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Abstract
The Königsberg bridge problem has played a central role in recent philosophical dis-
cussions of mathematical explanation. In this paper I look at it from a novel perspec-
tive, which is independent of explanatory concerns. Instead of restricting attention 
to the solved Königsberg bridge problem, I consider Euler’s construction of a solu-
tion method for the problem and discuss two later integrations of Euler’s approach 
into a more structured methodology, arisen in operations research and genetics 
respectively. By examining Euler’s work and its later developments, I achieve two 
main goals. First, I offer an analysis of the role played by mathematics as a problem-
solving instrument within scientific enquiry. Second, I shed light on the broader sig-
nificance of well known contributions to the debate on mathematical explanation. I 
suggest that these contributions, which are tied to a localised explanatory context, 
achieve a greater relevance and attain a sharper formulation when they are referred 
to scientific enquiry at large, as opposed to its possible explanatory outcomes alone.

1  From Explanation to Problem‑Solving

In the eighteenth century, the river Pregel divided the city of Königsberg into 
four land masses joined by seven bridges. The Königsberg bridge problem, which 
attracted Euler’s attention, is the problem of determining whether the bridges could 
be visited along a trail.1 Euler’s treatment of this problem has attracted much atten-
tion among philosophers of science and mathematics, at least since Pincock (2007) 
discussed it as an instance of abstract mathematical explanation.2
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1 A trail is a route crossing each bridge exactly once. A trail may go back to its starting point, in which 
case it is called a circuit.
2 An interesting discussion of the problem connected with mathematical practice appears in Gaifman 
(2005, pp. 365–367).
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Philosophers concerned with explanation have included the Königsberg bridge 
problem in their range of paradigmatic examples [see e.g. Lange (2013), Lyon 
(2012)], they have examined it in its historical context (Räz, 2018) or they have 
disputed its explanatory role (Jansson & Saatsi, 2019; Kuorikoski, 2021, p. 194)]. 
In this paper, I examine the Königsberg bridge problem from a standpoint that 
is independent of explanatory concerns (Sects. 2, 3, 4, 5). Then, I use the newly 
articulated standpoint to highlight the broader significance of certain contribu-
tions to the debate on mathematical explanation (Sect. 6). Before actually carry-
ing out these tasks, I briefly clarify what standpoint I am going to take and how 
its full articulation can illuminate the significance of contributions focussing on 
mathematical explanation.

I take the standpoint recommended in the following remark made by Hasok 
Chang:

A serious study of scientific practice must be concerned with what it is that 
we actually do in scientific work. This requires a change of focus from prop-
ositions to activities (Chang, 2011, p. 208).

Discussions of mathematical explanation typically exhibit a propositional ten-
dency, which may be motivated by their special aims. Such discussions take a 
solution to a particular problem and the mathematical results leading to that solu-
tion as given: their key interest pertains to the distinctive manner in which the 
given elements are connected. Their focus is on settled facts and results, not on 
the activities directed at the construction of methods that can be adopted to solve 
open problems. Although a narrower explanatory focus is natural and legitimate 
for a highly circumscribed purposes (e.g. spelling out what a mathematical expla-
nation is), it involves a deletion of the unfolding of enquiry that precedes the pos-
sible availability of explanations and upon which such availability depends.

It seems to me important to pay proper attention to the unfolding of scientific 
enquiry and the activities it consists of, which are in essence problem-solving 
activities, for two reasons. On the one hand, looking at problem-solving activities 
in progress brings to light many subtle aspects of the application of mathematics 
that simply cannot emerge if only the circumstances of explanation are attended 
to. On the other hand, a clear understanding of the role played by mathematics in 
scientific problem-solving enables a better appreciation of certain insights com-
ing from discussions of mathematical explanation. These discussions identify 
important aspects of the application of mathematics, whose scope far exceeds the 
single moment of explanation. The broader significance of contributions to math-
ematical explanation cannot however be appreciated if an account of the prob-
lem-solving activities preceding the explanatory moment is missing. In fact, the 
absence of such an account forces insights into the structure of scientific enquiry 
into metaphysical formulations that partly conceal their significance.

I shall return to the last remarks in Sect.  6, where I spell them out in con-
nection with three especially valuable contributions to the discussion of math-
ematical explanation, namely Pincock (2007, 2015a) and Baker (2017). As I have 
remarked, the analysis of Sect. 6 becomes possible only after a structured study 
of mathematical-problem solving is in place. Starting from Sect.  2, I intend to 
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provide such a study in connection with the Königsberg bridge problem. The lat-
ter problem provides a useful, but by no means self-contained, starting point. Eul-
er’s work on the Königsberg bridge problem was meant to supply a method capa-
ble of solving a family of what we would today call routing problems. Because 
of this, Euler’s work points, as it were, beyond itself. In an expected manner, 
it points to its later integration into larger and more difficult routing problems, 
one of which is examined in Sect. 3. In a less expected manner, Euler’s routing 
method has proved helpful in the field of genetic sequencing, as will be seen in 
Sect. 4.

It is important to emphasise that none of the applications discussed in Sects. 3 
and 4 amounts (with the exception of especially fortunate cases) to a direct use of 
Euler’s method yielding the desired results. Rather, this method is systematically 
coordinated with other mathematical techniques to confront a variety of more or 
less unwieldy circumstances. This is an important point because it suggests that the 
successful application of mathematics does not always amount to a straightforward 
matching between mathematical structure and empirical configuration but can in 
fact result from a mutual adaptation of plastic symbolic resources and controllable 
empirical features.3

This process of adaptation, which at times requires a reconstruction of mathemat-
ical method and at times requires novel empirical interventions (a striking instance 
will be discussed in Sect. 5) is the subject of the next four sections. One useful way 
of summarising their contents is to relate them to Chang’s definition of an epistemic 
activity as:

a coherent set of mental or physical actions (or operations) that are intended to 
contribute to the production or improvement of knowledge in a particular way, 
in accordance with some discernible rules (Chang, 2011, p. 209).

In terms of the definition above, Sects. 2, 3, and 4 focus on epistemic activities 
that are mental operations capable of improving knowledge by solving problems that 
bring practical goals within reach or make desired information accessible, in accord-
ance with rules provided by mathematical methods. Thus, ‘scientific problem-solv-
ing by mathematical means’ may be, for the purpose of this paper, taken as synonym 
with ‘epistemic activity’. The specific epistemic activities examined in the following 
three sections are: (i) the construction of a problem-solving method, which I shall 
discuss with reference to Euler (1741) (in Sect. 2);4 (ii) the integration of a method 
into a broader problem-solving strategy, which is required to make Euler’s result 
applicable to an actual routing problem, namely the optimal scheduling of street 
sweeping (investigated in Sect. 3); (iii) the adaptation of a problem to a method and 
the corresponding modulation of the method to suit the given problem (discussed 

3 The latter fact cannot stand out in explanatory accounts of the Königsberg bridge problem, where a 
simple setting directly supports a sharp conclusion.
4 Räz (2018) also offers an insightful study of Euler’s original paper. I suggest in the next section that 
Räz’s analysis is hindered by the decision to read Euler’ s work along explanatory lines foreign to it. The 
epistemic activities conspicuous in Euler’s paper are then lost sight of.
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in Sect. 4, in connection the use of Euler’s result in genetic sequencing). In Sect. 5, 
I briefly look at the impact of technological advances on the applicability of math-
ematical problem-solving strategies, focussing on DNA computing.

