
Abstract Recent wildfire outbreaks around the world have prompted concern that climate change is 
increasing fire incidence, threatening human livelihood and biodiversity, and perpetuating climate change. 
Here, we review current understanding of the impacts of climate change on fire weather (weather conditions 
conducive to the ignition and spread of wildfires) and the consequences for regional fire activity as mediated 
by a range of other bioclimatic factors (including vegetation biogeography, productivity and lightning) and 
human factors (including ignition, suppression, and land use). Through supplemental analyses, we present 
a stocktake of regional trends in fire weather and burned area (BA) during recent decades, and we examine 
how fire activity relates to its bioclimatic and human drivers. Fire weather controls the annual timing of fires 
in most world regions and also drives inter-annual variability in BA in the Mediterranean, the Pacific US and 
high latitude forests. Increases in the frequency and extremity of fire weather have been globally pervasive 
due to climate change during 1979–2019, meaning that landscapes are primed to burn more frequently. 
Correspondingly, increases in BA of ∼50% or higher have been seen in some extratropical forest ecoregions 
including in the Pacific US and high-latitude forests during 2001–2019, though interannual variability remains 
large in these regions. Nonetheless, other bioclimatic and human factors can override the relationship between 
BA and fire weather. For example, BA in savannahs relates more strongly to patterns of fuel production or to 
the fragmentation of naturally fire-prone landscapes by agriculture. Similarly, BA trends in tropical forests 
relate more strongly to deforestation rates and forest degradation than to changing fire weather. Overall, 
BA has reduced by 27% globally in the past two decades, due in large part to a decline in BA in African 
savannahs. According to climate models, the prevalence and extremity of fire weather has already emerged 
beyond its pre-industrial variability in the Mediterranean due to climate change, and emergence will become 
increasingly widespread at additional levels of warming. Moreover, several of the major wildfires experienced 
in recent years, including the Australian bushfires of 2019/2020, have occurred amidst fire weather conditions 
that were considerably more likely due to climate change. Current fire models incompletely reproduce the 
observed spatial patterns of BA based on their existing representations of the relationships between fire and its 
bioclimatic and human controls, and historical trends in BA also vary considerably across models. Advances in 
the observation of fire and understanding of its controlling factors are supporting the addition or optimization 
of a range of processes in models. Overall, climate change is exerting a pervasive upwards pressure on fire 
globally by increasing the frequency and intensity of fire weather, and this upwards pressure will escalate with 
each increment of global warming. Improvements to fire models and a better understanding of the interactions 
between climate, climate extremes, humans and fire are required to predict future fire activity and to mitigate 
against its consequences.

Plain Language Summary In this review, with supplemental data analyses, we focus on the global 
and regional impacts of climate change on the frequency and intensity of fire weather (conditions conducive 
to fire ignition and spread) and the consequences for fire activity. We find that significant increases in fire 
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Key Points:
•  The frequency and severity of fire 

weather has increased in recent 
decades and is projected to escalate 
with each added increment of 
warming

•  Fire weather is one of the major 
controls on fire activity, and is the 
dominant control on variability in 
burned area (BA) in many mesic 
forest ecoregions

•  Various human and bioclimatic 
factors also control fire, modulating 
the relationship between BA and fire 
weather in many regions
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1. Introduction
Fire is a natural phenomenon in the Earth System that has shaped the landscape of many of Earth's biomes for 
millions of years (Archibald et al., 2013; Bond & Keeley, 2005; Bowman et al., 2009; He et al., 2019; Pausas & 
Keeley, 2009; Pausas et al., 2017; Shi et al., 2022). Fires burn around 3–5 million km 2 and emit around 8 billion 
tonnes of CO2 to the atmosphere on average per year (Chuvieco et al., 2019; Giglio et al., 2018; van der Werf 
et al., 2017). These fire emissions, and the subsequent sequestration fluxes of around 7 billion tonnes of CO2 per 
year resulting from post-fire vegetation recovery, are major fluxes in the carbon cycle (Lasslop et al., 2019; van 
der Werf et al., 2017; Yin et al., 2020; Yue et al., 2016; Zheng et al., 2021). Globally, fires reduce the quantity of 
carbon stored in vegetation by around 10% and is thus a major control on atmospheric CO2 concentrations and 
climate (Lasslop, Hantson, Harrison, et al., 2020).

Fires are also involved in feedbacks to climate change mainly through their impacts on terrestrial carbon storage, 
however, they also influence the atmospheric concentration of reflective and absorptive aerosols and alter surface 
albedo through changes in vegetation cover (Chambers et al., 2005; E. A. Lyons et al., 2008; Harrison et al., 2018; 
Jin & Roy, 2005; Jones et al., 2019; Lasslop et al., 2019; Potter et al., 2020; Z. Liu et al., 2019; Zou et al., 2020). 
It has been estimated that climate-carbon cycle feedbacks involving fire cause a 6 ppm increase in atmospheric 
CO2 concentration per degree of global mean annual surface temperature (MAT) warming (Harrison et al., 2018) 
and this positive feedback is only partially offset by the negative feedback associated with increases in surface 
albedo and reductions in temperature as forest cover reduces (Z. Liu et al., 2019).

The majority of fires do not present immediate risks to society and often contribute to ecosystem health, however, 
the Centre for Research on the Epidemiology of Disasters (CRED, 2021) estimates that wildfire events that were 
declared as disasters directly have killed at least 2,500 people, injured 10,500 people and displaced 175,000 
people from their homes globally since 1990 (updated after Doerr and Santín (2016)). The economic costs of 
some fires can also be large. Notably, the total economic cost of the California wildfires in 2020 alone were 
estimated to be US$149 billion or 1.5% of the states' gross domestic product (GDP), including US$28 billion in 
capital losses, $32 billion in health costs and $89 billion through suppressed economic activity extending beyond 
California (Wang et al., 2021). Economists estimated that the Australian wildfires of 2019/2020 caused around 
US$75 billion losses or 6% of the country's GDP (Read & Denniss, 2020).

The cost of suppressing fires alone is substantial even in non-extreme years in some regions. For example, on aver-
age around US$500 million is spent annually on suppressing fires in Canada and around US$1–2 billion is spent 
in the US (Hope et al., 2016; Jolly et al., 2015; National Interagency Fire Center, 2020; Stocks & Martell, 2016; 
Tymstra et  al.,  2020). Fire impacts on society extend beyond their direct destructive force, with exposure to 
smoke contributing to over 300,000 premature deaths per year (Johnston et al., 2012) particularly in the tropics 
(Balmes, 2020; Reid et al., 2016). It is estimated that US$1.5 billion was spent treating adverse respiratory health 
issues due to the smoke emitted by 2019/2020 wildfires in Australia (F. H. Johnston et al., 2021).

The impact of fires on wildlife and ecosystems can also be profound. As a stark example, the Australian 2019/2020 
wildfires impacted over 30% of the available habitat of 70 vertebrate species, including 21 endangered species 

weather have occurred in most world regions during recent decades due to climate change. Corresponding 
increases in the area burned by fires have been seen in some regions, most notably in mesic forests, however, 
in many regions fire is controlled by a range of other bioclimatic and human factors whose influences mediate 
or override those of fire weather. Weather conditions affecting vegetation growth and the build-up of fuels, the 
presence of human ignitions in regions that are not naturally fire-prone, and the fragmentation of fire-prone 
landscapes by agriculture are key examples of factors that can locally or regionally outweigh fire weather as 
controls on fire activity. Climate models project that fire weather will become increasingly frequent and intense 
under future warming, and at an increasing rate with each additional increment of warming. The outcomes for 
fire activity in future will depend on other regionally important factors that control fire ignition and spread. 
Existing fire models represent the controls on fire incompletely and so they reproduce observed patterns of 
fire with only limited success. Models also disagree on historical trends, leading to low confidence in their 
simulations of future fire activity. Various efforts to improve the representation of fire in models are underway 
and should yield greater capacity to predict the future of fire activity.

Funding acquisition: Matthew W. Jones, 
Corinne Le Quéré
Investigation: Matthew W. Jones, John 
T. Abatzoglou, Sander Veraverbeke, 
Matthias Forkel, Adam J. P. Smith, 
Crystal Kolden, Stefan H. Doerr
Project Administration: Matthew W. 
Jones
Resources: Matthew W. Jones, John T. 
Abatzoglou, Sander Veraverbeke, Niels 
Andela, Gitta Lasslop, Chantelle Burton
Visualization: Matthew W. Jones
Writing – original draft: Matthew 
W. Jones, John T. Abatzoglou, Sander 
Veraverbeke, Matthias Forkel, Adam J. P. 
Smith, Crystal Kolden, Stefan H. Doerr
Writing – review & editing: Matthew 
W. Jones, John T. Abatzoglou, Sander 
Veraverbeke, Niels Andela, Gitta 
Lasslop, Matthias Forkel, Adam J. P. 
Smith, Chantelle Burton, Richard A. 
Betts, Guido R. van der Werf, Stephen 
Sitch, Josep G. Canadell, Cristina Santín, 
Crystal Kolden, Stefan H. Doerr, Corinne 
Le Quéré



Reviews of Geophysics

JONES ET AL.

10.1029/2020RG000726

3 of 76

(Ward et al., 2020). Fire is also a key disturbance mechanism that can prompt change in land cover from forest to 
non-forest in regions where climate becomes out of phase with the existing vegetation, with various implications 
for biodiversity, carbon storage and other ecosystem services (Burrell et al., 2020, 2021; He et al., 2019; Hirota 
et al., 2011; Staver et al., 2011).

Although fires occur naturally and humans have used fire to their advantage for land management throughout the 
Holocene and even before (Bowman et al., 2009, 2020; Marlon et al., 2008, 2016; Power et al., 2008; Roebroeks 
et al., 2021), recent fire outbreaks in Amazonia, the Mediterranean, Siberia, southeast Australia, the western US, 
and Canada have highlighted the risks that fires pose to humans, biodiversity and carbon stocks. Events such as 
these have led to concern about the impact of climate change on fire activity in many regions (European Environ-
ment Agency, 2020; Huf & McLean, 2020; Joint Research Centre et al., 2020; Settele et al., 2014; United Nations 
Environment Programme, 2022; World Meteorological Organisation, 2021) and about the climate-carbon cycle 
feedbacks that may reinforce or accelerate climate perturbations (Harrison et al., 2018; Lasslop, Hantson, Harri-
son, et al., 2020; Lasslop et al., 2019; Pellegrini et al., 2018; Walker et al., 2019; Yin et al., 2020; Zou et al., 2020).

The coexistence and interaction of bioclimatic and human factors is a critical challenge to studying, understand-
ing and communicating the impacts of climate change on fire activity (Abram et al., 2021; Bistinas et al., 2014; 
Doerr & Santín, 2016; Forkel, Dorigo, et al., 2019; Kelley et al., 2019). It can be difficult to disentangle the 
impacts of individual drivers on fire activity because fire is the result of the simultaneous occurrence of three 
factors: a stock of fuel; fire weather conditions that are sufficiently dry to desiccate the fuel; and a human or 
natural ignition source (Abram et al., 2021; Bistinas et al., 2014; Forkel, Dorigo, et al., 2019; Kelley et al., 2019; 
Pausas & Ribeiro, 2013; Teckentrup et al., 2019). This nexus of drivers and constraints on fire leads to debate 
about the causes of major wildfire events and the contributions of bioclimatic and human factors to those events.

Here, we review current understanding of the relationship between fire and climate, with special consideration of 
the modulating influence of other bioclimatic and human factors that exert important controls on fire activity by 
influencing the nexus of fuel stocks, fuel dryness and ignitions. Other climatic factors include lightning activity, 
the primary natural source of ignitions, while other bioclimatic factors include biomass productivity which is a 
function of climate, natural disturbance regime and land use. Other human factors include the active and pre-emp-
tive suppression of fires, unintended and arson ignitions, and land management affecting connectivity of fuels 
across natural landscapes.

While our goal was to comprehensively synthesize and review relevant studies published in recent decades, we 
note that over 8,885 studies published since 1990 matched a combination of the keywords that we consider most 
relevant to this review (“fire” AND “climate” AND [“population” OR “agriculture” OR “land management” 
OR “lightning” OR “vegetation” OR “biomass”]), according to the Web of Science (webofknowledge.com; 10th 
April 2022). A total 75% of all studies were published in the past decade and 50% of all studies were published 
since 2015, highlighting that the pace of publication on this topic has accelerated and highlights a need for a 
stocktake of the knowledge generated by this enormous volume of literature.

As well as reviewing the literature, we also report on trends in observed and modeled burned area (BA) and fire 
weather (weather conditions conducive to the ignition and spread of wildfires) based on published Earth Obser-
vation data sets, model simulations and methods (Abatzoglou et al., 2019; Giglio et al., 2018; Jolly et al., 2015; 
Teckentrup et al., 2019; see Text A in Supporting Information S1 for methods). We further assess relationships 
between BA and fire weather and a range of other bioclimatic and human controls (Abatzoglou et al., 2018; 
Andela et al., 2017; Cecil et al., 2014; Spawn et al., 2020). Correlations between BA and each bioclimatic or 
human control can give valuable insights into the direction and relative strength of the effect of each variable on 
BA and are used here to highlight regional patterns in the relationship between fire and its controlling factors. 
However, we note that correlation is not equivalent to causation. Indeed, BA typically correlates with multiple 
controlling factors and, overall, a spatially varying mixture of factors tend to interact to dictate spatial and tempo-
ral patterns of fire rather than a single factor in isolation (Forkel et al., 2017; Kelley et al., 2019).

Our analyses are applied to consistent world regions, allowing the regional results of previously published anal-
yses to be related across compatible domains. Specifically, we performed all analyses on three regional layers 
(Figure 1): first, for each of 14 macroregions used by the Global Fire Emissions Database (GFED; Giglio, 2006; 
van der Werf et al., 2006); second, for 10 biogeographical focus ecoregions selected from Olson et al. (2001), and; 
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third, for countries (EU GISCO, 2020). Our methods are described in Text A in Supporting Information S1, and 
the results for all regions are provided in Data Set S1 (see Text B in Supporting Information S1 for a summary 
of the data set).

We begin by summarizing the key technological advances and conceptual foundations that have facilitated impor-
tant leaps in the understanding of the patterns, trends and controls on fire during recent decades (Section 2). In 
Section 3, we describe global and regional changes in fire weather and BA observed in recent decades, as well as 
the strength of the relationship between variability in fire weather and BA. In Section 4, we discuss the relation-
ship between fire activity and other bioclimatic controls including vegetation productivity and lightning ignitions 
globally and across regions. In Section 5, we consider the influence of in situ human activities on global patterns 
of fire through their impact on ignitions, their use of fire as a tool of agriculture, land stewardship, and deforesta-
tion, and their direct and indirect suppression of fire through firefighting and fragmentation of natural landscapes. 
Sections 4 and 5 highlight the regional nuances surrounding the relationship between climate and fire activity, 
which arise because vegetation productivity, natural and human ignition opportunities, and human impacts on 
land cover and fragmentation strongly modulate the relationship between BA and fire weather. In Section 6, we 
focus on historical and projected changes in fire weather and review the current capacity of fire models to repro-
duce historical trends and patterns of BA, and in Section 7, we highlight key opportunities to bolster the existing 
model capacity over the coming years.

Figure 1. Map of the regions used in our study including Global Fire Emissions Database macroregions (shades of gray) (van der Werf et al., 2006), focus ecoregions 
(colored and numbered) (Olson et al., 2001), and countries (outlined) (EU GISCO, 2020). Results and statistics are provided in Data Set S1 for all regions shown.
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2. Technological Advances and Conceptual Foundations of Fire Science
2.1. Expansion of Earth Observations

One of the most critical advances in fire science in recent decades has been the development of operational 
satellite products that detect BA and active fires, particularly since the late 2000s (Chuvieco et al., 2020; Giglio 
& Roy, 2020; Roy et al., 2019; Wooster et al., 2021). Satellite observations of fire commenced in the 1970s and, 
since the 1980s, the NOAA advanced very-high-resolution radiometer has been used to generate fire products with 
variable success (Giglio & Roy, 2020). Systematic global fire products based on the NASA moderate resolution 
imaging spectroradiometer (MODIS) sensors with dedicated fire monitoring capabilities commenced in the early 
2000s (Justice et al., 2002) and have been refined through time (Chuvieco et al., 2018; Giglio et al., 2018). Other 
early fire products were based on the Along Track Scanning Radiometer sensor (Arino et al., 2012; Simon, 2004). 
In addition, National or jurisdictional fire databases, such as those from forestry services, have often been used 
to reconstruct fire history, however, these have important limitations for global-scale research questions, not least 
their partial spatial coverage (Mouillot & Field, 2005). They are not available for all countries or regions, they are 
derived by different methods in different countries, their quality falls with antecedence, and they tend to include 
only a subset of fire types (Bowman et al., 2009; Giglio, Descloitres, et al., 2003; Mouillot & Field, 2005).

Two strategies are predominantly employed in algorithms designed to detect fires in satellite observations. In the 
first, BA is mapped according to temporal changes to the spectral signature of fire-affected land surfaces between 
consecutive satellite images (Boschetti et al., 2004; Giglio et al., 2018; Roy et al., 2005, 2008; Simon, 2004). In 
the second, active fires are detected according to satellite retrievals of the energy released from fires in the infra-
red wavelengths (Dwyer et al., 2000; Giglio, Kendall, et al., 2003; Giglio et al., 2016, 2009; Mota et al., 2006; 
Randerson et al., 2012; Schultz, 2002), with the added benefit that the day-to-day progression can be tracked 
due to the high frequency of active fire observations (Andela et al., 2019). The intensity and severity of fires, 
typically referring to energy release and the quantity of biomass consumed, respectively, can also be estimated 
from satellite observations of radiative energy release from the fire or through changes in spectral ratios across 
the optical-to-infrared spectrum (Chuvieco et  al., 2020; Keeley, 2009; Laurent et  al., 2018; Roy et  al., 2006; 
Schroeder et al., 2010).

Satellite products that are purely based on BA detection have historically omitted many small fires that occur 
below the ∼500 m spatial resolution of the satellite data, and consequently they provide a conservative estimate of 
BA (Chuvieco et al., 2018; Giglio et al., 2010, 2016; Hall et al., 2016; Hawbaker et al., 2017; Ramo et al., 2021; 
Randerson et al., 2012; Roteta et al., 2019). The latest BA products are addressing this issue by merging active fire 
detections with BA detections to correct for small fires that are not detected through spectral changes (Chuvieco 
et al., 2018; Giglio et al., 2018; Roy et al., 2019; van der Werf et al., 2017). Observations from radar sensors are 
also increasingly employed alongside optical sensors to assist in the detection of fires, including under forest 
canopies (Belenguer-Plomer et al., 2019; Mathieu et al., 2019). The present is a period of transition to higher 
resolution (below ∼30 m) satellite imagery from a variety of sensors, including Landsat-8 and Sentinel-2, which 
are increasingly being harnessed to detect small fires based on spectral changes (Coops et al., 2018; Goodwin & 
Collett, 2014; Hawbaker et al., 2017; Ramo et al., 2021; Roteta et al., 2019, 2021; Roy et al., 2019; Verhegghen 
et al., 2016; White et al., 2017). For example, Roy et al. (2019) demonstrated that algorithms applied to Land-
sat-8 and Sentinel-2 captured a greater BA and more detail about the size distribution of fires than a MODIS BA 
product, and that improvements in detectability vary seasonally depending on the timing of specific fire types.

While the ongoing developments to global BA detection products are helping to overcome or lessen historical 
challenges with the global detection of fires, especially small fires, a variety of limitations remain (Chuvieco 
et al., 2019). For example, clouds and smoke can obscure the land surface during sequential satellite overpasses, 
presenting a persistent challenge to the detection of spectral changes or thermal hotspots by the satellite sensors. 
BA products based on different satellite sensors, methods, and algorithms also span different time periods, all of 
them relatively short, and inconsistencies can prevent a robust merging of multiple products (Giglio & Roy, 2020; 
Otón et al., 2021). Moreover, the accuracy of BA products is known to vary across land covers such that trends 
and variability in BA can be assessed with greater confidence in some regions than others. Detections made by 
moderate-resolution global BA data sets such as MODIS have been evaluated for omission errors (false-nega-
tives) and commission errors (false-positives), albeit not uniformly across the globe. Targeted evaluations have 
been conducted in specific regions (e.g., Chuvieco et al., 2008; D. Cheng et al., 2013; Hall et al., 2016; Libonati 
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et al., 2015; Roy & Boschetti, 2009; Vetrita et al., 2021) and some global studies have evaluated the accuracy 
of MODIS BA detections using a stratified random sampling approach to select fires in a manner that equitably 
represents biomes and seasons (Boschetti et  al.,  2016,  2019; Padilla et  al.,  2014,  2015,  2017). For example, 
Boschetti et al. (2019) evaluated the MODIS BA product MCD64A1 and estimated commission and omission 
errors to be 40% and 73%, respectively, at the global scale. The lowest errors were observed in the boreal forest 
biome where fires tend to be relatively large and long, and highest errors were observed in the tropical and 
temperate forests and Mediterranean biomes where small cropland fires, which tend to be underdetected, are 
common. Other products show differences in global and regional accuracy, while many of the higher-resolution 
BA products that have emerged in recent years are yet to be the subject of the most intensive validation protocols 
(Roy et al., 2019).

Overall, despite the known limitations to accuracy and inconsistencies across products, satellite BA products 
have built a valuable global picture of fire activity at increasingly detailed resolution, which could not have been 
achieved through incomplete national or regional inventories of fire activity. This new capacity has transformed 
the study of fire's occurrence, patterns, trends and controls (Andela et al., 2017, 2019; Archibald et al., 2009; 
Forkel, Andela, et al., 2019; Forkel, Dorigo, et al., 2019; Kelley et al., 2019; Y. Chen et al., 2017).

Here, we use satellite observations of BA based on the MODIS BA data (MCD64A1; Giglio et al., 2018) to illus-
trate the global distribution of fire and examine how fire occurrence has been changing regionally over recent 
decades (see Text A in Supporting Information S1 for methods).

2.2. Indexing the Climatic Controls on Landscape Flammability

Alongside developments in fire observation, the ability to assess how weather conditions influence the proba-
bility of fire has been growing, with attention mostly focusing on how changes in multiple weather and climate 
variables affect fire risk by altering the frequency of fire-prone weather conditions. Weather observations have 
become richly available during recent decades at the global scale and have underpinned the development of 
several meteorological reanalyzes, which combine observations from a variety of sources in a way that conserves 
the integrity of the physical laws embodied within atmospheric models (Dee et al., 2011; Gelaro et al., 2017; 
Hersbach et al., 2020; Kobayashi et al., 2015; Saha et al., 2014).

For historical and future centuries, state-of the-art climate models which contribute to the coupled model intercom-
parison project (CMIP) provide the output variables required to assess climate change impacts on the frequency of 
fire-prone weather conditions (Abatzoglou et al., 2019; Eyring et al., 2016; Meehl et al., 2009; Taylor et al., 2012). 
These climate models are driven by historical observations of atmospheric composition including CO2 concentra-
tion. For the future period, the climate models are driven by a variety of Special Report on Emissions Scenarios 
(SRES) or representative concentration pathways (RCPs), which prescribe the effect of plausible emission scenarios 
on atmospheric composition (Meinshausen et al., 2011), or by shared socioeconomic pathways which represent 
plausible emissions trajectories that influence atmospheric composition within the models (Riahi et al., 2017).

Many indices of “fire weather” or “fire danger” have been devised and applied to observations from meteorolog-
ical stations and reanalysis data sets, with each index seeking to “rate” the combined effects of multiple weather 
variables on the flammability of the landscape (Jolly et al., 2015). Fire weather conceptually refers to the contem-
poraneous influence of temperature, precipitation, humidity, and wind on vegetation dryness (Bedia et al., 2015; 
Field et al., 2015; Jolly et al., 2015; M. D. Flannigan et al., 2009, 2016). Fire weather or fire danger rating systems 
predominantly rely on inputs of meteorological variables and occasionally soil moisture to represent the contem-
poraneous and interacting influences of weather on vegetation flammability (Abatzoglou et al., 2018; Abatzoglou 
& Kolden, 2013; Bedia et al., 2015; de Groot et al., 2013; Field et al., 2015; M. D. Flannigan et al., 2005). They 
may also account for some lagged impacts of precipitation in recent days to weeks to inform vegetation moisture 
levels, although fuel (vegetation) load itself is not usually considered.

