestine following a meal to expe-
dite digestion and emulsify dietary lipids and fat-soluble 
vitamins. Once secreted into the small intestine, more 
hydrophobic secondary BAs are formed by gut bacteria 
and are subsequently excreted or reabsorbed in the ileum 
to enter the enterohepatic circulation and recycle back 
to the liver [109]. This efficient process ensures BAs are 
recycled between 4 to 12 times a day [106].

In the brain, cholesterol can be metabolised by a final 
pathway known as the neural cholesterol pathway. As 
the brain is one of the more sensitive organs to hyper-
cholesterolemia, this cholesterol breakdown is essential 
to maintaining brain health [110]. Excess cholesterol 
becomes oxidised into 24- and 25-hydroxycholesterol 
by cholesterol 24-hydroxylase (CYP46A1), an enzyme 
primarily expressed in the brain [111]. Once 24(S)-
hydroxycholesterol is formed, it can pass through the 
BBB and enter circulation. From here, 24(S)-hydroxy-
cholesterol travels back to the liver to be metabolised by 
CYP39A1 and continue in BA synthesis [111]. In mice 
with mutated CYP46A1 function, 24(S)-hydroxycholes-
terol is not formed and is associated with impairments 
in spatial, associative and motor learning, highlighting 
the importance of this pathway for maintaining cogni-
tive function [112].

BAs in the brain
Over 20 conjugated and unconjugated BAs and their 
receptors have been reported in both human and rodent 
brains [110, 113–115], suggesting BAs can not only cross 
the BBB but also bind to nuclear receptors and initiate 
physiological responses [115, 116]. However, the mech-
anism by which BAs cross the BBB is still uncertain. 
Unconjugated BAs may diffuse across the BBB as CA, 
CDCA and deoxycholic acid (DCA) are known to diffuse 
across phospholipid bilayers [117] and concentrations in 
the brain correlate with serum levels [113]. On the other 
hand, conjugated bile salts must cross the BBB via active 
transport due to their hydrophilic anionic structure at 
physiological pH [118, 119]. Indeed, members of the sol-
ute carrier (SLC) family, such as the organic anion trans-
porting polypeptides (OATP1A4 and 1C1) [120] and the 
apical sodium-dependent bile acid transporter (ASBT 
or SLC10A2) [121], and members of the ATP-binding 
cassette transporters (ABC) family such as ABCC2 and 

ABCC4 [122, 123] have been identified in the brain. 
Conversely, Baloni and colleagues through a large-scale 
transcriptomics analysis of 2,114 post-mortem brains 
identified only three BA transporters (ABCC1, ABCC4 
and SLC51A/SLC51B) in the brain [110]. The primary 
role of these transporters is to reduce the concentration 
of cytotoxic molecules by transporting them into the 
bloodstream [124]. Yet, since these transporters occur 
on both the basolateral (blood-facing) and apical (brain-
facing) side [125], they may also transport molecules into 
the CNS from systemic circulation, indicating a potential 
endogenous signalling role of BAs in the brain. However, 
there is still a lack of direct evidence of in vivo transport 
of BA over the BBB [125].

BAs and cognitive function
While BA function in the GI tract is well-characterised, 
significantly fewer studies investigate their effect in the 
brain, limiting our knowledge [111]. Accumulating evi-
dence suggests that cognition can be influenced by the 
dysregulation of BA synthesis and metabolism. Indeed, 
BAs profiles are reportedly altered in cases of MCI and 
AD, with an increase in cytotoxic secondary BAs and 
a decrease in primary BAs, suggesting a role of the gut 
microbiome in the disease progression [126]. Specifi-
cally, increased serum concentrations of the secondary 
BA DCA have been observed in AD patients. DCA has 
been previously linked with the presence of cognitive 
symptoms [127] and can modulate mitochondrial path-
ways causing apoptosis in a variety of tissues and cell 
types [128]. BA dysbiosis, resulting from either liver or 
microbiota dysfunction, has been subsequently linked to 
changes in gut permeability, possibly through FXR and 
TGR5 receptor signalling, and inflammation, promoting 
further bacterial dysbiosis in the gut [129]. Inflamma-
tion is also a known trigger of microglial activation and 
reduced neuroplasticity [130], possibly through the pro-
duction of reactive oxygen species [131], highly reactive 
chemical molecules that have been previously linked with 
cognitive decline and AD [132, 133]. Although, some 
have proposed an important physiological role of ROS in 
brain metabolic signalling [134].

Alternatively, some BAs have been reported to have 
neuroprotective effects in the brain (for summary see 
Table 1). The primary BA CA has been identified as an 
LXR ligand, which in turn promoted midbrain neural 
development and neurogenesis in zebrafish [135]. Tauro-
ursodeoxycholic acid (TUDCA), a secondary conjugated 
BA, can suppress amyloid- β (Aβ) -induced apoptosis in 
neuronal cell cultures and rodent neurons through the 
inhibition of the E2F-1/p53/BAX pathway [136, 137]. 
Similarly, in APP/PS1 double-transgenic mice, provid-
ing a TUDCA enriched diet for 6  months reduced Aβ 
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aggregates, neuronal apoptosis, memory deficits and 
phosphorylation of TAU [138–140]. TUDCA has also 
been shown to induce anti-inflammatory effects in a 
mouse model of acute neuroinflammation through 
its binding and activation of G protein‐coupled bile 
acid receptor 1/Takeda G protein‐coupled receptor 
5 (GPBAR1/TGR5), a receptor expressed on micro-
glia [141]. Finally, in adult rats, TUDCA also enhanced 

neural stem cell proliferation and early neurogenesis 
[142], processes that are significantly diminished in 
AD (reviewed by [143]), with some research suggest-
ing increasing neurogenesis may counteract AD path-
ological outcomes. Together these findings provide 
convincing evidence that cognition can be influenced by 
BAs. Yet further research is required to determine the 
involvement of specific BA transporters and receptors, 

Table 1 Bile acids and their impact on cognition and dementia

Bile Acid In Vitro/ In Vivo 
(species)

Model Findings Reference

CA (Primary Bile Acid) In Vivo (Male Sprague-
Drawly rats)

Ibotenic Acid-Induced
Dementia Model

A combination of administering baicalin, 
jasminoidin and cholic acid improved cogni-
tive performance through the promotion 
of pathways related to neuroprotection and 
neurogenesis

[144]

In Vivo (Zebrafish) Zebrafish embryos exposed to a cholic acid-
treated medium

Cholic acid was identified as a new Lxr 
ligand, which in turn promoted neural 
development and neurogenesis in the 
midbrain of zebrafish

[137]

CDCA (Primary Bile Acid) In Vivo (Adult male Wistar 
rats)

AlCl3 induced AD CDCA treatment reduces neurotoxicity 
and cognitive decline via increased insulin 
signalling

[145]

In Vitro Primary dissociated cultures of the posterior 
hypothalamus

CDCA is an antagonist for NMDA and  GABAA 
receptors and can significantly reduce 
neuronal firing

[146]

