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Abstract: The advancement in IoT has prompted its application in areas such as smart homes,
smart cities, etc., and this has aided its exponential growth. However, alongside this development,
IoT networks are experiencing a rise in security challenges such as botnet attacks, which often
appear as network anomalies. Similarly, providing security solutions has been challenging due
to the low resources that characterize the devices in IoT networks. To overcome these challenges,
the fog computing paradigm has provided an enabling environment that offers additional resources
for deploying security solutions such as anomaly mitigation schemes. In this paper, we propose
a hybrid anomaly mitigation framework for IoT using fog computing to ensure faster and accurate
anomaly detection. The framework employs signature- and anomaly-based detection methodologies
for its two modules, respectively. The signature-based module utilizes a database of attack sources
(blacklisted IP addresses) to ensure faster detection when attacks are executed from the blacklisted IP
address, while the anomaly-based module uses an extreme gradient boosting algorithm for accurate
classification of network traffic flow into normal or abnormal. We evaluated the performance of
both modules using an IoT-based dataset in terms response time for the signature-based module and
accuracy in binary and multiclass classification for the anomaly-based module. The results show
that the signature-based module achieves a fast attack detection of at least six times faster than the
anomaly-based module in each number of instances evaluated. The anomaly-based module using the
XGBoost classifier detects attacks with an accuracy of 99% and at least 97% for average recall, average
precision, and average F1 score for binary and multiclass classification. Additionally, it recorded 0.05
in terms of false-positive rates.

Keywords: anomaly mitigation; internet of things (IoT); Intrusion Detection System (IDS);
fog computing; classification algorithms

1. Introduction

In recent times, the proliferation of IoT devices and their applications in various facets of our lives,
such as smart cities, smart health, smart homes, etc., has provided numerous benefits. IoT networks
are experiencing tremendous growth, with the expected number of these devices to reach around
50 billion at the end of 2020 [1]. This growth comes with a lot of challenges. On the one hand, the main
challenge is the security of these connected devices, which are increasingly under attacks. On the
other hand, there is a lack of adequate resources (storage and computational) that characterizes IoT
devices, which are essential for deploying security solutions such as network anomaly mitigation,
usually performed by Intrusion Detection Systems (IDS) on IoT networks [2].

The security challenges in IoT networks usually come as network anomalies, specifically when
there is a deviation from the flow of normal network traffic. Examples of such abnormal network traffic
flow are Distributed Denial of Service (DDoS) attack and Probing attacks [3]. These attacks are usually
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driven by a botnet and represent the common types of anomalies that exist in IoT networks. A botnet
comprises a large number of hijacked nodes or systems in a network that are controlled by malicious
users remotely. These nodes or systems are used to execute several types of attacks [4]. A botnet attack
is usually characterized by three features, which are similarity of attack sources, divergence between
normal and attack network traffic flow, and automation of attack execution [5].

The Mirai botnet attack remains as one of the popular attacks on IoT networks. The Mirai botnets
have evolved over the years [6]; a recent example of attacks using a Mirai variant was recorded
between March and April of 2019 on an entertainment industry that provides online streaming services.
It utilized over 400,000 compromised IoT devices to execute the attacks. The botnet was able to generate
around 292,000 requests per second and it lasted for 13 days [7]. This highlights the weakness and threat
to the nodes in IoT networks, although the anomaly mitigation scheme cannot detect the exploitation
of default authentication credentials by the Mirai malware at the device level. This necessitates the
deployment of anomaly mitigation schemes as a vital part of the defense procedures to protect against
the utilization of a large number of devices in IoT networks for execution of botnet attacks.

To protect and ensure efficient operation of IoT devices on the network, the fog computing
paradigm can be employed to ameliorate the lack of resources required in the operation of the anomaly
mitigation schemes in the IoT networks. Fog computing is conceived to ease computational, storage,
and latency as well as energy consumption needs by bringing these resources to the edge of the
network [8]. In this way, IoT applications and devices can receive a better and faster response as well
as relief from performing operations that will stretch their resources and reduce their efficiency.

In this paper, we proposed an anomaly mitigation framework that leverages the benefits of the
fog to deploy a hybrid anomaly mitigation framework for the IoT network. Firstly, it employs the
signature-based IDS that utilizes the similarity feature of attack sources in botnet attacks to create
a blacklist of attack sources (IP addresses) for timely attack detection. Secondly, it uses an anomaly-based
IDS that utilizes an extreme boosting classifier to ensure attack detection with high accuracy and low
false-positive rates. The utilization of the signature-based module in the framework for network traffic
flow analyses ensures a speedy detection of known attack sources, thereby reducing the operational
overhead and time of classification in the anomaly-based IDS module.

The contributions of this paper are explained below:

• We proposed a hybrid anomaly mitigation framework for IoT networks using fog computing, which
harnesses the resources of the fog. The framework employs signature-based and anomaly-based
modules to ensure faster and accurate attack detection.

• In the proposed framework, we have used a blacklist of IP addresses in our signature-based module
and an Extreme Gradient Boosting (XGBoost) [9] classifier for the anomaly-based module due to
its resilience against overfitting. The performance of the blacklist look-up and XGBoost classifier
was evaluated in terms of response time and classification accuracy (binary and multiclass) using
the BoT-IoT dataset, respectively. The results show that the signature-based module detects attacks
fast. Similarly, the XGBoost classifier has a superior performance over other classifier algorithms
such as Decision Tree (DT) [10], k Nearest Neighbors (k-NN) [11], and Naïve Bayes (NB) [12].

• A review and comparison of some proposed state of the art anomaly mitigation schemes in IoT
are provided. The review covers the objectives, operational procedures as well as the strength of
each scheme, while the comparison is in terms of detection methodology, techniques employed,
evaluation strategy used, attacks detected, and dataset utilized for evaluations.

The remainder of the paper is organized as follows. Section 2 discusses a brief background of
IoT, IDS, and fog computing. Section 3 provides the related work on anomaly mitigation schemes in
IoT. Section 4 presents the proposed framework for anomaly mitigation in IoT using fog computing.
Section 5 presents the performance evaluation and finally, Section 6 concludes the paper.
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2. Background

This section gives a brief overview of the IoT concept, fog computing, and intrusion detection
systems as well as its categories.

