
1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

1

Design and Analysis of Dynamic Block-setup
Reservation Algorithm for 5G Network Slicing

Cheng-Ying Hsieh, Tuan Phung-Duc, Yi Ren, Jyh-Cheng Chen, Fellow, IEEE

Abstract—In 5G, network functions can be scaled out/in dynamically to adjust the capacity for network slices. The scale-out/-in
procedure, namely autoscaling, enhances performance by scaling out instances and reduces operational costs by scaling in instances.
However, the autoscaling problems in 5G networks are different from those in traditional cloud computing. The 5G network functions
must be considered the simultaneous deployment of multiple instances; moreover, the deployment of 5G network functions is more
frequent than that of traditional cloud computing. Both the number and timing of deployment will substantially affect the
cost-effectiveness of the system. In this paper, we first identify the autoscaling issues specifically based on the 3GPP standards. We
develop a low-complexity analytical queuing model to formulate the problem and quantify a set of performance metrics with closed-form
solutions. The proposed analytical model and closed-form solutions are cross-validated by extensive simulations. The analytical model
offers design insights and theoretical guidelines, helping us study the effectiveness of reservations. We proposed a dynamic
block-setup reservation algorithm (DBRA) to find the optimal reserved number and threshold value of network slices. Therefore, mobile
operators can balance the system’s cost-effectiveness without large-scaled testing and real deployment, saving cost on time and
money.

Index Terms—Network Slicing, Reservation, Block Setup, 5G, Performance Analysis, 3GPP Standards

F

1 INTRODUCTION

F ROM 1st generation (1G) to 4G, broadband networks are
primarily designed for humans to use. Starting from

3GPP Release 15 (R15) [1], the 5G system is being designed
not only for humans but also for all kinds of things, in-
cluding machines. In addition, the network functions in the
5G core networks will be deployed not only by network
operators. Enterprises, factories, or government agencies
will also be able to build their own private mobile networks
to increase performance and enhance security. When users
deploy a private mobile network, the network functions of
the control plane could be still provided by operators. The
users own only the user plane functions according to their
requirements.

In 3GPP R14, which is still referred to as 4G, the serving
gateway (SGW) and PDN gateway (PGW) are responsible
for forwarding data. However, both of them deal with the
functions in both the control plane and user plane. This
design causes redundant overhead when the SGW and PGW
are deployed. Therefore, according to 3GPP TS 29.244 [2],
control and user plane separation (CUPS) separates the SGW
and PGW into SGW-c, SGW-u and PGW-c, PGW-u for the
control plane and user plane, respectively. The SGW-u and
PGW-u have evolved together, eventually yielding the user

• C.-Y. Hsieh and J.-C. Chen are with the Department of Computer Science,
National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, E-
mail: ingyaya36.me03g@nctu.edu.tw, jcc@nycu.edu.tw.

• T. Phung-Duc is with the the Faculty of Engineering, Informa-
tion and Systems, University of Tsukuba, Tsukuba, Japan. E-mail:
tuan@sk.tsukuba.ac.jp

• Y. Ren is with the School of Computing Sciences, University of East
Anglia, Norwich, NR4 7TJ, U.K. E-mail: e.ren@uea.ac.uk

Manuscript received June 20, 2021; revised Dec. 21, 2021 and Mar. 29, 2022;
accepted Apr. 5, 2022

NEF PCF

SMFAUSF

UDM

UPF

CCPSF NRF

AMFNSSF

NEF PCF

SMFAUSF

UDM

UPF

Internet

User plane

Control plane

MM: Mobility Management

NRF: Network Repository Function

NSSF: Network Slice Select Function

UDM: Unified Data Management

NSSI: Network Slice Subnet Instance

RAN: Radio Access Network

NEF: Network Exposure Function

PCF: Policy Control Function

AMF: Access & Mobility

Management Function

AUSF: Authentication Server Function

SMF: Session Management Function

UPF: User Plane Function

NFI: Network Function Instance

NSI: Network Slice Instance

UPF

UPF

UPF
User plane for new requests

(setting up)

Fig. 1: Network slicing in 3GPP Release 15 (R15)

plane function (UPF), which specifically focuses on the tasks
of data forwarding in 5G. In this way, the deployment of
UPFs has become more flexible and reliable.

Network function virtualization (NFV), which virtual-
izes physical network nodes into virtualized network func-
tions (VNFs), has become a key technology for 5G networks.
Through NFV, operators can dynamically deploy virtual
resources to achieve optimal cost-effectiveness. As defined
in 3GPP TS 28.530 [3], a network slice consists of several
network slice instances (NSIs), which can be scaled out/in
(turned on/off) to dynamically adjust the capacity of the
core network functions.