TCA (Primary Conjugated Bile 
Acid)

In Vivo (human) Human brain tissue with AD pathology vs 
age-matched healthy controls

TCA was significantly lower (p = 0.01) in AD 
patients than in age-matched controls

[117]

DCA (Secondary Bile Acid) In Vitro BCS-TC2 human colon adenocarcinoma cells DCA modulates mitochondrial pathways 
causing apoptosis

[130]

In Vivo (human) Serum samples from AD patients, amnesic 
MCI patients and healthy controls

DCA was increased in amnesic MCI and AD 
in comparison to healthy controls and corre-
lated with cognitive symptoms

[129]

LCA (Secondary Bile Acid) In Vivo (human) Plasma samples from patients with AD, MCI 
and healthy controls

LCA was significantly higher in AD patients 
(p = 0.004) compared to healthy controls

[147]

UDCA (Secondary Bile Acid) In Vitro BV-2 microglial cell line UDCA can initiate an anti-inflammatory 
effect by inhibiting NF-κB activation

[148]

TUDCA (Secondary Conjugated 
Bile Acid)

In Vitro Neuron cell cultures and primary rat 
neurons

Inhibition of the E2F-1/p53/Bax pathway, 
leading to suppression of Aβ-induced 
apoptosis

[138]

In Vitro Primary cultures of rat cortical and hip-
pocampal neurons

Reduction in synaptic deficits induced by 
Aβ through inhibiting the downregulation 
of postsynaptic density protein-95, leading 
to a reduction in neuronal death

[149]

In Vivo (mouse) AD model: APP/PS1 double transgenic mice Dietary TUDCA provided for 6 months 
decreased Aβ aggregation and enhanced 
memory retention

[141]

In Vivo (mouse) AD model: APP/PS1 double transgenic mice Dietary TUDCA provided for 6 months 
decreased hippocampal and prefrontal 
amyloid deposition and inhibited spatial, 
recognition and contextual memory 
deficiencies

[150]

In Vivo (mouse) AD model: APP/PS1 double transgenic mice Intraperitoneal injections of TUDCA 
decreased Aβ deposition, glycogen syn-
thase kinase 3β activity, phosphorylation of 
τ, and neuroinflammation

[142]

In Vitro Aβ-treated primary rat cortical neurons TUDCA prevented Aβ induced cytochrome 
c release and neuronal death through the 
PI3K signalling pathway

[151]

In Vitro Aβ-treated primary rat cortical neurons TUDCA reduced Aβ induced apoptosis 
through the binding to mineralocorticoid 
receptors

[140]
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as well as the subsequent mechanisms in their neuropro-
tective and detrimental effects.

BA as a risk factor of cognitive decline
The association between BAs and cognitive decline, in 
particular with known AD pathologies [152], has raised 
speculations that BA profiles could be used as a risk 
factor of cognitive decline. Currently, there is limited 
research into the topic. However, Olazarάn and col-
leagues investigated a large cohort of patients with MCI 
and AD and identified DCA as being independently asso-
ciated with the presence of cognitive symptoms [127]. 
Mapstone et  al. identified seven blood-based markers 
which included glycoursodeoxycholic acid (GUDCA) 
and could predict the onset of AD or amnestic MCI 
with 2–3 years with an accuracy of over 90% [153]. Simi-
larly, Marksteiner and colleagues were able to differenti-
ate between healthy controls and AD patients from the 
concentration of lithocholic acid (LCA) in plasma [154]. 
However, it should be noted this study utilised a relatively 
small sample size (n = 80) and did not control for the 
effects of varied diets between individuals, warranting 
further investigation into the use of BAs as risk factors of 
cognitive decline.

TMAO
Trimethylamine N-oxide (TMAO) is a microbial-
dependent metabolite generated by the breakdown of 
dietary fish, meat and fat [147, 155]. Trimethylamine 
(TMA), the precursor to TMAO, is produced from the 
metabolism of choline, L-carnitine and phosphatidyl-
choline by anaerobic microbes in the gut, predominantly 
located in the small intestine (Fig.  2) [144, 145]. TMA 
subsequently travels through the portal vein to the liver 
where it is oxidised by flavin-containing monooxygenase 
1 and 3 (FMO1 and FMO3) to form TMAO [146]. Once 
formed, TMAO can enter the systemic circulation, hence 
TMAO plasma levels (typically 3 μmol/L in healthy indi-
viduals [148]) have been found to correlate with the gut 
microbial composition [149].

TMAO and the brain
In vivo studies have identified TMAO in the CSF of both 
mice and humans, implying that circulating TMAO can 
influence the CNS [147, 150]. The high concentrations of 
TMAO detected in the human CSF suggests liver-derived 
TMAO can cross the BBB, however, the penetration 
mechanism is unclear [151]. It is also possible a por-
tion of TMAO found in the brain may be synthesised de 
novo, as FMO3, the enzyme required to convert TMA to 
TMAO, has been detected in the adult brain [156].

TMAO and cognitive decline
Over the last decade, TMAO has received increased 
attention in medical studies due to its links with cardio-
vascular diseases [157], obesity, diabetes [158], chronic 
kidney disease [159], metabolic syndrome [160], brain 
ageing and cognitive impairment [161] and neurodegen-
erative disorders such as AD [147]. However, the influ-
ence of TMAO on cognition is unclear. In fact, there is 
much controversy as to whether TMAO promotes a posi-
tive or detrimental effect on the brain.

Both experimental [161–163] and clinical [164–166] 
studies suggest high levels of TMAO may be causally 
linked to cognitive decline. Vogt and colleagues dis-
covered an increase in CSF TMAO in AD patients in 
comparison to controls, suggesting the metabolite may 
contribute to decreasing neurological function [147]. 
However, a recent Mendelian randomisation study dis-
putes this relationship [167].

The mechanisms by which TMAO may contribute 
to cognitive decline remain broad and unclear. TMAO 
reportedly modulates lipid and hormonal homeosta-
sis [147], encourages platelet hyperreactivity via the 
enhancement of stimulus-dependent release of cal-
cium ions [168], modifies cholesterol and sterol break-
down, reduces reverse cholesterol transport [169], and 
increases endothelial dysfunction through the induction 
of the NLRP3 inflammasome [170]. Rodents fed supra-
physiological doses of TMAO also suggest the metabo-
lite promotes neuronal senescence, oxidative stress, 
mitochondrial dysfunction and prevents mTOR signal-
ling [161]. Furthermore, TMAO is known to upregu-
late macrophage scavenger receptors and induce CD68 
expression [169, 171], a marker known to correlate with 
cognitive impairment in rodents [172].

