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Abstract
We present observational evidence for linkages between extreme Arctic stratospheric ozone
anomalies in March and Northern Hemisphere tropospheric climate in spring (March–April).
Springs characterized by low Arctic ozone anomalies in March are associated with a stronger,
colder polar vortex and circulation anomalies consistent with the positive polarity of the
Northern Annular Mode/North Atlantic Oscillation in March and April. The associated spring
tropospheric circulation anomalies indicate a poleward shift of zonal winds at 500 hPa over the
North Atlantic. Furthermore, correlations between March Arctic ozone and March–April surface
temperatures reveal certain regions where a surprisingly large fraction of the interannual
variability in spring surface temperatures is associated with interannual variability in ozone. We
also find that years with low March Arctic ozone in the stratosphere display surface maximum
daily temperatures in March–April that are colder than normal over southeastern Europe and
southern Asia, but warmer than normal over northern Asia, adding to the warming from
increasing well-mixed greenhouse gases in those locations. The results shown here do not
establish causality, but nevertheless suggest that March stratospheric ozone is a useful indicator of
spring averaged (March–April) tropospheric climate in certain Northern Hemispheric regions.
1. Introduction

The pronounced stratospheric ozone depletion in the
SouthernHemisphere (known as the ozone hole) forms
under extreme cold temperatures in the lower
stratosphere over the Antarctic and has been an annual
feature in austral spring since its discovery in the 1980s
(Farman et al 1985). The Antarctic ozone hole has
resulted in a colder and stronger polar vortex and a
positive trend in the Southern Annular Mode (SAM),
which has influenced Southern Hemispheric surface
climate in austral summer (Thompson and Solomon
2002, Gillett and Thompson 2003, Thompson et al
2011). In contrast, Arctic ozone losses are generally
much weaker and more variable than in the Antarctic
(Solomon et al 2014). The Arctic winter circulation and
temperatures are more variable due to enhanced
planetary wave driving in the Northern Hemisphere.
© 2017 IOP Publishing Ltd
Dynamically active winters typically experience major
sudden stratospheric warmings, when the zonal-mean
circulation reverses from westerly to easterly at 10 hPa,
which canwarm the Arctic stratosphere by up to tens of
degrees (Charlton and Polvani 2007) and limit
stratospheric ozone losses. Consequently, dynamically
active winters are associated with positive stratospheric
ozone anomalies and circulation anomalies consistent
with the negative polarity of the Northern Annular
Mode (NAM). In comparison, dynamically quiescent
Arctic winters since the late 1970s are associated with
colder temperatures and negative ozone anomalies, due
to both enhanced chemical depletion and weakened
transport (Shaw and Perlwitz 2014), along with
circulation anomalies consistent with the positive
polarity of theNAM/NorthAtlantic Oscillation (NAO).

While the relationship between the ozone hole at
stratospheric altitudes and Southern Hemispheric
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summer surface climate has been supported by
multiple studies (Thompson and Solomon 2002,
Previdi and Polvani 2014 and references therein), the
observed relationships between Arctic stratospheric
ozone and Northern Hemispheric extratropical
circulation are less clear. However, it is known that
ozone anomalies are related to circulation anomalies
in the stratosphere, and previous studies have focused
on the relationship between stratospheric circulation
anomalies and tropospheric climate. Circulation
anomalies in the Northern Hemispheric extratropical
upper stratosphere appear to propagate down into the
lower stratosphere, where they may persist for several
weeks, and influence both the mean tropospheric
circulation and the incidence of extreme weather
events in winter (Baldwin and Dunkerton 2001,
Thompson and Wallace 2001). In particular, winters
with major sudden stratospheric warmings, which are
associated with circulation anomalies resembling
the negative polarity of the NAM, show surface
pressure anomalies resembling the negative polarity of
the NAO, an increase in blocking over Greenland and
Iceland, and a decrease in blocking over the Eastern
Atlantic and Europe (Lehtonen and Karpechko 2016,
Davini et al 2014). Moreover, the tropospheric
response following stratospheric final warmings (when
the polar vortex breaks down for the last time in
spring) also resemble the transition of the NAO from
positive to negative polarity (Black et al 2006).