Many indices of fire weather have been formulated and prominent examples include the Canadian Fire Weather 
Index (FWI; Van Wagner, 1987), Australian McArthur Forest Fire Danger Index (Noble et al., 1980), US National 
Fire-Danger Rating System (Bradshaw et al., 1984), Swedish Angstrom Index (Chandler et al., 1983) and Nest-
erov Index (used in parts of Europe and Russia; Nesterov, 1949). These indices have origins in operational fire 
management and were typically developed by national agencies to assess daily fire risks and inform resource 
requirements. The Canadian FWI and its sub-components, such as its drought code or fuel moisture codes, have 
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been employed particularly widely to study the influence of weather conditions on vegetation flammability and 
fire risk in many regions of the world (Abatzoglou et al., 2018; Bedia et al., 2015; Field et al., 2015; M. D. Flan-
nigan et al., 2005, 2009, 2016). Vapor pressure deficit (VPD) is conceptually aligned with fuel moisture codes in 
that it focuses on the impact of atmospheric dryness on vegetation moisture levels (Williams et al., 2019).

Since fire weather indices chiefly account for the contemporaneous meteorological controls on fire risk, they give 
greatest insight into the likelihood of fire in regions where fire is limited by fuel dryness (Abatzoglou et al., 2018; 
Bedia et al., 2015), as opposed to those regions where fire is limited by fuel productivity (Archibald et al., 2009; 
Boer et al., 2016; Kelley et al., 2019). Within and before a fire season, prolonged moisture deficits or droughts 
during preceding months and seasons can reduce soil moisture reserves and make vegetation less resilient to 
peaks in fire weather (Abatzoglou & Kolden, 2013; Abatzoglou et al., 2018; Abram et al., 2021). Consequently, 
adaptations have been proposed to account for the compounding effects of contemporaneous fire weather and 
longer-term antecedent conditions on fire ignition and spread (McElhinny et al., 2020).

Increases in fire weather represent an increase in the likelihood of fire if fuels are available, with drier, hotter, 
windier, and less humid conditions priming vegetation to burn. Shifts toward a warmer and more drought-prone 
climate can act as a key driver of increase in the likelihood of fire, at least up to the point where the system 
becomes productivity-limited. The Intergovernmental Panel on Climate Change (IPCC) has identified several 
climate trends that could promote the increasing frequency or extremity of fire weather (Fischer et al., 2021; Jia 
et al., 2019; Settele et al., 2014): global increases in mean annual surface air temperature (MAT); global increases 
in the frequency and intensity of heatwaves, and; regional increases in the frequency and intensity of droughts. 
Consequently, the potential for climate change to influence fire activity by increasing the frequency and severity 
of fire weather has been investigated using observations and climate models (Abatzoglou et  al., 2019; Bedia 
et al., 2015; Burton et al., 2018; Jain et al., 2017; Jolly et al., 2015; M. D. Flannigan et al., 2005).

Here, we examine past and future change in fire weather on regional scales by exploring some of the availa-
ble observations of FWI from the ERA5 meteorological data set (1979–2019; Hersbach et  al.,  2020; Vitolo 
et al., 2020) and an ensemble of 17 climate models (Abatzoglou et al., 2019; see Text A in Supporting Informa-
tion S1 for methods).

2.3. Conceptualizing the Bioclimatic Interactions Between Climate, Vegetation, and Fire

A key concept that has emerged in recent decades is that the world's ecoregions can be arranged along a climatic 
gradient of productivity-dryness that determines the key limitations on fire (Archibald et  al.,  2009; Kelley 
et  al.,  2019; Parisien & Moritz,  2009; Pausas & Keeley, 2009; Pausas & Ribeiro, 2013). This is because, in 
the presence of ample ignition sources, fires depend on both weather conditions conducive to fuel dryness and 
sufficient vegetation stocks available to burn. Consequently, fire occurs most frequently in regions with interme-
diate moisture availability, where dry conditions are sufficiently frequent to intermittently desiccate the available 
vegetation but not consistently dry enough to limit fuel production. On the other hand, fire is a less common 
phenomenon in consistently wet/humid regions where vegetation is often highly productive but also infrequently 
affected by drought, and also in consistently dry regions where climatic conditions inhibit the accumulation of 
fuels. Hence, fire occurrence is determined by a delicate balance between vegetation productivity (fuel produc-
tion) and the frequency of dry conditions (fuel moisture).

On evolutionary timescales, climate and fire have shaped the biogeographical distribution of ecoregions, and the 
vegetation of different ecoregions bears various traits and employs survival strategies that influence the flamma-
bility of the landscape (Archibald et al., 2013; Bond & Keeley, 2005; Bowman et al., 2009; Harrison et al., 2021; 
He et  al.,  2019; Pausas & Ribeiro, 2013; Pausas et  al.,  2017; Rogers et  al.,  2015). Meanwhile, variability in 
weather on interannual and sub-decadal timescales influences vegetation productivity and moisture levels on 
shorter timescales, thus determining the availability and dryness of fuels during any particular fire season (Alva-
rado et al., 2020; Forkel et al., 2017; Kelley et al., 2019; Y. Chen et al., 2017).

Operating on decadal to centennial timescales, climate change is shifting the global climate zones and affecting 
both fire weather frequency and the productivity and biogeography of vegetation (Keenan et  al.,  2014; Piao 
et  al.,  2020; Sitch et  al.,  2015). Hence, the impact of climate change on fire activity is complicated because 
increases in fire weather can be either compounded or countered by changes in vegetation productivity. Moreover, 
trends in atmospheric CO2 and land use change also influence vegetation cover, productivity and connectivity 
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and thus modulate the response of vegetation productivity to climate. The overall effect of changes in climate and 
CO2 has been to increase biomass in many high latitude ecoregions (Berner et al., 2020; Bistinas et al., 2014; C. 
Chen et al., 2019; Forkel et al., 2016; Jong et al., 2012; Piao et al., 2020; Zhu et al., 2016), whereas the combi-
nation of global changes in CO2 concentration, climate change and land use has elsewhere caused complex and 
regionalised changes in vegetation productivity and biomass storage (Burrell et al., 2020; D’Odorico et al., 2013; 
Fensholt et al., 2012; Jong et al., 2012; Park et al., 2018; Sherwood & Fu, 2014).

Here, we use a harmonized data set of aboveground carbon stocks (Spawn et al., 2020) to explore the relation-
ships between BA and tree biomass, non-tree biomass and total biomass with a particular focus on the effects of 
vegetation biogeography (see Text A in Supporting Information S1).

2.4. Improvements to the Observation and Modeling of Lightning Ignitions

The routine observation of lightning activity by satellites and networks of ground sensors are beginning to enable 
a more detailed understanding of the role of lightning activity as a driver of fire (Cecil et  al.,  2014; Chris-
tian, 2003; Styger et al., 2018; Veraverbeke et al., 2017; Y. Chen et al., 2021). Lightning is the dominant natural 
cause of fire ignitions and a particularly important ignition source for fires in regions of low human impact 
(Abatzoglou et al., 2016; Balch et al., 2017; Stocks et al., 2002; Veraverbeke et al., 2017). Electrification of the 
atmosphere occurs when charged ice and graupel particles collide in clouds, and rates of such collisions are deter-
mined by atmospheric weather conditions, including some that are affected by climate trends (Finney et al., 2018; 
Romps, 2019). Temperature, pressure and humidity all influence in-cloud convection, the vertical movement of 
particles and the rates of collision between charged ice and graupel particles (Latham et al., 2007).

The relationship between lightning activity and climate has been investigated through its relationship with 
convective available potential energy (CAPE; a measure of the buoyancy force required for uplift of air masses in 
the atmosphere; Romps, 2019; Romps et al., 2014; Tippett et al., 2019), convective fluxes of ice in clouds (Finney 
et al., 2014, 2018), or the intensity of in-cloud updrafts as determined by convective cloud top height (C. Price 
& Rind, 1992, 1994). Increases in atmospheric temperature both enhance rates of convection and suppress the 
formation of cloud ice, and these complexities mean that the impact of rising temperature on electrification of the 
atmosphere is currently unclear and model-dependent (Finney et al., 2018; Romps, 2019).

Lightning occurs in an instant that is challenging to predict. Moreover, the ignition efficiency of lightning strikes 
can vary strongly in space and time because other controls such as fire weather influence the flammability 
and receptiveness of vegetation (M. D. Flannigan & Wotton,  1991; Krawchuk et  al.,  2009; Sedano & Rand-
erson, 2014; Wierzchowski et al., 2002). Distinct ignition behavior is shown by lightning that is accompanied 
by precipitation at ground level (“wet lightning”) and lightning that is not accompanied by precipitation (“dry 
lightning”), the latter of which occurs because falling droplets evaporate before reaching ground level (Dowdy 
& Mills, 2012; Nash & Johnson, 1996; Rorig & Ferguson, 2002; Perez-Invernon et al., 2021). Precipitation that 
accompanies wet lightning can suppress the ignition and spread of fire by increasing the moisture content of the 
vegetation. Hence, dry lightning that strikes a fuel bed that has dried under fire weather conditions can result in 
widespread ignitions (Rorig & Ferguson, 2002). The highly stochastic nature of lightning ignitions presents major 
challenges for fire prediction and severely inhibits the management of wildfires in remote regions.

Nonetheless, the availability of lightning strike observations has been growing rapidly in recent years and is helping 
to build a better understanding of patterns and trends in lightning. Lightning emits radio energy at very low frequen-
cies that are increasingly observable thanks to the expansion of networks of ground sensors and to the launch of 
satellites. Networks of ground sensors have been in place for several decades in some countries, including Canada 
and the US (Orville et al., 2002), and various products are now available globally (Abarca et al., 2010; Holzworth 
et al., 2021; Kaplan & Lau, 2021; Orville, 2008; Rodger et al., 2006; Said et al., 2010; S. D. Rudlosky & Shea, 2013; 
S. D. Rudlosky et al., 2017; S. Rudlosky, 2015; Virts et al., 2013). In addition, several orbiting and geostationary 
satellites are fitted with lightning sensors, providing good coverage of the Americas and global tropics (Blakeslee 
et al., 2020; Cecil et al., 2014; Goodman et al., 2013; S. D. Rudlosky et al., 2019). The short time series of lightning 
detections has historically limited analyses of fire ignition rates in many regions to the past decade. Nonetheless, the 
observational time series has grown in recent years and is now sufficient to reveal increases in lightning activity as 
the climate warms in some regions, including the Arctic (Holzworth et al., 2021).
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Here, we use a prominent climatological data set of lightning activity, which is based on satellite observations 
(Cecil et al., 2014), to explore the seasonal relationship between BA and lightning activity at the global scale (see 
Text A in Supporting Information S1 for methods).

2.5. Understanding Complex Human-Fire Relationships and Their Historical Origins

Contemporary human fire ignition patterns must be understood, at least in part, as the product of regional history. 
The practices of fire use by Indigenous civilizations continue to influence human uses of fire in the modern 
period, although they have been variably modified or superseded by colonial attitudes toward fire management. 
There is substantial evidence that Indigenous and traditional burning of landscapes was widespread on every 
continent except Antarctica, and particularly in subtropical, Mediterranean, and temperate semi-arid biomes, 
prior to the onset of colonialism (Trauernicht et al., 2015). Indigenous peoples used landscape and cultural fire 
intentionally for a wide range of purposes. Highly localized, small-scale fire use facilitated communication 
and increased abundance of culturally important plants and the production of food, fiber, and medicines, while 
broader landscape application of fire supported hunting, crop cultivation, land clearing, maintenance of travel 
routes, and reduced risk of wildfires around communities (Kimmerer & Lake, 2001). Meta-analyses of Indige-
nous fire use make clear that many groups globally viewed and understood complex ecosystems holistically, and 
used fire in myriad ways to achieve sustainability and resilience (Trauernicht et al., 2015).

Over the past 500  years, European colonialism in North and South America, Australia, and southern Africa 
brought vast changes to traditional land practices, including a dramatic reduction in or outright banning of Indig-
enous fire practices across colonial states, widespread grazing, and the spread of intensive agriculture that frag-
mented natural landscapes (Klein Goldewijk et al., 2011; Marlon et al., 2008). The loss of regular application of 
fire in many ecosystems that evolved with it has had wide-ranging consequences for contemporary societies, and 
these consequences have been compounded by land use practices and anthropogenic climate change. Concurrent 
to the reduction of Indigenous and traditional fire use, the forces of globalization introduced fire to facilitate 
deforestation and agriculture in regions where landscape fire was rare prior to colonization, such as in Amazonia 
and other tropical rainforests (Bowman et al., 2011).

Arguably, the role of humans is the greatest source of complexity in our understanding and model representation 
of modern fire patterns (Ford et al., 2021). Human relationships with fire are as long as human history itself, 
and they are also regionally complex due to the diverse regional histories of controlling and using fire (Bowman 
et al., 2011). Humans ignite landscape fires intentionally for the purpose of land use change (chiefly deforesta-
tion) and land management, as well as through arson and unwanted ignitions such as escape of controlled fires 
and accidents. Elsewhere, humans reduce fire activity through active fire suppression or preemptive fuel manage-
ment, and also indirectly by excluding fires from managed areas, urbanization, and by modifying the density 
and connectivity of landscape fuels through land use (Andela et  al.,  2017; Arora & Melton,  2018; Bowman 
et al., 2017; Doerr & Santín, 2016; Lasslop & Kloster, 2017). Human activities do not only affect the spatial 
patterns of fire but also the interannual variability. For example, interannual variability in BA tends to increase 
with economic development especially in the tropics (Chuvieco et al., 2021).

Much of the unexplained variability in fire-climate relationships and predictive models stems from the patterns 
and (un)predictability of human relationships with fire, and how they have diverged over time (Ford et al., 2021). 
Hence, it is increasingly appreciated that more must be done to represent human-fire relationships with quantita-
tive variables that have potential to aid diagnostic models of fire activity and to be implemented within predictive 
models of future fire activity (Bowman et al., 2009; Ford et al., 2021; Forkel et al., 2017; Glikson, 2013; Kelley 
et al., 2019; Lasslop & Kloster, 2017; Pechony & Shindell, 2009).

Here, we assess correlations between BA and population density following Andela et al. (2017) and average these 
correlations within world regions (see Text A in Supporting Information S1 for methods).

2.6. Representing Complex and Interacting Controls on Fire in Global Models

The growing availability of Earth observation data and understanding of the multiple controls on fire have 
enabled the development of empirical fire models and improvements to the representation of fire in process-
based models, such as those used in dynamic global vegetation models (DGVMs) and Earth System models 
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(ESMs). These models have already been used for global-scale simulation of historical trends in fire activity 
(Arora & Melton, 2018; Kloster & Lasslop, 2017; Knorr et al., 2016; Teckentrup et al., 2019), and in few cases 
for future periods (Kloster & Lasslop, 2017; Knorr et al., 2016). A key limitation to the application of both empir-
ical and process-based models is that their reliability is unclear when extrapolated far outside the limited range 
(∼2 decades) of direct observational data used to parameterize and evaluate them.

A range of empirical models have been developed to relate fire activity to its drivers and constraints (Hantson 
et al., 2016). Thonicke et al. (2001) introduced an empirical model (GlobFIRM) which predicted BA as a function 
of fine fuel moisture, without explicitly accounting for the presence or absence of ignition sources. Later models 
introduced human ignitions and suppression of fire as functions of population density and replaced fine fuel 
moisture with VPD or precipitation indices as the key climatological determinant of fire's likelihood (Pechony 
& Shindell,  2009,  2010), which have carried through to later models (e.g., the INFERNO model; Mangeon 
et al., 2016). Knorr et al. (2014) introduced another model whereby BA was predicted as a function of weather 
variables, vegetation properties and population density. Many other empirical models, constructed on global or 
regional scales, show promise in reproducing observed patterns and variability in BA based on similar input data 
(Archibald et al., 2009; Balshi et al., 2009; Forkel et al., 2017; Huang et al., 2015; Krawchuk et al., 2009; Moritz 
et al., 2012; Turco, Jerez, et al., 2018).

Empirical models trained on observational data have been used in a standalone fashion to predict fire activity 
under predicted changes in climate (Archibald et al., 2009; Balshi et al., 2009; Krawchuk et al., 2009; Moritz 
et  al.,  2012; Pechony & Shindell,  2010; Turco, Rosa-Cánovas, et  al.,  2018; Turco et  al.,  2014). Most empir-
ical fire models use pre-defined predictor variables and functional relationships to simulate fire activity and 
hence reflect the current understanding of the controls of fire activity. Alternative approaches based on machine 
learning models allow the use of a variety of potential climate, vegetation, and human-related predictors and 
hence to quantify the importance of the various controls on fire activity (Archibald et al., 2009; Forkel, Andela, 
et al., 2019; Forkel et al., 2017). Empirical fire models often outperform process-based fire models in repro-
ducing observed patterns and dynamics of fire activity because they have been trained against observational 
data, although their reliability is unclear when extrapolating outside the range of the training data. The majority 
of empirical fire models simulate only one target variable (e.g., BA) and do not synchronously simulate fire 
size, intensity and severity which are important to accurately simulate fire effects on atmospheric composition 
and ecosystem dynamics. Additionally, a limitation of stand-alone empirical models is that they omit transient 
vegetation responses to changes in CO2 and climate, such that they have limited potential to represent important 
interactions and feedbacks to climate change in their simulations of fire activity (Hantson et al., 2016; Harrison 
et al., 2018; Lasslop et al., 2019; Rabin et al., 2017; Williams & Abatzoglou, 2016).

In process-based fire models, both the ignition and spread of fires is modeled mechanistically as well as the 
emission of carbon through fuel combustion (Hantson et al., 2016). Lenihan et al. (1998) introduced a model 
(MCFIRE) that simulates the ignition of fire as a function of drought conditions tied to fine fuel moisture and 
also the spread of fire from the point of ignition (Lenihan & Bachelet, 2015; Rogers et al., 2011). Venevsky 
et al. (2002) also introduced a model (RegFIRM) that simulates fire count as a function of the Nesterov FWI 
and fire spread as a function of wind and fuel bed conditions, which has since been adapted to better represent 
ignition sources (Arora & Boer,  2005; Arora & Melton,  2018; Melton & Arora,  2016) and suppression (Li 
et al., 2013). Thonicke et al. (2010) built on RegFIRM in their development of the SPITFIRE model, which has 
been further developed to include lightning and human ignitions in a variety of ways (Kelley et al., 2014; Le 
Page et al., 2014, 2015; Pfeiffer et al., 2013; Prentice et al., 2011). In additional model developments, emphasis 
has been placed on better representing fire processes associated with land use change (Kloster et al., 2010; Li 
et al., 2013). Diverse process-based models are now in existence with many sharing or inheriting elements from 
earlier models (Hantson et al., 2016). Overall, the process-based models provide a range of representations of 
the physical processes of fire ignition, spread and other fire dynamics with parameter values that lie within the 
current boundaries of process understanding.

Both empirical and process-based models have been employed within a range of DGVMs (Hantson 
et al., 2016, 2020; Lasslop et al., 2019; Teckentrup et al., 2019), which are the terrestrial component of the ESMs 
used for climate simulation. Nonetheless, most ESMs that contributed to the climate model intercomparison 
project's fifth (CMIP5; Kloster & Lasslop, 2017; Taylor et al., 2012) and sixth phases (CMIP6; Eyring et al., 2016; 
Lasslop, Hantson, Brovkin, et al., 2020), and which supported the IPCC's fifth assessment report on climate change  
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impacts (Settele et al., 2014), have excluded fire processes. ESMs that have included fire processes were found 
to reproduce satellite observations of BA poorly. Indeed, Kloster and Lasslop (2017) concluded that “fire occur-
rence is poorly represented in ESMs that participated in CMIP5 and that there is no consensus on how fire occur-
rence changed over the past and might change in the future.” The development of the fire models used in CMIP5 
was broadly completed before globally consistent BA data sets based on satellite observations became available, 
and hence fire models may have been trained on outdated or incomplete (regional) observations. In addition, 
the development of the fire components of the DGVMs used in CMIP5 models also preceded many of the key 
developments in fire modeling discussed above, in particular excluding key improvements to the representation 
of human ignitions and suppression. Given the poor performance of the CMIP5 models against satellite observa-
tions of BA, the IPCC relied chiefly on statistical predictions in its recent assessment reports and highlighted the 
considerable uncertainty in future trends in fire activity (Jia et al., 2019; Settele et al., 2014).

The results of the CMIP5 fire modeling effort exposed a critical need to improve the representation of fire in 
DGVMs and triggered major efforts, embodied by the Fire Model Intercomparison Project (FireMIP), to improve 
the process representation and parameterization of fire models and advance their capability to represent observed 
patterns of fire in the Earth system (Hantson et al., 2016; Rabin et al., 2017). FireMIP has driven progress in 
modeling by cross-comparing the methods that are currently employed within models (Hantson et al., 2016), 
designing an experimental framework to evaluate and compare model representation of key processes (Rabin 
et al., 2017), and most recently employing that framework, comparing model estimates of BA, identifying key 
parameters that are the root causes of spread across the model ensemble (Lasslop et al., 2019; Li et al., 2019; 
Teckentrup et al., 2019) and benchmarking model performance against observations (Forkel, Andela, et al., 2019; 
Hantson et  al.,  2020). The FireMIP has already helped to encourage developments in fire-enabled DGVMs 
(Burton et al., 2019; Lasslop, Hantson, Harrison, et al., 2020), as well as new research into future changes under 
various emission scenarios (Burton, Kelley, et al., 2021). Future aims are to be able to project the future of BA in 
a fully coupled Earth System configuration through the employment of fire models within ESMs.

Here, we explore model outputs from six FireMIP models (Hantson et al., 2020; Teckentrup et al., 2019) to illus-
trate the current understanding of how the global distribution of fire activity has changed over the past century 
(see Text A in Supporting Information S1 for methods).

3. Decadal-Scale Observations of Change in Fire Weather and Burned Area
3.1. Fire-Prone Conditions Are on the Rise Globally

Fire weather seasons have extended and extreme fire weather conditions have become more common at the global 
scale in recent decades, enhancing the flammability of vegetation and pre-conditioning many landscapes to burn 
more frequently. Jolly et al. (2015) showed that fire weather season length (FWSL) lengthened across 25% of the 
Earth's vegetated surface during 1979–2013, leading to a 19% increase in global mean FWSL. The trends were 
shown to hold across different meteorological data sets and metrics of fire weather, with the increasing trends 
in FWSL in the range of 5%–7% decade −1 (Jolly et al., 2015). Using the methods of Jolly et al. (2015) applied 
to the ERA5 meteorological reanalysis (Hersbach et al., 2020; Vitolo et al., 2020), we analyzed the observed 
trends in fire weather for the regions shown in Figure 1 (see Text A in Supporting Information S1 for methods). 
We observed that annual FWSL increased by 14 days year −1 during 1979–2019 (+27%) and that the frequency 
of 95th percentile extreme fire weather (FWI95d) increased by 10 days year −1 (+54%) globally (Table 1). The 
decadal trend in FWSL seen here (∼+7% decade −1) lies in the range reported by Jolly et al. (2015) for various 
combinations of meteorological data set and index. In our gridded analysis (Figure 2), we see fewer regional 
examples of reductions in fire weather than in the study of Jolly et al. (2015), which may be because we present 
the trends based on one meteorological reanalyzes and one FWI in contrast to the average of three meteorological 
reanalyzes and three fire weather/danger indices as presented by Jolly et al. (2015). Jain et al. (2021) have recently 
diagnosed the underlying drivers of increasing FWI95d for continents and ecoregions, finding that either humidity 
or temperature trends were dominant in most regions while changes in wind speed or daily precipitation have 
been the dominant driver in very few regions.

We also found significant positive trends in both FWSL and FWI95d in the majority of GFED macroregions 
(Figure  2; Table  1). At these macroregional scales, increases in FWSL have been proportionally greatest in 
Europe, central and boreal Asia, southern hemisphere South America and temperate North America. Increases 
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Note. Absolute change is calculated as the trend (days year −2) multiplied by the 41 years in the period 1979–2019 (see Figures 3 and 4). Relative change in burned area 
(BA) is the absolute change (days year −1) divided by the mean annual BA (days year −1). Trends are based on the Theil-Sen estimator, which is insensitive to outliers, 
and asterisks denote significant trends (p < 0.05) according to Mann-Kendall tests. Colors represent the strength of positive (brown) and negative (purple) trends in fire 
weather as in Figure 5. See methods in Text A in Supporting Information S1.

Table 1 
Annual Fire Weather Season Length (FWSL; Days Year −1) and the Frequency of 95th Percentile Fire Weather (FWI95d; Days Year −1), Change in FWSL and FWI95d 
(Days Year −1 and %), and Significance of Those Trends in Each Global Fire Emissions Database (GFED) Macroregion and Focus Ecoregion Based on ERA5 Fire 
Weather Index (FWI) Data for the Period 1979–2019 (Hersbach et al., 2020; Vitolo et al., 2020)
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in FWI95d have been most pronounced in southern hemisphere South America, central Asia and across Africa. 
Trends in extreme fire weather have notably outpaced trends in FWSL in southern hemisphere South America 
and Africa, whereas trends in FWSL have been more pronounced in Europe and boreal Asia (Table 1).