The paper is concluded by Sect.  6, which has already been summarised, and a 
final overview in Sect. 7.

2  Traversability

The Königsberg bridge problem was originally solved in Euler (1741). More pre-
cisely, Euler took that problem to suggest a general one: to give necessary and suffi-
cient conditions under which a configuration of localities and pathways joining them 
is traversable along a trail (as defined in Fn. 1). I shall refer to this problem simply 
as the traversability problem for a connected configuration.5 This is the actual prob-
lem solved in Euler (1741). Once one knows how to solve the general traversability 
problem, it is easy to apply Euler’s solution method to the special Königsberg bridge 
configuration and find that it admits no trails.

Euler (1741) shows, in a particularly transparent way, three important phases 
involved in the construction of a problem-solving method by mathematical means. 
These phases are characterised by the increasing substitution of inference for direct 
checks based on the problem’s data. In plainer terms, mathematical argument is 
introduced to avoid extensive processing of data. In the initial stage, Euler consid-
ers a situation where everything has to be checked and nothing is inferred: here one 
deals with data all the time, without establishing any inferential connection between 
them and the existence of a solution. In the intermediate stage, a targeted selection 
of the problem’s data makes it possible to establish the desired connection. In the 
final stage, a theoretical refinement of the intermediate stage streamlines the inter-
mediate, inferential refinement.

Euler’s study of the Königsberg bridge problem can thus be viewed as a simple 
yet instructive illustration of the central role played by mathematical considerations 
in guiding pertinent selections and uses of a problem’s data. Here pertinence must 
be referred to a preliminary goal (solving the problem). It is only after the epistemic 
activity of method construction is carried out that some data stands out as relevant. 
Its relevance is not an absolute feature, but it is relative to a method and a goal.

The picture of method construction just sketched can now be brought to life by 
looking at Euler (1741). Because a good summary and a thorough analysis of this 
paper are already offered in Räz (2018), I would like to clarify what the motivation 
for turning to Euler’s text again is. Räz’s aim is to discuss Euler’s paper from an 
explanatory point of view (Räz, 2018, p. 335). For this reason, his analysis follows 
a trajectory that is very different, although not altogether unrelated, to that pursued 
here. In particular, Räz helpfully isolates three stages in Euler’s paper, but he relates 
them to three distinct attempts at explaining the solved Königsberg bridge problem. 

5 A configuration that is not connected includes at least two localities that are not linked by any path. In 
this case the configuration cannot be traversable.
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In Räz, these stages illustrate antagonistic explanatory strategies. A comparison of 
their explanatory merits motivates Räz to suggest a characterisation of explanatory 
power in terms of the selection of relevant information and the elimination of redun-
dant information.

I think Räz correctly isolates three stages in Euler’s paper, and I single out the 
very same stages in the discussion to follow. However, I provide a substantially dif-
ferent reading of these stages, as three interconnected phases of method construc-
tion, as opposed to antagonistic explanatory strategies. The reading I propose seems 
to me in line with the goals of Euler (1741), which are not explanatory. I also aban-
don the notion of relevant information, which Räz adopts, and replace it with rele-
vance relative to a method and a goal. The notion of relevance so relativised is clear: 
data or information is relevant if a method explicitly selects it to solve a problem. 
This notion of relevance does not require further elaboration6 and is only provided 
as a useful reminder that ‘relevance’ is, from the point of view of practice, the label 
assigned to data that can be subjected to specific use. Data does not display its rele-
vance upon inspection, but only because it can be included into successful epistemic 
activities.

With these clarifications in the background, I now turn to Euler (1741) and iso-
late three stages within Euler’s paper, which function as steps within a continuous 
process of method construction. In the initial step, Euler observes that one way to 
solve the traversability problem is to carry out an exhaustive search for trails. This 
can be concretely done on a journey or, symbolically, on a map. The strategy works 
and has the advantage of generating all trails, if any exist.

Euler, however, notes that exhaustive search is de facto inapplicable to very large 
configurations. It may also produce a large amount of information that is irrelevant 
to the goal at hand: if a trail exists, one does not need to acknowledge it only after 
describing every non-trail. Euler observes that a simpler approach is to look for a 
criterion that determines traversability.7 The criterion is chosen, at least in the first 
instance, in such a way that it does not have to exhibit a trail when one exists. The 
latter goal is desirable but it may be convenient to renounce it if a less demanding 
goal may be attained in a more expeditious way. It is always possible to turn to the 
problem of constructing a trail later, as Euler himself does.

Euler’s approach implicitly highlights one further issue with exhaustive search: 
beside possibly generating much irrelevant information, exhaustive search is an 
undiscerning strategy. It does not respond to empirical advantages. If, for instance, 
a configuration had one locality x joined to only one other locality by a single path-
way,8 one might only check the trails starting at x (clearly x will not be an interme-
diate locality along any trail). A complete search is not responsive to this sort of 

6 Räz has to try and unpack his notion of relevance in terms of logical strength or computational com-
plexity [see Räz (2018, pp. 338–342)].
7 ‘[...] in aliam inquisivi, quae plus non largiatur, quam ostendat, utrum talis cursus institui queat an 
secut’ (Euler, 1741, pp. 129–130)
8 Here and in the rest of the section, I use ‘pathway’ informally, as a counterpart to the formal term 
‘edge’ from graph-theory. I am therefore not talking about graph-theoretic paths.
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opportunity. It is also difficult to make it responsive, unless one has been able to 
select data that help curtail the search. This is precisely what Euler sets out to do in 
the second stage of problem-construction.

His goal is to move toward an existence criterion that will select some data and 
make use of it to anticipate the consequences of traversing a configuration. One way 
of identifying the data that it might be useful to select is to refer it to the set goal, 
i.e. traversability. Euler thus supposes that a solution to the traversability problem 
is given and proceeds to look for any features it must possess. This is difficult to do 
without a suitable notation. Euler assigns letters to the localities in a configuration, 
thus obtaining a uniform representation for the terms of the traversability problem. 
Localities are one-letter words, pathways joining them are two-letter words and a 
solution is a (n + 1)-letter word, if there are n pathways.

A solution to the traversability problem is completely specified when a (n + 1)

-letter word is given and its constituent letters occur the right number of times in the 
right order. Since an existence criterion is less demanding than the exhibition of a 
solution, it is plausible to try and drop some of the information that uniquely deter-
mines a solution. The length of a solution is easily available, so there is no reason to 
drop it. If the complete, ordered sequence of letters was known, then the number of 
occurrences of each letter would be known. One could therefore drop order. Euler 
notes that the number of occurrences of the same letter in a solution can be com-
puted.9 Let this number be mi for locality i. If there are n pathways and k localities, a 
trail exists if, and only if, m1 +…+ m

k
= n + 1.

The computations required to verify the last equality include a direct count of 
the number qi of pathways emanating from each locality. This is all the data one has 
to select. Once the qi are known, it can be decided whether a trail exist by further 
computation. The data supplied by the qi associated with a configuration is all that is 
relevant, given Euler’s method, to the set goal.