Observational evidence to date has not yet
indicated a causal linkage between Arctic ozone and
tropospheric climate. Recent modeling studies have
examined the possible connections using a range of
approaches, and obtained mixed results. One study by
Cheung et al (2014) used the 2011 extreme Arctic
ozone anomalies reported by the Earth Observing
System (EOS) Microwave Limb Sounder (MLS) to
probe whether the extreme Arctic ozone depletion of
2011 had an effect on the prediction of tropospheric
climate. They found no improvement in spring
tropospheric forecast skill between simulations with
the UK Met Office operational weather forecasting
model. Karpechko et al (2014) found a relationship
between the 2011 low Arctic stratospheric ozone
anomalies with tropospheric climate in ECHAM5
simulations with specified sea surface temperatures,
but noted that specifying the ozone anomalies alone
did not result in a significant surface impact. In
contrast, Smith and Polvani (2014) used an atmo-
spheric global climate model to study whether extreme
low Arctic ozone anomalies could affect Northern
Hemispheric climate. Analysis of time-slice experi-
ments revealed a colder, stronger Arctic polar vortex in
their simulations using prescribed ozone anomalies
based upon total ozone data. The prescribed ozone
forcing needed for a robust tropospheric response in
their simulations appeared to be larger than that
historically observed. A coupled chemistry-climate
simulation by Calvo et al (2015) found a robust
2

stratospheric-tropospheric response in low versus high
ozone years: a poleward shift of the North Atlantic
tropospheric jet, a positive phase of the NAO, and a
corresponding response in surface temperatures in late
spring. Their study used an ensemble of simulations
driven by historically observed ozone depleting
substances. The fully-coupled approach of Calvo
et al (2015) allows consistency between the evolving
ozone distributions and dynamical conditions, which
may explain the differences between their conclusions
and those of studies prescribing fixed ozone concen-
trations. However, whether differences in the ozone
forcings between the various studies could contribute
to the range of conclusions has not been systematically
evaluated.

In this study, we analyze observational datasets to
further explore the connection between high versus
low spring Arctic ozone (hereafter referred to as
differences) and subsequent Northern Hemispheric
climate. We examine the relationship of Arctic ozone
differences in March to the tropospheric circulation
and surface climate in spring averages (March–April).
Baldwin and Dunkerton (2001) characterize the
stratospheric behavior as a ‘harbinger’ of tropospheric
change—one that need not indicate causality but can
be useful as an indicator; we take the same approach
here. Ozone is readily measured with very high
precision on a routine basis, motivating our examina-
tion of its utility as a possible climatic indicator. As
both increasing well-mixed greenhouse gases and El
Niño-Southern Oscillation (ENSO) also affect North-
ern Hemispheric climate through stratospheric path-
ways (Butler et al 2014, Calvo et al 2011), we examine
their impacts on stratospheric and tropospheric
climate as well, and evaluate possible overlaps with
ozone. In addition, since low/high ozone anomalies
are generally observed in dynamically quiescent/active
winters, we analyze winters with and without major
sudden stratospheric warmings for comparison.
2. Methods
2.1. Datasets
The differences in Arctic stratospheric and Northern
Hemispheric extratropical tropospheric climate for
high versus low ozone years are calculated here using a
variety of datasets. Vertically resolved temperature,
wind, ozone, geopotential height, and mean sea level
pressure were mainly taken from monthly-mean
reanalysis data from the National Aeronautics and
Space Administration’s Modern-Era Retrospective
Analysis for Research and Applications (MERRA,
Rienecker et al 2011) dataset. Data from MERRA are
available since the satellite era began in 1979 and at
a horizontal resolution of 0.5 ° latitude by 0.67 °
longitude and a vertical resolution of 42 levels that
extends from the surface to 0.1 hPa. The reanalysis data
from the Interim European Centre for Medium-Range



Arctic (63-90 °N) O3

Total Column O3

O
3 

 [D
U

]

O
3 

 [p
pm

]

O3 at 70 hPa
500

450

400

350

250
O ON D J J JF M MA A S

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

O

M
ar

ch
 O

3 
 [D

U
]

