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Abstract

Linear reference genomes have guided the alignment of short sequence reads prior

to variant prediction. This approach is, however, fundamentally limited when studying

species with high levels of sequence diversity. Variation graphs can overcome such limi-

tations by incorporating several genomes within a bi-directed reference structure. This

dissertation explores methodologies that could be utilised to optimise variant prediction

within yeast genomes, particularly Saccharomyces cerevisiae.

Variation graphs constructed from NCYC and third-party strains were found to

increase the ability of reads to align in comparison to the S288c reference graph and

linear reference genome. The novel FAT-CIGAR toolkit was developed to obtain exact

read alignment information from linear and graph-based mappers, in the form of the

FAT-CIGAR string. Sequence identity scores calculated from the FAT-CIGAR string

showed that the vg variation graph produced a greater proportion of reads with perfect

mapping (75.3%) whilst the SevenBridges variation graph mapped a higher number

of reads with greater identity scores (96.4%). The accuracy of variant calling was

compared for four graph genome software, determining that the SevenBridges variation

graph produced the most accurate variant calls (F1 score = 0.995), with the greatest

recall (0.991), followed by FreeBayes (F1 score = 0.995). The vg software produced the

least accurate variant calls (F1 score = 0.972 to 0.986) due to calling a greater number

of false positive variants.

The FAT-CIGAR toolkit also enabled the identification of a novel method of variant

filtration, removing aligned reads likely to lead to false positive variant calls. SNP calls

from reads filtered on the FAT-CIGAR string by 10 bases and indel calls from reads

filtered on the CIGAR string by 30 bases removed the highest proportions of false

positives in real and simulated datasets. Consequently, the use of the FAT-CIGAR

toolkit as a standard methodology in future genomic analyses is recommended.
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Chapter 1

Introduction

This dissertation aims to optimise the computational predictions of sequence variants

in yeast genomes through the adoption of new and existing methodologies. In order to

understand how this might be achieved, this chapter introduces the importance of DNA

sequencing and discusses the role played by advancements in sequencing technologies in

improving our understanding of biology. The methods utilised in the traditional linear

variant discovery pipeline for the prediction and functional characterisation of variants

within a genome are then outlined. The software utilised to carry out each method

and the limitations of these methods are subsequently discussed in further detail. The

concept of genome graphs as alternative references to improve read alignment against

a reference structure are introduced and explored. The importance of yeasts and the

potential advantages of studying variation in yeast genomes are discussed. Finally, the

specific aims and objectives set out to be achieved by this project are defined.

1.1 Introduction to DNA Sequencing

The field of genomics has seen exponential growth during recent decades, due to vast

improvements in DNA sequencing technologies, allowing for the characterization and

study of entire genome sequences. However, it was the invention of next-generation

sequencing (NGS) technology, a high-throughput method which enabled rapid massively

parallel sequencing at low cost, that truly revolutionized the field. The decreasing cost

of DNA sequencing has enabled a wider range of biological questions to be addressed

and extended its usage into fields such as medicine for clinical diagnostics.
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Some of the earliest methods for DNA sequencing date back to 1977, when the

Maxam-Gilbert method and the Sanger sequencing methods were first developed. The

Maxam-Gilbert method employed the use of chemical degradation to fragment DNA ra-

dioactively labelled with Phosphorus-32. The modified DNA was cleaved with piperidine

to be visualised through electrophoresis (Maxam and Gilbert, 1977). This method was

soon phased out due to its complexity and replaced by the more refined Sanger sequenc-

ing method (Saccone and Pesole, 2003). The Sanger method, developed by Frederick

Sanger, provided the backbone for the development of modern sequencing technologies.

This method relied on an analogue of the deoxyribonucleotides (dNTPs), known as the

dideoxyribonucleotides (ddNTPs), which lacks the 3’ hydroxyl group necessary to form

a phosphodiester bond with the 5’ phosphate of the next dNTP, resulting in imme-

diate chain termination (Chidgeavadze et al., 1984). Radioactively labelled ddNTPs

were incorporated at 0.01 fold concentration of the dNTPs allowing for DNA extension

whilst producing random length fragments. This process was carried out in four differ-

ent sequencing reactions and visualised through autoradiography (Sanger et al., 1977).

The method was further improved by replacing radiolabelling with a fluorescent dye

and using capillary electrophoresis for improved fluorescence detection (Swerdlow and

Gesteland, 1990).

1.1.1 Next Generation Sequencing

The Sanger sequencing method allowed for the development of the first generation of

DNA sequencers (see Figure 1.1). The first automated sequencer, AB370A, was intro-

duced by Applied Biosystems in 1986. The capillary electrophoresis-based AB370A was

able to sequence 96 samples in parallel with a read length of 600 bp. The development

of the pyrosequencing method paved the way for next-generation sequencing with the

release of the 454 sequencer by 454 Life Sciences in 2005. This sequencer relied on

measuring pyrophosphate production using ATP as a substrate in luciferase-mediated

conversion of luciferin to oxyluciferin (Liu et al., 2012). The commercial success of the

454 was shortly followed by the release of other sequencers such as the Illumina Genome

Analyzer, each competing to increase the data output in a single sequencing run at re-

duced cost. The Illumina Genome Analyzer was able to increase data output from 1

Gigabase to 1.8 Terabase by 2014 (Illumina, 2016). Pacific Biosciences developed the

first of the third generation sequencers by utilising single-molecule real-time (SMRT)
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sequencing to remove the requirement for DNA amplification and enable rapid sequenc-

ing. Pacific Biosciences also allows for long read sequencing with read length exceeding

10 Kilobases, facilitating improved de novo genome assembly and allowing for direct

detection of haplotypes (Schadt et al., 2010). This was followed swiftly by the invention

of nanopore sequencers such as MinION by Oxford Nanopore. MinION conducts real-

time long read sequencing by measuring electrical conductivity as DNA passes through

a biological pore. It has high assembly contiguity which facilitates detection of large-

scale structural variants (Lu et al., 2016). The MinION has been increasingly used for

genomic surveillance of disease outbreaks such as Ebola (Quick et al., 2016) due to its

rapidity and portability.

Figure 1.1: DNA Sequencing Technologies. This figure highlights the differences

in the methods utilised with the advancement in sequencing technologies. The first

generation depicts the Sanger sequencing method, the second generation refers to the

process of sequencing by synthesis (SBS) used by the majority of sequencers and the

third generation sequencers use real-time detection of the genome. This figure was

published in Dlamini et al., 2020.
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1.1.2 Whole Genome Sequencing

Whole genome sequencing is used to characterize the complete genome sequence of an

organism. NGS technology has facilitated the use of whole genome sequencing as a

driving force in the research of complex genetic disorders and cancer. The first DNA-

based organism to have its complete genome sequenced was the bacteriophage PhiX174,

a single-stranded DNA virus, by Fred Sanger (Sanger et al., 1977). This was followed

by the whole genome sequencing of the first bacterium, Haemophilus influenzae (Fleis-

chmann et al., 1995) and the first archaeon, Methanocaldococcus jannaschii (Bult et al.,

1996) in 1995. The first eukaryotic organism to be sequenced was Saccharomyces cere-

visiae in 1996, commonly referred to as baker’s yeast, which was determined to have 16

nuclear chromosomes consisting of 12.1 million nucleotides (Goffeau et al., 1996). Other

organisms have had their genomes sequenced since due to the increase in large-scale se-

quencing projects, including the human genome.

The Human Genome Project (HGP) was launched in 1990 to determine the human

DNA sequence and achieved this goal by publishing the final draft in 2003, which has

since been improved upon, consisting of 2.85 billion nucleotides covering approximately

99% of the euchromatic genome (International Human Genome Sequencing Consortium,

2004).

1.1.3 Population-Level Sequencing

The advance of whole genome sequencing meant that many individuals within a species

population could be studied to identify genomic variation such as SNPs (single nu-

cleotide polymorphisms that occur in more than one percent of the population) and

indels (small insertions or deletions of bases). Population level sequencing allows for

characterization of allelic variants responsible for phenotypic variation and improves

understanding of the species diversity and their evolutionary history. Additionally, it

can also be used to identify genes that are essential for fitness and survival (Luikart et

al., 2003). Many large-scale population level sequencing studies have been carried out

in humans such as the 1000 Genomes Project (1KGP) and the International HapMap

project. The 1KGP aimed to understand the relationship between genotype and pheno-

type by extensively cataloging variants through both whole genome and exon-targeted

sequencing (1000 Genomes Project Consortium, 2010). The International HapMap
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project focused solely on SNPs to build a map of haplotype blocks (a set of SNPs that

lie within close proximity on the same chromosome and thus are inherited together)

from 269 individuals to identify genetic variants that contribute to disease (The Inter-

national HapMap Consortium, 2007). Many species of yeasts (S. cerevisiae (Liti et al.,

2009, Peter et al., 2018), S. pombe (Fawcett et al., 2014), L. kluyveri (Friedrich et al.,

2015)) have also been the centre of population sequencing projects that examine intra-

specific genome evolution due to their highly compact genomes (Peter and Schacherer,

2016).

1.1.4 Functional Analyses

The use of whole genome sequencing in large-scale sequencing projects has had a sig-

nificant impact in enriching our understanding of the function of a genome. Functional

analysis of sequenced genomes has allowed for the discovery of novel genes and enabled

a better understanding of known genes and their regulatory elements. The increased

need to analyse the vast amount of high-throughput data generated from large-scale se-

quencing experiments has facilitated the initiation of follow-up projects such as the En-

cyclopedia of DNA elements (ENCODE) and the Genotype-Tissue Expression (GTEx)

project. Launched in 2003 after the completion of the HGP, ENCODE aimed to charac-

terize all functional elements in the human genome, with a focus on regions previously

determined as "junk" (Encode Project Consortium, 2004). It permitted for biochemical

functions to be assigned to over 80% of the human genome and identified SNPs asso-

ciated with many diseases within the newly characterised non-coding regions (Encode

Project Consortium, 2012). The GTEx project conducted a comprehensive study of

the variation in gene expression through the characterisation of transcriptomes from

449 human donors. Analysis of the genetic variation within the regulatory networks

across multiple tissues revealed several pathways involved in the mechanism of complex

diseases (GTEx Consortium, 2017). These studies emphasised the importance of accu-

rate identification and annotation of genetic variations for improved understanding of

their role in disease.
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Figure 1.2: Variant Discovery Pipeline. This figure is a summary of the methods

utilised for the processing of NGS data in order to identify genetic variants. The four

main steps in the pipeline are quality control, read mapping, variant calling and variant

annotation.

1.2 Traditional Approaches to Variant Discovery

The NGS data analysis pipeline, utilised for the discovery of genetic variants from

raw sequence reads, is an established multi-step process that relies on the accuracy

of several computational algorithms (see Figure 1.2). Quality control analysis forms

the preliminary step of the pipeline and provides an overview of the intrinsic sequence

quality. It dictates whether further processing of the raw sequence reads is necessary to

improve sequence quality prior to subsequent analysis. The sequence reads are aligned

to (mapped) a reference genome, the chosen representative genome containing a set

of defining genes for a particular species. In the absence of a reference genome, reads

are assembled into contiguous sequence through a de novo assembly approach using

de Bruijn graphs to represent sequence overlaps (Martin and Wang, 2011). De Bruijn

graphs are directed graphs in which nodes are assigned a k -mer sequence of length k

which is identical to the adjacent nodes in k -1 bases so that the suffix of one node forms
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the prefix of the next (de Bruijn, 1946). Once aligned to a de novo or reference genome,

any sequences within the mapped reads that differ from the consensus sequence are

defined as variants. Variant calling is used to predict true variants by calculating the

likelihood of a variant occurring at each individual locus. Hard filtering is the process of

filtering variants on one or more specific threshold values. This allows for the removal

of false positive variants prior to variant annotation to identify any potential functional

effects (Nielsen et al., 2011).

1.2.1 Quality Control

Quality control is of paramount importance to avoid erroneous variant calls that arise

from errors within the sequence reads. Sequencing errors may result from a multitude

of factors starting with errors in the DNA sequence and library preparation. PCR

amplification bias introduces uneven sequence read distribution due to amplification

efficiency of certain templates allowing for increased duplication of particular sequence

reads (Acinas et al., 2005). The choice of sequencing platform also induces artefacts that

are a consequence of technical limitations such as biases in base composition. Illumina

flowcells have been found to suppress GC-rich reads during the cluster amplification

step (Stein et al., 2010) with the sequencers noted to produce low coverage across GC-

rich regions of the genome (Benjamini and Speed, 2012). Many of the sequencers also

rely on the process of sequencing by synthesis which leads to the accumulation of errors

with each run cycle, causing a drop in the quality of base calling towards the read ends

(Fuller et al., 2009). Adapter sequences and read contamination from other samples

may also occur during sequencing. These factors lower the overall sequence quality

leading to marked impairment in mapping and the misalignment of sequence reads.

There are several software for quality control which utilise the base quality scores

output by the sequencer to produce a quality report. The FastQC (Andrews, 2010)

software has been widely reported in literature (Brown et al., 2017; Li et al., 2017)

due to its speed and quality assessment using an extensive range of metrics. FastQC

provides an overview of the per base sequence quality, average read quality, base com-

position bias, GC content, presence of duplicated and over-represented sequences and

adapter content. These quality metrics are used to inform whether further processing

of sequence reads is necessary to improve read quality. Low sequence quality can be
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greatly improved by trimming and filtering the reads. Filtering involves removing reads

that are extremely short or contain a greater proportion of N’s, which indicates that

the bases at that position could not be determined. Sequence reads can be trimmed to

remove either ends of the reads where there is a reduction in base quality or contam-

ination of adapter sequences. Trimming has been shown to increase read alignment,

improve the accuracy of genome assembly and decrease false positive SNP detection in

yeasts and other genomes (Del Fabbro et al., 2013).

1.2.2 Read Mapping

The alignment of sequence reads against a reference genome is a crucial step, as all of the

downstream analyses including variant calling are highly dependent on its accuracy. The

process of read mapping, therefore, needs to be both remarkably precise and extremely

fast to be able to handle the millions of reads produced in a typical sequencing run. A

wide range of read mapping algorithms have been implemented over the past few years,

each one aimed at improving sequence read alignments against a reference genome

by catering to a specific biological situation. Most software use a variation of one of

the following algorithms: the hashing algorithm or the Burrows-Wheeler Transform

(BWT) algorithm (Schbath et al., 2012). Thus selecting the optimal read mapping

software to suit the needs of the data also plays an essential role in accurate read

analysis, particularly for short sequence reads. Prior knowledge of the genome from

which the reads were derived and the level of expected variation with respect to the

reference genome may also influence the choice of mapping algorithm. For example,

when aligning a highly divergent genome against a reference, it would be advisable to

choose a hash-based mapping algorithm like Stampy due to its increased sensitivity in

mapping (Lunter and Goodson, 2011).

A fundamental challenge for read mapping algorithms is to be able to accurately dis-

tinguish between errors caused by sequencing artefacts and true genomic variants within

the reads. Departures from the reference genome are primarily defined in alignments

by either mismatches or gaps, both of which are considered errors and therefore heavily

penalised. Consequently, each mapper takes a different approach to the amount of er-

rors it is willing to tolerate during alignment. Read mappers impose various constraints

regarding whether gaps are allowed in alignment, the size of the gaps and the number
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of mismatches (Fonseca et al., 2012). These constraints are usually imposed to increase

computational efficiency when aligning millions of reads, as performing gapped align-

ments drastically slows down mapping, particularly for seeding algorithms. Gapped

alignments are, however, essential for the accurate variant calling of indels as ungapped

alignments can result in reads being unable to align completely or complete misalign-

ment of the reads spanning the long indel regions and the surrounding indel breakpoints.

Furthermore, these misaligned reads contain many mismatches that give rise to false

positive SNP calls with strong read support (Li and Homer, 2010).

Hash-Based Mapping Algorithms

A hashing algorithm is used for compression of large data to reduce memory require-

ments. A hash function is utilised by hashing algorithms to convert the input data into

a numerical value which is used to index the data within a hash table. For the purpose

of read mapping, the hashing algorithm stores a string of sequences as a key which

allows for fast look-up of the values (see Figure 1.3). The reference genome is split

into k -mers, where the size of k is smaller than the read size and the k -mers are stored

as hash keys with the corresponding positions within the genome stored as the value.

Sequence reads are then split up into k -mers and mapped against the reference genome

by searching against the hash keys. Once the k -mer seeds (small sub-sequences from a

read) find possible hits, the seed and extend method is used to map remaining sequences

in the read. Seeds are sorted and the compatibility of their positions are assessed for

alignments. An advantage of hash-based algorithms is that they are highly sensitive

and therefore have reduced mapping bias (Lunter and Goodson, 2011). Limitations of

this algorithm are that reads from repeated regions are mapped poorly and it performs

slowly as the extension process is time-consuming (Schbath et al., 2012).

Stampy

The Stampy (Lunter and Goodson, 2011) software utilises a hash-based algorithm to

map short-read sequences to a reference genome. Stampy splits the reference genome

into sequences of length 15 bases (i.e. k=15) and stores their location in a hash table.

In order to speed up the querying of reads, non-unique k -mers that likely arise from

repetitive regions are assigned a flag denoting high k -mer count within the hash table.
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Figure 1.3: Hash-Based Mapping Algorithm. This figure is an example of how

a hash table is constructed to index the reference genome. K -mer sequences from

the reference genome are stored as keys within the hash table and the position of the

sequence is stored as the value. During alignment, k -mers from the sequence reads are

queried against the hash table to identify possible locations in the reference genome that

contains matching query sequences. The sequence reads are aligned by the mapping

algorithm against the reference sequence at the retrieved positions in order to determine

the optimal alignment.

Equal length k -mers are also constructed from the sequence reads and all overlapping

15-mer sequences across the read are searched against the table to identify potential

hits. Sequence similarity filtering is utilised to reduce the number of locations that are

targeted as potential candidates. Nucleotide counts are computed for the k -mer and the

reference genome sequence at the putative candidate locations. Any differences in the

count statistics that exceed a certain threshold results in the filtering of that location.

The read is aligned against the candidate locations using the Needleman-Wunsch dy-

namic programming algorithm to carry out banded global alignment. The Needleman-

Wunsch algorithm was developed to identify the optimal alignment between two se-

quences. This is computed by initialising a matrix of the sequences to be aligned and

determining a scoring system for matches, mismatches and gaps. The top left cell of

the matrix is initialised with the score 0 and for each cell, three candidate scores are

calculated by considering the score for the cell and the scores from the left, top and the

top left diagonal cells. The maximum of the scores is assigned to the cell along with

the direction to the cell from which the score was calculated. The path from either the

left or top cells represents indels in the alignment whilst the diagonal cell represents

either a match or mismatch. The optimal alignment is determined using trace back of

the matrix path from the bottom right to the top left cell (Needleman and Wunsch,
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1970). A banded alignment places restrictions on gaps with only 15bp indels allowed

against the candidate locations. The most likely mapping location is determined by

calculating the mapping quality score of the alignment. The read is re-aligned against

the best candidate location, allowing for indels of up to length 30bp, to produce the

final alignment (Lunter and Goodson, 2011).

The Stampy mapping algorithm achieves good sensitivity by utilising a hash table

data structure to query k -mers and generating nucleotide count profiles from the read

and reference genome to determine candidate locations prior to carrying out global

alignment. This process of inexact matching allows for a greater number of reads to be

aligned by accounting for the presence of possible variants within the sequence reads.

Stampy is also unique in that it can be run in hybrid mode to perform alignments using

the BWA algorithm (Li and Durbin, 2009). This enables majority of reads that have

high sequence similarity with the reference genome to be aligned with BWA in the first

pass prior to utilising Stampy’s sensitive mapping approach to align reads with lower

sequence similarity. The use of the hybrid mode retains sensitivity whilst increasing the

run time efficiency (Lunter and Goodson, 2011).

SHRiMP2

Another hash-based read aligner is SHRiMP2 (Short Read Mapping Programme) (David

et al., 2011). SHRiMP2 also constructs a hash table by indexing the reference genome

using multiple spaced seeds instead of consecutive k -mers. Multiple spaced seeds con-

tain spaces within the seed where the algorithm is not concerned about the nucleotide

present at that position. The use of spaced k -mer seeds has been previously shown to

increase both the sensitivity and speed of mapping (Ilie and Ilie, 2007). The location of

each spaced k -mer is stored within the hash table and k -mers with several multiple can-

didate locations are discarded to prevent exhaustive searching. The spaced seeds from

the sequence reads are used to query the hash table. If the same seed is present within

the reference sequence, a list of the possible candidate mapping locations is retrieved.

SHRiMP2 employs a paired mapping mode to ensure that reads are only considered for

alignment against the candidate mapping location if the location for the read pair also

falls within proximal distance to the read. The Smith-Waterman algorithm is employed

to align reads against the candidate locations using a two-phased approach. The Smith-
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Waterman algorithm is a variation of the Needleman-Wunsch algorithm that performs

local instead of global sequence alignments. It does not allow for cells within the matrix

to be assigned negative scores, instead these cells are assigned a score of 0. The optimal

alignment is identified by tracing back the path from the cell with the highest score

until a cell with the score 0 is encountered, thus producing a local alignment (Smith

and Waterman, 1981). The first phase only computes the alignment scores for reads

against the candidate locations. Candidate locations with the highest alignment scores

are re-aligned to obtain the final alignment against the reference genome (David et al.,

2011).

BWT-Based Mapping Algorithms

The second major algorithm used by read mappers is the BWT (Burrows and Wheeler,

1994) which is adept at both compression and indexing. This algorithm relies on storing

the reference genome in suffix arrays ahead of sorting the suffices and lexicographically

ordering them (see Figure 1.4). The suffix array can be traversed using the Ferrag-

ina–Manzini (FM) algorithm (Ferragina and Manzini, 2000). For each element in the

array, the FM index ranks the occurrence of the element and stores its position. This

allows for backward searching by finding the rows containing instances of the first proper

suffix from the read in the sorted suffix array and increasing the suffix length until a

full match occurs (Langmead, 2013). An advantage of BWT is that it is extremely fast,

even for sequence reads that have multiple possible mapping locations, as the repetitive

regions are collapsed during array construction (Schbath et al., 2012).

BWA (Burrows-Wheeler Alignment) (Li and Durbin, 2009), a widely reported align-

ment software (Taliun et al., 2021; Willems et al., 2017; Nurk et al., 2021), implements

the BWT algorithm. It has the capacity for fast alignment of both short reads (Li and

Durbin, 2009) and long reads (Li and Durbin, 2010). BWA creates a prefix tree of the

reference genome which is transformed using BWT into a sorted suffix array. The po-

sition of each occurrence of the prefix of a read will occur at intervals within the suffix

array. Therefore, the suffix array intervals are used to obtain the candidate mapping

locations in the genome. Backward searching is used to query the read sequence against

suffix array intervals of substrings of the reference genome (Li and Durbin, 2009). The

bwa mem algorithm, which is used to align short sequence reads, carries out local align-
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Fig. 2. Constructing suffix array and BWT string for X=googol$. 
String X is circulated to generate seven strings, ...

Figure 1.4: Burrows-Wheeler Transform. This figure demonstrates how the suffix

array is constructed from the string X by lexicographically sorting the suffices. The

BWT string is represented by B[i] and S(i) represents the positions stored in the suffix

array. This figure was published in Li and Durbin, 2009.

ment using the Smith-Waterman algorithm based on the seed and extend method. Seeds

that have super-maximal exact matches (SMEMs), exact matches between the read and

reference that cannot be further extended and which do not match to any other posi-

tion, are identified within the sequence read and co-linear seeds are chained together.

Each seed is ranked on the chain and seed length. Local alignments are carried out from

the top ranked seeds and the seed is extended if it leads to a potential alignment (Li,

2013). The final alignment is obtained by carrying out banded global alignment of the

sequence read with the most probable candidate location determined by the alignment

score. BWA is extremely fast and has reduced memory usage as only small portions

of the array are stored at a time (Li and Durbin, 2009). However, BWA slows down

significantly if too many errors are allowed as it is not adept at handling errors (Schbath

et al., 2012).

35



Limitations of Mapping

The software explored above differ in speed, accuracy, precision and sensitivity, all of

which are important factors to consider in read mapping. However, all of these soft-

ware share a major limitation which significantly impacts mapping: they align against

a linear reference genome. The monoploid reference genome provides a poor represen-

tation of the species as a whole. It is the genome of one, or a few depending on the

species, individual and therefore only contains a single haplotype at each locus. This

poses significant issues as there are many genetic variations naturally present within

each individual in a species population, which the reference genome fails to represent.

On the contrary, a monoploid reference genome may also carry rare variants that are

uncommon to the species resulting in major alleles within the species population re-

maining unidentified as variant calling is greatly biased towards the reference genome

(Audano et al., 2019). Additionally, the absence of variants introduces reference allele

bias into mapping. This results in the tendency to over-report alleles present in the

reference genome and under-report variant alleles, especially within highly polymorphic

regions such as the HLA region. Reference bias can have marked impact on RNA se-

quencing studies in particular where quantifying allele-specific expression is of greater

importance (Degner et al., 2009). Hypervariable regions of genomes that display a high

level of sequence variation are unable to be mapped correctly or mapped at all as the

reads differ vastly from the reference genome, a problem more prevalent in species such

as yeast (Garrison et al., 2018). Similarly, sequence reads that originate from regions

of large-scale structural variation, such as insertions, that are not present within the

reference genome are also unable to align preventing the discovery of novel genomic

variants that may be of functional consequence (Li et al., 2010). A combination of

read misassembly and the decline in mapping consequently negatively affects all further

downstream analyses. This leads to a number of variants going undetected or called

incorrectly, hindering the accurate inference of variants (Paten et al., 2017). It also

results in the repeated calling of many common variants within the species as de novo

variants, limiting the identification of true, novel alleles (Novak et al., 2017).

In an attempt to mitigate this issue, alternative scaffolds were introduced for the

hypervariable regions in the release of the latest human genome assembly, GRCh38

(Schneider et al., 2017). GRCh38 contains 178 regions consisting of 261 variant se-

quences and was identified to have included over 150 genes not present in the primary
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assembly. However, these loci are still not used in mapping as current mapping soft-

ware are not able to handle alternate scaffolds. These scaffolds are treated as paralogous

duplications within the genome resulting in the reads being penalized for mapping to

multiple locations (Church et al., 2015). This problem further emphasised the necessity

for a more sophisticated reference structure and alignment tools that can take known

variants into consideration.

1.2.3 Variant Calling

The earliest methods employed by variant calling algorithms simply involved detect-

ing variants directly from alignments by identifying mismatches against the reference

genome. The alignments were filtered to keep only high-confidence bases based on a

cut-off Phred quality score (a score assigned to each nucleotide base that provides a

probability estimate that the called base is incorrect) of Q20, which corresponded to

the probability of a base call error of 1% (Ewing et al., 1998). In addition to their cut-off

values, frequency filters were then applied based on allele count observations, using the

frequency of non-reference bases to infer a genotype. However, this method had several

limitations with a major factor being that it did not account for noise errors within

the sequence reads. The accuracy of the variant calls were highly dependant on hav-

ing high coverage sequencing depth as low depth coverage resulted in under-reporting

of heterozygous genotypes. In addition, filtering on only quality scores led to loss of

information of individual read quality and it did not provide a measure of confidence

for the inferred genotypes (Nielsen et al., 2011).

Current variant callers rely on the use of a probabilistic method which estimates the

posterior genotype probability within a Bayesian framework whilst taking into account

noise and sequencing errors within the read data. The genotype likelihood is obtained for

all possible genotypes and is used in combination with the prior genotype probability

to identify the maximum posterior genotype probability. This is then used to infer

the genotype at each locus. The genotype likelihood, the probability of a genotype

being the true genotype given the observed data, is calculated as the product of the

probability of the data given the allele frequency and the prior genotype estimation over

the sum of all the possible allele frequencies. The read data for the genotype likelihood

can be based on the base quality scores (BQ) or mapping quality scores (MAQ), the
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probability that the base or read is mapped incorrectly (Li et al., 2008). The genotype

likelihood is calculated under the assumption that the reads are independent of one

another and therefore relies on the accuracy of alignments and quality score calculations

(Li, 2011). The prior genotype probability can also be estimated from available data for

the genome. Allele frequencies are obtained from either the reference genome or single

nucleotide polymorphism (SNP) databases and the prior probabilities are calculated for

each locus assuming the Hardy-Weinberg equilibrium (Neilsen et al., 2012). A constant

prior probability can also be assumed for each genotype if the allele frequencies cannot

be estimated. As the posterior genotype probability measures the evidence of variation

at a site against the probability of there being no variation, it provides a measure of

confidence in the variant called. A few of the currently available software for variant

calling are outlined below.

GATK HaplotypeCaller

The Genome Analysis Toolkit (GATK) HaplotypeCaller (Poplin et al., 2017) is a com-

monly encountered variant caller in literature (Peter et al., 2018; Priestley et al., 2019;

Wang et al., 2020). Traditional pileup variant callers, such as SAMtools (Li et al., 2009),

rely on read support to make variant calls and therefore, are able to make precise SNP

calls but fail in accuracy when calling small insertions and deletions (indels) due to their

dependence on individual alignments. In order to improve variant calling accuracy, the

HaplotypeCaller algorithm identifies variant target regions and carries out local de novo

re-assembly of reads discarding any prior mapping information (see Figure 1.5). Align-

ment information is utilised to identify target ActiveRegions based on the presence of

mismatches, insertions, deletions and soft-clips. The genotype likelihood is estimated

for all candidate haplotypes using the pair Hidden Markov Model (pair-HMM) (Durbin

et al., 1998), a variation of the HMM that traverses between different states to gener-

ate a sequence alignment between the read and candidate haplotypes. The pair-HMM

algorithm has three states: match, insertion and deletion. The transition probability

from a match to an insertion or deletion state is given a gap opening penalty based on

the recalibrated base quality scores. The probability that the alignment remains in the

state of either insertion or deletion is given a gap extension penalty of 10. The probabil-

ity that the state remains a match is a complement of the base error probability given

by the base quality. The alignment score calculated from the pair-HMM alignments is
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used to calculate the genotype likelihood for each candidate haplotype (Poplin et al.,

2017).

Figure 1.5: Variant Calling with GATK HaplotypeCaller. This figure shows how

target regions are selected and local realignment is carried out to identify candidate

haplotypes. The genotype likelihood for candidate haplotypes is estimated using a

pair-HMM and the maximum posterior probability is used to determine the genotype.

This figure was published in Poplin et al., 2017.

Once the ActiveRegions containing candidate haplotypes have been determined,

de Bruijn like graphs are constructed from the reference and read sequence within each

ActiveRegion. Each read k -mer is compared against the graph and new nodes are added

for every mismatch encountered. Any overlapping reference k -mers are connected into

a single path within the graph and the edges are weighted according to the read support

for the connecting k -mers. Any edges without sufficient read support, greater than two

reads, are pruned out of the graph removing the haplotypes. Candidate haplotypes are

re-aligned to the reference using the Smith-Waterman algorithm (Smith and Waterman,

1981), to produce a CIGAR string (see Section 3.2.1) output of the haplotypes which

is used to infer the genotype. The genotype likelihood (Gl) is calculated for a diploid

genotype composed of two alleles, A1 and A2, for a read R at site i, Ri, as the product
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over all the reads of the mean likelihood for the alleles in the specified genotype.

P (Ri|Gl) =
∏
i

(
P (Ri|A1)

2
+
P (Ri|A2)

2

)
(1.1)

The posterior probability, P (Gl|Ri), is evaluated for the candidate haplotypes as the

product of the prior probability, P (G), and genotype likelihoods, P (Ri|Gl), over the

sum of the genotype likelihood of all the candidate haplotypes.

P (Gl|Ri) =
P (G)P (Ri|Gl)∑
l P (Ri|Gl)P (Gl)

(1.2)

The haplotype with the maximum posterior probability is assigned as the genotype

(Poplin et al., 2017).

The assembly-based variant calling algorithm employed by GATK HaplotypeCaller

has been shown to improve genotyping accuracy even in low coverage sequencing data for

SNP calls (Pirooznia et al., 2014) and was found to have a higher sensitivity for detecting

small indels in comparison to other variant callers (Kim et al., 2017). However, a major

limitation of the GATK HaplotypeCaller is its computational intensity, as increasing

the number of samples can result in exponential increases in graph complexity limiting

its usability in large-scale sequencing studies (Poplin et al., 2017).

FreeBayes

FreeBayes (Garrison and Marth, 2012) is a haplotype-based variant caller which detects

haplotypes from the read sequence itself rather than from read alignments. Conven-

tionally, variant callers estimate the statistical likelihood of a genotype by modelling

under the assumption of biallelic loci (Marth et al., 1999). However, this can result

in reduced variant calling accuracy within regions containing copy number variants or

for polyploid organisms. FreeBayes overcomes this limitation by modelling under the

assumption of multiallelic loci (Garrison and Marth, 2012). Candidate haplotypes are

obtained using a dynamic window approach to identify proximal variants. The base

and mapping quality is utilised to filter the candidate haplotypes. The length of indels

are determined by increasing the window length for every overlapping read containing

the haplotype information. The overlapping reads within the window are converged and

used to estimate the posterior probability distribution for each genotype. The maximum

40



posterior probability and the genotype likelihood information are used to evaluate the

probability that the locus is polymorphic, which is used to infer the genotype (Garrison

and Marth, 2012).

The use of a haplotype-based variant detection method enables all variants to be

evaluated in the same context and the use of phased genotyping can improve the de-

tection of rare variants. The use of longer haplotypes can increase the signal to noise

ratio for the genotype likelihood estimates, which improves variant calling (Garrison

and Marth, 2012). FreeBayes has been shown to have the highest sensitivity in de-

tecting variants in comparison to other variant callers such as GATK HaplotypeCaller.

However, it has also been found to have low precision and to produce a greater number

of false positive variant calls (Sandmann et al., 2017).

Platypus

Platypus (Rimmer et al., 2014) is another haplotype-based, assembly variant caller that

integrates the methods employed by GATK HaplotypeCaller and FreeBayes to improve

both the sensitivity and specificity of variant calling. Platypus identifies candidate

haplotypes from a combination of read alignments against the reference sequence, local

reassembly of the identified variants and known variants from SNP databases (see Figure

1.6). Local reassembly is carried out by constructing a colored de Bruijn graph, a

variation of the de Bruijn graph which colours nodes according to the sample they

belong to in order to preserve identity (Iqbal et al., 2012), from the read and reference

sequences. Candidate haplotypes are identified from unique paths within the graph

and clustered together. Frequencies are estimated for all combinations of reads and

candidate haplotypes h1, ..., ha using an expectation-maximization algorithm (Dempster

et al., 1977) under the diploid genotype model as follows:

L(R|{hi, fi}i=1..a) =
∏
s

∑
i,j

fifj
∏
r∈Rs

(
p(r|hi)

2
+
p(r|hj)

2

)
(1.3)

where hi is the haplotype, fi is the haplotype frequency, a is the number of alleles, s

refers to the sample, R denotes the read (Rs denotes the set of reads from sample s),

i,j refers to the genotypes and p(r|hi) is the likelihood of the genotype. A likelihood

matrix is computed for each read given the haplotype by aligning the reads against the

haplotype sequence using the Forward algorithm. This algorithm computes the relevant

joint probability by taking into account the probability of all the state paths, under the
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hidden Markov Model. The frequencies are combined as a prior probability and the

posterior support of the given haplotype is estimated from the likelihood of all possible

haplotypes against the likelihood that the haplotype does not contain the variant as

follows:

p(v|R) = p(v)L(R|{hi, fi}i=1..a)

p(v)L(R|{hi, fi}i=1..a) + (1− p(v))L(R|{hi, fi
1−Fv

}i∈Iv
(1.4)

where p(v) is the prior probability for variant v, Iv is the set of haplotype indices in

which the haplotype hi does not contain the variant and Fv is the sum of haplotype

frequencies for haplotypes that do not contain the variant. Variants are called when the

posterior support exceeds the threshold Phred score of five. The posterior probability

is calculated from the genotype likelihood by marginalising over other variants in the

region and the maximum posterior probability is used to infer the genotype call (Rimmer

et al., 2014).

As Platypus utilises local reassembly for variant detection, it does not rely on the

reference genome. This improves variant detection by reducing false positive variants

that arise due to alignment errors within regions of greater sequence diversity. The

process of identifying candidate variants and genotyping is carried out separately to

reduce false negative variants. Platypus can also provide linkage information regarding

local variants for further filtering and downstream phasing (Rimmer et al., 2014).

11/02/2022, 13:23 Figure 1: Simplified flow diagram of the integrated calling algorithm. | Nature Genetics

https://www.nature.com/articles/ng.3036/figures/1 3/4

The three stages of the algorithm are pipelined without using intermediate files or separate processes. Mapped and sorted BAM files are used as

input; merging, sample demultiplexing and read deduplication are all performed by Platypus. The resulting variant calls require no post-

processing, except for a Bayesian filtering stage for de novo mutations. (a) Candidate variants are obtained from read alignments, local assembly

and external sources (not shown), and candidate haplotypes are formed. (b) The support of each read for any candidate haplotype is computed by

alignment, and population haplotype frequencies are fitted to a diploid segregation model. (c) Variants are called by first calling haplotypes,

followed by marginalization over secondary variation. Filtering on the variant and sample levels results in a final call set. See the Supplementary

Note for full details of the algorithm.
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Figure 1.6: Platypus Variant Calling Pipeline. This figure shows the three stages

of variant calling as follows: a) the identification of candidate haplotypes, b) alignment

of reads against each haplotype is used to calculate population haplotype frequency

and c) variants are marginalised across multiple samples and filtered on the posterior

probability. This figure was published in Rimmer et al., 2014.
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Manta

Manta (Chen et al., 2016), unlike other variant callers, has been optimised specifically

for accurate discovery of large-scale structural variants (SV) and indels. Manta con-

structs a genome-wide breakend graph and utilises the edges to identify SV candidates.