2.1. Internet of Things (IoT)

The IoT in simple terms can be defined as a network of physical objects (things/devices) that
can communicate with each other using the internet. The development of the Auto-ID Centre at the
Massachusetts Institute of Technology (MIT) in 1999 and utilization of radio frequency identification
(RFID) for developing an Electronic Product Code (EPC) in 2003 serve as the foundation in the IoT
voyage [13]. The definition and description of IoT have been provided by many organizations and
researchers as highlighted in [14,15].

The IoT commonly adopts the generic three-tier architecture, namely application layer,
communication (network and transport) layer, and physical (perception) layer. This is due to
the unavailability of a standard architecture [16].

The physical (perception) layer collects data from its surrounding environment by utilizing devices
such as RFID and sensors, and communication standards, for example, IEEE 802.15.4 and Bluetooth.
These standards are short-range and support limited data rates. The communication (network and
transport) layer transmits the acquired data from the physical layer upward to the application layer.
It employs communication standards that are characterized by long-range capabilities such as IEEE
802.11, 4G, IEEE 802.3, etc. The application layer processes received data to obtain information that
could be utilized by devices or applications in making decisions. In addition, a middleware is employed
at this layer to make communication among applications and devices smooth [13,17]. Several protocols
and standards have been proposed for IoT; a comprehensive survey of protocols as well as standards is
provided in [18].

2.2. Fog Computing

Fog computing is a distributed computing paradigm conceived by Cisco [19]; it moves application
services, storage, computation as well as data close to the users at the edge of the network. This helps
provide a fast response to applications by decreasing latency and bandwidth usage. In addition, the fog
offers scalability and availability through its deployment. These characteristics of fog computing
are well-positioned to provide needed aid to IoT devices, which are characterized by lack of enough
resources for storage and computations [20]. An extensive survey about fog computing and its
characteristics can be found in [21].

For deployment in the IoT network, fog computing adopts the three-layered architecture [8],
which consists of the cloud layer, fog nodes layer, and the IoT device layer as shown in Figure 1. The fog
nodes layer is positioned between the cloud layer and the IoT devices layer. It comprises nodes such
as routers or gateways, switches, base stations, servers or dedicated computer systems, etc. It serves as
a complement to the cloud layer by performing the required computations, storage, and other services
traditionally done by the cloud. It receives data from the IoT devices in the IoT devices layer and
performs the processes required by users without using the cloud. The cloud layer comprises high-end
servers which host different IoT applications. It serves as the universal manager of the applications.
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Consequently, the fog computing paradigm can be employed in the IoT to effectively host anomaly
mitigation frameworks. This will allow effective attack detection close to the IoT devices. In addition,
it will ensure efficient operation of the IoT devices by relieving the operational requirements of the
anomaly mitigation solution on the IoT devices.

2.3. Intrusion Detection System (IDS)

The IDS is employed to detect unauthorized access into a network or any system. It is widely
deployed in two ways; firstly, at the Host level (HIDS) on a node to monitor its system activities on
its system application files or the operating system running on the node. At this level, a node can be
a computer system or device in IoT. Secondly, at the Network level (NIDS) on a gateway or border
router, where it monitors network traffic flows [22].

The NIDS is categorized according to the method of detection and deployment architecture.
In terms of deployment architecture, the NIDS can utilize a centralized, distributed, or hybrid
deployment strategy [23]. In centralized deployment, the NIDS is positioned on a dedicated host or
a router. It monitors the network traffic flow and transactions between the inside of its network and the
internet. In the distributed deployment architecture, the NIDS is placed on each network node where
nodes monitor each other’s network transactions. The hybrid deployment employs both centralized
and distributed architectures to leverage the benefits and reduce the shortcomings of the deployment
strategies [4].

In terms of method of detection, the NIDS is widely classified as signature-based, anomaly-based,
and hybrid-based. The signature-based IDS detects threats or attacks through matching stored attack
signatures or rules with network traffic flow features. It successfully detects known attacks with 100%
accuracy. The anomaly-based schemes employ statistical, machine, or protocol-specific information to
build a model of legitimate network traffic flow as a reference point for its operation. It detects an attack
by comparing network traffic flow with the model; a difference with the model translates to a threat or
attack (abnormal traffic). The anomaly-based IDS has the capability of detecting unknown or zero-day
attacks [24]. Similar to the deployment architecture strategy, the hybrid IDS fuses both detection
methods to gain the advantages and decrease the disadvantages of the detection methods [25].
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The signature-based IDS performs well in the detection of known attacks due to its operational
procedure. However, it fails in the detection of unknown attacks and is unsuitable for the
resource-constrained IoT. The anomaly-based IDS can detect unknown attacks, even though it can be
suitable for IoT. It suffers from false alarms when normal traffic is classified as abnormal traffic [26].

3. Related Work

With the growth of IoT networks, several researchers have proposed anomaly mitigation schemes
to protect the IoT from malicious users. As mentioned earlier, the IDS schemes can largely be
classified into signature-based [27–29], anomaly-based [30–36], and hybrid-based [22,36]. Additionally,
some of the anomaly mitigations’ schemes [35–38] utilize the fog computing paradigm for deployment.
This section presents a review and comparison of some proposed anomaly mitigation schemes in
IoT networks.

An IDS scheme based on Raspberry Pi (RPiIDS) [27] is proposed for IoT. The RPiIDS scheme
utilizes an open-source signature-based IDS called Snort. The full Snort IDS was installed on the
Raspberry Pi. Experimental results showed that the Snort IDS can be hosted on the Raspberry Pi.

A signature-based IDS [28] is proposed to detect DDoS attacks in IoT networks. It comprises two
units, namely IDS detectors and IDS routers, which are fused in a hybrid deployment. The IDS router is
hosted in the border gateway and it performs firewall and detection functionalities. The IDS detectors
employ sensors that monitor the internal traffic, i.e., behind the gateway. It sends information about
malicious devices to the gateway for necessary action. The results showed that the scheme detects
version number modification and hello flooding attacks.

A Denial-of-Service (DoS) detection scheme [29] is proposed for 6LoWPAN-based IoT networks.
It utilizes the ebbits network framework and Suricata IDS. The adopted IDS uses packet threshold
rules for the detection of network anomalies such as DoS. The DoS detection scheme employs probes
connected to the IDS to capture network packets for inspection. It effectively detects UDP flooding.