On ecoregional scales, the western US is perhaps the region in which trends in fire weather and related climato-
logical indicators of vegetation dryness have been studied most widely. Abatzoglou and Kolden (2013) showed 
that significant increases in extreme fire weather occurred during 1979–2012 across much of the western US. 
Abatzoglou and Williams (2016) reported that, during 1979–2015, the extent of western US forests experienc-
ing high VPD grew by 75% along with an average of nine additional days of extreme VPD each year. Williams 
et al. (2019) further reported that temperatures on warm-season days trended upwards by 1.4°C warmer since 
the 1970s in California, triggering a significant increase in VPD. However, both increased VPD and decreased 
fire-season precipitation have been implicated as the key driver of fire weather trends in this region (Holden 
et al., 2018). Goss et al. (2020) found that a 1°C increase in autumn temperature and a 30% decline in autumn 
precipitation since the 1980s drove a 20% increase in autumn mean FWI and a doubling of FWI95d in California. 
In strong agreement with the preceding literature, our analysis indicated that FWSL rose significantly by 43% 

Figure 2. Global patterns and trends in fire weather during 1979–2019 based on ERA5 reanalysis data (Hersbach et al., 2020; Vitolo et al., 2020). (Left panels) include 
(top) mean, (middle) absolute change and (bottom) relative change in annual fire weather season length (FSWL) during 1979–2019. (Right panels) include (top) the 
95th percentile daily value of fire weather index (FWI) threshold value during 1979–2019, (middle) the absolute change in annual days with FWI values exceeding 
the 95th percentile and (bottom) the relative change. Absolute change (days year −1) is calculated as the trend (days year −2) multiplied by the length of the time series 
(41 years). The relative change is the absolute change divided by the mean.
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(+37 days year −1) and FWI95d by 166% (+37 days year −1) in Pacific US forests during 1979–2019 (Figures 2–4; 
Table 1).

Studies of fire weather in Canadian forests have revealed large, but often statistically insignificant, trends during 
the twentieth century, and they have also highlighted the spatial heterogeneity of the fire weather trends across 
Canada (Amiro et al., 2004; Girardin et al., 2004, 2009; Jain et al., 2017; L. M. Johnston et al., 2020; X. Wang 
et al., 2015). The prevailing explanation for the absence of significant trends in fire weather is that interannual 
variability is so large that even substantial trends are difficult to isolate robustly in this region (Amiro et al., 2004; 
Jain et al., 2017). Nonetheless, some recent studies have shown significant increases in the extreme values of FWI 
that are considered most dangerous for fire spread by fire management practitioners (e.g., FWI >20), especially 
in western Canadian forests (Kirchmeier-Young et al., 2017, 2019; X. Wang et al., 2015). In support of these 
studies, our analysis also indicates that FWSL and FWI95d rose insignificantly by +70% (9 days year −1) and +59% 
(+12 days year −1), respectively, during 1979–2019 (Figures 2–4, Table 1).

Trends in fire weather have been studied less extensively in other high latitude regions. Several studies have 
highlighted the links between fire weather and fire activity in Alaskan forests (e.g., Barrett et al., 2016; Duffy 
et al., 2005), yet to our knowledge the trend in fire weather has not been reported. Our analysis indicates that 
FWSL and FWI95d rose significantly in Alaskan forests by +69% (7 days year −1) and +59% (11 days year −1), 
respectively, during 1979–2019 (Figures 2–4, Table 1). In the Eurasian boreal region including Siberia, Girar-
din et al.  (2009) reported a significant increase in the forest area experiencing extreme drought codes during 
1901–2002. Groisman et al. (2007) also reported significant increases in various indices of fire weather in east 
Siberia during the twentieth Century, which principally aligned with temperature increases in the region. Justino 
et al. (2021) reported positive trends in potential weather fire index version 2 (PFIv2) during 2000–2016 across 
northern high- and mid-latitudes, with peaks in central Eurasia and Siberia, driven predominantly by low precip-
itation anomalies. In our analysis, we observed increases in FWSL (+27%; 4 days year −1) and FWI95d (+17%; 
3 days year −1) in east Siberian forests during 1979–2019 (Figures 2–4, Table 1). Across all North American 
conifer forests (including high latitude forests in Alaska and Canada, temperate forests in the western US, and 
subtropical forests in the southeast US), Jolly et al. (2015) reported a significant increase in FWSL of 6 days 
year −1 during 1979–2015 based on multiple meteorological reanalyzes and fire weather indices.

In the Mediterranean, Venäläinen et al. (2014) observed significant increases in average FWI during 1980–2012 
and an increase in the probability of regional extreme FWI values (FWI >45) by around 5%. Others have similarly 
highlighted increases in fire weather extremes in the Mediterranean. Bedia et al.  (2012) identified significant 
trends in the seasonal severity rating, which is based on FWI values across annual fire seasons, on the Iberian 
Peninsula during 1989–2011. Fréjaville and Curt  (2015) showed that there had been a significant increase in 
fire weather severity in southern France, especially during spring. Recently, Giannaros et al.  (2021) revealed 
significant positive trends in the frequency of fire weather extremes in the Iberian Peninsula and eastern Balkans 
during 1987–2016. The number of days with FWI values over 30, which are deemed to support extreme fire 
spread, increased by 1 day year −1 in these regions. In our analysis, we observed large and significant increases in 
FWSL (+55%; +29 days year −1) and FWI95d (+136%; +29 days year −1) in the Mediterranean during 1979–2019 
(Figures 2–4, Table 1). Jolly et al. (2015) reported a significant, but smaller, increase in FWSL of 10 days year −1 
in the Mediterranean during 1979–2015 based on multiple meteorological reanalyzes and fire weather indices.

In southeast Australia, numerous studies have identified large increases in FWSL and the frequency of extreme 
fire weather during the observational record, however, most of these studies also show that there is strong inter-
annual variability that largely precludes these trends from reaching significance thresholds (Abram et al., 2021; 
H. Clarke et al., 2013; Sharples et al., 2016). The interannual variability is specifically attributed to large-scale 
oceanic oscillations in the Pacific (El Niño Southern Oscillation [ENSO]), Southern (Southern Annular Mode) 
and Indian oceans (Indian Ocean Dipole), which strongly influence synoptic-scale variability in temperature and 
precipitation in southeast Australia, promoting large interannual variability in fire weather (Abram et al., 2021; 
H. Clarke et al., 2013; Harris & Lucas, 2019; Sharples et al., 2016; Williamson et al., 2016). Clarke et al. (2013) 
showed that despite high interannual variability at the regional scale, significant increases in fire weather and 
extreme fire weather could be seen at ∼40% and ∼60% of meteorological stations in Australia, respectively, with 
the majority of significant trends seen in stations in the southeast of the country. New analyses with multiple fire 
weather indices show a shift toward high occurrence of extreme fire weather days in the southeast of Australia 
since around the year 2000 (Canadell et al., 2021; Richardson et al., 2021). Hence, there are strong indications 
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Figure 3. Time series of global and regional estimates of mean fire weather season length (FWSL) from ERA5 (thin red lines; Hersbach et al., 2020; Vitolo 
et al., 2020) and CMIP5 models running RCP8.5 (gray lines; Abatzoglou et al., 2019). Thin black lines mark the multi-model mean estimate from the CMIP5 models. 
Linear trends in the period 1979–2019 are shown for the ERA5 (thick red lines) and CMIP5 (thick black lines), with corresponding numbers marking the change in 
annual FWSL during the period (the slope integrated over the period 1979–2019) and corresponding asterisks denoting significant changes at the 95% confidence 
interval. Differences between modeled and observed FWSL can be explained by differences in the resolution of the models (2.5°) versus the observations (0.25°), since 
FWSL is partly determined by the maximum value FWI and this is reduced through spatial averaging.

(
−
)



Reviews of Geophysics

JONES ET AL.

10.1029/2020RG000726

16 of 76

Figure 4. Time series of global and regional estimates of mean FWI95d from ERA5 (thin red lines; Hersbach et al., 2020; Vitolo et al., 2020) and CMIP5 models 
running RCP8.5 (gray lines; Abatzoglou et al., 2019). Thin black lines mark the multi-model mean estimate from the CMIP5 models. Linear trends in the period 1979–
2019 are shown for the ERA5 (thick red lines) and CMIP5 (thick black lines), with corresponding numbers marking the change in annual FWSL during the period (the 
slope integrated over the period 1979–2019) and corresponding asterisks denoting significant changes at the 95% confidence interval.
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that FWSL and the frequency of extreme fire weather are increasing in southeast Australia, but interannual varia-
bility is superimposed on those trends and complicates their robust detection (Abram et al., 2021; van Oldenborgh 
et al., 2021; Williamson et al., 2016). In our analysis, we observed significant trends in FWSL (+48%; 24 days 
year −1) and non-significant increases in FWI95d (+52%; 11 days year −1) in southeast Australian forests during 
1979–2019 (Table 1, Figures 3 and 4), consistent with the previous studies in the region. Jolly et al. (2015) simi-
larly reported no significant trend in FWSL during 1979–2015 in Australian forests.

Among the most important atmospheric factors contributing to an elevated probability of fire in southeast 
Australia is the development of unstable “pyroconvective” conditions associated with frontal systems (Abram 
et al., 2021; Canadell et al., 2021; Dowdy & Mills, 2012; Sharples et al., 2016). The likelihood of pyroconvective 
conditions is raised by offshore cold fronts that draw dry and warm winds toward southeast Australia from the 
interior of the continent (Di Virgilio et al., 2019; Dowdy & Pepler, 2018; Dowdy et al., 2019; Reeder et al., 2015). 
These winds foster rapid surface drying and significantly enhance heat convection from the land surface, which 
leads to instability in the lower atmosphere and promotes sustained flaming combustion, as well as the updraft 
of embers and production of lightning that can ignite further fires (Abram et al., 2021; Dowdy & Pepler, 2018; 
Khaykin et al., 2020; McRae et al., 2015). The continuous C-Haines index of pyroconvection has often been used 
as a complement to fire weather indices to quantify fire risk in Australia. Dowdy and Pepler (2018) showed that 
there have been significant increases in the frequency of spring and summer days with 95th percentile C-Haines 
index values and compound events when both fire weather and C-Haines are in their 95th percentiles in parts of 
southeast Australia during 1979–2016. The compounding effect of pyroconvection on likelihood of fire have also 
been highlighted in the Mediterranean (Pinto et al., 2020; Tatli & Türkeş, 2014).

According to our analysis, Amazonia was the region with the greatest proportional increases in FWSL (+94%; 
+39 days year −1) and also among the largest increases in FWI95d (+163%; +37 days year −1) during 1979–2019 
(Table 1, Figures 3 and 4). Various studies have identified trends in precipitation and drought indices and high-
lighted their relevance to wildfire activity (Alencar et al., 2015; Aragão et al., 2018; Brando et al., 2014; D. 
Nepstad et al., 2004; Lewis et al., 2011; Nogueira et al., 2017). The significant trends in fire weather corroborate 
with reductions in dry season precipitation, increases in the duration of the dry season, and increases in the 
frequency of drought conditions that have been reported for the region (Marengo & Espinoza, 2016; Marengo 
et al., 2011, 2018; Nogueira et al., 2017). Historically, the most pronounced seasons of drought-driven fire in 
Amazonia have been associated with natural variability in precipitation associated with El Niño events or sea 
surface temperatures in the North Atlantic (Aragão et al., 2018; Brando et al., 2014; Jiménez-Muñoz et al., 2016; 
Lewis et al., 2011; Marengo & Espinoza, 2016; Marengo et al., 2018; Panisset et al., 2018). Despite various 
studies of changes in primary climate variables in the region, study of trends in fire weather have been rare. Jolly 
et al. (2015) reported that FWSL increased by 33 days year −1 during 1979–2015 across a broader region encom-
passing tropical and subtropical forests, grasslands and savannas in South America.

3.2. Burned Area Trends Are Diverse and Region-Specific

Despite the increases in fire weather seasons and fire weather extremes that have been observed in virtually all 
world regions, BA has shown a range of regional trends. Andela et al. (2017) previously reported a 24% decline 
in global BA in the period 1998–2015 and that this global decline is predominantly driven by a decline in BA in 
the savannah-grassland systems, where 55% of global BA occurs in the average year (Table 2). In contrast, BA 
in forests has not declined globally and, since forest fires emit more carbon per unit area than fires in other land 
covers, emissions of carbon from fires have reportedly been stable or increased globally despite the decline in 
global BA (van der Werf et al., 2017; Zheng et al., 2021). We extended the analysis by Andela et al. (2017) to the 
period 2001–2019 based on updated BA observations (Giglio et al., 2018; see methods in Text A in Supporting 
Information S1) and found that the BA fell globally by 27% during 2001–2019, with significant declines in Afri-
can savannahs (Figures 5 and 6, Table 2).

On macroregional scales, the negative trends were found to be significant only in Africa (NHAF and SHAF), 
Europe (EURO), and central Asia (CEAS; Table 2), while in our focus ecoregions the negative trends in BA were 
found to be significant only in northern and southern African savannahs. The decline in BA is most pronounced 
in northern African savannahs, where BA fell by 41% during 2001–2019. Of total global reductions in BA, 59% 
have occurred in the two African GFED macroregions and 50% have occurred in African savannahs (Figures 5 
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Note. Absolute change in BA (and BA fraction) is calculated as the trend in 1,000 km 2 year −2 (% year −2) multiplied by the 19 years in the period 2001–2019 (see 
examples in Figure 6). Relative change in BA is the absolute change (1,000 km 2 year −1) divided by the mean annual BA (1,000 km 2 year −1). Trends are based on the 
Theil-Sen estimator, which is insensitive to outliers, and asterisks denote significant trends (p < 0.05) according to Mann-Kendall tests. See methods in Text A in 
Supporting Information S1.

Table 2 
Mean Annual Burned Area (BA) and Change in BA During the Period 2001–2019, and Significance of Those Changes in Each Global Fire Emissions Database 
(GFED) Macroregion and Focus Ecoregion Based on Moderate Resolution Imaging Spectroradiometer (MODIS)-Derived BA Data (Giglio et al., 2018)



Reviews of Geophysics

JONES ET AL.

10.1029/2020RG000726

19 of 76

and 6, Table 2). Our results support the conclusion of Andela et al. (2017) and others (Forkel, Dorigo, et al., 2019) 
that African savannahs have an exceptional influence on global trends in BA.

The significant declines in BA in African savannahs have occurred despite significant increases in fire weather, 
and especially extreme fire weather, in the region (Section  3.1), signaling that the trends in fire activity are 
decoupled from trends in fire weather in African savannahs and caused by other bioclimatic or human factors. 
This is expected as savannah fires are known to be limited foremost by fuel availability and strongly influenced 
by land management such as the fragmentation of the natural fire-prone landscape and exclusion of fire from 
agricultural regions (Alvarado et al., 2020; Andela & van der Werf, 2014; Archibald et al., 2009, 2010, 2012; 
Rosan et al., 2022). Andela et al. (2017) concluded that the observed decline in BA in African savannahs has 
been caused by the expansion of high-capital agriculture. They used a statistical model built by Andela and van 
der Werf (2014) to show that the decline in BA during 1998–2016 could be reproduced by statistical models even 
after trends in precipitation were accounted for, especially in northern hemisphere Africa. Nonetheless, others 
have concluded that reductions in vegetation productivity (fuel build-up) driven by changes to the hydrological 
balance of the region are the predominant determinant driver of the BA trend (Zubkova et al., 2019). Indeed, 
various studies employing statistical or machine learning models have shown that both hydrological and human 
factors contribute to spatial and temporal variability in BA in most parts of African savannah biome, and that there 
are few sub-regions where either of these factors are the exclusive driver of variability in fire activity (Alvarado 
et al., 2020; Andela & van der Werf, 2014; Archibald et al., 2010; Forkel et al., 2017; van der Werf et al., 2008). 
See Sections 4.1 and 5.4 for further discussion of the bioclimatic and human drivers of fire in African savannahs.

Although a large portion of the global decline in BA is explained by the declining BA in African savannahs, 
declines in BA are also seen in other regions both in previous studies and in our analyses (Figures 5 and 6, 
Table 2). In the Mediterranean, Turco et  al.  (2016) observed a ∼66% reduction in BA in the Mediterranean 
between 1985 and 2011, with the most pronounced trends in Spain and France. Urbieta et al. (2019) and Silva 
et al. (2019) similarly noted a decrease in BA in most regions of Spain during 1975–2013, while Fréjaville and 
Curt (2017) reported that BA declined in southern France during 1976–2009. Trends in wildfires in Portugal 
have been spatially varied and have tended to relate to regional contrasts in population and land use dynamics 
(Oliveira et al., 2017; Silva et al., 2019; Turco et al., 2016). Our analysis indicates a 79% reduction in BA in the 

Figure 5. Global observed and modeled burned area (BA) fraction and their trends during the periods shown, gridded at 2.5° resolution (Giglio et al., 2018; Teckentrup 
et al., 2019). Plots show (left panels) annual mean BA fraction (% year −1) and (right panels) trend in BA fraction (% year −2) since 2001 period for (upper panels) 
moderate resolution imaging spectroradiometer BA (2001–2019) and (lower panels) six Fire Model Intercomparison Project (FireMIP) models (2001–2012). Year 2012 
is the final year for which FireMIP simulations are available. The slope is calculated as the Theil-Sen estimator, which is insensitive to outliers.
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Figure 6. Trends in annual burned area (BA) globally and for ecoregions shown in Figure 1 (Giglio et al., 2018). Red lines show annual BA (1,000 km 2 year −1), blue 
lines the linear trend (1,000 km 2 year −2) and blue numbers the change in annual BA during the period (1,000 km 2 year −1; the trend in 1,000 km 2 year −2 multiplied by 
the 19 years in the period 2001–2019). The slope is calculated as the Theil-Sen estimator, which is insensitive to outliers, and blue asterisks denote significant changes 
in BA at the 95% confidence interval according to Mann-Kendall tests (see Text A in Supporting Information S1 for methods).

−
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Mediterranean during 2001–2019, though this was not found to be significant (Figures 5 and 6, Table 2). The 
declines in BA in the Mediterranean have occurred despite significant increases in FWSL and FWI95d (Figures 2–4, 
Table 1), and they have generally been associated with increased suppression of fires by humans since the 1980s 
(Brotons et al., 2013; Ruffault & Mouillot, 2015; Silva et al., 2019; Turco, Jerez, et al., 2018; Turco et al., 2016; 
Urbieta et al., 2019). Nonetheless, several extreme and deadly wildfires have been linked to extreme fire weather 
conditions during major droughts in the region in recent decades, underscoring the importance of fire weather 
extremes for dangerous fire activity in the region (Lagouvardos et al., 2019; Ruffault et al., 2018, 2020; Turco 
et al., 2019).

Fire is routinely used for land clearing in Amazonia and consequently BA shares a close association with deforest-
ation rates in this region (Aragão et al., 2008; van Wees et al., 2021). Deforestation rates declined overall during 
2001–2019 in Amazonia following peak rates in the late 1990s and early 2000s (Aragão et  al.,  2018; Silva 
Junior et  al.,  2021; Libonati et  al.,  2021). However, this decline in BA has not been uniform and the recent 
history of economic and environmental policy has led to several shifts in the BA trend within the period (Aragão 
et al., 2018; Silva Junior et al., 2021; Libonati et al., 2021). Several decades of federal investment in infrastruc-
ture led to improved road access to the Brazilian Amazon and resulted in the highest recorded rates of deforest-
ation in Amazonia during the 1990s and early 2000s (Cochrane, 2003; D. C. Nepstad et al., 1999; D. Nepstad 
et al., 2001). Legislation implemented to prevent deforestation later led to a 75% decline in deforestation rates 
during the period 2005–2015 (Aragão et al., 2018; Silva Junior et al., 2021; D. Nepstad et al., 2014; Tyukavina 
et al., 2017). Since 2015, deforestation rates have increased in the Amazon (Libonati et al., 2021; Silva Junior 
et al., 2021) with 2019 and 2020 being extraordinary years for deforestation fire in the context of the past decade 
(Silva Junior et al., 2021; Kelley et al., 2021; Trancoso, 2021). Silva Junior et al. (2021) suggest that controversial 
changes to the Brazilian Forest Code in 2012 and a weakening of the code's enforcement have enabled a resur-
gence of illegal land-grabbing in Amazonia during recent years.

In addition to deforestation fires, wildfires associated with drought have superimposed substantial inter-annual 
variability on the BA trend in Amazonia. Droughts in the region in 2005, 2010, and 2015 have led to substantial 
peaks in fire activity (Aragão et al., 2018; D. C. Nepstad et al., 2008; Lewis et al., 2011; Morton et al., 2013). 
There have been numerous reports that the area burned by wildfires in Amazonia has increased in recent decades, 
predominantly during droughts and despite contemporaneous reductions in deforestation fire (Aragão et al., 2018; 
Brando, Macedo, et al., 2020; Brando, Soares-Filho, et al., 2020; Jiménez-Muñoz et al., 2016; Marengo & Espi-
noza, 2016; Marengo et al., 2018). Aragão et al. (2018) suggested that increases in drought frequency and inten-
sity are an increasingly important driver of fire activity in Amazonia, particularly affecting forest edges that are 
disturbed by adjacent land use. However, this “decoupling” of fire incidence from deforestation activity does not 
emerge robustly across all data sets (Libonati et al., 2021). Deforestation fires and drought-driven fires are not 
mutually independent because deforestation has a legacy effect on the susceptibility of forest edges to drought 
(Brando et al., 2014; Cochrane, 2003; Silva Junior et al., 2018, 2021). In our analysis, BA was found to decline in 
southern Amazonian forests by ∼50% during the period 2001–2019 (Figures 5 and 6, Table 2), though this trend 
was not significant and masks alternating sub-decadal trends; the trend was positive pre-2005, negative during 
2005–2015 and positive once more post-2015 (Figure 6), mirroring changes in deforestation rates (Silva Junior 
et al., 2021).

Other regions of the world have seen substantial increases in fire activity and BA in recent decades. In west-
ern US forests, Westerling (2006, 2016) found that there had been a >10-fold increase in BA in Western US 
forests between 1973–1982 and 2003–2012 based on fire records from federal agencies. Other studies have since 
reported a fourfold increase in BA in western US forests during 1984–2015 (Abatzoglou & Williams, 2016) and a 
fivefold increase in BA in California during 1972–2018 (Williams et al., 2019) based on a mixture of federal fire 
records and MODIS BA detections. The frequency of large fires has also been rising (Dennison et al., 2014) and 
shows an exponential relationship with vegetation dryness (Williams et al., 2019). Parks and Abatzoglou (2020) 
showed that the area burned by severe fires increased eightfold in western US forests during 1985–2017. Large 
and severe fires are becoming more common in the region and imprinting also upon total BA. Trends in BA in 
the western US forests have occurred amidst increases in fire weather (Williams et al., 2019) and variability in 
fire activity holds an especially strong relationship with fire weather in the region (Abatzoglou & Williams, 2016; 
Goss et al., 2020), although the important roles of ignition sources and fuel stocks have also been highlighted. 
In our analysis, we observed shallower (and non-significant) increases in BA of 49% in the Pacific US forests, 
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which likely reflects our consideration of total BA as opposed to the area burned by the large fires as captured 
by agency statistics (Figures 5 and 6, Table 2). In the modern day, BA is comparable to the estimated annual BA 
for western US forests during the early twentieth century (Littell et al., 2009), highlighting the extent to which 
humans have suppressed fire in the region during the mid-to-late twentieth century through wildland firefighting 
and land conversion to agriculture (see Section 5).