The graph edges do not represent a specific SV candidate but instead represent the

possible junctions that connect two breakend regions, allowing for a compact represen-

tation of a genome. Each edge is used to identify SV candidates by searching over the

mapped reads that span the connected nodes and discarding candidate variants that

do not intersect the graph edge. The resulting candidate SVs are not associated with a

precise genomic locus hence local read assembly is used to identify the precise region.

Reads spanning the candidate SV region are assembled into contigs using a de Bruijn-

like graph, aligned against the reference genome and candidate variants are refined on

the alignment scores. The candidate SVs are scored using a diploid genotyping model

to estimate the posterior probability of each candidate fragment and combined with the

allelic likelihood estimate to infer the structural variant call. Manta allows for rapid

detection of SVs by parallelising graph construction to reduce computational intensity.

Manta was shown to have a high recall rate with a high fraction of true positive calls,

allowing for accurate variant calling of structural variants (Chen et al., 2016).

Limitations of Variant Calling

The use of posterior probability estimates to identify candidate variants provides a mea-

sure of statistical confidence. However, due to the presence of alignment and sequence

artifacts, both pre- and post-filtering may be required to remove false positive variants.

In the pre-filtering steps, trimming the raw sequence reads to remove adapter sequences

and removing PCR bias by de-duplicating over-amplified reads can improve alignment

(Nielsen et al., 2011).

Alignment errors, most of which arise when aligning reads against genomic regions

containing a greater degree of sequence diversity also reduce variant calling accuracy.

Variant callers filter out reads with low mapping quality scores, which are assigned to

reads that map to duplicated regions, such as copy number variants. This process can

thus impede the discovery of true novel variants within the correctly aligned reads and

result in false negative calls. Strand bias can occur due to the uneven distribution of
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sequence reads between the forward and reverse strands leading to discrepancies between

the inferred genotypes from both strands. This usually occurs in Illumina short-read

sequencing data and can lead to an increase in false positive variants (Guo et al., 2012).

Hard filtering can be applied post variant calling in order to reduce false positive

calls by filtering out variants based on several constraints (see Section 4.1). This can

be achieved using software such as GATK Variant Quality Score Recalibration (VQSR)

(Van der Auwera et al., 2013) and VEF (Zhang and Ochoa, 2019), both of which utilise

machine learning algorithms. The cut-off values for filtering require careful consideration

as stringent over-filtering can lead to a higher rate of false negatives due to the removal of

true variants. As variant calling methods are heavily dependant on identifying variants

from mapped sequence reads, it is essential to improve the accuracy of alignments

against the reference in order to improve the accuracy of variant calling.

1.3 Genome Graph-based Reference Structures

The term "pan-genome" refers to the entire set of genes across a collection of multiple

individuals within a species. It includes the core genome, genes that are conserved across

all individuals and the accessory genome, genes that are only partially shared by specific

individuals. The pan-genome for a species can be defined as either open, where each

sequenced individual allows a number of new genes to be added, or closed based on the

degree of diversity within a species and their capability to adapt and acquire new genes

(Vernikos et al., 2005). The use of pan-genomes has become commonplace in microbiol-

ogy, particularly when studying bacterial genomes due to their large gene pool driving

evolution via horizontal gene transfer, phage infection and uptake of genetic material

from the environment (Medini et al., 2005). The open pan-genomic nature of bacte-

ria, due to their high genetic diversity, dictates that the use of a linear, single species

reference is insufficient for studying genetic variability. Recently, due to the increasing

feasibility of large-scale sequencing projects, the use of pan-genomes is also becoming

routine when studying eukaryotes, including plants (Arabidopsis thaliana (Cao et al.,

2011); Oryza sativa L. (cultivated rice, Yao et al., 2015); Zea mays L. (barley, Hansey et

al., 2012)), fungi (zymoseptoria tritici (Plissonneau et al., 2018); Saccharomyces cere-

visiae (Peter et al., 2018; McCarthy and Fitzpatrick, 2019)) and humans (Li et al.,

2010). The Peter et al. study analysed the pan-genome across 1,011 S. cerevisiae iso-
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11/02/2022, 13:13 Fig. 1: Genome graphs and graph alignments. | Nature Biotechnology

https://www.nature.com/articles/s41587-019-0199-7/gures/1 2/3

From: Goodbye reference, hello genome graphs

a, A genome graph is constructed by adding information from genetic variation databases to the human reference genome. Each genetic variation event gives rise to an alternative path in the

genome graph, as indicated by the red lines and arrows. b, Schematic, simplied view of genome graph alignments in a variable region containing six SNVs (left). The SNV patterns in the

sequencing reads show that the sample is heterozygous at this locus. One allele has two SNVs, represented by blue and yellow rectangles (above the graph), and the other allele has four SNVs,

represented by a sequence of green, red, blue and red rectangles (below the graph). All the reads are successfully aligned to the graph reference with no mismatches. On the right, an alignment of

the same set of reads is shown, but instead using a linear alignment that allows for a maximum of two mismatches. The alignment is biased toward the reference, and four reads from the divergent

allele do not align.

Figure 1.7: Genome Graphs. This figure is an example of a genome graph structure

which shows how a) different variant types (shown by the red nodes) can be represented

within the graph and b) how reads containing multiple SNPs may be able to align

against the genome graph (left) but may not align against the linear reference (right).

Fewer reads were able to align against the linear reference due to a threshold on the

number of mismatches allowed in an alignment. This figure was published in Ameur,

2019.

lates and identified 4,940 core genes and 2,856 accessory genes. The accessory genes

were found to have originated through horizontal gene transfer from other diverse yeast

species and fungi, and tended to be clustered within the subtelomeric regions. This

was reaffirmed in a more recent study (McCarthy and Fitzpatrick, 2019) which also

identified a similar number of core and accessory genes across 100 S. cerevisiae strains.

The latter study analysed the ancestral origins across the pan-genome, finding that the

core genome was enriched for genes of prokaryotic origin whilst the accessory genome

tended to be of eukaryotic origin with genes enriched for metabolism, pathogenesis and

antimicrobial resistance.

A pan-genome can be represented graphically using genome graphs (see Figure 1.7),

also referred to as variation graphs, enabling its use as the standard reference when

encoding the genetic variability within a species, thereby offsetting the reference bias

faced by the linear reference genome. Genome graphs have been used traditionally in

sequence analysis for various purposes such as multiple sequence alignment and read

assembly (Paten et al., 2017). The reference genome itself forms the framework of the
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graph onto which individual genomes can be incorporated as variants. A genome graph

is defined as a graph that constitutes of a set of nodes, directed edges and embedded

paths which describe the transformation of the graph into a genome sequence. Nodes, or

vertices, within the genome graph represent smaller sets of genome sequences. An edge

serves as the linkage between two nodes enabling the formation of a set of paths/walks,

a series of connected nodes that describe the traversal through the graph in order to

represent a larger genome sequence, through the graph. This allows for every single

genome to be encoded via individual walks within the genome graph (Garrison et al.,

2018).

Genome graphs may be either cyclic or acyclic to reduce the computational com-

plexity. A cyclic graph is one which allows for a node to be traversed more than once

whereas each node is only encountered once within an acyclic graph. Genome graphs

tend to be directed, where the edges encode the direction in which the nodes can be

traversed, to allow for the order of nodes to imitate the sequence order. However, di-

rected graphs are not able to portray strand information based on whether the sequence

is read in its forward strand or as reverse complemented. Encoding this information is

particularly important for displaying complex genome rearrangements such as reverse

tandem duplications and inversions in the pan-genome. This issue, therefore, requires

genome graphs to be bi-directed (Paten et al., 2017). A bi-directed genome graph will

enable an edge to enter on either side of a node based on the sequence orientation and

leave the node through the opposite endpoint (Edmonds and Johnson, 2003). Insertions

and substitutions within the graph are represented through the addition of new nodes

containing the variant sequences and edges connecting the nodes to existing nodes

within the graph. Deletions are represented through the addition of edges between

existing nodes omitting the deleted sequence (Garrison et al., 2018). Large genome

rearrangements, such as translocations, can also be encoded within a genome graph as

a deletion at one region and an insertion at another. However, a major limitation in

this method of representation is that both the insertion and deletion will be treated

as two separate events rather than as a single translocation (Goel et al., 2019). Large

structural variants and genome rearrangements have been shown to have a functional

impact on complex disease phenotypes in humans, therefore, accurate representation of

these complex variants is of utmost importance (Weischenfeldt et al., 2013).
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Due to increasing evidence that the use of graph-based reference structures pro-

vides incremental improvements in read mapping against the reference and allows for

greater accuracy in variant calling, there has been an increase in the development of

graph genome software since the variation graph toolkit (Garrison et al., 2018) was first

released. Each of the graph genome software implement novel algorithms for graph

construction, augmenting variants, indexing, querying for read alignments and variant

calling. Many of the ideas that led to the conceptualization of these software origi-

nated from a pilot study conducted by the Global Alliance for Genomics and Health

(GA4GH) which tasked various global teams to develop novel algorithms for genome

graph construction. This led to the creation of eight different pipelines that employed

differing methodologies such as de Brujin graphs, multiple genome alignments and k -

mer based HMM approaches. This was also the first comprehensive study that tested

the performance of read mapping and variant calling using graph genomes, showing that

they perform better than the linear reference genome (Novak et al., 2017). The various

methods for graph genome construction and genotyping utilised by each software are

detailed below.

1.3.1 Variation Graph Toolkit

The variation graph (vg) toolkit (Garrison et al., 2018) arose from the initial study by

GA4GH and was the first graph genome implementation to be released. The vg toolkit

was built with the purpose of creating, manipulating and utilizing variation graphs as

reference structures. Variation graphs are constructed using a FASTA file containing a

linear reference genome and a VCF (Danecek et al., 2011) file containing variants from

the population. However, vg does allow for variation graphs to be constructed using

methods similar to that of de novo assemblers in the absence of a reference genome. The

order of nodes within the variation graph represents the forward strand which is used to

form walks through the graph. Valid walks through the graph are made by leaving nodes

from the opposite side from which they were entered. The variation graphs constructed

by vg are bi-directed, thus nodes can also be entered from the opposite side in order

to read the sequence as reverse-complemented. Divergent nodes in the variation graph

indicate the presence of non-reference alleles at that locus. Variation graphs also have

the ability to display large-scale structural variants such as inversions, duplications and

copy number variation, especially useful within highly repetitive regions (Novak et al.,
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2017).

The variation graph is indexed using a Succinct Data Structure Library (SDSL) so

that it can be stored in a memory efficient manner and the GCSA2 index uses rank/select

dictionaries to allow for querying of the graph (Garrison et al., 2018). Rank/select

dictionaries are data structures that store the variation graph in a BWT suffix tree

along with the rank (the number of times that element occurred in the array) and

select (the position of the element) operations for each element after sorting (Raman

et al., 2007). Alignment of reads against the graph uses a seed and extend alignment

model. The GCSA2 index suffix tree is traversed to find seed matches, and seeds

in close proximity are clustered before carrying out local dynamic alignment of the

reads against the clusters. Super-maximal exact matches (SMEMs) are identified and

clustered together. Optimal alignments are identified using a Markov model to calculate

a maximum likelihood path. In reads where the MEMs do not extend across the full

read length, the Markov model is again applied to identify the highest-scoring chain of

MEMs. The Markov model rewards long SMEMs, and SMEMs with shorter gaps in

between, for the selection of candidate alignments. Once the maximum likelihood path

is obtained, a directed acyclic subgraph is extracted from the reference for each local

region and reads are aligned using a banded graph striped Smith-Waterman algorithm.

Finally, alignment scores are calculated for each mapping, taking into account the Phred

quality score and the mapping quality score (Garrison et al., 2018).

Variant calling can be carried out on aligned reads to identify any variation in

sequence from the graph. Before variant calling, reads with secondary/ambiguous map-

pings are filtered out. The graph is then extended into an augmented graph with novel

alleles from the alignments. The amount of read support at each position, also referred

to as pileup, is calculated. Variant calls are made by thresholding reads and filtering

out alleles with little to no read support. The variation graph is unique in that the

called variants can be incorporated back into the graph through editing operations in

vg without the need to construct a new variation graph (Garrison et al., 2018).

The vg toolkit has been shown to align both human and yeast genomes with greater

sensitivity and a lower false discovery rate in comparison to the linear reference genome

(Garrison et al., 2018). An advantage of the vg toolkit is that the variation graphs can
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be visualised, albeit only for short regions of the genome, which is greatly beneficial

in the understanding of how variant alleles are encoded within the graph. A major

limitation of the software is the huge computational memory requirements necessary

for generating the graph index. Index generation for the human genome was found to

require 1.5 Tb of memory, which may not be available to many users. In addition,

the GCSA2 index generation requires for the complexity of the graph to be reduced by

removing nodes with a degree of bifurcation higher than a specified threshold within

high complexity regions. As these regions are likely to be highly polymorphic, reducing

their complexity may impact on the accuracy of read alignments within these regions.

1.3.2 Seven Bridges Graph Genome Toolkit

The Seven Bridges Graph Genome toolkit (Rakocevic et al., 2019), also known as the

Graph Genome Pipeline (GGP), was also developed from the GA4GH study. It aims

to overcome the limitations faced by other graph genome software, which due to the

expensive time and memory requirements, limits graph construction to either very small

genomes or smaller portions of larger genomes. The Graph Genome toolkit provides a

computationally efficient method for whole-genome graph construction, read mapping

and variant calling.

A graph genome is constructed by storing sequences within vertices connected to-

gether via edges (see Figure 1.8). An adjacency list data structure is used to store all

the connected edges for each vertex. An adjacency list is an unordered array of linked

lists where the length of the array directly corresponds to the number of vertices within

the graph. Each vertex contains a linked list of references to other vertices with a shared

edge (Jain, 2015). The sequences are compressed into blocks based on their size and

stored in a buffer separately. The graph structure is serialized by storing the start and

end loci and a reference to the sequence for each edge. Storing the edge information

optimises the speed of graph manipulation as adding new variants involves the insertion

of new edges (Rakocevic et al., 2019).

A hash table is used to index the graph genome to allow for efficient querying

of sequence reads during alignment. The graph is traversed sequentially to generate

k -mers for all possible paths in the graph. Hash values are computed based on the
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11/02/2022, 13:35 Fig. 1: The graph genome architecture and computational resource requirements. | Nature Genetics

https://www.nature.com/articles/s41588-018-0316-4/figures/1 2/3

a, A graph genome is constructed from a standard linear reference genome FASTA file augmented by a set of genetic variants provided in VCF format. A graph genome can further be augmented with additional genetic variants in a second VCF file or, in the case of variants within variants, using Graph Genome Pipeline. The coordinate system of each constructed graph genome is backward compatible with that of the linear

reference genome. Each segment between vertices corresponds to an edge in the graph; inserting a variant to the graph can therefore add two (for insertions) or three (other variants) edges to the graph as the original edge is split into separate edges (as needed) at the start and end vertices of the new edge as well as the edge corresponding to the additional variant. The three graphs shown contain 1, 9 and 13 edges, respectively. A

rendering of these graphs constructed using Graph Genome Pipeline is shown in Supplementary Figure 1. b, A graph genome is indexed by creating a hash table with k-mers along all possible paths of the graph as keys and their corresponding graph genome positions as values. These k-mer positions can then be used as seeds for aligning sequencing reads against the graph. c, Computational resource requirements of building,

indexing and storing graph genomes on one high-coverage WGS sample. All tests were performed using a single thread on the Amazon AWS instance type c4.8xlarge. d, Runtime and memory usage for BWA and Graph Aligner using the global graph for ten randomly selected samples from the Coriell cohort. Both BWA-MEM and Graph Aligner were executed using 36 threads on the Amazon AWS cloud instance type

c4.8xlarge.

Figure 1.8: Seven Bridges Graph Genome Toolkit. This figure demonstrates a)

how the variation graph is constructed to incorporate variants and can be augmented

with additional variants and b) how the graph is indexed by generating k -mers of all

possible paths in the graph and storing the locations within a hash table. This figure

was published in Rakocevic et al., 2019.

sequence for each k -mer to obtain the index key for the hash table and its position is

stored as the value. Backward compatibility to the reference position is maintained in

indexing by asserting the position for any variant edge as having taken the reference path

through the graph leading up to the branching edge. Index positions containing many

values indicating very common sequences are initially removed to seed the more unique

sequences first. Sequence reads are searched against the graph by generating hash

indexes for k -mers within the reads and querying the hash table to obtain a list of all

k -mer loci. Candidate match regions are identified by using a sliding windows approach

to locate for loci clusters corresponding to the list. Clusters are scored by matching

the positions of k -mers in the sequence read against the positions in the graph and any

cluster exceeding the threshold score is identified as a seed for alignment. First, gapless

local alignment of candidate seeds is carried out using the graph-aware bit-parallel

approximate (BPA) algorithm, a fast approximate string matching algorithm. The BPA

algorithm parallelises computation by encoding the differences between two strings using

bit-vector operations (Hyyro, 2005) based on the Levenshtein distance, the minimum

number of single-character edit distances required to transform one string into another

(Levenshtein, 1966). If k -mers at the ends of a sequence read are not present within
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the graph index, suggesting the presence of insertions or structural variants, the graph

region is extended on either side of the read. If the BPA algorithm is unable to align

a read with fewer than four mismatches, a custom SIMD-optimised Smith-Waterman

algorithm that permits gapped alignment is used to re-align the read (Rakocevic et al.,

2019).

Variants are called by utilising the CIGAR strings from the BAM file to identify re-

gions with candidate variants using 300 bp windows. Overlapping reads are compressed

into a de Bruijn-like graph and candidate haplotypes are derived by finding variants

with the largest read support and scoring them using pair Hidden Markov Models.

The graph reference genome is used to give variants within the graph a higher prior

probability in order to overcome reference bias (Rakocevic et al., 2019).

The Graph Genome Pipeline was shown to improve read alignment and the accuracy

of variant calling, especially across large-scale structural variants and their break-point

regions when compared against the linear reference genome for human genomes (Rako-

cevic et al., 2019). However, the toolkit is inaccessible to many users due to its hardware

requirements, as the Docker container files needed to run the software require a Linux

operating system with AVX2 instruction set processing capabilities. Another limitation

is that the graph is constructed in memory, therefore, cannot be accessed or visualised.

As a result, the accurate incorporation of variants within the graph cannot be easily

confirmed.

1.3.3 BayesTyper

The BayesTyper (Sibbesen et al., 2018) software provides another variant-aware graph

genome method that focuses on improving both the sensitivity and accuracy of geno-

typing. The significant loss of information due to the lack of read alignments against

variant-dense regions makes genotyping unreliable, especially for large-scale structural

variants. BayesTyper, therefore, takes a two-stage approach to unbiased genotyping

which requires the initial alignment of sequence reads against a linear reference genome

(see Figure 1.9). A combination of variant callers (GATK HaplotypeCaller for detect-

ing SNPs (McKenna et al., 2010), Platypus for medium-sized variants (Rimmer et al.,

2014) and Manta for large-scale indels (Chen et al., 2016)) are used to generate candi-
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date variants from the alignment which are subsequently combined with known variants

to create a database of variant candidates. The prior variant database and the linear

reference genome form a variation graph against which the sequence reads are realigned

to allow for accurate genotyping (Sibbesen et al., 2018).

K -mer profiling is carried out across the sequence reads using the KMC3 program

(Kokot et al., 2017) to count k -mers of length k=55, thereby allowing k -mers from

an individual to be compared against k -mers from candidate variants in the database.

Variants whose breakpoints are less than k -1 nucleotides apart, and therefore share a

k -mer, are clustered together. A variant graph is constructed for each variant cluster

based on the candidate variant database and the linear reference genome, where the

variant sequences are represented as divergent nodes at each locus. Each variation

graph is used to generate candidate haplotypes, based on k -mer occurrences, using

the n-best heuristic algorithm. The n-best search algorithm uses similar principles to

the Viterbi algorithm to identify the n most likely paths (Chow and Shwartz, 1989)

instead of a single maximum likelihood path. Prior to searching, the ntHash algorithm,

developed specifically to hash consecutive k -mers within sequence reads (Mohamadi et

al., 2016), is used to construct bloom filters from the k -mer profiles. Bloom filters are a

probabilistic data structure that informs whether a given k -mer is definitely absent or

may be present within a sequence. The bloom filters are used to rank the paths within

the graph identified with the n-best algorithm using a two-tier scoring system. First,

the paths are ranked by the number of k -mers present within the path that are also

seen in the bloom filter then secondly ranked by the number of nodes observed within

a path that is not present in a higher ranking path, with the rankings used to select

the 16 best paths. The graph is then traversed to rank the paths at each node before

the best paths that cover the greatest number of nodes are merged to generate a set of

candidate haplotypes for each cluster and a read k -mer count table of each haplotype

k -mer for each individual (Sibbesen et al., 2018).

As BayesTyper was created mainly for genotyping human genomes, by default the

software aims to identify diplotypes from the read k -mer counts. However, the ploidy

level can be specified for haploid organisms. The genotype is inferred by modelling

an individual’s diplotype as being drawn from a population of haplotypes and there-
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11/02/2022, 13:44 Fig. 1: BayesTyper. | Nature Genetics

https://www.nature.com/articles/s41588-018-0145-5/figures/1 1/2
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Fig. 1: BayesTyper.

From: Accurate genotyping across variant classes and lengths using variant graphs

a, A variant graph is constructed from the set of input variants and the reference genome, where nodes represent sequences (reference or variant allele sequences) and edges represent possible genomic connections between the node sequences. b, All k-mers in the sequencing reads are tabulated for each individual using KMC3 (circles represent k-mers; only a single k-mer from each allele combination is shown). Haplotype

candidates and their corresponding k-mer profiles are then generated by traversing the variant graph using an n-best algorithm, where the score is based on the individuals’ k-mer counts. c, Genotype inference is based on a generative model of the sequencing process. First, frequencies for all haplotype candidates are sampled from a sparse-prior distribution. A diplotype (that is, haplotype pair) is then drawn independently for

each individual conditioned on the population frequencies. Finally, conditioned on the diplotype, each individual’s set of observed k-mer counts is modeled as generated by combining counts from the individual’s haplotypes with counts from a noise process.
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Figure 1.9: BayesTyper. This figure illustrates the methods utilised by BayesTyper

for inferring genotypes. a) The variation graph is constructed using known variants

and a prior variant database. b) k -mer profiling is carried out on the sequence reads

and candidate haplotypes are identified by scoring based on the k -mer counts. c) The

genotype is inferred under the assumption of a diploid genome by taking into account

the k -mer count for that individual and noise k -mer counts. This figure was published

in Sibbesen et al., 2018.

fore expects only a subset of the haplotypes to be present within the population. The

expected sparsity in the haplotype frequency is modelled by applying a sparse prior

to the Dirichlet distribution. The population frequency is used to draw diplotypes for

each individual by modelling under the negative binomial distribution as the observed

k -mer counts being generated from a combination of the sampled diplotype, non-variant

regions between the variant clusters and noise due to sequencing errors. The final geno-

type is inferred by calculating the posterior probability distribution for the diplotypes

based on the k -mer count using Gibbs sampling (Sibbesen et al., 2018).

The major limitations of using the BayesTyper pipeline when working with yeast

genomes is that it does not support genotyping for individuals with a ploidy level greater

than two. Consequently, it can only be used to genotype haploid or diploid strains,

limiting its functionality. In addition, BayesTyper cannot be used for variant discovery,

making it redundant when aiming to identify novel variants or genotype species with a

lack of prior variant information.
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1.3.4 Graphtyper

Graphtyper is another software that proposes a different method of graph construction

to allow for improved sensitivity in both genotyping and variant discovery. As with

BayesTyper, Graphtyper requires the initial alignment of sequence reads against a linear

reference genome and due to their large size, only works with small portions of the

reference genome rather than the whole genome. It was created mainly for the purpose of

genotyping human genomes. However, in order to reduce mapping bias and increase the

accuracy of alignments around indels, sequence reads are realigned against a variation

graph. This enables true variants to be distinguished from sequencing errors within

reads, reducing the discovery of false positive variants (Eggertsson et al., 2017).

The pan-genome variation graph is constructed using the linear reference genome

and known variants for the specified region (see Figure 1.10). Any variants with over-

lapping reference alleles are merged in the initial stage before constructing the variant

nodes and storing the starting positions of the variant allele. The reference nodes are

constructed between adjacent variant nodes and the starting positions are again stored.

The nodes are connected to form a directed acyclic graph containing the sequence paths

for each genome. The graph is indexed by generating k -mers of length k=5 for all paths

through the graph. The starting and ending positions in the reference genome and the

id of overlapping variant nodes are also stored (Eggertsson et al., 2017).

Initial alignment against the linear reference with BWA is utilised to report the

sequence reads that aligned to that specific region. These reads are realigned against

the variation graph by generating consecutive k -mers across the sequence reads and

checking against the index table to ensure the k -mers are present. Seeds are identified

based on k -mer matches in the index lookup and extended across adjacent k -mers that

also matched. The longest seeds are extended by using a search algorithm to determine

the path with the fewest mismatches. If a seed cannot be extended with 12 or fewer

mismatches, the process is repeated by re-extracting k -mers. A single mismatch is

allowed in each k -mer until the longest seed is found and realigned against the variation

graph (Eggertsson et al., 2017).

Variants that are located within 5 bp distance of each other are clustered together

and each individual cluster is genotyped independently. For each candidate haplotype,
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11/02/2022, 13:52 Figure 3: Graphtyper's sequence alignment algorithm. | Nature Genetics

https://www.nature.com/articles/ng.3964/figures/3 2/2

(a) An example reference sequence and its known variation. All overlapping variants are merged. (b) Constructed pangenome reference graph. We draw the path of the reference sequence as the topmost path. (c) The index data structure with k = 5. 5-mers in the graph are mapped to a list of its start position, end position, and a variant ID that it overlaps, if any. (d) Four k-mers are extracted from a sequence read. Each k-mer

overlaps its neighbor k-mer by one character. (e) An example lookup of the k-mers from the index data structure from c. (f) All extracted k-mers with a single substitution. (g) Seeds are generated from matches in the index lookup. (h) Final graph alignment after extending the longest seed.
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Figure 1.10: Graphtyper. This figure is an overview of the Graphtyper pipeline. a)

Overlapping variants are merged together. b) A variation graph is constructed. c) The

graph is indexed by generating k -mers of length 5 and storing the starting and ending

positions. d) K -mers are generated from the sequence reads. e) The k -mers are queried

against the index table. f) k -mers with a single base substitution are extracted. g) Seeds

that match against the index table are identified. h) The longest seeds are extended to

carry out read alignment. This figure was published in Eggertsson et al., 2017.
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the relative likelihood of observing a sequence read within the population given the hap-

lotype is estimated under the assumption that reads from each sample are independent

of one other. The relative likelihood is estimated based on the base quality, the map-

ping quality of the sequence read and whether the reads are soft-clipped. The genotype

is then inferred based on the haplotype with the highest likelihood. Any unobserved

haplotypes are also removed from the graph to reduce graph complexity. The reference

sequence is extended by 50bp on either side and local realignment of the read is carried

out using a banded semi-global version of Gotoh’s algorithm. Gotoh’s algorithm is a

dynamic variation of the Smith-Waterman algorithm that optimises affine gap scoring

to produce a single optimal alignment (Gotoh, 1982). Any observed differences in the

local alignment are determined to be variants and novel variants are called if at least

five observations with an alternate allele frequency of 0.2 are made (Eggertsson, 2017).

Sequence reads are selected for realignment against the variation graph based on

the regions within the linear reference to which the reads aligned. This means that

Graphtyper shares certain limitations faced by the linear alignments. There is still a

loss of information from reads that are completely unable to align against the variant-

dense regions of the linear reference, as the genomic region for these reads will not be

reported. Unlike BayesTyper and the Graph Genome Pipeline, the variation graph is

not created in memory but similarly the graph cannot be accessed for visualisation. In

addition, it requires several repetitions of the pipeline to be run in order to construct a

variation graph across the whole genome.

1.3.5 Advantages of Variation Graphs as Reference Structures

There are several advantages to using variation graphs as reference structures as they

are able to overcome many of the limitations of a linear reference genome. Variation

graphs could be used for genomic analyses in species where there is yet to be a refer-

ence genome as graphs can be constructed without a reference. The presence of prior

variants within the variation graph can mitigate reference allele bias in mapping. Vari-

ation graphs can also increase the proportion of reads that are able to map against

the reference, especially within the hypervariable regions where there is a large number

of non-reference alleles. The increased ability to map against polymorphic regions is

essential when studying yeasts as they display a great level of intragenic variation. Vari-
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ation graphs have also been found to produce less ambiguous mapping as the inclusion

of variants enabled reads to distinguish between true mapping location and secondary,

paralogous locations (Novak et al., 2017).

1.4 Introduction to Yeast

Yeasts are primarily single-celled micro-organisms, typically ranging from 4-6 µm in size,

that belong to the kingdom Fungi under the domain Eukaryota. Yeasts display a high

level of taxonomic diversity and can be placed within two different phyla: Ascomycota

and Basidiomycota, which together form the subkingdom Dikarya. Ascomycota con-

tains the greatest number of fungi including the true yeasts, also known as the budding

yeasts (see Figure 1.11). Most species of yeast undergo asexual reproduction by mitosis

to form new yeast cells through either budding e.g. Saccharomyces cerevisiae or fission

e.g. Schizosaccharomyces pombe. Yeasts are predominantly unicellular but favourable

conditions can cause rapid budding to form a string of connected buds known as the

pseudohyphae (Kurtzman and Fell, 2006). During stressful conditions under nutrient

depletion, haploid cells are unable to survive therefore yeasts mate and reproduce sex-

ually through meiosis. The resulting diploid cells sporulate to form ascopores which

contain from four to eight haploid cells encapsulated within the sac-like ascus (Neiman,

2005).

Over 1,500 species of yeasts have been identified to date from a diverse range of

natural habitats such as salt water, plant leaves and soil. Yeasts are also found on skin

surfaces or inhabiting the genitourinary and gastrointestinal tracts of animals where

they exist commensally as a part of the gut microbiota. Even though most species of

yeast are non-pathogenic, certain Candida species are opportunistic pathogens which

cause fungal infections when the host becomes immunocompromised (McManus and

Coleman, 2014). Candida albicans is the most clinically relevant of the yeast pathogens

as it has the highest prevalence in cases of both systemic (Stappers and Brown, 2017)

and oral (Thompson et al., 2010) candidiasis.

Yeasts were one of the earliest organisms to be domesticated due to their ability to

ferment sugars. Yeasts can be either obligate aerobes that require oxygen or facultative

anaerobes that are able to switch between the respiratory pathways. They utilize car-
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Figure 1.11: Highly Profiled Yeast Species. This figure shows the relative phyloge-

netic relationship across highly profiled yeast species since the divergence of Ascomycota

from Basidiomycota approximately 550 million years ago. This figure was published in

Piškur and Langkjaer, 2004.

bohydrates as an energy source during fermentation to convert into carbon dioxide and

alcohol in the absence of oxygen. The process of fermentation has been used for cen-

turies in baking where yeast is a leavening agent and in brewing for production of beer

and wine. Saccharomyces cerevisiae is the most commonly used species of yeast due to

its ability to adapt to different environments and metabolise a range of carbohydrates.

Yeasts are highly important organisms that have had a significant impact on human

history. The domestication of yeasts and the ability to control their environment has

allowed for them to be exploited in many fields of industrial biotechnology. Hence,

understanding their physiological properties is essential for bioindustrial development.
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For example, Yarrowia lipolytica, a dimorphic ascomycetous yeast species, has the abil-

ity to degrade hydrocarbons and aromatic compounds (Zinjarde et al., 2014) giving it

environmental applications in waste treatment and crude oil bioremediation (Bankar et

al., 2009). Another environmental impact of yeast fermentation is the production of

ethanol from feedstock in the biofuel industry to reduce crude oil consumption (Azhar

et al., 2017). Yeasts also play a significant role in biomedical research. Saccharomyces

cerevisiae is used as the model organism on which to study cellular mechanisms in eu-

karyotes. The conservation of genes between humans and yeast has enabled discovery of

novel proteins and yeast has been used as a vector for non-native proteins. S. cerevisiae

is also the most commonly used species in the various bioindustries, therefore, its func-

tional characterization can improve genomic research and optimize bioindustrial pro-

duction of a range of useful chemicals.

The S. cerevisiae genome is small and highly compact, with genes accounting for

approximately 72% of the whole genome. It is approximately 12.1 Mb in length and

organized into 16 chromosomes consisting of 6,275 genes and an extranuclear mito-

chondrial genome. An estimated 23% of the protein-encoding genes in S. cerevisiae are

found to have human homologs (Saraswathy and Ramalingam, 2011). The S. cerevisiae

genome also contains extensively repeated regions which are difficult to sequence. These

highly repetitive sequences such as the ribosomal DNA, retrotransposons and subtelom-

eric regions, are functionally important and therefore can be used to study evolution and

variation across the yeast species. The S. cerevisiae haploid laboratory strain, S288c,

was developed through numerous deliberate hybridisation events, carried out by both

Carl Lindegren and Robert Mortimer, to be utilised for the isolation of biochemical

mutants. It was the first S. cerevisiae strain to be sequenced and thus, it is used as the

reference genome to guide the alignment of sequence reads (Engel et al., 2014).

The National Collection of Yeast Cultures (NCYC) contains a highly extensive col-

lection of yeasts that have been isolated from a range of geographical locations across

the globe. The NCYC was established in 1938 and has acquired over 4,000 strains

of yeast, with around 25% of the collection comprising of S. cerevisiae strains, over

the eight subsequent decades. The collection contains largely non-pathogenic species

of yeasts involved in a whole range of functions such as brewing, baking, genetically-

defined strains for biomedical research and strains that can be selected based on specific
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character traits. The NCYC genome sequencing project has enabled the genomes of ap-

proximately 1,000 strains, including around 400 S. cerevisiae strains, to be sequenced.

There is a wealth of information contained within the NCYC strains that could be

further explored through functional analysis. Several S. cerevisiae strains within the

collection have already been highly profiled yet characterisation of the genetic variants

amongst many of the strains is still required to improve our understanding of the species.

1.5 Aims and Objectives

The fundamental aim of this project is to establish computational methods that could

be utilised to optimise the accuracy of variant prediction in yeast genomes. Continuous

efforts have been made to allow for increased precision in the identification of genetic

variants from next-generation sequencing data by improving upon the accuracy of ex-

isting methods. However, despite these efforts, the alignment of sequence reads against

the linear reference genome has been recognised to impair the accuracy of all subse-

quent analyses. As such, this project aims to compare whether the use of a pan-genome

variation graph reference structure can improve read mapping. The initial objective is

to understand how variation graphs are constructed and to compare the quantity and

quality of alignments against the linear reference genome using both NCYC and third-

party S. cerevisiae strains. A few different implementations of variation graph software

have been released, however, there is yet to be a study that extensively compares the

performance of these software. Thus, another key aim of this project is to carry out a

comprehensive study of the performance of the mapping and variant calling algorithms

amongst four graph genome software against the linear pipeline. The final aim is to ex-

plore read filtering on alignments as a novel technique to remove false positive variants

prior to variant calling.

Chapter 2 focuses on the construction of variation graphs using the vg toolkit to

understand how variant alleles are embedded within the graph. It also examines how

the variation graph can be used to indicate the degree of intragenic variation within

a population. The quantity and quality of alignments against the variation graph are

assessed in comparison to the linear reference genome. A simulation study is carried

out to understand how various factors impact read mapping ability in vg. Chapter 3

looks at developing the FAT-CIGAR software to obtain exact alignment information for
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graph-based and linear read mappers. It examines the mapping quality in alignments

from vg, the Graph Genome toolkit and BWA based on sequence identity scores gener-

ated from the FAT-CIGAR string. The variant calling accuracy across the four graph

genome software is assessed by comparing the precision, recall and F1 scores across 1,000

simulated datasets. Chapter 4 highlights the FAT-CIGAR toolkit as a novel method

of variant filtration that removes false positives by anchoring read ends against the ref-

erence sequence by a specified number of bases. It also introduces the sim_genomes

program for genome simulation with greater control over variant induction. It compares

the performance of the filtered reads across simulated genomes with differing ratios of

SNPs and indels to identify the optimal read filtering. It also discusses the potential to

remove false positive variants from real datasets, examining three NCYC strains whose

genomes were sequenced in duplicate. Chapter 5 provides an overview of the findings in

this project and discusses potential future work that can further optimise the accuracy

of variant prediction.
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Chapter 2

Transitioning Towards the Use of

Variation Graphs as Reference

Structures

2.1 Introduction

It has been proposed that read mapping to a graph-based reference is more accurate than

to a linear reference (Novak et al., 2017, Garrison et al., 2017). The aim of this chapter

is therefore to understand how variation graphs are constructed by the graphical vg

software using haploid S. cerevisiae strains and to visualise how variant alleles within a

strain population are represented within the resulting variation graph. It will highlight

how the complexity of the variation graph can provide an indication of the level of

intragenic variation within each chromosome by looking at the node to sequence length

ratio. The performance of the vg mapping algorithm will be evaluated against the

conventional mapper, BWA, both in terms of the quantity of mapped reads and the

quality of alignments which will be determined by the alignment scores. The differences

in the scoring systems employed by both algorithms will be explored identifying the

need for a suitable metric to determine alignment quality from different software. The

vg mapping algorithm will be further studied by looking at factors that impact read

mapping by simulating reference genomes of varying lengths and mapping sequence

reads with different types and size of mutations and assessing the quantity of mapped

reads.
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2.2 Methods

2.2.1 Constructing Variation Graphs

The following eight Saccharomyces cerevisiae strains were selected from the National

Collection of Yeast Cultures (NCYC) strain collection in order to gain more in-depth

understanding about constructing variation graphs using the vg v1.5 software (Gar-

rison et al., 2018): NCYC78, NCYC88, NCYC93, NCYC97, NCYC214, NCYC221,

NCYC222 and NCYC230. All of the strains were chosen due to their high sequence

read quality and were haploids, thereby ensuring that differences in ploidy levels did

not affect the construction of the variation graph. The strains were sequenced using

an Illumina HiSeq sequencer as part of a large-scale sequencing project carried out by

the NCYC. The raw sequencing reads of the NCYC datasets were pre-processed by Dr

Jo Dicks. First, BBTools v38.47 (Bushnell, 2014) with the clumpify option was used

to remove PCR duplicates. Second, regions of low quality and any remaining adapter

sequences were removed from the de-duplicated reads using Trimmomatic v0.32 (Bolger

et al., 2014; default parameters and adapter sequence files relevant to the sequencing

library used for each strain). Third, FreeBayes v1.2.0-4-gd15209e (Garrison and Marth,

2012) with default parameters was used to predict sequence variants, with the resulting

VCF files filtered for binary, high-quality (Q>30) SNPs in R v3.1.1 (R Core Team,

2017) using custom scripts. As vg requires a single VCF file for graph construction,

the eight VCF files were merged into a single multi-sample VCF file using the GATK

v3.8-0 CombineVariants tool (McKenna et al., 2010). The multi-sample VCF file was

compressed into BGZF format with the bgzip program and indexed using the Tabix

program (Li Heng, 2011).