As shown in Fig. 1, a network slice consists of multi-
ple NSIs, such as NSI1 and NSI2, where one NSI can be
composed of multiple network slice subnet instances (NSSIs)
or a NSI is composed of a single NSSI. For example, NSI1

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

2

consists of the shared NSSI and NSSI1. An NSSI consists of
multiple network function instances (NFIs), which essentially
are VNFs. For example, NEF, PCF, UDM, AUSF, SMF, and
UPF are all VNFs inside NSSI1. In addition, NSIs can
share the control plane functions on one NSSI (e.g., the
shared NSSI shown in Fig. 1 is shared between NSI1 and
NSI2). The shared NSSI mainly consists of control-plane
network functions. Since the performance bottleneck is on
the user plane, control-plane network functions that are
not deployed frequently are usually integrated and shared
by NSSIs, such as NSSI1 and NSSI2. When establishing a
connection, a user will first send an initial authentication
request to the control plane. After setting up the session
successfully, the data can be transmitted through the UPFs
without going through the control plane. However, when
a user suddenly sends out a large amount of data, the
operator could dynamically set up more UPFs to mitigate
system congestion.

In 5G, UPF is a user-plane function, which is used to
transmit data. Specifically, UPF is responsible for maintain-
ing a routing table and establishing GTP tunnels to for-
ward packets. Before the transmission, UPF should decode
packets’ headers and search the routing rules in its dataset.
In 3GPP R15, a session management function (SMF) may
control multiple UPFs. However, for operators, how to set
up a large number of UPFs with the lowest cost while also
meeting user requirements is a challenge. In this paper, we
propose a systematic way to reach this goal.

Similar to cloud autoscaling strategies, autoscaling in
NSSIs can provide flexibility, reduce operational costs, and
meet the performance requirements of users. However, the
autoscaling of NSSIs in 3GPP is different from that in
traditional cloud autoscaling due to the following:

(1) Block setup: As aforementioned, a network slice in
5G has three different layers: NSI, NSSI, and NFI. To deploy
network slices, we typically need to deal with an NSSI,
which not only consists of several NFIs but also may be
combined with other NSSIs to form a new NSI. That is,
the network slicing defined in the 3GPP standards needs
to account for the composition and combination of each
layer. Furthermore, according to 3GPP R15, 5G network
functions are highly dependent on one another. To deploy
UPFs, for example, the network must take into account the
system capacity of the SMF. If the required number of UPFs
exceeds the load of the SMF, additional SMFs may also be
deployed. Therefore, unlike the traditional cloud computing
mechanisms, 5G network slicing should not only consider a
layered architecture but also analyze the impact of scaling
multiple NFIs, which is called a block in this paper.

(2) Reservation: In ETSI GS NFV-IFA 010 [4] and 3GPP
28.531 [5], the standards bodies propose the reservation
concept, where the system turns on network instances in
advance to prevent sudden traffic demands. Although reser-
vation can alleviate congestion and reduce the number of
times NFIs are set up, the resources are wasted if the system
deploys an excessive number of reservations. Therefore,
there is a trade-off: too few reservations will downgrade the
performance, while too many reservations will increase the
cost. In standards, only the idea of reservation is proposed.
The detailed algorithm is left for vendors and operators.

In this paper, we specifically study the effect of the

reservation concept and build a system model of the block
setup for future 5G networks. One of the major challenges
for the problems discussed in the last section is how to set
up the parameters for the block setup and reservation to find
the optimal solution. In this paper, we propose the dynamic
block-setup reservation algorithm (DBRA), which can find the
best parameters for any given block size. In this section, we
summarize the contributions of this paper:

• Proposed reservation algorithm with block setup: As
aforementioned, 5G network functions are turned
on/off more frequently than traditional cloud com-
puting. Because the instances in the setup process
cannot provide service immediately, the costs are
caused by the time of the setup process. Frequent
scaling not only deteriorates system performance but
also leads to significant costs. Therefore, in this paper,
we consider the impacts of reservation and propose
a DBRA algorithm, which can help mobile operators
find an optimal reserved number and a suitable
threshold value. With the proposed DBRA, mobile
operators can significantly reduce the frequency of
deployment and optimize the cost-effectiveness of
the overall system.

• Model network slicing with block setup: Existing stud-
ies [6]–[11] have considered how to set up a bulk
of VNFs at the same time. However, these studies
focus on how to turn on/off all VNFs inside the bulk
together, which does not fit with 5G systems where
the autoscaling strategy should not only consider
multiple instances in an NSSI but also deploy multi-
ple NSSIs in a network slice. To this end, we model
multiple VNFs as a block and take the deployment of
multiple blocks into consideration. Our mathemati-
cal model is based on 3GPP standards and enables
operators to tune the parameters (e.g., block size,
system scale, arrival rate, service rate, etc.) to in-
vestigate their impacts on system performance. With
these theoretical guidelines, mobile operators can
estimate the system performance and corresponding
costs without real deployment, which saves money
and time.

• Low-complexity analytical solution: To analyze the sys-
tem cost-effectiveness, we use a queuing model for-
mulated by a two-dimensional Markov chain. In gen-
eral, the computational complexity for finding the
steady-state probabilities of a Markov chain with M
states is of order O(M3). In this paper, we can obtain
the steady-state probabilities with a simple recursive
solution with a complexity of O(M), which is the
lowest possible order. Because our Markov chain is
two-dimensional, the number of states M is large,
and thus, the complexity reduction is significant.
Hence, we can obtain three system metrics, i.e., re-
sponse time W , total cost C, and cost response-time
product (CRP), in a quick manner. We also consider
various system operational costs. When operators
want to set up multiple NFIs at a time, they can
analyze the best timing and the best number of
blocks.