High circulating TMAO may also promote neuroin-
flammation, a recognised mediator of cognitive age-
ing and neurological function [173, 174], by increasing 
brain NF-κB and proinflammatory cytokines, thereby 
promoting proinflammatory signalling pathways [164]. 
Brunt and colleagues suggested that elevated TMAO in 
plasma and the brain can stimulate astrocytes, neuro-
inflammation and reduce cognitive function, especially 
in the subdomain of memory [164]. High circulat-
ing concentrations of TMAO also downregulated the 
antioxidant enzyme methionine sulfoxide reductase A 
in the hippocampus of aged rats with induced cogni-
tive impairment by sevoflurane exposure [175]. This 
downregulation is suggested to sensitise the hippocam-
pus to oxidative stress, promoting microglial medi-
ated neuroinflammation and cognitive impairment. 
Collectively, studies indicate a detrimental effect of 
TMAO when modulated above physiologically relevant 
concentrations.
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In line with this, reducing TMAO has been shown to 
alleviate cognitive impairment. 3,3-Dimethyl-1-butanol, 
an inhibitor of microbial TMA formation, reduced cog-
nitive decline, long term potentiation and pathological 
deterioration in AD transgenic mice [162]. Similarly, the 
probiotic L. Plantarum decreased circulating TMAO lev-
els, alleviating cognitive impairments and pathological 
deterioration, exhibiting the potential modulation of the 
gut microbiome for therapeutic benefit [176].

In contrast to the substantial evidence supporting a 
detrimental effect of TMAO upon the brain, several stud-
ies suggest TMAO may exert a neuroprotective effect 
when within normal physiological ranges (plasma lev-
els ~ 0.5–5  µM). Hoyles and colleagues, using a mixed 
in vitro endothelial cell culture and in vivo rodent model 
approach, discovered that TMAO can enhance and 
protect BBB integrity through modulation of the actin 
cytoskeleton and tight junctions [177]. Here, adminis-
tering TMAO reduced paracellular permeability, likely 
due to an increase in annexin A1 expression. TMAO, 
therefore, may promote BBB function and help protect 
the brain from an influx of cytotoxic molecules. Interest-
ingly, TMA, the precursor to TMAO, was found to have 
a deleterious effect on endothelial barrier integrity in 
rodents, inducing actin stress fibre formation and leading 
to increased presence in the CNS [178].

TMAO is a naturally occurring osmolyte and as such 
has been found to stimulate TAU-induced tubulin assem-
bly in  vitro [179]. TMAO, therefore, can promote and 
enhance microtubule assembly in hyperphosphorylated 
and most mutant TAU proteins, decreasing microtubule 
disassembly and neuronal death; two hallmark features of 
AD [180]. TMAO overcomes functional deficits caused 
by phosphorylation by lowering the critical concentra-
tion of tubulin required for assembly [181], with assem-
bly occurring at a faster rate than wild-type TAU [180]. 
Therefore, as an osmolyte, and with its ability to favoura-
bly hydrate partially denatured proteins, TMAO has been 
suggested as a potential therapeutic approach in AD and 
other protein misfolding conditions [182].

Collectively, it seems plausible that TMAO affects the 
brain in a dose-dependent manner, as within a physio-
logically relevant range, TMAO possess neuroprotective 
potential. However, interpreting the relationship between 
systemic TMAO and cognition is further complicated by 
studies indicating wide inter and intra-individual vari-
ations in circulating TMAO levels [183]. TMAO con-
centrations vary with age [184], diet [169] and cholic 
acid levels (a BA known to induce FMO3 expression via 
FXR activation [185]); factors often not accounted for in 
association studies. In fact, plasma TMAO concentra-
tions have been found to mirror an individual’s intake of 
whole grain, fish and vegetables [186]. TMAO levels are 

also influenced by renal clearance, as glomerular filtra-
tion rate is inversely related to plasma TMAO concentra-
tions [159]. As a result, changes in plasma TMAO may be 
a consequence of an accumulation of factors unrelated to 
cognitive decline [187].

TMAO as a risk factor of cognitive decline
Due to TMAO’s high association with atherosclerosis 
and cardiovascular disease, TMAO has been consid-
ered a risk factor of vascular dementia [188]. However, 
a data-driven, hypothesis-free computational analysis 
into microbial metabolites and AD identified TMAO as 
one of the top potential biomarkers of neurodegenera-
tion, successfully predicting changes in memory and fluid 
cognition in ageing individuals [189]. These results show 
promising potential for use of TMAO as a risk factor of 
cognitive decline. However, the current contrasting evi-
dence surrounding the relationship necessitates further 
in vivo investigation.

Amino acid‑microbiota‑derived metabolites
Tryptophan
Tryptophan is an essential aromatic amino acid that can-
not be synthesised by animal cells [190]. Humans, there-
fore, need to attain tryptophan through dietary sources 
such as fish, milk and chicken or, if vegetarian, seeds, soy-
beans and peas [191, 192]. Tryptophan is a biosynthetic 
precursor to numerous microbial and host metabolites, 
making it essential to human health [190]. Approxi-
mately 4–6% of tryptophan reaches the colon where gut 
microbiota metabolise it into a wide variety of molecules 
(Fig. 2), thereby limiting the availability of tryptophan for 
the host [193]. Evidence for the involvement of microbi-
ota in tryptophan metabolism comes from GF mice, who 
display increased plasma tryptophan levels which are 
normalised after conventionalisation [62, 194].

Previous experimental reports implicate tryptophan 
and its derivatives in modulating human health and neu-
rological function [195]. Gut microbiota can directly and 
indirectly modulate two major tryptophan metabolism 
pathways, the serotonin pathway and the kynurenine 
pathway (KP), affecting the concentration of various 
cognitively relevant metabolites and neurotransmitters 
[196–198]. Conversely, the two pathways can negatively 
influence microbial proliferation and diversity [199]. Gut 
microbiota can also directly metabolise tryptophan into 
indole and its derivatives [200], which has also been asso-
ciated with cognitive function [191].

The kynurenine pathway and cognitive decline
Around 90–95% of dietary tryptophan is metabolised 
by the KP, mainly taking place in the liver, forming the 
intermediates kynurenic acid, quinolinic acid, picolinic 
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acid, 3-hydroxykynurenine (3-HK) and nicotinamide 
adenine dinucleotide, known as kynurenines [201]. Only 
tryptophan, 3-HK and kynurenine are known to read-
ily cross the BBB. However, fluctuations in the systemic 
concentrations of these metabolites directly impacts 
KP metabolism in the CNS, including the synthesis of 
kynurenic acid and quinolinic acid in the brain [202]. 
Quinolinic acid, an endogenous neurotoxin, is known 
to activate N-methyl-D-aspartate (NMDA) receptors, 
increase neuronal activity, elevate intracellular calcium 
concentrations and modulate BBB integrity [203]. Qui-
nolinic acid can also increase neuronal glutamate release 
whilst inhibiting its reuptake by astrocytes and inhibit-
ing glutamate synthetase synthase (an enzyme playing a 
crucial role in the glutamate metabolism in astrocytes) to 
produce a cytotoxic response [204, 205]. Kynurenic acid, 
on the other hand, plays a neuroprotective role against 
quinolinic acid’s toxicity, acting as an antagonist on both 
glycine and glutamate modulatory sites of NMDA recep-
tors at high and low concentrations respectively [198]. 
However, the abnormal build-up of kynurenic acid can 
induce glutamatergic hypofunction, possibly disturbing 
cognitive functioning [205].