From a logical point of view, this characterisation of traversability cannot be 
improved upon. Any other characterisation will be equivalent to it. Nonetheless, the 
given characterisation only depends on whether an equality is true or not in a finite 
configuration, not on what values its sides take. Thus, it may be possible to trun-
cate the criterion just obtained: Euler does precisely that:10 he trades off arithmeti-
cal computations required in each specific traversability problem for combinatorial 

9 The computation only requires knowing the distinctive feature of a solution, namely the fact that path-
ways already traversed cannot be used again. Thus, for instance, if 2k pathways emanate from a locality 
A and a solution exists, then A occurs k times in it, if it is not the starting point of the trail, and it occurs 
k + 1 times otherwise. This is because, if A is always an intermediate stage in the trail, then any one of 
its occurrences uses up two pathways and, since a solution must visit every pathway only once, it must 
return to A exactly k times. If A occurs at the beginning of the trail, then one pathway is used to leave it. 
Every subsequent, intermediate transition uses up two pathways: k − 1 such transitions will subsequently 
be made. Then A must be returned to using the last available bridge. Thus A occurs once at the begin-
ning, once at the end, and k − 1 times in the middle of the trail: overall, it occurs k + 1 times.
10 Räz (2018, p. 338) seems to suggest that Euler’s truncated criterion is logically weaker than his pre-
ceding criterion. I don’t think this is the case: one criterion only requires fewer computations, but both 
characterise traversability. Moreover, if the additional computations are unnecessary when traversability 
fails, they provide information that serves the purpose of constructing a solution when one exists.



1 3

Eulerian Routing in Practice  

considerations that, once made, license a general argument. Euler is thus able to 
conclude that a configuration is traversable if, and only if, qi is even for i = 1,… , k 
or exactly two of the qi are odd. It is worth stressing that this characterisation of 
traversability does not reduce the data previously required but only the number of 
computations involving them.

What now emerges is a clear outline of the process that leads to the construction 
of a traversability criterion in Euler (1741). The process begins with a situation in 
which no data can be selected. The traversability goal is then employed as a guide to 
data selection. A traversability criterion emerges. A closer analysis of the way rel-
evant data is used by the criterion leads to a computationally less expensive variant.

Once constructed, a mathematical method like Euler’s traversability criterion is 
not typically employed to supply explanations and settle arbitrary traversability puz-
zles. Rather, it is involved in more articulate epistemic activities (Euler himself saw 
it as a contribution to non-metrical geometry). For this to happen in applications, 
the criterion cannot be wielded as an isolated result. In the first instance, it must be 
equipped with an algorithm that produces trails when they exist.11 From now on, I 
shall refer to the complex of Euler’s criterion and the associated algorithm by the 
expression ’Eulerian routing’.

Eulerian routing provides a simple mathematical methodology available to tackle 
many familiar problems: the one I shall turn to in the next section is the optimal 
scheduling of street sweeping. The main reason why it is worth looking at it is that, 
despite being similar to the Königsberg bridge problem, street sweeping presents 
empirical adversities that make Eulerian routing an ineffective methodology when 
taken on its own. The response to this situation is the integration of Eulerian routing 
into a broader methodology.

3  Routing

Eulerian routing may prove insufficient in the face of the adversities that occur when 
actual routing tasks are taken into account. In practice, if a trail can be determined, 
it may be necessary to travel through it within a prescribed time. If no trails exist, it 
will not be enough to record the fact and resign oneself to it, as would have been the 
case with the Königsberg bridge problem. Certain operations have to be carried out 
whether or not they can be routed on a trail. Finally, if there are distinct trails, the 
selection of one among them may not be a matter of indifference: some trails will 
produce costs that others save.

All of these issues occur in the optimal scheduling of street sweeping. On account 
of parking regulations, mechanical brooms can only sweep within prescribed times. 
Moreover, because what is swept by a single vehicle is usually a single city district, 

11 Euler (1741, p. 140) offers some remarks supporting this conclusion, but the first published algorithm 
that constructs a trail if one exists was devised by Carl Hierholzer in 1873. Hierholzer’s algorithm is dis-
cussed in Sect. 4. See Fleischner (1990, pp. 30–32) for the German original as well as an English transla-
tion of Hierholzer’s paper.
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its street network may not be traversable in Euler’s sense. Finally, specific trails, e.g. 
ones avoiding inconvenient turns (where the street side to be swept switches), are 
preferable because they allow a simpler operation of the broom.

These issues, which I shall collectively refer to as the empirical adversities of 
street sweeping, do not evidently suggest that Eulerian routing should be given up. 
They call for its adaptation to new circumstances and, in particular, for its articula-
tion with additional methods and techniques that can be turned to when the straight-
forward, basic routing methodology fails. These observations can be made more 
concrete and more compelling by looking at the integration of Eulerian routing into 
the construction of optimal street sweeping schedules devised for the New York City 
Department of Sanitation by Bodin and Kursh.12

What is, in the present context, striking about the construction of an optimal 
schedule is that it can be naturally seen as the progressive unfolding of a problem-
solving strategy whose successive steps are determined by typical empirical adver-
sities. In the simplest case, the methodology coincides with Eulerian routing. The 
need for responses to adversities articulates Eulerian routing with additional algo-
rithms and results.

To see how, it is necessary to clarify what the terms of the street sweeping prob-
lems are. The problem consists in assigning mechanical brooms routes that allow 
them to visit, within a specified time period, every car-free curb in a city district 
whilst avoiding inconvenient turns and, if necessary, minimising deadheading time 
(i.e. the time a mechanical broom travels without sweeping). It may also be desir-
able, and will be assumed in the following discussion, that a broom should travel 
along an optimal circuit (see Fn. 1 for a definition), so that it goes back to its depot 
at the end of the journey.

The routing component of the problem requires focussing on a street network: 
for the sake of terminological convenience, I shall refer to crossroads as nodes in 
the street network and to streets as directed edges joining nodes. Direction matters 
because some streets are one-way (a two-way street is formally conceived of as a 
pair of directed edges pointing in opposite directions).

If a city district is traversable along a circuit, the circuit is an optimal route for 
a mechanical broom. Only a small departure from Euler’s original problem occurs, 
because the direction of travel now matters. Euler’s traversability criterion must be 
revised to take it into account. Whenever an intermediate node is traversed, this is 
done through an incoming edge and a distinct outgoing edge. In a circuit, every node 
is intermediate: thus, incoming and outgoing edges must be balanced at each node. 
In this case, Eulerian routing along a circuit is possible.13

13 The circuit can then be determined using the routing criterion. The key idea is that leaving a start-
ing node costs one (outgoing) directed edge, whilst traversing any intermediate node costs two directed 
edges (incoming and outgoing). A path leaving a directed edge will return to it, if a circuit exists. If such 
a path is not a complete circuit, other circuits can be glued to it for the reason just stated. The result is a 
complete circuit.

12 The formal methodology is presented in Tucker and Bodin (1976) and an early computer-assisted 
implementation is described in Bodin and Kursh (1978).
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The important practical issue is to figure out what to do when a city district does 
not allow Eulerian routing. If G is the street-network of interest, the natural strategy 
is to force a circuit by minimal detours. More formally, one wants to add a minimal-
length set of directed edges � to the original network G in such a way that the result-
ing, enlarged street-network H allows Eulerian routing.

The minimality constraint on � depends on the fact that no edge of the larger 
street-network H that is not already in G has to be swept. The adjunction of � to G 
now calls for mathematical resources that go beyond Eulerian routing. It is worth 
stressing that these resources play the fundamental role of telling the problem-solver 
what to do: they guide a particular activity.