M
ar

ch
 O

3 
 [p

pm
]

340

380

420

460

500

1980 1985 1990 1995 2000 2005 2010 1980 1985 1990 1995 2000 2005 2010
1.5

2.0

3.0

3.5

2.5

ON D J J JF M MA A a

300

Figure 1. (Top panel) Seasonal cycle of polar cap averaged (63–90°N) total column and vertically-resolved ozone at 70 hPa from
MERRA. The thin red/blue lines show the identified high/low ozone years and the thicker lines show the average of the high/low ozone
years. (Bottom panels) Time series of total column and vertically-resolved at 70 hPa ozone fromMERRA in March. Years identified as
having high/low ozone abundances are indicated by red/blue circle markers. The hatching shows years when a major sudden
stratospheric warming occurred; yellow shading indicates La Niña years and blue shading indicates El Niño years.
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Weather Forecasts (ERA-Interim, Dee et al 2011) are
also used; ERA-Interim provides data since 1979 at 1°
latitude by 1° longitude and 37 vertical levels from the
surface to 1 hPa. The monthly-mean surface temper-
atures used here are based on ERA-Interim as well as
monthly-mean and daily station data from the National
Climatic Data Center’s Global Historical Climatology
Network (GHCNv3, Lawrimore et al 2011). The near-
surface winds (925 hPa) are zonal and meridional
monthly-mean reanalysis data from ERA-Interim.

2.2. Analysis
Changes in stratospheric and tropospheric climate
were estimated as the differences between subsets of
years determined by the potential forcing being
analyzed, where the potential forcings include: 1)
extreme low and high Arctic ozone anomalies, 2)
occurrence of a major sudden stratospheric warming,
3) ENSO events, and 4) increasing well-mixed
greenhouse gases.

Based on the limited available record, springs with
extreme ozone anomalies were identified as the seven
years with the highest and seven years with the lowest
ozone abundances from 1979–2012 for both total
column and vertically resolved lower stratospheric
(70 hPa) polar cap averaged (63–90 °N) ozone from
3

MERRA as shown in figure 1; for brevity we present
the tropospheric responses using the vertically
resolved lower stratospheric Arctic ozone. MERRA’s
total column ozone is primarily based on SBUV
measurements, with TOMS/OMI data used to fill in
missing SBUV data. MERRA’s vertically resolved
ozone is estimated by MERRA’s Data Assimilation
System (DAS) from transported constituents of the
odd oxygen family and includes constraints to SBUV
partial and total column measurements and an ozone
climatology from McPeters et al (2007) as a prior.

Statistical significance between the subsets of data
was evaluated using a Student’s t statistic (as in Santer
et al 2000) and are presented at the 95% confidence
level based on a one-sided test. Pearson correlation
coefficients are also calculated between linearly
detrended March ozone and linearly detrended spring
(March-April) surface temperatures and winds using
monthly- or seasonal-mean data from 1979–2012. The
statistical significance of the correlation coefficient was
also evaluated using a Student’s t statistic. Significant
changes in daily maximum spring temperatures for
selected regions are determined from probability
distributions of daily GHCN station data. The
distributions were estimated assuming a bin size of
20, estimated from the square root of the number of
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observations available in the selected set of years for
Southern Asia (which had the most limited record);
statistical significance was determined using a two-
sample Kolmogorov-Smirnov test.

In this study, we chose March to represent spring
Arctic ozone, which is the month with the largest
observed ozone losses and is consistent with the
constructed ozone forcings used in Smith and Polvani
(2014). Calvo et al (2015) selected April as the
indicator month; our analysis suggests that the
observed maxima in ozone depletion peak one month
earlier on average than in their model. We analyze the
tropospheric response over March and April (hereafter
referred to as spring). The tropospheric responses in
March and April are fairly similar (discussed further
in the results section). Therefore, we present the
tropospheric responses in the spring average, to
provide an improved signal to noise and for
comparison with the earlier modeling studies.