The variation graph was constructed using the vg construct function with the S288c

S. cerevisiae reference FASTA file and the multi-sample VCF file as input (see Figure 2.1

for a summary of the methods utilised in vg). The -R parameter was specified to limit

graph construction to each specific chromosome due to the large memory requirements

for whole-genome graph construction in vg, producing 17 variation graphs for each of the

16 chromosomes and the mitochondrial genome. The paths in each graph were checked

to ensure they contained the correct chromosome using vg paths and validated using the

vg validate function to ensure the graphs did not contain errors such as unconnected

nodes and orphaned edges. The 17 chromosome graphs were then passed through vg

ids to generate a joint id space across the nodes, ensuring they were treated as if they
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were one single graph. The XG and GCSA2 (Generalized Compressed Suffix Array)

indexes, which store the graph information succinctly, were generated with vg index.

The XG index contains the structure of the graph but does not conserve the actual

sequence. The GCSA2 index contains a suffix array that allows querying of specific

sequences in the graph which is necessary for sequence read mapping. Before GCSA2

index generation, the computational complexities of the graphs were reduced by pruning

them to remove any edges that induced more than 4 bifurcations within a sequence of

length 16 bp. This was achieved by using the vg mod function with the parameters -pl

16 -e 3. The resulting subgraphs and orphaned edges were stripped out using vg mod

with the parameters -S -l 32. These lowered complexity graphs were overlayed onto a

graph containing only the S288c reference sequence using vg mod with the parameters

-N -t 32, to ensure there were no missing id spaces. De Bruijn graphs were constructed

from the reduced complexity graphs with k -mers of length k=16 using vg kmers and

provided as input for GCSA2 index generation.

A sequence dataset derived from the tetraploid S. cerevisiae ale strain, NCYC1006,

was chosen to be mapped against the haploid variation graph to evaluate how well the

vg mapping algorithm aligns reads when there are differences in ploidy level between the

strain and the graph. Read mapping against the variation graph was carried out using vg

map with the NCYC1006 interleaved FASTQ file (containing both read pairs in a single

file), the XG and GCSA2 index as input. The subsequent read alignment information

from the mapping procedure was written out to a GAM (Graph Alignment/Map) file, a

highly-detailed vg equivalent of the BAM file produced by BWA (Li and Durbin, 2009).

As the GAM file format is binary, read information and their corresponding alignment

scores were parsed out into human-readable CSV file format using the jq v1.4 (Dolan,

2014) software. The CSV file was loaded into the R v3.4.2 software and a histogram

was utilised to study the distribution of alignment scores and to analyse how well the

reads mapped.

2.2.2 Comparison of Mapping Efficacy Between Linear and Graph-

based Approaches

Here, we aimed to replicate previous studies comparing the efficacy of read mapping

when using variation graphs, both when variants are included and excluded (the latter
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Figure 2.1: vg Workflow. This figure displays the workflow of the commands utilised

for variation graph construction, indexing, read mapping and variant calling in vg.
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also referred to as a reference/flat graph), in comparison to the traditional linear ref-

erence (Garrison et al., 2018, Jones, 2016). Nineteen haploid S. cerevisiae strains (see

Table 2.1 for information pertaining to the strains) were selected from a study comparing

genome content variation between S. cerevisiae and its closest wild relative S. paradoxus

(Bergstrom et al., 2014) as these strains were also part of the Saccharomyces Resequenc-

ing Project (SGRP), a collaborative project between the Wellcome Sanger Institute and

the Institute of Genetics, University of Nottingham (Carter, 2008). The sequence files

for the 19 strains, hereafter referred to as the Bergstrom strains, were downloaded from

the SGRP website (http://www.mo-seslab.csb.utoronto.ca/sgrp/download.html). The

vg software was used to generate the Bergstrom variation graph and the S288c reference

graph and for the linear pipeline, the BWA v0.7.17 (Li and Durbin, 2009) software was

used to carry out mapping against the S288c reference genome.

The S288c reference genome was used to generate the reference graph without any

variants. Prior to graph construction, sequences pertaining to the mitochondrial chro-

mosome were removed from the reference FASTA file to allow for a fair comparison as

the VCF file containing variants from the Bergstrom strains did not include variants

for the mitochondrial chromosome. The mitochondrial genome sequence was identified

by searching for sequence headers containing the ‘chrmt’ label and any corresponding

sequences were manually removed from the reference FASTA file. The reference graph

was constructed with just the reference FASTA file using the -R parameter to limit

graph construction to each chromosome. The same methods as described in Section

2.2.1 were utilised for graph construction and indexing except that the absence of com-

plex regions within the graph meant that pruning was not necessary when building the

GCSA2 index. All 19 strains were mapped against the reference graph and the resulting

alignment GAM files were parsed using jq. The read sequences and alignment scores for

each strain were obtained to evaluate how well the reads mapped against the reference

graph.

The variation graph containing the S288c reference genome plus variants from the

19 S. cerevisiae strains was created using a multi-sample VCF file downloaded from the

SGRP laboratory website. The indexed VCF file and the mitochondrial chromosome-

free reference FASTA file were used to construct and index the variation graph, again

limiting graph construction to each chromosome. The Bergstrom strains were mapped
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Strain Subpopulation Strain Habitat Location Raw Read Depth

DBVPG1373 Wine/European Soil Netherlands 32

DBVPG6044 West African Bili Wine West Africa 35

L1374 Wine/European Wine Chile 26

SK1 Mosaic Soil USA 56

UWOPS83-787.3 Mosaic Opuntia spp. Bahamas 627

W303 Mosaic Laboratory USA 48

Y55 Mosaic Grapes France 38

YJM978 Wine/European Clinical Italy 32

YPS128 North American Quercus alba USA 64

BC187 Wine/European Wine USA 23

DBVPG1106 Wine/European Grapes Australia 43

DBVPG1788 Wine/European Soil Finland 30

DBVPG6765 Wine/European Litchi fruit Indonesia 46

L1528 Wine/European Wine Chile 49

UWOPS03-461.4 Malaysian Bertram Palm Malaysia 32

UWOPS87-2421 Mosaic Opuntia spp. Hawaii 821

Y12 Sake Sake Japan 44

YJM975 Wine/European Clinical Italy 33

YJM981 Wine/European Clinical Italy 16

Table 2.1: Bergstrom Strains. Strain accession ID, subpopulation, habitat, country

of origin and estimated sequencing coverage for the 19 strains within the Bergstrom

strain set (Bergstrom et al., 2014).

against the variation graph and as for the S288c reference graph, the alignment infor-

mation was parsed out of the GAM file to evaluate how well the reads mapped when

known variants were incorporated within the reference.

In order to carry out read mapping using the traditional linear approach, the S288c

mitochondrial chromosome-free reference FASTA file was again used as the reference

genome and indexed with bwa index before mapping with the bwa mem algorithm. Ad-

ditionally, prior to mapping, the default parameters for scoring alignments in BWA were

checked against the scoring system employed by vg in order to ensure that the alignment

scoring was identical, allowing mapped reads from both software to be compared. As

the scoring for alignments used by both software was identical, the default parameters
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were kept for the read mapping of all 19 strains. The scoring system utilized for read

alignments were as follows:

• 1 score for every successful base match.

• 4 score penalty for mismatch.

• 6 score penalty for opening gaps.

• 1 score penalty for each base in gap extension.

The read alignments for each strain were written out to SAM (Sequence Alignment

Map) files (Li et al., 2009). The read sequences and the alignment scores were parsed

out of the SAM file using SAMtools (Li et al., 2009) and the bioawk (Li, 2017) tool was

used to reverse complement read sequences when flag 16 was present in the SAM file

indicating the read was matched to the reverse strand.

The R software was utilised to analyse how the alignment scores differed across

mapped reads, as identified by read name, from the vg reference graph, variation graph

and the linear reference genome firstly to compare graphical and linear approaches and

secondly to explore whether the addition of known variants to the reference graph had

any impact on read mapping. Common reads that mapped, i.e. had an alignment score

greater than 0 against both the vg reference graph and the linear reference, were identi-

fied and duplicate read sequences were removed. The alignment scores were compared

to identify reads in which the difference in alignment scores between the two approaches

was greater than two. The same method was repeated for reads that mapped against

both the vg variation graph and the linear reference.

2.2.3 Creating a Pan-Genome Variation Graph

The variation graph constructed in Section 2.2.2 required VCF files obtained by map-

ping reads to a linear reference, which seemed counter-intuitive. A pan-genome variation

graph was therefore created to remove this requirement. Instead, variants were called by

mapping haploid S. cerevisiae datasets against the reference graph. The called variants

were then folded back into the flat graph and this process was repeated in an iterative

fashion to incorporate the majority of variants present within the S. cerevisiae popu-

lation. The pan-genome variation graph was used to further evaluate the capacity for

read mapping to improve with the continuous incorporation of additional variants.
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In the initial step, the reference graph was constructed again from the whole S288c

reference genome using the FASTA file containing the complete reference sequence in

order to include the mitochondrial chromosome. The reference graph was constructed

using the same method as previously outlined and sequence reads from the 19 Bergstrom

strains were re-mapped against the reference graph. The read alignment information

was parsed from the GAM files using jq.

Variants were called from the read alignments against the reference graph in a multi-

step process. As the vg software cannot handle variant calling on whole genomes, GAM

index directories (RocksDB databases that allow for querying of reads) were generated

for each strain with vg index. The GAM file for each strain was split up into 17 per-

chromosome chunks based on the GAM index using the vg chunk function. For each

strain, any ambiguous or secondary read mappings were filtered out of the GAM file

using vg filter with the recommended parameter -r 0.90 -afu -s 2 -o 0 --defray_-

ends 999. The vg pileup function was used to calculate pileup for each position in

the graph by thresholding based on read support before calling variants with vg call

to produce per-chromosome VCF files for each strain. The VCF files were normalized

using the Vt v0.5 software (Tan et al., 2015) to allow for a more unambiguous, unique

and concise representation of the variants. First, the decompose function in Vt was

used to break down multi-allelic variants into bi-allelic variants for each chromosome

and this was passed into the decompose blocksub function to further decompose bi-

allelic block substitutions into its constituent SNPs and indels. The decomposed VCF

files were normalized in order to make the variants parsimonious (represented in as

few nucleotides as possible without reducing the length of the allele to 0) and left-

aligned (shift the variant to its left-most position while keeping the length of all its

alleles constant). The VCF files were sorted using VCFtools v0.1.15 (Danecek et al.,

2011) and the GATK CatVariants tool was utilized to concatenate the per-chromosome

VCF files into a single VCF file for each strain. The strain VCF files were validated

using the GATK ValidateVariants tool to ensure that they were in the correct format

and did not contain errors. The per-strain VCF files were merged into a multi-sample

VCF, compressed and indexed to be used to construct the pan-genome variation graph

consisting of 20 S. cerevisiae strains, including the S288c reference genome.

A further 10 haploid S. cerevisiae strains were selected for mapping from the NCYC
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database. The strains were chosen such that they were deposited across many decades

and from various environments in order to create a diverse population strain set. The

following NCYC strains were selected: NCYC78, NCYC97, NCYC430, NCYC672,

NCYC1406, NCYC1415, NCYC2517, NCYC2855, NCYC3493 and NCYC3630. The

strains were mapped against the reference graph, the pan-genome variation graph and

the linear reference genome to compare the efficacy of read mapping across the three

methods. The read sequences and alignment scores were parsed out from the GAM and

SAM files. Any secondary mapping, chimeric reads and unmapped reads were removed

from the SAM files prior to parsing out alignment scores as the vg GAM file only con-

tains primary alignments. R was utilised to compare the differences in mapping across

the three reference structures.

2.2.4 Differences in Mapping Raw and Trimmed Sequence Reads

The FastQC v0.11.7 (Andrews, 2010) software was used to carry out quality control

analysis of the 19 Bergstrom strains as comparison of read mapping indicated low se-

quencing quality within the raw sequence reads. Quality control analysis revealed that

all of the strains, with the exception of UWOPS83-787.3 and UWOPS87-2421, had poor

sequence read quality and indicated the presence of adapter contamination within the se-

quence reads. The Trimmomatic v0.32 software was used to trim the Bergstrom strains

in order to remove any adapter sequences. As the Bergstrom strains were sequenced

using the Multiplexed PCR-free Illumina sequencing library (Kozarewa et al., 2009),

the adapter sequences for both paired-end and multiplex adapters were obtained from

the Illumina adapter sequence document (Illumina, 2019) to create a custom adapter

FASTA file containing 11 adapter sequences used as input for Trimmomatic with the

default parameters.

The Bergstrom pan-genome variation graph was re-constructed from the trimmed

sequence reads using the same methods as detailed in Section 2.2.3. As with the raw

reads, the trimmed sequence reads from the 19 Bergstrom strains and the previously

chosen 10 NCYC strains were mapped against the S288c linear reference genome with

BWA, the S288c reference graph and the Bergstrom variation graph to evaluate how

differences in read quality affect the ability of sequence reads to align against a refer-

ence structure. The GAM files containing alignments against the reference and variation

70



graphs were surjected to BAM format using the vg surject function to allow for compari-

son across the different software. A surjected alignment refers to an alignment against a

graph-based reference genome that is represented as if it were aligned against the linear

reference genome. Conversely, a non-surjected alignment refers to an alignment against

the graph itself. The R software was used to evaluate the percentage of mapped reads

against the different reference structures for all 29 strains. As fewer sequence reads

from NCYC78 and NCYC97 were found to align against all three reference structures,

with the raw reads aligning better against the vg graph-based references, sequence reads

that were discarded during trimming were identified using the dedupe.sh script from the

BBMap v38.05 (Bushnell, 2014) suite, mapped against the three reference structures

and the percentage of mapped reads were analysed in R.

2.2.5 Comparison of Alignment Scoring by vg and BWA

In order to be able to select the read mapper that generates optimal alignments for

a given dataset, the alignments produced by the various mappers can be compared in

different ways. The sensitivity of the read mapping algorithm can be determined easily

by the number of sequence reads it is able to align against the reference. Although,

greater sensitivity in mapping does not always necessarily mean that the accuracy of

the alignment has improved. In terms of the quality of the alignment, most mapping

algorithms produce a mapping quality score for each aligned read. The mapping quality

score estimates the probability that a read is not aligned to its true location by taking

into account the base quality scores at mismatched bases (Li et al., 2008). However, as

the mapping quality scores are calculated differently by different mappers, it cannot be

used to cross-compare alignment quality. Alignment scores also provide an indication of

alignment quality and may be utilised for comparison if the different mapping algorithms

employed the same scoring systems. If there is discordance in alignment scoring, an

alternative approach may be to calculate the percentage of bases that match exactly

against the reference for each aligned read, this is also referred to as the sequence

identity. This allows for direct cross-comparison of alignments as if a mapping algorithm

produces reads with greater sequence identity, this suggests that the quality of alignment

and thus the mapping accuracy has improved.

The alignments generated from mapping the Bergstrom and NCYC strain sets
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against both the S288c linear reference genome and the S288c reference graph pro-

duced consistently differing alignment scores, in which the scores output from vg were

usually higher than BWA for the same sequence read. This strongly suggested that

there were dissimilarities in either the read alignments against both reference structures

or the scoring parameters employed by both algorithms. In order to identify any dis-

crepancies in the default scoring parameters utilized by both the BWA and vg mapping

algorithms, the alignment scores for a few selected read alignments from the Australian

grape strain, DBVPG1106, were replicated by hand.

The DBVPG1106 SAM file, containing the read alignments from mapping against

the linear reference genome, was sorted, indexed and converted into BAM format using

SAMtools. The BAM file and the S288c FASTA reference file was used as input for the

SAMtools tview function which allowed for visualisation of the exact read alignment,

including any mismatches and indels, to aid in alignment scoring. As there had been

several updates to the vg software since the initial analyses in Sections 2.2.1-2.2.4, vg

v.1.9.0 (Miglionico) was installed and the reference graph was re-constructed before re-

mapping the Bergstrom strains against the graph. Mapping was carried out twice, both

with and without the ‘--surject-to-sam’ parameter, to produce the SAM and GAM

files respectively as the SAM files surjected from vg do not output the alignment scores.

The read sequence and alignment scores were parsed from the GAM file into a CSV

file and the SAM file was converted into a BAM file using SAMtools view. Both the

vg and linear BAM files were further filtered to only include reads less than 60 bp that

mapped to chromosome I of the S288c reference genome to allow for easier inspection

and selection of reads for scoring. As the BAM files produced by vg did not include the

alignment score tags, the individual read sequences and their corresponding alignments

scores had to be manually searched from the CSV file.

Visual inspection of the read alignments allowed for the identification of reads that

had vastly different alignments between vg and BWA even when aligning against the

same portion of the reference. Utilization of the alignment scores to replicate scoring

based on the established scoring parameters also helped determine whether hidden

parameters were used in calculating alignment scores and, therefore, whether alignment

scores enabled a fair comparison between mappers.

72



2.2.6 Simulation Study to Identify Factors That May Impact Read

Mapping in vg

As it is vital to have a thorough understanding of the mapping algorithm employed by

vg and the limitations of the mapper, a simulation study was carried out to identify

the various factors that may prevent a sequence read from aligning against a reference

graph. Seven random reference genomes of various sizes were generated using a custom

Python script (https://github.com/prithikasritharan/RandomSeqGenerator) that takes

a sequence length as input to produce a random DNA sequence of the specified length

output in a FASTA genome file. Each FASTA file was indexed using the SAMtools

faidx function. The lengths of the reference genomes were as follows: 300 bp, 500 bp,

1000 bp, 1500 bp, 2000 bp, 5000 bp and 10000 bp. For the purpose of this study, the

lengths of the simulated reference genome sequences were not representative of the size of

true genomes to enable closer inspection of read mapping against the reference graphs.

A reference graph was constructed for each of the reference genomes and indexed to

generate both the GCSA2 and XG indexes. Due to the relatively small sizes of the

reference genomes, no pruning was required before generating the GCSA2 index.

For each of the reference graphs, sequence reads were simulated from the refer-

ence genome using the vg sim function to generate reads ranging from 20 bp to 100

bp, increasing stepwise in size by 10 bp. Across each read length, the following num-

ber of reads were simulated for each read set: 100, 200, 400, 600, 800, 1,000, 5,000,

10,000, 50,000, 100,000, 500,000 and 1,000,000. In order to understand how the posi-

tion and size of variants within a sequence read can affect its mapping ability, various

mutations were induced within the sequence reads for each read set. A Python script

(https://github.com/prithikasritharan/SequenceReadMutator) was written which takes

in each simulated read set and induces the following mutation types (including the per-

centage of reads containing the mutation within each read set):

• no mutations (10%, used as control).

• mutations at the start (originates from the first base) of the read (20%).

• mutations at the end (originates from the last base) of the read (20%).

• mutations induced at a single, randomly chosen position within the read (20%,

referred to as cluster mutations).
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• mutations induced at several random positions throughout the read (30%, referred

to as point mutations).

The upper limit for the maximum number of mutations induced for a given read, m,

was kept constant by setting m to 0.3 x the read length. For each read, the number of

mutations to be induced for each mutation type varied between 1 to m.

The mutated sequence reads from all the read sets were mapped against their re-

spective reference graphs in vg and the jq software was used to parse out the mapped

reads from the GAM file. The R software was used to analyse the percentage of reads

that mapped within each mutation type across the different read lengths to understand

how the length of the read sequence, the length of the reference genome and the size

and position of the variants impact mapping against a reference graph.

2.3 Results

2.3.1 NCYC Strains Variation Graph

The first 16 nodes from chromosome I of the variation graph containing the S288c

S. cerevisiae reference genome and eight haploid NCYC strains is shown in Figure 2.2a.

The genome sequence is contained within nodes in the graph, with the nodes connected

via edges and the numbering of the nodes representing the order of the sequence. The

S288c reference genome sequence forms the base nodes, shown in black, within the graph.

Divergent nodes, highlighted in red, indicate the presence of allelic variants at each

specific locus where the sequences differ from that of the reference genome. The order of

nodes can be further seen in Figure 2.2b which represents the individual sequence paths

within the variation graph for each strain. The graph is able to accurately represent all

the possible combinations of sequence variations, such as SNPs, insertions and deletions,

present within the genome sequences across the nine strains.

The NCYC variation graph had to be pruned to reduce computational complexity

prior to GCSA2 graph index generation, which results in the removal of certain nodes

and variant alleles within the graph. The number of nodes and length of sequence for

each chromosome graph was observed before and after pruning (see Appendix Table

A.1) and the percentage of nodes and sequence retained after pruning can be seen in
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(a) Variation Graph

(b) Individual Sequence Paths

Figure 2.2: NCYC Strains Variation Graph. The graph in Figure 2.2a shows the

combination of allelic variants present across a population of nine haploid S. cerevisiae

strains. The red nodes display variant sequences absent from the S288c reference genome

and the path labelled in green displays nodes present within the reference genome.

Figure 2.2b shows the order of nodes that forms the individual sequence path for each of

the NCYC strains from the variation graph in Figure 2.2a. Alternate alleles representing

SNPs are shown in blue and insertion sequences in orange.

Figure 2.3. The mitochondrial chromosome had the highest proportion of nodes removed

through pruning, 20.82%, resulting in the loss of 8.45% of the allelic variants originally

present within the graph. This was followed by chromosome I and X which retained

83.46% and 87.68% of the nodes and 97.59% and 98.36% of the variant sequences,

respectively. All of the other chromosomes were able to retain > 99% of the variant

alleles and > 92% of the graph nodes.

The ratio of the number of nodes to the sequence length, also known as the N:SL

ratio, within the graph can be used to provide a rough indication of the amount of

intragenic variation present within the NCYC strain population with a high ratio rep-

resenting a greater degree of sequence conservation and low ratio representing a greater

degree of sequence variation. The N:SL ratio both before and after pruning the varia-
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Figure 2.3: Impact of Pruning on the Variation Graph. This bar chart shows the

percentage of nodes (top) and sequence (bottom) retained within each chromosome of

the NCYC variation graph after pruning to remove high complexity regions.

tion graph has been shown in Table 2.2. The mitochondrial chromosome had the lowest

N:SL ratio both before (1:7.8) and after (1:9.1) pruning. Both chromosome III and XIII

had the highest N:SL ratio before (1:32.2 and 1:33) and after (1:34.6 for both) pruning.

The average N:SL ratio across the whole variation graph was 1:26.4 before pruning and

1:28.23 after pruning.

The tetraploid strain, NCYC1006, was aligned against the NCYC variation graph

to test whether complex ploidy had an impact on read mapping. The GAM alignment

file showed that of the 38,437,506 paired-end sequence reads, 36,753,085 reads were

able to align against the variation graph. The percentage of NCYC1006 reads mapped

against the graph, 95.6%, was quite high considering the variation graph only contained

variant alleles from a small haploid strain population. The qualities of the alignments

were studied by comparing the distribution of alignment scores from the mapped reads,

as shown in the histogram in Figure 2.4. The frequency of alignment scores in the

histogram displays a left-skewed distribution with the majority of the reads mapping

76



Table 2.2: Variation Graph Statistics. Node to sequence length (N:SL) ratio of each

of the 17 chromosome graphs before and after pruning.

Chromosome N:SL Ratio Before Pruning N:SL Ratio After Pruning

ChrI 1:14.4 1:16.8

ChrII 1:26.7 1:27.9

ChrIII 1:32.2 1:34.6

ChrIV 1:29.4 1:31.0

ChrV 1:24.0 1:25.3

ChrVI 1:19.9 1:21.3

ChrVII 1:28.7 1:30.3

ChrVIII 1:28.0 1:30.2

ChrIX 1:14.4 1:16.2

ChrX 1:25.6 1:27.2

ChrXI 1:27.1 1:28.3

ChrXII 1:30.2 1:31.6

ChrXIII 1:33.0 1:34.6

ChrXIV 1:31.8 1:33.7

ChrXV 1:27.4 1:29.1

ChrXVI 1:30.6 1:32.4

Chrmt 1:7.8 1:9.1

with an alignment score greater than 100. The maximum alignment score from the

mapped reads was 118 whilst the minimum score was 19.

2.3.2 Comparison of Read Mapping in vg and BWA

The efficacy of mapping sequence reads from the 19 Bergstrom strains against the

S288c linear reference genome, the S288c reference graph and the pan-genome Bergstrom

variation graph was evaluated by comparing the number of sequence reads that were able

to align against each reference structure, as shown in Figure 2.5 and Table 2.3. Greater

proportions of reads were found to align against the vg graph-based reference genomes

in comparison to the linear reference genome, even in the absence of variants within

the graph. Additionally, the Bergstrom variation graph had the highest percentage of

read mapping across all 19 strains. An increase of 0.53 - 0.9% per strain was seen in

read mapping from the reference graph to the variation graph. The percentage of reads
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Figure 2.4: NCYC1006 Alignment Score Histogram. This histogram shows the

distribution of alignment scores from the NCYC1006 sequence reads that mapped

against the NCYC variation graph containing nine haploid strains.

mapping against the reference graph was found to be 0.75 - 25.3% higher per strain

than the linear reference, with UWOPS87-2421 showing the least difference in mapping

and DBVPG1788 showing the greatest difference. The average percentage of mapped

reads across all 19 strains for the Bergstrom variation graph was 75%, with 74.3% for

the reference graph and 61.2% for the linear reference genome. The vg graph-based

references aligned the least proportion of reads for the clinical strain, YJM981, in which

nearly half of the sequence reads were unable to align, whilst BWA performed worst at

aligning DBVPG1788 from which over 62% of the sequence reads were unable to align

against the reference.

As both vg and BWA utilised similar scoring systems for read alignments, the align-

ment scores from reads that mapped against the variation graph, reference graph and

the linear reference genome were compared to evaluate the differences in the alignment

quality for each reference structure. Figure 2.6 shows the percentages of reads that had

similar alignment scores i.e. where the differences in alignment scores were less than two,

reads that had greater alignment scores in vg than in BWA and reads that had greater
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Table 2.3: Comparison of Reads Mapped Against Graph-based and Linear

References. Percentage of reads mapped from each strain against the S288c refer-

ence graph, the variation graph containing variants from the 19 strains and the linear

reference genome.

Bergstrom Reference Variation Total vg Linear Total BWA

Strain Graph Graph Reads Reference Reads

UWOPS83-787.3 90.79 91.32 76271936 89.97 76488926

UWOPS87-2421 89.31 89.91 99868770 88.56 100084623

YPS128 83.21 83.86 7246910 75.11 7262829

DBVPG6044 78.24 79.03 3958528 71.43 3970267

DBVPG1373 79.51 80.20 3622082 68.68 3630949

DBVPG6765 77.89 78.53 5209684 66.16 5219548

DBVPG1106 77.65 78.21 4793632 65.89 4808220

Y55 75.89 76.64 4238496 62.46 4249369

W303 75.40 75.97 5354174 60.91 5361842

UWOPS03-461.4 73.96 74.57 3643564 57.94 3652283

SK1 72.68 73.58 6327960 57.55 6347192

YJM975 72.36 72.92 3699532 54.68 3705351

Y12 71.75 72.51 4962416 54.23 4975500

YJM981 54.82 55.62 1821806 53.94 1841504

L1374 71.79 72.49 2892448 53.84 2896475

L1528 70.70 71.56 5515702 53.09 5523403

BC187 69.20 70.13 2626978 51.99 2634591

YJM978 64.37 65.04 3598544 39.68 3602326

DBVPG1788 62.91 63.80 3380390 37.62 3386194
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Figure 2.5: Comparison of Read Mapping in vg and BWA. This figure shows

the percentage of reads from each of the 19 Bergstrom strains that aligned against the

S288c linear reference genome (blue), S288c reference graph (orange) and the Bergstrom

variation graph (grey).

alignment scores in BWA than in vg, when comparing alignments from the variation

graph against the linear reference and the reference graph against the linear reference.

Approximately 94-98% of the reads in 18 of the Bergstrom strains were able to map

with higher alignment scores in vg in comparison to BWA for both the reference and

variation graph, with 0.1-4.4% of reads aligning with greater alignment scores against

the variation graph than the reference graph. However, only 0.7-3.1% of the reads had

similar alignment scores between the variation graph and the linear reference whilst

1-3.4% of reads had similar scores between the reference graph and the linear reference.

A similar percentage of reads were found to align with greater alignment scores in BWA
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Figure 2.6: Comparison of Alignment Scores from vg and BWA. This figure

shows the percentages of common reads that mapped with similar alignments scores

i.e. where the difference in alignment scores < 2 (pink), greater alignment scores in

vg (green) and greater alignment scores in BWA (blue) when comparing the variation

graph against BWA (circle) and the reference graph against BWA (triangle).

than vg, 0.5-3.9% and 0.6-4.3% of reads when comparing against the variation and ref-

erence graph, respectively. The only exception was the strain YJM981 which mapped

very poorly in vg, such that only 56.6% of the reads that mapped to the variation graph

and 52.2% of reads that mapped to the reference graph had higher alignment scores. In

addition, there was an increased proportion of reads that aligned with greater alignment

scores in BWA than reads that aligned with similar scores. Around 28% of the reads

aligned with better scores in BWA in comparison to both graph-based references whilst

15.4% of reads mapped with similar scores against the reference graph and 19.3% of

reads against the variation graph.

The alignment scores of common reads from the 19 Bergstrom strains that mapped

against the reference and variation graph were also compared in a similar manner as

shown in Figure 2.7. The strain, UWOPS83-787.3, had the highest proportion of reads,

91.9%, that mapped against both the reference and variation graph whilst YJM981 had
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Figure 2.7: Comparison of Alignment Scores Between the Reference and Vari-

ation Graph. This figure compares the alignment scores of common reads that aligned

with similar alignment scores (blue), greater alignment scores against the reference

graph (pink) and greater alignment scores against the variation graph (green).

the lowest proportion of common reads, 57.9%. As expected, the majority of reads were

found to align with similar alignment scores against both the reference and variation

graph for all strains. The mosaic laboratory strain, W303, was found to have the

greatest percentage of reads, 68.2%, that aligned with similar scores across both graph-

based references. However, between 6-32% of the reads across all strains were also

found to align with higher scores when aligning against the variation graph, with W303

containing the lowest proportion of common reads that had higher scoring alignments

against the variation graph. In comparison, only 0.9-3.2% of reads had greater scoring

alignments against the reference graph except UWOPS83-787.3 and UWOPS87-2421

which had 7.6% and 10.2% of reads, respectively. These findings further supported

the idea that alignment quality improves when aligning against the variation graph in

comparison to the reference graph and linear reference genome.
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2.3.3 Pan-Genome Variation Graph

Figure 2.8 exhibits the graph structure of the reference graph in comparison to the

Bergstrom variation graph, the latter re-constructed from variants called against the

reference graph in order to incorporate the mitochondrial genome, and the initial NCYC

variation graph. The reference graph depicted in Figure 2.8a only consists of the S288c

genome hence contains nodes with long stretches of sequences connected by straight

edges. The Bergstrom variation graph (see Appendix Table A.1 for the graph statis-

tics) contains the genomes of 20 strains hence there is a greater level of sequence diversity

which is represented by divergent nodes, as seen in Figure 2.8b. There is a clear dif-

ference between the Bergstrom variation graph and the NCYC variation graph (Figure

2.8c) as certain variants that are present in one population are not found in the other,

such as the SNP in the first node of the NCYC variation graph which indicates a C →

A base substitution in one or more genomes within the NCYC strain population that is

absent in the Bergstrom strain population despite having a greater number of genomes.

These differences demonstrate that the structure of the variation graph is essentially

determined by the genomes contained within it.

As the mitochondrial genome was previously estimated to contain the greatest level

of sequence diversity, the differences in read mapping when the mitochondrial chromo-

some was included and excluded was examined by comparing the proportion of reads

that were able to align against the S288c reference graph, as shown in Figure 2.9. Ap-

proximately 2-5% fewer reads were able to map when the mitochondrial chromosome

was absent. The strain UWOPS87-2421 had the greatest increase, 5.57%, in the per-

centage of mapped reads whilst YJM981, which mapped poorly in general had the least

improvement, 2.19%, in read mapping.

The alignment of sequence reads from a new set of 10 NCYC S. cerevisiae strains

against the three reference structures was again compared in Table 2.4 to further eval-

uate how well reads align when using high quality sequence reads. The results in the

table confirm previously seen results as there was an increased difference between the

proportion of reads that mapped against both the graph-based references and linear

reference. Around 5.6-10% fewer reads were able to map against the linear reference

than the reference graph and 5.9-10.1% fewer reads than the variation graph. The vari-

ation graph had the highest proportion of reads aligned for each strain followed by the
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Figure 2.9: Read Mapping With & Without Mitochondrial Chromosome. This

bar chart shows the percentage of sequence reads that aligned against the S288c ref-

erence graph both with and without the mitochondrial chromosome. The orange bar

shows the percentage of reads that aligned against the complete reference graph and

the grey bar shows the percentage of reads that mapped against the graph without the

mitochondrial chromosome.
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reference graph which mapped 0.1-0.3% fewer reads. The maximum alignment scores

from BWA were observed to be exactly 10 less than vg for all strains. Additionally,

the maximum alignment scores for the majority of NCYC strains were also found to be

much higher across all three reference structures than the Bergstrom strains (118). The

clinical strain NCYC3493 had the highest alignment score of 261 in vg, with 81.5% and

83.3% of the reads mapping with alignment scores greater than or equal to 200 against

the reference and variation graph. 98% of reads from NCYC3630, a MATα derivative

of the Bergstrom strain Y12, were able to map against the reference graph whereas only

74% of Y12-derived reads mapped.

Table 2.4: NCYC Reads Mapped Against Graph-based and Linear Ref-

erences. The number and percentage of sequence reads from 10 NCYC haploid

S. cerevisiae strains that mapped against the reference graph, pan-genome Bergstrom

variation graph and linear reference. Both the minimum and maximum alignment scores

from mapping with vg and BWA for each strain are displayed below.

Strain Reference Variation vg Alignment Linear BWA Alignment

Graph Graph Scores Reference Scores

Min Max Min Max

NCYC78 97.80 97.95 19 111 91.65 19 101

NCYC97 95.16 95.47 19 111 89.51 19 101

NCYC430 98.06 98.15 19 135 91.81 19 125

NCYC672 96.35 96.57 19 135 87.86 19 125

NCYC1406 97.72 97.82 19 135 89.73 19 125

NCYC1415 97.43 97.59 19 135 88.48 19 125

NCYC2517 97.31 97.41 19 135 88.77 19 125

NCYC2855 97.46 97.62 19 135 91.75 19 125

NCYC3493 98.00 98.10 19 261 91.33 19 251

NCYC3630 98.18 98.34 19 135 88.20 19 125

2.3.4 Raw and Trimmed Sequence Read Mapping

The percentage of both raw and trimmed sequence reads from the Bergstrom strains that

aligned against the three reference structures are shown in Figure 2.10. The trimmed

read mapping was found to follow the same pattern as the raw reads for all 19 strains,
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Figure 2.10: Bergstrom Strains Raw and Trimmed Sequence Read Mapping.

This figure shows the percentage of raw (shown by the dotted lines) and trimmed se-

quence reads (solid lines) from each strain that aligned against the Bergstrom variation

graph (grey lines), the S288c reference graph (orange lines) and the S288c linear refer-

ence genome (blue lines).

in which the greatest percentage of sequence reads aligned against the variation graph,

as expected. The percentage difference in mapping between the variation graph and the

reference graph was found to be 0.53-0.93% and 0.08-0.7% and the difference between

the reference graph and the linear reference genome was 0.75-25.29% and 0-15% for the

raw and trimmed reads, respectively.

Due to the variable read quality of the Bergstrom strains, trimming discarded over

40% of the sequence reads for 10 strains, with this reaching 80% for the strain YJM981.

87



Table 2.5: Mapping Average of the Bergstrom Strains. Average percentage of

raw and trimmed reads that mapped across all three reference structures.

Reference Raw Reads (%) Trimmed Reads (%)

Bergstrom Variation Graph 75 97.3

S288c Reference Graph 74.3 97.1

S288c Linear Reference 61.2 88

However, a greater proportion of the trimmed sequence reads were able to align across

all three references compared to the raw reads, with the percentage of raw reads that

aligned against the variation graph being consistently lower, or equal for UWOPS83-

787.3, than the percentage of trimmed reads that aligned against the linear reference.

This is further supported by Table 2.5 which shows an over 20% increase in the average

percentage of mapped reads across the references.

As trimming the Bergstrom strains resulted in a considerable reduction in the num-

ber of sequence reads, the analysis was again repeated with the 10 NCYC strains. Figure

2.11 displays the percentage of raw and trimmed sequence reads that aligned against the

three reference structures. The differences in mapping between the Bergstrom variation

graph and the S288c reference graph was 0.09-0.38% and 0.09-0.31% and the difference

between the reference graph and the linear reference genome was 5.8-10.2% and 5.65-

9.98% for the raw and trimmed reads, respectively. For alignments against the linear

reference, as with the Bergstrom strains, trimming was found to slightly increase the

proportion of sequence reads that were able to align. However, the opposite effect was

observed for both the reference and variation graph in which trimming was found to

decrease the proportion of mapped reads for all strains except NCYC78 and NCYC97.