Increases in BA have also been reported for Canada and Alaska, though the statistical robustness of these trends 
has varied. Stocks et al. (2002) compiled a database of large fires based on wildfire reports to fire management 
agencies in Canada, observing an increase in BA and fire counts during 1959–1997, though they noted that inter-
annual variability in BA exceeds the magnitude of the trends. Nonetheless, expanding these records to Alaska, 
Kasischke and Turetsky (2006) reported that annual BA doubled across the North American boreal zone during 
1959–1999, principally due to increases in the frequency of large fires. Kasischke et al. (2010) later reported that 
BA in Alaska was greater during the decade of the 2000s than in any decade since the 1940s, based on records 
from fire management agencies, and identified a trend towards greater area burned by late-season fires. Veraver-
beke et al. (2017) blended agency records and satellite observations to show that BA increased in the Northwest 
Territories at a rate of 7% year −1 during 1975–2015, but no significant increase was seen in the Alaskan interior 
forests. Coops et al. (2018) identified no significant trends in BA across Canada during 1985–2015, however, 
several western boreal forest regions showed significant trends since 2006 on the order of 13%–26%. Hanes 
et al. (2019) updated and synthesised various agency-based data sets of BA for Canada, and reported significant 
increases in BA and the number of large fires during 1959–2015. In our analysis, we observed a non-significant 
increase in BA of 63% in Pacific Canadian forests during 2001–2019 and no substantial change in BA in Alas-
kan forests (Figures 5 and 6, Table 2). Variability in BA in Canada is considered to predominantly result from 
variability in fire weather extremes (Jain et al., 2017; Kasischke et al., 2010; Kirchmeier-Young et al., 2017), 
although changes in lightning and human ignitions are also implicated as important factors affecting BA (Hanes 
et al., 2019; Veraverbeke et al., 2017). As in Pacific US forests, the increases in total BA seen in our analysis 
appear to mask more prominent increases in the frequency and extent of large fires as reported elsewhere based 
on agency statistics.

Recent severe wildfires in east Siberian forests have fetched interest because large stocks of carbon are held in 
the boreal forests, permafrost soils and peatlands of the region (Bowman et al., 2020; Kim et al., 2020; Scholten 
et al., 2021; Veraverbeke et al., 2017, 2021; Walker et al., 2019; Y. Chen et al., 2021). These fires are an exam-
ple of the increased Arctic vegetation available as fuel that previously would not have been dry enough to burn, 
suggesting fire regimes are invading formerly fire-resistant landscapes (J. L. McCarty et al., 2020). Yet trends in 
BA in the region have been studied less extensively than in boreal North America (García-Lázaro et al., 2018; 
Ponomarev et al., 2016). Soja et al. (2007) showed an increase in BA across all Siberian forests (east of the Ural 
mountains) during 1980–2006 based on Russian forest agency records, though this trend was not reported to be 
significant. Krylov et al. (2014) observed no significant trends in BA during 2002–2011 based on satellite detec-
tions across all Russian forests. Kukavskaya et al. (2016) showed that, for one region of southeast Siberia, the 
decadal number of forest fires increased by 165% during 1970–2010 according to Russian forest agency records, 
whereas BA observed by satellites and agency records showed no significant trend during 1996–2015. On the 
other hand, Ponomarev et al. (2016) observed a significant increase on the order of 80%–100% in both fire count 
and BA in a large latitudinal transect of central Siberia during 1996–2015. García-Lázaro et al. (2018) developed 
a long-term BA product based on multiple satellite sensors and showed high variability in BA in northeast Siberia 
during 1982–2015, with trends on the order of 60% visible on decadal timescales. Tomshin and Solovyev (2021) 
report a non-significant positive trend in BA over Siberia during 2001–2020, with regional variability includ-
ing both significant negative and positive trends in parts of Western Siberia and Eastern Siberia, respectively. 
Recent severe fires in Siberia began very early in the fire season, prior to the time of year when vegetation and 
soils normally become flammable, which may be the result of “overwintering” fires that smolder in organic soils 
beneath the ground surface (J. L. McCarty et al., 2020; Scholten et al., 2021). In our analysis, we saw a 93% 
increase in BA in east Siberian forests during 2001–2019, which was non-significant (Table 2, Figures 5 and 6).

Despite the rich availability of research showing increased likelihood of wildfire in southeast Australia as a result 
of changes in fire weather (Abram et al., 2021; Di Virgilio et al., 2019; Dowdy et al., 2019; Sharples et al., 2016), 
a limited number of studies have reported on trends in BA for the region. Most notably is a continental-wide 
analysis of forest BA (mostly concentrated in the southeast of Australia) that shows an annual linear increase 
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over the past 32 years, and an exponential increase in forest BA during the cooler seasons of autumn and winter 
(Canadell et al., 2021). Based on a compilation of ground-based data since 1930, the authors also showed a fire 
regime shift from the year 2000 onwards with a jump in the number of mega fire years burning more than 1 
million hectares of forests. Other studies have focused on specific regions in Australia such as the state of Victo-
ria, for which Lindenmayer and Taylor (2020) showed that there has been a long-term increase in BA during 
2001–2020 versus 1950–2000 due to the occurrence of several years with extreme wildfire outbreaks in the state 
since 2000. Bowman et al. (2020) presented a visually similar time series of BA data for New South Wales, as 
did L. Collins et al. (2021) and Abram et al. (2021) for broader parts of southeast Australia, but trends in BA 
were not reported in those cases. In our analysis, we observed no significant change in annual BA in southeast 
Australian forests during 2001–2019 (Table 2, Figures 5 and 6), although we note that the selected region also 
includes grass dominated rangelands and open woodlands with different fire regimes and drivers of fire activity 
from those of forests. Fuel dryness, influenced by contemporaneous fire weather and antecedent drought, is 
considered the principal limitation to fire in southeast Australian forests, and there are clear relationships between 
extreme fire weather and extreme forest fires in the region (Abram et al., 2021; Dowdy, 2018; van Oldenborgh 
et al., 2021). The 2019/2020 bushfires epitomized the effect of fire weather on fire risk in southeast Australia, 
with the forests primed to burn during the most extreme fire weather since observational records began in 1950 
(Abram et  al.,  2021). Extreme fire weather conditions seen during the 2019/2020 bushfires can occur natu-
rally when several ocean-atmosphere oscillations align at peak amplitude (ENSO, Southern Annular Mode and 
Indian Ocean Dipole) (Abram et al., 2021; Harris & Lucas, 2019). However, background increases in average fire 
weather due to anthropogenic climate change led to a >30% increase in the likelihood of 2019/2020 fire weather 
conditions (van Oldenborgh et al., 2021).

3.3. Fire Weather Is a Pervasive Enabler of Fire

Numerous studies have evaluated the co-variability of BA and FWI at global and regional scales. At the global 
scale, Bedia et al. (2015) showed that the relationship between BA and FWI varies regionally, and is strongest in 
biomass-rich environments where fuel moisture, rather than fuel availability, is the dominant limitation to fire. 
Specifically, BA is most sensitive to FWI in ecosystems with low-to-moderate mean annual FWI. On the other 
hand, BA is relatively insensitive to variability in fire weather in xeric grasslands and shrublands because these 
are fuel-productivity limited systems (Bedia et al., 2015). Abatzoglou et al. (2018) similarly identified the strong-
est relationships between BA and FWI in boreal forests and North American temperate forests with ample fuels. 
Earlier work showed that fire activity is most sensitive to weather variables in zones with intermediate precipita-
tion, where ample fuels are generally available but moisture deficits can lead to sufficient fuel drying (Archibald 
et al., 2009; Bradstock, 2010; Krawchuk et al., 2009; van der Werf et al., 2008).

In our analysis of the relationship between BA and FWI (see Text A in Supporting Information S1 for methods), 
we found that monthly BA correlates positively and significantly with monthly FWI in the majority of world 
regions (Table 3, Figure 7). In addition, the total BA in a fire season correlates positively with the mean FWI 
during the fire season in all regions except for NHAF and northern African savannahs, and the correlations were 
significant in Alaskan forests, pacific Canadian forests, pacific US Forests, Indonesian forests and the Medi-
terranean (Table 3, Figure 7). These results emphasize the global-scale robustness of the relationship between 
fire weather and BA, with the strongest relationships broadly observed in mesic ecoregions (Table 3, Figure 7). 
The correlations between BA and FWI do not preclude the important influences of other bioclimatic and human 
controls on fire, but rather suggest that fire weather acts as a pervasive upwards pressure on BA that can none-
theless be modulated by other factors. No other fire driver shares such a consistent relationship with fire activity 
at the global scale (Sections 5 and 6), underscoring the key role of fire weather as a pervasive enabler of fire.

A particular wealth of studies have revealed the critical influence of fire weather on fire activity in the western 
US forests. The combination of fire weather indices with variables representing long-term moisture balance is 
often found to show strong predictive capacity in the region. Littell et al. (2009) found that most of the interannual 
variability in BA in the forested mountains of the western US could be explained by variability in antecedent 
precipitation, a drought index, and temperature, with large fires predominantly occurring under extreme fire 
weather conditions. Abatzoglou and Kolden (2013) highlighted that atmospheric conditions during the fire season 
predominantly influence the flammability of fuels, and that these effects are reinforced in years with droughts 
preceding the fire season. Abatzoglou and Williams (2016) observed that 76% of the interannual variability in BA 
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Note. Two types of correlation are calculated: first, the seasonal correlation of monthly mean FWI and monthly BA in each region, and; second, the interannual 
correlation of the mean FWI and total BA during the annual fire season of each region (each calendar year's fire season is defined as the months in which at least 80% 
of fire activity occurred). Asterisks denote significant correlations (p < 0.05). Colors represent the strength of positive (purple) and negative (green) correlations as in 
Figure 7. The BA data derive from Giglio et al. (2018; updated through 2019) and the FWI data from Vitolo et al. (2020; see Text A in Supporting Information S1 for 
methods).

Table 3 
Spearman's Correlations (ρ) Between Burned Area (BA) and Fire Weather Index (FWI) for the Period 2001–2019
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in western US forests during 1984–2015 could be explained by variability in fuel dryness as represented by multi-
ple indices including FWI. Williams et al. (2019) found robust interannual relationships between summer VPD 
and summer BA in western US forests during 1972–2018. Goss et al. (2020) recently found that autumn forest 
fire extent is particularly sensitive to extreme fire weather episodes and linked the doubling of autumn BA to 
increases in extreme fire weather frequency during 1979–2018. In our analysis, we observed strong correlations 
between FWI and BA on monthly and interannual timescales in Pacific US forests during 2001–2019 (Table 3, 
Figure 7). Overall, fire weather conditions are recognized as the dominant control on variability and trends in 
fire activity in fuel-rich western US forests, although the influence of antecedent weather conditions and land 
management on fuel availability has also been shown to modulate the impacts of fire weather (Abatzoglou & 
Kolden, 2013; Parks et al., 2014; Stephens et al., 2013).

Fire weather has also been identified as the dominant control on forest fire activity in Canadian and Alaskan 
forests, with the majority of annual BA typically occurring during just a few days of extreme fire weather (Barrett 
et al., 2016; Coogan et al., 2021; Duffy et al., 2005; L. M. Johnston et al., 2020; M. D. Flannigan & Wotton, 2001; 
M. D. Flannigan et al., 2009; Podur & Wotton, 2011; Wotton et al., 2010; X. Wang et al., 2015). M. D. Flannigan 
et al.  (2005) showed that fuel moisture (represented by FWI components) explained 36%–64% of variance in 
BA across Canadian ecoregions during 1959–1997. Balshi et al. (2009) later showed that 82% of the interan-
nual variation in BA during 1960–2002 could be explained by similar variables and a more complex statistical 
model. Girardin and Wotton (2009) showed that the drought code sub-component of FWI alone could explain 
63% of the variability in forest BA across Canada (1959–1999). Magnussen and Taylor  (2012) showed that 
lightning-caused fires could be predicted with particular skill using components of the FWI. Barrett et al. (2016) 
found that fire weather is the only variable required to explain the occurrence of wildfires in Alaskan boreal 
forest using a machine learning model that accounts for static and varying environmental factors. In our analysis, 

Figure 7. Spearman's correlation (ρ) between burned area (BA) and fire weather index (FWI) on two timeframes. (Upper 
panel) Interannual correlation between the monthly BA and monthly mean FWI during the fire season. The fire season is 
defined for each calendar year as the months in which >80% of the BA occurs. (Lower panel) Correlation between monthly 
BA and monthly mean FWI during the period 2001–2019. The BA data derive from Giglio et al. (2018; updated through 
2019) and the FWI data from Vitolo et al. (2020; see Text A in Supporting Information S1 for methods).
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we observed strong and significant correlations between FWI and BA on monthly and interannual timescales 
in Pacific Canadian forests during 2001–2019 (Table 3, Figure 7). The strength of the relationship between fire 
weather and BA is such that many modeling studies have inferred future fire activity based on projected increases 
in the frequency of FWI thresholds under anthropogenic climate change (M. D. Flannigan et al., 2009; Kirchmei-
er-Young et al., 2017; Wotton et al., 2010; X. Wang et al., 2015). Overall, fire weather is known to be a critical 
determinant of fire activity in Canadian forests, though the importance of other factors such as fuel and ignitions 
availability has also been noted and are discussed in following sections (Cavard et al., 2015; Parisien et al., 2016; 
Veraverbeke et al., 2017; Walker et al., 2020; X. Wang et al., 2014). Recent work focussed on Siberian boreal 
forests has identified related weather factors such as contemporaneous water deficit and precipitation as major 
controls on annual BA (Talucci et al., 2022).

Exceptionally strong relationships have been observed between the FWI and BA in the Mediterranean (Carvalho 
et al., 2008; Fox et al., 2018; Papagiannaki et al., 2020; Parente et al., 2018; Rodrigues et al., 2020; Ruffault 
et al., 2018; Turco et al., 2017; Urbieta et al., 2015). Carvalho et al. (2008) constructed a stepwise regression 
model of BA in Portugal during 1980–2004 in which FWI was consistently selected as a predictor variable. The 
model explained over 80% of the monthly variability in BA. Urbieta et  al.  (2015) found that models includ-
ing only long-term water balance variables predict large fire BA considerably less robustly than models that 
also include contemporaneous fire weather in Portugal, Spain, South France, Italy, and Greece, highlighting 
that fire weather is a critical trigger for fires in this region irrespective of seasonal-scale droughts. Others have 
also highlighted the dominant influence of contemporaneous weather conditions, including heatwaves and 
summer drought on fire activity and BA in the Mediterranean (Parente et al., 2018; Rodrigues et al., 2020; Turco 
et al., 2017). Fox et al. (2018) found that BA in SE France increases non-linearly with fire weather, with 97% of 
total BA occurring in weeks with extreme FWI values (FWI > 90). In our analysis, we observed strong and signif-
icant correlations between FWI and BA on both monthly and interannual timescales in the Mediterranean during 
2001–2019 (Table 3, Figure 7), which is consistent with the especially strong relationships seen in prior work. 
Pinto et al. (2020) recently highlighted the compounding impact of pyroconvective conditions on fire activity in 
the Mediterranean. Inclusion of the C-Haines index in predictive models of area burned by large wildfires led 
to improved model performance. This highlights the need for wider exploration of the compounding effects of 
extreme fire weather and C-Haines index in regions beyond Australia, where the C-Haines index was originally 
developed and has been most routinely employed.

Our analysis also indicates that the correlations between FWI and BA are strong in the tropical forests of southern 
Amazonia and Indonesia (Table 3, Figure 7). In the normal range of hydrological conditions seen in Amazo-
nia, moisture is efficiently recycled and hence forests display a general resilience to moderate moisture stresses 
(Baker & Spracklen, 2019; Betts et al., 2004; Bonan, 2008; Coe et al., 2013; Malhi et al., 2009; Staal et al., 2018; 
Zemp et  al.,  2017). A similar ecosystem-level resilience to moderate moisture stresses has been observed in 
Indonesian forests (Field et al., 2016; Langner & Siegert, 2009; Nikonovas et al., 2020; Pan et al., 2018; Spessa 
et  al., 2014; Wooster et  al., 2012). Nonetheless, droughts of sufficient severity and scale can interrupt mois-
ture recycling and cause significant upticks in BA in Amazonia (Aragão et al., 2018; Brando et al., 2008, 2014; 
Cochrane, 2003; D. Nepstad et al., 2004, 2007; Fonseca et al., 2019; Marengo et al., 2011). The critical influence 
of drought on pantropical fire activity is also evident globally from the interannual variability in BA caused by 
the ENSO (Burton et al., 2020; Field et al., 2009; van der Werf et al., 2008; Y. Chen et al., 2017). Most analyses 
of the relationship between weather conditions and fire in Amazonia and Indonesia have centred on precipitation 
and drought metrics (Alencar et al., 2015; Aragão et al., 2018; Nogueira et al., 2017; Pan et al., 2018), however, 
FWI has been shown by Bedia et al. (2015) and Abatzoglou et al. (2018) to correlate positively with fire activity 
in these regions. Our analysis shows that BA correlates strongly with FWI on monthly timescales in southern 
Amazonia and Indonesia (Table 3, Figure 7), consistent with the important role of fire weather in priming moist 
tropical forests to burn and enabling deforestation fires or wildfires to occur. Further, the correlation between BA 
and FWI is found to be strong and significant in Indonesian forests signifying the particular dependence of fires 
on weather conditions in this region.

In our analysis, we found that the correlations between BA and FWI were weaker in southeast Australian forests 
than in many other regions of interest (Table 3, Figure 7). This observation is in line with the previous observa-
tions of Bedia et al. (2015), who also assessed the relationship between BA and FWI on a linear basis. On the other 
hand, the observation contrasts with that of Abatzoglou et al. (2018) who found a strong interannual correlation 
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between log-transformed BA and FWI in the region, which indicates that regional BA responds non-linearly 
to fire weather. The non-linear response of fire weather to BA in southeast Australia has also been highlighted 
recently by Abram et al. (2021). Several studies have concluded that the largest forest fires in southeast Australia 
(>0.5 million ha) have occurred almost exclusively in unseasonably dry and hot conditions compounded by 
extreme pyroconvective conditions (Abram et al., 2021; Di Virgilio et al., 2019; Dowdy et al., 2019).

The insignificant negative correlations seen between fire season BA and fire season FWI in northern African 
savannahs are clear outliers in our analysis. These negative relationships are best explained by strong alterna-
tive controls on fire activity in this region, including fuel availability and connectivity as governed by mois-
ture availability and by the fragmentation of natural landscapes by agriculture (Alvarado et al., 2020; Archibald 
et al., 2009, 2010; van der Werf et al., 2008; Zubkova et al., 2019; see Sections 4.1 and 5.4).

4. Bioclimatic Mediation of the Fire Weather-Burned Area Relationship
Fire weather has become more frequent and intense in the majority of world regions in recent decades, and coinci-
dent increases in BA have been seen in some regions (Section 3). Strong positive trends in BA have been observed 
in fuel-rich mesic forests, and these trends have typically coincided with substantial increases in fire weather 
(e.g., Pacific US, Pacific Canada, and east Siberia). Fire weather and BA are correlated positively in most regions 
of the world on seasonal timescales, signifying that climate is a major and pervasive control on the timing of fire 
activity. In addition, fire weather and BA correlate positively on inter-annual timescales in many mesic ecore-
gions. Nonetheless, trends in FWI and BA often diverge in regions where other bioclimatic and human factors 
act as overriding controls on fire activity (e.g., African savannahs, southern Amazonia, and the Mediterranean). 
The strength of the relationship between BA and fire weather also varies regionally and in some cases, the corre-
lation is negative on interannual timescales (e.g., African savannahs). This variability emphasizes that fire is not 
an exclusively climatic phenomenon, and that patterns and trends of fire can only be comprehensively explained 
through consideration of the influence of a broader range of bioclimatic and human factors on fire activity. In this 
section, we discuss the bioclimatic drivers and constraints that mediate the relationship between fire weather and 
BA, whereas the human drivers and constraints will be the focus of Section 5.

4.1. Vegetation Distribution and Productivity Mediate Fuel Loads

While the flammability of vegetation is critically limited by moisture deficits that are promoted by fire weather, 
those fire weather conditions are of little consequence for fire activity unless vegetation stocks are sufficiently 
dense and connected to sustain the spread of fire. Hence, low fuel availability is a second critical limitation to 
fire activity in many regions of the world and mediates the relationship between fire weather and BA (Archi-
bald et al., 2009; Bedia et al., 2015; Bistinas et al., 2014; Bradstock, 2010; Forkel, Andela, et al., 2019; Forkel 
et al., 2017; Kelley et al., 2019; Krawchuk & Moritz, 2011; Pausas & Bradstock, 2007; Pausas & Ribeiro, 2013; 
van der Werf et al., 2008). The ecoregions of the world can be arranged along a fire limitation continuum ranging 
from systems where vegetation fuels are too sparse to sustain significant fire spread (fuel production limited) 
to systems where fuels are rarely dry enough to burn (fuel moisture limited) (Alvarado et al., 2020; Archibald 
et al., 2009; Kelley et al., 2019; Krawchuk & Moritz, 2011; Pausas & Ribeiro, 2013). Many of the ecoregions 
that display greatest sensitivity to monthly or interannual variability in fire weather, including most mesic forests, 
are those without substantial fuel limitations and where fire weather occurs with low to moderate frequency 
(Abatzoglou et al., 2018; Bedia et al., 2015).

Climate and its variability have fundamentally influenced the global biogeography of forests, savannahs, shrub-
lands, and grasslands and the species traits of vegetation, and fire has also interacted with climate to influence 
vegetation in many parts of the world (Bond & Keeley, 2005; Bowman et al., 2009; Harrison et al., 2021; Pausas 
& Keeley, 2009; Pausas et al., 2017; Whitlock et al., 2010). Annual BA peaks globally at around 10%–30% tree 
cover, where fires typically return every 10–30 years, and falls with tree cover (Archibald et al., 2009; Andela 
et al., 2017); at 60%–80% tree cover, fires typically return on the timescale of hundreds of years. Figure 8 shows 
our analysis of spatial correlations at sub-grid scale between BA and tree biomass, non-tree biomass and total 
biomass during 2019–2020, and Table 4 shows the average of these correlations within each region of interest (see 
Text A in Supporting Information S1 for methods; the correlation analyses are performed at a spatial resolution 
of 2.5° based on input data from 100 sub-grid cells with 0.25° spatial resolution). Consistent with the generally 
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negative relationship seen globally between tree cover and annual BA, we observe negative correlations between 
tree biomass and BA in the majority of world regions. In contrast, correlations between non-tree biomass and BA 
are more often positive. These correlations are broadly consistent with the flammable nature of herbaceous fuels, 
which dry more rapidly during periods of fire weather than woody fuels and so can quickly become flammable 
(Alvarado et al., 2020; Kahiu & Hanan, 2018; van der Werf et al., 2008; Y. Chen et al., 2017).

Fire has itself imprinted on the traits of some plant species, which have evolved survival or rejuvenation strat-
egies to deal with fire disturbance. For example, the eucalyptus forests of Southeast Australia are particularly 
noted for their tolerance of fire, with flammable properties such as leaves with high surface area and volatile oil 
content (Bond & Keeley, 2005; Cawson & Duff, 2019; Crisp et al., 2011; Rodriguez-Cubillo et al., 2020; Tumino 
et al., 2019). Eucalyptus species show various evolutionary strategies that protect them from mortality or allow 

Figure 8. Spearman's correlation (ρ) between mean annual burned area (BA) and biomass fuel stocks (Spawn et al., 2020) 
during 2001–2019 at 2.5° resolution. Correlations are shown separately for (top panel) total, (middle panel) tree and (bottom 
panel) non-tree biomass fuel stocks. The correlation analyses are performed at a spatial resolution of 2.5° based on input data 
from 100 sub-grid cells with 0.25° spatial resolution. The BA data derive from Giglio et al. (2018; updated through 2019) and 
the biomass data from Spawn et al. (2020; see methods in Text A in Supporting Information S1).
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their communities to re-establish quickly following fire (Burton, Bennett, et al., 2021; Furlaud et al., 2021; Poulos 
et al., 2018; Rodriguez-Cubillo et al., 2020). In our analysis, correlations between tree cover and BA were usually 
negative but this differed in the case of southeast Australia and in the Mediterranean climates of the Pacific US 
and the Iberian Peninsula, where weak positive correlations are seen between tree biomass and BA (Figure 8, 
Table 4). These spatial correlations suggest that denser forests in these regions support a greater level of fire 
activity, in contrast to forests in other world regions.

Notably, plant traits can also modulate fire characteristics. Differences in low-severity surface fire and high-se-
verity crown fire dynamics are seen between boreal forests in North America and Eurasia, and they have been 
associated with the traits of the spruce, pine and larch species that dominate in those regions (Baltzer et al., 2021; 

Note. The regional correlations reflect spatial co-variability in BA and biomass carbon density, expressed as the average of the correlations seen across the 2.5° cells of 
each region (each 2.5° cell includes a sample of 100 data points for each variable at 0.25° resolution). This approach is based on that used by Andela et al. (2017). We 
consider regional correlations to be significant in cases where the majority (>50%) of cells show a significant correlation (p < 0.05) of the same sign. Colors represent 
the strength of positive (purple) and negative (green) correlations as in Figure 8. The BA data derive from Giglio et al. (2018; updated through 2019) and the biomass 
data from Spawn et al. (2020; see methods in Text A in Supporting Information S1).