In the first instance, a theorem about networks provides information on the way to 
choose the needed edges. The theorem states that, if an optimal collection of edges 
� exists, then it can be partitioned into paths from nodes of negative degree in G to 
nodes of positive degree in G.14 Only shortest paths linking such nodes are to be 
taken into account: Dijkstra’s algorithm singles them out.15 Finally, these paths are 
allocated through the solution of a transportation problem.16 Substantially more than 
just Eulerian routing is needed.

The last remarks are of philosophical importance because they draw attention to 
the fact that the applicability of mathematics does not only depend on a suitable 
structural display on the part of the phenomena, but also on the plasticity of prob-
lem-solving strategies. This is to say that the applicability of a specific approach like 
Eulerian routing does not depend entirely on this strategy taken in isolation, but also, 
and crucially, on its possible articulations with other techniques and results. Thus, 
an application of Eulerian routing is not typically successful because it reduces to 
a ‘one-shot’ use of a single criterion. It is, in general, successful insofar as it can 
be embedded into a a progressively richer mathematical methodology capable of 
assimilating the conditions of related problems for the sake of their resolution.

It is also worth observing that the success of a formal method may be conspicu-
ous without thereby being absolute. Especially adverse conditions are capable of 
rendering an otherwise fruitful approach inapplicable. If a circuit is not available 
around G , we have seen that one can be designed in an optimal manner. However, 
even if a circuit can be designed, it may not determine an optimal sweeping sched-
ule. If it takes longer than the duration of relevant parking restrictions to travel 

14 The degree of a node is the difference between the number of incoming edges and the number of out-
going ones.
15 Given a street-network like E , in which every two nodes are linked by a sequence of directed edges, 
and two nodes u, v from E , Dijkstra’s algorithm is an effective method to determine the shortest path 
from u to v (recall that edges in E are weighted by travel times). In a nutshell, the algorithm is initiated 
by assigning 0 to u and ∞ to every other node in E . After visiting u, the algorithm recursively visits the 
unvisited node with the shortest known distance from u. Updated numerical labels are assigned to nodes 
at each iteration of the algorithm: whenever the distance from u to some node z is shorter than the dis-
tance previously assigned to z, an update occurs. Distances from u are progressively updated until every 
node is visited. When the algorithm stops, the shortest distance of u from every other node is known, 
and, in particular, its shortest distance from v is. The algorithm was originally presented as Problem 2 in 
Dijkstra (1959).
16 For details, see Tucker and Bodin (1976, pp. 85–84, 92–95).
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around the circuit, more than one mechanical broom must be employed to sweep 
the same area. The full Eulerian circuit has to be broken into shorter, feasible paths, 
each traversed by a distinct mechanical broom. It is possible that the whole tour may 
be optimal,17 while its break-up into sub-routes is not. In such a case, Eulerian rout-
ing is not of help. Routing done by hand must then replace it to determine variants 
of the overall optimal route that can be broken into fewer subroutes.18

It is now easy to see that the street sweeping problem just discussed displays a 
range of characteristic interactions between mathematical methods and empiri-
cal conditions. The latter appear as more or less severe adversities, in the face of 
which mathematical methods have to be enriched and adapted: adversities promote 
the construction of mathematical strategies but may also prove definitive stumbling 
blocks for a given methodology. In this respect, problem-solving activities appear 
mainly as a reckoning with challenging circumstances. It is clear, however, that for-
mal methods do not merely respond to empirical conditions: they also structure and 
direct enquiry. More precisely, they can codify the terms of a problem in such a 
way that its resolution becomes amenable to a chosen mathematical approach. A 
relatively recent instance of this phenomenon, which involves Eulerian routing, has 
arisen in genetics.

4  Sequencing

While discussing optimal street sweeping schedules, I focussed on a problem-
solving context in which a given method was progressively articulated to confront 
a range of possible empirical adversities. The reverse of this phenomenon occurs, 
too. The terms of a given problem may be structured in such a way that they make 
a prescribed method applicable. In this case, instead of responding to empirical 
adversities, a problem-solving strategy creates an empirical opportunity. Usually, the 
organisation of data that enables a specific formal treatment is simultaneous with a 
variation or modulation of the treatment itself.

An application of Eulerian routing to genetic sequencing provides an illuminat-
ing illustration of what has just been described in general terms. A central problem 
of genetic sequencing is called shotgun fragment assembly: it arises from the fact 
that complete DNA strands cannot be read continuously. For this reason, whenever a 
genome is being mapped, longer sequences of nucleotides are broken (e.g. by ultra-
sound bursts) into shorter fragments that can be read and, for this reason, are known 
as ‘reads’. The goal is then to assemble the original sequence from the fragmentary 
reads, thus reconstructing the original genome. A standard technique to achieve this 
goal is known as the ‘overlap-layout-consensus’ approach.

17 In the sense that it takes the shortest time and minimises inconvenient turns as well as deadheading 
time.
18 An example formally involving a disconnected, directed graph, whose components have to be linked 
in an overall tour, is discussed in Tucker and Bodin (1976, pp. 99–100).
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The approach is based codifying reads as nodes and overlaps between reads as 
directed edges. The resulting configuration G , known as an overlap graph, can be 
used to tackle the assembly problem: the assembled sequence may be determined 
by finding a path that visits each node exactly once, also known as a Hamiltonian 
path.19 Besides the problem of correcting errors after a path has been determined, 
this problem-solving strategy is seriously affected by the fact that no efficient algo-
rithm is available to find Hamiltonian paths on an arbitrary, finite graph (if � ≠ �� , 
none exists).

A further problem is caused by the fact that certain genomes exhibit many long, 
identical sequences, known as repeats. Thus, if R is a repeat occurring three times 
and A, B are reads whose ends overlap R, the available information does not imme-
diately suggest whether the correct assembly is RARBR or instead RBRAR . The 
problem of determining the right order of reads in presence of repeats is known as 
the ‘repeat’ problem.

It is largely for the purposes of finding an effective algorithm to tackle the repeat 
problem that Pevzner et  al. (2001) introduced an approach to fragment assembly 
based on Eulerian routing. The immediate appeal of an Eulerian approach is due to 
the fact that Eulerian routes, if they exist, can be determined in linear time.20 Since 
the original approach to fragment assembly is already stated as a path-finding prob-
lem, it is plausible to conjecture that Eulerian routing might be applicable.

The issue of greater interest, for present purposes, is that the assembly problem is 
not standardly formatted as an Eulerian routing problem. To apply Eulerian routing 
to this problem, it is necessary to restructure reads and overlaps to a suitable specifi-
cation. Given a set S of reads, the key idea is to look at Sl , the set of all sub-reads of 
length l, also known as l-mers (for example, if l = 7 , the string of nucleotides CGT 
GCA A is a l-mer). The items in Sl are structured as a configuration known by the 
name of a De Bruijn graph. A De Bruijn graph is obtained by (i) regarding (l − 1)

-mers as nodes and (ii) assigning a directed edge from node u to node v if, and only 
if, there is s ∈ Sl such that u describes the first l − 1 positions of s and v describes the 
last l − 1 positions of s.

Eulerian routing is a meaningful strategy on a De Bruijn graph. To see why, con-
sider the artificially simple case21 of a circular genome and suppose that Sl contains 
every possible l-mer. Then every (l − 1)-mer must be both the prefix of a l-mer and 
the suffix of some other l-mer. In other words, the incoming and outgoing edges bal-
ance out at every node and the Sl can be assembled into an Eulerian circuit.