Although it was shown that a signature-based IDS can be hosted on a Raspberry Pi, the schemes
will not be able to detect zero-day attacks. In addition, the operational requirements are not suited
for IoT devices. To deploy signature-based IDS, additional measures that will reduce the burden of
storage and computation on the IoT devices are needed.

A two-level hybrid model for an anomalous activity detection scheme [30] is proposed to detect
intrusion in IoT networks. This scheme consists of two phases for anomaly detection and identification
of attack category. The first phase employs flow-based features and the decision tree classifier to
classify normal and abnormal traffic. The second phase receives the anomalous traffic from the first
phase and utilizes Recursive Feature Elimination (RFE) to select relevant features. It also uses Synthetic
Minority Over-Sampling Technique (SMOTE) and Edited Nearest Neighbors (ENN) to deal with
oversampled and under-sampled instances for training. Finally, it employs the random forest classifier
to categorize the detected abnormal traffic according to attack types. The two-level hybrid scheme
achieves satisfactory results in terms of recall, precision, F1 score, and specificity.

A lightweight IDS scheme [31] is proposed for IoT. This scheme consists of a training level and
evaluation level. At the training phase, the scheme uses features obtained from the packet inter-arrival
time of the received data to train the scheme to make the system lightweight. At the evaluation stage,
the scheme employs the support vector machine (SVM) classifier to detect an intrusion or abnormal
traffic. The lightweight IDS scheme achieves an acceptable result in terms of detection time and
classification accuracy.

A real-time IDS scheme [32] is proposed to detect wormhole attacks in RPL-based IoT. It utilizes
the routing information and Received Signal Strength Indicator (RSSI) to detect malicious users and
nodes. The real-time IDS scheme is evaluated in centralized and distributed deployments. It achieves
a detection rate of 90%.

A supervised IDS scheme [33] is proposed to detect attacks on smart home IoT devices. This scheme
utilizes the Packet Description Markup Language (PDML) during preprocessing for feature selection.
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This scheme employs the decision tree classifier and comprises three stages. At the first stage,
the scheme identifies the IoT node based on its MAC address and groups them according to their
activities. The second stage detects anomalous traffic flow and sends the abnormal traffic flow to
the third stage. The third stage categorizes the abnormal traffic flow according to the attack type.
The supervised IDS scheme was successful in detecting DoS, Man-In-The-Middle (MITM)/Spoofing,
Reconnaissance, and Replay attacks. It also achieves a good F-measure in terms of device profiling,
attack detection, and attack categorization.

A Deep Learning Intrusion Detection System (DL-IDS) scheme [34] is proposed to detect security
threats in IoT. The DL-IDS employs Minkowski distance and k Nearest Neighbor to generate missing
instances in the dataset at the preprocessing stage. It utilizes the Spider Monkey Optimization (SMO)
algorithm for feature selection and Stacked-Deep Polynomial Network (SDPN) for distinguishing
normal and abnormal instances. The DL-IDS scheme achieves satisfactory results in terms of accuracy,
precision, recall, and F1 score.

An Ensemble Learning-based Network Intrusion Detection System (ELNIDS) scheme [35]
is proposed to detect routing attacks in RPL-based IoT. This scheme employs ensemble machine
learning classifiers (Boosted trees, Bagged Trees, RUSBoosted Trees, and Subspace Discriminant) to
classify network traffic flow into normal or abnormal. This scheme was able to detect Blackhole, Sinkhole,
Sybil, Selective Forwarding, Clone ID, Hello Flooding, and Local Repair attacks with good accuracy
and Receiver Operating Characteristics (ROC) area. In addition, the Boosted Trees and RUSBoosted
Trees classifiers achieved a better performance among other evaluated ensemble techniques.

A Real-time IDS scheme (SVELTE) [22] is proposed for IoT. This scheme is placed on the border
router and comprises three units: 6LoWPAN Mapper (6Mapper), IDS component, and a distributed
mini-firewall. The 6Mapper captures information about each node. The information includes node
ID, node rank, parent ID, and all neighbor IDs and ranks. It uses the information and response
from the mapping request to replicate the network structure on the router. The replicated network is
utilized in detecting routing inconsistencies. The IDS component contains techniques to detect selective
forwarding attacks, spoofed or altered information, and sinkhole attacks. The distributed mini-firewall
protects the IoT network from external malicious users. The SVELTE scheme detects sinkhole and/or
selective forwarding attacks and their sources with low energy consumption and overhead.

A Compression Header Analyzer Intrusion Detection Scheme (CHA-IDS) [36] is proposed for
6LoWPAN-based IoT networks. The CHA-IDS scheme is positioned on the router and utilizes anomaly-
and signature-based detection methodologies. This scheme comprises four units: Sensor Agents
(SA), Aggregator Agent (AGA), Analyzer Agent (ANA), and Actuator Agent (ACA). The SA collects
network traffic flow packets from all nodes. The AGA utilizes the best-first search, greedy stepwise,
and correlation-based feature selection algorithms to identify the features that will be used for the
classification of network traffic. The ANA performs the classification of the traffic flow into normal or
abnormal by using the information from AGA. Lastly, the ACA sends an alert to the admin in the event
of attack detection. The scheme employs machine learning to distinguish types of attacks by using the
compression header features and generates rules or signatures that are updated in the signature-based
unit. These rules are used in identifying different attacks. The CHA-IDS scheme detects wormhole
attacks, hello flooding attacks, and sinkhole attacks or a combination of the attacks.

The major advantage of anomaly-based schemes is the ability to detect zero-day attacks. However,
the schemes in [22,29] are protocol specific, which means the schemes will not be able to work on all IoT
devices. Similarly, the anomaly-based schemes in [20,30–39] employed machine learning or statistical
techniques but may experience false-positive rates when wrong decisions about normal traffic flow are
made. The hybrid schemes in [22,36] leverage the benefits of the combination of different detection
methodologies. However, the schemes may inherit the problems of the adopted methods.