The rest of the paper is organized as follows. We first

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

3

survey related work in Section 2. We then present the
proposed DBRA in Section 3. In Section 4, we discuss the
performance evaluation. Finally, Section 5 summarizes this
paper.

2 RELATED WORK

Recently, dynamic resource allocation has been extensively
studied in the 5G NFV community. The currently well-
known studies about resource allocation of 5G network slic-
ing can be founded in [12]–[18]. The related studies provid-
ing theoretical insight generally falls into the following three
categories: setup cost [6], [19], [20], threshold [21]–[24], and
bulk/block setup [6]–[11]. In the following paragraphs, we
compare our work with current studies in terms of network
slicing, setup-cost strategies, Threshold-based approaches,
and Bulk-/Block-setup mechanism.

(1) Current network slicing studies: For the resource
allocation of 5G network slicing, the authors of [12] propose
a multi-domain architecture, which simplifies the operations
by dividing the managerial center into four strata, and this
significantly raises the scalability and flexibility of the origi-
nal architecture. However, the cost-effectiveness of handling
the multi-domain architecture was not discussed in this
paper. In contrast, the authors of [13] study the joint optimal
deployment of VNFs by taking both the characteristics of
cloud architecture and computing resource allocation into
consideration. Nevertheless, the most significant difference
between [13] and our work is that the authors of [13] give
attention to arranging arrival tasks within limited comput-
ing resources, while our work seeks to turn on/off the
computing resources with the change of tasks’ arrival rate.
In addition, the authors of [14], [15] discuss the dynamic
resource allocation of network slicing with a probabilistic
isolation guarantee, in which the authors formulate their
question with an integer programming problem. Although
the results show that the proposed solution outperforms
traditional modeling resource utilization, more detailed per-
formance metrics (e.g., tasks’ response time, setup costs, idle
costs, bus costs, etc.) have not been discussed. In addition,
the authors of [16]–[18] collect many well-known studies to
discuss the resource allocation of network slicing. However,
even though many dynamic auto-scaling models have been
proposed, they are still not flexible enough to formulate
the behaviors of network slices that consist of a layered
structure. Moreover, the other prominent difference between
our work and current studies is resources’ reservation that
significantly reduces the loss of performance and costs in
such a frequent deployment of 5G network slicing.

(2) Setup-cost strategies: To optimize the setup cost, the
authors of [19] use Markov decision processes to derive
structural properties that can be used to analyze the optimal
policies. Later, the same authors extend their previous work
to further discuss the bulk-setup queuing model in terms
of the setup cost, staggered thresholds, and optimal ratio
between static and dynamic servers [6]. Specifically, the au-
thors treat all dynamic servers as a bulk. When the workload
reaches a threshold, the system sets up the whole bulk of
dynamic servers. To ensure cost-effectiveness, the system
must adjust the threshold and the proportion of dynamic
servers to optimize resource utilization. The other study

subdivides the cost of the setup process into the instant
cost and processing cost [20]. Specifically, it reveals the
trade-off for the M/M/c/Setup queuing models, turning
the servers on or off according to the traffic load. However,
the setup costs discussed in [6], [19], [20] are the result of
earlier studies and thus are not close enough to the actual
network slicing defined in recent 3GPP standards, leading
to a research gap for this topic. In this paper, we investigate
the effect of the reservation concept and design the block
setup.

(3) Threshold-based approaches: Recently, threshold-
based approaches have been intensively studied (e.g., [21]–
[24]). The basic idea is to use a threshold to determine the
timing to switch servers on/off. For the single-threshold
mechanism, the authors of [21] propose an energy-efficient
resource allocation algorithm that considers the states of
various server operations and the cost incurred in each
status. Reference [22] uses a single threshold strategy to
discuss the batch service mechanism. The arrival jobs have
an unknown probability to balk from the queue. However,
although the single-threshold manner is efficient, it is in-
sufficient in some deployment cases that take many factors
into consideration. To this end, the authors in [23], [24]
propose a novel dual-threshold method to address the short-
comings of single threshold approaches. Two thresholds are
used to deactivate/activate computing resources separately.
Specifically, the authors of [23] offer a threshold-oriented
operation model for reducing the power consumption in a
data center. Their model analyses the Pareto optimization
problem under varying parameters and requirements. The
authors of [24] take dynamic deployment and reservation
into consideration, which enhances both performance and
efficiency significantly. However, [23], [24] do not consider
multiple-instance deployment and layered structure in 5G
network slicing scenarios. From a mathematical point of
view, the model in [24] is an infinite buffer model for
which the solution is totally different. The Markov chain
in [24] is two-dimensional but one dimension has only
three states. Thus, solving such a Markov chain by gen-
erating function is relatively easy. In our work, we take
advantage of the single-/dual-threshold manners to design
the block-setup mechanism, in which we optimize the set-
up timing and the number of instances by controlling a
threshold value and determine the turn-off timing and the
number of instances based on operators’ needs. Because we
have multiple thresholds, setup time, and finite buffer, our
Markov chain is more complex and needs a larger compu-
tational complexity than a conventional method. Here, we
successfully derive a simple recursion method that has the
smallest computational complexity, i.e., the same order as
the number of states.