In general, the assembly problem is significantly more complicated than the toy 
example just described. One key empirical adversity is posed by repeats. If copies 
of the same, repeated l-mers are identified, then the routing goal cannot be an Eule-
rian path, because some repeated sequences may have to be traversed multiple times. 
It follows that, if Eulerian routing is to be applied, repeated l-mers should not be 

20 If V is the number of nodes and E the number of edges of a given graph, Hierholzer’s algorithm 
decides whether an Eulerian route exists in a time that is a fixed constant multiple of V + E.

19 The actual procedure is much more complicated, but what matters here is its ‘routing’ content.

21 Taken from Compeau et al. (2011, p. 989).
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identified but instead treated as distinct edges. A correct assembly now corresponds 
to an Eulerian route that goes through multiple edges associated with the same l-mer 
in the right order. The issue is therefore to find an Eulerian path that contains spe-
cific subpaths.22 Piecing subpaths together into a trail is what Pevzner et al. (2001) 
calls an Eulerian Superpath Problem (ESP).

The ESP may be regarded as a modulation of Eulerian routing because it can 
be turned into an Eulerian routing problem only by means of a suitable reduction 
technique. The situation is qualitatively different from the street sweeping prob-
lem examined in the previous section: in that case, empirical adversities required 
the introduction of already available algorithms and their integration into a broader 
problem-solving strategy. In the present situation, the adversity originated by the 
repeat problem requires a new technique under which ESP may be regarded as a 
variation of Eulerian routing.

To reduce ESP to Eulerian routing, one starts from an extended De Bruijn graph 
G with new ’repeated’ edges and its associated set of paths P . The pair (G,P) is then 
reduced to a pair (G1,P1) in such a way that: (i) G1 has fewer edges than G ; (ii) there 
is a function f ∶ P ⟶ P1 whose restriction f1 to Eulerian Superpaths is a one-to-
one correspondence.

Repeated reductions are carried out until a finite sequence of the form:

results, where Pn is an edge of Gn . The information encoded by the pair (Gn,Pn) and 
the bijections fi(i = 1,… , n) makes it possible to use Eulerian paths in Gn to find 
Eulerian Superpaths in G . The path-complexity reduction described in (1) is or is not 
viable depending on the available data.

To see this, note that, in order to reach a set of edges in Pn , it is necessary to 
delete edges along the way. An obvious type of deletion consists in eliminating 
one of two consecutive edges: this operation is called detachment. Detachment is 
unproblematic if there is exactly one directed path through the given edges. It then 
reduces the length of at least one path by one edge. Suppose, for instance, that the 
directed path CR, with C preceding the repeat R, is under consideration, and that 
the available reads provide the data DRB and CRA . In this case, it is still possible 
to detach CR, linking the vertex from which C emanates to the vertex from which 
A emanates. The direction CA is fixed by the available reads. The path CR is in this 
case said to be resolvable, because it can be included in a path constrained by the 
data.

Other cases in which the repeat R is consecutive with at least two incoming reads 
or two outgoing reads pose problems. For instance, the information CRB and CRA  
requires, but does not provide, an order of priority. Some paths may not be resolv-
able, e.g. because they are compatible with several extensions. In this case the 

(1)(G,P) ⟶ … ⟶ (Gn,Pn)

22 The relevant subpaths are obtained from the De Bruijn graph by taking several distinct copies of edges 
that codify repeats. The subpaths of interest are thus not subpaths in the De Bruijn graph but paths deter-
mined by that graph, to be eventually included as subpaths into the Eulerian path whose construction is 
described below.



1 3

Eulerian Routing in Practice  

analysis must continue23 and transformations other than detachment must be intro-
duced. Paths may also be incompatible with all the given extensions, in which case 
the ESP task cannot be completed. The available data and the results of previous 
stages in the ESP reduction process determine what subsequent actions are possible. 
We see, again, an epistemic activity that progresses through stages, responding to 
empirical constraints with an array of formal moves, which describe a modulation of 
Eulerian routing called for by a specific interest in superpaths, as opposed to simple 
paths.

The great advantage of working with this modulation of Eulerian routing is com-
putational: the approach is not as time expensive as its Hamiltonian counterpart. It 
is worth noting that this fact alone does not completely undermine the earlier Ham-
iltonian approach to genetic sequencing. It is known that this approach is computa-
tionally expensive and becomes unserviceable when standard algorithms for large 
Hamiltonian path problems are run on a silicon-based computer. Over the last few 
decades, however, it has been suggested that Hamiltonian path problems of an other-
wise forbidding size might be successfully tackled on a DNA computer.24

This suggestion, as well as the research surrounding it, deserves some attention 
because it sheds light on the impact of technology on mathematical problem-solv-
ing. Until now, my major focus has been the interplay between problems, mathemat-
ical methods and goals within scientific enquiry. These three factors enter a four-
fold interplay that involves technological capabilities and their variation over time. 
The next section is devoted to exploring the impact of technology on mathematical 
problem-solving with reference to the Hamiltonian path problem. I shall not turn to 
this issue immediately, however, but only after situating it in a context that can be 
clearly outlined only by reflecting further on the what has already been said about 
problem-solving.

5  A Fourfold Interplay

Sections 3 and 4 highlighted interesting interactions between three factors: empirical 
problems, the goals these problems set to scientific enquiry and the formal methods 
deployed to achieve them. A particularly important phase of the interaction between 
these factors has been noted by Otávio Bueno and Mark Colyvan when they wrote 
that ‘the world does not come equipped with a set of objects [...] and sets of relations 
on those’ (Bueno & Colyvan, 2011, p. 347).

It is now possible to refine their observation and set it within a wider theoretical 
context. Because scientific enquiry may be regarded as a complex of problem-solv-
ing activities, the goals set by given problems and the methods introduced to tackle 

23 See Pevzner et al. (2001) for 9752–9753 for details omitted here.
24 The focus on the Hamiltonian path problem does not arise from the requirements of genetic sequenc-
ing. Because this problem is ��-complete, i.e. every other problem in the same time-complexity class 
is polynomially reducible to it: it follows that any convenient method to tackle the problem transfers to 
every problem in the same class. Hundreds are known. For a list, see e.g. Garey and Johnson (1979, p. 
180) and ff.
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them guide the structural specification that is eventually selected for the terms of 
any given problem, i.e. the available empirical information.25 Thus, for instance, the 
same problem may lead to distinct structural specifications, required by alternative 
methods aimed at solving it. Furthermore, the same empirical setting is subjected 
to distinct formal treatments when it provides the underlying reference for distinct 
problems.

Section 4 illustrated the impact of method selection on the way the terms of a 
problem are structured. The earlier discussion of genetic sequencing showed that the 
De Bruijn graph is constructed by ‘reversing’ the role of relata (vertices) and rela-
tions (edges) in the overlap graph. The latter graph codifies overlaps by edges and 
reads by vertices, whereas the former codifies overlaps (of a fixed length) by vertices 
and reads (of a fixed length) by edges. The data supplied by the assembly problem 
are just k-mers, exhibiting no differentiation in type. A differentiation emerges only 
after the selection of a problem-solving method has been effected. If Eulerian rout-
ing, suitably modulated, is adopted, then certain strings of nucleotides are treated as 
nodes and others as edges. If Hamiltonian routing is adopted instead, a dual selec-
tion is carried out: strings treated as edges by the Eulerian methodology are now 
treated as nodes, and vice versa.