In order to understand the exception to the trend displayed by NCYC78 and NCYC97,

sequence reads that failed trimming from both strains were realigned across the three

reference structures. While none of the discarded reads from both strains were able to

align against the linear reference genome, approximately 50% of the reads were able to

map against the reference and variation graphs.
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Figure 2.11: Raw and Trimmed Sequence Read Mapping of the NCYC strains.

This figure shows the percentage of raw (shown by the dotted lines) and trimmed

sequence reads (solid lines) that aligned against the Bergstrom variation graph (grey

lines), the S288c reference graph (orange lines) and the S288c linear reference genome

(blue lines).

2.3.5 Comparison of vg and BWA Alignment Scores

The findings in Table 2.4, where maximum alignment values were observed to be 10 units

higher in vg than in BWA, indicated the likelihood of hidden parameters in scoring that

may bias alignment scores in favour of vg. Thus, alignment scores for a selection of

sequence reads from the strain DBVPG1106 were re-created to further investigate the

scoring systems utilised by vg and BWA. By default, the vg mapping algorithm was

found to add a full-length alignment bonus score of five on mapped reads resulting in
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a 10 point addition on the alignment score in proper paired-end read mapping. This

increase in alignment score can make read alignments from vg seem more optimal when

compared against other mappers. However, in more recent software versions, vg has

provided the ‘--drop-full-l-bonus’ option to remove this bonus, thereby enabling fairer

comparisons.

The two mappers were also found to vary in how gap scoring was penalised when

insertions or deletions were present within the read sequence. Both mappers deduct a

penalty score of six for opening gaps and a further penalty score of one for every base gap

extension. BWA, however, also penalises the first base in the insertion/deletion sequence

with a gap extension penalty in addition to the gap opening penalty. Figure 2.12 shows

the alignment of a sequence read containing the insertion sequence TTTT against the

S288c reference genome and the calculations for the alignment score assigned by each

mapper. BWA applies the gap extension penalty to all four bases instead of three as

with vg and vg has additionally applied a 10 point bonus for full-length alignment.

Figure 2.12: Gap Scoring in vg and BWA. The figure above displays an example

alignment of a sequence read to illustrate how gaps are scored by both mappers. Both

the insertion sequence (TTTT) and any mismatched bases are shown in red. The

calculations for obtaining the alignment scores are shown next to the alignment.

Alignment against a position containing the base N, due to the uncertainty of the

base call at that position, either within the sequence read or the reference genome was

also found to be treated differently by both mappers. As shown in Figure 2.13, the

alignment against the position with a base skip in the read is given a penalty score of

one by BWA during alignment. However, the vg mapper does not apply any penalty

score to the alignment and tends to ignore the base skip altogether during scoring.

The alignment scores for a small number of reads aligned by BWA could not be

reproduced and were dissonant to the actual alignments as based on the CIGAR strings.

The CIGAR string information found within BAM files is a succinct representation of

the read alignment against a reference.
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Figure 2.13: Scoring of Reference/Base Skips in vg and BWA. The figure above

displays the alignment of a sequence read containing a base skip, represented by the

base N shown in red.

2.3.6 Factors that Impact Sequence Read Mapping

In order to further understand the types of variants within a sequence read that can

prevent mapping, the percentage of mapped sequence reads were observed for each

mutation type. 100% of the sequence reads containing no mutations, mutations at the

start of the read and mutations at the end of the read were able to map across all seven

reference graphs. This finding demonstrated that mutations at either the start or end of

a sequence read, regardless of the number of mutations, do not prevent read alignment

against the reference.

Figure 2.14 shows the percentage of reads containing clustered mutations that were

able to map. For all of the reference graphs, the percentage of mapped reads at 20 bp

read length was quite low, with only 38% mapping against the 10,000 bp reference graph

and gradually increasing to 73% mapping against the 300 bp reference graph. There

is a steep increase in mapping by 30 bp read length before reaching 100% mapping at

40 bp length suggesting that sequence reads are less tolerant of variants at shorter read

lengths. Point mutations were found to have the greatest effect on mapping ability,

as seen in Figure 2.15, as point mutations could prevent read mapping regardless of

read length. As with the cluster mutations, the percentage of mapped reads increases

as the read length increases, reinforcing the idea that tolerance to mutation increases

with read length. However, unlike other mutation types, even at 100 bp read length,

mapping does not reach 100%. For both the cluster and point mutations, as the size

of the reference graph increased for each read length, the percentage of mapped reads

was also found to decrease. This is potentially due to the sequence read spanning a

greater portion of the genome itself when the reference genome is smaller allowing for

less ambiguity in alignment and an increased tolerance to mutations i.e. a 100 bp read

spans a third of a 300 bp reference and is therefore highly likely to align even with

mutations whereas it spans a one hundredth of a 10000 bp reference, thereby increasing
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Figure 2.14: The Effect of Clustered Mutations on Read Mapping. The line

graphs demonstrate the percentage of reads that are able to map when containing clus-

tered mutations for each read length across the seven reference genomes. The percentage

of reads that aligned against the 500bp, 1,000bp and 1,500bp reference graphs and the

2,000bp and 5,000bp reference graphs were found to be extremely similar and therefore,

the corresponding lines are not distinguished in the graph.
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Figure 2.15: The Effect of Point Mutations on Read Mapping. The line graphs

demonstrate the percentage of reads that are able to map when containing point mu-

tations (mutations induced at several random positions throughout the read) for each

read length across the seven reference genomes. The percentage of reads that aligned

against the 500bp, 1,000bp and 1,500bp reference graphs and the 2,000bp and 5,000bp

reference graphs were found to be extremely similar and therefore, the corresponding

lines are not distinguished in the graph.
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the difficulty of alignment.

2.4 Discussion

The NCYC variation graph was constructed in order to gain a better understanding

of methods utilised for graph construction, read mapping and variant calling using the

vg software, which was the only available publicly released graph genome software at

the time of analysis. Construction of the variation graph was a straight-forward process

that was not computationally intensive so long as individual graphs were constructed for

each chromosomal region. A major notable benefit provided by the vg toolkit was that

it allowed for visualisation of both the variation graph and read alignments against the

graph. This enabled a thorough understanding of how different variant alleles within

a population can be represented in the graph. Although, due to the vast memory

requirements necessary for whole-genome graph visualisation, only small regions of the

genome can be selected for visualisation providing a snapshot view of the variation

graph.

The vg subprocess that required the most memory usage was the generation of the

GCSA2 index, therefore necessitating pruning of the variation graph to remove regions

of high complexity prior to indexing. Any regions that were removed through pruning

were overlayed with the S288c reference genome sequence to ensure that the resulting

graph remained connected. Initial attempts at indexing the graph without pruning

resulted in the process being terminated after running out of memory when run on the

NCYC server, which had 516 GB of available memory. However, it should be mentioned

that memory requirements for indexing, read mapping and variant calling have all been

reduced vastly in later versions of vg.

Observing changes in the composition of the variation graph was essential for under-

standing how variants were discarded during pruning. The mitochondrial chromosome

showed the greatest post-pruning loss in both the number of nodes and variant sequences

which strongly suggested that it had the highest graph complexity due to it containing

the greatest degree of sequence variation amongst all of the chromosomes. Conversely,

chromosome XI had the least proportion of nodes pruned. The node to sequence length

ratio was also used to further estimate the degree of intragenic variation as highly poly-
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morphic regions of the genome contain more variants hence the variation graph is likely

to consist of an increased number of nodes with fewer sequences per node, resulting in a

low N:SL ratio. The N:SL ratio indicated that the mitochondrial genome, chromosomes

I and XI were the least conserved regions amongst the NCYC strain population whilst

chromosomes XIII and III were more highly conserved. As the variation graph can be

continuously evolved by incorporating variants from additional strains, changes to the

N:SL ratio across each chromosome graph can be monitored to study how the degree of

sequence diversity changes with the addition of each strain.

The performance of mapping the NCYC1006 sequence reads against the NCYC

variation graph was determined solely by the distribution of the alignment scores.

Alignment scores are widely used when conducting pair-wise and multiple sequence

alignments to denote the level of sequence similarity amongst the sequences analysed.

Alignment scores account for the length of the sequence and the level of sequence simi-

larity by penalising any mismatches and gaps in alignment. Consequently, as bases that

match are rewarded one point, the maximum alignment score for a perfect alignment is

the length of the sequence itself. For the purpose of read mapping, as sequence reads

may be aligned against many different regions of the reference genome, the highest scor-

ing alignment is selected by the mapping algorithm as the optimal primary alignment

for a read. The use of alignment scores to determine mapping provides confidence that

the read is aligned to its true location. The vg mapping algorithm was found to perform

relatively well at aligning the NCYC1006 sequence reads against the haploid variation

graph, a particularly strong result when taking into consideration that NCYC1006 is a

tetraploid strain and therefore poses the scope for a wider range of sequence diversity.

The majority of reads had alignment scores greater than 100 whilst the maximum score

was 118 which was indicative of good alignment quality in mapping.

The Bergstrom strains were selected as the initial strain set for the construction of

a pan-genome variation graph reference structure for S. cerevisiae as these strains have

been extensively characterised and were derived from various divergent sub-populations

thus likely to contain a broad pool of variants. The raw read coverage across the strains

was found to be multifarious which strongly indicated that the DNA libraries had not

been normalised during sequencing preparation. DNA library normalisation is a critical

step that allows for uneven concentration of DNA libraries to be equalised, particularly
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when multiplexing, as high DNA library concentrations can lead to excessive read depth.

For example, this phenomenon was seen with UWOPS83-787.3 and UWOPS87-2421

which resulted in over 100 times more sequence reads than for the other strains. On

the other hand, low DNA library concentrations result in low read depth, as seen with

YJM981, which can have a marked impact on the accuracy of read mapping, variant

calling and any further downstream analyses.

The efficacy of read mapping was primarily determined by two factors, the number

of sequence reads that were able to align against each reference and the alignment

scores. The use of the vg Bergstrom variation graph and the reference graph was

found to far outperform the linear reference genome as reference structures in terms

of the number of reads that were able to align. The stark difference in mapping seen

between the reference graph and the linear reference genome, as both references only

represent a single haplotype at each locus, indicated that the vg mapping algorithm has

greater sensitivity than that used by BWA. The Bergstrom variation graph was found

to align the greatest proportion of reads suggesting that the prior inclusion of variants

from the Bergstrom strain population reduced bias in mapping enabling more reads

to align against the reference. These findings concurred with the study on vg which

compared mapping for 100,00 paired reads simulated from the mosaic, soil strain, SK1,

against the vg graph-based references, both with and without variants pertaining to SK1

and the linear reference genome. This study showed that the variation graph had the

greatest alignment sensitivity and that there was little difference in mapping against

the variation graph and the graph without the SK1 variants (Garrison et al., 2018).

The GAGH4 pilot study (Novak et al., 2017) comparing various genome graphs also

reported that variation graphs outperformed the linear reference genome with a greater

number of perfectly mapped reads against the human genome. Read mapping across

all three reference structures overall was found to be inadequate as vast amounts of

the sequence reads were completely unable to align. One reason for such observation

is poor sequence read quality, therefore greater quality control was carried out in the

later experiments. The total number of reads processed by BWA was found to be

much greater than both the reads output from vg and found within the FASTQ files.

Further investigation showed that the additional BWA reads were due to the presence

of chimeric alignments. Chimeric reads align to two distinct portions of the reference

genome without any overlaps and may be indicative of structural variation. As the
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vg mapper does not produce chimeric alignments, these were removed by filtering the

BAM file prior to analysis to allow for fairer comparison between the different mapping

software.

The variation graph was also found to have the best alignment quality of the three

references when judged based on the alignment scores. This supported the findings from

a previous study (Jones, 2016) which also compared the alignment scores between the

linear reference genome and the vg graph-based references for the Bergstrom strains and

found that the variation graph had the highest alignment scores across all 19 strains.

Initially, this was thought to be due to the inclusion of variant alleles, allowing for

a greater number of reads to align to their true location, though further experiments

subsequently showed that there were hidden differences in the scoring parameters that

bias the alignment scores in favour of vg. Thus, accurate conclusions could not be drawn

from this experiment when comparing the alignment quality from vg against BWA but

this will be further explored in-depth in the following chapter. However, comparison

of the alignment scores between the reference graph and the variation graph, both

of which utilise the same default scoring parameters in vg, showed that reads aligned

with greater alignment scores against the variation graph. This could be due to reads

aligning to the same position against both graphs but with the presence of variant alleles

in the variation graph allowing for more base matches. Such a scenario would result in

improved alignment scores, or alternatively variant alleles could decrease ambiguity in

mapping, allowing reads that were aligned at a different position in the reference graph

to align to their true location in the variation graph.

Visualisation of the NCYC and Bergstrom variation graph highlighted the differences

in the structure of both graphs caused by the presence of population-specific variants.

This further re-iterated the importance of selecting as many diverse strains as possible

when constructing the variation graph in order to increase variant representation within

the graph which in turn can further improve the accuracy of mapping and eliminate

reference allele bias. Also, the use of similar strains introduces a lot of data redundancy

in an already computationally expensive process. Given more time, it would have been

beneficial to explore optimal methods for selecting strain subsets when constructing a

pan-genome variation graph, perhaps by using phylogenetic analysis to identify strains

with greater sequence diversity. However, due to the time constraints of the project,
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this work could not be carried out.

The mitochondrial genome was of particular interest as the N:SL ratios of the NCYC

variation graph indicated that it possessed a greater degree of variation than the nu-

clear chromosomes. The mitochondrial DNA in S. cerevisiae is of varying size, at its

minimum approximately 75 Kb, and therefore contains at least 15% of the total DNA

content of the genome (Williamson, 2002). Despite this, only 2-5% of the sequence reads

aligned to the mitochondrial genome, suggesting that many mitochondrial reads remain

unaligned, likely due to a high degree of intragenic sequence diversity. These findings

are in concordance with previously published studies on the S. cerevisiae mitochondrial

genome which found extensive genome content variation, particularly due to horizontal

gene transfer of mobile elements between populations (Goddard et al., 1999) and the

accumulation of intergenic sequences (Groth et al., 2000). In addition, the inheritance

of the mitochondrial genome is bi-parental (Solieri, 2010) and the rate of mutation is

higher than that of the nuclear genome (Foury et al., 2004). The combination of the

above mentioned factors contribute to the vast genetic diversity of the mitochondrial

genome (Wolters et al., 2015).

A greater proportion of reads from the NCYC strains was found to align against

all three references, including the Bergstrom variation graph, than the reads from

Bergstrom strains themselves. This observation suggested that the sequence read qual-

ity of the Bergstrom strains was lower than that of the NCYC datasets. Quality control

analysis revealed that many Bergstrom reads were of low sequence quality with the

presence of adapter contamination. Consequently, the Bergstrom sequence reads had

to be trimmed whilst the NCYC strains had consistently high quality sequences re-

sulting in a greater proportion of reads that are able to align while unprocessed. This

also explained the disparity in mapping seen between Y12 and NCYC3630, the latter a

derivative of Y12, in which there was a 24% difference in the proportion of reads that

aligned against the graph-based references even though both strains should have had

very similar genome sequences. The high sequence quality of the NCYC datasets also

enabled reads to align with greater alignment scores for all three reference structures.

However, as the maximum alignment score is determined by the length of the sequence,

the consistently higher scores in vg were indicative of systemic bias in the vg scoring

parameters.
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Read trimming was found to vastly improve the sequence quality of the Bergstrom

strains, albeit resulting in a vast number of the sequence reads being discarded, which

enabled a greater proportion of reads to align. Trimming both read sets also increased

the relative proportion of Bergstrom reads that were able to align when compared to

the NCYC strain reads. The differences in the proportion of reads that were able to

align against each reference was also reduced for the trimmed reads, reinforcing the idea

that sequence read quality plays a significant role in mapping. For the NCYC strains,

the greater numbers of mapped raw reads than trimmed reads were hypothesised to be

likely due to a combination of trimming removing the lower confidence reads that would

otherwise be able to align and discarding one half of a paired read preventing the other

pair from mapping. This was confirmed when aligning the sequence reads discarded

during trimming for NCYC78 and NCYC97 as only half of the reads would still have

been able to align. Thus, the removal of these reads through trimming increased the

proportion of reads that mapped. These findings indicated that the choice of whether

or not to carry out read trimming before variant graph mapping should be determined

after running quality control analysis on the reads, as trimming of high quality reads

may result in incomplete read mapping.

Both vg and BWA utilize similar scoring systems. However, many crucial differences

were identified in their default scoring parameters and penalties that are not explicitly

stated in the algorithm descriptions, but which bias the scores when comparing the

read alignment quality between the two mappers. These differences identified in the

scoring parameters demonstrate that BWA employs more stringent penalties in scoring

alignments in comparison to vg which applies unnecessary bonuses to its alignment

scores. There were also discrepancies between the alignments produced by BWA and

the subsequent alignment scores, as the scores were found to reflect the local alignment

from the Smith-Waterman extension phase instead of the final alignment score from the

banded global alignment that is used to produce the CIGAR string in the output BAM

file. The local alignment score is used for computation of the mapping quality scores

and may differ from the global alignment score if the Maximal Exact Match (MEM)

used during the Smith-Waterman extension phase produces a sub-optimal alignment

(Li, 2013). BWA does not output the final global alignment score, as does vg, making

it difficult to compare the mappers as the BWA alignment score may not reflect the

final alignment for certain reads. These findings establish alignment scores as biased
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and inaccurate and therefore not a viable measure for comparison of the quality of

read alignments across various mapping software. Instead, a matched CIGAR string

was used as the basis of a method for measuring the alignment quality from different

software, as discussed in the following chapter.

The simulation study exploring various factors that impact read mapping identified

that the length of the sequence read, the type of variant and the position of the variant

all impact on the ability of a sequence read to align against a reference sequence. Align-

ments for the simulation study were carried out in vg to obtain a better understanding

of the graph-based mapping algorithm. However, it would have been useful to extend

the comparison by aligning the simulated reads in BWA in order to identify the differ-

ences in the extent to which each of the factors impact mapping across the two software.

Mutations were simulated on the sequence reads after generating the reference sequence

which resulted in a greater number of read specific mutations. The different mutation

types could have been simulated on the reference genome prior to the generation of se-

quence reads to mitigate this issue. The use of this alternative approach could have also

allowed for the study of the impact of sequencing errors on read mapping. Mutations

at either ends of a sequence read sequence did not have an impact on mapping as they

were treated as sequencing artefacts by the vg mapping algorithm and therefore masked

out through soft-clipping during alignment. Soft clipping refers to the masking of bases

that are not aligned against a reference sequence. Point mutations had the greatest

impact on read mapping reaffirming the inability of sequence reads to align against the

highly polymorphic regions of the genome. Point mutations within the sequence reads

mimicked reads from strains with a greater degree of sequence diversity, therefore, the

more divergent the strain, the less likely it is able to align against the reference genome.

Read length was also identified to be a major determining factor as increasing the read

length appears to increase tolerance to variants within the sequence read. Therefore,

the use of long reads may be a useful approach to improve mapping. However, a study

on the Seven Bridges Graph Genome toolkit (Rakocevic et al., 2019) found that both

short reads and PacBio long reads were completely unable to align against regions span-

ning large-scale structural variants in a linear reference genome whereas using a graph

genome with the population variation information incorporated enabled the alignment

of both datasets. Against the linear reference, the reads were also found to misalign

across the structural variant breakpoints, due to the imperfect sequence microhomology
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within these regions leading to incorrect genotyping during variant calling (Rakocevic

et al., 2019). The results seen in this study further support the benefits of using genome

graphs as reference structures to improve mapping and variant calling.

2.5 Conclusion

The use of variation graphs as reference structures improved both the quantity of se-

quence reads that were able to align to them and the quality of the alignments, im-

proving the accuracy of read mapping which will also likely enable greater accuracy

in variant calling. These findings were consistent with the previous work carried out

on genome graphs and the vg software, which showed that the use of variation graphs

can overcome several of the limitations faced by linear mapping methods (Novak et

al., 2017, Garrison et al., 2018; Jones, 2016). The significant increase in sequence read

mapping from the linear reference to the reference graph also indicated that the vg

mapping algorithm has greater sensitivity in mapping than BWA and that sequence

reads are able to align more easily against a graph-based reference structure than the

conventional linear reference, the most popular method for read mapping. It is cur-

rently unclear as to what aspect of the mapping algorithm allows it to exhibit a greater

preference towards aligning reads against a graph-based reference structure even when

there are no variants present. The proportion of mapped reads increased, as expected,

when alignments were made against the variation graph, which includes known vari-

ants within the species population. The inclusion of variants was also demonstrated to

positively impact the alignment scores as the variation graph had a higher number of

reads that mapped with greater alignment scores in comparison to the reference graph,

suggesting the decreased ambiguity in mapping allowed for more reads to align to their

true location. The use of alignment scores provided a biased measure in the comparison

of alignment quality and therefore, could not be used to compare alignments between vg

and BWA. Instead, sequence identity scores can be used to obtain an accurate depiction

of alignment quality across various graph-based and linear mapping algorithms, which

will be explored further in the following chapter.

There were several different factors identified to impact the ability of sequence reads

to align against a reference. Poor sequence read quality was found to be a major

limitation to mapping, which could be improved by trimming the raw reads. However,
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this may still leave large portions of the reference relatively unaligned. The size of the

read sequences, the size of the variants and the type of variants also played a key role

in read mapping. The presence of several SNPs in close proximity was found to prevent

mapping which could be overcome through the use of variation graphs by accounting

for known variant alleles which reduces reference bias. These findings further advocate

for the use of variation graphs as the primary reference structure.
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Chapter 3

Comparison of the Performance of

Read Mapping and Variant Calling

Algorithms Utilised by Graph

Genome Software

3.1 Introduction

The primary focus for graph genome software is to be utilised in large-scale population

level sequencing studies to genotype and characterise variants in the human genome.

The studies published on vg (Garrison et al., 2018), Seven Bridges Graph Genome

toolkit (Rakocevic et al., 2019), Graphtyper (Eggertsson et al., 2017) and BayesTyper

(Sibbesen et al., 2018) have shown that the advantages of using variant aware graph-

based reference structures far outweighs the linear reference genome. This strongly

favours the adoption of variation graphs as the standard practice for variant discovery

across all genomes, particularly yeast genomes which display a high level of both inter-

and intragenic variation. These four graph genome software were chosen as the variant

calling performance of the Graph Genome toolkit has been compared with Graphtyper

and BayesTyper (Rakocevic et al., 2019) and the vg toolkit has also outlined methods

for integration with Graphtyper (Garrison et al., 2018). However, there has yet to be

a study that compares the accuracy of variant prediction across all four graph genome

software. Therefore, it is crucial to carry out a comprehensive analysis that tests the

relative performances of read mapping and variant calling in order to identify the most

optimal software for the analysis of yeast genomes. An overview of each graph genome
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software has been depicted in Table 3.1.

Table 3.1: Overview of Graph Genome Software Capabilities. Comparison of

the main differences and limitations of four key graph genome software.

The aim of this chapter is to carry out a detailed analysis of the performance of the

read mapping and variant calling algorithms employed by vg, Graph Genome Pipeline,

Graphtyper and BayesTyper against the conventional linear pipeline, which utilises

BWA for mapping and FreeBayes for variant calling. The FAT-CIGAR toolkit was

developed to obtain the exact surjected and non-surjected alignments for both linear

and graph-based mapping software. The various mapping algorithms were compared in

terms of the percentage of mapped reads achieved and sequence identity scores were used

to determine the quality of read alignments. A large-scale simulation study was carried

out to assess the accuracy of variants calls from each software against the truth-set for

1,000 datasets generated using the TreetoReads software, each containing 19 simulated

genomes that mimicked the Bergstrom strains analysed in Chapter 2. The number of

true positive, false positive and false negative variants were compared to determine the

level of precision and recall for each software.
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3.2 Methods

3.2.1 The FAT-CIGAR Software

The CIGAR string information found within BAM files is a succinct representation of a

sequence reads alignment against a reference (see Figure 3.1) and therefore, can provide

an unbiased metric for comparison of the accuracy of alignments across the various map-

ping software. Sequence read alignments are characterised by the length of the sequence

succeeded by one of the following strings, each describing an associated operation: 'M'

(base match), 'I' (insertion), 'D' (deletion), 'S' (soft-clipped base) and 'H' (hard-clipped

base). Hard-clipped bases are masked bases that are removed from the sequence read

during alignment (Li et al., 2009). However, the CIGAR string does not distinguish

between matched and mismatched bases hence masks any mismatched base that aligns

against the reference sequence within a run of 'matched' bases. In order to carry out

direct comparison of alignments generated by vg, the Graph Genome toolkit and BWA,

it was crucial to have an exact CIGAR string representation of alignments that dis-

tinguishes between matched and mismatched bases. The FAT-CIGAR Python toolkit

(https://github.com/prithikasritharan/FAT-CIGAR) was developed to re-construct the

exact CIGAR string, also referred to as the FAT-CIGAR string, utilizing the alignment

information within the BAM file for both linear and variation graph references.

Figure 3.1: CIGAR String. This figure demonstrates how the alignment of sequence

reads against a reference sequence can be represented using the CIGAR string. The

associated operations for each alignment have also been specified next to the CIGAR

string. This figure was adapted from Dündar et al., 2015.
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Figure 3.2: MD Tag. This figure shows an example of the alignment of sequence reads

against a reference sequence followed by the MD tag representation of the alignment.

This figure was adapted from Dündar et al., 2015.

FAT-CIGAR Toolkit: Linear Alignments

BAM files generated via BWA contain an MD tag, which is similar to the CIGAR string

but provides information regarding mismatched bases and deletions within the align-

ment by replacing it with the reference base. The MD tag (see Figure 3.2) represents

matches solely by their sequence length, mismatches by the mismatched base within

the sequence read and deletions by a '^' followed by the deleted base in the reference

genome. The MD tag cannot be used directly for comparison, however, as its primary

purpose is to call SNPs without the need for a reference, therefore, it only takes into

consideration the bases that align against the reference. This results in the masking of

any insertion sequences within the alignment and the position of the following matches

are shifted downstream. The FAT-CIGAR toolkit combines the MD tag and the CIGAR

string information to construct the FAT-CIGAR string for alignments. Not all reads

produce an MD tag in their BAM files. In such cases, the SAMtools calmd function can

be utilised to generate the MD tag prior to running the FAT-CIGAR toolkit.

For alignments against a linear reference genome, the FAT-CIGAR toolkit must be

run with the linear command followed by the input and output BAM files which are

required arguments. The input BAM file is initially checked to ensure the file is indexed.

If not, the file is sorted and an index is generated using the pysam module in Python

(Li et al., 2009). The CIGAR string and MD tag for each read is extracted and the MD

tag is transformed into the FAT-CIGAR string as follows:

• an 'M' is added to the end of numbers that represent matched bases.

• mismatched bases are replaced with the length of mismatch plus 'X' instead of
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the reference bases.

• deletions are replaced with the length of deletion plus 'D' instead of the deletion

sequence.

• any soft and hard clipped bases are added to both ends of the read.

The CIGAR string is used to identify the exact positions of the insertion sequences and

to insert them within the modified MD tag. Then the number of matches on either side

of the insertion sequence is recalculated to produce the FAT-CIGAR string (see Figure

3.3). The alignments are written to the output BAM file with the FAT-CIGAR string,

overwriting the CIGAR string information as default. The -xg option can be specified

by the user in order to preserve both the CIGAR and FAT-CIGAR strings in the output

BAM file, by assigning the FAT-CIGAR string to the XG tag.

Figure 3.3: Constructing the FAT-CIGAR String from a BAM file. This figure

shows an example of how the FAT-CIGAR toolkit utilises the CIGAR string and MD

tag information from within the BAM file to construct the FAT-CIGAR string repre-

sentation of the alignment in which each operation is clearly distinguished. This figure

was adapted from Dündar et al., 2015.
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FAT-CIGAR Toolkit: vg

The vg surject function is used to convert GAM files into BAM file format. However,

the CIGAR string within the resulting vg BAM file depicts the surjected alignment

against the S288c linear reference genome rather than the alignment path through the

variation graph. The vg toolkit enables GAM files to be converted into JSON format,

which contains detailed information on the individual path within the graph that each

sequence read is mapped to. Therefore, exact read alignments can be reconstructed

based on the from_length (the length of the sequence within the variation graph) and

to_length (the length of the sequence within the read) information in the mapping

edits array of the JSON file (see Figure 3.4). Matched bases have equal from_length

and to_length and no sequence whilst mismatches have equal from_length and to_-

length with a sequence provided. Insertions and deletions have different from_length

and to_length values with the inserted sequence specified for insertions. Sequences

are not hard-clipped in vg but soft-clipped bases resemble insertions at the start or

end of sequence reads. The FAT-CIGAR toolkit utilises the above information in the

JSON file path edits to reconstruct the non-surjected FAT-CIGAR string for alignments

against the vg variation graph. The JSON file needs to be obtained prior to running

FAT-CIGAR, using the vg view function on the GAM file with the -aj option.

To obtain the FAT-CIGAR strings for vg alignments, the graph_vg command should

be utilised. The FAT-CIGAR toolkit takes the JSON file, the surjected BAM file and an

output BAM file as required arguments. The BAM file is checked to ensure it is indexed.

If not, the BAM file is sorted and an index is generated. For each read within the BAM

file, the JSON file is required to be searched for the pertaining alignment information.

As the mapping information is contained within large, nested and unsorted arrays, a

hash table was implemented to index the JSON file to allow for more efficient searching.

The hash table is built with the default size of 2**24 to ensure that it is large enough to

store the alignments and the read names are computed as the hash string. The hashed

read name is divided by the table size and the resulting modulus is used to determine

the index position within the hash table. The position of the read data array in the

JSON file is stored as the key. If a collision (more than one key at an index within

the hash table) occurs, collisions are resolved by storing the keys at that index in a

linked list through chaining. In order to optimise memory space, the first entry is never

wrapped in a node. Once the hash table is built, the BAM file is read in sequence
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Figure 3.4: Constructing the FAT-CIGAR String for a vg Alignment. This

figure is a simplified example of how the FAT-CIGAR toolkit utilises the mapping path

information from within the JSON file to construct the FAT-CIGAR string. It highlights

how the associated operation in the FAT-CIGAR string is obtained from each path edit

information. This figure was adapted from Dündar et al., 2015.

read by sequence read and any sequence reads mapped to the reverse strand are reverse

complemented to obtain the original sequence.

A search function is implemented to search the hash table for the corresponding

JSON object for the read in order to construct the FAT-CIGAR string. The search

function computes the hash from the read name for each read and looks it up in the

hash table. If the key is found (i.e. there is a matching JSON object for that read), the

JSON data at that position is read from the file and the read name and sequence are

compared to verify the match. If there are multiple positions, each entry in the linked

list is checked until a match is found. The JSON data at that position is passed to

a function which uses the to_length and from_length information and constructs the

FAT-CIGAR string for the alignment as described above. If the read is mapped to the

reverse strand, the FAT-CIGAR string is also reversed to follow the BAM file protocol.
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As the vg BAM files do contain the alignment score, the alignment score is also parsed

out of the JSON object and set as the 'AS' tag in the output BAM file. If a read is

unmapped and therefore has no mapping edit information in the JSON file, a "*" is

returned as the CIGAR string and the AS tag is set to 0. As default, the reads will

be written to the output BAM file with the non-surjected FAT-CIGAR string. The -xg

option can be specified by the user to write the non-surjected FAT-CIGAR string to the

XG tag. This option also overwrites the surjected CIGAR string with the non-surjected

CIGAR string. In order to do this, the -c/--xg_to_cigar function converts the FAT-

CIGAR string into a CIGAR string by splitting the string to merge any matches "="

and mismatches "X" into an "M". The length of the matched sequence is recalculated

before joining the string together to form the non-surjected CIGAR string.

FAT-CIGAR Toolkit: Graph Genome Toolkit

The BAM file output from the Seven Bridges Graph Genome toolkit also represents

read alignment information as a surjected CIGAR string and the XG tag contains the

non-surjected FAT-CIGAR string. It was therefore necessary to obtain non-surjected

CIGAR string alignment to enable comparison to other read mappers. In addition, the

XG tag was absent for any reads that aligned as perfect matches against the variation

graph, hence the XG tag had to be generated for these reads to obtain the non-surjected

FAT-CIGAR string.

The FAT-CIGAR toolkit is run with the graph_sb command for alignments from the

Graph Genome toolkit, with the input and output BAM files as required arguments. For

each read, the FAT-CIGAR toolkit checks whether the XG tag is present and if not, the

"M" in the CIGAR string is substituted with an "=" and set as the XG tag generating

the non-surjected FAT-CIGAR string. The same function as described previously for

the vg alignments is utilised to construct the non-surjected CIGAR string from the XG

tag. The original surjected CIGAR string is overwritten with the non-surjected CIGAR

string in the output BAM file.
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FAT-CIGAR Toolkit: Extended Functionality

In order to increase the usability of the FAT-CIGAR toolkit and make it more widely

applicable, the following two optional functions were also added for linear alignments:

the -g/--global_score to calculate the global alignment score and the -cs/--cs_tag

function to generate the CS tag. As noted in Section 2.4, the alignment scores output

by BWA, the most commonly used read mapper, are calculated from the local align-

ment during the Smith-Waterman extension phase instead of the final banded global

alignment. Consequently, the scores for many of the reads did not accurately reflect the

actual alignment. If specified by the user, the global alignment score is calculated from

the FAT-CIGAR string using the same scoring system employed by BWA as outlined

previously in Chapter 2. The CS tag (see Figure 3.5) is an improved representation

of the MD tag to allow for easier parsability and is output by the Minimap2 soft-

ware (Li, 2018). This option was added to the FAT-CIGAR toolkit to further improve

inter-compatibility with output from other read mappers. The FAT-CIGAR string was

converted into the CS tag as follows: matched bases are represented as ":" plus the

length of the match, mismatches are represented as "*" followed by the mismatched

base sequence, insertions are represented as "+" followed by the inserted bases and

deletions are represented as "-" followed by the deleted bases.

Figure 3.5: CS Tag. This figure shows an example of the alignment of sequence reads

against a reference sequence followed by the CS tag representation of the alignment.

This figure was adapted from Dündar et al., 2015.

3.2.2 Evaluating the Performance of Mappers From Various Graph

Genome software

The development of the FAT-CIGAR toolkit allowed for an unbiased measure of the

accuracy of read alignments between various different mappers. Of the four graph

genome software, only vg and the Graph Genome toolkit were able to provide read
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alignment information, as noted in Table 3.1. Thus, the Bergstrom S. cerevisiae strains

(Bergstrom et al., 2014) discussed in Chapter 2 were used to evaluate the accuracies of

read alignments from both graph genome software against alignments from BWA. The

FAT-CIGAR string was used to compare the differences in alignment quality against

the reference graph, variation graph and linear reference genome.

Seven Bridges Graph Genome Toolkit

The Seven Bridges Graph Genome toolkit was downloaded from the Seven Bridges

website (https://www.sevenbridges.com/graph-genome-academic-release/). The down-

loaded tar binaries are wrapped in Docker containers and distributed as two compressed

Docker images: the bpa aligner v0.9.1.1 and the rasm variant caller v0.5.20. The Docker

images required a machine with a Linux operating system and a microprocessor capable

of handling Advanced Vector Extensions 2 (AVX2) instruction set architecture in order

to run. The tar files were loaded into Docker and accessed by running their Docker

image IDs.

The S288c reference graph was initially created by running the bpa aligner with

just the S288c reference genome FASTA file and the FASTQ files containing the

trimmed paired-end sequence reads for each of the 19 Bergstrom strains (see Fig-

ure 3.6 for a summary of the methods). As the Graph Genome toolkit creates each

graph in memory before alignment, the graph was re-created before mapping for all

19 strains. A few sequence reads were removed from both the forward and reverse

FASTQ files as a memory bug in the software caused the aligner to fail when these

reads were present in the following five strains: W303 (IL29_4505:7:92:17915:7957#8),

YPS128 (IL29_4505:7:16:3889:7672#1), DBVPG6765 (IL29_4505:7:33:16078:9366#5;

IL29_4505:7:39:9332:6247#5; IL29_4505:8:3:10070:14525#5), DBVPG1788 (IL29_-

4505:8:55:8359 :17891#4) and DBVPG1106 (IL29_4505:2:20:3032:15548#1). The re-

sulting BAM files containing the aligned sequence reads for each strain were sorted and

indexed using SAMtools (Li et al., 2009) sort and index functions. The rasm reassem-

bly variant caller was run with the sorted BAM file and the S288c reference FASTA file

to call variants for each strain. The output VCF files were decomposed using both the

decompose and decompose_blocksub functions to break down the multi-allelic variants

into constituent SNPs and indels and normalized using the Vt software. The normal-
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ized VCF files were validated using GATK ValidateVariants and the CombineVariants

function was used to combine the variants from all 19 strains into a single multi-sample

VCF file.

In order to create the Bergstrom variation graph, the bpa aligner was

run with the S288c reference FASTA file, the merged VCF file contain-

ing all the variants within the Bergstrom strain population and the paired-

end FASTQ files for each strain. Sequence reads also had to be re-

moved from both FASTQ files for the following three strains: UWOPS87-

2421 (HS3_6632:2:2105:13226:155086#2; HS3_6632:2:2108:1521:133487#2),

UWOPS03-461.4 (IL29_4505 :2:101:19612:9286#6) and UWOPS83-787.3

(HS3_6632:2:2101:10238:137772#1; HS3_6632:2:1206:4335:176399#1; HS3_-

6632:2:1107:15487:137370#1). The output BAM files containing alignments against the

variation graph were sorted and indexed as before. For each strain, the FAT-CIGAR

toolkit was run on BAM files containing alignments from the reference graph and

variation graph to obtain the non-surjected CIGAR and FAT-CIGAR strings and the

run time of the toolkit was monitored. The variant caller was run with the sorted

BAM file, S288c reference FASTA file and the multi-sample VCF file used to construct

the Bergstrom variation graph in order to call variants from alignments against the

variation graph itself. The VCF files for each strain were decomposed and normalized

using Vt and validated with GATK ValidateVariants to be used to compare the

accuracy of variant calling against other graph genome software.