To solve the challenge of lack of enough resources in deploying the anomaly mitigation schemes
as well as improve the services of IoT applications, the authors in [20,37–39] employed fog computing
in anomaly mitigation for IoT networks.
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An Anomaly Detection for IoT (AD-IoT) scheme [37] is proposed to detect cybersecurity threats in
a smart city environment. This scheme is deployed on distributed fog nodes and employs the random
forest (RF) classifier for classification of network traffic flow into normal or abnormal. The results
obtained show that the RF classifier achieved satisfactory accuracy in attack detection with a low
false-positive rate.

An anomaly detection scheme for IoT empowered by fog computing [38] is proposed to utilize
the resources on the fog to ensure fast anomaly detection. The scheme employs the Hyper Ellipsoidal
Clustering for Resource-Constrained Environments algorithm (HyCARCE) to cluster the data collected
from the sensor nodes and Ellipsoidal neighborhood outlier factor (ENOF) to distinguish normal and
abnormal clusters. This scheme is comprised of four phases: HyCARCE clustering, ENOF computation,
cluster information transmission, and an anomaly detection process, which are all performed on the fog.
The fog empowered anomaly detection scheme detects anomalies promptly with minimal overhead
and low energy consumption.

A distributed attack detection scheme [39] is proposed for the IoT. This scheme utilizes a Deep
Learning (DL) method for attack detection. It uses the fog level nodes’ resources to train the DL models
as well as host the detection schemes. The distributed attack detection scheme employs a coordinator
(master node) to improve cooperation between the fog nodes in terms of optimization and parameter
sharing. The results show that the scheme has superior performance than the centralized scheme in
detecting attacks.

A semi-supervised learning-based distributed attack detection framework [20] is proposed for
attack detection in IoT networks. This scheme utilizes fog devices and employs an ELM-based
Semi-Supervised Fuzzy C-Means (ESFCM) technique, which combines the Extreme Learning Machine
(ELM) and Semi-Supervised Fuzzy C-Means (SFCM) algorithm. It uses the ELM to train the classifier
model and SFCM algorithm for clustering unlabeled data. This scheme achieves good performance
with an accuracy of 86.53% and a low detection time.

Fog computing-based schemes [20,37–39] employed anomaly-based detection methodology using
machine learning or statistical techniques, which means the traffic will always be scanned to check if it
is normal or abnormal. However, these schemes fail to utilize the full potential of the fog nodes in
terms of storage. Storing the signatures of the previously detected attacks will improve attack detection
accuracy, reduce computational overheads, and further decrease the detection response time.

Table 1 presents the comparison of the anomaly mitigation schemes in IoT. The comparison is
based on detection methodology, techniques employed, evaluation strategy used, attacks detected,
and dataset utilized.

Table 1. Comparison of proposed anomaly mitigation schemes in IoT.

S/No Scheme Detection
Methodology Technique Evaluation

Strategy
Attacks

Detected Dataset

1 A signature-based intrusion
detection system (2018) [28] Signature-based

Routing
protocol

information
Simulation

i. Hello
flooding

ii. Version
number

modification

N/A

2
A Raspberry Pi Intrusion

Detection System (RPiIDS)
(2016) [27]

Signature-based Snort Experiments Not specified N/A

3
A Denial-of-Service

detection scheme (ebbits,
2013) [29]

Signature-based
Suricata
(Packet

threshold rule)
Simulation DoS N/A

4
A two-level hybrid model

for anomalous activity
detection scheme [30]

Anomaly-based

i. Decision
Tree

ii. Random
Forest

iii. RFE
iv. SMOTE

Experiment Attacks in the
dataset

i.
UNSW-NB

15
ii.CICIDS2017
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Table 1. Cont.

S/No Scheme Detection
Methodology Technique Evaluation

Strategy
Attacks

Detected Dataset

5 A lightweight IDS scheme
[31] Anomaly-based SVM

i. Simulation
ii.

Experiments
DDoS CICIDS2017

6 A real-time IDS scheme [32] Anomaly-based
i. Routing

information
ii. RSSI

Simulation Wormhole N/A

7 A supervised IDS
scheme [33] Anomaly-based Decision Tree Experiments

i. DoS
ii. MITM

iii.
Reconnaissance

iv. Replay

Generated
from the

experiment
testbed.

8
A Deep Learning Intrusion
Detection System (DL-IDS)

scheme [34]
Anomaly-based

i. k-NN
ii. SMO

iii. SPDN
Experiments

i. DoS
ii. Probe
iii.R2L
iv.U2R

NSL KDD

9

An Ensemble Learning
based Network Intrusion

Detection System (ELNIDS)
scheme [35]

Anomaly-based Ensemble ML Experiments Routing
attacks. RPL-NIDDS17

10 SVELTE (2013) [22] Hybrid

i. Routing
protocol

information
ii. Signature based

IDS

Simulation

i. Sinkhole
ii. Selective
forwarding

attacks

N/A

11 CHA–IDS (2018) [36] Hybrid

i. Best first search
algorithm
ii. Greedy
stepwise

algorithm
iii.

Correlation-based
features selection

iv.
Signature-based

IDS

Simulation

i. Hello
flooding
attack,

ii. Sinkhole
attack

iii. Wormhole

N/A

12 An Anomaly Detection for
IoT (AD-IoT) scheme [37] Anomaly-based Random Forest

Algorithm Experiment Not specified UNSW-NB
15

13 A distributed attack
detection scheme (2018) [39] Anomaly-based Deep learning Experiments

i. DoS
ii. Probe
iii.R2L
iv.U2R

NSL KDD

14
A fog empowered anomaly

detection scheme for IoT
(2017) [38]

Anomaly-based i. HyCARCE
ii. ENOF Experiments Not specified

i. S12
ii. Banana

iii.
Melbourne

IoT data
iv. Intel
Berkeley
Research

Laboratory
IBRL(IBRL)

15

Semi-Supervised learning
based distributed attack

detection framework
(2019) [20]

Anomaly-based

i. Extreme
Learning Machine

(ELM) and
ii.

Semi-Supervised
Fuzzy C-Means

(SFCM) algorithm

Experiments

i. DoS
ii. Probe
iii. R2L
iv.U2R

NSL KDD
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4. Proposed Framework

This section presents the proposed framework, a use case on the application of the fog
computing framework and anomaly mitigation, and a brief description of the components employed
in the framework.