Section 3 does not naturally lend itself to an illustration of the last point26 but 
indirectly highlights the fact that the same type of empirical information may be 
subjected to very different treatments, depending on the goal at hand. For instance, a 
street network can be the background against which distinct tasks, e.g. street sweep-
ing or post delivery, must be carried out. With respect to street sweeping, the net-
work may be treated as shown in Sect. 3. With respect to post delivery, the network 
is treated in Hamiltonian terms: more precisely, the goal of an optimal delivery pro-
gramme is to find the shortest route that visits each customer exactly once. Achiev-
ing this goal is the same as solving what is known as the shortest Hamiltonian path 
problem (sHPP).27

Against the background of problem-solving one may therefore see a constant 
interplay of empirical information, formal methodologies and goals. The selection 
of goals may affect the choice of formal methods and the selection of methods may 
determine the structural specification to be employed. This picture is enriched by 
one additional factor, namely the impact of technological advances on the viability 
of formal methods. The fourfold interplay between problems, goals, methods and 

26 It would not be reasonable to design a computationally intractable alternative to an existing Eulerian 
routing approach.
27 It is worth noting, if incidentally, that the problem itself is in general modulated on the conditions of 
operation: if no Hamiltonian path exists, one may seek to solve a shortest pre-Hamiltonian path problem, 
which only requires that each customer should be visited at least once. If not all customers within a dis-
trict are visited on the same day, a variation of the shortest pre-Hamiltonian path problem, known as the 
shortest pre-Hamiltonian rural path problem, becomes pertinent.

25 As observed in Sect. 2, the construction of a method also guides the selection of information.
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technological advances shapes the context of enquiry in problem-solving by math-
ematical means.28

In order to clarify the role and effects of technological advances, it is, at this 
point, quite natural and convenient to look at genetic sequencing again: whilst 
graph-theoretical methods have been adopted to tackle the assembly problem, as dis-
cussed in Sect. 4, the possibility of codifying graphs by means of k-mers has been 
exploited to design DNA computers (working in vitro or in vivo) that can solve HPP 
(for sufficiently small graphs, to date). This is a phenomenon of special interest 
because, rather than conforming to the pattern witnessed so far, in which mathemati-
cal resources codify empirical information, it reverses it: molecular resources now 
codify graph-theoretical information.

Work with a DNA computer was pioneered in Adleman (1994), whose approach 
still provides a useful template for current research [see e.g. Sergeenko et  al. 
(2020)]. On Adleman’s approach, a graph is given and k-mers are engineered to 
codify its vertices and edges. In order to understand how the coding works, it is 
necessary quickly to recall some basic facts concerning the structure of DNA. The 
DNA is a molecule consisting of two strands linked by hydrogen bonds. Each strand 
is a sequence of nucleotides, macromolecules containing a pentose sugar known 
as 2′-deoxyribose, to which a base (A, T, C or G) and a phosphate group ( PO4 ) 
are attached. The five carbon atoms in the sugar molecule are referred to as i′ , with 
i = 1, 2, 3, 4, 5 . A k-mer is thus a string of nucleotides joined together by phosphate 
groups linking the 3′ carbon of one sugar to the 5′ carbon of the next sugar. The 
direction 5′ → 3′ is the direction of DNA replication.

Adleman codified each vertex of a seven-vertex digraph by means of 20-mers. In 
his codification, a directed edge from vertex u to vertex v in the graph corresponds 
to the 20-mer obtained by splicing the final 10-mer u and the initial 10-mer of v, 
read in the 5′ → 3′ direction. If the start x and the end y of a desired Hamiltonian 
path are fixed, then any edge emanating from x is codified by the whole 20-mer x 
followed by the initial 10-mer of the vertex adjacent to it. In a similar manner, edges 
on which y is incident are codified by a 30-mer including all of y.29

Once a digraph, and more specifically the set of its edges, is encoded by oligonu-
cleotides, it is possible to make them ligate in order to produce random sequences of 
edges (which may not be Hamiltonian paths or even directed paths). The advantage 
of this procedure is that it is relatively easy to produce large numbers of copies of 
the same edge (Adleman worked with 3 × 1013 copies per edge) and thus generate, in 
a one-shot fashion, a very large number of edge sequences. Their random generation 
implements the first step of a nondeterministic HPP algorithm. The subsequent steps 
of the algorithm consist in selecting the randomly generated paths starting at x and 
ending at y (Step 2). Next, one selects, among these paths, the ones visiting exactly 
n vertices (Step 3). Finally, the paths visiting each distinct vertex at least once are 

28 Thus Bueno and Colyvan have indirectly isolated one moment (structuring empirical information for 
the sake of specific intervention) within this broader interplay.
29 Note that, in this codification, the polarity of DNA strands is exploited to discriminate the orientation 
of edges in a digraph.
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singled out from those isolated in Step 3 (Step 4). If any exist, a Hamiltonian path 
from x to y has been found. If none exists, no Hamiltonian path exists (Step 5).30

Without going into too many technical details (Adleman, 1994, p. 1022) offers 
a very readable account), it is worth pointing out that Steps 1, 2 and 4 rely on a 
decisive use of Watson–Crick complementarity. It is well known that the only base 
pairings in the DNA molecule are A-T and G-C (in either order). Given a sequence 
of bases, its Watson-Crick complementary is obtained by turning A into T, T into A 
and doing the same with G, C. A 20-mer u on a DNA strand will thus combine with 
its complementary ū . In Step 4, the complements of edges are used to check that 
paths visit each vertex exactly once (e.g. if u is visited, then the strand containing it 
combines with ū ). In Step 2, x and ȳ are used to initiate DNA replication in order to 
single out edge sequences starting with x and ending with y. In step 1, complements 
of vertices are used as splints to support ligations.

The procedure just described affords massive parallel processing at the initial 
step: as I have already noted, a very large number of edge-sequences, i.e. attempts at 
producing a solution, can be generated at once. Moreover, as remarked in Sergeenko 
et al. (2020, p. 73), only Step 4 is time expensive and its time consumption is linear 
in the number of vertices. By contrast, silicon-based computers that run standard 
HPP algorithms give rise to exponential time consumption when a graph is large and 
does not have many edges.31 This is why DNA computing holds great promise.32

For present purposes, its relevance is twofold. First, it shows that the relation 
between formal features and empirical traits in problem-solving is, to some extent, 
reversible. In Sects. 3 and 4, Eulerian routing and its variations arose as a methodol-
ogy subjecting empirical information to formal treatment. In DNA computing, quite 
the opposite is the case: the formal configuration of a graph is subjected to molecu-
lar encoding for the sake of implementing a computation. Second, the motivation 
and prospects of DNA computing suggest that the concrete design of a problem-
solving strategy may regulate the conditions of its applicability: algorithms that are 
unserviceable when run on silicon-based computers to tackle large problems could 
regain their usefulness under a different implementation.