(4) Bulk-/Block-setup mechanism: The bulk-setup algo-
rithms run in the threshold-type queuing models. When the
number of arriving jobs reaches the threshold, the models
set up a bulk of servers at a time. Maccio et al. [6] discuss
the problems of the bulk size and the threshold. They
discuss how to achieve better cost-effectiveness by adjusting
both the bulk size and threshold values. In addition to
the bulk setup, bulk services are considered in a finite-
capacity single-server model, which explores the effect of
the general bulk service rule according to a Markovian

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

4

arrival process [7]–[11].
In our previous works, we proposed DBCA [25],

DASA [26], and ASA [27] to analyze the system performance
of auto-scaling mechanisms. However, our past papers fo-
cus on single-instance provisioning, which is insufficient to
analyze 5G network slicing. In 5G, there are several NFIs
in an NSSI, and multiple NSSIs are deployed to form a
network slice. Even though the bulk schemes can consider
the behaviors of multiple servers/jobs, they are still not
flexible and efficient enough to discuss how to set up mul-
tiple instances in more subtle strategies. In this paper, we
design a new queuing system that is capable of analyzing
multiple NFIs deployed inside multiple NSSIs. We propose
a block-setup mechanism that consists of multiple blocks,
each of which contains k instances. In this way, we can
help operators determine strategies to deploy network slices
according to any given block size k.

3 PROPOSED DYNAMIC BLOCK-SETUP AND
RESERVATION ALGORITHM (DBRA)
As shown in Fig. 2, our system model consists of the
following components:

• Input Parameters: We integrate system information,
which includes the current traffic, system capacity,
total number of instances, block size, setup rate,
service rate, and cost coefficients.

• System Modeling: By plugging parameters into the
system model, we can describe system behaviors in
a mathematical way. With the system model, we can
test various parameter combinations without actual
deployment.

• Performance Metrics: To evaluate system performance,
we derive closed-form solutions for both response
time and costs. We also design a comprehensive
metric, CRP, in which the convex function can help
operators evaluate cost-effectiveness.

• DBRA: Based on the system model, we design this
algorithm with gradient descent, in which we can
obtain the best number of reserved instances and
threshold value.

• Outputs: According to the results analyzed by DBRA,
operators can deploy instances with the optimal
reservations and threshold value, optimizing the
costs-effectiveness of the overall system.

As shown in Fig. 2, in procedure (a), we establish a
mathematical model to formulate system behaviors based
on the given parameters. Next, in procedures (b)-(d), we
calculate system performance with closed-form solutions in
terms of cost, response time, and CRP. In procedure (e),
based on the analysis of the performance metrics, we then
find the optimal solutions for both the number of reserved
instances (n0) and the threshold value (m) with gradient
descent. In procedures (f) and (g), the iterations of the DBRA
update the system performance with the change of n0 and
m. To update the performance metrics, the procedure goes
from (h) back to procedure (c), which forms the iteration: (c),
(d), (e), (f), (g), (h), (c), and so on. Finally, when the CRP of
the overall system reaches the global minimum, the optimal
solutions of n0 and m can be obtained. In the following

System Modeling

Performance Metrics

Calculate system cost

Calculate CRP

DBRA

Find the optimal number
of reserved instances

Find the best threshold value

Outputs

Input parameters

• Optimal number of reserved instances
• Optimal threshold value

(a)

(b)

(c)
(e)

(f) (g)

(h)

(i)

Calculate response time
(d)

Fig. 2: Input–process–output (IPO) model

Arrival rate

of requests Queue
Service rate of

each instance

m

n0

(𝑁 − 𝑛0) instances

Dynamic virtual instances (block-setup)

Reserved virtual instances (always on)

λ μ

1

r

1

k

2

1

k

2

1

k

2

1

2

n0

3

…

… … …

…

……

NSSI

NSI
i NFI

Fig. 3: System model of the proposed DBRA

sections, we discuss the details of each steps shown in Fig. 2
and list the notations in Table 1.

3.1 Input parameters
To conduct dynamic deployment, we collect system in-
formation that consists of the current traffic (λ), system
capacity (K), total number of instances (N), block size (k),
setup rate (α), service rate (µ), and cost coefficients (c1,
c2, and c3). Since the model built in this paper applies to
various cases of 5G deployment, the process of information
collection can be conducted in different managerial entities.
For example, according to 3GPP 29.244 [2], to increase the
efficiency of data transmission, UPFs are deployed by SMF,
which synchronize users’ data by using packet forwarding
control protocol (PFCP). During the synchronization, the
above information can be wrapped in the usage reporting
rule (URR) sent from UPF to SMF as input parameters.

3.2 System Modeling
The system model shown in Fig. 3 depicts the behaviors of
the dynamic deployment for 5G network slicing in a math-
ematical way. Through this model, we can optimize cost-
effectiveness of the system by analyzing the reservation and
threshold value. As aforementioned in Section 1, different
from traditional cloud computing, network slices are de-
ployed with a layered structure in which multiple NFIs are
set up to form an NSSI, and multiple NSSIs are deployed to
make an NSI. To this end, we consider k instances as a block
to describe the relationship between NFIs and an NSSI, and
we set up the blocks separately to describe the relationship
between NSSIs and an NSI. In addition, because frequent

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

5

OffSetup

Busy

Idle

if (
𝑗−𝑛0

𝑚
≥ 1 & 𝐶𝑖= = 0 & 𝑁𝑖 +𝑁𝑏 +𝑁𝑠< 𝑁)

turn on k NFIs

During setup process, there are

some busy NFIs turned into Idle

state which can serve queued jobs

and make
𝑗−𝑛0

𝑚
< 1.