Towards mitigating anomalies such as botnet attacks in the IoT network, a hybrid framework
using the fog computing paradigm is proposed, as shown in Figure 2. The fog computing paradigm
is utilized to compensate the lack of enough resources in IoT networks. It removes the burden of
computational overhead and other related operational requirements in anomalies mitigation from the
resource-constrained IoT devices. The framework employs two modules, which are signature-based
and anomaly-based IDS modules, as shown in Figure 2. These modules utilize a database of blacklisted
IP addresses and an extreme gradient boosting [9] classifier for the signature-based module and
anomaly-based module, respectively. This is to enable the detection modules to leverage their
strengths. The signature-based module will ensure 100% accuracy in the detection of known attacks
through its source, while the anomaly-based will detect the zero-day attacks with satisfactory accuracy.
Hence, the framework ensures a safe IoT network.
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The network traffic flow is given as x, signature of known attacks (blacklisted IP addresses) as d,
normal traffic flow as N, and abnormal traffic flow as A.

Firstly, the network traffic flow x passes through the first module, i.e., the signature-based detection
module. The IP address of traffic flow x is scanned against d stored in the database of the module. If x
ε d, then x is blocked/dropped, and an alert is generated and sent to the administrator. Otherwise,
the flow is forwarded to the second module, which is the anomaly-based detection module.

The anomaly-based detection module classifies the network traffic flow x into N or A. If x is
classified as A, the module blocks/drop the x. Then, an alert is generated and sent to the administrator.
Finally, the signature (IP address) of A is updated in the database of the signature-based detection
module. Otherwise, the x is allowed to pass. The operational flow of the framework is shown in Figure 3.
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4.1. Use Case on the Application of the Fog Computing Framework and the Anomaly Mitigation

Considering a smart building scenario, the proposed fog framework can be deployed on
a dedicated system that could act as a fog node. It can be used to deploy security solutions
such as anomaly mitigation systems (IDS) efficiently to safeguard the IoT nodes or systems, such as
a smart garage, smart fridge, smart thermostat, or smart weather station. This will protect the IoT
nodes from external attacks or being utilized by malicious users as part of a botnet used in executing
DDoS attacks. This scenario corresponds to the scenario used in developing the dataset utilized for the
evaluation of the anomaly-based module of our proposed framework.

Table 2 presents a comparison of the fog-based frameworks proposed for IoT and our proposed
framework. The comparison is based on detection methodology used, techniques employed, and the
dataset used for evaluations.

Table 2. Comparison of some fog-based schemes with the proposed framework.

S/No Scheme Detection
Methodology Techniques Evaluated with

IoT-Based Dataset

1 A distributed attack
detection scheme (2018) [39] Anomaly-based Deep learning No

2
A fog empowered anomaly

detection scheme for IoT
(2017) [38]

Anomaly-based i. HyCARCE
ii. ENOF No

3

Semi-Supervised learning
based distributed attack

detection framework (2018)
[22]

Anomaly-based

i. Extreme Learning
Machine (ELM) and
ii. Semi-Supervised

Fuzzy C-Means (SFCM)
algorithm

No

4 An Anomaly Detection for
IoT (AD-IoT) scheme [37] Anomaly-based Random Forest No

5 Proposed framework Hybrid-based Extreme Gradient
Boosting Yes
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4.2. Extreme Gradient Boosting

The Extreme Gradient Boosting (XGBoost) algorithm was proposed in [9] by Chen and Guestrin.
XGBoost is an improved variant of the gradient boosting algorithm, which is generally based on
ensemble techniques. In XGBoost, the predictions of weak learners are combined to develop a strong
learner by employing additive techniques. Apart from the benefits of speed and performance of
XGBoost, additional advantages are avoiding overfitting and full utilization of computational resources.
These are achieved through simplifying objective functions that permit a combination of regularization
and predictive terms and its ability to execute the training stage in parallel, respectively.

The procedures used in XGBoost [9] for additive learning are elaborated below. The first learner is
fitted to the entire input data; subsequently, the second learner is fitted with the errors of the first learner.
The process continues until a stopping condition is attained, which translates to a final prediction
model that is achieved by adding up the prediction of all the learners. The equation below presents the
prediction function at step t.

ŷ(t)i =
t∑

k=1

fk(xi) = ŷ(t−1)
i + ft(xi) (1)

where ft (xi) is the learner at step t, ŷ(t)i and ŷ(t−1)
i

) are the predictions at steps t and t − 1, and xi is the
input variable.

To avoid the problem of overfitting without trading the speed of the model in terms of computation,
the equation below, which is obtained from the original function, evaluates the goodness of the model.

Obj(t) =
n∑

i=1

l(yi, ŷ(t)i ) +
t∑

i=1

α( fi) (2)

where l is the loss function, n is the number of observations used, and α is the regularization function.
To define the complexity of the tree α( fi), regularization plays a vital role and the definition of fi is
refined as:

ft(x) = µp(x), µ ε RT, p : Rd
→ { 1, 2, 3 . . . ..T}. (3)

where T is the number of leaves, µ represents the vector of scores in the leaves, and p assigns each data
point to the corresponding leaf. The regularization function is expressed as:

α( f ) = δT +
1
2
σ ‖ µ ‖2 (4)

where σ is the regularization parameter and δ denotes the minimum loss needed to further partition
the leaf node. The tree structure is obtained by computing the objective function, leaf scores,
and regularization at each level [40]. More information on XGBoost can be found in [9,41].

5. Performance Evaluation

In this section, a performance evaluation of the signature-based module and the proposed
algorithm utilized in the anomaly-based module of the framework is conducted. The dataset used,
performance metrics evaluated, evaluation methodology, as well as the results and discussions,
are presented.

5.1. Description of the Dataset

Performance evaluation is essential in the development of anomaly mitigation schemes.
The evaluation assists in determining the efficiency of the schemes. However, since the evaluations
are impossible on a real network, there is a need to use a well-structured dataset that gives a good
representation of the traffic flow characteristics of the environment where the scheme will be deployed.
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In line with this, we are going to utilize the BoT-IoT dataset [42], which provides an ideal scenario of
the traffic flow in an IoT environment.

The BoT-IoT dataset was developed at the University of New South Wales Canberra, Australia.
It consists of legitimate traffic and simulated IoT traffic alongside different types of attacks. The dataset
was developed using a testbed that consists of network platforms, simulated IoT services, and feature
extraction tools.