Table 4 
Regional Correlations Between Burned Area (BA) and Aboveground Biomass Carbon Density Based on BA Observations and Biomass Carbon Density
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de Groot et al., 2013; Rogers et al., 2015; Wooster & Zhang, 2004). Rogers et al. (2015) suggested that the North 
American dominant species have evolved to embrace or tolerate high-severity stand-replacing fires as part of 
their life cycle, whereas the Eurasian dominant species have evolved to promote low-severity fires with low 
tree mortality. The dominant Eurasian species shed more understory branches (reducing ladder fuels), maintain 
higher leaf moisture and thicker bark, and have greater survival rates during fires than their North American 
counterparts (Rogers et al., 2015). Meanwhile, the dominant North American species, most notably black spruce, 
favor high-intensity crown fires that combust more fuel and lead to higher tree mortality (Rogers et al., 2015). An 
increase in the coniferous fraction of tree cover with latitude in Canada has also been associated with increased 
sensitivity to fire weather, consistent with observations that North American coniferous species are less resistant 
to fire than deciduous species (X. Wang et al., 2014). The importance of species traits is similarly implied in our 
analysis by the contrasting correlations between tree biomass and BA in the Pacific Canadian and Alaskan forests 
versus the east Siberian forests, with the latter showing a negative correlation consistent with the fire-resistant 
properties of dominant subspecies in the region (Figure 8, Table 4). Several studies have shown that including 
vegetation properties such as stand age and species composition can improve the predictive capacity of fire 
models in Canadian forests versus those based on fire weather alone (Cavard et al., 2015; Hanes et al., 2019), 
including in the case of severe fires (Walker et al., 2020). Recently, it has been reported that the regeneration of 
black spruce communities following fire is beginning to falter in some regions of North America as reductions 
in moisture availability lessen their competitive advantage over other species (Baltzer et al., 2021). This demon-
strates how climate transitions beyond historical windows can alter special composition and alter the fire-adapted 
traits of the landscape.

Analyses of the relationship between BA and tree fraction or tree biomass provide insights into the role of vege-
tation biogeography as a control on fire activity, however, they do not represent temporal variability in fuel avail-
ability, which exerts important controls on fire activity in many fuel productivity-limited ecoregions of the world. 
In many savannahs, weather conditions lead to the desiccation and turnover of fuels in virtually every dry season, 
such that the quantity of vegetation produced during prior wet seasons is a greater control on interannual varia-
bility in BA than contemporaneous moisture deficit in the dry season season (Alvarado et al., 2020; Archibald 
et al., 2009; van der Werf et al., 2008; Y. Chen et al., 2017). A strong positive correlation between precipitation 
during the wet season and fire activity during the following dry season was observed by van Wilgen et al. (2000) 
in Kruger national park (South Africa). van der Werf et al. (2008) showed that BA increases with mean annual 
precipitation in zones of transition between deserts and savannah grasslands (e.g., in the Sahel and northern 
Australia), also highlighting the dependence of BA on prior vegetation productivity. Archibald et al. (2009) also 
showed that, in African savannahs, high wet-season rainfall followed by a long dry season supports the greatest 
fire frequencies. Andela and van der Werf (2014) showed that a reduction in precipitation associated with the 
ENSO during 2001–2012 affected the wet season productivity of African savannahs and hence also BA, particu-
larly in southern Africa. Chen et al. (2017) later showed that variability in precipitation associated with the ENSO 
influences fuel availability in northern Australian and African savannahs, with negative emissions responses 
occurring widely during the second year of El Niño as a result of reduced fuel production. Alvarado et al. (2020) 
used regression models to understand the long (2 years) and short (6 months) lagged effects of precipitation on 
fuel load and fuel moisture, respectively, in tropical savannahs. BA was principally controlled by the longer-term 
accumulation of fuels in Australian savannahs, whereas in African savannahs the effects of fuel loads and fuel 
moisture conditions were of approximately equal importance, and in South American savannahs BA was princi-
pally controlled by fuel moisture levels. Abatzoglou et al. (2018) also highlighted that 2-year precipitation was a 
stronger covariate of BA than contemporaneous fire weather in northern Australian savannahs. By using machine 
learning models, it has been shown that monthly BA increases with increasing vegetation photosynthesis in the 
previous 6 months in many semi-arid regions (Forkel, Andela, et al., 2019; Kuhn-Régnier et al., 2021).

Although fuel limitations are most prominent in savannahs and grasslands, vegetation productivity during 
prior growing seasons has also been linked with interannual variability in fine fuel availability in forests and 
shown to influence fire activity in some cases. The Mediterranean can be considered a region with complex 
constraints on fire activity, where both fuel limitations, affected by spring precipitation, and moisture limitations, 
affected by contemporaneous fuel drying, impact the interannual variability in fire (Pausas & Paula, 2012; Turco 
et al., 2014). The annual extent of forest fires has been shown to correlate positively with precipitation in prior 
years in some parts of France (Ruffault et al., 2016), Greece (Koutsias et al., 2012), and Spain (Turco et al., 2013), 
although Turco et al. (2017) concluded that antecedent conditions affecting vegetation growth explained a minor 
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fraction of the variability in summer BA at the scale of the Mediterranean. A relationship between prior-year fuel 
production and BA, consistent with fuel limitation, has also been observed in some forest ecoregions within the 
mediterranean climate zone in the western US (Keeley et al., 2015; Littell et al., 2009), although these relation-
ships are predominantly restricted to non-forests (Abatzoglou & Kolden, 2013; Keeley et al., 2017; Westerling 
et al., 2003). Similar observations have been made in southeast Australian forests where BA is notably more 
limited by fire weather than by fuel accumulation, in contrast to semi-arid grasslands and shrublands (Brad-
stock, 2010; Russell-Smith et al., 2007). Global-scale analysis has shown that forest BA rarely exhibits a strong 
positive correlation with rainfall in prior years (Abatzoglou et al., 2018).

4.2. Lightning Is a Key Ignition Source in Wildlands

Lightning is the principal natural ignition source for fire and can be the dominant ignition source in many of 
Earth's wildlands. In general, human ignitions prevail over lightning ignitions in most urban, peri-urban and rural 
landscapes, however, numerous studies have shown that lightning strikes are the major source of fire in the most 
remote parts of the world (Abatzoglou et al., 2016; Balch et al., 2017; Cattau et al., 2020; Ganteaume et al., 2013; 
Kasischke et al., 2010; Reeve & Toumi, 1999; Stocks et al., 2002).

Due to the paucity of multi-decadal lightning observations at the global scale, most studies of the relationship 
between lightning activity and fire activity have to date focused on regions where national lightning detection 
networks have been in operation or where fire causes have been recorded routinely. Stephens (2005) evaluated 
US national fire statistics from federal forest land during 1940–2000 and found that the majority of fires in the 
southwest and Pacific coast region, including California, and the upper Rocky Mountains were ignited by light-
ning. Abatzoglou et al. (2016) also examined records of fire cause in the western US and observed that 40% of 
all wildfires, representing 69% of all BA, were ignited by lightning. Combining these records with data from 
the US National Lightning Detection Network and North American Precision Lightning Network, the authors 
showed that the correlation between lightning activity and BA was weak unless the impacts of fire weather on 
vegetation dryness were also accounted for. Balch et al. (2017) showed that lightning ignitions dominate over 
human ignitions in the forest ecoregions of the western US, in stark contrast to the grassland and shrublands of 
the region. Cattau et al. (2020) showed that ecoregions of the US in which fires are predominantly ignited by 
lightning experience fires that are on average nine times larger than in areas where human ignitions dominate. 
Overall, human ignitions usually prevail in the coastal parts of the western US landscape and result in frequent 
small fires, whereas lightning ignitions are less frequent but tend to result in larger forest fires in remote terrain 
(Abatzoglou et al., 2016; Balch et al., 2017; Cattau et al., 2020).

In interior Alaska and the Northwest Territories of Canada, Veraverbeke et al. (2017) showed that interannual 
variability in lightning ignition explained more than 55% of the interannual variability in BA, while in excess of 
80% of all BA in these regions could be traced back to lightning ignition points during 1975–2015. Previously, 
Stocks et al. (2002) examined national fire records of large fires in Canada and revealed a gradient from predom-
inantly human-ignited fires in the more populous south of the country to predominantly lightning-ignited fires 
in the more remote northern regions. Around 70% of large fires and 85% of large fire BA were associated with 
lightning during 1959–1997 (Blouin et al., 2016; Stocks et al., 2002). Peterson et al. (2010) found that annual fire 
counts correlated strongly with lighting strike frequency and that ∼40% of satellite-detected hotspots in Interior 
Alaska were likely caused by lightning strikes during 2000–2006, while Kasischke et al.  (2010) showed that 
lightning-ignited fire BA has increased since the 1940s in contrast to a decrease in the case of human-ignited 
fires. Magnussen and Taylor (2012) similarly showed that 55% of recorded fires in British Columbia were ignited 
by lightning, though interannual variability in lightning igitions was twice greater than interannual variability 
in human ignitions. Hanes et al. (2019) re-examined Canadian records of large fires and showed that the area 
burned by large lightning-ignited fires increased since 1959–2017, consistent with the findings of Veraverbeke 
et al. (2017) based on a blend of national records (1975–2000) and satellite detections (2001–2015). Numerous 
studies have also highlighted that climatic and topographic conditions are favorable for dry lightning occurrence 
in the North American boreal region (Blouin et al., 2016; Dissing & Verbyla, 2003; Peterson et al., 2010). The 
distribution of fires across populated and unpopulated regions of Russia infers that forest fires in Siberia are 
predominantly caused by lightning (Kharuk et al., 2011; Mollicone et al., 2006; Ponomarev et al., 2016), although 
the explicit separation of human and lightning -ignited fires is pending in the region. In our analysis, we observed 
strong correlations between monthly BA and monthly lightning activity on a climatological basis in the forests of 
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Pacific Canada, Alaska and east Siberia, thus suggesting that lightning plays a key role as a fire ignition source 
throughout the boreal forest zone (Figure 9, Table 5).

The Mediterranean is a fire-prone region where the majority of fires are associated with human ignitions 
(Ganteaume et al., 2013; San-Miguel-Ayanz et al., 2013). One study reports that just 5% of all fires in the Medi-
terranean region are caused by lightning (Camia et al., 2010). Nonetheless, several studies have identified parts 
of Spain (Amatulli et al., 2007; González-Olabarria et al., 2015; Vazquez & Moreno, 1998), southern France 
(Curt et al., 2016; Ganteaume & Guerra, 2018) and Italy (Vacchiano et al., 2018) where lightning fires exceed 
human ignitions, which are typically remote forested areas (Perez-Invernon et al., 2021). Ganteaume et al. (2013), 
San-Miguel-Ayanz et al. (2013), and Pineda and Rigo (2017) have investigated relationships between lightning 
ignition and the largest and some of the most severe fires in the Mediterranean.

Lightning is noted as a key ignition source in southeast Australia, in particular due to the relationship between 
pyroconvective conditions and fire activity in the region. Some of the most significant wildfire outbreaks in 
Australian history have been ignited by lightning strikes. For example, during the Black Saturday fires of 2009, 
which remain the deadliest Australian fire outbreak on record, convection resulting from the initial fires led to the 
generation of additional lightning strikes that ignited fires in neighboring forests (Dowdy et al., 2017). Penman 
et al. (2013) showed that lightning becomes an increasingly important contributor to total ignitions with distance 
from human infrastructure in southeast Australia, and that lightning ignitions tend to cluster on high and forested 
terrain. Lightning ignition rate is more strongly modulated by contemporaneous fire weather conditions than in 
the case of human-ignited fires (H. Clarke, Gibson, et al., 2019). Nonetheless, at the scale of Victoria and New 
South Wales, lightning ignitions of large forest fires are outnumbered by human ignitions of small fires espe-
cially in the more populated coastal regions (Attiwill & Adams, 2013; K. M. Collins et al., 2015; Williamson 
et al., 2016). Many fires occur each year in periods prior to the annual season of significant lightning activity, 
signifying the influence of humans on the fire regime in southeast Australia; however, peaks in annual fire 
activity partially coincide with peaks in lightning activity during the late dry season (Williamson et al., 2016). 
Dowdy (2020) found that the likelihood of dry lightning strikes has increased in all seasons in southeast Australia 
during 1979–2016, representing an upwards pressure on fire activity.

Many of the studies discussed above have used national records of fire cause to quantify the relative impor-
tance of lightning and human ignitions. Our analysis of the correlation between climatological monthly BA and 
monthly lightning activity complements these earlier studies by evaluating the co-seasonality of fire and lightning 
in the period 1998–2010 (tropics) and 1995–2000 (extratropics; Figure 9, Table 5; see Text A in Supporting 
Information S1 for methods). In line with previous reports, we observed spatially varying relationships between 
BA and lightning activity with a tendency for positive correlations to occur in remote forested regions (Figure 9). 

Figure 9. Spearman's correlation (ρ) between burned area (BA) and lightning activity, mapped at 2.5° resolution. Spearman's 
correlation between climatological monthly BA (2001–2019) and climatological monthly lightning activity in the periods 
1995–2000 (extratropics) or 1998–2010 (tropics). Correlations derived at 0.5° are averaged to 2.5° for consistency with other 
correlation plots. The BA climatology is based on data from Giglio et al. (2018; updated through 2019) and the lightning 
climatology on data from Cecil et al. (2014; see methods in Text A in Supporting Information S1).
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Insignificant positive correlations between lightning activity and BA 
were seen in many parts of the extratropics, including in the forests 
of the Pacific US and Canada, Alaska, east Siberia. The strongest and 
most significant correlations were observed in high latitude forests of 
Alaska and Siberia. The predominance of positive correlations in the 
extratropics is consistent with prior studies showing lightning's impor-
tance as a fire ignition source in temperate and boreal forests, however, 
the insignificance of the correlations likely indicates that fire weather 
or other bioclimatic and human factors have more pronounced impacts 
on the temporal variability in fire activity.

In contrast to the extratropics, our analysis shows insignificant nega-
tive correlations between BA and lightning activity across most of the 
tropics, including in African savannahs, but excluding some tropical 
forests. The negative correlation for much of the tropics likely reflects 
the coincidence of wet season peaks in lightning frequency with the 
season of greatest vegetation moisture content (and therefore lowest 
flammability), which determines that lightning strikes predominantly 
occur at a time when fire ignition and spread are most inhibited.

The positive correlation between lightning and BA in western and 
central parts of Amazonia is a peculiar regional finding with rela-
tively little precedent from the existing literature (Figure 9, Table 5). 
Fires in the Amazon are usually considered to result overwhelm-
ingly from deforestation or degradation fires as wet lightning with 
low ignition efficiency is more common than dry lightning (Alencar 
et  al.,  2004; Cochrane, 2003; van Marle, Field, et  al.,  2017; van der 
Werf et al., 2017). However, the positive, though insignificant, corre-
lation seen here implies that lightning may be a more important igni-
tion source than is typically considered. We note that the annual peak 
in lightning activity occurs around August-September in Amazonia, 
which coincides with the typical deforestation season of July-October 
(Aragão et al., 2018). Hence, the correlation between lightning and BA 
may be an artifact caused by covariance between lightning activity and 
human ignitions. In addition, lightning and deforest ation fires may not 
be mutually exclusive as it has been suggested that smoke emitted from 
deforestation fires can promote lightning activity in Amazonia through 
pyroconvection and the supply of smoke particles to the atmosphere 
(Altaratz et al., 2010; Cochrane, 2003; W. A. Lyons et al., 1998).

5. Human Mediation of the Climate-Fire Relationship
5.1. Human Relationships With Fire Are Spatially Diverse

Humans have used fire throughout much of our history as a species, 
and aside from some of the more remote regions of the world (see 
Section 4.2) it is generally thought that humans dominate ignitions 
globally (Balch et al., 2017; Le Page et al., 2010). How and where 
humans today use fire intentionally as a tool of land stewardship, for 
deforestation, and for agricultural purposes creates distinct global 
patterns of high fire activity where climatic controls are second-
ary (Archibald et  al.,  2013; Syphard et  al.,  2017). Further, human 
management of the landscape feeds back to patterns of fire extent, 

frequency, and seasonality. Contemporary human suppression of fire through direct control (i.e., firefighting), 
land use or land management has created novel fire regimes, many of which are exacerbated by the changing 
climate (Archibald et al., 2013; Bowman et al., 2011; Kelley et al., 2019).

Note. The lightning climatology in the tropics and subtropics is based on OTD data 
obtained during 1995–2000 and LIS data obtained during 1998–2010, whereas 
the extratropical climatology is based only on OTD data. We calculated the BA 
climatology for the period 2001–2019. Colors represent the strength of positive 
(purple) and negative (green) correlations as in Figure 9. The BA climatology is 
based on data from Giglio et al. (2018; updated through 2019) and the lightning 
climatology on data from Cecil et al. (2014; see methods in Text A in Supporting 
Information S1).

Table 5 
Regional Correlations Between Climatological Monthly Burned Area (BA) and 
Climatological Monthly Lightning Flashes, Averaged Within Each Region



Reviews of Geophysics

JONES ET AL.

10.1029/2020RG000726

34 of 76

Global fire ignitions by humans today generally fall into three categories: human-caused wildfires that are usually 
accidental (but also include arson); intentional deforestation fires set to clear existing forests, and; intentional 
agricultural fires set annually to support cultivation of crops and pastoralism. Efforts to parse out whether human-
caused fires are intentional or accidental focus on departures from natural fire regimes (seasonality and intensity), 
land use/land cover linkages, and syntheses of regional ethnographic literature, although these have primarily 
been regional in nature and there is no global human fire data set to date (Lauk & Erb, 2009; Lavorel et al., 2007).

To summarize all variants of the human-fire relationships, which are inherently local in nature, would be an 
elusive task (Ford et al., 2021). Nonetheless, some of the great spatial diversity of human relationships with 
fire has been distilled into regional patterns by global-scale studies of the co-variability between satellite-ob-
served BA and population density and land use (Andela et al., 2017; Kelley et al., 2019). Here, we highlight 
some of the better-documented impacts of humans on global patterns of fire in relation to their influence on 
ignition opportunities, land cover, fuel loads and connectivity, and we consider how the spatial and temporal 
variability in these effects mediates the climate-fire relationship. To complement this discussion, we analyzed 
the spatial correlation between mean annual BA (2001–2019) and human population density at sub-grid 
scale, following the approach of Andela et al. (2017) with BA observations (see Text A in Supporting Infor-
mation S1 for methods). Correlations are highly variable on these spatial scales (e.g., holding a mixture of 
positive and negative values; Figure 10) such that they can average to weak values even within ecoregions 
(Table 6).

5.2. Human Population and Infrastructure Mediate Wildfire Ignitions

Human ignitions, both accidental and related to arson, are most evident and tractable in European countries and 
some of their previous colonies, where intensive wildfire suppression is the dominant mode of management and 
deforestation and agricultural fires set by rural landowners are less prominent, including in the US, Canada, 
Australia, and much of Europe. Across these regions, human-caused wildfire distribution relates strongly to 
spatial proximity to human infrastructure and density in general. This includes increased ignitions with higher 
proximity to roads (Catry et al., 2009; Curt et al., 2016; Ganteaume et al., 2013; Gralewicz et al., 2011; H. Clarke, 
Gibson, et al., 2019; Oliveira et al., 2017; Silva et al., 2019; Syphard et al., 2017), with increased settlement in 
rural areas (Radeloff et al., 2018), and with higher population density (Clarke, Gibson, et al., 2019; Gralewicz 
et al., 2011; K. M. Collins et al., 2015, 2016), while rural abandonment coincides with a reduction in fire inci-
dence (Oliveira et al., 2017; Silva et al., 2019). Spatial variability in human ignition opportunities can strongly 

Figure 10. Spearman's correlation (ρ) between mean annual burned area (BA) and population density, gridded at 2.5° 
resolution. The correlation analysis is performed at a spatial resolution of 2.5° based on input data from 100 sub-grid cells 
with 0.25° spatial resolution. The BA data derives from Giglio et al. (2018; updated through 2019) and the data for population 
density follow Andela et al. (2017; see methods in Text A in Supporting Information S1).
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Note. The regional correlations are expressed as the average of the correlations seen across the 2.5° cells within each region 
(see Figure 10). We consider regional correlations to be significant in cases where the majority (>50%) of cells show a 
significant correlation (p < 0.05) of the same sign. Colors represent the strength of positive (purple) and negative (green) 
correlations as in Figure 10. The BA data derive from Giglio et al. (2018; updated through 2019) and the data for population 
density follow Andela et al. (2017; see methods in Text A in Supporting Information S1).

Table 6 
Regional Spearman's Correlations (ρ) Between Mean Annual Burned Area (BA) and Population Density
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determine if a spell of fire weather translates to fire incidence, particularly in regions where lightning ignitions 
are rare.

Temporally, human-caused wildfires expand wildfire seasons well beyond the peak burning period of the natural 
fire regime (Balch et al., 2017; Le Page et al., 2010). Perhaps the starkest example of human-caused ignition 
anomalies is the >200% increase in mean daily ignitions in the US on its 4 July Independence day, linked to 
widespread use of fireworks (Balch et al., 2017). Notably, in regions with strong fire suppression and education 
campaigns (e.g., North America), the number of human-caused fires has declined significantly over the last 
half-century (Coogan et al., 2021; Prestemon & Butry, 2005).

5.3. Fire Is Integral to Tropical Deforestation

Fire is regularly used for the process of deforestation and land clearing for agriculture in the tropics, where 
modern land use changes have been most concentrated in recent decades (Hansis et  al.,  2015; Houghton & 
Nassikas, 2017). The so-called “slash-and-burn” agriculture practice has principally been concentrated in the 
tropical forests of southern Amazonia and Indonesia (Aragão et  al.,  2018; Silva Junior et  al.,  2021; Curtis 
et al., 2018; D. Nepstad et al., 2014; van der Werf et al., 2017). Fire is integral to the deforestation process in 
Amazonia and hence deforestation rates are highly correlated with fire incidence (Aragao & Shimabukuro, 2010; 
Aragão et al., 2008). The annual window of fire is constrained by the length and intensity of the dry season which 
vary from year to year, highlighting the underlying role of meteorology in controlling the timing of deforestation 
activities (Carvalho et al., 2021). Amazonian BA trends have changed in sign several times since the 1990s in 
response to policy implementation, regulation and recent relaxation (Aragão et al., 2018; D. Nepstad et al., 2014; 
Libonati et al., 2021; Tyukavina et al., 2017; Silva Junior et al., 2021; see Section 3.2). Notably, fire incidence is 
concentrated along legal and illegal roads and waterways, and at the periphery of existing agriculture, reflecting a 
mixture of expanding agricultural frontiers and unintentional fire escape from agriculture into the degraded edges 
of neighboring forest (Aldersley et  al.,  2011; Azevedo-Ramos & Moutinho, 2018; Cano-Crespo et  al.,  2015; 
Cochrane & Barber, 2009; D. Nepstad et al., 2001; Kumar et al., 2014).

Deforestation has legacy effects on the susceptibility of tropical forest edges to fire. Forest edges are less produc-
tive and hold lower stocks of biomass than intact forests, and they also experience increased rates of tree mortality 
and reduced rates of plant reproduction (Chaplin-Kramer et al., 2015; Pütz et al., 2011). Forest edges are more 
susceptible to desiccation and fire during droughts because they are better-ventilated and warmer due to reduced 
canopy cover and evaporative cooling, and because the penetration of light to the forest floor facilitates the 
enhanced growth of herbaceous vegetation that is sensitive to fire weather (Aragão et al., 2008, 2014, 2018; Alen-
car et al., 2015; Balch et al., 2015; Brando et al., 2014; Cochrane & Barber, 2009; Cochrane & Laurance, 2002; 
Coe et al., 2013; Silva Junior et al., 2018; Davidson et al., 2012; Fonseca et al., 2019; Hardwick et al., 2015; 
Laurance & Williamson, 2001; Nikonovas et al., 2020; Phillips et al., 2009). Understory vegetation can facil-
itate the spread of fire into forests from neighboring agricultural land, and even in regions of Amazonia with 
declining deforestation rates, the regular occurrence of agricultural fires near forest edges has been found to 
increase the incidence of wildfires in recent decades, especially during droughts (Alencar et al., 2004; Aragão 
et al., 2008, 2014; Barlow et al., 2020; Silva Junior et al., 2018; Nepstad et al., 2008). Selective logging has also 
been shown to increase forest temperatures, increase ventilation and foster the ingress of herbaceous vegeta-
tion in the forest interior, similarly leading to an elevated risk of fire occurrence in these areas (D. C. Nepstad 
et al., 1999, 2008). Hence, the positive correlations between BA and population density and agricultural activity 
in southern Amazonia (Andela et al., 2017; Figure 10, Table 6) are likely linked to a mixture of deforestation 
fires and fire escape from agricultural land. Negative correlations between BA and tree biomass in Amazonia also 
support a link between forest degradation and fire incidence in the region (Figure 8; see Text A in Supporting 
Information S1 for methods).