Setup time

=
1

𝛼

Mean service time

=
1

𝜇

When there are

some jobs queued

in the system, the

idle NFIs will serve

them and change

into busy state

immediately.

if (the number of idle NFIs == k)

turn off k NFIs.

(initial state)

Fig. 4: Rules of the state transition in the block setup

deployment will substantially degrade system performance,
we take n0 reserved instances into consideration and set a
threshold value (m) to control the setup timing. We denote
the arrival rate and service rate as λ and µ, respectively.
Through the closed-form solutions derived from the 2D-
Markov chain, the system’s performance metrics such as
the response time and corresponding costs (setup, busy, and
idle) can be obtained. With the derived performance metrics,
the optimal solutions of the reserved instances (n0) and
threshold value (m) can be analyzed. More details regarding
the analysis of optimization are expounded in Section 3.5. In
this section, we first introduce three important variables that
are the number of reservations (n0), the threshold value (m),
and the block size (k), and we then explain how to derive
the closed-form solutions of the system performance metrics
from our system model.

• The number of reservations (n0): In DBRA, we reserve
n0 instances (NFIs), which are always ready to serve
users. That is, n0 instances are always on. There are
N − n0 instances that are set up dynamically, where
N is the total number of instances that the system can
accommodate. By changing the ratio between n0 and
N − n0, we can help operators analyze the optimal
reserved number of instances to achieve the best cost-
effectiveness.

• Block size (k): Every time we want to set up instances,
we set up a block of k instances. As shown in
Fig. 3, an instance corresponds to an NFI, and a
block of NFIs corresponds to an NSSI. By setting up
multiple NSSIs, we can set up an NSI dynamically
with various numbers of NSSIs. In our system model,
we use threshold value (m) to determine when and
how many instances need to be set up according
to operators’ cost-effective strategies. For example,
when an operator wants to enhance performance, we
recommend a smaller m and larger k. In contrast,
when an operator wants to reduce costs, we recom-
mend a larger m and smaller k.

• Threshold value (m): In the model, we set up a block
of k instances when the number of service requests
waiting in the queue reaches the threshold m. More-
over, if the number of service requests is two times
the threshold value m, we set up two blocks of
instances, and so on. The value of the threshold m
controls the setup timing and number of blocks. In
addition, we use the block size (k) specified by the

operator as the other threshold. Specifically, to avoid
over switching, the instances that have been set up
should be sustained for a while even if they are idle.
Therefore, the block size (k) can be applied as the
deactivation threshold. That is, we turn off a block
of instances if there are (k) instances idle and turn
off two blocks of instances if there are (2k) instances
idle, and so on. In this way, if operators want to save
costs, they can choose a small block size, and the
advantages are that the instances can be deployed
more subtly and turned off faster. On the contrary,
if operators want to enhance performance, they can
choose a large block size, and the advantages are that
the instances can be deployed faster and sustained
longer to avoid over switching.

Based on the model shown in Fig. 3, the challenge
now is how to set up the parameters to find the optimal
solution. Fig. 2 illustrates the system flow of the proposed
block-setup mechanism. Operators first determine k, the
number of NFIs in an NSSI. Based on k and λ, the arrival
rate of service requests, the proposed DBRA can find the
CRP, which is presented in Section 3.3. Based on the CRP,
DBRA then finds the optimal solution for the reservation
by using the algorithms described in Section 3.5. With the
proposed mathematical model and algorithms, we provide
a systematic way to solve the problem.

As shown in Fig. 3, the service discipline is first come
first served (FCFS), and each service request needs one
available instance. We assume that the system capacity is
finite with a size K. Thus, a newly arrived service request
cannot enter the queue when there are alreadyK requests in
the system. Furthermore, since the traffic in 5G is different
from that of traditional cloud computing, transient opti-
mization on dynamic deployment is not suited for realistic
5G scenarios. Specifically, the traffic in 5G changes in mil-
liseconds, while switching on/off instances takes minutes.
For the uncertainty of the system, we consider the arrival
rate (λ) of service requests with a Poisson distribution and
model both the service rate (µ) and setup rate (α) with an
exponential distribution. The mathematical results analyzed
by our system model are convergent from widely random
variables. The main advantage is that the system will not
be affected by sudden changes of traffic. Specifically, if the
operator immediately turns on instances when the traffic
suddenly rises, the instantaneous decrease in traffic will
make the instances switched too often, leading to significant
costs. Thus, by using our system model, operators only need
to update required inputs (Section 3.1) as the mean values
of the parameters change. To further ensure that our system
model is compatible with various scenarios, we use an ns-2
simulation to cross-validate the correctness for the change
of arrival rate in many kinds of probability distributions.
For more details about the experimental results, please refer
to Section 4.2. The notations used in this paper are listed in
Table 1.