Variation Graph (vg) Toolkit

The S288c reference graph and Bergstrom variation graph were also recreated in vg

v1.18 in order to update the software to its latest version due to modifications to the

core algorithm, such as the use of graph BWT (gBWT) for graph construction instead

of the graph extension of positional BWT (gPBWT) in earlier versions.

The reference graph was created using the S288c reference FASTA file with vg con-

struct, limiting graph construction to each individual chromosome (see Figure 3.6 for

a summary of the methods). The nodes across the 17 per-chromosome graphs were

joined together with vg ids. Both the XG and GCSA2 indexes were generated for each
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graph without pruning nodes due to the absence of variants in the graph. The trimmed

sequence reads for all 19 strains were mapped against the S288c reference graph with vg

map and the read alignments were written out to GAM files. The GAM files were sorted

and indexed with vg gamsort then converted into JSON format to obtain the alignment

information. The vg surject function was also used to obtain BAM files, which were

sorted and indexed. Variant calling was carried out by initially breaking up the sorted

GAM files using vg chunk into per-chromosome chunk files. Any ambiguous or sec-

ondary read mappings were filtered out of the GAM files with vg filter using the default

parameters suggested by vg (-r 0.90 -fu -m 1 -q 15 -D 999 ) to improve the precision of

variant calling. The reads within the filtered GAM files were embedded as paths onto

the graph to create augmented variation graphs using vg augment with the following

parameters: -a pileup (computes read pileup), -S (read support file for variants) and

-Z (contains graph translation between base graph and augmented graph). Variant

calling was carried out on the augmented graphs with vg call using the base graph (-b),

the read support file (-s) and the translation file (-z ) to produce per-chromosome VCF

files for all 19 strains. Each VCF file was decomposed and normalized using Vt and

sorted using the vcf-sort function from VCFtools v0.1.16 (Danecek et al., 2011). The

sorted VCF files were concatenated into single strain VCF files using CatVariants from

GATK, validated using ValidateVariants and merged with CombineVariants to produce

a multi-sample VCF file.

The multi-sample VCF file containing the variants from the Bergstrom strain pop-

ulation was used to construct the Bergstrom variation graph along with the S288c ref-

erence FASTA file. The node id spaces were joined across the per-chromosome graphs

and the XG index was generated. In order to reduce the complexity of the graph, the

vg prune function was used to remove any edges which induced more than three bifur-

cations within a 24bp sequence before the GCSA2 index was generated. The trimmed

sequence reads for all the strains, except UWOPS83-787.3 and UWOPS87-2421, were

aligned against the variation graph and variants were called from the alignments using

the same method as previously described for the S288c reference graph. Due to the large

file size of the FASTQ files for UWOPS83-787.3 (76,271,936 reads, forward reads: 7.2G

& reverse reads: 7.1G) and UWOPS87-2421 (99,868,770 reads, forward reads: 9.2G &

reverse reads: 8.9G), the vg mapper would terminate producing a run time error as a

result of insufficient memory. Therefore, the FASTQ files for both strains were split into
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multiple smaller files each containing around 500,000 reads. The split FASTQ files were

aligned against the variation graph and the resulting GAM files were concatenated into

a single GAM file before sorting and variant calling. The FAT-CIGAR toolkit was run

with the surjected BAM files and JSON file as input to obtain the non-surjected CIGAR

and FAT-CIGAR strings for alignments against the reference graph and variation graph.

The run-time of the FAT-CIGAR toolkit was also monitored for each strain.

Comparison of Alignments From BWA, vg & the Graph Genome toolkit

In order to compare the ability of each read mapper to align sequence reads to a reference

structure, the percentages of mapped reads against the S288c reference and Bergstrom

variation graphs created in both vg and the Graph Genome toolkit and the linear

reference genome were obtained from the resulting five sets of BAM files using SAMtools.

The R v3.6.0 software (R Core Team, 2017) was utilised to create a line graph showing

the percentage of mapped reads across the different reference structures for all 19 strains.

In order to identify whether aligning against a variation graph can reduce ambiguity

in mapping, resulting in an increased number of true, perfectly mapped reads (i.e.

reads that align against the reference as an exact match), sequence identity scores

were calculated for alignments against all five reference structures. Sequence identity

scores can be calculated from the CIGAR string to provide an indicator of sequence

similarity between the read and the reference. However, the masking of mismatches

within the CIGAR string biases the scores, over-inflating the number of true, perfect

mappings. Sequence identity scores were calculated from both the CIGAR and FAT-

CIGAR string to evaluate the alignments produced from each mapper. Initially, R was

used to calculate the sequence identity scores however, regular expression processing

across several large data frames in R was extremely slow. Therefore, a custom Python

script (https://github.com/prithikasritharan/SeqIdCalc) was written to calculate the

scores using the BAM files. The sequence identity score, Sc, for the CIGAR string was

calculated as follows:

Sc =
no. of matches

no. of matches + no. of insertions + no. of soft-clips
(3.1)

and set as the ZA custom tag within the BAM file. Any hard-clips and deletion se-

quences are ignored in the calculation as these bases are removed from the sequence
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read. The scoring for the FAT-CIGAR string, Sf , was calculated as follows:

Sf =
no. of matches

no. of matches + no. of mismatches + no. of insertions + no. of deletions
(3.2)

and set as the ZB custom tag. The BAM files were loaded into R and converted into

data frames to create histograms of the sequence identity scores.

The different data frames were merged in R in order to obtain common reads that

mapped across all five references. In order to identify the similarities in mapping across

all the references, the mapping positions of these common reads were compared against

both the CIGAR and FAT-CIGAR strings to obtain the following: the percentage of

sequence reads that mapped to the exact same position against the reference with the

exact same strings for all reference types, the percentage of reads that mapped to the

exact same position but with different alignments, the percentage of reads that mapped

to different positions but with the exact same alignment across all references and finally,

the percentage of reads that mapped to different positions with different alignments.

3.2.3 Comparison of Variant Calling Accuracy Across Various Graph

Genome software

In order to compare the accuracy of variants called from a wider range of currently

available graph genome software, variant calling was also carried out using BayesTyper

v1.5 (Sibbesen et al., 2018) and Graphtyper v2.5.1 (Eggertsson et al., 2017). As both the

genome graphs and the read alignments against the graphs cannot be accessed, these

software were omitted from the previous alignment comparison study. The variants

called from BayesTyper and Graphtyper were compared against the variants called from

the vg and Graph Genome toolkit reference and Bergstrom variation graphs, using the

pipelines depicted in Figure 3.6. A limiting factor in the comparison with BayesTyper

is that it is unable to be used for discovering novel variants as it is a genotyping toolkit

therefore, unlike the other software, it is only able to genotype based on prior variants

provided by the user.
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Graphtyper

In order to construct the reference graph, the chromosome names within the S288c ref-

erence FASTA file were modified to numbers, as Graphtyper was developed to genotype

human genomes, where FASTA headers are formatted as chromosome numbers. The se-

quence reads for all 19 strains were realigned against the modified FASTA file with bwa

mem so that the BAM file contained the correct chromosome alignments. The BAM

files were sorted, indexed with SAMtools and filtered to remove PCR duplicates using

the Picard MarkDuplicates function. As Graphtyper only works on small regions of the

genome, the Graphtyper genotype function was run to construct the reference graphs

and call variants, limiting graph construction to each chromosome as with vg, using the

--region parameter. The BAM file was utilised to identify regions containing variants

to realign against the graph before variant calling. As Graphtyper also calls variants

across small regions, this resulted in multiple VCF files output for each chromosome

graph. The bcftools concat function was used to concatenate the VCF files across each

chromosome before concatenating the 17 per-chromosome VCF files to produce a single

VCF file for each of the 19 strains. The VCF files for each strain were normalised with

bcftools norm and sorted with bcftools sort. In order to allow for cross-comparison with

VCF files from the other software, bcftools annotate was run with the --rename-chrs

parameter to change the chromosome names from, for example, '1' to 'S288c_ChrI' and

bcftools reheader was used to change the sample names for the strains UWOPS03-461.4

and UWOPS83-787.8 which were abbreviated in the Graphtyper VCF file. The bcftools

merge function was used to merge the VCF files into a multi-sample VCF file which was

passed as input to the genotype function with the --prior-vcf parameter to construct

the Bergstrom variation graph and call variants against the graph. The resulting VCF

files were processed using the same methods as detailed for the reference graph.

BayesTyper

The initial step required combining the results of different variant callers in order to

build a variant database from which the variation graph was constructed. The BWA

alignments against the S288c linear reference genome for all 19 strains were used by

GATK HaplotypeCaller v3.8.0 to call SNPs and small indels, Platypus v0.8.1 (Rimmer

et al., 2014) to call small to medium scale variants and Manta v1.5.0 (Chen et al.,

2016) to call large-scale variants. Prior to variant calling, Picard was used to add read

118



group information and read tags to the BAM header so that the BAM files could be pro-

cessed with GATK HaplotypeCaller. PCR duplicates (reads that were obtained from the

same DNA fragment) were also filtered and removed using the Picard MarkDuplicates

function. Quality control is carried out in Manta before variant calling by generating

alignment statistics to check whether over 90% of the reads are in normal read pair

orientation. Due to low sequence quality, YJM981 failed quality control as only 81%

of read pairs in the BAM file had the correct orientation. This error was bypassed by

providing the alignment statistics XML file containing the fragment length distribution

of the reads to Manta. The fragment length distribution was calculated using the Picard

CollectInsertSizeMetrics function and the output text file was converted into an XML

file using a custom Python script. The XML file was used as input for Manta which

prevented it checking the read pair orientation.

For the prior variant database, initially the gVCF file containing variants from 1,011

S. cerevisiae strains (Peter et al., 2018) from the 1002 Yeast Genomes Project was

obtained from the project website (The 1002 Yeast Genomes Project, 2019). Any sites in

the gVCF file without at least two alleles were filtered out in order to remove all the non-

variant sites, and the file was converted into a VCF file using the GATK GenotypeVCFs

function. However, as the downloaded gVCF file did not contain variants from the

mitochondrial genome, variants were called from the mitochondrial genome using the

same methods as outlined in the original paper. The sequences for 949 strains from

the study were made publicly available on the NCBI Sequence Reads Archive (SRA)

(Leinonen et al., 2011). The strain sequence FASTQ files were downloaded using the

SRA Toolkit v2.9.6 (accession no: ERP014555) and aligned against the S288c reference

genome with bwa mem. The resulting BAM files were filtered to keep only these reads

aligned against the mitochondrial genome, with any PCR duplicates removed. Local

realignment was carried out using GATK to correct for mapping errors as mappers

usually consider each sequence read individually and the scoring systems utilized may

limit its ability to map well against indels. Mappers tend to favour mismatches and soft-

clips instead of opening gaps in order to produce more optimal scoring alignments, which

can lead to non-parsimonious mapping of reads against indels. As local realignment

considers all the reads spanning the indel region, this allows for more high scoring,

parsimonious alignments. GATK RealignerTargetCreator was used to identify target

regions in which alignment could be improved and GATK IndelRealigner carried out
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local realignment in the specified regions using a consensus model to produce realigned

BAM files. GATK HaplotypeCaller was used to call variants from the mitochondrial

genome using the realigned BAM files. All 949 VCFs were joined together using GATK

CombineVariants and merged with the 1,011 strain VCFs using GATK CatVariants to

form a multi-sample VCF file containing 1,935,064 variants. Due to the small size of

the S. cerevisiae genome, provision of a large variant database prevented genotyping as

BayesTyper was unable to estimate the parameters for the negative binomial genomic

k -mer count distribution due to the absence of any k -mers that are unique to regions of

the genome with no variation. As a result, a prior variant database was not provided

as input.

The VCF files from GATK, Platypus and Manta for all 19 Bergstrom strains were

combined using the BayesTyperTools combine function. The KMC3 v3.0.0 (Kokot et

al., 2017) software was used to generate k -mer profiles by counting the k -mers from

the FASTQ sequence reads to produce a compact representation of all unique and non-

unique reads along with the frequency of occurrence for each strain. The BayesType-

rTools makeBloom function was used to generate read k -mer bloom filters from the

k -mer profiles. Variant candidates were identified using BayesTyper cluster based on

the variants called using GATK HaplotypeCaller, Platypus and Manta and the output

database from KMC. The variants within the identified clusters were genotyped using

BayesTyper genotype to produce a single VCF file containing the genotyped variants

from all 19 strains.

3.2.4 Simulation Study to Compare Graph Genome Software

As a benchmark dataset is required in order to truly compare the accuracy of the vari-

ant calls from each graph genome software, simulated benchmark VCFs were generated

by evolving the Bergstrom strains using S288c chromosome I (S288c_ChrI) as the an-

cestral sequence and attempting to identify the variants induced within the simulated

genomes. As simulating the S288c whole-genome would be computationally both time

and memory expensive, Chromosome I was selected as it was previously found to dis-

play the second highest degree of intragenic variation at the nucleotide level after the

mitochondrial genome amongst the Bergstrom strain population.
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Seq-Gen

The distance matrix for the neighbor-joining SNP tree of the S. cerevisiae strains was

obtained from Gianni Liti, senior co-author of both the Bergstrom study and the 1002

Yeast Genomes Project. As the SNP distance matrix contained 39 strains in total, any

additional strains other than the Bergstrom strains and the S288c reference genome

were removed from the matrix. The distance matrix was formatted as a tab-separated

file containing the number of strains (20) and the name and SNP distances as a lower

matrix and used as input for the PHYLIP v3.697 (Felsenstein, 1989) neighbor program

to create a new neighbor-joining tree.

Initially, Seq-Gen v1.3.4 (Rambaut and Grass, 1997) was used to evolve 1,000 sim-

ulations of the Bergstrom strains along the SNP tree using the markov General Time

Reversible (GTR) model (Tavaré and Miura, 1986) for nucleotide substitution. The

GTR model was chosen instead of the Hasegawa, Kishino and Yano (HKY) model

(Hasegawa et al., 1985) and the F48 model (Felsenstein and Churchill, 1996), both of

which model under the assumption that transitions and transversions occur at differ-

ent rates, as it is a more complex model that assumes different rates of substitutions

for each of the six nucleotide pairs. It also models under the assumption that each

nucleotide occurs at different frequencies and that a base can evolve before changing

back to its original state (also known as time reversible) i.e. C -> G -> C (Tavaré and

Miura, 1986). The input file for Seq-Gen contained the following information: the num-

ber of sequences (1), the length of S288c_ChrI (230,218 bp), the S288c_ChrI sequence

and the Bergstrom SNP tree output by PHYLIP in Newick format. The Seq-Gen run

produced 1,000 multi-FASTA files, each containing the simulated genome sequences for

the 19 strains which were split into individual FASTA files. In order to identify the

exact variants induced within each simulated genome, pair-wise alignment was carried

out using both MUMmer v3.23 (Kurtz et al., 2004) and progressiveMauve vsnapshot_-

2015_02_13 (Darling et al., 2010) between each of the 19,000 simulated genomes and

the S288c_ChrI reference sequence. The nucmer program from the MUMmer suite was

used as it allows for variant detection from the alignments and outputs the variants as

a delta file. The progressiveMauve program was run with the --collinear, --seed-family

and --disable-backbone parameters which uses spaced seeds to improve seed sensitivity

during alignment within regions of low sequence identity. The simulated genomes were

found to be unable to align with both progressiveMauve and nucmer as the simulated
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genomes evolved with Seq-Gen were highly divergent due to S288c_ChrI not being spec-

ified as the ancestral node within the input tree. As the -k parameter within Seq-Gen

automatically forces the first node on the tree to be selected as the ancestral node, which

cannot be changed, the nw_reroot function from the Newick Utilities v1.6 (Junier and

Zdobnov, 2010) toolkit was used to re-arrange the nodes in order to produce a Newick

tree with S288c_ChrI as the starting node. Seq-Gen was re-run with the re-rooted tree

and the -k parameter and pair-wise alignment was carried out on the output FASTA

files. However, 1,087 and 1,088 of the simulated sequences were still found to be unable

to align against the reference with nucmer and progressiveMauve, respectively, as these

simulated genomes were still quite highly diverged from the reference sequence. 948

out of the 1,000 simulated genomes from W303, the most distant strain to S288c, were

found to be unable to align in both aligners. As scaling both the branch and tree lengths

within Seq-Gen did not improve alignment, it was necessary to find a pipeline in which

the level of divergence, especially within the more distant strains, could be controlled

to mimic the real Bergstrom strains.

TreetoReads

The TreetoReads v0.0.4 (McTavish et al., 2017) software was utilised instead within

the simulation study. It essentially carries out the same pipeline as that in the previ-

ous section in that it first simulates genomes down an input tree with Seq-Gen using

the S288c reference sequence itself as a leaf in the tree. For each simulated genome,

it outputs a FASTA file containing the genome sequence and FASTQ files contain-

ing paired-end Illumina sequence reads simulated from the genome sequence using the

ART vART-GreatSmokyMountains-04-17-2016 (Huang et al., 2012) software. The in-

put configuration file for TreetoReads was prepared with the following parameters: the

Bergstrom SNP tree, the number of variable sites (20,000), the S288c_ChrI reference

FASTA file, the nucleotide substitution rate matrix (AC: 0.94614, AG: 1.15179, AT:

1.90661, CG: 1.75553, CT: 2.14488, GC: 1), read coverage (30x), the percentage of mu-

tation clustering (0.05), exponential mean (125), the indel length distribution model

(LAV 1.7 541), indel rate (0.1), the ART error profile, read length (108bp), fragment

size (380) and the standard deviation for the fragment size (120). TreetoReads utilises

Seq-Gen to simulate genomes and the INDELible v1.03 (Fletcher and Yang, 2009) soft-

ware to simulate indels within each genome. As the SNP tree from PHYLIP contained

122



negative branch lengths which INDELible was unable to process, the SNP tree was re-

created with MEGA X v10.1 (Kumar et al., 2018) to ensure all of the branch lengths

were positive before the tree was re-rooted with Newickutils nw_reroot to make S288c

the first tip on the tree.

The art_profiler_illumina function from the ART software was used to estimate

the error profiles based on the observed data from the original Bergstrom FASTQ

files. The error profiles are utilised to simulate sequence reads using an empirical error

model by taking into account the base quality score distribution (Huang et al., 2012).

The fragment size and read length value was also determined using the longest read

length observed within the error profiles. The relative rates of nucleotide substitution

were estimated from the actual Bergstrom strains using the PAUP v4.0a168 (Swof-

ford, 2002) software. In order to obtain the substitution rates for S288c_ChrI, reads

that mapped to S288c_ChrI were obtained from the BAM files containing alignments

output by BWA for all 19 Bergstrom strains and both the read names and sequences

were parsed into FASTA file format using awk. Multiple sequence alignment of the

FASTA files was carried out with progressiveMauve to produce an extended multi-

FASTA (XMFA) file. This was converted into FASTA format using the xmfa2fasta perl

script (https://github.com/kjolley/seq_scripts.git) and converted to the NEXUS file

format using PAUP to estimate the substitution rate matrix. The jModelTest2 v2.1.10

(Darriba et al., 2012) software was utilised to check how the nucleotide frequency across

the Bergstrom strains differs from S288c. The nucleotide rates were obtained from the

alignment FASTA files under the following four criteria using the parameters: -BIC

(Bayesian Information Criterion), -AIC (Akaike Information Criterion), -AICc (cor-

rected Akaike Information Criterion), -DT (Decision Theory criterion), -v (model av-

eraging) and -a (estimate model-averaged phylogeny). The average nucleotide rates for

the Bergstrom strains were as follows: A: 0.30, C: 0.20, G: 0.20, T: 0.30, which were

found to be highly similar to those for S288c: A: 0.29, C: 0.21, G: 0.21, T: 0.29.

The number of SNPs in S288c_ChrI of each of the Bergstrom strains was obtained by

averaging the variant calls from chromosome I of the vg reference graph, variation graph

and BWA. A trial and error process was used in which TreetoReads was run several times

with different numbers of variable sites to identify the number of variable sites where

both the number of SNPs and the number of shared SNPs across the simulated genomes
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mimicked the real Bergstrom strains. As the more distant strains were highly divergent

and had an over 10-fold increase in the number of SNPs induced by TreetoReads, the

tree branch lengths for these strains were required to be scaled down. Initially, the

TreetoReads Python script was edited to scale down the branches of the distant strains.

However, this also resulted in changes to the branch lengths of other strains and scaling

down the branch lengths any greater than 100 times did not result in further reduction

to the number of SNPs, which was vastly higher than the expected range. Therefore, the

distance between the branches were also manually scaled down between 10-100 times for

the following strains to obtain the final input tree: BC187, YJM978, YJM975, YJM981,

DBVPG1373, DBVPG1106, DBVPG6765, DBVPG1788, L1374 and L1528.

Once the optimal parameter settings had been identified, TreetoReads was run 1,000

times to obtain 1,000 datasets, each containing the FASTA and FASTQ files for 19 sim-

ulated genomes. For each genome, the FASTA file was aligned against the S288c_ChrI

reference with nucmer to obtain the alignment delta files and show-snps was used

to obtain the variants from the alignment. The my-mummer-2-vcf.py Python script

(https://github.com/MatteoSchiavinato/Utilities/blob/master/my-mummer-2-vcf.py) was

used to convert the SNP files into VCF files generating the truthsets required to carry

out variant comparison across the four graph genome software.

Variant Calling

BayesTyper, Graphtyper and the Seven Bridges Graph Genome toolkit were run on

all 1,000 simulated datasets using the same methods as previously outlined above to

produce variant calls against both the S288c_ChrI reference graph and the Bergstrom

variation graph. As there had been several upgrades to the vg toolkit since the earlier

analysis, vg 1.26 was utilised for the simulation study. The reference and Bergstrom

variation graphs was constructed, indexed without pruning and reads were aligned using

the same methods as described for vg 1.18. In a deviation from the vg 1.18 methodolo-

gies due to the software update, after filtering the GAM alignment files with vg filter,

vg augment was run with the following parameters to generate the augmented graph

without computing read support: -s (computes subgraphs), -m 4 (minimum coverage

of reads required at breakpoints to be added to the graph), -q 5 (minimum base qual-

ity), -Q 5 (minimum mapping quality of read) and -A (augmented GAM file). The
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augmented graph was indexed with vg index and read support was computed from the

augmented GAM file using vg pack to produce a PACK file. Variant calling was carried

out by running vg call with the XG index of the augmented graph and -k to specify the

PACK file.

In order to compare the various graph genome software against the conventional

linear pipeline for variant calling, all 19,000 simulated genomes were aligned against

the S288c_ChrI reference sequence with bwa mem and FreeBayes v1.3.2 (Garrison

and Marth, 2012) was used to call variants from the alignments. The VCF files were

normalised with bcftools norm and sorted with bcftools sort, as had been carried out for

all of the graph genome software.

In order to compare the variant calls generated from each pipeline against the truth-

set, the number of SNPs, indels and total variants were parsed out of the VCF files for

each pipeline to evaluate how similar the number of calls were to the truthset. R was

used to produce dot plots comparing the number of variants against the truthset, which

revealed several outlier points demonstrating both over and under-calling of variants in

both the vg and BayesTyper variant calls. The outlier datasets were re-run in vg to

check whether the variant calls were reproducible. However, when re-run the variant

calls were not reproducible and variants calls in all of the re-run datasets were in the ex-

pected range when comparing against the truthset and the variant calls from the other

pipelines. This suggested a fault in the initial vg runs which was speculated to be caused

by memory issues in vg that constantly caused the runs to crash when the datasets were

run in parallel using multiple threads. In order to overcome the memory issue, all 1,000

datasets were re-run in vg serially and the number of variants were again parsed out

to ensure there were no longer any outlier datasets. The first dataset (Set 1) was also

re-run 10 times through all of the graph genome software in order to identify whether

any of the variant callers are deterministic. Set 1 was run a further 1,000 times as single

runs calling variants against the vg reference graph to confirm that the vg algorithm is

stable. This method of comparing the number of variants against the truthset, however,

was determined to be highly inaccurate as it did not account for both the differences

in variant representation between each variant caller and the compounding of proximal

variants preferred by some variant callers to form more complex calls (i.e. haplotype

calls).
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Vcfeval Classification of the Variants

In order to mitigate this issue, the RealTimeGenomic (RTG) Tools v3.12 (Cleary et

al., 2015) rtg vcfeval command was utilised as it is able to easily identify the same

variant call, even if there are discrepancies in variant representation between different

variant callers, for both simple and highly complex variants. It compares each called

VCF file against the truthset VCF file and outputs three individual VCF files containing

true positive, false positive and false negative calls. Prior to running the variant call

comparison, the S288c_ChrI FASTA file was required to be converted into Sequence

Data Format (SDF) using rtg format which converts the FASTA sequence into multiple

binary files so that it can be processed efficiently. The rtg vcfeval command was then run

with the truthset VCF file, the called VCF file and the SDF file using the --all-records

parameter to specify that all of the records within the VCF file should be evaluated.

The vcfeval comparison was run separately for variant calls against the reference and

Bergstrom variation graphs from vg, Graphtyper and the Seven BridgesGraph Genome

Pipeline.

In order to ensure that the output from vcfeval was accurate, the variants within the

true positive VCF files from the first dataset for all of the pipelines were compared by vi-

sualising the alignment BAM files from the Graph Genome Pipeline with SAMtools tview

to manually verify the variants. Manual inspection of the variant calls identified errors

in the truthset arising from incorrect local alignment of the genomes in nucmer. There-

fore, the truthset was re-generated by running pIRS to simulate long paired-end reads

from the FASTA reference sequence of the simulated genomes output by TreetoReads to

produce accurate alignments. Sequence reads of length 1,000bp and 50x read coverage

were generated using pirs simulate and the following parameters were used to increase

sensitivity for variants with less read support and ensure there were no sequencing errors

simulated within the reads: --error-rate=0, --no-substitution-errors, --no-indel-error,

--no-gc-bias, -min-alternate-count 1 and min-alternate-fraction 0. The simulated reads

were mapped against the S288c_ChrI reference sequence with BWA before variant call-

ing with FreeBayes to generate the ground-truth VCF files for all of the datasets. As

inspection of the vg variant calls demonstrated further issues with the variant call-

ing algorithm. Therefore, vg v1.18, which was utilised for the alignment comparison

study, was also run on all 1,000 simulated datasets using the same methods to identify

whether the previous versions also suffered from the same issues. The VCF files from
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all six pipelines and the truthset were further decomposed using vcflib v1.0.1 (Garri-

son et al., 2021) to allow for easier comparison by rtg vcfeval. The vcflib vcfbreakmulti

function was used to break down any haplotype calls from haplotype callers such as vg

and vcfallelicprimitives was used to break down complex calls into several individual

variant calls. The decomposed VCF files were further sorted with vcfstreamsort and

duplicate variants were removed using vcfuniq to produce the final post-processed VCF

files from all of the pipelines on which rtg vcfeval was re-run.

The rtg vcfeval function was found to misclassify a few variants even when the vari-

ant representation was the same in both the called VCF file and the truthset VCF file.

Thus, a custom Python script (https://github.com/prithikasritharan/VcfevalFilter/blo-

b/main/README.md) was written to correct any misrepresented variants. For each

of the 19,000 simulated genomes, the Python script read the truthset VCF file and the

processed VCF files from each of the pipelines into memory. For each pipeline, the script

also read the false positive VCF file output by rtg vcfeval and compared the reference al-

lele, alternate allele and position against the variants in the truthset VCF file. If records

were observed within the truthset that matched exactly for all three fields, this identi-

fied the variant as a true positive (TP) call. If a matching position was not found for

the record, variants that may have been represented differently were identified from the

truthset VCF file by searching for variants which occurred in regions spanning twice the

variant allele length on either side of the variant position. The position, reference allele

and alternate allele sequences were compared for each identified variant in the truthset

to determine true positive variants that had been misclassified due to differences in

representation. A corrected false positive (FP) VCF file was written out without the

variant and a corrected TP VCF file was written out with the variant added. The script

also read the false negative (FN) VCF file and compared the three fields against the

variants within the called VCF file. Any variants that were present in the called VCF

file were removed from the corrected FN VCF file and added to the corrected TP VCF

file. The script also annotated the format field of the truthset according to whether

each variant was a TP or FN. Variants in the called VCF file with either a TP or FP

annotation were input to the rtg vcf2plot function. This was used to calculate the true

positive and false positive rates based on the genotype quality (GQ) score (the phred

quality score assigned by the variant caller to determine the certainty of a genotype

assertion) to produce receiver-operating curves comparing each pipeline. However, the
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receiver-operating curves could not be produced as the rtg vcf2plot function was unable

to read the GQ score within the VCF files from both vg 1.18 and vg 1.26 even though

they were present. The number of variants in the TP, FP and FN VCF files for all of

the pipelines were parsed out and R was utilised to compare the variant calls.

Analysis of the Variant Calls

The preliminary analysis of the datasets also showed a greater number of false positive

variants in vg 1.18 variant calls, even though the vg aligner was found to perform better

mapping of the sequence reads in the previous sections. In order to verify that the

performance of the vg variant caller was not due to that specific version and to check

the stability of the earliest version of vg used in this project, vg 1.5 was run on all 1,000

datasets to call variants against both the reference and Bergstrom variation graphs using

the same methods as previously outlined in Chapter 2. Unlike vg 1.18 and vg 1.26, the

vg 1.5 Bergstrom graph had to be pruned prior to the GCSA2 index generation as

indexing in the earlier versions of vg is a computationally memory intensive process.

Pruning was carried out using the vg prune function in vg1.9 as running the vg mod

function in vg 1.5 produced a software assertion failure error due to a bug in the code.

Finally, as the thresholds utilised for variant calling were different across each of

the graph genome software, the variant calls had to be filtered to cut-off any variants

without a minimum allele fraction >= 0.2. The minimum allele fraction, m, is defined

as

m =
no. of observations of the allele
read depth at that position

(3.3)

The cut-off value was determined by comparing the vg variant calls from both the

reference and Bergstrom variation graphs thresholded at 0.2 and 0.9 for the first five

datasets. In vg 1.5 and vg 1.18, filtering was carried out by re-running vg call with

the -m parameter. In vg 1.26, the -m option was no longer present and instead vg

call was run with the --min-support parameter in which both the minimum no. of

observations of the allele required and the minimum no. of reads support at that site

was specified as each of the following in turn: (2, 5); (4, 5); (2, 10); (9, 10). As these

values are not scaled, even if the site support increases, the minimum no. of observed

alleles remains the same which may still allow for variants with low read support to be

called. As comparison of the variant calls demonstrated that the 0.9 cut-off value was
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too stringent, therefore, 0.2 was chosen as the cut-off to allow for false positive variants

with low read support to be filtered without discarding the true positive variants.

Variant calling was re-run for the reference graph for all 1,000 datasets from vg and

Graphtyper, thereby carrying out the filtering before post-processing the VCF files and

re-running rtg vcfeval. As the Bergstrom variation graphs were constructed using the

unfiltered variant calls, they were likely to incorporate false positive variants within the

reference that allowed for miscellaneous alignments resulting in a false positive bias. In

order to overcome any false positive bias, the Bergstrom variation graph for all of the

datasets had to be re-constructed from the filtered variant calls before repeating the

process of mapping and variant calling. For vg 1.26 and Graphtyper, the variants were

filtered from the VCF files after variant calling using bcftools annotate to filter on the

AD (allele depth) and DP (read depth) values in the FORMAT field.

As the Graph Genome Pipeline already thresholds m at 0.2 during variant calling,

it did not require any further filtering. There is no information available regarding

the thresholds used for variant calling in BayesTyper nor does the VCF files contain

any information pertaining to the allele or read depth therefore the BayesTyper variant

calls could not be filtered. The filtered VCF files were run through the post-processing

pipelines, re-classified with rtg vcfeval and the classifications were further corrected

with the custom Python script. The number of variants predicted by all pipelines

were parsed out and the most accurate software for variant calling from the simulated

dataset was determined by calculating the precision, recall and F1 scores, the latter of

which accounts for the trade-off between precision and recall, using the R software. The

precision, recall and F1 scores were defined as follows:

Precision =
no. of true positives

no. of true positives + no. of false positives
(3.4)

Recall =
no. of true positives

no. of true positives + no. of false negatives
(3.5)

F1 score =
2 × Precision × Recall
Precision + Recall

(3.6)
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3.3 Results

3.3.1 FAT-CIGAR Toolkit Run Time

The performance of the FAT-CIGAR toolkit, specifically in regard to the impact of

the size of a dataset on the run time, was monitored for alignments from BWA and

the vg reference graph using the Bergstrom strains, as shown in Table 3.2. The FAT-

CIGAR toolkit was found to run notably faster on the BWA alignments, as expected,

than the vg reference graph for all 19 strains. The Hawaiian mosaic strain, UWOPS87-

2421, which contains around 84 million sequence reads, took one hour and 45 minutes

to run for alignments from BWA whereas it took over 22 hours to run for alignments

from vg with the initial index generation time taking over three hours for a 136Gb

JSON file. Excluding UWOPS87-2421 and UWOPS83-787.3, the average script run

time taken to construct the FAT-CIGAR string for alignments from vg was around 22

minutes, whereas, for linear alignments, it took around three minutes. Overall, for both

references, a huge increase in the number of sequence reads results in an exponential

increase in run time.

3.3.2 Comparison of Sequence Read Mapping Across Different Graph

Genome Software

The percentage of trimmed sequence reads from the Bergstrom strains that aligned

against the reference graph and variation graph for vg and the Graph Genome toolkit

and the linear reference genome for BWA has been shown in Figure 3.7. The line graph

shows that a greater percentage of reads that were able to align to both the variation

and reference graphs from vg and the Graph Genome toolkit than in comparison to the

linear reference genome. The vg variation graph was found to perform best in aligning

the greatest percentage of sequence reads, followed by the vg reference graph. Both

vg graphs performed better than the Graph Genome toolkit graphs in terms of aligned

reads.

Fourteen strains were able to align better against the vg variation graph and 13

strains against the vg reference graph compared to the Seven Bridges variation graph

in which only four strains aligned better than the vg variation graph and two strains

better than the vg reference graph. The percentage difference in mapping between
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Table 3.2: FAT-CIGAR Toolkit Run Time. The script run time for alignments

from both BWA and the vg reference graph for the Bergstrom strains.

Strain No. of Reads Run Time (hh:mm:ss)

vg BWA

UWOPS87-2421 84,333,836 22:07:36 01:45:41

UWOPS83-787.3 66,433,124 15:13:59 01:23:18

YPS128 5,589,034 50:11 07:15

SK1 3,725,974 34:23 04:53

DBVPG6765 3,549,980 35:34 04:23

W303 3,290,148 28:58 03:57

DBVPG6044 3,106,876 27:55 03:42

DBVPG1106 3,080,300 26:36 04:01

L1528 2,923,432 24:35 03:39

Y12 2,656,714 23:20 03:25

Y55 2,655,346 23:50 03:29

DBVPG1373 2,604,596 22:02 03:37

UWOPS03-461.4 2,019,656 17:59 02:41

YJM975 1,955,320 17:17 02:30

L1374 1,563,798 13:52 01:58

BC187 1,417,092 11:58 01:52

YJM978 1,310,934 13:22 01:43

DBVPG1788 1,266,912 10:39 01:34

YJM981 353,384 02:55 00:29
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Figure 3.7: Trimmed Sequence Read Mapping of the Bergstrom strains. This

figure shows the percentage of sequence reads that aligned against the vg variation

graph (light grey solid line), the Seven Bridges variation graph (dark grey dotted line),

the vg reference graph (light orange solid line), the Seven Bridges reference graph (dark

orange dotted line) and the S288c linear reference genome (blue solid line).

the vg variation graph and vg reference graph was found to be 0.01-0.34%, 0.02-2.25%

between the vg variation graph and the Graph Genome toolkit variation graph and

0.16-1.72% between the vg variation graph and the Graph Genome toolkit reference

graph. The Graph Genome toolkit reference graph was found to perform similarly to

BWA with 9 strains having the lowest percentage of reads able to align against the

reference graph and 10 strains the lowest against the linear reference genome, with

a 0.03-0.89% difference in mapping. BWA, however, was shown to have aligned the

highest percentage of reads for UWOPS87-2421, 98.27%. The average percentages of
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mapped reads across the five reference structures for all 19 strains were as follows: vg

variation graph - 97.45%, vg reference graph - 97.35%, Graph Genome toolkit variation

graph - 97.34%, Graph Genome toolkit reference graph - 96.84% and BWA - 87.64%.

3.3.3 Comparison of Sequence Identity Scores Across Differently Eval-

uated Read Alignments

Sequence identity scores were calculated for both the non-surjected CIGAR and FAT-

CIGAR strings generated using the FAT-CIGAR toolkit for alignments from all five

reference structures for the 19 Bergstrom strains. The histogram in Figure 3.8 shows

the sequence identity scores for the strain DBVPG1106 (see Appendix Figure B.1 to

B.18 for histograms for the other 18 strains). For all five reference structures, there

is shown to be a decrease in the number of perfectly mapped reads, reads that have a

sequence identity score of one indicating the likelihood of a true alignment, from the

CIGAR string to the FAT-CIGAR string.

Table 3.3: Comparison of Sequence Identity Scores for DBVPG1106. The

percentage of sequence reads that had perfect mapping (sequence identity score 1) and

the percentage of reads that had a sequence identity score greater than 0.9 across the

five reference structures, for both CIGAR and FAT-CIGAR strings.