While many studies have focused on the impacts of humans on fire activity in Amazonia, similar dynamics are 
seen in Indonesian tropical forests. Indonesian forest fires predominantly occur in proximity to human infrastruc-
ture (Field et al., 2009; Nikonovas et al., 2020). Field et al. (2009) showed that large fire events were recorded in 
some Indonesian forests during drought years only once the human population had expanded into those regions, 
despite equally strong droughts being recorded in the years prior. Deforestation fires are generally ignited at the 
climatological driest point of the year in order to maximize tree mortality and consumption of biomass (Field 
et al., 2016; Le Page et al., 2010). In addition, Nikonovas et al. (2020) have shown that forest edges are vulnerable 
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to fire during drought periods in Indonesia and that the dense network of human infrastructure and large extent 
of fragmented forest edges in Indonesia mean that only ∼3% of forest area remains insensitive to fire. In common 
with Amazonia, positive correlations are seen between BA and population density and agricultural activity in 
Indonesian forests (Andela et al., 2017; Figure 10, Table 6), while negative correlations are seen between BA and 
tree biomass (Figure 8). Similar dynamics have also been reported recently in African tropical forests (Z. Zhao 
et al., 2021).

5.4. Landscape Fragmentation by Agriculture Restricts Wildfire in Fire-Prone Regions

Landscape burns continue to be ignited frequently by humans in some agricultural and pastoral systems to main-
tain productivity, and there is strong regionality in the use of fire for agricultural management (Barlow et al., 2020; 
Bernardi et al., 2019; Korontzi et al., 2006; Rabin et al., 2015). In some regions, this is a continuation of millen-
nia of pastoral cultures, while in other regions it stems from colonialism and the replacement of Indigenous and 
lightning-ignited fires with intentional human ignitions. In agricultural systems, particularly where monoculture 
cereal crops dominate, humans tend to use fire to remove the crop residues from the prior growing season before 
planting or after harvest (Aguiar et al., 2011; Hall et al., 2016; McCarty et al., 2007; Korontzi et al., 2006; Moreira 
& Pe'er, 2018). Agricultural fires also influence fire patterns in regions that have been recently deforested, such as 
in Amazonia, which can lead to unintended ignitions of forest fires during drought periods (Aragão et al., 2018; 
Barlow et al., 2020; Libonati et al., 2021).

In tropical and temperate pastoral rangelands, such as the cerrado and pampas of South America, the trop-
ical savannahs of Africa and Australia and the temperate prairies and steppe of mid-North America, south-
east Australia, and central Asia, pastoralists have ignited fires near annually for millennia to remove material 
from the prior growing season and stimulate new growth of native, fire-adapted herbaceous species (Bernardi 
et al., 2019; Le Page et al., 2010, 2017; Magi et al., 2012). Today, these burns are conducted early in the growing 
season in most regions (Le Page et al., 2010), and the fires provide a short-lived fertilizing effect (San Emeterio 
et al., 2016). In many of these regions, such pastoral fires are the dominant source of fire activity, and ultimately 
serve to limit wildfires by modifying the availability and connectivity of fuel (Eloy, Bilbao, et al., 2019; Eloy, 
Schmidt, et al., 2019).

The fragmentation of natural fire-prone landscapes by expansion of agricultural land can lead to major shifts in 
the type and timing of fires. While early dry season agricultural burns are applied to maintain agricultural produc-
tivity and workability of the land, the removal of natural vegetation excludes wildland fires that would otherwise 
be more expansive and occur later in the dry season. Fire is excluded from croplands by irrigation, which main-
tains sufficiently high moisture levels to retard combustion (Moreira & Pe'er, 2018; Moreira et al., 2011; Oliveira 
et al., 2014). The maintenance of dry croplands, such as cereal crops and legumes, also reduces BA by altering 
fuel structure, timing of harvest (i.e., removing fuel prior to peak fire potential), and the speed and efficacy 
of fire suppression efforts in valuable croplands (Cruz et al., 2020; Moreira et al., 2009). In contrast to annual 
crops, agricultural forestry plantations can increase fire activity and severity, both through increasing the density 
of fuel and introducing non-native species with high flammability (Bowman et al., 2019; Moreira et al., 2009; 
Thompson et al., 2007). The herding of livestock, which consume herbaceous biomass and thus prevent fuel 
build-up, can result in the exclusion of fire from some areas; indeed, livestock are specifically used for this 
purpose in some fire-prone regions (Archibald & Hempson, 2016; Bernardi et al., 2019; Bond, 2008; Hempson 
et al., 2017; Scholes, 2009; Stevens et al., 2017). However, in some semi-arid regions where BA was historically 
low, overgrazing has been cited as the source of land cover conversion from relatively fire-resistant shrublands to 
high-flammability exotic grasslands, leading to significant increases in fire frequency and BA (Balch et al., 2013; 
D’Antonio & Vitousek, 1992; Olsson et al., 2012).

As more than half of global BA occurs in African savannahs, the drivers of fire in these regions are largely 
responsible for the overall declining trend of global BA. Several factors have received attention as potential driv-
ers of the significant decline in BA in the African savannahs during recent decades, including changing precip-
itation patterns which variably affect fuel build-up and fuel moisture levels, but also including a shift towards 
high-capital agricultural production (Alvarado et al., 2020; Andela & van der Werf, 2014; Forkel et al., 2017; 
Zubkova et al., 2019). A widespread transition from nomadic pastoralism on common land to permanent cropland 
systems has been invoked by some studies as a key driver of the significant decline in BA during recent decades 
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(Andela et al., 2017; Arora & Melton, 2018; Grégoire et al., 2012; Houghton et al., 2000). This explanation is 
consistent with previous reports that fire timing and frequency are controlled by management practices employed 
in permanent croplands, that unplanned fires tend to be suppressed actively, and that the landscape tends to be 
more fragmented thus inhibiting the spread of fire, in contrast to nomadic pastoralism which often promotes 
burning as a tool for land management (Archibald et al., 2009; Grégoire et al., 2012; Tiffen, 2006; Turner, 2011; 
Van Wilgen, 1997). Supporting these accounts of the socioeconomic dynamics of agriculture affecting fire in the 
African savannahs, Andela et al. (2017) evaluated how the relationship between BA and population and land use 
varies across gradients of economic development. The relationships seen between BA and the density of humans, 
cropland and livestock were found to conform to a conceptual framework describing the socioeconomic drivers 
of fire in Africa: As landscapes are converted from common land with low economic productivity to permanent 
agriculture with higher economic productivity, open canopy savannah-grasslands become more fragmented and 
BA reduces in both the remaining intact savannahs and on the farmed land. Further, the authors showed that BA 
falls most rapidly during the initial phases of transition from common to low-capital permanent agriculture, and 
more slowly during the later transition from low- to high- capital permanent agriculture.

Beyond the studies of the socioeconomic drivers of fire activity in the African savannahs, the impacts of temporal 
variability and trends in climate and land use on BA have also been investigated. Andela and van der Werf (2014) 
used a statistical model describing the dependence of annual BA on antecedent precipitation as well as change 
in cropland extent. The model indicated that 24% of the decline in BA is explained by reductions in precipitation 
and 20% was explained by cropland expansion in northern hemisphere savannahs. Meanwhile, in southern hemi-
sphere savannahs, trends in BA were driven predominantly by changing patterns of precipitation. Employing the 
same statistical model, Andela et al. (2017) adjusted annual BA estimates to filter out the effect of precipitation 
on BA in Africa during the 1998–2016, finding that the significant decline in BA persisted even after accounting 
for precipitation trends. This result implicated human effects such as cropland expansion and the fragmentation 
of the natural fire-prone landscape as the predominant driver of the decline in BA during 1998–2016. However, 
other studies have debated the importance of cropland expansion to trends in African savannahs. Earl and 
Simmonds (2018) showed that weekly cycles of fire activity are weak in African savannahs, suggesting a lesser 
human imprint on fire activity than in other world regions. They instead considered the reduction in fire activity 
in northern Africa to result from a combination of agricultural expansion and declines in vegetation productiv-
ity which had been reported by others (Giglio et al., 2013; M. Zhao & Running, 2010). Zubkova et al. (2019) 
studied the contribution of trends in effective rainfall (precipitation minus evapotranspiration) and soil moisture 
to BA trends at the ecoregional scale in African savannahs, finding that these metrics were stronger predictors 
of BA  than precipitation alone in all ecoregions. The results indicated that climate variables can explain 70% of 
the  BA decline in Africa, a higher proportion that the 24% found by Andela and van der Werf (2014), most likely 
because the variables used as predictors reflect the landscape-level hydrological balance making them better 
indicators of the moisture available to vegetation (for either fuel production or the maintenance of vegetation 
moisture levels).

In summary, most studies suggest a mix of bioclimatic and human factors are responsible for the decline in 
BA in African savannahs during recent decades. Spatial correlations imply that human activities including the 
agricultural extent and landscape fragmentation are important drivers of variability in BA in African savannahs, 
consistent with understanding of socioeconomic processes affecting fire in the region, particularly in the north-
ern hemisphere (Figure 10). Some studies have also suggested that the effect of human activities can be detected 
in the temporal trend in BA in the north African savannahs. On the other hand, the impact of humans is clearly 
heterogenous, and for example, positive correlations between human activities and BA are seen in the Sahel and 
many parts of Southern African savannahs (Figure 10). In addition, climate trends including reductions in rainfall 
have been shown to suppress vegetation productivity, reduce fuel stocks and thus generally reduce BA, and these 
trends have also been implicated as important drivers of the decline in BA in some parts of the African savannahs. 
Hence, it is likely that humans and bioclimatic factors are both important drivers of BA in African savannahs, and 
that these factors have both contributed to the substantial regional decline in BA during recent decades. Machine 
learning models attribute temporal variability in BA in African savannahs to humans and bioclimatic factors, with 
high spatial variability in the relative importance of each factor (Forkel et al., 2017; Kelley et al., 2019). This 
highlights the complexity of the controls on fire in the region and that the decline in BA during recent decades is 
likely to be explained by interacting human and bioclimatic phenomena.
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5.5. Humans Suppress Fire to Protect Lives and Assets

Aside from deforestation fires and agricultural burning, intentional fire suppression is the globally prevalent 
response to wildfires caused by natural or unwanted human ignitions, especially in developed nations strongly 
influenced by European colonial attitudes to fire (Burrows & McCaw,  2013; Doerr & Santín,  2016; Marlon 
et al., 2012; North et al., 2015). The concept of fire control was initially brought to the Americas, Australia, 
and Africa by European colonizers, who fundamentally changed fire use by Indigenous peoples (Greenlee & 
Langenheim, 1990; Head, 1994; Mensing et al., 1999), although it was still used by white settlers in rural areas 
as a primary tool for clearing land for farming and to establish communities. This changed rapidly in the latter 
half of the nineteenth century in concert with the industrial revolution, as railroads expanded globally (and steam 
engines became a vector for ignitions in dry regions), timber became a highly valued commodity for building 
the rapidly expanding post-colonial cities, and machinery began to replace landscape fire as a more controllable 
and efficient tool (Bowman et al., 2011). Government-organized wildfire suppression expanded throughout the 
twentieth century, and became particularly effective in the aftermath of World War II, when military techniques 
and equipment were adopted (Pyne, 1982).

Modern suppression techniques have been effective in limiting the spread of fire in many fuel types globally for 
over a century, particularly where low- and moderate-intensity fires dominate the fire regime. Suppression has 
been less effective in regions dominated by high-intensity, stand-replacing fires associated with extreme fire 
weather conditions; as those conditions occur more frequently with climate change, the efficacy of suppression 
has declined and larger, longer-burning fires have occurred. Several studies have concluded that reductions in 
BA in the Mediterranean are associated with increased suppression capability (Duane & Brotons, 2018; Forzieri 
et al., 2016; Fréjaville & Curt, 2017; Turco et al., 2016; Urbieta et al., 2019). By contrast, BA in North America 
declined in the mid-twentieth century with effective suppression, but has increased over the last four decades as 
both an accumulation of fuel and more extreme fire weather conditions have resulted in increased fire size and 
difficulty of control (Barbero et al., 2015; Littell et al., 2009). This aptly demonstrates the unintended conse-
quence of effective fire suppression, which can increase the risk of extreme fires in the long term by allowing the 
undisturbed accumulation of aboveground biomass in the absence of other fuel management interventions (Allen 
et al., 2002; A. M. S. Smith et al., 2016; Schoennagel et al., 2017). In the western US, fire suppression policies 
have resulted in excessive fuel accumulation, an increase in fire severity and fire size in some regions and has 
left many forest types out of sync with their historic fire regimes (Hagmann et al., 2021; Hurteau et al., 2014; 
Marlon et al., 2012).

Intentional burns have been carried out by Indigenous peoples for millennia to promote biodiversity, food security, 
facilitate mobility of human populations, protect against wildfires, and even conduct warfare (Bird et al., 2008; 
Bowman et al., 2009). In the modern period, controlled or “prescribed” fire has been co-opted by post-colonial 
western societies to achieve some of these same goals. In some regions, the magnitude of prescribed fire has 
increased to the point where it contributes substantially to regional BA (Kolden, 2019). We found that popula-
tion correlates negatively with BA in coastal regions of California, southeast Australia and the Mediterranean 
(Figure 10, Table 6). This may reflect, in part, a combination of intensive wildfire suppression, the maintenance 
of agricultural or urban landscapes, and the fragmentation of natural land cover with impacts on the connectivity 
of fuels across the landscape (Bell & Oliveras, 2006; Fernandes et al., 2013; Kolden, 2019; Prichard et al., 2021).

Controlled burning in contemporary western societies has its roots in ecological restoration but today it is used 
increasingly to manage fuel loads and with the aim to reduce the severity of wildfires, particularly in seasonally 
dry temperate forests in North America, the Mediterranean, and Australia. Controlled burns are conducted when 
weather conditions offer a low risk of fire spread (Burrows & McCaw, 2013; Doerr & Santín, 2016; Fernandes & 
Botelho, 2003; Fernandes et al., 2013; H. Clarke, Gibson, et al., 2019; Clarke, Tran, et al., 2019; Price et al., 2015). 
In the USA, between 2001 and 2019 an annual average area of 12,900 km 2 was treated with controlled burns 
compared to 27,500  km 2 by wildfires, however, >90% of the area treated was in the relatively low popula-
tion density portions of the eastern and southeastern US (Kolden, 2019). Negative correlations between popu-
lation density and BA may indicate the effectiveness of controlled burning programmes in these parts of the US 
(Figure 10, Table 6). Similarly, cooperative prescribed fire informed by aboriginal cultural practices in northern 
Australia is extensive and has shifted the peak of the burning period over a month earlier and reduced wildfire 
risks (Liu et al., 2021). The reduction in overall fire activity as a result of controlled burning programmes may 
contribute to the negative correlation between population density and BA in this region (Figure 10).
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Controlled burning is considered effective in reducing the risk of damage to infrastructure and, to various degrees, 
to reduce fire frequency and intensity (Bradstock et al., 2012; Hiers et al., 2020; Moritz et al., 2014; O. F. Price 
et al., 2015). However, its effectiveness could be diminished by lengthening FWSL in some regions (O. F. Price 
et al., 2015; Tolhurst & McCarthy, 2016). For example, extended wildfire seasons in the western US and southeast 
Australia have resulted in a perceived reduction in the number of days suitable for controlled burning amongst 
operational services (Prichard et al., 2017; Ximenes et al., 2017). In the southeast US, Kupfer et al. (2020) used 
climate models to project that the future frequency of suitable days for prescribed burning will decrease substan-
tially in the summer months by the end of the twenty-first century compared with historical conditions. Similar 
efforts using regional climate models in Australia have also pointed toward a more constrained burn window 
in southeast Australia in future climates (Di Virgilio et al., 2020), however, the projections also vary regionally 
and with definition of suitable conditions for prescribed burning (H. Clarke, Gibson, et al., 2019; Clarke, Tran, 
et al., 2019). Other work has suggested that suppression capacity could be exceeded more regularly in future due 
to climate change in parts of Canada (Wotton et al., 2017). As more extreme environmental conditions occur and 
fire frequencies change across seasonally dry biomes, questions have begun to arise about the trade-offs between 
controlled burning and other ecosystem services such as air quality and carbon storage (Hunter & Robles, 2020).

6. Century-Scale Changes in Fire Weather and Burned Area
6.1. Fire Weather Is Escalating as the Climate Warms

Increases in fire weather during the past four decades have exerted an upwards pressure on fire activity in virtu-
ally all regions of the world (Section 3; Figure 7). This pressure influences the risk of fires where fuels and 
ignition sources are available, and it is linked to variability in fire activity in many forest ecoregions with ample 
fuel loads. This raises critical questions related to fire risk in fuel-rich regions: To what extent has fire weather 
increased due to anthropogenic climate change, and will this continue in future? To help address the question, a 
host of global and regional studies have used climate model simulations of past and future change in temperature, 
precipitation, humidity and wind to simulate change in fire weather indices (Abatzoglou et al., 2019; Bowman 
et al., 2017; M. Flannigan et al., 2013).

M. Flannigan et al. (2013) used three climate models and three emission scenarios to evaluate how cumulative 
severity rating (CSR), a component of the FWI, will change in the mid-century (2041–2050) and late century 
(2091–2100) relative to the 1971–2000 baseline. They observed significant increases in CSR that are initially 
most pronounced in high northern latitudes but encompass most of the Earth by the end of the century. Bowman 
et al. (2017) calculated the future frequency of extreme (93rd percentile) fire weather based on 23 CMIP5 climate 
models running RCP 8.5, finding increases on the order of 20%–50% by the mid-21st century in many regions 
that are historically prone to disastrous fires (e.g., the western US and southeast Australia) and larger increases in 
the Mediterranean and the subtropical Southern Hemisphere. Abatzoglou et al. (2019) used a 17-model ensem-
ble of CMIP5 climate models to assess trends in four metrics of fire weather including FWSL and the annual 
frequency of extreme fire weather (FWI95d), also applying the temperature of emergence framework to distinguish 
modern and future fire weather from that seen in the pre-industrial period (see Section 6.2). Son et al. (2021) 
recently highlighted that fire weather increases markedly between the 1.5°C and 2.0°C increments of global 
MAT in many regions, most notably in the Mediterranean, Amazonia and African savannah. While their results 
highlight the potential benefits to mitigating avoided fire risk of meeting the 1.5°C ambitious target of the Paris 
Agreement rather than the 2.0°C commitment, our results further indicate that weather-related fire risks could 
also rise substantially if the 2.0°C commitment is not achieved.

As an extension to the global modeling exercise of Abatzoglou et al. (2019), we used the same 17-model ensem-
ble of CMIP5 models to estimate the regional impacts of climate change on modeled mean annual FWSL and 
mean annual FWI95d for the modern period (1980–2019) and for policy-relevant MAT increments (1.5°C, 2.0°C, 
3.0°C, and 4.0°C) relative to the pre-industrial period (1860–1910; see Text A in Supporting Information S1 for 
methods; Tables 7 and 8, Figure 11). In general, the majority of models agree on the sign and significance of 
trends in FWSL and FWI95d at temperature increments of 1.5°C and above (Tables 7 and 8).

The modeled historical changes in FWSL varied across our focus ecoregions, with the greatest proportional 
changes occurring in Alaskan forests (+28%), southern Amazonia (+22%) and the Mediterranean (+20%) and 
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the greatest absolute changes in Pacific US forests (+7 days year −1), the Mediterranean (+8 days year −1), and 
African savannahs (+5–6 days year −1). FWSL is projected to increase particularly rapidly in Amazonia as higher 
temperature increments are breached, from +74% at 1.5°C, to +136% at 2.0°C, +282% at 3.0°C and +414% 
at 4.0°C. FWSL is also projected to increase steeply in Alaskan forests, the Mediterranean, Pacific Canadian 
forests and Indonesian forests, increasing by 37%–73% at temperature increments of 1.5°C–2.0°C and approxi-
mately doubling at 3.0°C above the baseline (Figure 11, Table 7). Similar patterns of change in FWI95d are also 
seen across most of these regions, although typically the relative changes are larger in magnitude (Table 8). For 
example, FWI95d is predicted to increase 2–3 times more rapidly than FWSL in the Mediterranean and Pacific 
US forest at all future temperature increments, and 4–7 times more rapidly than FWSL in African savannahs. Son 
et al. (2021) recently highlighted that fire weather increases markedly between the 1.5°C and 2.0°C increments of 
global MAT in many regions, most notably in the Mediterranean, Amazonia and African savannah. While their 
results highlight the potential benefits to mitigating avoided fire risk of meeting the 1.5°C ambitious target of the 

Note. Significant changes in FWSL are assessed using a t-test for each model, and here, we show the degree of model agreement (% of models) on the sign and 
significance of the reported changes. The timing of the emergence of FWSL beyond pre-industrial variability is identified via a strict signal-to-noise criterion. All data 
and methods follow those of Abatzoglou et al. (2019; see methods in Text A in Supporting Information S1). Colors represent the strength of positive (red) and negative 
(blue) relative changes in fire weather as in Figure 11.

Table 7 
Fire Weather Season Length (FWSL) Modeled by 17 CMIP5 Models (Multi-Model Mean) During a Baseline Period of 1860–1910, and Change in FWSL in the 
Modern Period (1990–2019) and at Four Future Temperature Increments (1.5°C, 2.0°C, 3.0°C, and 4.0°C; 10 Models Only for 4.0°C)
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Paris Agreement rather than the 2.0°C commitment, our results further indicate that weather-related fire risks 
could also rise substantially if the 2.0°C commitment is not achieved 12.

Substantial increases in future fire weather have previously been modeled in North American boreal regions 
where MATs are increasing at a faster rate than elsewhere in the world (Coogan et al., 2019; de Groot et al., 2013; 
Kirchmeier-Young et al., 2017, 2019; M. D. Flannigan et al., 2005, 2009, 2013; Wotton et al., 2017). De Groot 
et al. (2013) used several models and concentration scenarios to simulate the impacts of climate change on daily 
severity rating, a component of the FWI representing the degree to which a fire could be suppressed, in two 
large boreal study areas in Canada and Russia. All models and climate change scenarios indicated that future fire 
weather conditions will become more severe in both regions by up to a factor of 4–5 during the peak of the fire 
season in the late twenty-first century relative to the late twentieth Century, with the largest increases occurring in 
western Canada. The annual number of spread days, defined according to operational thresholds that are deemed  

Note. Significant changes in FWI95d are assessed using a t-test for each model, and here, we show the degree of model agreement (% of models) on the sign and 
significance of the reported changes. The timing of the emergence of FWI95d beyond pre-industrial variability is identified via a strict signal-to-noise criterion. All 
data and methods follow those of Abatzoglou et al. (2019; see methods in Text A in Supporting Information S1). Colors represent the strength of positive (brown) and 
negative (purple) relative changes in fire weather as in Figure 11. See methods in Text A in Supporting Information S1.

Table 8 
The Frequency of Extreme Fire Weather (FWI95d) Modeled by 17 CMIP5 Models (Multi-Model Mean) During a Baseline Period of 1860–1910, and Change in 
FWI95d in the Modern Period (1990–2019) and at Four Future Temperature Increments (1.5°C, 2.0°C, 3.0°C, and 4.0°C; 10 Models Only for 4.0°C)
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Figure 11. Global patterns and trends in fire weather based on multi-model statistics from 17 CMIP5 models (10 models for +4.0°C), gridded at 2.5° resolution. 
Multi-model mean estimates of (top row) mean and (other rows) change in (left panels) fire weather season length (FWSL) and (right panels) days exceeding the 95th 
percentile fire weather index (FWI95d) relative to the baseline period (1861–1910). Changes are shown for the modern period (1990–2019) and for each of four global 
mean annual temperature increments as indicated. All data and methods follow those of Abatzoglou et al. (2019; see methods in Text A in Supporting Information S1).
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by practitioners to be supportive of fire spread, will increase by 35%–400% by mid-to-late century across Canada 
relative to the late twentieth century conditions (Wang et al., 2015, 2017). Wotton et al. (2017) analyzed projec-
tions from three climate models, which showed progressive increases in both fuel dryness and the potential 
intensity of fires that occur in Canadian boreal forests during the twenty-first century. The number of days with 
greatest potential of intense, and often unmanageable, crown fires was simulated to increase due to changes in 
moisture availability in aboveground biomass. The projections of future fire weather and its interannual vari-
ability vary across ecosystems (Kitzberger et al., 2017; Young et al., 2017). Alaskan Arctic tundra and boreal 
forest edge environments are projected to experience the largest increases in fire weather, where the 30 years 
fire probability is projected to increase four-fold by 2100 under RCP6.0 based on change in climatic conditions 
(Young et al., 2017).