Accumulating evidence implicates the KP in AD pro-
gression and inflammatory responses [206]. Increased 
plasma concentrations of the cytotoxic quinolinic acid 
(from 192 to 334  nM) and reduced concentrations of 
tryptophan (from 29.83  mM to 22.09  mM) and neuro-
protective kynurenic acid (from 30.94 nM to 20.85 nM) 
has been associated with AD patients in comparison to 
healthy controls [207]. Unbalanced upregulation of the 
KP may trigger a degree of injury to the surrounding tis-
sues, playing a role in neurodegeneration [208]. Previous 
studies have found an inverse relationship between KP 
activation and cognitive performance [209].

In a cognitively healthy population, increased inflam-
matory markers are related to poor cognitive perfor-
mance [210]. In AD, indoleamine 2, 3-dioxygenase 
(IDO), the enzyme responsible for catabolising tryp-
tophan into products that enter the KP, is stimulated 
through proinflammatory cytokine activity, including 
interferon-gamma (IFN-γ) [211], interleukin-12 (IL-
12), interleukin-18 (IL-18) [212], and the Aβ 1–42 frag-
ment [213]. Complex neuroinflammation in the CNS is 
linked with AD development. Microglia and astrocytes, 
which contain all of the enzymes necessary for the KP, 
are the primary effectors of neuroinflammation in AD 
[214]. The edge of senile plaques in the hippocampus of 
post-mortem AD brain tissue has the greatest amounts 
of IDO and quinolinic acid expressed by microglia and 
astrocytes [215]. Activated microglia are the main source 
of quinolinic acid throughout neuroinflammation [216]. 

Quinolinic acid produces hyperphosphorylation of TAU 
in human cortical neurones, cytotoxicity in astrocytes 
and neurons, astrocytic activation and astrogliosis [208, 
217]. Together, these studies strongly suggest the involve-
ment of IDO and KP metabolism in neuroinflammation 
and cognitive impairment.

Accordingly, the KP is a well-rationalised therapeutic 
target for improving cognition. Several proof-of-concept 
studies using known KP pathway modulators, such as the 
kynurenine monooxygenase (KMO) inhibitor JM6, pre-
vents spatial memory deficits, anxiety-related behaviours, 
and synaptic loss in APP Tg mice [218]. In addition, the 
IDO-1 inhibitor, coptisine, decreases the activation of 
microglia and astrocytes in APP/PS1 mice, preventing 
neuronal loss and improving cognitive function [208]. 
However, the specific relationship between tryptophan 
depletion or supplementation and the modulation of KP 
intermediates remains unclear [219–221].

Serotonin pathway and cognitive decline
Approximately 3% of dietary tryptophan is required to 
produce serotonin (5-hydroxytryptamine (5-HT)) and 
melatonin [193]. 5-HT is primarily found in the GI tract, 
blood platelets and the CNS and is synthesised via a two-
stage enzymatic reaction involving tryptophan hydroxy-
lase and aromatic amino acid decarboxylase. Serotonin 
synthesised in the GI tract cannot cross over the BBB 
under healthy conditions [222]. Tryptophan, on the 
other hand, can enter the CNS via carrier proteins [223]. 
Therefore, the gut microbiota importantly regulates tryp-
tophan availability for serotonin synthesis in the CNS.

Enzymes such as tryptophan hydroxylase and IDO 
balance the ratio of tryptophan metabolism via the KP 
and serotonin pathways [224]. A shift in tryptophan 
metabolism to the KP decreases the availability of tryp-
tophan in the serotonin pathway, consequently reducing 
serotonin availability for the host [225]. Serotonin plays a 
vital role in behaviours requiring high cognitive demand 
[196]. Reductions in serotonin, therefore, are frequently 
linked with declines in learning, memory consolidation 
[226] and long-term memory [227]. As such, serotonin 
is associated with neurological disorders such as depres-
sion [228] and AD [229], resulting in treatment options 
such as selective serotonin reuptake inhibitors (SSRI) to 
increase 5-HT neurotransmission and improve mood 
in the context of depression. In rodents, administering 
tryptophan orally, thereby increasing 5-HT neurotrans-
mission, was found to improve memory acquisition, 
consolidation and storage [230], whilst daily tryptophan 
injections improved spatial memory [231]. Together, 
this evidence strongly suggests a link between cognitive 
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decline and tryptophan through changes in tryptophan 
metabolism.

Other tryptophan metabolites
Numerous studies have identified abnormal tryptophan 
metabolism in patients with cognitive decline [71, 191, 
232]. Although most studies link this association with the 
KP and its intermediates, other tryptophan metabolites, 
such as indole and its derivatives, may play a role. Bac-
terial tryptophan catabolites tryptamine, skatole, indole, 
indole-3- acetic acid (IAA), indole-3- acrylic acid (IA), 
indole-3-aldehyde (IAld), indole propionic acid (IPA), 
indoxyl-3-sulfate (I3S) and indole-3-lactic acid (ILA) are 
ligands of the aryl hydrocarbon receptor (AhR) [233–
238]. AhR is a transcription factor widely expressed by 
cells in the immune system and known to play a role in 
inflammation, a factor highly associated with ageing and 
cognitive decline [239]. Antibiotic-treated mice adminis-
tered with indole, I3S, IPA and IAld were found to have 
reduced CNS inflammation via AhR activation in astro-
cytes [240]. Wei and colleagues discovered activation of 
the AhR by indole could promote neurogenesis in the 
adult mouse hippocampus [241]. Interestingly, this result 
was found to be ligand specific as kynurenine, another 
known AhR ligand, failed to replicate these findings.

Both in vitro and in vivo studies have associated indoles 
with enhancing intestinal barrier function by increas-
ing gene expression associated with the maintenance of 
epithelial cell structure and function [242, 243], thereby 
decreasing the concentration of neuroactive products in 
circulation [79]. The activation of AhR also helps pre-
serve epithelial barrier function by maintaining tight 
junction integrity [244]. IA may also have anti-inflamma-
tory and anti-oxidative effects in LPS-activated human 
peripheral blood mononuclear cells (PBMCs) by reduc-
ing IL-6 and IL-1β secretion and activation of the NRF2-
ARE pathway [245], a pathway suggested to ameliorate 
cognitive deficits [246, 247].

Tryptophan & derivatives as risk factors of cognitive decline
Although no research studies to date have exclusively 
investigated the use of tryptophan and its derivatives 
as a risk factor of cognitive decline, many reports have 
highlighted the potential use of tryptophan pathway 
imbalances to reveal signs of early cognitive decline 
[248]. Kaddurah-Daouk and colleagues concluded from 
studying CSF of AD patients that changes in tryptophan, 
as well as methionine, tyrosine, and purine metabo-
lism occurred in MCI and AD, suggesting its potential 
use as a risk factor of cognitive decline [232]. However, 
the authors concluded that these changes may not be 
detectable in plasma, as the amount to which metabolic 
changes in blood mirror fluctuations in CSF remains to 

be investigated. Nevertheless, plasma metabolic profil-
ing revealed changes in tryptophan metabolism in early 
cognitive decline, along with alterations in progesterone, 
lysophosphatidylcholine, L-phenylalanine, dihydrosphin-
gosine and phytosphingosine [248]. Despite a lack of 
studies into the use of tryptophan and its derivates as a 
risk factor of cognitive decline, these studies highlight 
the possible future use of metabolomic profiling to detect 
early changes.