Reference CIGAR FAT-CIGAR

Perfect Score Perfect Score

Mapping >= 0.9 Mapping >= 0.9

vg variation graph 94.9 96.0 75.3 95.8

vg reference graph 91.6 95.1 53.4 94.7

GGP variation graph 92.8 96.6 74.2 96.4

GGP reference graph 85.3 94.5 53.3 94.0

Linear reference 92.0 95.7 53.5 95.3

The differences in the proportion of perfectly mapped reads and well-mapped reads
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Figure 3.8: Sequence Identity Scores for DBVPG1106. This histogram shows

the sequence identity scores between 0 and 1 (left) and between 0 to 0.9 from the same

histogram (right) for a & b) the linear reference genome, c & d) the vg reference graph,

e & f) the vg Bergstrom graph, g & h) the Graph Genome toolkit (GGP) reference

graph and i & j) the Graph Genome toolkit variation graph.
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(reads with sequence identity scores >=0.9) when comparing the CIGAR and FAT-

CIGAR strings has been shown in Table 3.3. Approximately 53-75% of perfectly mapped

reads according to the CIGAR string were also perfectly mapped according to the FAT-

CIGAR string. There was only a 0.2-0.5% decrease in the proportion of well-mapped

reads from the CIGAR to the FAT-CIGAR string. The variation graphs, for both vg

and the Graph Genome toolkit, had the highest percentages of perfectly mapped reads,

in comparison to the two reference graphs and linear reference genome. Also, there

was not as great a decrease in the number of well-mapped reads and reads with perfect

mapping from the CIGAR to the FAT-CIGAR string in the variation graphs. The linear

reference genome had more reads with a greater identity score compared to the reference

graphs. The FAT-CIGAR sequence identity scores showed that the vg reference and

variation graph were able to align a greater proportion of sequence reads with perfect

mapping in comparison to Graph Genome toolkit. However, the Graph Genome toolkit

variation graph was found to align the greatest proportion of well-mapped reads across

all five reference structures.

3.3.4 Comparison of Read Alignments Against Mapped Locations

The mapped locations of common read alignments across all five reference structures

were compared against both the CIGAR and FAT-CIGAR strings for the 19 Bergstrom

strains, as shown in Figure 3.9. The majority of the sequence reads mapped at the same

position with the same CIGAR string (74-83% across the Bergstrom strains, except

YJM981 with only 40%, the latter result likely due to poor read quality reducing the

accuracy of mapping) and the same FAT-CIGAR string (31-77%). The percentage of

sequence reads that had the same CIGAR string was found to be higher for each strain

than the percentage of reads with the same FAT-CIGAR string. Reads that mapped

to different positions with the same CIGAR string was shown to decrease slightly, by

0.9-3.2%, for the FAT-CIGAR string. There was also an increase of 4.6-32.2% in the

reads that mapped to the same position with different CIGAR string (2.5-9%) to the

FAT-CIGAR string (7.1-39.7%) due to the increase in perfect mapping, which is also

reflected in the sequence identity histogram in Figure 3.8. Similarly, the sequence reads

that mapped to the different positions with different CIGAR string (5.3-37.1%) were also

shown to increase by 0.7-3.24% when compared to the FAT-CIGAR string (7.3-14.4%).
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same string at a different position (blue), different string at the same position (purple)
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3.3.5 Comparison of the Bergstrom Strains Variant Calling Across

Different Graph Genome Software

The numbers of SNPs (see Table 3.4) and indels (see Table 3.5) called from each of the

four graph genome software were compared for the Bergstrom strains. The reference

graphs for vg, Graph Genome Pipeline and Graphtyper were found to call fewer SNPs

and indels in comparison to the variation graphs. In vg, which had the greatest difference

between the two references, there was an increase of between 1,542 to 14,144 SNPs and

833 to 4,001 indels between the reference and variation graphs per strain, with an

average increase of 7,724 SNPs and 1,893 indels. For the Graph Genome toolkit, there

was an increase of 594 - 2,742 SNPs and 124 - 402 indels (with an average increase of

1,522 SNPs and 284 indels) and for Graphtyper, there was an increase of 42 - 2,518 SNPs

and 104 - 1,841 indels per strain (with an average increase of 1,108 SNPs and 655 indels).

The vg reference graph had the least number of SNPs called for 13 of the strains and

the least number of indels for eight of the strains, followed by BayesTyper which had

the least number of SNP calls for five strains and the Graph Genome Pipeline reference

graph which had the least number of indel calls for seven strains. The vg variation

graph was also found to call the highest number of SNPs for all 19 strains and the

highest number of indels for 15 strains. The overall average of the number of variants

(SNPs and indels) called for each reference structure was as follows in ascending order:

vg reference graph - 28,748, BayesTyper - 29,037, Graph Genome Pipeline reference

graph - 29,390, Graphtyper reference graph - 30,069, Graph Genome Pipeline variation

graph - 30,299, Graphtyper variation graph - 30,945 and vg variation graph - 33,527.
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3.3.6 Simulating Genomes with TreetoReads

Figure 3.10a shows the original whole-genome SNP tree of the Bergstrom strain popu-

lation rooted on the S288c reference genome, from which the input tree for TreetoReads

was re-constructed in MEGA X, to enforce positive branch lengths. The number of

SNPs within chromosome I of the original Bergstrom strains was found to range from

226-3,560 SNPs, with an average of 1,680 SNPs and with 12 of the 19 strains possess-

ing between 1,000-2,000 SNPs. In order for the simulated genomes to mimic the real

strains, the number of variant sites input into the TreetoReads software was determined

to be 20,000, as the resulting number of shared SNPs was highly similar to that of the

real strains. Furthermore, nine of the simulated strains possessed between 1,000-2,000

SNPs, similar to the numbers seen in the real dataset. However, the high number of

variant sites resulted in very high numbers of variants in some distant strains (i.e. 5,600

SNPs in YJM978 to 18,600 SNPs in L1528). As decreasing the number of variants

sites would reduce the number of variants in the distant strains at the cost of greatly

increasing the number of shared SNPs amongst the simulated genomes, the branches

of the most distant strains were instead scaled down. The re-scaled tree was found to

generate between 300 to 2,900 SNPs within the Bergstrom strains, with an average of

around 1,900 SNPs per strain. The re-scaled tree, which could therefore be used to

simulate SNPs and indels in similar numbers to that seen in the original dataset, is

shown in Figure 3.10b.

3.3.7 Evaluation of the Deterministic Nature of the Variant Calling

Algorithms

In order to evaluate whether the variant calling algorithms employed by vg v1.26, the

Graph Genome Pipeline, Graphtyper and BayesTyper produced deterministic variant

calls, the number of variants called was observed when the same dataset was run re-

peatedly in each pipeline. The Graphtyper variant caller was found to be stable as all

10 runs had the same number of variants called for the 19 strains (Appendix Table B.1).

The vg and Graph Genome Pipeline variant calls were also found to be mostly stable

with minor differences in the number of variants called across the different runs for a

few strains. YPS128 was found to be the only strain with a one variant difference across

the runs in vg, with 2,584 variants were called in eight runs and 2,585 variants in two

runs (Appendix Table B.2). For the Graph Genome Pipeline, the strains DBVPG1106
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Figure 3.10: SNP Tree of the Bergstrom Strains. This figure shows (a) the original

SNP tree of the Bergstrom strain population and (b) the SNP tree produced by MEGA

X with re-scaled branches to mimic the number of shared variants within the Bergstrom

strains.

and DBVPG6765 both had five runs with a one variant difference and DBVPG1788

had eight runs with 3,698 variants and two runs with 3,700 variants (Appendix Table

B.3). The BayesTyper variant calling algorithm was found to be non-deterministic as

the number of variants called was highly varied across the 10 runs for all 19 strains.

The number of variants called ranged from a difference of three variants to 25 variants

across the runs with only two runs on average producing the same numbers of variant

for each strain (Appendix Table B.4).

The number of variants called against the vg reference graph across a further 1,000

repeated runs on Set 1 has been shown in Table 3.6. Fourteen strains had the same

number of variants called across all 1,000 runs whilst five strains had slight differences

in the variant calls in four or fewer runs. Both SK1 and L1528 had one run with a single

variant difference, UWOPS03-461.4 had three strains with a single variant difference,

DBVPG6044 had four runs with two fewer variants called in comparison to the other

runs and DBVPG1106 had one run with a single variant difference and three runs with

two fewer variants called.
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Strains True No. of Variants Runs

DBVPG1373 4714 1000

DBVPG6044 3104 996

3102 4

L1374 2851 1000

SK1 2961 999

2960 1

UWOPS83-787.3 2041 1000

W303 424 1000

Y55 2091 1000

YJM978 3981 1000

YPS128 2584 1000

BC187 580 1000

DBVPG1106 4649 996

4648 1

4647 3

DBVPG1788 3623 1000

DBVPG6765 3686 1000

L1528 2977 1

2976 999

UWOPS03-461.4 3175 3

3174 997

UWOPS87-2421 2276 1000

Y12 2841 1000

YJM975 3940 1000

YJM981 4012 1000

Table 3.6: Deterministic Testing of the vg Variant Caller. The number of variants

called against the vg v1.26 reference graph on Set 1 of the simulated Bergstrom strains

across 1,000 repeated runs.
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3.3.8 Comparison of the RTG vcfeval Output

Analysis of the vcfeval comparison of the ground-truth VCF file generated through

alignment of the simulated datasets and the S288c chromosome I reference sequence

using nucmer for the various graph genome software identified several errors in the

resulting variant calls. Many positions of the insertion and deletion events called from

nucmer for the truthset were identified to be shifted one position to the left in com-

parison to the positions identified by the graph genome software for the same mutation

event. This resulted in vcfeval evaluating the indels from the truthset as false negative

variants whilst the same indels from the different graph genome software were evaluated

as false positive variants. In addition, starting at chromosome I position 11,638 in the

truthset, there were many spurious false positive SNP calls spanning the rest of the

genome. These SNPs were not present in the FASTA sequence file for that genome, nor

had any read support, as shown in Figure 3.11. Therefore, these SNPs could not be

due to errors induced when simulating the sequence reads with ART. The false positive

SNPs were present in the truthset of all of the strains examined in the first five datasets

but were not present in the VCF files from any of the four graph genome software.

Consequently, they were classified as false negative variants by vcfeval. As the false

positive SNPs were present in the SNP files from the nucmer alignments, the SNPs

were speculated to have arisen from incorrect local alignment of the simulated genomes

in nucmer.

(a) DBVPG1373 Sequence Read Alignment Against S288c_-

ChrI

(b) Truthset VCF File

Figure 3.11: Visualisation of Variants from DBVPG1373. This figure displays a)

the alignment of Set 1 DBVPG1373 sequence reads against the S288c_ChrI reference

sequence using samtools tview and b) the truthset VCF file generated from nucmer

containing the false positive SNPs spanning that region of alignment.
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Further manual inspection of the true positive, false positive and false negative

variant classifications by vcfeval also identified several variants predicted by all of the

graph genome software that had been incorrectly classified. Out of the 112 false positive

variants identified by the vg 1.26 reference graph for DBVPG1373, 13 of the variants

were true positive variants that were represented in the exact same manner as in the

truthset. These variants had the same reference allele, alternate allele and position.

However, vcfeval was unable to evaluate them accurately, as shown in Figure 3.12.

Three of the 12 false positive variants from the Graph Genome Pipeline and four of

the 10 false positive variants from Graphtyper were also true positives with the exact

representation that had been falsely evaluated by vcfeval. As the variants in the called

VCF files were evaluated as false positives, the corresponding variants in the truthset

were determined as false negatives.

Figure 3.12: Misclassification of True Positive Variants. This figure shows the

alignment of sequence reads against the vg 1.26 DBVPG1373 reference graph in the

IGV viewer, highlighting the insertion at position 15,703. The TTAGTGGAT insertion

sequence is shown to be present in the truthset VCF file but has been assigned to the

false positive VCF file by vcfeval.
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The variant calls in the second version of the truthset VCF file (i.e. generated

through mapping of pIRS reads using BWA and subsequent FreeBayes variant calling)

consisted of more complex variants, than in the previous analysis, with variants that

occurred in close proximity to one another tending to be compounded into a single

variant call. When comparing the compounded calls in the truthset VCF file against the

graph genome called VCF files, which contained the same complex variant decomposed

into multiple, smaller variants, vcfeval was unable to classify the variants in the called

VCFs as true positives due to the differences in representation, as shown in Figure 3.13.

The remaining six of the 10 variants in the Graphtyper FP VCF file were found to be

proximate calls that were called individually in Graphtyper but combined in the truthset

VCF file, therefore all 10 variants in the FP file for DBVPG1373 in the first dataset

were evaluated incorrectly. Two of the 12 variants in the Graph Genome Pipeline FP

VCF file were also inaccurately evaluated proximal variants.

Figure 3.13: Differences in the Representation of Proximal Variants. This figure

displays the alignment of sequence reads against the Graphtyper DBVPG1373 reference

graph. The alignment features two proximal variants, a C -> T substitution at position

24306 followed by a deletion of the base C at position 24,309. Both variants have

been compounded into a single complex call by FreeBayes within the truthset whereas

they have been called individually in Graphtyper, resulting in vcfeval determining the

variants to be false positives.
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As vg is the only haplotypecaller amongst the graph genome software and due to

the increased number of false positive variant calls made by vg found during the manual

inspection of alignments, this resulted in haplotype calls in which there was both one

correct and one incorrect call. The presence of the incorrect haplotype meant that the

variant call was classified as a false positive by vcfeval, as shown in Figure 3.14. The

vg 1.26 reference graph FP VCF file contained five haplotype calls where there was one

right and one wrong call.

Following the generation of the second truthset VCF file, two problems remained in

comparing truthset and predicted VCF files. Firstly, haplotype variant calls generated

by both FreeBayes and vg needed to be decomposed. Secondly, errors in the vcfeval

software when comparing variants needed to be resolved. In order to mitigate the

first problem, it was necessary to normalise and decompose all variants into their most

primitive form, using the vcflib post-processing pipeline, which enabled the recognition

of identical variants by vcfeval.

Figure 3.14: Incorrect Haplotype Calls in vg. This figure depicts the alignment of

sequence reads against the vg 1.26 DBVPG1373 reference graph. The first haplotype

call is the true positive variant whereas the second haplotype is a false positive due to

the incorrect C -> T substitution called at position 17,963. This resulted in the variant

call being classified as false positive by vcfeval.
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3.3.9 Comparison of the Simulated Dataset Variant Calling Across

Different Graph Genome Software

The corrected vcfeval classification was used to compare the accuracy of the filtered vari-

ant calls from all 12 references for each of the 19,000 simulated chromosomal datasets.

The number of true positive variant calls was compared against the number of false pos-

itive variant calls for each dataset, as shown in Figure 3.15. The individual peaks seen

on the graph can be attributed to the different numbers of variants within each strain.

BayesTyper was found to call the least number of false positive variants. However, for

several genomes, it was also found to call fewer true positives than was expected for that

strain, demonstrated by the outlier values in the bottom left of the scatter plot. The

vg 1.26 variation graph was shown to call the highest number of false positives across

all of the datasets compared to the other references, followed by the vg 1.5 variation

and reference graphs. For both vg 1.26 and vg 1.5, the variation graph calls contained

more false positives than the reference graph calls. The vg 1.18 and vg 1.5 variant

calls were also shown to contain fewer true positive variants in comparison to the other

software (see Appendix Figure B.19 for the scatter plot without BayesTyper). Strains

that contained the least number of variants, such as W303 and BC187, had a lower

number of false positive variant calls with the least variance in the range of the number

of true positive variants called by each software in comparison to more highly divergent

strains.

Comparison of the true positive variant calls against the false negative variants has

been displayed in Figure 3.16. As expected, the scatter plot clearly shows that as

the number of true positive variants called decreases with each software, the number of

corresponding false negative variants was also shown to increase. BayesTyper was shown

to have the lowest number of false negative variants for the majority of the datasets

compared to the other variant callers. However, it also called the highest number of

false negative variants for several of the datasets as depicted by the outlier values in

the top left of the scatter plot. For all of the graph genome software, variant calls made

from the variation graph were found to contain fewer false negatives in comparison to

the reference graph variant calls (see Appendix Figure B.20 for the same scatterplot

without BayesTyper). The Graph Genome toolkit also had the lowest number of false

negative variant calls, followed by BWA, Graphtyper, vg 1.26, vg 1.18 and vg 1.5, the

latter of which predicted the most false negative variants.
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Figure 3.17: Precision vs Recall. This plot shows precision against recall values

averaged over 1,000 datasets, for each of the 19 strains, for the 12 different references.

The accuracy of the variant calling algorithms was determined by comparing the

level of precision against recall by taking the average of both values for all datasets and

for each of the 19 strains, as shown in Figure 3.17. All of the variation graphs were

found to have better recall, which accounts for the false negative variants, in comparison

to the reference graphs, except from vg 1.18 for which there was no difference between

the two. The Graph Genome Pipeline variation graph had the highest score for recall,

followed by the Graph Genome Pipeline reference graph. This is further supported by

Table 3.7 which shows the average values across the 19,000 genomes for each reference

structure, in which the overall recall score for the Graph Genome Pipeline variation

and reference graphs are 0.991 and 0.988, respectively. The differences in the average
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number of true variants (the total number of true positives and false negatives) predicted

was found to vary for each software due to the differences in variant representation, as

discussed in Section 3.3.8. The variants called from the linear reference genome by

FreeBayes were shown to have better recall than Graphtyper and vg, with the average

precision and recall over all datasets being the same as for the Graph Genome Pipeline

reference graph. BayesTyper was also found to have high recall with a slightly lower

precision, averaging 0.998 and 0.986 across all of the datasets. The vg 1.5 reference

graph was found to have the lowest recall in variant calling, averaging 0.964 across all

of the genomes. The level of precision in variant calling was also found to very high

amongst all of the software with there being little to no difference between the variation

and reference graphs, apart from vg 1.5 and vg 1.26. The vg 1.26 variation graph was

found to have the lowest precision score for variant calling, with the precision for the

mosaic laboratory strain W303 dropping far below the other strains. Graphtyper was

found to have perfect precision scores (1) for both the reference and variation graphs.

Reference True

Positives

False

Positives

False

Negatives

Precision Recall F1 score

GGP var 3037 4 29 0.999 0.991 0.995

GGP ref 3028 5 37 0.999 0.988 0.993

Linear ref 3015 2 40 0.999 0.988 0.993

BayesTyper 3022 2 41 0.998 0.986 0.992

Graphtyper var 3008 1 61 1.000 0.980 0.990

Graphtyper ref 2999 0 69 1.000 0.978 0.989

vg 1.26 ref 2982 17 71 0.995 0.978 0.986

vg 1.18 var 2960 2 97 0.999 0.970 0.984

vg 1.18 ref 2959 2 98 0.999 0.970 0.984

vg 1.5 var 2963 56 85 0.982 0.974 0.978

vg 1.26 var 2990 89 56 0.965 0.982 0.974

vg 1.5 ref 2931 63 120 0.979 0.964 0.972

Table 3.7: Comparison of the Variant Calls Average Across 1,000 Datasets.

The average values of the number of variants and the precision, recall and F1 scores cal-

culated from the 19,000 genomes. The ref in the Reference column stands for reference

graph and the var stands for variation graph.
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Figure 3.18: Average F1 Scores. This bar chart displays the average F1 score calcu-

lated from all of the datasets for each reference structure, ordered by their F1 scores.

The average F1 score, which account for the trade-off between precision and recall,

from all of the datasets, were compared to determine which software and reference

structure produced the most accurate variant calls overall. The bar chart in Figure

3.18 shows that the Graph Genome Pipeline variation graph had the highest F1 score,

0.995, followed by the Graph Genome Pipeline reference graph and the linear reference

at 0.993. BayesTyper was found to perform better than the Graphtyper variation graph

as it had slightly better recall. Due to their increased ability to recall variants, the

variation graphs had greater F1 scores in comparison to the matching reference graphs,

with the exception of vg 1.26 in which the reference graph outperformed the variation

graph as a result of its reduced precision. The vg variant calling algorithm was found

to produce the least accurate variant calls of the graph genome software, with vg 1.5

performing worst overall.

3.4 Discussion

The analysis of sequence read alignments from different mappers has highlighted the

need for a single metric that could be utilised as a standardised method to assess the

accuracy of mapping. There are already a few measures widely in use for characterising
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alignments, such as the CIGAR string, the MD tag and the CS tag. However, each of

these are measures are limited in the alignment information they present. Moreover,

there is a need for a measure that captures an exact base by base representation of how

sequence reads map to a reference structure yet there is no known script or software

available that could provide this information. The FAT-CIGAR toolkit implemented

here allows for a true read alignment to be obtained, whether for a linear or a graphical

reference, which can then be used to determine the accuracy of a mapping algorithm.

The run time for the FAT-CIGAR toolkit on linear alignments was shown to be

vastly quicker than for the vg reference graph. For BWA alignments, the FAT-CIGAR

string is constructed on the fly from the information within the BAM file, therefore the

file does not need to be loaded into memory. The vg alignments have a much longer

run time as they require large JSON files to be loaded into memory and indexed using

hash tables before each read is cross-searched from the BAM file. Even with the hash

optimisation for read searching, an increased number of sequence reads can result in

JSON files that are several hundred gigabytes in size. The overall run time of the FAT-

CIGAR toolkit could be greatly reduced for vg alignments by breaking up the GAM file

into multiple smaller files for each chromosome using the vg chunk function, converting

the chromosome GAM files into JSON and BAM files and running the script on each

individual chunk for strains with over five million reads. This could be incorporated as

a function in the toolkit, where the file size is checked prior to calling vg from within

the script to split large GAM files before running. The per-chromosome files could then

be processed in parallel before combining to output a single, sorted BAM file. However,

the vg software is currently still under rapid development with major changes being

made constantly to the core algorithm that introduce redundancy to certain functions.

Therefore, it would be most efficient to add such a feature to the FAT-CIGAR toolkit

once the vg software has stabilised.

The use of a variation graph reference structure was clearly shown to increase the

number of sequence reads that are able to align against the reference for both vg and the

Graph Genome toolkit. This was expected as incorporation of the variants within the

population in the reference structure facilitates read alignment, particularly within the

highly polymorphic regions of the genome. Interestingly, it was noted that even in the

absence of variants, a greater proportion of sequence reads were able to align against the
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graph-based reference structure in comparison to the standard, linear reference. These

findings have also been supported in the studies published on both vg and the Graph

Genome toolkit (Garrison et al., 2018, Rakocevic et al., 2018). This observation may

be due to the nature of aligning against a graph-based reference structure requiring

these mapping algorithms to have increased alignment sensitivity. The increase in map-

ping against the vg reference graph compared to the Graph Genome toolkit variation

graph demonstrates that the vg mapping algorithm has the greatest sensitivity of the

alignments studied at aligning sequence reads.

The sequence identity score calculated from the FAT-CIGAR string was able to

provide an accurate depiction of alignment quality. The reduction in the percentage

of reads with perfect mapping when using the true sequence identity scores was due

to the reassignment of some matches in the CIGAR string to mismatches in the cor-

responding FAT-CIGAR string. As the CIGAR string is routinely used to calculate

the sequence identity for linear read alignments, this lack of distinction previously en-

abled alignments that contained several mismatched bases to be considered as perfectly

mapped. In addition to increasing the quantity of mapped reads, the use of a variation

graph reference structure was also shown to vastly improve the quality and accuracy

of alignments by increasing the percentage of perfectly mapped reads. As the variant

alleles are already present within the reference, this reduces ambiguity in mapping and

eliminates reference bias resulting in improved alignment accuracy. The Graph Genome

toolkit variation graph was found to align the greatest proportion of reads with sequence

identity scores greater than 0.9 suggesting that the alignment accuracy was better than

that of the vg mapping algorithm. The overall proportion of well-mapped reads were

also found to be slightly higher in BWA compared to both the vg and Graph Genome

toolkit reference graphs. This suggested that despite the increase in the quantity of

mapped reads against the reference graphs, in the absence of variants the quality of

alignment remains the same.

The FAT-CIGAR toolkit also enabled direct comparison of alignments against each

of the different reference structures. The reduction in the number of reads that aligned

with the same CIGAR string to the same FAT-CIGAR string was mainly due to the

reads that aligned against the variation graphs in vg and the Graph Genome toolkit.

The absence of variants within the reference structure meant that read alignments
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against both the reference graphs and linear reference genome are more likely than the

variation graph to contain mismatched bases due to the presence of SNPs, which these

mismatches highlighted by the FAT-CIGAR string but not the corresponding CIGAR

string. The presence of alternate alleles within the variation graph enables the same

reads to align as perfect matches, leading to the deserved increase in reads that map

at the same position yet with a different FAT-CIGAR string. Furthermore, use of a

graphical reference structure also led to an increase in reads that aligned at different

positions as the likelihood of mapping to the true location is increased when aligning

against the variation graph. As the majority of the differences in mapping and position

arose from read alignments against the variation graph, this further supported the idea

that mapping against a graph-based reference improves the quality of alignment.

Unsurprisingly, comparison of the number of variants called across each of the four

graph genome software showed that an increased number of both SNPs and indels

were called against the variation graphs in comparison to the reference graph. This

suggested that the increase in sequence read mapping against the variation graph and

the elimination of reference bias in mapping translates to increased sensitivity in the

variant calling algorithms enabling novel variant discovery. As with mapping, the wide

range seen in the number of variants called across the Bergstrom strain dataset can

be mainly attributed to a very high variance in the quality of the sequencing reads,

as seen previously in Chapter 2. The heightened difference in the number of variants

called between the vg variation graph and the other variation graphs also indicated the

possibility of an increase in false positive variant calls. However, the potential presence

of false positive variants within the variant calls could not be examined due to the

absence of a curated ground truthset for S. cerevisiae, such as the Illumina Platinum

Genomes (Eberie et al., 2017) and Genome in a Bottle Consortium (Zook et al., 2014)

bench-marking datasets for human genomes.

Generation of the 1,000 Bergstrom-like simulated datasets using TreetoReads was

an extremely lengthy process, as it required several other sub-processes and software to

be run in order to obtain accurate input parameters. The branch lengths of the input

tree are scaled by TreetoReads which resulted in far too many variants being introduced

into the more distant strains due to the greater branch lengths. In order to achieve the

required numbers of variants across all strains, the TreetoReads Python code had to be
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edited to scale down the branches of the distant strains based on the branch length, as

confirmed with the author of the software, Emily McTavish. The TreetoReads algorithm

uses a non-deterministic approach so testing procedures to find the optimal parameters

resulted in it being run 172 times prior to generating the final simulated datasets.

The BayesTyper variant calling algorithm was found to be non-deterministic, re-

sulting in unstable variant calls that change with each run. Therefore, determining

the genotype of a strain from a single run would not be highly accurate. Due to the

limitation of time constraints for this project, each dataset could only be run once as

it took several weeks to complete the analysis of all 1,000 datasets. Both for this work,

in order to allow for fairer comparison, and for any future users of the BayesTyper

software, it would be advisable to take a consensus approach in which the variant calls

across multiple runs are consolidated to obtain more accurate variant calls. Additional

deterministic tests also had to be run on the vg algorithm to confirm stability as initial

faulty runs resulted in the under-calling of variants for many datasets. This was found

to be due to vg running out of memory space as the variant calling process is run in

multiple steps that require large amounts of computational memory to generate an aug-

mented graph containing the variants. Multiple datasets were initially run in parallel in

order to expedite the run time, as they take several weeks to complete, which resulted

in run time errors that produce the faulty variant calls. The final runs were carried out

serially, confirming that the algorithm was not deterministic.

Prior to final variant call comparison analysis, the filtered variant calls from all

of the software for the first DBVPG1106 dataset were manually curated again after

variant classification in order to ensure there were no remaining software errors other

than the ones identified and corrected regarding truth-set generation and vcfeval-based

comparison. Generation of a yeast variant truthset enabled the accuracy of graph

genome-based variant calling to be tested on a dataset other than the human genome,

as this was the only species that had been used by the software developers to study the

performance of the graph genome software prior to this study, with the sole exception

of vg. RTG’s vcfeval was utilised as it is the only software currently available that

can carry out the required variant classification. For example, the only other software

for benchmarking variant call sets, Illumina’s hap.py, also utilises vcfeval to carry out

variant comparison (Krusche et al., 2019). Vcfeval was found to perform well overall in
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identifying identical variants from different call sets but it also failed for certain variants

when comparing a normalised call set against a VCF file that had not been normalised.

Furthermore, it was surprisingly shown to fail for some identical variants, the reason for

which is still unclear. It was important that these errors were corrected as it would have

lowered the precision and recall for all of the software, making the variant calls seem

less accurate. The preliminary analysis of the variant calls showed that the vg variant

calling algorithm was unstable as it had called a significantly greater number of false

positive variants in comparison to the other software. This was initially suspected to be

due to a software version issue as the study examining read mapping identified that the

vg mapper performs well at read mapping. Both vg 1.18 and vg 1.5 were subsequently

run in order to test for version stability, as they had been used to carry out the work

in the previous Chapter.

All three versions of vg were found to have the least accurate variant calls in compari-

son to the other graph genome software or FreeBayes for the linear reference. Depending

on version, this was due either to calling a greater number of false positive and false

negative variants or calling fewer true positive variants. As this lower performance was

consistent across all three versions of vg, it strongly suggested that there is an inherent

issue with the vg variant calling algorithm albeit with the mapping algorithm perform-

ing accurately. The Graph Genome toolkit was determined to have produced the most

accurate variant calls as it had high precision due to the low number of false positives.

Furthermore, it had the highest sensitivity of the variant calling algorithms, particu-

larly for the variation graph. The Graph Genome toolkit is also quite computationally

intensive and running the 1,000 datasets on my laptop with 8GB RAM took nearly

two months to complete. FreeBayes was found to perform better than BayesTyper,

Graphtyper and vg, which can be owed to the accuracy of the variant caller and the

lack of complex structural variants within the simulated genome that would otherwise

be present in a real, biological dataset in which the use of a variation graph would

be highly beneficial. Even though there were many outlier variant call sets produced

by BayesTyper due to the instability of the algorithm, as the majority of datasets were

called with a high number of true positive variants and few false positives, this was aver-

aged out across the 1,000 datasets to generate a high F1 score. The low number of false

positive variants can also be attributed to its inability to call novel variants, as all of

the variants genotyped were prior variants called using FreeBayes, Platypus and Manta
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for each dataset. BayesTyper ’s inability to call novel variants is a major limitation to

its usability as the identification of these variants is highly important for studying and

characterising new genomes. Graphtyper was found to contain the most precise variant

calls, with little to no false positive variants across the majority of the genomes, partic-

ularly for the reference graph. Graphtyper was also the most user-friendly of the graph

genome software and had the quickest run time as it processes multiple smaller regions

in parallel, even allowing for the prior linear alignment that had to be carried out with

BWA. Therefore, it would be the recommended software if avoiding false positive vari-

ant calls is of utmost importance in a study. Such a scenario might be, for example,

when conducting a Genome-Wide Association Study.

3.5 Conclusion

Developing the pipeline for a large-scale simulation study which required the simulation

and accurate genotyping of 19,000 genomes to be utilised as benchmarking datasets

proved to be highly challenging, mainly due to the identification of many software

errors that had to be corrected in order to carry out a fair comparison. The use of

variation graph reference structures was shown to improve both the quantity and quality

of sequence read alignment and increase the accuracy of variant calling. Variation graphs

were shown to have much greater recall and better precision than their corresponding

reference graphs supporting the theory that encoding alternate alleles within a reference

structure can eliminate reference allele bias in mapping. The recommended software to

obtain the most accurate variant calls was found to be the Seven Bridges Graph Genome

toolkit. In functional genomic studies where it is important to minimise false positive

variant calls, Graphtyper would be better suited owing to its near perfect precision.

Although the work in the previous chapter had been carried out using vg, inherent

issues identified with the vg variant calling means that it is not the most appropriate

software for carrying forward with the analysis of yeast genomes. Graph genomics is

still a relatively new field but the increase in the number of graph genome software

released, due to the demand for alternate reference structures that can overcome the

limitations of the linear reference genome, is a strong indicator that the use of variation

graphs will eventually become the new normal for variant discovery.
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The FAT-CIGAR toolkit, pivotal to obtaining these findings, permits the generation

of true alignments for a range of different read mappers, alongside correct alignment

scores for graph-based and linear read mappings, the latter of which BWA does not

provide for all alignments. The FAT-CIGAR string also enables prior filtering of read

alignments within the BAM files which can in theory improve the accuracy of variant

calling and further downstream analyses. Improvements in variant calling made by read

filtering will be discussed in greater detail in the following chapter.
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Chapter 4

FAT-CIGAR : A Novel Method of

Variant Filtration

4.1 Introduction

The exponential increase in next-generation sequencing data has been a driving motiva-

tion for the development of numerous software for read mapping and variant calling in

a constant effort to improve the accuracy of current data analysis pipelines. The tran-

sition towards personalised genomics and medicine over the recent years has also meant

that whole-genome sequencing and whole-exome sequencing are more widely used in

clinical settings for the identification of causal variants in disease diagnostics. This has

allowed for the discovery of rare variants in disease and for treatments to be specifically

tailored towards each individual. Thus, there is an increasing requirement for variant

prediction methods to be carried out with the utmost degree of precision.

The key challenge in variant prediction is to be able to distinguish between the true

variants and false positive calls. Various approaches such as quality control analysis of

the sequencing data, filtering sequence reads based on mapping quality and carrying

out local realignment of large indel regions can contribute towards improved accuracy

in variant calling. Post variant-calling, variant filtration methods can be utilised to

identify and remove false positive variant calls. The main traditional approach is to

carry out hard filtering on the variant calls using the annotations provided by the

variant caller. These annotations, such as the read depth, genotype quality and minor

allele frequency, can be found within the INFO and FORMAT fields of the VCF file.

Variants can be filtered on one or more thresholds as specified by the user. A major
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limitation of this approach is that the accuracy of filtering is dependent on choosing

the correct filtering thresholds. The user is required to have knowledge of the dataset

in order to select appropriate filtering thresholds and ensure that the filters are not

overly stringent. Hard filtering may also be incapable of removing high confidence false

positive variants that have strong read support.

The Variant Quality Score Recalibration (VQSR) tool by GATK (DePristo et al.,

2017) is a specific example of a dedicated variant filtration tool. VQSR utilises a machine

learning algorithm to compare the variant calls against a highly validated truthset on

which the algorithm is trained. The annotations from the truthset are utilised to identify

appropriate filtering thresholds. New quality scores are assigned to the variants and

used to filter out false positive variant calls. VQSR can provide greater accuracy in

identifying true variants for species that have a highly curated call set, such as the

HapMap project (The International HapMap Consortium, 2003) and 1000 Genomes

project (1000 Genomes Project Consortium, 2015) for human genomes. However, in

the absence of a curated call set, as is unfortunately the case for many species, this

method of filtering cannot be utilised (GATK, 2021).

In this chapter, we aim to introduce a relatively new method of variation filtration

that utilises the FAT-CIGAR toolkit to filter out reads that are not terminally anchored

against the reference genome, by a specified number of bases. The effectiveness of this

method of filtering at removing false positive variants prior to variant calling will be

highlighted. The differences in the accuracy of variant calling will be observed when

filtered on the CIGAR and FAT-CIGAR strings. In order to compare the accuracy of

the variant calls, the sim_genomes program will be developed to combine the process of

simulating genomes and generating the truthset for each genome. Several genomes will

be simulated with varying numbers of SNPs and indels and the accuracy of filtering will

be determined by the F1 scores to identify the most optimal read filter. Read filtering

will also be carried out on S. cerevisiae strains that were re-sequenced at different times

and using different technologies. The sequence reads from each strain will be compared

against itself to examine the changes in the proportion of shared variants.
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4.2 Methods

4.2.1 The FAT-CIGAR Toolkit: Read Filtering

A read filtering option was added to the FAT-CIGAR toolkit, which was introduced in

Chapter 3, to enable the user to specify a certain number of bases by which the read has

to be anchored against the reference sequence by exact matches at either ends (see Figure

4.1). The idea for this method of read filtration was inspired by techniques utilised in

the TURNIP (Davey et al., 2010) and Parsley (https://github.com/ziaursani/parsley_-

root) software by Dr. Jo Dicks and Dr. Robert Davey. This method of anchoring reads

to the reference using the FAT-CIGAR toolkit was tested as a relatively novel variant

filtering technique to prevent false positive SNP calls that arise from misalignment at

read ends. As the FAT-CIGAR toolkit permits for both the non-surjected CIGAR

and FAT-CIGAR strings to be obtained for alignments from various mapping software,

either string could be utilised by the user for read filtering. The -a/–fat_cigar_anchor

option should be specified to filter on the FAT-CIGAR string or the -ca/–cigar_anchor

option should be specified to filter on the CIGAR string. If either read filtering options

are specified, for each mapped read the chosen string is checked to ensure that both

the first and last operations in the string represent base matches. If not, the read is

immediately discarded from the BAM file. If there are matches at either ends of the

read, the number of bases is compared and only reads with base matches greater than

or equal to the number of bases specified by the user are retained and written to the

output BAM file.

4.2.2 The Effect of Read Anchoring Length on Read Retention

In order to test whether read filtering with the FAT-CIGAR toolkit can improve variant

calling, it was important to identify the optimal base length for read anchoring. The

pIRS simulate function was run with -x 30 (read coverage) and default parameters to

simulate paired-end Illumina sequence reads from chromosome I of the S288c reference

genome. The simulated reads were aligned against the S288c FASTA file using bwa

mem. The resulting alignment SAM file was converted to BAM format, sorted and

indexed using SAMtools. Picard’s MarkDuplicates function was used to remove PCR

duplicates from the BAM file prior to read filtering. The FAT-CIGAR linear function

was run with the -a parameter to anchor reads by filtering on the FAT-CIGAR string.