According to our analysis, FWSL has historically increased by 18%–28% (∼2  days year −1) and FWI95d by 
16%–19% (∼3 days year −1) in Alaskan and Pacific Canadian forests since the pre-industrial period (1860–1910), 
with the majority of models agreeing on the sign and the significance of these changes in the case of FWSL. In 
these regions, the simulated increases in FWSL rise to 37%–62% (3–6 days year −1) at global MAT increments 
of 1.5–2.0°C, to 136% (7–13 days year −1) at 3.0°C and to 174%–177% (10–18 days year −1) at 4.0°C. Mean-
while, FWI95d is simulated to increase to 28%–44% (4–7 days year −1) at global MAT increments of 1.5–2.0°C, 

Figure 12. Multi-model median simulations of burned area (BA) fraction during 1901–1930 (% year −1) and change in BA 
fraction between the periods 1901–1930 and 1983–2012 (% year −1) from the ensemble of six Fire Model Intercomparison 
Project models, gridded at 2.5° resolution. (Top panel) Multi-model median estimate of mean annual BA fraction in the 
baseline period 1901–1930. (Right panel) Change in the multi-model median estimate of mean annual BA fraction between 
baseline and modern (1983–2012) periods. The model simulation data derives from Teckentrup et al. (2019) with updates to 
two models after Lasslop, Hantson, Harrison, et al. (2020) and Burton et al. (2019; see Text A in Supporting Information S1 
for methods).
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to 72%–82% (12–13 days year −1) at 3.0°C and 112%–144% (17–23 days year −1) at 4.0°C. These results support 
previous work in suggesting that unabated warming of the climate will lead to substantial increases in the 
frequency and extremity of fire weather in the North American boreal region, especially beyond 2.0°C of global 
MAT increase.

Modeling assessments of change in fire weather have also been completed for the western US. Barbero 
et al. (2015) used an ensemble of climate models to project change in the frequency of fire weather conditions 
prone to producing large fire events (90th percentile BA) under the RCP8.5 scenario. The models projected an 
increase in the likelihood of large fires across most historically fire-prone regions of the western US, with the 
largest increases in the northwest US. Goss et al. (2020) showed ubiquitous, albeit heterogenous, increases in 
extreme fire weather days (FWI95d) in Autumn (September-November, when the largest wind-driven fires tend to 
occur) through 2100 in the western US under RCP4.5 and RCP8.5. The models indicated that the magnitude of 
the trend in Autumn FWI95d is not likely to be spatially uniform, yet increases are essentially ubiquitous across 
all vegetated areas of California. In some regions, relative increases in extreme FWI frequency are projected to 
exceed 50% by the late-twenty-first century under RCP4.5 and approach 100% under RCP8.5 by the late-twenty-
first century relative to 1950–1979. Abatzoglou et al. (2021) used an 18-model model ensemble to project the 
future likelihood of fire weather conditions linked to spatially synchronous large fire outbreaks across much of 
the western US under both RCP4.5 and RCP8.5. The models projected that such prolonged spatially synchronous 
extremes, which have occurred on average in one-in-three years during 1991–2020, will occur in the majority of 
years during 2050–2100 regardless of the RCP scenario. According to our analysis, FWI95d has already increased 
by 28% since the pre-industrial period, and it is projected to increase to 51% above the pre-industrial at 1.5°C and 
to more than double at 3.0°C warming (Table 8).

Numerous studies have also modeled an increase in the frequency of extreme fire weather in Australia. Models 
run by Clarke et al. (2011) projected increases in the annual number of days with extreme fire weather in south-
east Australia of 30%–200% by 2100 relative to the modern period under a high emissions scenario (SRES A2). 
Clarke et al. (2016) noted that projections of future fire weather can be highly model-dependent in Australia, 
specifically due to diverging simulations of future precipitation across models. Sharples et al. (2016) projected 
the future occurrence of pyroconvective conditions, which are strongly associated with the most extreme bush-
fires based on simulations from an ensemble of regional climate models, in southeast Australian forest. On aver-
age, the models indicated a 30% increase in the occurrence of extreme C-Haines index values of 30% by 2070 
relative to the modern period under SRES A2. Dowdy et al. (2019) modeled the future frequency of extreme 
FFDI and C-Haines index values using global and regional climate models under RCP8.5, which indicated that 
increases in extreme FFDI across Australia could be modulated by a reduction in the frequency of pyroconvec-
tive extremes in the northeast and a contrasting increase in most other regions. Di Virgilio et al. (2019) modeled 
the future occurrence of days when both the FFDI and C-Haines indices are very high to severe using regional 
climate model simulations under SRES A2, identifying significant increases in spring and lesser increases in 
summer by 2060–2079. Herold et al. (2021) recently showed that 1-in-20 years FFDI values observed in recent 
decades will return at least twice as frequently by 2060–2079 across much of southeast Australia, with strong 
agreement across an ensemble of 12 regional climate models under SRES A2. In broad agreement with these 
previous studies, our analysis suggests that FWSL and FWI95d will increase in southeast Australian forests to 34% 
and 47%, respectively, above the pre-industrial period at a global MAT increment of 2.0°C, and further to ∼50% 
and ∼60%–70%, respectively, above the pre-industrial period at 3.0°C–4.0°C warming (Tables 7 and 8).

Increases in the frequency of extreme fire weather episodes have also been projected to increase in the Medi-
terranean region. Moriondo et al. (2006) used a single climate model to show increases in mean FWI, FWSL 
and extreme fire weather frequency (week-long episodes of FWI > 45) lead to an increase in fire risk even in a 
relatively low emission scenario (SRES B2). Several studies have also projected increase in temperature, precip-
itation and drought and heatwaves and evaluated their effects on the likelihood of fire occurrence and BA in the 
Mediterranean (Parente et al., 2018; Turco et al., 2014). Fargeon et al. (2020) used three regional climate models 
under RCP4.5 and RCP8.5 to project that, by the end of the century, mean summer FWI will increase by +24% 
to 67% and the frequency of 90th percentile FWI will increase by +19% to 50% in France with greater rates of 
change in southern regions. Using an 8-model ensemble of regional climate models under RCP4.5 and RCP8.5, 
Ruffault et  al.  (2020) projected that the frequency of fire weather conditions linked to the largest fire types 
(“heatwave” and “hot drought” fires) in France, Portugal, Greece and Tunisia will increase by 14% and 30% by 
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the end of the century under the RCP4.5 and RCP8.5, respectively. Calheiros et al. (2021) used projections from 
11 regional climate models under RCP4.5 and RCP8.5 to reveal significant increase in future fire weather on the 
Iberian Peninsula that will be temporally pronounced in late spring and early autumn, and spatially pronounced 
in southern and eastern parts of the region. Our analyses indicate that FWSL has already increased by 20% and 
FWI95d by 51% since the pre-industrial period, with the majority of models in agreement on the sign and signifi-
cance of the historical change. The analysis also suggests that FWSL will rise by 47%–65% above the pre-indus-
trial average at 1.5°C–2.0°C warming, and by 97%–135% at 3.0°C–4.0°C warming. FWI95d is projected to rise far 
more steeply, by 115%–162% at 1.5°C–2.0°C warming and 295%–439% at 3.0°C–4.0°C warming.

6.2. Fire Weather Is Increasingly Distinguishable From Its Natural Variability

In addition to producing CMIP5 model simulations of historical and future BA, Abatzoglou et al. (2019) applied 
the time of emergence framework (Stott et al., 2016) to determine if simulated fire weather has shifted beyond 
its simulated pre-industrial (“natural”) variability. Time of emergence is identified according to a strict signal-
to-noise criterion to detect the contribution of climate change to changes in FWSL and the frequency of extreme 
fire weather (FWI95d) versus that which would solely arise due to natural variability in climate. Abatzoglou 
et al. (2019) used a 17-model ensemble of CMIP5 models to show that FWI95d has already emerged on 22% of 
global land area in the year 2019, and that the global extent of emergence increases exponentially with global 
MAT. The area experiencing emergence was modeled to double between 2°C and 3°C above pre-industrial levels.

Extending the analysis of Abatzoglou et al. (2019; see Text A in Supporting Information S1 for methods), we find 
that both FWSL and modeled FWI95d have emerged above pre-industrial variability in southern African savan-
nahs, the Mediterranean and southern Amazonia (Tables 7 and 8). Emergence becomes increasingly widespread 
as global MAT rises. At 1.5°C above pre-industrial global MAT, FWSL emerges above pre-industrial variability 
in northern African savannahs, while FWI95d emerges in northern African savannahs, Alaskan forests, and east 
Siberian forests. At 2.0°C above pre-industrial global MAT, FWSL emerges in Alaskan forests, east Siberian 
forests, Pacific US forests, and Pacific Canadian forests, while FWI95d emerges in Pacific US forests and Pacific 
Canadian forests. At 3.0°C above pre-industrial global MAT, FWSL, and FWI95d emerge above pre-industrial 
variability in Indonesian forests and southeast Australian forests. Overall, the models indicate that fire weather 
has already emerged beyond pre-industrial variability in some regions and that continued warming will cause 
increasingly pervasive shifts in fire weather.

Here, as in prior regional studies, we found that fire weather is yet to emerge beyond pre-industrial variabil-
ity in the Pacific US forests or in southeast Australia where large pre-industrial variability obscures the signal 
of anthropogenic climate change despite visible trends in FWSL and FWI95d (Abatzoglou & Williams, 2016; 
Dowdy, 2018; Head et al., 2014; Williams et al., 2019; Figures 3, 4 and 11). The distinction between anthro-
pogenic and natural signals is particularly challenging to unravel in the case of southeast Australia due to the 
strong pre-industrial variability imposed by several large-scale climate oscillations (ENSO, the IOD, and SAM) 
(Abram et al., 2021; Dowdy, 2018; Clarke et al., 2013; Harris & Lucas, 2019; Lewis et al., 2020; van Oldenborgh 
et al., 2021). Our analysis of the CMIP5 model simulations indicates that FWSL and FWI95d will emerge at a 
global MAT increment of 2.0°C in Pacific US forests and 3.0°C in southeast Australian forests, signifying that 
unabated warming will likely shift fire weather conditions to a state outside their natural range as noted previ-
ously by others (Sharples et al., 2016; van Oldenborgh et al., 2021; Williamson et al., 2016; Yoon et al., 2015).

In contrast, the impact of anthropogenic climate change on fire weather has already emerged beyond pre-indus-
trial variability in the Mediterranean region according to our analysis. Barbero et al. (2020) recently reported that 
fire weather in France has emerged beyond pre-industrial variability. The detectable impact of climate change on 
fire weather is consistent with the broader concept of Mediterranean amplification of climate change marked by 
strong emergent increases in the frequency of hot and dry summers (Fargeon et al., 2020; Turco, Rosa-Cánovas, 
et al., 2018).

6.3. Climate Change Has Raised the Likelihood of Recent Wildfires

Several studies have sought to quantify the impact of climate change on the likelihood of some major fire events 
that have occurred in recent years. These studies typically take one of two approaches to quantify the differ-
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ences in likelihood of the observed fire weather conditions relative to a scenario without anthropogenic climate 
change. Some have run climate models in two scenarios; one with natural forcings only, and one with natural 
plus anthropogenic forcings (Lewis et al., 2020; Partain et al., 2016; van Oldenborgh et al., 2021). Others have 
isolated the climate trend from the model-derived time series using time series decomposition, and thereafter 
subtracted the trend from model simulations (Barbero et al., 2020; Kirchmeier-Young et al., 2017, 2019; Williams 
& Abatzoglou, 2016).

The greatest concentration of attribution studies has been placed on wildfires in North America. The 2015 Alas-
kan wildfires occurred amidst fire weather conditions that were 34%–60% more likely due to anthropogenic 
effects on temperature and moisture availability, although lightning strikes were the dominant ignition source and 
the effect of anthropogenic climate change on lightning activity was not established (Partain et al., 2016). Kirch-
meier-Young et al. (2017) demonstrated that anthropogenic climate change increased the likelihood of the 2016 
Fort McMurray fires in Canada by a factor of 1.5–6 due to increases in FWI. Kirchmeier-Young et al. (2019) later 
found that anthropogenic climate change increased the probability of extreme fire weather by 2–4 times during 
record BA in British Columbia during 2017, while 95% of the temperature anomaly at the time of the event was 
attributed to anthropogenic climate change. Kirchmeier-Young et al. (2019) further used empirical relationships 
between weather metrics and fire activity in the region, and estimated that 86%–91% of the BA in British Colum-
bia during 2017 was attributable to anthropogenic climate change.

Several event attribution studies have also been conducted in Australia and parts of Europe. Lewis et al. (2020) 
suggested that extreme temperatures at the time of the 2018 bushfires in northern Queensland were 4.5 times 
more likely due to anthropogenic climate change and the rainfall deficit was 1.5 times more likely, enhancing the 
risk of an event on the scale of the 2018 bushfires. Climate models run by van Oldenborgh et al. (2021) suggested 
that the FWI values seen during the 2019/2020 bushfires in southeast Australia were at least 30% more likely as a 
result of anthropogenic climate change. Krikken et al. (2021) found that the FWI values present during the 2018 
wildfires in Sweden were around 10% more likely as a result of anthropogenic climate change and that the like-
lihood of the fire weather conditions seen at that time will double under 2.0°C of warming above pre-industrial 
levels. Barbero et al. (2020) used a 17-model ensemble of CMIP5 models to show that fire weather conditions 
that triggered fires in the 2003 fire season in France would have a <0.2% annual probability of occurrence in the 
absence of anthropogenic climate change, compared to a probability of ∼10% (return interval ∼10 years) under 
today's climate.

Other attribution studies have focussed on quantifying the contribution of climate change to trends in fire weather, 
rather than individual events. Abatzoglou and Williams  (2016) showed that anthropogenic climate change 
accounted for ∼55% of observed increases in fuel dryness from 1979 to 2015 across western US forests. By 
accounting for strong relationships between BA and fire weather in western US forests, the authors estimated 
that anthropogenic climate change has doubled the forest fire area. Based on dual runs of the climate models, 
Barbero et al. (2020) concluded that anthropogenic climate change was responsible for nearly half of the observed 
increases in fire weather across the Mediterranean region of France.

6.4. Uncertainty in Past and Future Trends in Fire

While the upwards pressure of climate change on fire weather has risen in recent decades (Section 4) and is set 
to rise in future, multiple bioclimatic and human factors affect BA by controlling fuel availability, fuel flamma-
bility and ignitions (Sections 4 and 5). Hence, trends in fire weather alone do not necessarily translate into an 
increase in fire activity in all regions, and most notably in fuel-limited regions such as grasslands and savannahs, 
or regions where humans have a dominant influence on fire patterns through ignition and suppression.

Many empirical models have been developed to simulate fire activity as a function of climate, vegetation produc-
tivity, population and land use (Archibald et al., 2009; Knorr et al., 2014; Krawchuk & Moritz, 2011; Krawchuk 
et al., 2009; Le Page et al., 2015; Moritz et al., 2012; Pechony & Shindell, 2009, 2010; Thonicke et al., 2010; 
Turco, Jerez, et al., 2018). However, these models are typically used for diagnosis of the controls on fire and 
few empirical models have been used in a stand-alone manner to make projections of future fire activity. Moritz 
et al. (2012) used logistic regression to predict fire probability derived from observable predictors (net primary 
production, precipitation, and temperature), and simulated future fire activity using simulations of those predic-
tors from 16 climate models. Their results generally indicated increases in fire probability in already warm 
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biomes, but the trends were highly variable across climate models for the first half of the twenty-first century. 
Although empirical models generally produce realistic simulation of current fire activity, a key limitation is 
that they omit feedbacks between fire and carbon storage or surface albedo which arise through fire impacts on 
vegetation distribution and productivity (Hantson et al., 2016; Rabin et al., 2017; Williams & Abatzoglou, 2016). 
Hence, the development of fire models for application within fire-enabled DGVMs has been a key step towards 
the prediction of future fire activity on centennial timescales.

Some fire-enabled DGVMs were used in CMIP5 to predict future fire activity, however, these models drastically 
underestimated global BA, by on the order of 90%, and also failed to reproduce the observed spatial distribution 
of fire activity (Kloster & Lasslop, 2017). A key shortfall in fire modeling capacity in the CMIP5 era of models 
is that the fire models had been developed before the period of consistent global monitoring of BA by satellites 
(e.g., MCFIRE and GlobFIRM) and so they were tuned to reproduce the BA from incomplete data sets (Hantson 
et al., 2020; Kloster & Lasslop, 2017; Mouillot & Field, 2005). A simplistic representation of human impacts on 
ignitions and fuel loads was also noted in the case of some models (Bistinas et al., 2014; Hantson et al., 2016; 
Knorr et al., 2014). A persistent dilemma in process-based fire model development is that they are required to 
make some assumptions based on incomplete or low-resolution data about processes that are not yet well under-
stood (Hantson et al., 2016; Rabin et al., 2017; Williams & Abatzoglou, 2016).

The growing availability of satellite BA observations and long-term charcoal records has since helped to 
improve and optimize models to reproduce observations (Arora & Melton, 2018; Forkel et al., 2017; Marlon 
et al., 2008, 2016; van Marle, Kloster, et al., 2017). For example, Knorr et al. (2014) developed the empirical 
SIMFIRE model which uses the Nesterov index, vegetation cover, and population density to simulate BA. It was 
calibrated against satellite observations of BA and later coupled with the LPJ-GUESS DGVM and the BLAZE 
combustion model (LPJ-GUESS-SIMFIRE-BLAZE; Knorr et al., 2016). Arora and Melton (2018) optimized the 
CLASS-CTEM model to reproduce charcoal indices and satellite BA observations. Based on these models, Knorr 
et al. (2016) and Arora and Melton (2018) estimated ∼15%–25% reductions in BA since 1900–1930. Primary 
explanations given for the reduction in fire activity during the recent century are changes in population density, 
since humans tend to suppress wildfire on balance (Knorr et al., 2014, 2016), and the expansion of cropland 
area, which restrict the area of intact vegetation available to burn (Arora & Melton, 2018). Knorr et al. (2016) 
also showed that climate factors alone would cause a significant increase in fire activity of ∼15%–40% in the 
twenty-first century, depending on the future emissions pathway. However, these increases are offset by changes 
in vegetation productivity under elevated atmospheric CO2 concentration and by the moderation of fire activity 
by humans in tropical savannahs.

The FireMIP is a collaborative global effort to improve fire-enabled DGVMs through the systematic comparison 
of models and sharing of knowledge across the modeling community Figure 12; Forkel, Andela, et al., 2019; 
Hantson et al., 2016; Li et al., 2019; Rabin et al., 2017; Teckentrup et al., 2019). Hantson et al. (2020) recently 
conducted a benchmarking exercise of the FireMIP models in which the vegetation and fire properties (e.g., 
leaf area index, vegetation productivity, BA and its timing, fire count and fire size) simulated by nine FireMIP 
models were compared with observations from multiple satellite products. The nine models simulated a wide 
range in global BA (0.5–5 million km 2) but the majority fell within the observational range of 3–5 million 
km 2 during 2002–2012. Models that explicitly simulate individual fires (e.g., SPITFIRE and RegFIRM) were 
found to outperform those taking empirical approaches (e.g., GlobFIRM) with respect to the simulation of fire 
counts, whereas fire sizes were often underestimated by those models in key regions of tropical savannah (Hant-
son et al., 2020). In addition, the models with the strongest simulation of vegetation growth and its seasonality 
also tended to provide the best predictions of BA, emphasizing the importance of good fuel modeling for the 
representation of fire especially in fuel-limited regions. DGVMs which incorporated older fire modules were 
found to reproduce poorly the observed global-scale distribution of fire activity.

In addition to the model benchmarking exercise, Forkel, Andela, et al. (2019) used a machine learning approach 
to identify relationships between climate, vegetation and human-related predictors of fire and monthly BA in 
satellite observations and simulations from FireMIP models. They showed that most models reproduce observa-
tion-derived relationships between BA and climate variables adequately, however, they poorly reproduce relation-
ships with plant productivity and land cover, and they show diverse relationships with population density. These 
results suggest that FireMIP models need to be specifically improved with respect to effects of fuel build-up, land 
cover and human effects on fire behavior.
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To supplement these prior model comparison studies, we compared the global and regional BA simulated by 
six FireMIP models with satellite observations from the MODIS Collection 6 BA product MCD64A1 (Giglio 
et al., 2018; see Text A in Supporting Information S1 for methods). At the global scale, the median FireMIP 
model simulates global BA to within 3% of observations during 2001–2012, however, the median model under-
predicts BA by 33% in southern African savannahs and 11% in northern African savannahs, representing large 
absolute errors totaling more than 0.5 million km 2 (22%) across the two regions. On the other hand, the median 
model substantially overestimates BA in several macroregions and focus ecoregions, including by ∼400%–700% 
in southeast Australian forests, the Mediterranean and Pacific US forests (Table 9, Figure 13). The median model 
simulations of BA were within 66% of observations in Alaskan forests, southern Amazonia, east Siberian forests 
and Indonesian forests. These results suggest that BA is typically underestimated in tropical savannahs and over-
estimated elsewhere, notably in some key forest environments with large stocks of carbon, in broad agreement 
with the more comprehensive benchmarking exercise of Hantson et al. (2020).

Taken as an ensemble, the FireMIP models indicate that reductions in BA seen in recent decades are not a 
new phenomenon, but rather a continuation of a decline in BA seen over the past century (Table 9, Figure 13). 
Our comparison of the median model estimate for the initial and final 30-year periods of the FireMIP model 
runs (1901–1930 and 1983–2012, respectively; see Text A in Supporting Information S1 for methods) suggests 
that BA declined by around 14% (−680,000 km 2 year −1) during the twentieth century, with 4 of the 6 models 
agreeing on the direction and significance of the trend. Nonetheless, the FireMIP models included in our anal-
ysis simulate diverse trends in global BA (Table 9, Figure 13), with three models showing a decline (CLASS-
CTEM, JSBACH-SPITFIRE, and LPJ-GUESS-SIMFIRE-BLAZE), one model showing a considerable increase 
(LPJ-GUESS-SPITFIRE), and two models showing little trend or a mid-twentieth Century peak (JULES-IN-
FERNO and CLM). The models showing neutral or positive trends in global BA are more consistent with the 
reconstructed BA trends that were being reported at the time of development of earlier models (Mouillot & 
Field, 2005). The multi-model median trend in global BA since 1901–1930 (−14%) is consistent with the ∼15%–
25% reductions in BA since 1900–1930 reported by Knorr et al. (2016) and Arora and Melton (2018).

Despite disagreeing on the global trend in BA during the past century, the FireMIP models did show a majority 
agreement on a significant reduction in BA in the Mediterranean (−39%), Indonesian forests (−28%), Pacific US 
forests (−20%), and northern African savannahs (−19%; Figure 13). Meanwhile, the FireMIP models suggested 
that BA increased by 101% in Alaskan forests and 38% in southern Amazonia. Also, at macroregional scales, the 
majority of models were in agreement on significant negative trends in southeast Asia (−41%), the Middle East 
(−26%), northern hemisphere Africa (−20%), equatorial Asia (−18%), and North America (−16%) and Europe 
(−18%). However, we note that BA was simulated with large errors relative to MODIS BA observations during 
2001–2012 in some of these regions (see Table 9), and that the modeled regional trends in BA were also not 
always consistent with those observed in the MODIS BA data set. For example, visual assessment of Figure 5 
indicates that the sign of the modeled and observed trends varies on sub-regional scales; boreal and temperate 
North America, southern Africa, the Brazilian cerrado and South American pampas, northern China, the borders 
of Russia and Kazakhstan, the Iberian Peninsula, and southeast Australia were poorly captured in the models. 
Another intriguing feature of the FireMIP trends is the modeled increase in BA in the Sahel region, which is not 
present in the MODIS BA data set.