GABA
Through either direct access via the circulatory system, or 
via other communication routes, microbial metabolites 
may have the capacity to interfere and impact the func-
tion of the CNS [249, 250]. GABA is the main inhibitory 
neurotransmitter in the human brain and other parts of 
the body [251] and is reportedly unable to cross the BBB, 
although this statement is disputed [252]. This molecule 
was recently shown to be both a product of bacteria in 
the gut [250, 253, 254] and an important substrate for 
other gut community members [255]. It was also shown 
to have activity in rodent models of anxiety and visceral 
pain [256]. Bacterial strains, such as L. rhamnosus, can 
also modify GABA receptor expression and concentra-
tions of glutamate (a precursor to GABA) and GABA in 
the brain [257].

Other bacterial amino acid metabolites
Amino acids present in dietary protein serve (particularly 
if overconsumed) as a fermentation substrate for bacte-
ria in the large intestine. P—Cresol is the product of the 
microbial conversion of tyrosine, notably by the bacteria 
from the Coriobacteriaceae or Clostridium genera [258]. 
P—Cresol is a known uremic toxin and therefore can be 
further conjugated with sulphate by host cells to form 
p—cresyl sulphate (PCS) as part of the detoxification 
mechanism, promoting the removal of the metabolite by 
the kidneys.

P—Cresol is known to increase endothelial permeabil-
ity in vitro through modulation of the actin cytoskeleton 
and adherens junctions [259], decreasing the gut’s bar-
rier function. In the brain, p-cresol has been found to 
modulate dopamine turnover in Autism Spectrum Disor-
der BTBR mice, significantly increasing anxiety-like and 
hyperactive behaviours [260]. p-Cresol’s derivative, PCS, 
has been detected in the CSF of PD patients, suggesting 
the metabolite may cross the BBB and have a pathogenic 
effect in the CNS [261]. Although, this relationship may 
in part be due to the increased permeability of the BBB 
seen in PD [262]. PCS has been linked with cell death 
and dysfunction through oxidative stress, inflammation, 
impairment of mitochondrial dynamics and vascular 
disruption [263–266]. Moreover, PCS administration in 
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mice with nephrectomy contributed to neurological dys-
function through impairment of cell survival and neuro-
genesis, supporting its potential role in cognitive decline 
[267].

Imidazole propionate (ImP) has recently been uncov-
ered as a microbially produced metabolite derived from 
the amino acid histidine [268]. Elevated serum concen-
trations of ImP are associated with low bacterial gene 
richness [269], a factor previously linked to low-grade 
inflammation, metabolic and inflammatory disorders 
[270]. ImP is also associated with a type 2 diabetes-
related microbiome, stimulating impaired glucose metab-
olism through the initiation of the p38γ-mTOR1-S6K1 
signalling pathway [268, 269, 271]. Type 2 diabetes is a 
well-characterised risk factor for dementia, with a 1.5–
2.5-fold increase in dementia risk, suggesting an asso-
ciation between ImP, the gut microbiome and cognitive 
decline [272, 273].

Other emerging microbial‑derived metabolites
During digestion, nutrients and bioactives (proteins, 
amino acids, polysaccharides, fibres, fats, polyphe-
nols, etc.) are catabolised into host-derived and bacte-
rial metabolites that have the ability to interact with the 
host’s cells and the resident gut microbiome [256, 274]. 
This continuous process results in the production of a 
wide array of chemicals representing a wealth of chemi-
cal classes. Dietary proteins are broken down into poten-
tially active peptides [256] that are further transformed 
into bacterial products such as neurotransmitter amino 
acids like glutamate, glycine, aspartate, serine and GABA 
or polyamines [250, 275, 276]. Aromatic amino acids 
(tryptophan, tyrosine, and phenylalanine) and polyphe-
nols yield a myriad of compounds during catabolism 
leading to the formation of simpler structures containing 
at least one phenol ring (phenols) which can then be fur-
ther transformed by the host (sulfation, glucuronidation) 
before re-entering circulation [256, 274]. Additionally, 
dietary choline and niacin are substrates for the synthe-
sis of molecules essential for cellular function in the brain 
namely acetylcholine and nicotinamide adenine dinu-
cleotide (NAD +) precursors [277–279], some of which 
have recently been shown to be synthesised by the gut 
microbiota [250, 254, 275, 278, 280]. These recent devel-
opments provide further evidence of the microbiota’s role 
in the production of beneficial signalling molecules that 
contribute to the maintenance of homeostasis during the 
ageing process.

As described earlier in the review, the BBB selectively 
allows circulating solutes to enter the CNS. Polyamines, 
polyphenols and some of their products (3-(3’-hydroxy-
phenyl)propionate and 3-hydroxybenzoate) [281] have 
been shown to cross the barrier even though the transfer 

seems somewhat limited [282–286]. Meanwhile, nicoti-
namide and niacin, both precursors for NAD + , a coen-
zyme essential for the maintenance of the CNS, have the 
capacity to freely cross the BBB [278, 287]. More research 
on the topic is needed as the knowledge regarding their 
transport across BBB is in its infancy and partly based on 
in vitro models [282, 286, 288]. The question of whether 
the potential activity of those molecules on brain func-
tions is either direct or based on interactions with 
peripheral systems remains open [289].

Short‑chain fatty acids
Short-chain fatty acids (SCFAs) are small organic com-
pounds primarily formed from microbial anaerobic fer-
mentation of dietary fibres in the cecum and colon [290]. 
Accumulating evidence suggests SCFAs can attenuate 
cognitive decline, however, the underlying mechanisms 
remain unclear [291]. Recent studies suggest SCFAs can 
cross the BBB via monocarboxylate transporters present 
in endothelial cells within the brain tissue [292]. In fact, 
the uptake of SCFAs into the brain has formerly been 
exhibited in rodents following the injection of 14C-SCFAs 
into the carotid artery [293]. However, as well as cross-
ing the BBB, SCFAs may also help preserve its integrity. 
GF mice with reduced SCFA levels were found to exhibit 
increased BBB permeability due to a reduction in the 
expression of tight junction proteins [294]. This BBB dys-
function was later reversed following conventionalisation 
with pathogen-free microbiota and monoculture strains 
producing SCFAs. Furthermore, in a rodent model of 
traumatic brain injury, the administration of sodium 
butyrate prevented BBB breakdown and promoted neu-
rogenesis, highlighting a key role for SCFAs in not only 
maintaining CNS homeostasis but also possibly in pre-
venting or reducing neural decline [295].