In this study, we turn on and off (N − n0) instances dy-
namically on a block basis. Specifically, we set up a block of
k instances altogether when the number of service requests
waiting in the queue reaches the threshold m. Additionally,
we shut down a block of k instances when all k instances are

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

6

TABLE 1: List of Notations

Notation Definition
λ Arrival rate of service requests
K System capacity (maximum number of requests)
N Total number of instances that system accommodates
n0 Number of reserved instances
k Number of instances in a block (block size)
r Size of the block comprising the

remaining instances
α Setup rate
µ Service rate
m Threshold
W Average response time
C Average total cost
Cb Average busy cost
Ci Average idle cost
Cs Average setup cost
Nb Number of busy instances
Ni Number of idle instances
Ns Number of setup instances
c1 Weight factor for the cost of idle instances
c2 Weight factor for the cost of the setup at one instance
c3 Weight factor for the cost of the setup process
CRP Cost response-time product
V̂ Current CRP value during the iteration
βm Learning rate of the threshold
βn Learning rate of the reserved number

of virtual instances
A′ Maximum number of blocks
S′ Number of blocks in the setup state
M Number of states in the Markov chain

idle. In each block, there are k instances except for the last
block, which may have r instances, where (r < k). Because
our model is designed to use multiple blocks to set up the
instances, it is necessary to consider the case that the number
of instances cannot be divided evenly. For example, there
are a total of 100 instances in the system, where we reserved
30 instances as always-on and dynamically deploy the rest
of the instances with the block size k = 9. That is, there
are (100-30)/9 blocks with size k = 9 and the remaining of
7 instances form another block. We denote this remainder
number of the instances as r. Thus, r is less than k (r < k).

Furthermore, we consider the setup time, which follows
an exponential distribution with a rate α. After complet-
ing the setup process, instances can immediately provide
a service when a request arrives. The service time of a
request follows an exponential distribution with a rate µ. An
instance becomes idle as soon as it finishes its service. Fig. 4
shows the state transition diagram of an instance. The initial
state is off, in which an instance cannot provide any service.
When

⌊
j−n0

m

⌋
≥ 1, where j is the number of requests in

the system, there are no idle instances. When the number
of instances (on or during setup) is less than the system
capacity, a block of instances goes to the setup state. That is,
Ni + Nb + Ns < N , where N is the number of total
instances, and Ni, Nb, and Ns are the number of instances
in the idle, busy, and setup states, respectively. During the
setup process, the instances are set up completely after an
exponentially distributed time with mean 1/α. However,
the setting up of instances may still be “turned off” because
there may be some instances that have just finished their
services and transit from the busy state to the idle state.
Those instances in the idle state can serve waiting requests

λ

3μ
α

λ λ λ λ λ λ λ λ λ λ

μ 2μ 2μ 2μ 2μ 2μ 2μ 2μ 2μ 2μ 2μ

λ λ λ λ λ λ λ λ

α 2α 2α 3α 3α 3α 3α

4μ 5μ 5μ 5μ 5μ 5μ 5μ 5μ

λ λ λ λ λ

7μ 8μ 8μ 8μ 8μ

α 2α 2α 2α 2α

λ

10μ 10μ

λ

α α

6μ

9μ

2μ

2

5

8

10

i

j
0 1 2 3 4 5 6 7 8 9 10 11

Fig. 5: State transition diagram with n0 = 2; m = 2; k = 3;
N = 10; and K = 11.

immediately. Therefore, the condition of
⌊
j−n0

m

⌋
< 1

occurs, and the setting up of instances is interrupted. On
the other hand, if the system sets up a block of instances
successfully, these instances will initially be in the busy
state and then switch to the idle state after an exponentially
distributed time with mean 1/µ. Finally, in the idle state, an
instance can switch to the busy state immediately if there is
a request waiting in the queue. However, it may return to
the off state when the number of idle instances reaches k.

Let (i, j) denote the state, where i instances are initiated
(i.e., the instances are in the busy or idle state) while j
service requests remain in the system. Therefore, min(i, j)
instances are busy, max(0, i − j) instances are idle and
max(0, j − i) requests are waiting for service in the queue.
Let µi,j denote the service rate at state (i, j) and αi,j denote
the setup rate at state (i, j). We then have:

µi,j = min (iµ, jµ)

αi,j =

{
0, i ≥ j
min

(⌊
j−i
m

⌋
α,
⌈
N−i
k

⌉
α
)
, i < j

(1)

where

i ∈ I = {n0, n0 + k, · · · , n0 +

⌈
N − n0

k
− 2

⌉
k, (2)

n0 +

⌈
N − n0

k
− 1

⌉
k,N}

j ∈ J = {0, 1, · · · ,K}.

Let i(t) denote the number of busy or idle instances at
time t, and let j(t) denote the number of service requests in
the queue at time t. Furthermore, we define the state space
S as:

S = {(i, j) | i ∈ I, j ∈ J, j ≥ f(i)} (3)

where

f(i) =


0, i = n0
i− k + 1, n0 < i < N

i− r + 1, i = N

(4)

Thus, (i(t), j(t)); t ≥ 0) forms a continuous-time
Markov chain in the state space S. The state transition
diagram of slicing instances is illustrated in Fig. 5. The
derivation of the stationary state probability is shown in
Section 3.3.1, in which one can see that the computational

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

7

complexity of our recursive algorithm is on the order of
O(|S|), where |S| is the number of states in our Markov
chain, as shown in Fig. 5. Please note that in general,
the computational complexity for finding the steady-state
probabilities of a Markov chain with |S| states is on the
order of O(|S|3). The complexity reduction in our model is
significant.