162



(a) Filtering on the FAT-CIGAR String

(b) Filtering on the CIGAR String

Figure 4.1: Read Filtering using the FAT-CIGAR Software. This figure is an

example of sequence reads that were filtered by anchoring the read ends against the

reference sequence by five bases using the FAT-CIGAR software. The green tick repre-

sents reads that passed the filter whilst the red cross represents reads that were removed

during filtering. Figure 4.1a shows sequence reads that were filtered on the FAT-CIGAR

string. Only the first read was able to pass the filter as both read ends contained exact

base matches against the reference. Figure 4.1b shows sequence reads filtered on the

CIGAR string. The second read was also able to pass as the 'G' and 'C' SNPs are

masked as base matches in alignment by the CIGAR string. This figure was adapted

from Dündar et al., 2015.

Read anchoring was carried out with 5, 10, 15, 20, 25 and 30 bases and the retention

of reads within the BAM file was monitored.

4.2.3 Studying the Impact of Read Anchoring on Variant Calling

In order to assess whether read filtering can improve variant calling, it was critical to

generate a truthset against which the called variants can be evaluated. Simulated truth-

sets were utilised to test the hypothesis that filtering sequence reads on the FAT-CIGAR
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string can reduce the number of false positive variants called, allowing for greater accu-

racy in variant calling. The sim_genomes Python script (https://github.com/prithikasr-

itharan/sim_genomes) was written to simulate genomes from a reference sequence and

record the exact variant alleles within the simulated genome. As before, S288c chro-

mosome I was chosen as the reference from which to simulate the genomes. Initially,

only SNPs were simulated within the genomes to focus on how read anchoring affected

SNP calls. The sim_genomes Python script simulates SNPs under the assumption that

substitution events are independent and occur at random within the genome. It takes

in the number of SNPs to simulate, the input FASTA file and a prefix name for both

the output FASTA and VCF files as required input arguments. The reference sequence

from the FASTA file is stored into memory and the random Python library is used to

determine the positions at which to insert the SNPs, ascertaining each position is only

selected a maximum of once. At each chosen position, the exact SNP is also decided

using the random library and each variant allele is checked against the reference allele

to ensure it is not the same. If the randomly generated variant allele is the same, the

reference allele is mutated again until a SNP is produced. The simulated genome is

written out to the user specified FASTA file with the header stating the number of vari-

ants within the sequence. The benchmark VCF file is also written out containing the

following information: the position, reference allele, variant allele, pass filter, variant

type and the genotype. Three genomes were simulated containing 1,000, 2,000, and

3,000 SNPs.

Prior to simulating sequence reads, the pIRS in-house error profiling scripts were

utilised to generate error profiles specific to S. cerevisiae, following the methods outlined

in the pIRS documentation. As NCYC78 was previously found in Chapter 2 to have

high sequence read quality, it was selected for profiling. The substitution error profile

was generated using a two-step alignment process in which bwa aln was used to map

the NCYC78 forward and reverse reads FASTQ file against the reference separately,

producing an SAI intermediate file containing the suffix array indexes. The SAI files

were provided as input with the FASTQ files to bwa sampe to obtain the final alignment

SAM files. The pIRS baseCalling_Matrix_calculator script was run with the SAM file

and the S288c_ChrI FASTA reference file to generate the substitution error profiles.

The GC error profile was obtained using the SOAP2 v2.21 (Li et al., 2009) aligner.

The 2bwt-builder was used to index the reference and soap to align the reads with the
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parameters: -s 40 (minimal alignment length) and -l 32 (seed length). The average

read coverage was estimated using soap.coverage and the output depth files were run

with the pIRS gc_coverage_bias script to obtain the GC error profile. The indel error

profile could not be generated as the pIRS indelstat_sam_bam perl script produced a

read length error when run with the NCYC78 SAM file. It was not possible to debug

this error as when the script was edited to bypass the error code, the script ran but did

not produce any output therefore, the standard indel error profile was utilised instead.

pIRS was used to simulate sequence reads from each of the three simulated genomes

using both the default pIRS error profile and the NCYC78 error profile to identify any

errors in read simulation. The reads were mapped using bwa mem, sorted, indexed and

PCR duplicates were removed. The FAT-CIGAR toolkit was used to anchor reads on

the FAT-CIGAR string by 10 and 20 bases. Variants were called from the unfiltered and

filtered BAM files using FreeBayes and the vcflib post-processing pipeline (see Chapter

3) was utilised to normalise and decompose the variants. The accuracy of the variant

calls were compared against the truthset using RTG’s vcfeval to classify the variants.

The variant classifications were further corrected using the Python script developed in

Chapter 3 to ensure any misclassified false positive and false negative variants were

adjusted appropriately.

The sim_genomes Python script was further expanded to allow for the simulation

of indels in order to test whether the FAT-CIGAR toolkit can reduce false positive

indel calls. The number of indels was added as an additional required input argument.

The choice of different types and proportions of indels to simulate was adapted from

the method of indel simulation utilised in the SInC (Pattnaik et al., 2014) software

(see Figure 4.2). The number of each indel type was determined as a percentage of

the overall number of indels specified by the user. Single base indels were simulated

for 35% of the total variants, repeat regions were expanded for 10% of the variants

and 55% of the variants were non-repeat indels which consisted of 96% medium indels,

varying in proportions ranging from 2 to 20 bp and 4% long indels between 20 - 100

bp. The TRF (Tandem Repeat Finder) v4.09.1 (Benson, 1999) software was run using

the recommended parameters on the S288c_ChrI reference sequence to identify the

repetitive regions of the genome which were used to carry out the repeat expansions.

The DAT file output from TRF contained 46 possible repetitive regions and if there

were different possible repeat sequences from overlapping regions, the sequence with the
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Figure 4.2: Simulating Indels. This flowchart shows the different types and percent-

age of indels that were introduced within each simulated genome. The three types of

indels were single base (blue), repeat expansions (orange) and non-repeat medium and

long indels (grey). For the repeat expansions, LOR refers to the length of the repeat

sequence with the orange boxes showing the number of potential repeats.

greatest alignment score was chosen, leaving 38 repeat sequences in the final output.

The script read in the DAT file containing the starting position, end position, the

length of the sequence and the repeat sequence into a list. For each expansion, the

repeat sequence was chosen at random and the number of expansions was also chosen

at random, based on the length of the repeat sequence, as detailed in Figure 4.2. The

end position of the selected repeat sequence was determined as the starting position

from which to insert the expansions. For the other indel types, the position of the indel

was generated at random ensuring that each position was unique. The length of the

indel sequence was also chosen at random for the non-repeat medium and large indels

ranging from 7-10 bp, 11-20 bp and 20-100 bp. As with the single base indels, 50% of

each type of non-repeat indels were insertions and 50% were deletions. The insertion

sequences were also generated using the random Python library. As the introduction of

each variant allele changed the positions within the simulated genome, a list of positions

in regard to the reference was maintained to identify the exact position in the simulated

genome. The final simulated genome containing both SNPs and indels was written out

to a FASTA file whilst the variants were written to a VCF file with the variant types

defined as follows: "complex" for repeat expansions, "ins" for insertions and "del" for
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deletions.

Three different genomes were simulated each containing 1,000 SNPs and either

100, 150 or 200 indels, as the number of indels within chromosome I across various

S. cerevisiae strains was found to vary between 100 and 200. Sequence reads were

simulated using pIRS and mapped against the reference as described previously. The

FAT-CIGAR toolkit was utilised to anchor reads using the FAT-CIGAR string at 10, 20

and 30 bases. Variants were called from the filtered and unfiltered BAM files, processed

with vcflib before carrying out variant classification with vcfeval. The classifications

were corrected in order to look at the differences in the number of false positives as the

stringency of read filtering increased.

4.2.4 Identifying an Optimal Read Filter

The optimal FAT-CIGAR read filter for improving variant calling was identified by sim-

ulating genomes to mimic the numbers of variants in chromosome I of the Bergstrom

strains (see Chapter 2). As the Bergstrom strains come from five different Saccha-

romyces cerevisiae sub-populations, a representative strain was chosen from each pop-

ulation. The numbers of SNPs and indels in chromosome I of each strain were obtained

from an average of the number of variants called by each of the graph genome soft-

ware, as shown in Table 4.1. For each of the five strains, 10 genomes were simulated

with the same number of SNPs and indels. The same read filtering pipeline outlined

previously was utilised for sequence read simulation, mapping, read filtering, variant

calling and classification. The average number of true positives, false positives and false

negatives variants across the 10 genomes were calculated to compare the differences in

the accuracy of the variant calls produced by each filter.

The ratio of SNPs to indels were found to be relatively constant across the Bergstrom

strains despite the vast difference in range. In order to examine how the coincidence of

SNPs and indels within a genome can impact read filtering, a further simulation study

was carried out. 25 genomes were simulated containing 200, 400, 800, 1,600 and 3,200

SNPs and 20, 40, 80, 160 and 320 indels. The read filtering pipeline was carried out and

the VCF files were compared to identify which read filter produced the most accurate
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Table 4.1: Simulating Bergstrom strains. The five representative Bergstrom strains

from each S. cerevisiae sub-population that were chosen for simulation, along with the

average number of SNPs and indels within chromosome I of each strain, as determined

through analysis using the graph genome software.

Strain Sub-Population SNPs Indels

YPS128 North American 2,364 187

UWOPS03-461.4 Malaysian 2,265 175

DBVPG6044 West African 2,009 172

Y12 Sake 1,938 121

DBVPG6765 Wine/European 1,563 132

variant calls.

4.2.5 Read Filtering on S. cerevisiae Strains

Whilst studying the effect of read filtering on the accuracy of variant calling on sim-

ulated datasets was highly useful, it was also critical to study the effect of filtering

on real datasets. The following three S. cerevisiae strains within the NCYC collection

had been sequenced twice during the NCYC sequencing project: NCYC91 (haploid),

NCYC87 (triploid) and NCYC1026 (tetraploid). As these strains had been re-sequenced

on different sequencing plates at different times and using different sequencing library

construction methods, the sequence reads could be readily compared against each other.

The strain reads were mapped against the S288c reference genome with BWA and the

resulting BAM files were filtered on both the CIGAR and FAT-CIGAR string. Variants

were called from each of the filtered and unfiltered BAM files with FreeBayes prior to

running the vcflib post-processing pipeline. The bcftools isec function was utilised to

identify the number of shared and unique variants from both plates for each strain, to

test whether the proportion of shared variants increased with filtering.
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4.3 Results

4.3.1 Read Retention After Filtering on the FAT-CIGAR String

An initial understanding of how sequence reads are impacted by this novel method of

read filtering was obtained by monitoring read retention within the BAM files. The

percentage of sequence reads retained as the read filtering stringency increased is shown

in Figure 4.3. As expected, the percentage of sequence reads retained was found to de-

crease as the number of bases on which the FAT-CIGAR string was anchored increased.

Filtering reads on the minimum anchor length of five bases resulted in 94.1% read re-

tention whilst the maximum anchor length of 30 bases resulted in 78.7% retention of

reads. As the anchor length increased, the difference in percentage of reads filtered also

decreased. For example, there was a 5.9% decrease in the proportion of reads from the

unfiltered dataset to the BAM file filtered at five bases whilst there was a decrease of

only 2.2% when moving from 25 bases to 30 bases.

4.3.2 Effect of Read Filtering on SNPs

Three genomes were simulated containing 1,000, 2,000 and 3,000 SNPs to assess whether

filtering reads on the FAT-CIGAR string can improve the accuracy of the variant calls.

Figure 4.4 shows the differences in variant classification for each read filter when

sequence reads were simulated in pIRS using the custom versus the standard error

profile from the genome containing 1,000 SNPs. For both error profiles, as the stringency

of filtering increased, the number of false positive variant calls also greatly decreased.

Consequently, there was a slight decrease in the number of true positive variants which

resulted in the number of false negative variants increasing as an artefact of removing

the false positive variants.

The sequence reads simulated using the custom error profile led to a threefold greater

calling of false positive variants (3,364) than true positive variants (998). Only when the

reads were filtered on the FAT-CIGAR string anchored by 20 bases did the number of

false positive variants (531) reduce by 84% to less than that of the true positive variants

(991). There were only two false negative variant calls in the unfiltered reads which rose

to nine variants when anchored stringently by 20 bases. For reads simulated using the
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Figure 4.3: Read Retention After Filtering. The percentage of sequence reads that

were retained in the BAM file after filtering on the FAT-CIGAR string to anchor the

read ends by varying base lengths is shown in the line graph. As reads are anchored

by a greater number of bases at each end, the percentage of reads that pass the filter

decreases.

standard error profile, 995 variants called from the unfiltered reads were true positives

whilst 388 variants were false positives. This was also found to reduce by 84% to 60

false positive variants when filtered on the FAT-CIGAR string by 20 bases and 988 true

positive variants. The number of false positive variants was found to be nearly nine

times greater when using the custom error profile compared to reads from the standard

error profile. This was also found to be the case when comparing the error profiles from

the simulated genomes containing 2,000 and 3,000 SNPs (see also Appendix Table C.1).

The increased incidence of false positive variants within the reads generated using

the custom error profile also contributed to lower read retention during the filtering

process. When the reads were anchored by 10 and 20 bases, this resulted in 82.3% and
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Figure 4.4: Custom vs Standard Error Profiles. The bar chart shows the number

of true positive (blue), false positive (yellow) and false negative (orange) variant calls

for the genome simulated with 1,000 SNPs, both without filtering (unanchored) and

when filtered on the FAT-CIGAR string. The 10 and 20 tags refer to the base length by

which the reads were anchored against the reference genome. The difference in variant

calling when simulating sequence reads with the custom versus standard error profile is

shown by the two boxes.

72.1% read retention when using the standard error profile and 76.8% and 58.8% for

the custom error profile. Subsequently, the greater loss of sequence reads also led to an

increased number of true positive variants being removed during filtering.
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The default pIRS error profile was chosen as the most appropriate for simulating

sequence reads going forward. For all three genomes, the reads were filtered on the FAT-

CIGAR string and the numbers of each variant type, after correcting any misclassified

variants, was obtained to understand how filtering impacts SNP calling accuracy (Figure

4.5). As with the genome containing 1,000 SNPs, as the stringency of the filter increased,

the number of false positive variants was also found to greatly decrease for all genomes.
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Figure 4.5: FAT-CIGAR Filtering on SNPs. This bar chart shows the error-

corrected, classified variant calls from three simulated genomes containing 1,000, 2,000

and 3,000 SNPs. The sequence reads were simulated using the default error profile in

pIRS. For each genome, the number of variants that were classified as true positives

(blue), false positives (yellow) and false negatives (orange) has been shown for both

unfiltered reads and reads filtered on the FAT-CIGAR string.

There were also fewer false positive variants in the unfiltered calls from the 3,000

SNPs (349) genome compared to the 1,000 SNPs genome (388). The greatest reduction

in false positive variant calls was found to be between the unfiltered sequence reads and

reads filtered on the FAT-CIGAR string anchored by 10 bases by 63% to 142, 67% from

368 to 122, 74% to 91 for the 1,000, 2,000 and 3,000 SNPs genomes, respectively. The

172



number of true positive variant calls also remained relatively similar as there were only

one to three fewer true positives across the three genomes. Increasing the anchor length

to 20 bases resulted in a further decrease in false positive variants by 21% to 60 and

17 for the 1,000 and 3,000 SNPs genome, respectively and by 24% to 32 for the 3,000

SNPs genome. However, the 20 bp anchor length was found to be too stringent as it

also resulted in the filtering of a greater number of true positive variants, particularly

for the 3,000 SNPs genome. The number of true positive variants was found to decrease

by 7 (0.8%) for the 1,000 SNPs genome, 50 (2.5%) for the 2,000 SNPs genome and 146

(5%) for the 3,000 SNPs genome. Consequently, there was a proportionate increase in

the number of false negative variant calls across all genomes.

4.3.3 Effect of Read Filtering on Indels

Read filtering was carried out on both CIGAR and FAT-CIGAR strings for four genomes

simulated with 1,000 SNPs and varying number of indels, as shown in Figure 4.6. As

the number of indels within the genome increased, the number of true positive SNP

calls was found to decrease from 752 for the 100 indels genome to 731 for the 300 indels

genome and the number of false positive SNP calls was found to increase from 15 to

34, respectively, despite containing the same number of SNPs. Conversely, the number

of false negative SNP calls was found to increase as the number of variants within the

genome increased.

Both the CIGAR and FAT-CIGAR filtering was found to improve the accuracy of

variant calling by reducing the percentage of false positive variant calls. Filtering on

the CIGAR string had a slightly greater impact on the accuracy of indels than SNPs.

Anchoring the reads at 30 bases decreased the percentage of false positive SNP calls

from the unfiltered datasets by 15-40% across the four genomes and the percentage of

indels by 11-54%. This also resulted in a slight reduction in the percentage of true

positive variant calls by 0-0.1% for SNPs and 0-1.5% for indels in spite of the stringent

anchor length.

Reads filtered on the FAT-CIGAR string produced more accurate variant calls than

reads filtered on the CIGAR string. Filtering reads on the FAT-CIGAR string by 10

bases was shown to remove a greater number of false positive variants than filtering
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on the CIGAR string by 30 bases due to reducing false positive SNP calls by 50-67%

from the unfiltered reads. The only exception was the 300 indels genome in which

filtering by 30 bases on the CIGAR string produced fewer false positive variants as a

greater number of false positive indels were removed (26) compared to reads filtered on

the FAT-CIGAR string by 10 bases (13). FAT-CIGAR anchoring of reads by 30 bases

greatly reduced the percentage of false positive SNP calls from the unfiltered reads by

76-92% and indel calls by 27-65%. However, the stringency of this filter also resulted in

a greater reduction in the percentage of true positive variant calls by 8-11% for SNPs

and by 8.5-9.4% for indels.

The accuracy of the read filters was determined by evaluating the trade-off between

the true positives, false positives and false negative variant calls using the F1 score.

Figure 4.7 demonstrates the differences in the F1 score for SNPs and indels after filtering

for all four genomes. There was a clear distinction shown between the optimal read filter

for improving variant calling in SNPs and indels. Due to the consistency of the SNPs

across all four genomes, filtering on the FAT-CIGAR string by 10 bases produced the

most accurate calls. Filtering on the CIGAR string up to 30 bases also incrementally

increased the F1 scores of the SNP calls but extending the anchor length beyond 10 bases

on the FAT-CIGAR string reduced the accuracy of the calls. As the number of indels

increased, the most optimal filter for calling indels was found to shift towards the CIGAR

string. For both the 100, 150 and 200 indels genomes, filtering on the FAT-CIGAR string

by 20 bases was found to produce the greatest F1 scores. However, for the genome

containing 300 indels, filtering on the CIGAR string by 30 bases produced a much

greater F1 score, 0.872 compared to filtering on the FAT-CIGAR string by 20 bases,

0.859. Anchoring reads by 30 bases on the FAT-CIGAR was found to produce the calls

with the lowest accuracy, albeit removing the highest number of false positive variants,

with the F1 scores dropping to that of below the unfiltered reads. The combined variant

calls revealed that reads filtered on the FAT-CIGAR string by 10 bases had the highest

F1 score across all the genomes.

4.3.4 Read Filtering on Realistic Datasets

In order to evaluate how read filtering can impact variant calling when mimicking the

number of variants found in real datasets, genomes were simulated with the same num-
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ber of SNPs and indels as within chromosome I of five Bergstrom strains from varying

S. cerevisiae sub-populations. For each strain, 10 genomes were simulated and the dif-

ferences in the average number of classified variants before and after filtering has been

shown in Figure 4.8 (see also Appendix Table C.2). The average percentage of true pos-

itive variant calls was found to be slightly low across the five strains, with only 51-75%

of the SNPs within the genome called and 63-84% of the indels called. In addition, the

average number of false positive variant calls was found to be lower for SNPs (17-27)

than for indels (31-45) for all strains despite the much lower ratio of indels within the

genome.

As seen previously, filtering on both the CIGAR and FAT-CIGAR strings reduced

the percentage of false positive SNP and indel calls with filtering on the FAT-CIGAR

string removing a greater number of false positive SNPs. Filtering on the CIGAR

string by 30 bases reduced the average percentage of false positive SNP calls by 28-35%

and indel calls by 33-45% from the unfiltered reads. The percentage of true positive

SNP calls also decreased slightly by 0-0.17% and indel calls by 0.9-1.96%. Filtering on

the CIGAR string by 30 bases was also able to reduce more false positives on average

than filtering on the FAT-CIGAR string by 10 bases due to the stringency of the 30

bp anchor length removing 7, 9 and 7 fewer false positive indel calls for UWOPS03-

461.4, DBVPG6044 and DBVPG6765, respectively. For YPS128 and Y12, filtering on

the FAT-CIGAR string by 10 bases produced a slightly lower average number of false

positive calls. However, of the 10 individual genomes for both strains, five and six of the

genomes for Y12 and YPS128, respectively, had lower false positive calls when filtered

on the CIGAR string by 30 bases. Reads filtered on the FAT-CIGAR string anchored

by 30 bases had the lowest number of false positive variants, with 76-85% fewer false

positive SNP calls and 55-60% fewer indel calls than the unfiltered reads. However, the

stringency of the filter also resulted in a sharp decrease in the average percentage of

true positive variants calls by 14-21% for SNPs and 15-22% for indels.

The differences in the accuracies of the unfiltered and filtered variant calls for all

five strains were compared using the F1 score as depicted in Figure 4.9. The F1 scores

were also found to be relatively similar across all five strains. For SNP calling, as with

the previously simulated genomes, filtering reads on the FAT-CIGAR string by 10 bases

was found to produce the most accurate variant calls. The strains DBVPG6044 and
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DBVPG6765 had similar F1 scores, 0.861 and 0.866, for reads filtered on the CIGAR

string by 30 bases. However, CIGAR 30 filtering produced slightly higher numbers

of false positives in comparison to the reads filtered on the FAT-CIGAR string. In

concordance with the results seen in Figure 4.8, increasing the anchor length beyond 10

bases caused a rapid decline in variant calling accuracy. The stringency of FAT-CIGAR

filtering at 30 bases caused the F1 score to be much lower than that of the unfiltered

reads.

The most accurate indel calls for four of the strains were produced from reads filtered

on the CIGAR string by 30 bases followed by reads filtered on the FAT-CIGAR string

by 20 bases. The only exception to this observation was Y12, in which reads filtered

on the FAT-CIGAR by 20 bases produced the highest F1 score as on average it called

two fewer false positives and the same number of true positive variants. The F1 scores,

looking at the overall accuracy of both SNPs and indels together, showed that reads

filtered by 30 bases on the CIGAR string produced the most accurate variant calls for

all five strains. For Y12 and YPS128, reads filtered on the FAT-CIGAR string by 10

bases also had the same accuracy, 0.86. The accuracy of variant calling when combining

SNPs filtered on the FAT-CIGAR string by 10 bases and indels filtered on the CIGAR

string by 30 bases was also examined (see also Appendix Figure C.1). The F1 score was

found to remain the same as that of reads filtered on the CIGAR string by 30 bases for

DBVPG6044, DBVPG6765 and Y12. There was an 0.001 increase in the F1 scores for

UWOPS03-461.4 and YPS128.

A further 25 genomes were simulated to examine the impact of read filtering on

variant calling accuracy in the presence of varying ratios of SNPs and indels. Across all

of the genomes, as the number of variants within the genome increased, the percentage

of false positive variant calls was found to decrease (Figures 4.10-4.14). However, as

the ratio of SNPs to indels decreased across genomes containing the same number of

SNPs, the number of false positives was found to increase. As expected, the overall

numbers of true positive calls were found to increase as the ratio of SNPs to indels

decreased in genomes containing the same numbers of SNPs due to the higher numbers

of indels within the genome. The number of true positive SNP calls was found to remain

relatively similar across the unfiltered reads from genomes with the same numbers of

SNPs. However, as the ratio of SNPs to indels decrease, the overall number of false
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negative variant calls from the unfiltered reads was found to increase due to the increase

in false negative indel calls. As the stringency of filtering increased, the number of false

positives SNP and indel calls were shown to decrease. There was a sharper decrease

seen in the false positive SNP calls when filtered on the FAT-CIGAR string than the

CIGAR string. The first five genomes containing 200 SNPs (see Figure 4.10) showed

that filtering reads on the FAT-CIGAR string by 10 bases also produced a lower number

of false positive calls in comparison to reads filtered on the CIGAR string by 30 bases for

the genomes containing 20, 40 and 80 indels. The genome containing 160 and 320 indels

produced fewer overall false positives when filtered on the CIGAR string by 30 bases,

likely due to the increased incidence of indels within the genome. This was also found

to be the case for the 400 SNPs genomes (Figure 4.11), the 800 SNPs (Figure 4.12)

genome containing 80, 160 and 320 indels, 1,600 SNPs (Figure 4.13) genome containing

320 indels and 3,200 SNPs genome (Figure 4.14) containing 80, 160 and 320 indels.

F1 scores were obtained for the SNP and indel calls in each of the 25 genomes

to identify which read filter produced the highest score. The most optimal filter for

producing accurate SNP calls from each genome is shown in the heat map in Figure

4.15a. For genomes containing a lower incidence of SNPs and indels (i.e. top left

corner), filtering on the FAT-CIGAR string by 10 bases produced the most accurate

SNP calls. As the ratio of SNPs to indels decreased, increasing the anchor length to a

more conservative filter of 20 bases was preferred (i.e. top right corner). However, as the

number of SNPs within the genome increased, less stringency in filtering was favoured

(i.e. bottom left corner). Reducing the anchor length and filtering on the CIGAR string

tended to produce more accurate calls. The increased number of SNPs also resulted in

the same F1 scores across the different filters, particularly for the CIGAR string. For

example, for the 3,200 SNPs genome, anchoring reads by 10, 20 and 30 bases on the

CIGAR string produced the same F1 scores for all but the 320 indels genome. With

indel calling (see Figure 4.15b), reads that were filtered highly conservatively on the

FAT-CIGAR string by 30 bases produced the highest F1 scores for genomes with the

fewest number of variants. Both as the number of SNPs and the number of indels

increased across the genomes, less stringency in filtering was preferred with F1 scores

shifting towards favouring the CIGAR string. For the majority of genomes, filtering on

the CIGAR string by 30 bases produced the most accurate indels calls.
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(a) Optimal Read Filter for SNPs

(b) Optimal Read Filter for Indels

Figure 4.15: Heat Map of Optimal Read Filters. This heat map shows the read

filter that produced the most accurate SNP and indel calls, as determined based on

the F1 scores, for all 25 simulated genomes. C stands for CIGAR string and F for

FAT-CIGAR string, with the adjacent number indicating the length of base anchoring

used by the filter.

4.3.5 Filtering NCYC Strains

The effect of read filtering on real strains was assessed by comparing the proportion

of shared variants between the same strains that were sequenced twice on different 96

well sequencing plates and under different conditions (e.g. different sequencing library

techniques). Three S. cerevisiae strains from the NCYC collection that had varying

levels of ploidy were chosen for this comparison. The percentage of unique and shared

variants from reads sequenced on Plate 1 and Plate 10 for the haploid strain NCYC91 is

shown in Table 4.2. Both plates were found to have a high percentage of shared SNPs,
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90.85% and shared indels, 86.46% using the unfiltered reads. Filtering the reads was

found to increase the percentage of shared variants between both plates. The greatest

proportion of shared SNPs was found from reads filtered on the FAT-CIGAR string

by 20 bases. This increased the percentage of SNPs by 3.92% for the unfiltered calls,

0.91% for calls filtered on the allelic fraction (AF) to be greater than 0.2 and 3.32% for

calls filtered on AF > 0.9. The allelic fraction is the frequency of the allele observed

divided by the read depth at that locus. The optimal AF threshold for filtering SNPs

was found to be 0.2 as it allowed for the removal of variants with low read support that

have a greater likelihood of being false positive thus increasing the proportion of shared

variants across both the anchored and unanchored reads. Increasing the AF threshold

to 0.9 was found to slightly reduce the proportion of shared SNPs as the threshold is

quite conservative resulting in the removal of true variants without a high read support.

Extending the anchor length to 30 bases was found to be too stringent resulting in a

fewer percentage of shared variants.

For indels, filtering on the CIGAR string by 30 bases on the unconstrained dataset

led to the highest percentage of shared variants, 90.3%. For indel calls filtered on AF

> 0.2, filtering on the CIGAR string by 20 bases increased the percentage of shared

indels by 0.92%. In concordance with the SNP calls, utilising an AF threshold of 0.2

produced the highest proportion of shared indels between both plates. Increasing the

filtering threshold to 0.9 was found to greatly reduce the proportion of shared indels

likely as a result of a higher number of true indels being removed due to fewer indels

having as high a read support. However, for the dataset filtered on AF > 0.9, there

was a much greater increase in the percentage of shared variants when filtered on the

FAT-CIGAR string than on the CIGAR string. The highest percentage of shared indel

calls was found when reads were anchored by 20 bases, resulting in an increase of 10.1%.

The percentage of unique and shared variants called from reads sequenced on Plates

1 and 10 for the triploid strain NCYC87 is shown in Table 4.3. The variant calls were

also filtered on the allelic fraction into equal sized bins with the bins centred on expected

frequencies of heterozygous variants as determined by the ploidy level (i.e. 0.333, 0.667

and 1.000 for a triploid genome). The bins containing the heterozygous variants were

then combined into a single bin for variants with AF between 0.16 and 0.84. Filtering

the sequence reads by 20 bases on the FAT-CIGAR string increased the percentage of
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Table 4.2: NCYC91. The proportion of shared SNPs and indels both before and

after filtering NCYC91 sequence reads derived from NCYC sequencing Plates 1 and 10.

The unfiltered variant calls were compared to variants filtered on the allelic fraction at

greater than 0.2 and 0.9. P1 refers to the percentage of variants unique to Plate 1, Both

refers to variants shared by both plates and P10 refers to variants that are unique to

Plate 10. AF refers to the allelic fraction. The highest percentages of shared variants

are highlighted in red.

Read All Frequencies AF > 0.2 AF > 0.9

Anchoring P1 Both P10 P1 Both P10 P1 Both P10

SNPs

unfiltered 3.97 90.85 5.18 1.71 95.23 3.06 6.94 91.61 1.45

CIGAR 10 4.09 91.08 4.83 1.85 95.28 2.87 6.21 92.32 1.47

CIGAR 20 4.08 91.11 4.82 1.88 95.22 2.90 6.20 92.31 1.50

CIGAR 30 4.14 91.08 4.78 1.92 95.14 2.94 6.30 92.17 1.53

FAT-CIGAR 10 2.66 93.77 3.57 1.38 96.14 2.48 4.12 94.40 1.48

FAT-CIGAR 20 2.11 94.77 3.12 1.40 96.15 2.45 3.13 94.93 1.94

FAT-CIGAR 30 2.74 92.74 4.53 2.43 93.42 4.15 4.01 92.25 3.74

Indels

unfiltered 5.57 86.46 7.97 4.11 90.82 5.07 32.74 66.01 1.25

CIGAR 10 6.02 87.16 6.82 4.82 90.59 4.58 31.39 67.36 1.24

CIGAR 20 4.78 89.43 5.79 4.17 91.75 4.08 32.65 66.06 1.30

CIGAR 30 4.41 90.30 5.28 4.08 91.44 4.48 36.79 61.66 1.55

FAT-CIGAR 10 5.69 87.45 6.86 4.53 91.05 4.43 24.15 74.32 1.53

FAT-CIGAR 20 5.61 88.12 6.27 4.89 90.42 4.70 21.31 76.15 2.54

FAT-CIGAR 30 6.72 86.12 7.17 6.42 87.29 6.30 22.14 73.75 4.11

shared SNPs by 2.36% for the unfiltered calls whilst filtering on the CIGAR string by

20 bases increased the percentage of indels by 2.45%. As expected, the dataset filtered

on AF < 0.16 had the lowest proportion of shared variants as the majority of variants

retained were likely to be false positives thus only unique to one plate. Consequently,

it had the greatest increase in the percentage of shared variants for SNPs from reads

filtered on the FAT-CIGAR string by 30 bases, 14.19% and indels filtered on the CIGAR

string by 30 bases, 15.3%. The percentage of shared heterozygous SNPs only increased
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Table 4.3: NCYC87. The proportion of shared SNPs and indels both before and after

filtering NCYC87 sequence reads derived from NCYC sequencing Plates 1 and 10. The

unfiltered variant calls were compared to variants filtered on the allelic fraction. The

highest percentages of shared variants are highlighted in red.

Read All Frequencies AF < 0.16 0.16 <= AF < 0.84 AF >= 0.84

Anchoring P1 Both P10 P1 Both P10 P1 Both P10 P1 Both P10

SNPs

unfiltered 4.66 92.12 3.22 39.07 24.02 36.92 4.11 93.17 2.72 2.62 95.96 1.42

CIGAR 10 4.86 92.11 3.03 41.54 23.21 35.25 4.14 93.19 2.67 2.68 95.79 1.53

CIGAR 20 4.94 92.07 2.99 41.83 22.84 35.33 4.31 92.99 2.70 2.75 95.67 1.58

CIGAR 30 5.09 92.03 2.88 42.38 23.49 34.13 4.63 92.49 2.88 2.84 95.47 1.69

FAT-CIGAR 10 3.66 94.47 1.87 35.44 23.51 41.05 5.74 91.53 2.73 2.37 96.41 1.22

FAT-CIGAR 20 4.10 94.48 1.43 32.66 33.89 33.45 10.71 82.65 6.65 2.68 95.97 1.35

FAT-CIGAR 30 6.94 90.64 2.42 34.46 38.21 27.33 15.89 70.88 13.23 5.09 93.19 1.72

Indels

unfiltered 8.11 86.06 5.82 39.34 16.90 43.76 10.07 82.13 7.80 8.56 88.56 2.87

CIGAR 10 7.87 87.22 4.91 42.95 14.85 42.20 10.34 81.56 8.09 8.72 88.03 3.25

CIGAR 20 7.50 88.51 3.99 37.60 18.24 44.16 13.20 77.81 8.99 9.11 87.27 3.62

CIGAR 30 8.66 87.32 4.03 34.58 32.21 33.21 17.63 69.07 13.30 10.89 84.12 5.00

FAT-CIGAR 10 9.37 85.95 4.68 37.59 20.39 42.01 13.42 79.30 7.28 7.46 88.62 3.92

FAT-CIGAR 20 11.18 84.48 4.35 40.25 24.93 34.82 17.46 72.14 10.40 9.51 85.67 4.82

FAT-CIGAR 30 15.25 80.03 4.72 41.56 29.56 28.88 22.41 64.05 13.54 14.15 80.10 5.75

by 0.02% when filtered on the CIGAR string by 10 bases. However, for the indel

calls, read filtering was found to be too conservative causing the proportion of shared

variants to decrease. The proportion of shared SNPs was also found to increase from

the unfiltered dataset for the heterozygous bins whilst the proportion of shared indels

was found to decrease. The homozygous variant calls (i.e. AF > 0.84) had the highest

proportion of shared variants across all of the datasets, except for indels filtered on

the CIGAR string by 30 bases. This is likely due to the presence of fewer homozygous

variants as NCYC87 is a triploid strain thus the majority of variants fall within the

heterozygous bins and the high threshold for read support ensuring the filtering of false

positive variant calls. Read filtering within this dataset only caused a slight increase

in the proportion of shared variants with reads anchored on the FAT-CIGAR string by

10 bases containing the highest percentage of both shared SNPs, 96.41% and indels,

88.62%.
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Table 4.4: NCYC1026. The proportion of shared SNPs and indels both before and

after filtering NCYC1026 sequence reads derived from NCYC sequencing Plate 1 and

the prior CCC project sequence set. The unfiltered variant calls were compared to

variants filtered on the allelic fraction. The highest percentages of shared variants are

highlighted in red.

Read All Frequencies AF < 0.125 0.125 <= AF < 0.875 AF >= 0.875

Anchoring P1 Both CCC P1 Both CCC P1 Both CCC P1 Both CCC

SNPs

unfiltered 4.98 91.81 3.21 6.03 3.26 90.72 4.64 77.97 17.40 2.97 92.70 4.33

CIGAR 10 5.14 91.80 3.06 7.00 3.93 89.07 4.74 82.81 12.45 2.86 92.09 5.05

CIGAR 20 5.21 91.82 2.97 7.19 3.98 88.84 4.77 82.76 12.46 2.91 92.06 5.03

CIGAR 30 5.32 91.72 2.96 7.34 4.34 88.32 4.98 82.47 12.55 2.95 92.02 5.03

FAT-CIGAR 10 2.12 91.93 5.95 17.36 11.14 71.50 4.03 91.22 4.75 2.16 94.25 3.59

FAT-CIGAR 20 1.09 88.09 10.82 25.23 33.24 41.53 6.20 87.44 6.35 1.82 95.26 2.92

FAT-CIGAR 30 0.51 76.46 23.03 26.14 43.85 30.00 10.24 79.75 10.02 1.97 95.32 2.71

Indels

unfiltered 9.86 84.33 5.81 23.96 19.74 56.30 9.32 81.11 9.57 3.72 87.93 8.34

CIGAR 10 10.16 84.81 5.03 26.25 18.85 54.90 9.16 81.09 9.76 3.96 80.49 15.55

CIGAR 20 10.01 86.06 3.93 23.91 21.70 54.39 8.96 80.31 10.72 3.58 80.42 16.01

CIGAR 30 12.07 84.48 3.45 23.05 29.55 47.40 12.61 72.40 14.99 5.06 77.97 16.98

FAT-CIGAR 10 9.69 84.51 5.81 25.11 20.50 54.39 9.55 80.21 10.25 3.90 81.93 14.18

FAT-CIGAR 20 9.07 82.19 8.74 20.44 28.82 50.74 9.66 78.61 11.72 3.80 82.60 13.60

FAT-CIGAR 30 9.55 72.39 18.05 24.14 27.53 48.34 12.23 71.83 15.93 5.19 80.83 13.98

Table 4.4 shows the percentage of shared variants after filtering for the tetraploid

strain NCYC1026. As with NCYC87, variants were filtered on the allelic fraction ac-

cording to their expected frequencies based on the ploidy level. In this case, expected

variant frequencies were 0.25, 0.5, 0.75 and 1.00. Reads filtered on the FAT-CIGAR

string by 10 bases had a slightly higher percentage of shared SNPs, 91.93%, from the

unfiltered calls whilst filtering on the CIGAR string by 20 bases produced the highest

percentage of shared indels, 86.06%. Variant calls with AF < 0.125 were also found to

have the lowest proportion of shared variants whilst variants filtered with AF >= 0.875

had the highest proportion of shared variants. For calls with AF < 0.125, a greater

increase in the proportion of shared SNPs was seen when filtered on the FAT-CIGAR

string by 30 bases, 40.5%, whilst indels from reads filtered on the CIGAR string by

the same length showed a 9.81% increase. For the heterozygous variants with AF be-

tween 0.125 and 0.875, filtering on the FAT-CIGAR string by 10 bases increased the

191



percentage of shared SNPs by 13.25% whilst it caused the percentage of shared indels

to steadily decrease. This was also found to be the case for homozygous indels with AF

>= 0.875 however, reads filtered on the FAT-CIGAR string had a greater proportion of

shared variants than reads filtered on the CIGAR string for the corresponding anchor

lengths. For SNP calls, filtering on the FAT-CIGAR string by 30 bases increased the

percentage of shared SNPs by 2.62%.