Select SCFAs can also manipulate epigenetic mecha-
nisms, including DNA methylation, histone modification 
and their interactions, which may influence age-related 
cognitive changes [296]. Butyrate has been widely investi-
gated due to its roles in receptor signalling and metabolic 
regulation. However, pharmacological studies also high-
light butyrate as a histone deacetylase inhibitor, capa-
ble of increasing histone acetylation and inducing the 
expression of neurotrophic and anti-inflammatory genes 
[297, 298]. Accumulating evidence also suggests a role for 
butyrate in modifying DNA methylation [299–301].

In the CNS, SCFAs have also been linked to reduc-
ing neuroinflammatory processes important for shap-
ing brain function. Sodium butyrate has been linked to 
a decrease in microglial activation and pro-inflammatory 
cytokine secretion [297, 302]. Rodents supplemented 
with dietary acetate had a decrease in neuroglial activa-
tion by reducing the expression of pro-inflammatory 
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cytokines and modulating brain histone acetylation [303]. 
Likewise, acetate also modulated inflammatory cytokines 
and signalling pathways in astrocyte primary culture 
[304]. In  vivo and in  vitro sodium butyrate administra-
tion was observed to have an anti-inflammatory role via 
protein kinase B (Akt)-RhoGTPase signalling and his-
tone deacetylase inhibition, stimulating structural and 
functional changes in microglial towards a homeostatic 
profile [305]. SCFAs may also improve brain hypome-
tabolism, a known contributor to neuronal dysfunction 
and AD, by providing an alternate substrate for energy 
metabolism [306, 307] highlighting a further potential 
method to mitigate and protect against neuroinflam-
matory processes. Nevertheless, the precise signalling 
underlying SCFA’s influence within the CNS remains 
unclear, however, the inhibition of histone deacetylase 
has been put forward as the primary mechanism [308].

Select SCFAs may also moderate AD progression [309]. 
For example, valeric acid, butyric acid and propionic acid 
have been found in  vitro to interfere with protein–pro-
tein interactions necessary for Aβ assemblies, potentially 
reducing the formation of toxic aggregates [290]. Yet, it 
remains unclear if SCFAs produced in the GI tract can 
play a role in protein misfolding in vivo [290]. However, 
Colombo and colleagues found GF AD mice display 
reduced circulatory SCFA concentrations and Aβ depo-
sition, yet when supplemented with SCFAs, show an 
increase in Aβ plaque deposition, suggesting SCFA medi-
ation [309]. In line with this, a clinical study into elderly 
individuals with ranging cognitive performance found an 
association between SCFA levels in the blood and brain 
amyloid deposition [310].

APOE genotype, the largest genetic risk factor of AD, 
has been associated with the composition of butyrate-
producing microbiota in the gut [311]. Faecal samples 
from AD patients typically consist of an abundance of 
SCFAs, particularly butyrate-producing bacteria [312]. 
However, currently, there is no comparison of SCFA con-
centrations in age-matched healthy controls and there-
fore its use as a risk factor of cognitive decline is limited. 
This may in part be due to SCFA’s volatile nature, making 
the compound difficult to detect in human samples, and 
current research also demonstrating low reproducibil-
ity. Notably, participant diet is rarely incorporated when 
quantifying SCFAs in research studies. Yet, the quantity 
and type of ingested fibre are known to have a large influ-
ence on microbial composition and, therefore, the con-
centration and type of SCFAs produced [306, 313]. Faecal 
SCFA concentrations also cannot fully signify production 
rates or accurate concentrations of SCFAs present in the 
colon, as significant percentages of SCFAs are imme-
diately consumed locally in the gut [314, 315]. Changes 
in SCFA faecal concentrations, therefore, may be the 

result of either a fluctuation in its production or colonic 
absorption. Consequently, as of present, the knowledge 
on using SCFAs as a risk factor of cognitive decline is 
extremely limited.

Acetylcholine
Acetylcholine (ACh) is a common cholinergic neuro-
transmitter in the central and peripheral nervous sys-
tems. In the periphery, ACh can be produced from 
choline by numerous bacteria, including Lactobacil-
lus plantarum, Bacillus subtilis, Escherichia coli, and 
Staphylococcus aureus [316, 317]. Within the microbi-
ota-gut-brain axis, ACh can modulate intestinal motility, 
secretion and enteric neurotransmission. essential for the 
transmission of excitatory signals between neurons. Its 
dysregulation is closely linked with AD [318]. ACh can-
not cross the BBB. Therefore, choline availability in the 
periphery importantly modulates the concentration of 
ACh in the CNS [319].

Dopamine
Dopamine is the leading catecholamine neurotransmit-
ter in the mammalian CNS, playing a key role in a broad 
spectrum of cognitive abilities, including working mem-
ory, planning, selective attention abilities, motivation and 
reward processing [320, 321]. Dopaminergic transmis-
sion abnormalities have been linked to cognitive decline 
and numerous CNS disorders [reviewed by [322]]. Dopa-
mine itself cannot cross the BBB. However, its precursor 
molecule L-3,4-dihydroxyphenylalanine (L-DOPA) can 
be transported across the BBB by large neutral amino 
acid transporters (LAT1) expressed on endothelial cells 
[323].

One approach to investigating the involvement of gut 
microbiota and their metabolites on cognitive decline 
is through the use of broad-spectrum antibiotics to 
induce gut dysbiosis by preventing the growth of select 
microorganisms. Administering an antibiotic cocktail of 
ampicillin, vancomycin, neomycin, metronidazole, and 
amphotericin B to the drinking water of male Swiss mice 
increased concentrations of L-DOPA and homovanil-
lic acid (HVA), a dopamine-derived metabolite, in the 
amygdala in comparison to control mice [66]. However, 
no significant changes in dopamine levels were detected. 
Similarly, Hoban and colleagues observed increased 
concentrations of L-DOPA in the prefrontal cortex and 
hippocampus of adult male Sprague–Dawley rats after 
supplying an antibiotic cocktail of ampicillin, vanco-
mycin, ciprofloxacin, imipenem, and metronidazole 
for 42  days. Together, these studies suggest antibiotic-
induced dysbiosis can impact dopamine neurochemistry 
in the rodent brain.
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As discussed earlier in this review, one mechanism in 
which intestinal bacteria can communicate with the brain 
is via stimulation of the vagus nerve. Interestingly, Han 
and colleagues found stimulation of vagal afferent fibres 
from the upper intestinal tract can promote dopamine 
release in the brain of mice [324]. Dopamine can also be 
synthesised in the intestinal lumen by gut microbes [325]. 
Indeed, gut microbes belonging to the genus Prevotella, 
Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, 
Enterococcus, and Ruminococcus have been suggested to 
modulate dopaminergic activity and influence Parkin-
son’s disease (PD) pathophysiology (reviewed by [326]). 
Gut microbiota can also increase luminal dopamine bio-
availability through enzymes such as β- glucuronidase 
[325] and tyrosine decarboxylase [327], demonstrating a 
key role of the gut microbiota in modulating peripheral 
dopamine levels. Interestingly, plasma L-DOPA levels 
were found to be significantly increased in probable AD 
patients in comparison to controls, whereas dopamine 
concentrations were decreased [328].