Years with major sudden stratospheric warmings
were identified using the climatologies from Charlton
and Polvani (2007), for 1958–2002, and Kuttippurath
and Nikulin (2012), for 2003–2012. Both studies use
the criterion of zonal-mean zonal wind reversal from
westerly to easterly at 60°N at 10 hPa to identify the
onset of a major sudden stratospheric warming. Years
with a strong influence from El Niño or La Niña were
identified as when the National Weather Service
Climate Prediction Center‘s Oceanic Niño Index
(ONI) exceeded ±1 in any month from November
through March (www.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/ensoyears.shtml). The
ONI is calculated as the three month running mean of
sea surface temperature anomalies from ERSSTv4 over
the Niño-3.4 region (5°S–5°N, 120°W–170°W), where
the anomalies are estimated from a 30-year period,
which is updated every 5 years. The role of increasing
well-mixed greenhouses gases was estimated as
the difference between the years 2007–2012 and
1979–1984 (referred to below as ‘historical’).
3. Results

Figure 1 shows the seasonal cycle and interannual
variability of total column and lower stratospheric
(70 hPa) ozone from MERRA averaged over the
Arctic. Years with low ozone anomalies in March are
characterized by lower ozone abundances in early
winter as well, and these anomalies persist throughout
the summer. Figure 1 also shows time series of March
total column and lower stratospheric ozone at 70 hPa
with the ozone extremes (as defined in section 2.2)
highlighted. Winters with major sudden stratospheric
warmings and strong La Niña or El Niño events are
also indicated. Low ozone anomalies predominate in
the late 1990s. High ozone anomalies are observed in
both the early 1980s as well as in the 2000s, which helps
to distinguish the relationship of tropospheric climate
4

with ozone from that of increasing well-mixed
greenhouse gases.

Randel et al (2009) noted higher Northern
Hemispheric polar ozone abundances during El Niño
winters, as El Niño winters have a weaker polar vortex
due to enhanced planetary wave activity (e.g. van Loon
and Labitzke 1987). Iza and Calvo (2015) also found
that the polar vortex was weaker in El Niño winters not
only during canonical El Niño (Eastern Pacific El
Niño) events but also during Central Pacific El Niño
events coinciding with major sudden stratospheric
warmings. In contrast, La Niña winters are character-
ized by a stronger vortex and negative ozone
anomalies (Garfinkel and Hartmann 2007, Free and
Seidel 2009). However, Butler and Polvani (2011)
showed that the frequency of sudden stratospheric
warming events was similar in El Niño and La Niña
winters. As seen in figure 1, lower ozone abundances
are overall observed in winters without a major sudden
stratospheric warming, as compared to winters with
them, while the relationship between extremes in
Arctic spring ozone at 70 hPa and ENSO is less clear.
This is consistent with Rieder et al (2013), who found
that the fingerprint of ENSO on ozone was strongest in
the tropics and mid-latitudes and diminished over the
polar regions.

To illustrate the tropospheric impact of strato-
spheric ozone anomalies, figure 2 (leftmost column)
presents the seasonal differences in polar cap
(75–90°N) averaged ozone, temperature, and geo-
potential height, as well as zonal winds averaged over
the North Atlantic (60 °W–0 °Eq) from 55–65 °N
between years with low March ozone compared to
high March ozone anomalies. Years characterized by
low ozone anomalies in March show lower ozone
throughout winter and into the fall in the lower
stratosphere (left column of figure 2), as also seen in
figure 1. Colder temperatures are also observed in late
winter and persist through the fall in the lower
stratosphere in years with low ozone.

Lower geopotential heights are observed in late
winter and into the summer in the stratosphere in
years with low ozone, consistent with the positive
polarity of the NAM/NAO and corresponding to a
stronger, colder polar vortex in the stratosphere and a
poleward shift of the mid-latitude jet in the
troposphere. Over the midlatitudes, years with low
ozone anomalies show stronger North Atlantic zonal
winds in winter and spring (bottom left panel of
figure 2).