The utilized network platforms used consist of virtual machines that generated legitimate and
illegitimate traffic. The IoT traffic is generated from a simulation using the Node-red tool [43]. It utilizes
the Message Queuing Telemetry Transport (MQTT) protocol [44] to simulate network traffic of a smart
building. The scenarios simulated include a weather station, smart fridge, smart garage, smart lights,
and smart thermostat. The Argus tool [45] was used to extract features from the generated traffic,
which consists of the legitimate and illegitimate traffic. Cron Linux functions [46] were employed for
labeling of the extracted traffic. A total of 30 features were extracted and 14 new features were generated
from them to enhance the prediction abilities of the classifiers to be employed. The composition of the
BoT-IoT dataset is depicted in Figure 4.
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• Normal Traffic: Normal traffic consists of legitimate network transactions. The dataset contains
legitimate traffic flows generated from the virtual machines using the Ostinato tool [47].

• Probing attacks [42]: A probing attack, also called an information gathering attack, involves the
process applied by malicious users in collecting information illegitimately from remote systems
through scanning or fingerprinting. The BoT-IoT dataset contains two types of probing attacks
which are: port scanning and OS fingerprinting. The port scanning attack instances are generated
using the Nmap [42] and Hping3 [48] tools, while the fingerprinting was performed using
Nmap [49] and Xprobe2 [50] tools.

• Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks [42]: These attacks
involve the process employed by malicious users to deny legitimate users access to resources or
services by overwhelming these resources or services with illegitimate requests. The attacks are
usually executed using botnets, which are a collection of compromised nodes in the network.
The dataset contains DoS and DDoS attacks instances based on HTTP, TCP, and UDP protocols.
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The TCP and UDP DoS and DDoS attacks were generated using the Hping3 [48] tool, while the
HTTP DoS and DDoS attacks were generated using the Golden-eye tool.

• Information theft [42]: An information theft attack is a process employed by malicious users to
violate the security of the system to obtain confidential or sensitive data. The dataset contains
two types of information theft attacks, which are data theft and keylogging. These attacks were
executed using the Metasploit framework [51].

The BoT-IoT dataset consists of a total of 9543 and 73,360,900 instances of legitimate and illegitimate
traffic flow, respectively. However, for the experiment in this paper, 740,637 instances were extracted
randomly. The extracted instances contain all the types of attack, excluding data theft attacks,
which have a very small number in the dataset. Table 3 presents a summary of the extracted instances.

Table 3. Summary of original and extracted instances.

S/No Type of Attack Number of Instances Number of Extracted Instances

1 Normal 9543 225
2 DoS TCP 12,315,997 123,185
3 DoS UDP 20,659,491 206,626
4 DoS HTTP 29,706 301
5 DDoS TCP 19,547,603 1,951,525
6 DDoS UDP 18,965,106 189,954
7 DDoS HTTP 19,771 203
8 Keylogging 1469 34
9 OS fingerprinting 358,275 4953
10 Port scanning 1,463,364 20,004
11 Data theft 118 -

Total 73,370,443 740,637

5.2. Performance Metrics

The confusion matrix estimation is used in evaluating the performance of IDS schemes [52].
It describes the performance by relating the actual and predicted observations (positive and negative)
on the labels. Table 4 describes a typical confusion matrix of an IDS. It is usually defined as a two by
two matrix because it has two classes (normal and abnormal).

Table 4. Confusion Matrix.

Actual Class Label
Predicted Class Label

Positive Negative

Positive True positive False negative
Negative False positive True negative

The terms in the confusion matrix are defined below. These terms are used in computing
performance metrics.

i. True Positive (TP): Total actual positive observations that are predicted positive.
ii. False Positive (FP): Total actual negative observations that are predicated positive.
iii. True Negative (TN): Total actual negative observations that are predicted negative.
iv. False Negative (FN): Total actual positive observations that are predicted negative.

Given the True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN),
the performance metrics can be defined below:
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• Accuracy is the ratio of the overall positive observations to the total observations; it shows the
general success rate of any IDS, and is computed as,

Accuracy = (TN + TP)/(TP + FP + TN + FN) (5)

• The Detection Rate (DR), also called the true positive rate (TPR) or recall, is the ratio of correctly
classified malicious observations to the total number of malicious observations and is computed as,

DR = TP/(FN + TP) (6)

• The False Positive Rate (FPR), also called the false alarm rate, is the ratio of normal observations
to the total number of normal observations misclassified as attacks and is computed as,

FPR = FP/(FP + TN) (7)

• The False Negative Rate (FNR), also called precision, is the ratio of misclassified attack observations
to the total number of attack observations, given as,

FNR = FN/(FN + TP) (8)

• The F1 Score is the weighted average of the recall and the precision, and is computed as,

F1 Score = 2 × (Recall × Precision)/(Recall + Precision) (9)

The F1 score is important and gives more insight into the performance of the IDS. It considers the
false positives and false negatives. The F1 score is beneficial, especially when the amount of the class
labels is uneven or skewed.

5.3. Evaluation Methodology

As a proof-of-concept, the proposed framework was implemented using Python programming
language. The extracted dataset was used as our data source. We utilized a virtual machine with
a Windows 8 operating system and 4GB RAM as a fog node.

To evaluate the signature-based module, the IP addresses of the attack instances were utilized to
create the blacklist from the extracted dataset. The blacklist consists of source IP address that were
labeled as attack instances. To avoid redundancy, all duplicates are deleted before storing the final
blacklist. The signature-based module was evaluated against the anomaly-based module in terms of
response time in attack detection.

Similarly, in order to evaluate the performance of the XGBoost algorithm, the extracted dataset
was duplicated into two copies and was passed through some data preprocessing steps, which include
data transformation and feature selection. As part of the data transformation, the labeling of the class
feature in the first copy of the dataset was encoded to binary, i.e., normal (0) and the attack (1) traffic
instances. Furthermore, the label of the class feature in the second copy of the dataset was encoded to
0–9, with each number representing a traffic instance type, i.e., normal (0) traffic instances and nine
different types of attack (DoS TCP (1), DoS UDP (2), DoS HTTP (3), DDoS TCP (4), DDoS UDP (5),
DDoS HTTP (6), Keylogging (7), OS fingerprinting (8), and Port Scanning (9)).