Polyphenols
Both plant-based foods, rich in polyphenols, and die-
tary proteins are substrates for colonic bacteria which 
produce phenolic compounds that potentially benefit 
human health [256, 274, 329–331]. The current research 
on the impact of beneficial and harmful microbial phe-
nolic compounds 3-(3’-hydroxyphenyl) propionate, 
3-hydroxybenzoate, indoxyl sulfate, p-cresol sulfate on 
the brain is at an early stage but determining the role of 
those products on the gut-brain axis is a promising field 
of research [256, 274, 281, 330]. Frolinger and colleagues 
have recently demonstrated a link between polyphenolic 
products produced by gut microbiota and cognitive resil-
ience in rats [332] and Esteban-Fernández et al. showed 
that 3-hydroxyphenylacetic acid and other microbial-
derived phenolic compounds have a neuroprotective 
effect on a human neuroblastoma cell line [333]. Metabo-
lomics on circulating metabolites also correlated levels of 
catabolites of the phenylalanine and tyrosine pathways to 
poorer mini-mental state examination (MMSE) scores in 
a cohort of hypertensive patients [334]. Mostly driven by 
in vitro and animal-based studies, research on the effect 
of phenolic compounds are nonetheless accruing evi-
dence that microbial phenolic compounds could play a 
role in brain metabolism [286].

Polyamines
Polyamines were first described in 1677 by Antonie 
van Leewenhoek who reported the presence of crys-
tals in human semen [284]. It was much later in 1924 
that Dudley and colleagues characterised one of their 

components, isolating spermine from bovine brain [284]. 
Polyamines are small molecules essential to cell growth 
and ubiquitous to all life forms. Most of the polyamine 
pool is bound to RNA conferring an important role to 
polyamines in stabilising this molecule and contributing 
to the process of its translation [284]. Putrescine, spermi-
dine and spermine are synthesized by plants, mammals 
and bacteria and represent the most abundant polyam-
ines found in tissues [335–337].

Levels of polyamines found in mice decline with brain 
ageing [65, 338] but in humans, only spermidine levels 
seem to change over time reaching their highest level at 
40  years of age and remaining at similar levels thereaf-
ter [336]. Elevated levels have been reported in the brain 
from AD patients, where increased ornithine decarboxy-
lase activity was found to be associated with AD pro-
cesses [339].

They are abundant in food, quickly absorbed and dis-
tributed to all body tissues [340]. The polyamine content 
in the lower part of the intestine however is considered 
to be mostly of microbial origin [337]. Sustained circu-
lating levels at an older age have been associated with 
enhanced longevity and the prevention of age-associated 
disease [340, 341]. Conversely, lower spermidine levels 
were found in blood from AD patients when compared to 
healthy individuals [342], a characteristic that was asso-
ciated with lower MMSE scoring in another study con-
ducted on older subjects in nursing homes [343].

Preserving adequate levels of polyamines could rep-
resent a valuable approach to maintaining the optimal 
functioning of cell metabolism and the prevention of 
chronic illnesses. Supplementation could be achieved by 
a regular intake of a polyamine-rich food diet or synthetic 
polyamines, or by the provision of microbial polyamine 
synthesis with probiotic supplements [344]. A recent 
study highlighted olive oil, fruits, cheese, and seafood as 
good sources of polyamines and that a steady intake may 
have a role in prolonging human life. The authors spec-
ulated that the mechanism involved could be a capacity 
for polyamines to counteract mild chronic inflammation 
and confer beneficial effects on vascular function [340]. 
Another study reported an association between spermi-
dine intake estimated with a self-reported food frequency 
questionnaire and cortical thickness and hippocampal 
volume in older adults [345].

A study on mice fed arginine, a precursor for the syn-
thesis of polyamines [276, 337] and probiotics LKM512 
showed that long term administration offered protec-
tion against age-induced memory impairment via a 
mechanism involving the production of polyamines by 
microbiota [341]. The putative protective properties of 
polyamines are inhibition of cytokines release, inhibition 
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of reactive oxygen species (ROS) production [346, 347], 
an impact on T-cell function and the maintenance of 
synaptic plasticity through the prevention of demyelina-
tion [347], thus presenting a defence against events that 
embody hallmarks of neurodegeneration [348, 349]. 
Polyamines also have the capacity to induce cytopro-
tective autophagy, a process involving the degradation 
of damaged organelles and biological debris [344, 350, 
351]. They have a significant role in the maintenance of 
mitochondrial metabolic function. Indeed, spermidine 
is needed to chemically modify eukaryotic initiation fac-
tor 5A (eIF5A), an important enzyme involved in TCA 
cycle maintenance and electron transport chain in mac-
rophages [352], highlighting an important role for this 
polyamine in the regulation of mitochondrial metabolism 
as any reduced activity can lead to neuroinflammation 
and neurodegeneration [348, 349].

As mentioned earlier, host bacterial production of pol-
yamines was recently shown to delay senescence in mice 
[341]. Although the exact mechanisms were not eluci-
dated, the authors speculated that autophagy [350, 351] 
may play a role in the preservation of memory capacity 
in ageing. This is further reinforced by recent studies on 
mice which showed that supplementation by spermidine 
and spermine may delay brain ageing and alleviate AD 
pathology via mechanisms involving autophagy, promo-
tion of ATP, reduction of ROS [353, 354] and inflam-
mation [355]. Maglione and colleagues showed that 
spermidine offered protection from synaptic alterations 
in the hippocampus of ageing mice extending their lifes-
pan with a late treatment (starting at 18 months) [356].

The research on both autophagy and polyamines and 
cognitive health, which is getting traction, has recently 
translated into human trials. A long-term spermidine-
rich treatment (dosage: 1.2  mg/day) was given to par-
ticipants at risk of developing AD and found to be safe 
and well-tolerated [357]. This 3‐month randomized, pla-
cebo-controlled, double‐blind Phase II trial was shown 
to moderately improve the memory performance and 
to enhance the mnemonic discrimination ability of the 
treated individuals compared to the placebo-treated 
group [358]. The authors have designed a new trial using 
the same treatment that will expand the intervention 
period to 12  months and will include a larger cohort 
(n = 100 as opposed to n = 30) and a follow-up assess-
ment 18  months after the start of the study [359]. In 
parallel, another group supplied older adults in nursing 
homes with spermidine added to bread for 3  months 
and evaluated the cognitive performance of the sub-
jects with the CERAD-Plus test which consists of seven 
tests including an MMSE, a learn, recall and recognize 
a word list and phonemic fluid [360]. They reported a 

significant correlation between an intake of spermidine 
and improvement in cognitive performance, particularly 
in subjects with mild and moderate dementia. Their pre-
liminary results offer hope for the possible mitigation of 
cognitive decline by enabling sustainable levels of poly-
amines in the body.