The additional columns of figure 2 show the
behavior obtained in the same variables when different
potential forcings are considered: years without major
sudden stratospheric warmings compared to years
with them; years with strong ENSO events, and the
long-term change. Figure 2 shows that that the
strongest and most robust differences in Arctic
stratospheric and tropospheric winter and spring
climate occur for the differences between years with
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Figure 2. Seasonal differences in polar cap averaged (75–90°N) ozone [%], temperature [K], and geopotential height [m] as well as
North Atlantic (60°W–0°Eq) zonal winds [m s�1] averaged from 55–65°N from MERRA between years with low compared to high
March ozone, years without major sudden stratospheric warmings as compared to years with them, winters with La Niña compared to
El Niño events, and the historical time period (defined as 2007–2012 minus 1979–1984). Hatching denotes differences that are
statistically significant at the 95% level.
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low March ozone anomalies compared to high ozone
anomalies. Differences in Arctic climate between years
without major sudden stratospheric warmings and
with them show similar patterns to the differences
based on low and high March ozone, albeit weaker.
This is not surprising as years with low/high March
ozone anomalies tend to occur in winters without/
with major sudden stratospheric warmings (figure 1).
Figure S1 (available at stacks.iop.org/ERL/12/024004/
mmedia) shows that the temperature changes
obtained in figure 2 using MERRA are similar to
those found using radiosonde station data from
HadAT2, version 2 (Thorne et al 2005); therefore,
these changes are not artifacts of the reanalysis.

Overall the stratospheric-tropospheric differences
shown in figure 2 between La Niña and El Niño years
are much weaker than those associated with interan-
nual variability of ozone and the occurrence of major
sudden stratospheric warmings. Note that Calvo et al
(2011) found that only El Niño winters with SSWs
have a robust impact on tropospheric climate through
the stratosphere. The historical differences between
the early 1980s and late 2010s in the Arctic
stratospheric climate (right column of figure 2) show
a weaker, warmer polar vortex in early winter, followed
5

by a colder polar vortex in late spring, albeit weaker
than in the analysis with ozone extremes. However,
studies have shown that historical trends or differences
in Arctic winter stratospheric climate are sensitive to
the chosen end-year, suggesting that the historical
responses are not robust to the chosen end-year
(Manney et al 2005, Ivy et al 2014).

Figure 2 indicates that interannual variations of
ozone in March project onto zonal-mean surface
climate in spring. Figure S2 further explores the
correlations between March ozone at 70 hPa with
zonally-varying zonal wind at 500 hPa, sea level
pressure, and surface temperatures in March, April,
and the spring average (March and April). As seen in
figure S2, there are regions with significant correlations
between the Northern Hemisphere tropospheric climate
and March ozone in both March and April individually,
and the patterns exhibit several similar features in the two
months, particularly in the surface temperature field
(figureS2bottomrow).The troposphericchangesproject
onto the zonal-mean (figure 2) but also display strong
zonal asymmetries (figure S2).

Figure 3 shows maps summarizing the regional
differences in Northern Hemispheric tropospheric
climate in spring between years with low and high

http://stacks.iop.org/ERL/12/024004/mmedia
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ozone abundances in March. The figure is very similar
to the right column of figure S2, but not identical since
it is based on composite differences rather than
correlations using March ozone (see also figure 4 in
Smith and Polvani (2014) and figure 3 in Calvo et al
(2015)). Figure S3 compares the results in figure 3 with
the attendant results calculated for major sudden
6

stratospheric warmings, ENSO, and the long-term
trend. Years with low ozone are associated with a
statistically significant poleward shift of the midlati-
tude jet over the North Atlantic (figure 3 top) that is
similar to that noted in previous modeling studies
(Smith and Polvani 2014, Calvo et al 2015). The
differences in sea level pressure are consistent with
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the positive polarity of the NAM/NAO, with lower
sea level pressures over the Arctic and higher
pressures over the midlatitudes in spring for years
with low ozone anomalies. The differences in spring
surface temperatures show warmer temperatures
over northern Siberia and southwestern Europe, and
colder temperatures over southeastern Europe and
southern Asia in years with low March ozone
anomalies (figure 3).