For the feature selection step, similar to [42], 10 features were selected using the Correlation
Coefficient [53] and Entropy [54] techniques. These features represent the best features that will give
good performance in terms of classification. The 10 selected features are presented in Table 5.
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Table 5. Features Selected for Experiments.

S/No Feature Name Description

1 seq Argus sequence number
2 N_IN_Conn_P_DstIP Number of inbound connections per destination IP
3 stddev Standard deviation of aggregated records
4 N_IN_Conn_P_SrcIP Number of inbound connections per source IP
5 min Minimum duration of aggregated records
6 state_number Numerical representation of feature state
7 srate Source-to-destination packets per second
8 mean Average duration of aggregated records
9 max Maximum duration of aggregated records

10 drate Destination-to-source packets per second

To interpret and gain more information on the performance of the XGBoost classifier in relation to
the dataset used, we employed SHAP (SHapley Additive exPlanation) values [55] to understand the
most important features that affect the output of the XGBoost classifier. Figure 5 shows the average
SHAP value impact of the selected features on the classifier output. It shows that mean (average
duration of aggregated records) and N_IN_Conn_P_DstIP (number of inbound connections per
destination IP) are the most important features used by the classifier to learn and determine an attack.
Similarly, Figure 6 shows the SHAP value summary plot. Each traffic flow instance is represented by
a dot. The position and color of the dot show its impact and value on the classifiers output.
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The XGBoost classifier is evaluated against Decision Tree (DT), k-Nearest Neighbors (k-NN),
Naïve Bayes (NB), and Gradient Boosting (GRB) classifiers using k-fold cross-validation (where k = 10).
The 10-fold cross-validation divides the dataset into ten parts at random. For each evaluation, one part
of the divided dataset is used as a test set, while the other nine parts are used as a training. The process
is repeated for each part of the divided dataset. It ensures low variance, bias, and avoids overfitting.

Due to the imbalanced nature of the dataset in terms of its instances of the traffic flows, the classifiers
evaluation will be conducted based on the whole classification report to capture the classification
abilities of the classifiers in classifying different instances of binary classification (normal and attack
instances), multiclass classification (normal, DoS TCP, DoS UDP, DoS HTTP, DDoS TCP, DDoS UDP,
DDoS HTTP, keylogging, OS fingerprinting (OS FR), and port scanning (Port SC)), and False Positive
Rate (FPR) of the binary classification. The classification report comprises the accuracy, precision,
recall, and F1 score.

5.4. Results and Discussion

The evaluation results of the signature-based module and the XGBoost classifier employed in
our anomaly-based module of the fog-based framework in binary and multiclass classifications are
discussed below.

Figure 7 presents the response time of the signature-based module against the anomaly-based
module over the number of network traffic instances. The signature-based module recorded 0.03, 0.046,
and 0.14 s, while the anomaly-based module recorded 0.60, 0.64, and 0.96 s over 100, 1000, and 10,000
network traffic instances, respectively. The results show that the signature-based module outperforms
the anomaly-based module for all of the network traffic instances.

Table 6 presents the accuracy and FPR of the classifiers in binary class classification. All the
classifiers recorded a good result in terms of accuracy in attack detection, with XGBoost recording the
highest value of 99.99% and NB recording the lowest value of 99.85%. Meanwhile, in terms of FPR,
the XGBoost records the smallest value with 0.05, which shows that the XGBoost classifier can classify
the network traffic instances with the lowest false positives.
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Table 6. Accuracy and false positive rate of binary classification.

S/No ML Algorithm Accuracy (%) False Positive Rate

1 DT 99.96 0.13
2 k-NN 99.97 0.68
3 NB 99.85 0.91
4 Gradient Boosting 99.99 0.89
5 XGBoost 99.99 0.05

To gain more understanding in the performance of the classifiers, Figure 8 presents the average
performance of the classifiers in binary classification, i.e., normal and attack instances. The XGBoost
classifier obtained superior results in terms of average recall, precision, and F1 score than the
other classifiers.
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Figure 9 presents the binary class classification performance of the classifiers in terms of classifying
normal traffic instances. The XGBoost recorded the best results with 99.5%, 97.5%, and 98.5% in
precision, recall, and F1 score, respectively.
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Figure 10 presents the accuracy of the classifiers in multiclass classification. Similar to the accuracy
in the binary class classification, all the classifiers achieved a good result in multiclass classification
with above 99% detecting the majority of the attacks. The k-NN and NB classifiers recorded the lowest
result in detecting normal instances, DDoS TCP, DDoS UDP, keylogging, and OS fingerprinting attacks.
The XGBoost and DT have identical results; however, the XGBoost recorded the highest accuracy in
detecting all the attacks and normal instances.
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Figure 11 presents the precision of the classifiers in multiclass classification. The XGBoost, gradient
boosting, and DT classifiers achieved a precision of 84–100% in all the attacks and normal instances.
The k-NN and NB achieved a precision 2–70% in all the attacks and normal instances with the exception
of DDoS TCP attacks, where NB recorded 84% and keylogging attacks, where k-NN recorded 100%.
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Figure 12 presents the recall of the classifiers in multiclass classification The XGBoost, gradient
boosting, and DT classifiers achieved a recall of 83–100% in all the attacks and normal instances,
excluding keylogging attacks and the normal instances where gradient boosting obtained 79% and
75%, respectively. The k-NN and NB achieved a recall of 10–79% in all the attacks and normal instances
with the exception of keylogging attacks, where NB recorded 86%.
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Figure 13 presents the F1 score of the classifiers in multiclass classification. XGBoost, gradient
boosting, and DT classifiers achieved an F1 score of 82–100% in all the attacks and normal instances.
The k-NN and NB achieved an F1 score of 4–70% in all the attacks and normal instances except for OS
fingerprinting attacks, where k-NN recorded 88%.
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Figure 14 presents the average multiclass classification results of the classifiers for all normal
and attack instances. The XGBoost and DT classifiers recorded good results in terms of the average
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accuracy and average precision in normal instances and attacks classification with 99.96% and 97%,
respectively. In contrast, the NB recorded the lowest average accuracy and average precision with
78.17% and 26%, respectively. XGBoost recorded the highest values in terms of average recall and F1
score with 98% and 97%, respectively, while the NB obtained the lowest results with 42% and 22% in
average recall and average F1 score, respectively. Tables 7–11 give a summary of the results of the
multiclass classification.
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Table 7. Binary classification precision, recall, and F1 Score.