I noted earlier that empirical adversities may stimulate the articulation of a math-
ematical problem-solving methodology. In view of the last observations, it is also 
possible to observe that an existing mathematical methodology can be favoured by 
empirical opportunities. This interrelationship between empirical conditions and 
mathematical methods underlies mathematical problem-solving in scientific prac-
tice. Eulerian routing has provided a fruitful starting point to offer a concrete illus-
tration of the subtle manner in which problems setting goals and calling for meth-
ods open the way to developments and modulations of formal methodologies, which 

31 In technical terms, when its incidence matrix is sufficiently sparse. See Sergeenko et al. (2020, p. 70) 
for a discussion. The estimates of the energy efficiency and computational power associated with DNA 
computing in Adleman (1994, p. 1023) are also of interest in this connection.
32 For discussion of issues attending its implementation, see e.g. Adleman (1994, p. 1023), Baumgarden 
et al. (2009, p. 8) and Sergeenko et al. (2020, p. 73).

30 Provided one has generated Hamiltonian paths in the initial random step.
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unfold under the sway of empirical conditions. The emerging picture of problem-
solving by mathematical means does not only shed light on the structure of scien-
tific practice. It can also be used productively to reconsider many insights from the 
philosophical literature on mathematical explanation. I am going to show how in the 
next section.

6  Reconstructing Explanatory Analyses

The paradigmatic, non-trivial instances of mathematical explanation encountered in 
the philosophical literature describe especially well-behaved settings. These settings 
are static in the sense that they do not involve ongoing eqnuiries but settled facts 
and, since enquiry is no longer unfolding, they are not sites for the elaboration of 
problem-solving methods but stages on which explanatory accounts transparently 
appear. Although it is reasonable to pay selective attention to explanatory circum-
stances, on account of their distinctive features, it is important not to lose sight of 
their genealogy. The settled facts accounted for by a mathematical explanation are 
available because data were selected and inserted into an inferential trajectory lead-
ing to the construction of methods that could make the data function as clues to set 
outcomes. At the close of enquiry, formal methods are left, together with a clear 
understanding of the conditions and the outcomes they link. Because it becomes 
possible to set up such links deliberately, explanatory opportunities arise.

The last remarks offer a productive way of looking at the insights into mathemati-
cal explanation provided in philosophical work. If these insights arise from restrict-
ing attention to contexts that depend on an antecedent set of epistemic activities, it 
may well be possible that their significance is not confined to the explanatory event 
alone, but may be ascribed to the whole trajectory of scientific-enquiry. There is 
no reason, it seems to me, to want to force wide-ranging insights into the Procru-
stean bed of mathematical explanation. There are, in fact, at least two reasons not 
to do it. First, salient aspects of the application of mathematics that can be identi-
fied under explanatory circumstances are more richly portrayed when they can be 
ascribed to problem-solving endeavours, as opposed to some of their possible ter-
minations. Second, the static context of explanation, in which facts are settled and 
formal results neatly account for them, lends itself to metaphysical formulations that 
become unnecessary as soon as it is possible to refer explanatory results back to the 
epistemic activities on which they ultimately depend.

These observations are quite general and their actual content may yet prove dif-
ficult to evaluate. In order to clarify them, I now turn to a few, insightful analyses 
of mathematical explanation encountered in the work of Alan Baker and Christo-
pher Pincock, who devoted much effort to this topic. My goal is to show that, once 
Baker’s and Pincock’s analyses are referred to the context of enquiry, they achieve 
greater articulation and sophistication. Moreover, they can be liberated from met-
aphysical connotations naturally suggested by a restriction to the circumstances 
of explanation, insofar as they are divorced from the epistemic activities they 
presuppose.
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I turn first to Christopher Pincock’s conception of abstract explanation [put for-
ward in Pincock (2007) and refined in Pincock (2015a)33). Pincock isolates this 
species of explanation with reference to Euler’s routing criterion, which, in Pin-
cock (2007), he regards as an abstract explanation of the solved Königsberg bridge 
problem. In essence, Pincock observes that the non-traversability of the Königs-
berg bridges along a trail is transparently accounted for by the formal features of an 
abstract graph that can be associated with a geographical configuration. In Pincock 
(2015a), the notion of abstract explanation is qualified in general terms while being 
compared with the distinct notion of a programme explanation, which I won’t dis-
cuss here [see Lyon (2012) for an application of this notion to mathematical expla-
nation]. Pincock notes that:

Programme explanations and abstract explanations both appeal to what is 
more abstract than the phenomenon being explained. However, abstract expla-
nations invoke a more abstract entity and its properties. Programme explana-
tions appeal only to a more abstract property of the physical system itself. This 
might not seem like such a big difference, but it has important implications for 
the features that are central to the explanatory value of abstract explanations. 
We get necessary and sufficient conditions for the explained property to apply 
as well as an informative comparison between novel kinds of objects. (Pin-
cock, 2015a, 2015b, p. 873)

As transparently evinced by the use of diagrams in Pincock (2007, p. 258), the 
Königsberg bridge configuration can be involved in an abstract explanation because 
of its correspondence with an abstract graph and its properties. The graph’s edges 
stand for connecting bridges and its nodes for land masses. An explanatory rela-
tion is thus established between a geographical configuration and a diagram or per-
haps, given Pincock’s insistence on abstractness, on the isomorphism type of a finite 
graph. It seems to me that Pincock’s conception of an abstract explanation is intro-
duced because it allows him sharply to identify the terms of a dependence relation, 
i.e. a specific, abstract graph and a concrete configuration. Such a dependence rela-
tion is what enables him explicitly to spell out a role for mathematical resources, 
here thought of as mathematical objects, in applications.

It seems to me that Pincock is right to emphasise the dependence of a rout-
ing impossibility upon combinatorial considerations of a graph-theoretic nature, 
but I think that his notion of dependence would acquire even greater significance 
if it could be ascribed to the whole trajectory of enquiry whose close has among 
its byproducts a simple and elegant remark about the non-traversability of the 
Königsberg configuration. In fact, if attention is moved away from this latter fact 
to encompass the work done by Euler to establish a routing criterion, it is easily 
seen that Euler never makes special use of the Königsberg bridge configuration (he 
only works with finite strings of letters), whilst constantly trying to articulate the 

33 Pincock relies upon the same conception in his discussion of a classic application of Galois theory to 
the unsolvability of the general quintic [see Pincock (2015b)]. Even though this example is not relevant 
to empirical science, a version of the considerations to follow can apply here.
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dependence of a solution to the routing problem upon this problem’s terms. The 
inferential trajectory, discussed in Sect. 2 in detail, that leads Euler to a routing cri-
terion provides a way of interacting with contents that can be run on a variety of dif-
ferent artefacts by a variety of agents. It can be run equally well by a student looking 
at the a graph-theoretic diagram and a surveyor looking at a system of bridges from 
the top of a hill.

The pervasive form of dependence at work here is of an inferential kind: it can be 
ascribed to a formal method because the latter method is capable of selecting and 
using data as pointers to a problem’s resolution. When, however, the construction of 
a method is put aside and a rigorous restriction to special explanatory circumstances 
is demanded, the only items available are a graph-theoretic argument attached to a 
special configuration and a settled fact. In this context, it is natural to try and connect 
these localised features of a broader and antecedent process to objects (an empiri-
cal setting, an abstract mathematical object). The connection, however, is largely a 
result of the decision artificially to insulate explanatory outcomes from the enquiries 
that make them possible.