To highlight the relationships between March
ozone and spring surface temperatures on interannual
timescales, figure 4 shows the correlation coefficients
of March Arctic ozone at 70 hPa with spring averaged
surface temperatures and near-surface winds from
ERA-Interim. The temperature results are similar to
those in the composite difference analysis of figure 3
and identical to those in correlation analysis in the
right column of figure S2. Over southeastern Europe
7

and southern Asia, years with low ozone anomalies
tend to have colder surface temperatures, as seen by
the positive correlations. Over northern Asia, low
ozone anomalies are associated with warmer surface
temperatures, corresponding to southwesterly winds
bringing warmer air poleward (as seen in the wind
vectors in figure 4). Overall, more areas are statistically
significant than in the composite analysis due to the
inclusion of more years in the analysis. The associated
time series of surface temperatures for selected
locations are shown in figure 4 (middle and bottom
panels) and illustrate locally strong relationships with
March Arctic spring ozone, with correlations of 0.46
for Grand Rapids, MI, USA,�0.67 for eastern Siberia,
�0.77 for central Russia, and 0.67 for Nepal; all are
statistically significant at the 95% level.

To investigate the possible relationship between
spring ozone and daily surface temperature extremes,
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figure 5 shows the probability distributions for daily
maximum temperatures in spring for selected regions
displaying high correlation coefficients betweenMarch
ozone and linearly detrended spring surface temper-
atures (figure 4). The distributions of daily maximum
temperature between the high and low ozone years in
the regions shown in figure 5 were all statistically
different at the 95% level based on a two-sample
Kolmogorov-Smirnov test. Figure 5 (right) also shows
that some of the regions show strong differences in the
historical time period, as would be expected from
increasing well-mixed greenhouse gases (as also seen in
figureS3).Over southeasternEuropeandsouthernAsia,
years with low ozone anomalies display colder extreme
spring temperatures that appear to be more extreme
than those in thehistorical timeperiod.OverSiberia and
central Asia, years characterized by low ozone show
warmer temperatures than years with high ozone, but
also reveal substantial changes in the historical time
period. Thus, figure 5 suggests that the connection
between stratospheric ozone changes on extreme
surface temperature may be comparable to those
associated with increasing GHGs over certain regions.
4. Conclusions

Previous studies (Baldwin and Dunkerton 2001,
Thompson and Wallace 2001) have shown direct
8

coupling between the stratospheric and tropospheric
circulations in NH winter. Our analysis illustrates the
value of ozone measurements as an indicator for
stratospheric circulation change, and shows that the
tropospheric anomalies persist after the extreme ozone
anomalies for up to one month. Springs characterized
by low ozone anomalies in March show a stronger,
colder polar vortex in the stratosphere in late winter
and early spring. In the troposphere, years with
negative ozone anomalies during March are associated
with circulation anomalies consistent with the positive
polarity of the NAM/NAO that persist into April,
including a poleward shift of the North Atlantic jet,
lower than normal temperatures over eastern North
America, southeastern Europe, and southern Asia, and
higher than normal temperatures over northern and
central Asia. Furthermore, we suggest that these
stratospheric-tropospheric coupled results in spring
are most pronounced when analyzed in the context of
Arcticozone extremes, andgenerally less apparentwhen
analyzed for ENSO events or increasing greenhouse
gases.

Our analysis of several observational datasets
supports a linkage between March Arctic lower
stratospheric ozone and spring Northern Hemispheric
extratropical surface climate. Although there is a
limited number of extreme ozone years available for
analysis, broad agreement between the observations
and modeling results gives confidence in our findings
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(Calvo et al 2015). Further, correlations between
March stratospheric ozone and surface temperatures
averaged for March and April are significant in
certain locations even when all years are considered
(figure 4). Finally, while it is clear that tropospheric
greenhouse gas increases have driven many changes
in surface climate extremes in recent decades, this
study suggests that stratospheric extremes are
significant contributors to extreme surface temper-
atures in spring at some locations (figure 5). While
the linkages between ozone and surface climate
highlighted here do not necessarily imply causality,
our results do indicate predictability of March ozone
for spring tropospheric climate, particularly in
certain regions. Future work is needed to evaluate
the predictive skill of using ozone for Northern
Hemispheric tropospheric climate.
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