S/No ML
Algorithm

Recall (%) Precision (%) F1 Score (%)

Normal Attack Average Normal Attack Average Normal Attack Average

1 DT 87 100 93.5 87 100 93.5 87 100 93.5
2 k-NN 32 100 66 77 100 88.5 45 100 72.5
3 NB 9 100 54.5 2 100 51 4 100 52

4 Gradient
Boosting 11 100 55.5 73 100 86.5 19 100 59.5

5 XGBoost 95 100 97.5 99 100 99.5 97 100 98.5

Table 8. Accuracy summary of the multiclass classification.

S/No ML
Algo

DoS
TCP

DoS
UDP

DoS
HTTP

DDoS
TCP

DDoS
UDP

DDoS
HTTP

Key
Logging OS F Port

Sc Normal Average
Accuracy

1 DT 99.86 99.99 99.99 99.99 99.98 99.99 99.99 99.99 99.97 99.86 99.96
2 k-NN 99.35 99.99 99.99 81.34 82.24 99.96 79.15 89.80 99.97 98.50 93.00
3 NB 98.55 99.84 99.70 64.14 75.83 98.77 68.33 86.17 99.95 90.20 78.17
4 GRB 99.72 99.99 99.97 99.97 99.73 99.99 99.97 99.73 99.99 99.71 99.88
5 XGB 99.87 99.99 99.99 99.99 99.99 99.99 99.99 99.97 99.99 99.87 99.96

Table 9. Recall summary of the multiclass classification.

S/No ML
Algo

DoS
TCP

DoS
UDP

DoS
HTTP

DDoS
TCP

DDoS
UDP

DDoS
HTTP

Key
Logging OS F Port

Sc Normal Average
Recall

1 DT 100 100 94 100 100 97 86 89 98 83 95
2 k-NN 68 72 64 61 61 66 79 46 66 46 63
3 NB 55 56 61 10 46 39 86 13 54 1 42
4 GRB 100 100 96 99 100 91 79 71 96 75 93
5 XGB 100 100 99 100 100 94 86 88 98 95 98
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Table 10. Precision summary of the multiclass classification.

S/No ML
Algo

DoS
TCP

DoS
UDP

DoS
HTTP

DDoS
TCP

DDoS
UDP

DDoS
HTTP

Key
Logging OS F Port

Sc Normal Average
Precision

1 DT 100 100 97 100 100 97 100 90 97 90.0 97
2 k-NN 70 61 62 68 64 68 100 51 75 69 69
3 NB 59 45 2 84 35 4 3 9 15 2 26
4 GRB 99 100 94 100 100 95 100 84 93 90 95
5 XGB 100 100 96 100 100 97 100 92 97 97 97

Table 11. F1 score summary of the multiclass classification.

S/No ML
Algo

DoS
TCP

DoS
UDP

DoS
HTTP

DDoS
TCP

DDoS
UDP

DDoS
HTTP

Key
Logging OS F Port

Sc Normal Average
F1 Score

1 DT 100 100 96 100 100 97 92 90 97 86 96
2 k-NN 55 69 66 63 64 63 67 88 49 70 65
3 NB 57 50 4 18 40 7 6 10 23 2 22
4 GRB 99 100 95 99 100 93 88 77 95 82 93
5 XGB 100 100 98 100 100 95 92 90 98 96 97

In summary, the results show that the signature-based module has the ability to detect attacks
with lesser time as compared with the anomaly-based module. Similarly, the binary and multiclass
classification results show that the XGBoost classifier obtained superior results in terms of accuracy,
recall, precision, and F1 score as well as the FPR than the DT, NB, k-NN, and gradient boosting
classifiers. This indicates its effectiveness in distinguishing normal and attack instances with high
accuracy and minimal errors. These evaluations show that employing both signature-based and
anomaly-based IDS in the anomaly mitigation module of the proposed framework will yield faster
and accurate attack detection. Hence, these good performances will help improve the security of the
IoT networks. Table 12 presents summary results of binary and multiclass classification.

Table 12. Summary of binary and multiclass results.

S/No ML
Algo

Accuracy (%) Recall (%) Precision (%) F1 Score (%)

Binary Multi
Class Binary Multi

Class Binary Multi
Class Binary Multi

Class

1 DT 99.96 99.96 93.5 95 93.5 97 93.5 96
2 k-NN 99.97 93.00 66 63 88.5 69 72.5 65
3 NB 99.85 78.17 54.5 42 51 26 52 22

4 Gradient
Boosting 99.99 99.88 55.5 93 86.5 95 59.5 93

5 XGBoost 99.99 99.96 97.5 97 99.5 97 98.5 97

6. Conclusions

The combination of fog computing and IoT have provided an efficient platform for the deployment
of anomaly mitigation schemes to solve security challenges such as botnet attacks. This paper
proposed a hybrid anomaly mitigation framework for IoT using fog computing to ensure faster
and accurate anomaly detection. The framework employs two modules, namely signature-based
and anomaly-based. The signature-based module employs an IP blacklist to ensure faster attack
detection, while the anomaly-based module utilizes an extreme gradient boosting algorithm for
classifying network traffic flow into normal or abnormal. The IP blacklist is updated with attack sources
detected by the anomaly-based module to ensure fast detection when these attacks are executed again.
We evaluated the proposed modules using a BoT-IoT dataset. The results show that the signature-based
module is 19 times faster, 12 times faster, and 6 times faster than the anomaly-based module over 100,
1000, and 10,000 network traffic instances, respectively. Additionally, the XGBoost achieved superior
results with 99.99% accuracy, 97.5% recall, 99.5% precision, 98.5% F1 score, and a false positive rate of
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0.05 for binary classification. Similarly, it recorded 99.96% average accuracy, 98% average recall, 97%
average precision, and 97% average F1 score for multiclass classification.

These results demonstrate that the signature-based module detects attacks faster than the
anomaly-based module. Similarly, the anomaly-based module can detect different types of attacks
with satisfactory performance.

As future work, we intend to explore other features of botnet attacks to create additional signatures
for our framework.
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