4.4 Discussion

A novel method of read filtering using the FAT-CIGAR toolkit was explored in this

study as a strategy to improve variant calling. The FAT-CIGAR toolkit was further

developed to allow for the ends of sequence reads to be anchored against the reference

genome by a specified number of bases using either the FAT-CIGAR or the CIGAR

string. This method of filtering was implemented to combat high false positive discovery

rates, particularly with regard to SNP calling. Spurious false positive SNP calls arise

from either sequencing errors or the misalignment of reads spanning repetitive regions

and structural variant breakpoints. Many of these SNPs are likely to have abundant

read support preventing existing variant filtration techniques from identifying them as

false positive SNPs. The FAT-CIGAR toolkit was designed to overcome this limitation

by filtering out reads that contain variants at either end prior to variant calling.

A suitable base length on which to carry out read filtering was originally selected by

observing the percentage of sequence reads retained within a BAM file after filtering.

The read retention was monitored to help identify the cut-off value at which filtering

became too stringent. A highly stringent filter could discard a huge proportion of the

sequence reads resulting in several true positive variants being filtered out along with

the false positive calls. The maximum length by which to anchor reads was determined

to be 30 bases. pIRS simulates short sequence reads of length 100 bp by default. Thus,

as both ends of the read have to be anchored against the reference, this requires the

read to have a greater than 60% sequence identity score with the reference genome.

In the first analysis, the reads were filtered on the FAT-CIGAR string as the CIGAR

string masks SNPs, therefore it would not have precluded reads containing false positive

SNPs from passing through. The percentage of reads retained was shown to steadily

decrease as the filtering stringency increased. The overall read retention was found to
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remain quite high, 78.7%, even when filtered at 30 bases. This can be attributed to the

fact that sequence reads were simulated from the S288c chromosome I and re-mapped

against the reference hence, the high sequence identity was to be expected. As this

was the initial testing phase of the study, reads were purposefully simulated from the

reference genome to ensure that the only source of variation within the reads was due

to sequencing errors simulated by pIRS. This enabled us to test whether filtering on

the FAT-CIGAR string can remove reads containing sequencing errors. Visualisation

of the alignments within the filtered BAM files also helped confirm that read filtering

was able to remove sequencing errors. In addition, reads that were partially aligned,

thus a portion of the sequence is masked by either soft- or hard-clipped bases, were also

filtered out.

As discussed in the previous chapter, it is critical to have a benchmark dataset

against which the accuracy of variant calls can be evaluated. The pipeline developed

for the generation of a truthset in Chapter 3 was highly complex and dependent on

several third-party software to acquire the necessary input parameters. Consequently,

despite the pipeline requiring significant modification, it did not allow for finer control

of the variant simulation that was necessary for this study. There are several software

for genome simulation such as PGsim (Juan et al., 2020) and VarSim (Mu et al.,

2015) however they are tailored specifically for human genomes and require third-party

databases as input. The sim_genomes program was developed to allow for simplicity

and control over the genome simulation and to combine the truthset generation into a

single step process.

The S288c chromosome I was chosen as the reference sequence from which genome

simulation was carried out, in order to reduce the computational complexity of working

with whole genomes. The pIRS in-house error profiling scripts were used to generate

custom error profiles using NCYC78 as the standard error profile utilised in pIRS was

obtained from large-scale human sequencing data. Prior to this, the 10 NCYC strains

from the read mapping comparison study (see Chapter 1) were selected for profiling but

the baseCalling_Matrix_calculator for generating substitution profiles could not be run

on the merged SAM files. The indel profiling script for NCYC78 also produced an error

due to a bug in a Perl script that could not be fixed, therefore the standard indel profile

was utilised instead. These factors contributed to inappropriate read simulation when
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using the custom error profile, leading to a much higher number of sequencing errors

simulated within the reads than variants. The proportion of false positive variants was

only found to decrease below the proportion of true positive variants when filtered at

20 bases, as this highly conservative filter resulted in 84% of the false positive variants

being removed. These findings indicated that the custom error profile is not suitable

for subsequent analyses, until these software errors are resolved. Variants classified by

vcfeval were manually verified against the truthset, indicating that the software failed to

identify variants represented differently after normalisation. The misclassified variants

were subsequently error corrected to reduce the number of incorrect false positive and

false negatives variants.

As hypothesised, filtering reads on the FAT-CIGAR string was found to improve

SNP calling accuracy by greatly decreasing the number of false positive variant calls.

The maximum anchor length for filtering was chosen to be 20 bases as this filter was

found to be highly conservative, resulting in over 50% of the sequence reads to be

discarded for the genome containing 3,000 SNPs. The stringency of the read filter also

resulted in a greater number of true positive variant calls being filtered out as increasing

the incidence of SNPs increased the likelihood of the SNPs occurring close to the read

ends. Filtering at 10 bases was found to be optimal, removing over 60-70% of false

positive variant calls without filtering out any true positives. Only 1-3 true positive

SNPs were removed across the three genomes when filtered at 10 bases. This confirmed

that the majority of the SNPs that are predicted close to read ends are false positives

that occur due to sequencing errors or misalignment of reads. Therefore, the removal

of these SNPs is crucial for accurate downstream analyses.

The sim_genomes program was developed to simulate indels, utilising a similar

method to that used in the SInC software. The use of this method granted greater

control over the number and size of the indels simulated and reduced the complexity

of the simulation. Regions of the reference genome containing repeat expansions had

to be identified using the TRF software prior to genome simulation. In the future,

it may be useful to be able to run the TRF program in-house from the script using

the provided reference. The overlapping regions could be compared to select for the

repeat sequences with the highest alignment scores from within the program as the

repeat sequences were chosen manually for this study. Ideally, with more time, it would
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also have been beneficial to introduce large-scale structural variants including inversions

and translocations. This would have enabled for an in-depth study of how read filtering

impacts variant calling around regions containing large-scale structural variation.

Read filtering on the CIGAR string which masks SNPs but not indels was introduced

to compare the accuracy of calling indels against reads filtered on the FAT-CIGAR

string. Filtering on both the CIGAR and FAT-CIGAR strings was found to reduce the

number of false positive SNPs and indels called by removing the reads containing false

positive variants prior to variant calling. The reads filtered on the FAT-CIGAR string

were able to call fewer false positive variants compared to reads filtered on the CIGAR

string. This difference was mainly seen in the more numerous SNP calls as SNPs that

would otherwise be removed when filtering on the FAT-CIGAR string are not accounted

for when filtering on the CIGAR string. As some of the discarded reads are likely to

have contained false positive indels, the removal of these reads also resulted in fewer

false positive indel calls when filtering on the FAT-CIGAR string. This reduction in

false positives calls was, however, found to be at the expense of also filtering out true

positives, resulting in an increased number of false negatives as the stringency of filtering

increased. This was especially true for SNP calls when anchored on the FAT-CIGAR

string by more than 10 bases as demonstrated by the declining F1 scores. Filtering

at 30 bases was found to be too conservative as requiring that level of exact sequence

identity resulted in a high number of true variants being removed, thus decreasing the

variant calling accuracy to below that of the unfiltered variant calls. For three of the

four genomes, the most accurate indel calls were from reads filtered on the FAT-CIGAR

string by 20 bases. The genome with the greatest number of indels (300) had fewer false

positives and a higher F1 score when filtered on the CIGAR string by 30 bases. A likely

explanation was that increasing the incidence of indels also increased the number of

false positives that arise from misalignment of reads, therefore anchoring conservatively

at 30 bases is able to discard a greater proportion of reads containing false positive

indels.

Imitation of the variants within five strains from the Bergstrom strain population

enabled a better understanding of how filtering reads could affect variant calling in

genomes with realistic variant numbers. The strains were chosen from the five different

sub-populations to ensure increased diversity in strain selection. Filtering on the CIGAR
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string by 30 bases produced fewer false positives than filtering on the FAT-CIGAR string

for the majority of the simulated genomes and resulted in more accurate variant calls

as determined by the F1 score. This confirmed that the finding in the previous study

was not due to dataset bias. It also supported the idea that choosing an appropriate

read filter to improve the accuracy of indel variant calling was dependent on the level

of sequence diversity within the genome. For indels, filtering on the FAT-CIGAR string

by 20 bases was found to be optimal when there are fewer SNPs present. However, as

the number of variants within the genome increases, this results in a higher coincidence

of SNPs and indels occurring on the same sequence read. Hence, the removal of these

reads when filtering on the FAT-CIGAR string by 30 bases to target false positive SNPs

results in the removal of a huge proportion of true positive indels. By permitting these

reads to remain, by filtering on the CIGAR string by 30 bases, allows a reduction in

false positive indel calls due to the stringent anchor length whilst also retaining the true

indels. Reads filtered on the FAT-CIGAR string by 10 bases were still found to prevail

in the accuracy of SNP calling. The F1 scores across the genomes were found to be

highly similar despite the difference in the number of variants due to the similarity in

the ratio of SNPs to indels. The ratio of SNPs to indels were as follows: 1:0.06 for Y12,

1:0.08 for DBVPG6765, YPS128 and DBVPG6044 and 1:0.09 for DBVPG6044.

A number of genomes were simulated with varying ratios of SNPs and indels to

re-affirm the results seen in the previous study regarding the optimal filter for variant

calling. As is the case for most studies, the number of variants within the genome

is not known until after variant calling. Thus, in the absence of this knowledge, the

recommended read filter for SNP calling would be to filter on the FAT-CIGAR string

by 10 bases as this produced the most consistently accurate variant calls. However, for

genomes containing a greater ratio of indels, increasing the anchor length to 20 bases

would be recommended. The SNP calling accuracy of genomes with a high SNP to indel

ratio can be optimised by using a less conservative approach and filtering on the CIGAR

string by either 20 or 30 bases. The recommended filter for accurate indel calling would

be to filter on the CIGAR string by 30 bases. If variant calling on a genome that is

known to have very low sequence diversity compared to the reference, a more stringent

approach of filtering on the FAT-CIGAR string by 30 bases should be taken to optimise

the accuracy of the indel calls.
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The impact of read filtering on real genomes was investigated by observing the

changes in the percentage of shared variants between the same strains that were se-

quenced on different plates. Filtering the sequence reads on the FAT-CIGAR string by

either 10 or 20 bases for SNP calling and on the CIGAR string by 20 or 30 bases for

indel calling was shown to increase the percentage of shared variants for the unfiltered

calls. This was likely due to false positive variants being unique to the reads from

a specific sequencing plate whereas true positive variants will be present in the reads

from both plates. Filtering the reads should remove the false positive calls resulting in

a greater proportion of true positive variants and therefore, increasing the percentage of

shared variants. This was confirmed by the greatest increase in the percentage of shared

variants being from reads filtered on variants with an allelic fraction < 0.16 which likely

contained the greatest number of false positives. For NCYC87 and NCYC1026, the

conservativeness of read filtering was not found to be necessary for indels with a high

allelic fraction, particularly for the heterozygous variants. This suggested that the indel

calls likely contained fewer false positive variants, thus filtering was removing a greater

number of true positives causing the percentage of shared indels to decrease. These find-

ings strongly indicated that read filtering also improves the accuracy of variant calling

in real genomes.

As of yet, the FAT-CIGAR toolkit does not provide the option to utilise different

filters for SNPs and indels. The necessity of using separate filters to optimise the

accuracy of SNPs and indel calling has been firmly highlighted in this study. The

recommended approach at present would be to carry out filtering by 10 bases on the

FAT-CIGAR string and filter out the SNPs from the VCF file. Subsequently, filtering

on the CIGAR string by 30 bases and combining the indels called with the prior SNPs

would produce an optimal variant set. In future, it would be of great benefit to modify

the read filtering function in the FAT-CIGAR toolkit so that different filters for SNPs

and indels could be specified by the user. The variants within each read could be

distinguished individually as to whether it is a SNP or indel and used to determine

whether the read is filtered based on either the CIGAR or FAT-CIGAR string. The

recommended filters could also be built-in as the default filtering option. This added

functionality would play a pivotal role in truly optimising variant calling accuracy.
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4.5 Conclusion

Conventional methods for variant filtration struggle to distinguish false positive variants

that have high read depth, leading to inaccuracies in variant discovery. The FAT-

CIGAR toolkit was found to be highly effective at removing false positive variants,

prior to variant calling, by filtering reads on either the CIGAR or FAT-CIGAR string.

An additional outcome of this study was the development of the sim_genomes program

to simulate genomes without the complications of using several third-party software for

the generation of a variant truthset. The accuracy of variant calling, as determined

by F1 scores, across several simulated genomes was shown to improve greatly on the

filtered reads. Generically, the optimal read filter for SNP calling was identified to be

filtering on the FAT-CIGAR string by 10 bases whilst filtering on the CIGAR string

by 30 bases produced accurate indel calls. The accuracy of the filter was also found to

be dependent on the level of variation within the genome, thus prior knowledge of the

genome can aid in the selection of a more appropriate read filter. Further work needs

to be carried out on the FAT-CIGAR toolkit to allow for SNPs and indels to be filtered

separately and the impact of read filtering on the accuracy of calling structural variants

should also be investigated.
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Chapter 5

Discussion

5.1 Main Goals

This project fundamentally set out to establish optimised strategies for studying genetic

variation within yeast genomes, particularly Saccharomyces cerevisiae. The main goal

of this project was to identify a functional pipeline that utilises both novel and existing

methods to improve the accuracy of variant discovery using next-generation sequencing

datasets. For the purpose of this study, improved accuracy was primarily defined by

an increase in the number of true variants called and a reduction in false positive

variant calls. This goal was predominantly pursued by adopting the use of pan-genome

variation graphs as reference structures to refine the assembly of short sequence reads.

A key objective of this study involved identifying a viable measure for carrying out

cross-comparison of sequence read alignment quality across different software. Another

objective was to investigate the performance of the graph genome software, in terms

of accuracy of the variant calls, against the conventional variant calling pipeline. The

final aim of this project to optimise variant discovery was to explore novel techniques

of read alignment filtration that greatly reduce the occurrence of false positive variant

calls.

5.2 Outcomes

5.2.1 Variation Graphs

In Chapter 2, visualisation of variation graphs constructed using the vg toolkit helped

gain understanding of how individual genomes are represented within the graph. The
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node to sequence length ratio showed that the mitochondrial genome displayed the

greatest degree of intragenic variation followed by chromosome I, whilst both chromo-

somes XIII and III were found to be highly conserved.

The Bergstrom strains were utilised to construct a variation graph to compare the

efficacy of read mapping in comparison to the S288c reference graph and the linear

reference genome. The variation graph had the greatest proportion of reads aligned

for all 19 strains. This confirmed that prior inclusion of variants within the reference

reduced bias in mapping and increased the ability of sequence reads to align. The

reference graph also outperformed the linear reference genome which suggested that the

vg mapping algorithm had greater sensitivity than BWA. The mitochondrial genome

contains at least 15% of a strain’s total DNA content yet only 2-5% fewer reads were

able to align against the reference graph. This supported that a high proportion of

mitochondrial-derived sequence reads still remain unaligned due to the greater degree

of sequence diversity. The huge variance in the raw sequence coverage per strain and the

overall proportion of reads that aligned, 38-91%, indicated poor sequence read quality

for some datasets. Quality control analysis using FastQC highlighted the presence

of adapter contamination within the reads that were subsequently removed through

trimming. Trimming discarded a large proportion of the sequence reads for the majority

of the Bergstrom strains but improved read alignment, with the average percentage of

mapped reads increasing by 22.3% for the variation graph, 22.8% for the reference

graph and 26.8% for the linear reference genome. The proportion of mapped reads was

also found to increase across the references, 88-98%, when using high quality sequence

reads from 10 NCYC strains. As both NCYC78 and NCYC97 had high sequence read

quality, trimming the strains removed reads that would otherwise have aligned against

the graph-based references, resulting in a decrease in mapped read counts.

Alignment scores were used to gain insight into the quality of alignments against each

reference structure by ensuring similar scoring systems were employed by vg and BWA.

However, manual inspection of the alignments identified several hidden differences in the

scoring parameters that biased the scores in favour of vg. In addition, the alignment

scores for certain reads in BWA were not representative of the final alignment thus

rendering alignment scores redundant as a measure of mapping quality.
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Reference genomes and sequence reads of varying lengths were simulated with differ-

ent types and number of mutations to identify factors that prevent mapping. Variants

that appeared towards read ends did not impact mapping as these sequences were

masked through base clipping. At shorter read lengths, sequence reads were found to

be less tolerant to variants as it prevented read alignment against the reference. Of all

variant types, point mutations were found to have the greatest impact on read mapping

ability with decreasing read length causing a rapid decline in mapping. As sequence

reads containing point mutations are representative of highly divergent strains, this

demonstrated their inability to align against the reference genome, reinforcing the need

for variation graphs as reference structures.

5.2.2 Graph Genome Software

One of the main aims of this study was to compare the performance of read mapping

and variant calling algorithms from recently released graph genome software against the

conventional linear pipeline, as discussed in Chapter 3. Alignments could be obtained in

BAM format for BWA, vg and the Seven Bridges Graph Genome toolkit thus the accu-

racy of read mapping across the three software was evaluated by BAM file comparison.

The FAT-CIGAR toolkit was developed to obtain the FAT-CIGAR string, an extension

of the CIGAR string, that provides the exact alignment information of a sequence read

to a reference structure. This was utilised to calculate accurate sequence identity scores

to be used as a measure of the alignment quality. For linear alignments, the toolkit used

the MD tag information, which distinguished between matched and mismatched bases

within the alignment, to create the FAT-CIGAR string. The global alignment score

could also be calculated for such sequence read and the CS tag, another alignment

representation format, could be generated to enhance the functionality of the toolkit.

The FAT-CIGAR toolkit constructed the FAT-CIGAR string from the non-surjected

alignments for vg using information within the output JSON file. The toolkit generated

the non-surjected CIGAR string for alignments from the Graph Genome toolkit.

A greater proportion of reads were able to align to the vg variation and reference

graphs than to the Graph Genome toolkit, which reaffirmed that the vg mapping al-

gorithm had greater sensitivity. The variation graph was found to improve the quality

of mapping for both software by increasing the number of reads with greater sequence
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identity scores due to the decreased ambiguity in mapping. The Graph Genome toolkit

was found to align more reads with greater overall accuracy whilst vg had the greatest

percentage of perfectly mapped reads. Although fewer reads were able to align against

the linear reference genome, the quality of alignment was found to be slightly better

than that of alignments against the reference graph.

The accuracies of the variant calls produced by vg, the Graph Genome toolkit,

BayesTyper and Graphtyper were also compared against the FreeBayes variant calls.

An increased number of SNPs and indels were called against the variation graph in

comparison to the reference graph for all software. The vg variation graph called the

highest number of SNPs for each strain which indicated the likelihood of a greater num-

ber of false positive variant calls in vg. A simulation study was conducted to simulate

1,000 datasets, each containing 19 genomes, from the Bergstrom strains SNP tree and

to generate truth sets to compare variant calling accuracy. Generating the pipeline for

the simulation study proved to be a highly challenging process that required several

modifications to ensure the simulated genomes mimicked the real strains. Variant clas-

sification with vcfeval was identified to be error-prone thus falsely classified variants

had to be corrected. Preliminary analysis of the variant calls determined vg v1.26 to be

unstable as it contained a vastly greater number of false positive calls thus vg v1.18 and

v1.5, which were utilised in the earlier chapters, were also re-run to test for stability.

All three versions of vg produced the least accurate variant calls, as determined by F1

scores, due to calling fewer true positives and a greater number of false positives. This

strongly suggested that the vg variant calling algorithm was inherently less accurate

than alternative approaches. Variant calls from the variation graph were found to be

more accurate due to containing more true positive calls than the reference graph. The

recommended software for variant calling was found to be the Graph Genome toolkit

which had the most accurate variant calls with the greatest sensitivity for all strains,

whilst Graphtyper had the greatest precision.

5.2.3 Variant Filtration

In Chapter 4, the functionality of the FAT-CIGAR toolkit was further extended to an-

chor both ends of qualifying sequence reads against the reference genome using either

the CIGAR or the FAT-CIGAR string, by a specified number of bases. This method of
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variant filtration was hypothesised to remove false positive calls that are not removed

during hard filtering due to immense read support. In order to avoid the complexity

of the simulation pipeline in the previous study, the sim_genomes program was imple-

mented to simulate genomes with a specified number of SNPs and indels. The variants

induced within the simulated genome were monitored and written out as the benchmark

VCF file utilised to classify the variant calls.

A simulation study was conducted by simulating a chosen number of genomes with

varying proportions of SNPs and indels to identify the read filter that produced the most

optimal variant calls. The accuracy of SNP and indel calls were examined individually

to investigate how the choice of string impacts variant calling. The accuracy of SNP

calling was found to increase when reads were filtered on the FAT-CIGAR string as

the approach was able to distinguish mismatched bases that can often give rise to

false positive SNPs from matched bases in the anchor region. Anchoring reads on the

FAT-CIGAR string by 10 bases filtered out false positive SNPs whilst preserving true

positive SNP calls. Genomes containing a greater SNP to indel ratio required reduced

stringency by filtering on the CIGAR string by either 20 or 30 bases for optimal SNP

calling. Reads filtered on the CIGAR string by 30 bases produced the most accurate

indel calls. Filtering on the CIGAR string prevented a greater number of reads being

discarded whilst the conservative nature of the anchor length allowed for false positive

indels to be removed. If the genome contains low sequence diversity, filtering stringently

on the FAT-CIGAR string by 30 bases enabled a reduction in false positive indel calls.

The proportion of shared variants between sequence reads from strains that were

sequenced on different sequencing plates were observed after filtering. Filtering the

reads on the FAT-CIGAR string for SNPs and CIGAR string for indels increased the

proportion of shared variants, which indicated that filtering out false positive calls

increased the percentage of true positive variants. These findings strongly advocate for

read filtering using the FAT-CIGAR software to be utilised as part of routine variant

calling pipelines.
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5.3 Future Directions

5.3.1 Variation Graphs

The Bergstrom strain set could be re-sequenced to obtain good quality sequence reads as

the poor read quality had a considerable impact on read alignment. The DNA libraries

could be normalised during sequencing preparation to ensure equal read coverage across

the strains. The node to sequence length ratio provided an indication of the intragenic

diversity within the Bergstrom strain population, however the degree of conservation

seen within each chromosome was not further explored in this study. Only the percent-

age of reads that were able to align against the mitochondrial genome in the reference

graph was investigated. This study could have been extended to observe the percentage

of reads that were able to align against each individual chromosome for the variation

graph, reference graph and linear reference genome. This could have enabled direct

quantification of the correlation between the degree of diversity and the ability of reads

to align against each reference structure.

Both the NCYC and Bergstrom strains utilised for the construction of the variation

graphs in this study were haploid, thus the impact of mapping strains with varying

levels of ploidy was not explored beyond a small analysis using the tetraploid strain

NCYC1006. A subset of diploid, triploid and tetraploid S. cerevisiae strains could have

been selected from the NCYC collection and aligned against the three reference struc-

tures. As strains with varying ploidy levels contain greater genome content variation,

this could have allowed for an in-depth investigation of how read mapping is impacted

in the presence of pervasive large-scale structural variation.

Large-scale sequencing studies on S. cerevisiae have resulted in publicly available

whole-genome sequences for thousands of strains (Peter et al., 2018, Zhu et al., 2016).

A pan-genome variation graph could have been constructed as the optimal reference

structure for S. cerevisiae through the careful selection of a subset of strains from the

collection of genomes. K -mer profiling could be carried out using software such as Jelly-

fish (Marcais and Kingsford, 2011) prior to conducting phylogenetic analysis to identify

strains from diverging populations. This could immensely improve computational effi-

ciency and reduce data redundancy in graph construction.

The simulation study focused on factors that impact mapping in vg using the refer-
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ence graph. This could have been extended to also evaluate how variants impact read

mapping in BWA and how read tolerance to variants increases against the variation

graph.

5.3.2 Graph Genome Software

The run time for the FAT-CIGAR toolkit for alignments from vg was found to increase

exponentially as the number of sequence reads increased, due to having to store the

JSON file into memory. The run time could be reduced by adding functionality into

the toolkit that breaks up the GAM files into individual chromosome files and multi-

threading could be used to run the files through the script in parallel. Reducing the file

size could reduce the memory usage of the script, speeding up the run time considerably.

The alignment comparison study utilised vg version 1.26 which was the latest version

at the time the study was conducted. The software is still under rapid development thus

several further updates have been released since, with version 1.34 being the current

version. This version contains major changes to the graph construction, indexing and

mapping algorithms. The alignment comparison study could be re-run using the latest

version of vg to evaluate whether recent changes to the algorithm impacted on the

accuracy of mapping.

The study could also have focused on differences in the accuracy of alignments

spanning regions of large-scale structural variation for each reference structure. A few

regions of structural variation could have been simulated and the alignment quality

of reads that mapped to these regions could have been compared based on sequence

identity scores. This could enable an understanding of whether the use of variation

graphs improves both the alignment and the accuracy of mapping within these regions.

As vg is able to align PacBio sequence reads against the variation graph, the dif-

ference in mapping accuracy when using long reads versus short shorts could also have

been studied. The differences in the proportions of shared variants across each reference

structure for variant calls from the Bergstrom strains could also have been compared.

The variant calling algorithm in BayesTyper was determined to be non-deterministic,

therefore a consensus approach could have been taken in which each dataset was run at
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least 10 times. Obtaining an average for the number of variants called across multiple

runs could have provided a better indication of variant calling accuracy. Evaluating

the accuracy of SNP and indel calls separately could have provided better insight into

the performance of each graph genome software. The observed differences in accuracy

could be used to understand whether variation graphs have a greater impact on SNP

or indel calling. A few datasets could have been simulated from the whole genome to

compare whether the accuracy of the variant calls remained constant across different

chromosomes.

5.3.3 Variant Filtration

The sim_genomes program heavily relies on the user to supply the DAT file containing

the curated repeat expansions. The program could be further developed so that the

TRF repeat finding software is run from within the program such that repeat sequences

are automatically selected based on their alignment scores. This could ensure that

the DAT file does not contain repeat sequences from overlapping regions. The sim_-

genomes program is able to simulate large-scale indels and copy number variation, but

its functionality could be further improved by the generation of complex structural

variants such as inversions and translocations.

Default error profiles within the pIRS software, that were generated from human

genomes, were utilised for read simulation as the custom error profiles could not be

generated. Read simulation could be carried out using the ART read simulator which

could allow for error profiles to be generated directly from the NCYC strain sequence

reads. The accuracy of SNP and indel calling could have been observed particularly

around the structural variant regions and breakpoints. This could permit understanding

of whether filtering reduces false positive variant calls within these regions and if greater

stringency in filtering is required compared to the rest of the genome.

The impact of read filtering on the proportion of shared variants was observed only

for S. cerevisiae genomes. This study could have been extended to incorporate strains

from other yeast species within the Saccharomyces clade that had been re-sequenced,

such as Saccharomyces bayanus or potentially strains from a different genus.
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The FAT-CIGAR toolkit could be modified to allow the user to specify separate

filters for SNPs and indels. The default option of filtering SNPs on the FAT-CIGAR

string and indels on the CIGAR string could be built into the software.

5.4 Final Conclusion

The process of identifying true sequence variants from within a genome is highly chal-

lenging and requires the utmost accuracy in every step of the pipeline. Many of the

limitations faced by the current approach to variant discovery have been clearly high-

lighted in this study. The importance of certain aspects of the pipeline has also been

emphasised, such as carrying out quality control analysis to determine the dataset qual-

ity prior to read mapping.

The constraints of mapping to a linear reference genome were mitigated by the use

of variation graphs as yeast reference structures. Despite the improvement in alignment

quality only translating to improved accuracy in variant calling for the Seven Bridges

Graph Genome toolkit, many of the software were found to have near perfect preci-

sion in variant calling. The relative novelty of the field of graph genomics means that

the software utilised in this study are still undergoing rapid development. Thus, the

release of further graph genome software and improved accuracy in the variant calling

algorithms of the current software can be expected with time. Hard filtering is usually

carried out post variant calling and is critical for the removal of false positive variant

calls. The concept of variant filtration, through the anchoring of sequence reads on ei-

ther the CIGAR or FAT-CIGAR string, utilised in this study was also found to be highly

effective in the removal of false positives. The adoption of a combination of methods

outlined in this study will allow for truly optimised, accurate variant discovery.
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Variation Graphs
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Table A.1: Variation Graph Statistics. The number of nodes and the length of

sequences before (BP) and after (AP) pruning for the NCYC variation graph containing

9 S. cerevisiae strains and the Bergstrom variation graph containing 20 strains.

Chromosome Graph NCYC Graph Bergstrom Graph

BP AP BP AP

S288c_ChrI
nodes 16727 13960 32474 28108

length 240975 235172 240562 236016

S288c_ChrII
nodes 31029 29503 74257 70159

length 827500 824261 833502 829104

S288c_ChrIII
nodes 9995 9250 34505 31442

length 322216 320148 326992 323655

S288c_ChrIV
nodes 52998 49971 144987 135176

length 1556955 1550526 1572375 1561952

S288c_ChrV
nodes 24575 23136 53945 50291

length 588596 585524 591935 588088

S288c_ChrVI
nodes 13972 12916 31145 27913

length 277529 275164 279715 276321

S288c_ChrVII
nodes 38714 36454 108485 99904

length 1110131 1105106 1122141 1112992

S288c_ChrVIII
nodes 20442 18861 57968 52896

length 573151 569927 579474 574126

S288c_ChrIX
nodes 31665 27765 52755 45985

length 456911 449403 456146 449010

S288c_ChrX
nodes 29647 27816 76737 69687

length 759405 755692 768077 760684

S288c_ChrXI
nodes 25003 23901 56943 54723

length 678228 675793 682352 679799

S288c_ChrXII
nodes 36297 34542 144268 112524

length 1095062 1091435 1131450 1099079

S288c_ChrXIII
nodes 28374 27009 83373 78547

length 937546 934570 947264 942139

S288c_ChrXIV
nodes 25041 23526 72987 68294

length 796423 793144 804607 799602

S288c_ChrXV
nodes 40545 38027 106756 99103

length 1110627 1105323 1121335 1113270

S288c_ChrXVI
nodes 31406 29627 89027 82862

length 962487 958970 972699 966167

S288c_Chrmt
nodes 12923 10232 12488 10643

length 101164 92620 92233 89349
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Figure B.1: Sequence Identity Score Histogram for BC187.
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Figure B.2: Sequence Identity Score Histogram for DBVPG1373.
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Figure B.3: Sequence Identity Score Histogram for DBVPG1788.
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Figure B.4: Sequence Identity Score Histogram for DBVPG6044.
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Figure B.5: Sequence Identity Score Histogram for DBVPG6765.
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Figure B.6: Sequence Identity Score Histogram for L1374.
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Figure B.7: Sequence Identity Score Histogram for L1528.
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Figure B.8: Sequence Identity Score Histogram for SK1.
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Figure B.9: Sequence Identity Score Histogram for UWOPS03-461.4.
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Figure B.10: Sequence Identity Score Histogram for UWOPS83-787.3.
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Figure B.11: Sequence Identity Score Histogram for UWOPS87-2421.
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Figure B.12: Sequence Identity Score Histogram for W303.
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Figure B.13: Sequence Identity Score Histogram for Y12.
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Figure B.14: Sequence Identity Score Histogram for Y55.
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Figure B.15: Sequence Identity Score Histogram for YJM975.
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Figure B.16: Sequence Identity Score Histogram for YJM978.
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Figure B.17: Sequence Identity Score Histogram for YJM981.
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Figure B.18: Sequence Identity Score Histogram for YPS128.
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Appendix C

Read Filtration
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Reference Error Read Variant No. of Variants

Genome Profile Filter Classification

1000 SNPs Custom Unanchored True Positive 998

False Positive 3364

False Negative 2

FAT-CIGAR 10 True Positive 996

False Positive 1468

False Negative 4

FAT-CIGAR 20 True Positive 991

False Positive 531

False Negative 9

Standard Unanchored True Positive 995

False Positive 388

False Negative 5

FAT-CIGAR 10 True Positive 994

False Positive 142

False Negative 6

FAT-CIGAR 20 True Positive 988

False Positive 60

False Negative 12

2000 SNPs Custom Unanchored True Positive 1996

False Positive 3905

False Negative 4

FAT-CIGAR 10 True Positive 1995

False Positive 1221

False Negative 5

FAT-CIGAR 20 True Positive 1942

False Positive 407

False Negative 58

Standard Unanchored True Positive 1996

False Positive 368

False Negative 4

FAT-CIGAR 10 True Positive 1995

False Positive 122
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False Negative 5

FAT-CIGAR 20 True Positive 1946

False Positive 32

False Negative 54

3000 SNPs Custom Unanchored True Positive 2980

False Positive 3085

False Negative 20

FAT-CIGAR 10 True Positive 2975

False Positive 1007

False Negative 25

FAT-CIGAR 20 True Positive 2781

False Positive 236

False Negative 219

Standard Unanchored True Positive 2979

False Positive 349

False Negative 21

FAT-CIGAR 10 True Positive 2976

False Positive 91

False Negative 24

FAT-CIGAR 20 True Positive 2833

False Positive 17

False Negative 167

Table C.1: Custom vs Standard Error Profiles. Number of variants that were clas-

sified as true positives, false positives and false negatives for three simulated reference

genomes containing 1,000, 2,000 and 3,000 SNPs when simulating sequence reads with

the custom versus standard error profile in pIRS. The differences in variant classifica-

tion without filtering (unanchored) and when filtered on the FAT-CIGAR string has

also been shown. The 10 and 20 tags refers to the base length by which the reads were

anchored against the reference genome.
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Strains Read Filter Variant Type TP FP FN

YPS128 Unanchored SNPs 1769 27 543

Indels 153 45 27

CIGAR 10 SNPs 1768 24 544

Indels 152 42 27

CIGAR 20 SNPs 1768 22 544

Indels 152 39 28

CIGAR 30 SNPs 1766 19 545

Indels 150 29 30

FAT-CIGAR 10 SNPs 1764 10 548

Indels 152 37 28

FAT-CIGAR 20 SNPs 1723 7 589

Indels 148 30 32

FAT-CIGAR 30 SNPs 1399 4 913

Indels 120 18 61

UWOPS03-461.4 Unanchored SNPs 1173 18 357

Indels 111 33 16

CIGAR 10 SNPs 1173 16 357

Indels 111 31 17

CIGAR 20 SNPs 1173 15 357

Indels 111 29 17

CIGAR 30 SNPs 1172 13 358

Indels 110 22 18

FAT-CIGAR 10 SNPs 1171 9 359

Indels 111 29 17

FAT-CIGAR 20 SNPs 1158 6 372

Indels 110 24 18

FAT-CIGAR 30 SNPs 1013 4 518

Indels 94 15 34

DBVPG6044 Unanchored SNPs 1495 17 469

Indels 143 39 23

CIGAR 10 SNPs 1495 16 470

Indels 143 38 23

CIGAR 20 SNPs 1495 15 470

Indels 143 35 23

CIGAR 30 SNPs 1494 12 470

Indels 141 25 25

FAT-CIGAR 10 SNPs 1491 8 473

Indels 143 34 23

FAT-CIGAR 20 SNPs 1464 5 501

Indels 140 28 26

FAT-CIGAR 30 SNPs 1230 3 735
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Indels 119 16 47

Y12 Unanchored SNPs 1443 20 450

Indels 102 31 15

CIGAR 10 SNPs 1443 19 450

Indels 102 30 16

CIGAR 20 SNPs 1443 16 451

Indels 101 28 16

CIGAR 30 SNPs 1443 14 451

Indels 100 22 17

FAT-CIGAR 10 SNPs 1440 8 453

Indels 101 26 16

FAT-CIGAR 20 SNPs 1416 6 478

Indels 100 20 18

FAT-CIGAR 30 SNPs 1208 4 686

Indels 84 13 33

DBVPG6765 Unanchored SNPs 1177 17 352

Indels 110 34 17

CIGAR 10 SNPs 1176 15 353

Indels 110 33 17

CIGAR 20 SNPs 1176 13 353

Indels 110 29 18

CIGAR 30 SNPs 1176 11 354

Indels 109 22 19

FAT-CIGAR 10 SNPs 1174 7 356

Indels 110 29 17

FAT-CIGAR 20 SNPs 1161 4 369

Indels 109 24 19

FAT-CIGAR 30 SNPs 1016 4 514

Indels 93 14 35

Table C.2: Read Filtering on Simulated Bergstrom Strains. Average number

of variants called from across 10 simulated datasets for each of the five strains. The

numbers of SNP and indel variant calls have been shown for reads both with and without

filtering on the CIGAR and FAT-CIGAR strings. TP stands for true positive variant

calls, FP for false positive variant calls and FN for false negative variant calls.
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