Upcoming phases of FireMIP will seek to project BA under various emission scenarios for the twenty-first 
century. However, the capacity of models to reproduce the regional BA observations in the modern period must 
be considered when interpreting their future projections (Hantson et al., 2020), and the disagreement amongst 
models in the twentieth Century means that individual model projections must be interpreted with some caution. 
Given their contrasting simulations of historical BA, fire-enabled DGVMs are expected to simulate a wide range 
of trends in future BA. Projections of future BA have thus far only been published for LPJ-GUESS-SIMFIRE-
BLAZE (Knorr et al., 2016) and JULES-INFERNO for South America (Burton, Kelley, et al., 2021), however, a 
multi-model ensemble approach encouraged by FireMIP is needed to prevent over-reliance on projections from 
any individual model in isolation. Exemplifying the advantages of a multi-model approach, the IPCC Special 
Report on Climate Change and Land (Jia et al., 2019) was only able to present the simulations of future BA from 
LPJ-GUESS-SIMFIRE-BLAZE and, therefore, is unlikely to capture the full diversity of trends from fire-enabled 
DGVMs. Hence, simulations of future fire activity from fire-enabled DGVMs are needed to provide insights into 
the potential impacts of climate change on wildfire risks and to inform international policymaking.



Reviews of Geophysics

JONES ET AL.

10.1029/2020RG000726

50 of 76

7. Frontiers in Predicting Fire's Future
7.1. Optimizing Global Models Using Machine Learning

Although fire-enabled DGVMs are increasingly calibrated against satellite observations, even the most proac-
tively optimized models (e.g., LPJ-GUESS-SIMFIRE-BLAZE; Knorr et al., 2014) have not shown a dramati-
cally superior performance in comparison with other models in FireMIP comparison studies (Forkel, Andela, 
et al., 2019; Hantson et al., 2020). A possible reason might be that empirical fire model structures continue to 
be predefined and do not consider the potential predictive performance of alternative, and potentially stronger, 

Note. Significant changes in BA are assessed using a t-test for each model, and here, we show the degree of model agreement (% of models) on the sign and significance 
of the reported changes. A comparison of FireMIP modeled BA is made with moderate resolution imaging spectroradiometer (MODIS) BA data for the period in which 
the two data sets overlap (2001–2012). The FireMIP model simulation data derives from Teckentrup et al. (2019) with updates to two models after Lasslop, Hantson, 
Harrison, et al. (2020) and Burton et al. (2019; see Text A in Supporting Information S1 for methods). The MODIS BA data derive from Giglio et al. (2018). See 
methods in Text A in Supporting Information S1.

Table 9 
Burned Area (BA) and Burned Area Fraction (BAF) Modeled by the Six Model Fire Model Intercomparison Project (FireMIP) Ensemble for the Pre-Industrial 
Baseline (1901–1930 Multi-Model Median) and the Modern Period (1983–2012 Multi-Model Median) and Change Between the Two Periods
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predictor variables for fire activity. Secondly, in a coupled setup, fire-enabled DGVMs rely on the vegetation 
simulations from the DGVMs themselves, which might not agree with observed vegetation conditions on which 
the stand-alone fire model is trained (Hantson et al., 2020; Teckentrup et al., 2019). Consequently, global process-
based fire models are likely to benefit from the use of strict data-model integration approaches informed by 
machine learning throughout all phases of model development, including formulation of empirical fire model 
structures, parameter calibration and model evaluation (Forkel, Andela, et  al.,  2019; Forkel et  al.,  2017). By 
using various climate, vegetation and human predictor variables, fire activity can be estimated with generalized 
linear models, logistic regression, general additive models, random forests, or neural networks, enabling the most 
important predictors and their underlying relationships and sensitivities to be identified, including on regional 
scales (Archibald et al., 2009; Bistinas et al., 2014; Forkel, Andela, et al., 2019; Jain et al., 2020; Joshi & Suku-
mar, 2021; Moritz et al., 2012). Although such machine learning models have shown a strong predictive capacity 
for BA, they are usually too complex to be implemented as fire modules within DGVMs.

Nonetheless, machine learning can help to select the best model that remains sufficiently simple for implemen-
tation in DGVMs. For example, Forkel et al. (2017) developed an empirical fire model approach that estimates 
BA under a large number of climate, vegetation and human factor combinations. Under this approach, model 
structures with different combinations of predictors are generated and each optimized against observed BA, 
and the best-performing model is thereafter selected after optimization. Forkel et al. (2017) found that the best 
models always include fuel moisture and fuel availability as predictors. Moreover, the optimal fire model can be 
recalibrated once coupled to a DGVM to avoid biases in the simulated vegetation properties. For example, Drüke 
et al.  (2019) calibrated the LPJmL-SPITFIRE model against satellite data sets of BA and vegetation biomass 
within South America. The recalibrated model showed improved regional simulation of both BA and vegeta-
tion distribution relative to the optimal offline model. Despite the value of such formal data-model integration 
approaches for model development, these approaches are not yet frequently used by all modeling groups because 
they are computationally exhaustive, and they require knowledge and computational skills to link modeling, 
observations and optimization techniques.

An overarching challenge for future fire model optimization will be to avoid overfitting human ignition and 
suppression algorithms to observations, since there are various limitations to the accuracy and agreement between 
satellite BA products (see Section 2.1). Similarly, charcoal records are not distributed evenly across the world 
and they disproportionately represent the burning of woody vegetation as opposed to herbaceous vegetation and 
so their use as reference data representing historical fire activity may result in the over-tuning of parameters to 
regions with high woody biomass (Jones et al., 2019; Marlon et al., 2016; van Marle, Kloster, et al., 2017). Using 
multiple satellite BA reference data sets with varying satellites, methods and detection algorithms and being 
mindful of the large uncertainties in proxy data will likely help to avoid some of these over-tuning issues (Forkel, 
Andela, et al., 2019; Forkel et al., 2017).

7.2. Improving Representation of Ignition and Suppression in Global Models

Fire processes are necessarily simplified in fire-enabled DGVMs due to the computational demands of modeling 
fire, amongst a large number of other processes, at the global scale and on timescales of hundreds of years. A 
general principle of modeling many environmental processes in DGVMs is that all processes can be expressed 
using universal algorithms with parameter values allowed to vary across plant functional types. While this 
approach is reasonable in the case of many physical and biogeochemical processes, the simplicity of the models 
can lead to the omission of variables that are known, based on regional modeling, to exert important influences 
on the ignition, suppression and spread of fires. An additional shortfall of modeling fire in DGVMs is that the 
influence of some controls on fire varies considerably at sub-grid scales. Innovative ways of integrating processes 
from regional models into DGVMs in a simplified form, including those with influence at sub-grid scale, is likely 
to be a critical step toward the improved modeling of fire at the global scale for past and future centuries.

Figure 13. Regional time series of global and regional burned area (BA) modeled by six fire-enabled dynamic global vegetation models run offline as part of Fire 
Model Intercomparison Project (FireMIP) (dashed lines for individual models) (Teckentrup et al., 2019). The solid black lines plot the multi-model median annual BA 
from the FireMIP models. The solid red lines (2001–2019) plot observed BA from the moderate resolution imaging spectroradiometer BA product (Giglio et al., 2018). 
The model simulation data derives from Teckentrup et al. (2019) with updates to two models after Lasslop, Hantson, Harrison, et al. (2020) and Burton et al. (2019; see 
Text A in Supporting Information S1 for methods).
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The human controls on fire are particularly local in nature. Substantial variability in the relationships between 
fire and population, agriculture and GDP per capita is seen at fine scales, especially with respect to the balance 
of ignitions and suppression in regions of low population density (Andela et al., 2017; Archibald et al., 2010; 
Balch et al., 2017; Knorr et al., 2014; Parisien et al., 2016; Syphard et al., 2009; Vannière et al., 2016). Exist-
ing DGVM algorithms typically express human ignition and suppression of fires as a function of population 
density (Ford et al., 2021; Hantson et al., 2016; Pechony & Shindell, 2009; Teckentrup et al., 2019): ignitions are 
broadly modeled to increase at low population densities up to a threshold, and reduce thereafter, while suppres-
sion is broadly modeled to increase with population density. However, these high-level indicators of human activ-
ity generally fail to capture the spectrum of socioeconomic and cultural factors that influence the relationship 
between humans, fire, and the landscape (Coughlan, 2015; Coughlan & Petty, 2012). These complexities can 
lead to very different relationships between humans and fire even in places with similar population densities and 
economic productivity. Consequently, the representation of socioeconomic factors affecting the human-fire rela-
tionship must become more sophisticated in global models if these models are to reliably reproduce and predict 
the ignition and suppression of fires by humans.

A variety of local- to regional-scale models have been constructed to represent the interactions between humans 
and fire (Ford et al., 2021). Economic models have also been developed to express the interactions between land 
users (agents) and fire, treating the most likely actions of each agent as a function of the costs and benefits to that 
agent in a range of environmental and socioeconomic circumstances, while recognizing that fire can represent 
a cost to one agent while synchronously providing economic benefits to another (Ford et al., 2021; Prestemon 
et al., 2013; Purnomo et al., 2017). These models are quantitative in their structure and thus particularly promis-
ing for integration in numerical process-based models. However, valuable lessons about the relationship between 
agents, their land and their use of/interactions with fire have been learned by employing qualitative modeling 
techniques such as place- or agent-based models. These models formalize and synthesize local knowledge into a 
conceptual framework that explains how humans respond to particular environmental or socioeconomic changes, 
for example, by constructing a network of causal chains that explain the response of agents to an environmental or 
socioeconomic change (C. Smith et al., 2007; Hulse et al., 2016; McKemey et al., 2020; Medrilzam et al., 2014; 
Monzón-Alvarado et al., 2014; Spies et al., 2017). Often, these models are specialized to a particular locale or 
region, providing intricate knowledge of the human controls on fire in the circumstances; that is, the agents 
present and the economy, culture, and environment in which they are embedded (Barlow et al., 2020; Bilbao 
et al., 2019; Carmenta et al., 2017).

To transfer these complex socioeconomic models to global models is challenging for a variety of reasons. First, 
qualitative models cannot feasibly be integrated into the numeric structure of a fire-enabled DGVM. Second, a 
complex socioeconomic model could place excessive computational demand on a fire-enabled DGVM. Third, 
data sets of observations or equivalent data layers are not always available at the global scale for predictors that 
emerge as important controls on fire in a specific region. Fourth, it may be unclear how to aggregate diverse 
relationships seen at sub-grid scales to the coarse global grid of a fire-enabled DGVM. Fifth, the extrapolation 
of local or regional models beyond a specific region, with a particular set of agents and circumstances, may not 
be appropriate and is sometimes considered unethical in cases where generalizations are made across societies, 
especially Indigenous peoples. This list is not particularly exhaustive but serves to illustrate the plethora of chal-
lenges to integrating lessons from regional models into global models.

In recognition of these challenges, there have been calls for greater interaction between social scientists, econ-
omists and natural scientists with the view to foster a new era of fire models that are sufficiently complex to 
robustly represent human controls on fire, but also sufficiently simple to implement in DGVMs (Ford et al., 2021; 
Hantson et al., 2016). There are promising signs that using regional parameter values for human ignitions and 
suppression in fire-enabled DGVMs can represent a “quick win,” improving model performance versus the 
native DGVM running with global parameter values (Le Page et al., 2017; Zou et al., 2019, 2020). Also, some 
fire-enabled DGVMs have begun to include the human development index to represent the impacts of living 
standards and education on fire ignition opportunities, with signs of improved performance as a result (Teixeira 
et al., 2020). Ford et al. (2021) proposed a step-change in the way that human impacts on fire are represented 
in DGVMs, advocating for the addition of “agent functional types” to fire-enabled DGVMs. Agent functional 
types would act as a categorical variable across which the fire ignition and suppression parameters could vary, 
in a manner akin to the selection of different parameter values across plant functional types as an expression of 
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processes in DGVMs. Pfeiffer et al. (2013) made some early progress in line with this ethos by incorporating 
fire ignition parameterizations for three groups of global actors (hunter-gatherer, pastoralist, and farming popu-
lations) in the SPITFIRE model.

Aside from the need to better-represent the interactions between humans and the landscape that influence fire, 
some quick progress in ignition modeling might also be made by mapping human infrastructure more effec-
tively in models. Ignitions in semi-remote regions consistently center around transport routes and other human 
infrastructure in diverse environments (D. Nepstad et al., 2001; Oliveira et al., 2017; Silva et al., 2019; Syphard 
et al., 2019). For example, the statistical modeling work of Syphard et al. (2017, 2019) has highlighted the signif-
icant impact of including future scenarios of rural and urban land cover, infrastructure, and land use change on 
climate model projections of future fire activity in the western US. While it may not be feasible to explicitly repre-
sent sub-grid infrastructural features in a DGVM model, it may well be feasible to represent the density of such 
features as a probabilistic predictor of the ignition frequency. This ethos could similarly apply to the mapping of 
human infrastructure and assets that are priorities for protection using fire suppression techniques.

Other insufficiencies of DGVM models likely emerge when they are coupled with the atmospheric compo-
nents of ESMs. Lightning is notably a strong covariate of BA in wildland environments (Section 4.2) and this 
means that the lightning scheme employed alongside fire models can strongly influence the simulated patterns 
and trends in fire activity. In climate models, lightning occurrence is typically parameterized as a function of 
cloud  top height (C. Price & Rind, 1994; Hantson et al., 2016), as the product of convective available potential 
energy and precipitation (CAPE×P; Romps, 2019; Romps et al., 2014; Tippett et al., 2019), or as a function of 
cloud ice flux (Finney et al., 2014, 2018). When applied in climate models, the cloud top height and CAPE×P 
lightning schemes predict large increases in future lightning activity over most of the globe, whereas the cloud ice 
flux scheme predicts a decline in tropical lightning activity and an increase at high latitudes (Finney et al., 2018; 
Romps, 2019). Hence, the choice of lighting scheme has major implications for future regional trends and the 
global distribution of lightning ignitions including in remote regions where lightning is known to be an important 
control on fire activity. The dependence of simulated BA patterns and trends on choice of lightning scheme is 
yet to be vigorously assessed across fire-enabled DGVMs, however, this step will be critical to understanding 
the robustness of projections of BA especially in wildlands (Felsberg et al., 2018; Gordillo-Vázquez et al., 2019; 
Krause et al., 2014; Teckentrup et al., 2019). The improved availability and accessibility of lightning observations 
should aid this task by providing key reference data sets to evaluate lightning model performance (e.g., Cecil 
et al., 2014, 2015; Holzworth et al., 2021; Kaplan & Lau, 2021; Velde et al., 2020).

7.3. Improving Representation of Fire Spread in Global Models

There are also opportunities to improve the model representation of human and natural factors that affect the 
spread of fire in DGVMs, principally including controls on fuel continuity across the landscape. Physical barriers 
such as lakes, waterways, roads, railway lines and utility corridors can act as unintended fire breaks that constrain 
the spread of surface fires, yet many of these features are not represented at the coarse grid scale of fire-enabled 
DGVMs. A range of fire spread models have been produced at local to regional scales to represent the physics of 
the combustion process, energy transfer, fluid dynamics, and turbulence, or to empirically simplify the physics 
of these processes at regional scales (Finney, 1998; Rothermel, 1972; Tymstra et al., 2010). A consistent lesson 
from  the application of such models is that the physical breaks in the landscape act to prevent the spread of fire and 
ultimately constrain the footprint of a fire (Cochrane et al., 2012; Finney, 1998; Narayanaraj & Wimberly, 2011; 
Tymstra et al., 2010). While DGVMs account for land cover and incorporate the impacts of agricultural land use 
on the spread of fire across natural landscapes, they do not typically account for finer-scale features that fragment 
the landscape and interrupt fire spread (X. Wang et al., 2014). Consequently, the fragmentation of the landscape 
via the building of human infrastructure has a real-world capacity to influence fire spread that is not represented 
in fire-enabled DGVMs. Although these features occur on sub-grid scales with respect to fire-enabled DGVMs 
and so cannot be represented explicitly, a representation of the density of physical barriers is feasible and could 
prove a useful addition to models of fire spread.

One process that may overcome physical barriers in the landscape is the near-surface transport of hot embers, 
which can lead to downwind spot fire ignitions if deposited to dry vegetation surfaces especially during periods of 
extreme fire weather (Cruz et al., 2012; Lecina-Diaz et al., 2014; Penman et al., 2013; Storey et al., 2020; Zigner 
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et al., 2020). However, the process of ember transport and spot fire ignition are also challenging to model at the 
global scale because the distance over which spotting occurs is far smaller than the resolution of the wind field 
generated by climate models (100 km). As in the case of physical barriers, a statistical approximation of spotting 
processes may be feasible in DGBMs, but the uncertainties involved would likely be substantial.

Regional assessments have similarly shown that slope and aspect can influence the occurrence and spread of fires 
in some regions with complex terrain, either because the topographical variation itself affects the dynamics of 
energy transfer or because topographical variation is a proxy for microclimatic conditions or ignition opportuni-
ties (Blouin et al., 2016; Cavard et al., 2015; Dillon et al., 2011; Fang et al., 2015; Iniguez et al., 2008; Oliveira 
et al., 2014; P. J. Clarke et al., 2014). Topography has not always been found to significantly affect fire dynamics, 
especially in cases where other factors have overriding effects, and the relationships can also be highly scale-de-
pendent (Cary et al., 2006; Parisien et al., 2011). At present, the majority of fire-enabled DGVMs do not include 
topographic effects on fire spread (Hantson et al., 2016), though some incorporate limits to fire spread due to the 
fragmentation of the landscape by mountainous terrain (Pfeiffer et al., 2013). More work is required to understand 
the ranging impact of topography on fire spread across environments before a more sophisticated treatment of 
topographic effects can be implemented in fire-enabled DGVMs.

8. Conclusions
We have reviewed the latest insights into global and regional trends in fire weather during recent decades, over the 
past century, and for potential future temperature increments ranging from 1.5°C to 4.0°C above the pre-indus-
trial period. We have also reviewed the diverse drivers of trends and variability in fire activity, as represented by 
BA, and the capacity of current fire models to reproduce regional patterns of BA. In addition, we have presented 
a series of supplemental analyses of published data sets in order to evaluate how patterns of BA relate to fire 
weather and various other bioclimatic and human controls on fire.

There have been increases in the length of the fire weather season and the frequency of extreme fire weather in 
most world regions during 1979–2019, priming landscapes to burn more frequently, especially in the case of 
mesic environments. For example, 27%–94% increases in FWSL have been observed in southern Amazonia, the 
Mediterranean region and forests of southeast Australia, Alaska, east Siberia, Pacific Canada and the Pacific 
US during 1979–2019. Increases in extreme fire weather in these regions were typically larger than increases in 
FWSL, ranging from 17% to 163%.

During 2001–2019, we observed significant positive correlations between fire weather and BA in all ecoregions 
that we studied on a seasonal basis, indicating that fire weather strongly determines the annual timing of fires. 
Inter-annual correlations between fire weather and BA also suggest that fire weather is a significant control on 
annual BA in some regions, specifically the Mediterranean, the Pacific US and high latitude forests. Overall, 
correlations between BA and fire weather indicate that fire activity peaks in the seasons when fire weather is 
most conducive to vegetation flammability, and in some places the years with greatest BA also tend to coincide 
with the years of greatest fire weather. No other human or bioclimatic control on fire shares such a consistent 
relationship with BA as fire weather, signifying the key role of fire weather as a pervasive enabler of fire. In mesic 
forests of the Pacific US and the high latitudes, notable increases in BA on the order of 49%–93% have occurred 
in tandem with significant increases in fire weather. The robustness of these trends in BA is uncertain at present 
due to high inter-annual variability in BA. Nonetheless, the significant inter-annual correlation between BA and 
fire weather, the significant increases in fire weather, and the sizable increases in BA in these regions are symp-
tomatic of the upwards pressures of climate change on fire activity in mesic forests.

Fire activity is not controlled exclusively by fire weather, but also by a range of other bioclimatic and human 
factors affecting the ignition and spread of fires. Particularly important factors include variability in vegetation 
productivity in fuel-limited regions, as well as human impacts on patterns of fire ignition and connectivity of 
fuels. For example, land use suppresses BA in some places (e.g., by fragmenting savannah vegetation), whereas 
human activities are associated with elevated ignition frequency in other places (e.g., in tropical forests that are 
not naturally fire-prone). Similarly, BA tends to increase with vegetation biomass in regions with low vegetation 
productivity (productivity-limited regions, e.g., savannah-grasslands) but reduce with biomass in regions with 
high vegetation productivity (e.g., forests). These factors can either compound or counteract the relationship 
between fire weather and fire activity, explaining the non-significant interannual relationships between BA and 
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fire weather and the divergence of trends in BA from those of increasing fire weather in many regions, particu-
larly in the tropics. Overall, the link between BA and fire weather is overridden by the effects of other human and 
bioclimatic factors in many regions.

Globally, BA decreased by 1.1 million km 2 year −1 or 27% during 2001–2019. Around half of this decline is 
explained by a significant decline in BA in African savannahs. The African savannahs are a prime example of a 
region where fire weather has a weaker influence on fire activity than other bioclimatic or human factors, such 
that trends in BA and fire weather diverged strongly in recent decades. Reductions in vegetation productivity, 
related to changing hydrology, and fragmentation of the naturally flammable landscape by agricultural expan-
sion have been invoked as key drivers of declining BA in African savannahs. The impacts of these factors have 
outweighed the role of increases in fire weather in these regions to drive the observed decline in BA. Similarly, 
humans exert a dominant control on BA patterns in Amazonian forests through their ignition of deforestation fires 
and their degradation of forest edges. During recent decades, trends in BA in tropical forests have related strongly 
to trends in deforestation, with fire weather generally acting as a secondary control. While the annual timing of 
fires is tied to fire weather in African savannahs and Amazonian forests, interannual variability in BA and fire 
weather are related less strongly and hence trends in fire weather and BA have diverged. These examples high-
light that the controls on BA are highly region-specific, and that increases in fire weather do not always translate 
to positive trends in BA despite the upwards pressure placed on vegetation flammability.

According to CMIP5 climate model projections, the prevalence and extremity of fire weather have already 
emerged beyond their pre-industrial variability in the Mediterranean and southern Amazonia due to climate 
change. Increases in fire weather are projected to escalate and become more widespread with further warming. 
The CMIP5 models suggest that fire weather (either FWSL or FWI95d) will emerge at 1.5°C above the pre-in-
dustrial MAT in Alaskan forests and east Siberian forests and at 2°C in Pacific US forests and Pacific Canadian 
forests. At 3°C above the pre-industrial MAT, both FWSL and FWI95d emerge beyond pre-industrial variability 
in all of the focus ecoregions and macroregions that we studied. Emergence signifies a fundamental shift in the 
occurrence of fire weather relative to a world without anthropogenic climate change and marks a discernible 
upwards pressure of climate change on fire in these regions. It remains unclear if the dominant controls on fire 
activity will shift in some regions as fire weather enters uncharted territory.

The simulated increases in fire weather tend to accelerate with each added increment of warming, and extreme 
fire weather is generally projected to increase more sharply than FWSL. Moreover, several studies have shown 
that some of the wildfire outbreaks experienced in recent years have occurred amidst fire weather conditions 
that would have been considerably less likely in the absence of climate change. As in the observational period, 
other bioclimatic and human factors can be expected to mediate the response of fire activity to changes in fire 
weather in region-specific ways; however, all else being equal, climate change is increasing the flammability of 
landscapes globally and thus enhancing the likelihood of fires in environments where neither fuel nor ignition 
opportunities are limited.

Process-based fire models are key to understanding how the impacts of change in fire weather, bioclimatic 
factors, and human controls on fire activity will interact to influence BA patterns in future under various scenar-
ios of climate change. An ensemble of state-of-the-art FireMIP models reproduce global BA to within 3% of 
observational data, and they collectively indicate that BA has declined by 14% globally over the past century. 
However, this ensemble also shows a tendency to underestimate contemporary BA in African savannahs and to 
overestimate BA in forest ecoregions, and there is poor agreement amongst the models on the sign and magnitude 
of historical changes in BA at global and regional scales.

Process-based models of fire broadly oversimplify and over-generalize the relationships between fire and its 
bioclimatic and human controls, omitting the regional complexity of these relationships. Machine learning 
can help to optimize the selection of fire model variables that have already been trialled as predictors of BA, 
however, it is likely that the addition of under-represented factors such as landscape fragmentation, the density 
of human infrastructure, and traditional or cultural relationships with fire are needed to address the regionality of 
human  ignitions and suppression in fire models. Uncertainty in the response of lightning to climate change must 
also be constrained, especially for the modeling of fire in wildlands where lightning is a major ignition source.

Overall, we conclude that climate change is exerting a pervasive upwards pressure on fire activity globally 
through its impacts on fire weather, and this upwards pressure will escalate with each increment of global warm-
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ing. Continued investments in fire model development are required if we are to foresee the regions in which 
escalating fire weather will materialize as rising fire activity and to mitigate against the impacts of these changes 
on human livelihoods and ecosystem services such as biodiversity or carbon storage.
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