3.3 Performance metrics
To evaluate the system performance and the cost, we define
the following metrics and provide their closed-form formu-
las in this section.

• Mean response time (W): The response time we
consider is end-to-end. It is the round-trip time for
a user equipment (UE) to connect to the Internet
through a 5G base station and the 5G core network.

• Mean total cost (C): As shown in Fig. 4, an instance
may be in the setup state or idle state due to our
proposed block setup. The cost of an instance in the
busy, setup, and idle states is defined as C.

• Cost response-time product (CRP): The energy
response-time product (ERP) is widely used as a met-
ric to capture the energy performance trade-offs [28].
In our model, we are more interested in the system
cost rather than in the energy. Thus, we quantify the
cost and model the CRP.

Based on the results we derive in section 3.3.1, the closed
forms of the metrics are derived as follows:

W =

∑
(i,j)∈S jπi,j

λ(1−
∑
i∈I πi,K)

(5)

C = c1Ci + (c2 + c3α)Cs + Cb (6)
CRP = W × C, (7)

where

Ci =
∑

(i,j)∈S max(i− j, 0)πi,j (8)

Cs =
∑
i∈I\{N}

∑K
j=i min(⌊

j−i
m

⌋
k, (
⌈
N−i
k

⌉
− 1)k + r

)
πi,j (9)

Cb =
∑

(i,j)∈S min(i, j)πi,j . (10)

Ci, Cs, and Cb are the costs caused by the system idle,
setup, and busy states, respectively. c1 is the weight factor
for idle instances. c2 and c3 are the weight factors for the
instant cost and processing cost of the entire setting-up
process, respectively. The most critical advantage of this
design is that operators can consider the costs of various
physical resources (e.g., spectrum, electricity consumption,
external heat dissipation, etc.) without limitation, and we do
not assume the types of physical resources that operators
consider in advance.

In 2010, Gandhi [28] proposed the energy response-time
product (ERP), which has been widely used as a metric to
capture the energy performance trade-offs. In our model,
we are more interested in the system cost rather than in
the energy. Thus, we quantify the cost and model the CRP.
The most critical purpose of the CRP is to form a trade-
off problem convex function, where the minimum value
of the CRP is regarded as a suggested solution. However,

two points should be noticed. First, the value of the CRP
is only a suggested metric. Operators can still evaluate
system performance with other metrics. To balance the cost-
effectiveness, however, CRP is a simple indicator that has
been comprehensively proved and widely used in dynamic
autoscaling studies. Second, the CRP is not always a convex
function. Only the variable that makes the CRP form a
convex function exists in the optimal solution. For example,
CRP, the function of the reserved number of instances (n0)
and the threshold value (m) form a convex function. Thus,
we can analyze the optimal solutions for these two factors.
More details about the proof for the convex function can be
found in Section 3.5.

3.3.1 Derivation of the Stationary State Probability

In this section, we derive the stationary distribution of
the Markov chain. According to Fig. 5, we define πi,j
as the stationary state probability of state (i, j). Using
the balance equations, we can obtain all the stationary
state probabilities. In the following paragraphs, we
show the balance equations in three parts: (i = n0),
(i = n0 + k, n0 + 2k, ..., N − r), and (i = N).

(I) πi,j with i = n0:

λπn0,j = µn0,j+1πn0,j+1, j = 0, (11)
(λ+ µn0,j)πn0,j = λπn0,j−1 + µn0,j+1πn0,j+1,

0 < j < n0, (12)
(λ+ µn0,j)πn0,j = λπn0,j−1 + µn0,j+1πn0,j+1

+ µn0,j+1πn0+k,j+1, j = n0, (13)
(λ+ µn0,j + αn0,j)πn0,j = λπn0,j−1

+ µn0,j+1πn0,j+1, n0 < j < K, (14)
(µn0,j + αn0,j)πn0,j = λπn0,j−1, j = K. (15)

When n0 = 0, we obtain (16) instead of (11), (12) and (13):

λπn0,j = µn0+k,j+1πn0+k,j+1, j = 0, (16)

Furthermore, we use the following equations to derive
πn0,j :

πn0,j =
1

j!