A quick look at the modern approach to Euler’s routing criterion confirms the 
last remarks. Because the goal is to determine necessary and sufficient conditions 
for the existence of a trail in a graph, it is not helpful to focus on special abstract 
configurations in the first instance (each of them is a special case and, thus, exhib-
its features possibly irrelevant to a general existence criterion). A combinatorial 
approach succeeds when it can rise to the description of a type of interaction with 
a generic configuration. A key feature of the interaction of interest requires that, if 
an intermediate locality is reached through an edge x1 , it must be left through an 
edge x2 ≠ x1 . Thus, every intermediate locality must be incident on an even number 
of edges. These remarks are not reserved for abstract configurations: if they were, 
graph-theory would be inapplicable. They nonetheless establish the dependence of 
the resolution of a problem upon a computable feature of its terms.

Pincock’s choice to characterise abstract explanations in terms of dependence is 
a felicitous one. His restriction to the circumstances of explanation alone, however, 
unduly restricts the scope of his analysis and unhelpfully regiments its formulation. I 
have tried to show that such restriction removes from sight the fact that explanatory 
accounts of the kind Pincock favours can only be produced against the availability 
of a method that crystallises effective inferential paths in problem-solving. Once this 
is recognised, the notion of dependence Pincock insists upon can be reconstructed 
as the inferential dependence, mediated by mathematical method, of the solution to 
a problem upon the problem’s terms. This kind of dependence is frequently encoun-
tered and does not mark explanatory settings alone since it is of central importance 
to problem-solving as a whole.

Similar considerations apply to the important analysis of generality found 
in Baker (2017), which can be related to interesting antecedents in Baker (2005, 
2009). Baker repeatedly stresses the fact that mathematical resources are significant 
in explanatory contexts on account of their generality and has provided interesting 
specifications of these notions, which are closely examined in Baker (2017). In the 
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latter paper, as well as his earlier work,34 Baker discusses generality as a quality 
of the entities that enter mathematical explanations because generality cannot be 
referred to empirical particulars. The significance of generality, when ascribed to 
structured mathematical objects, is that it identifies their role as schemas or patterns 
under which empirical particulars can be organised or, more precisely, find them-
selves organised, since all facts are settled when only a mathematical explanation 
is required. Abstract schemas are both scope general, in the sense that they apply to 
many homogeneous empirical configurations, and topic general, because they can 
be transferred across heterogeneous empirical configurations.

These notions of generality, which Baker ascribes to mathematical entities under 
explanatory circumstances, are naturally exemplified and ascribed to mathemati-
cal methods in the non-explanatory contexts from Sects. 3 and 4. Eulerian routing 
is a scope general method because it can be used on city districts, irrespective of 
their layouts. Different layouts are homogeneous in that they convey the same type 
of empirical information relative to a goal of reference like street sweeping. Eule-
rian routing is also topic general because its applicability is not bound to empirical 
information of the kind displayed by street networks. Section 4 showed that Eule-
rian routing can be transferred to the rather different domain of genetic sequenc-
ing, which provides correspondingly different empirical information. These remarks 
already clarify that Baker’s notion of generality does not have to be tied to the cir-
cumstances of explanation or assigned to mathematical entities, because mathemati-
cal methods are deliberately framed to achieve at least scope generality and prob-
lems may be framed in such a way that they enable formal methods to acquire topic 
generality.

Moreover, the ascription of generality to mathematical entities, which is again 
suggested by the static character of explanatory contexts, prevents Baker from see-
ing his notion as a special case of mathematical plasticity, namely the adaptabil-
ity of inferential trajectories to varying circumstances and varying problems. Under 
explanatory circumstances, one must have a structure that exactly accounts for a 
given fact. The ordinary circumstances of scientific enquiry do not exhibit such a 
tight correspondence but, as I have repeatedly pointed out in the preceding sections, 
present more or less severe empirical adversities that require the articulation and 
modulation of mathematical methods. In other words, methods may be immediately 
scope or topic general when the circumstances are fortunate enough to guarantee the 
possibility of lifting them from one context of enquiry to another. In general, empiri-
cal circumstances are not so generous but methods can be transferred nonetheless, 
provided they are modified and adapted. Thus, for instance, Eulerian routing does 
not solve the general street sweeping problem without being integrated into a more 
comprehensive and complicated problem-solving strategy.

In a similar manner, Eulerian routing does not tackle genetic sequencing unless 
it is modulated in response to the repeat problem, which leads to a search for super-
paths. These are typical forms of plasticity. When articulation and modulation are 
not required, one obtains Baker’s generality. The notion is therefore important but 

34 See especially Baker (2009, p. 617) and Baker (2005, pp. 224–233).
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its explanatory formulation makes it difficult to discern that generality is a special 
case of plasticity precisely because the stress on mathematical entities (e.g. abstract 
graphs) emphasises structural rigidity, as opposed to methodological plasticity. In 
short, once Baker’s notion of generality is freed from a rigorous explanatory con-
notation, its broader significance becomes easier to appreciate and can be naturally 
disengaged from a metaphysical formulation that does not help appreciate the versa-
tility of mathematical treatment.

It seems to me that other discussions of mathematical explanation can be sub-
jected to the reconstruction I have outlined with reference to Pincock’s and Baker’s 
work.35 The advantage in doing so is, as I tried to show, twofold. On the one hand, 
important insights can be properly ascribed to the whole pathway of problem-solv-
ing enquiry, as opposed to its possible explanatory coda. On the other hand, the 
methodological content of these insights becomes more transparent when freed from 
metaphysical formulations that seem natural only with reference to the static explan-
atory context.

7  Concluding Remarks

Mathematical explanation, as it has been discussed in the recent philosophical litera-
ture, has a distinctive synchronic quality. A fact and a mathematical result available 
to account for it are taken as given at once and their relation is thematised as a phil-
osophical problem. This synchronic perspective, however prominent, has not been 
strictly adhered to. For instance, Baker’s work on topic generality draws attention 
to the fact that explanatory resources, once available, may admit of transfer to new 
explanatory contexts at a later time. As a further example, Pincock’s work on the 
mathematical account of Plateau’s laws in Pincock (2015a) follows the development 
of mathematical methods geared towards the analytical resolution of abstract opti-
misation problems [in Pincock (2015a)]. In both cases, a tendency emerges towards 
looking at a research context that goes beyond a single, self-contained explanatory 
moment. Both Baker and Pincock have thus recognised the pertinence of a dia-
chronic perspective within their work on explanation.

In this paper, I have tried to turn their recognition into an explicit methodological 
orientation, using as my leading example an application of mathematics frequently 
discussed in explanatory terms, namely the Königsberg bridge problem. Moving 
away from its explanatory framing, I sought to examine both the epistemic activities 
that precede this problem’s resolution and the epistemic activities that drive its artic-
ulation and modulation in later enquiries. My principal aim was to show that a shift 
of focus from explanatory concerns to mathematical problem-solving in the context 
of scientific enquiry can be philosophically very rewarding because it leads to a rich 
and comprehensive picture of the application of mathematics.

35 For instance, the account of programming explanations in Lyon (2012) is amenable to reconstruction, 
on account of its proximity to the notion of abstract explanation discussed above.
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While significant in itself, the resulting picture can also help broaden and sharpen 
insightful analyses that have been originally formulated in connection with math-
ematical explanation. Such analyses are broadened because they no longer need to 
be restricted to explanatory contexts but can be referred to the whole trajectory of 
enquiry. The analyses are also sharpened because their metaphysical formulation, 
which suggests itself as natural once the context of enquiry is suppressed, tends to 
conceal their actual character and import.
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