Nicotinamide
Energy and niacin and nicotinamide pathways are under 
tight homeostasis as shown by a lack of change in ATP 
and nicotinamides levels in the brain of colonised ex 
germ-free mice [65]. There is evidence that the levels of 
these molecules which are essential for the development 
and maintenance of CNS neurons decline with age and 
in neurogenerative states [277]. Promising results from 
an AD animal model led to a 24-week double-blind, 
placebo-controlled randomized clinical trial of nico-
tinamide in subjects with mild to moderate AD [279]. 
Unfortunately, this study failed to show an improvement 
in cognitive function in those volunteers. A similar study 
provided a 10-week supplementation with nicotinamide 
riboside (NR) to older individuals with MCI [361]. This 
trial resulted in demonstrating a positive effect on certain 
functions in the brain and frailty measures but like in the 
previous study, ultimately ended in a lack of change in 
cognitive measures [361]. This illustrates the complexity 
of translating results from animal studies to human trials 
with the dose, duration of the supplementation and envi-
ronmental factors affecting the likelihood of a successful 
outcome. Nonetheless, recent studies showed that the 
gut microbiota can assist in the production of nicotina-
mide and other NAD + precursors [254] as demonstrated 
by Kim and colleagues who showed that treatment with 
nicotinamide mononucleotide in mice not only led to the 
microbial production of the deamidated product nico-
tinic acid mononucleotide, but also tripled the endog-
enous levels of NR, showing an important connection 
between the gut microbiome and the niacin and nicotina-
mide pathway [280].

Vitamin K
Vitamin K is a vital micronutrient that can be derived 
directly from our diet (phylloquinone) or intestinal 
microbiota (menaquinone) [362]. Vitamin K’s role is well-
defined in blood coagulation and its beneficial effects on 
myelin integrity in the brain [363, 364]. Recent studies 
outline a positive relationship between vitamin K levels 
and cognitive performance [365, 366], and the adminis-
tration of vitamin K antagonists to rats alters cognitive 
performance [367]. Increased dietary vitamin K intake 
is linked to a decrease in subjective memory complaints 
in an elderly cohort [368], whilst low concentrations of 
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vitamin K in the blood have been correlated with 
the APOE-ε4 allele; the largest genetic risk factor of 
AD [363]. However, the direct relationship between 

microbial-derived vitamin K and cognition, and hence 
its use as a risk factor of cognitive decline, is yet to be 
uncovered.

Fig. 3 Key potential pathways through which microbial-derived metabolites influence cognitive function. An illustration of the main underlying 
mechanisms linking microbial metabolites and the brain. Dietary-derived precursor molecules can be metabolised by gut microbiota to form 
bioactive metabolites. These microbial-derived metabolites can influence gut permeability, blood–brain barrier function, neuroinflammation, vagus 
nerve activation, neurogenesis and excitotoxicity affecting the regulation of the microbiota-gut-brain axis and cognitive function. The green colour 
highlights a protective and beneficial effect, whereas red indicates a detrimental effect. Acronyms: BBB: blood–brain barrier; DCA: deoxycholic acid; 
ECC: enterochromaffin cells; FMO: flavin-containing monooxygenase; GABA: γ-aminobutyric acid; IA: indole-3- acrylic acid; IAA: indole-3- acetic acid; 
IAld: indole-3-aldehyde; ILA: indole-3-lactic acid; I3S: indoxyl-3-sulfate; KYNA; kynurenic acid; LCA: lithocholic acid; NMDAR: N-methyl-D-aspartate 
receptor; QUIN; quinolinic acid; TMA: trimethylamine; TMAO: trimethylamine N-oxide; TUDCA: tauroursodeoxycholic acid
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Conclusions and future directions
The concept of microbial-derived metabolites influencing 
cognitive decline is gaining traction, with implications in 
the field of neuroscience, metabolomics and hepatology. 
However, due to the complexity of this relationship, the 
specific myriad of mechanisms responsible remain largely 
unknown, whilst defined roles of individual metabolites 
are only characterised for a select few (for a summary see 
Fig.  3). Therefore, amid this ambiguity, there remains a 
real need for additional research to highlight and validate 
key pathways, metabolites and mechanisms to further 
elucidate the influence of the microbiota-gut-brain axis 
on cognition [189].

There remain many challenges facing this grow-
ing field. Firstly, a lack of specificity limits our abil-
ity to distinguish between host vs microbiota-derived 
metabolite contribution as particularly if there is 
known co-metabolism, true microbial involvement 
may be masked or exaggerated. Secondly, as demon-
strated by TMAO [362], some inconsistencies still 
exist among certain metabolites under context-spe-
cific vs dose-specific conditions. This may in part be 
due to heterogeneity between studies, with variations 
in study designs, methods of assessing cognitive per-
formance and/or quantifying metabolites. As a result, 
further research ought to be collated via a more 
standardised methodology to increase comparability. 
Thirdly, the influence of the microbiome on cognition 
is not the totality of microbial metabolites produced 
in the gut as the varying capabilities of these metabo-
lites to penetrate the BBB play a key role [79]. Conse-
quently, the mechanisms used by many metabolites to 
cross the BBB are still unknown and some may even 
be synthesised de novo. Fourthly, from a translational 
perspective, the described research has largely been 
conducted in animals. Establishing whether these find-
ings translate to humans will be crucial yet challeng-
ing due to the greater complexity and environmental 
exposure humans encounter, in turn shaping each 
individual’s microbiome [369]. Finally, understanding 
these highly complex systems, particularly as we move 
more towards human studies, requires the continued 
advancement of computational and statistical methods 
to obtain and implement multi-omics and longitudinal 
data necessary for a comprehensive approach [330]. 
Together, these challenges render it difficult to outline 
specific host-microbiota interactions in a mechanis-
tic manner, which is needed to advance the field past 
associations towards implementable microbiota-driven 
targets.

Nevertheless, the wealth of association studies high-
light a positive future for the use of microbiota-derived 

metabolites as risk factors of cognitive decline [370]. 
Future studies should progress using robust and rep-
licable metabolic phenotyping across various stages 
of cognitive decline in humans. Recent advancements 
using this approach are underway, utilising metabolic 
phenotyping of urine [371] and blood [153, 372] to pre-
dict incipient AD with high degrees of accuracy. How-
ever, several studies using comparable approaches have 
not been able to replicate these findings [373, 374]. This 
may be due to intrinsic difficulties surrounding the het-
erogeneity of cognitive decline seen in neurodegenera-
tive diseases and the variety of analytical methods used 
in metabolic profiling, ranging from 1H-NMR, LC–MS/
MS, GC–MS, UHPLC-MS and CE-MS [371]. Hence, 
currently, the literature is too scarce to support the 
implementation of metabolite-derived risk factors in 
clinical practice.

In conclusion, although significant work remains to 
fully understand the role of microbial-derived metabo-
lites as key mediators of cognitive decline, identifying 
modifiable factors that promote healthy ageing and 
cognition will have vital clinical implications in today’s 
growing elderly population, whilst also helping to iden-
tify novel underlying mechanism.
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