(
λ

µ

)j
πn0,0, 0 < j ≤ n0,

πn0,j = bn0,jπn0,j−1, n0 < j ≤ K, (17)

where

bn0,j =


λ

λ+µn0,j+αn0,j−n0µbn0,j+1
, n0 < j < K,

λ
n0µ+αn0,K

, j = K. (18)

(II) πi,j with i = n0 + k, n0 + 2k, · · · , N − r:
We calculate πi,i−k+1 by using the following balance equa-
tion:

(i− k + 1)µπi,i−k+1 =
K∑

j=i−k+1

αi−k,jπi−k,j , (19)

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

8

and we obtain the following balance equations:

(λ+ µi,j)πi,j = µi,j+1πi,j+1 + αi−k,jπi−k,j ,

j = i− k + 1, (20)
(λ+ µi,j)πi,j = λπi,j−1 + µi,j+1πi,j+1 + αi−k,jπi−k,j ,

i− k + 1 < j < i, (21)
(λ+ µi,j)πi,j = λπi,j−1 + µi,j+1πi,j+1 + αi−k,jπi−k,j

+ µmin(i+k,N),j+1πmin(i+k,N),j+1, j = i, (22)
(λ+ µi,j + αi,j)πi,j = λπi,j−1 + µi,j+1πi,j+1

+ αi−k,jπi−k,j , i < j < K, (23)
(µi,j + αi,j)πi,j = λπi,j−1 + αi−k,jπi−k,j ,

j = K. (24)

However, when k = 1, we obtain (25) instead of (20), (21)
and (22):

(λ+ iµ)πi,i = (i+ 1)µπmin(i+k,N),i+1

+iµπi,i+1 + αi−k,iπi−k,i, j = i. (25)

Furthermore, we derive πi,j with i = n0 + k, n0 + 2k, · · · ,
N − r as follows:

πi,j = ai,j + bi,jπi,j−1, j = i− k + 2,

πi,j = ai,j + bi,jπi,j−1 + ci,jπi,j−2,

i− k + 2 < j ≤ i, (26)
πi,j = ai,j + bi,jπi,j−1, i < j ≤ K,

where

ai,j =


−αi−k,j−1πi−k,j−1

µi,j
, i− k + 2 ≤ j ≤ i,

µi,j+1ai,j+1+αi−k,jπi−k,j

λ+µi,j+αi,j−µi,j+1bi,j+1
, i < j < K,

αi−k,Kπi−k,K

µi,K+αi,K
, j = K,

bi,j =


λ+µi,j−1

µi,j
, i− k + 2 ≤ j ≤ i,
λ

λ+µi,j+αi,j−µi,j+1bi,j+1
, i < j < K,

λ
µi,K+αi,K

, j = K,

(27)

ci,j =
{
− λ
µi,j

, i− k + 2 < j ≤ i.

Please note that πi,i−k+1, πi,i−k+2 must be calculated
first to calculate (26) recursively.

(III) πi,j with i = N :
We can calculate πN,N−k+1 by using the balance equation:

(N − r + 1)µπN,N−r+1 =
K∑

j=N−r+1

αN−r,jπN−r,j . (28)

Then, we obtain the following balance equations:

(λ+ µN,j)πN,j = µN,j+1πN,j+1 + αN−r,jπN−r,j ,

j = N − r + 1, (29)
(λ+ µN,j)πN,j = λπN,j−1 + µN,j+1πN,j+1

+αN−r,jπN−r,j , N − r + 1 < j < K, (30)
µN,jπN,j = λπN,j−1 + αN−r,jπN−r,j ,

j = K. (31)

Furthermore, we derive πN,j as follows.

πN,j = aN,j + bN,jπN,j−1, N − r + 2 ≤ j ≤ K, (32)

where

aN,j =

{µN,j+1aN,j+1+αN−r,jπN−r,j

λ+µN,j−µN,j+1bN,j+1
, N − r + 2 ≤ j < K,

αN−r,KπN−r,K

µN,K
, j = K,

(33)

bN,j =

{
λ

λ+µN,j−µN,j+1bN,j+1
, N − r + 2 ≤ j < K,

λ
µN,K

, j = K.

(34)

So far, we have derived the stationary state probabilities
for states in S. The sum of these probabilities must be 1 due
to the following property:∑

(i,j)∈S

πi,j = 1. (35)

This yields πn0,0 and all steady-state probabilities. The
computational complexity of our recursive algorithm is on
the order of O(|S|), where |S| is the number of states in
our Markov chain, as shown in Fig. 5. However, in general,
the computational complexity for finding the steady-state
probabilities of a Markov chain with |S| states is on the
order of O(|S|3). Thus, the complexity reduction in our
model is significant.

In this paper, we conduct extensive simulations by ns-
2 [29] to cross-validate our analytical model. The simula-
tion results reveal two findings. (1) The simulation results
match the numerical consequence of the proposed analyt-
ical model, which verifies the correctness of the analytical
model. (2) The analytical model provides theoretical insights
and guidelines while designing network slicing strategies
without real implementation. It can save time and reduce
costs for operators.

3.4 Characteristics of the block-setup mechanism
One of our major contributions is the establishment of a
dynamic-deployment queuing model, which paves the way
for the analysis of reservations (n0) and the threshold value
(m). As shown in Fig. 6 and Fig. 7, we show the features of
the block-setup mechanism with the change in arrival rate
λ on the performance metrics W , C, and CRP under the
following parameter settings: µ = 1, α = 0.5, n0 = 100,
N = 200, K = 250, c1 = 0.6, c2 = 1.0 and c3 = 3.0.
Here, we set different thresholds m = 5 (a relatively small
value) and m = 30 (a relatively large value) for Fig. 6 and
Fig. 7, respectively, to study the impacts of the threshold
m. Moreover, we set block sizes k = 1, 5, 10, 20 to see the
impacts of k, which are illustrated as four curves in these
figures. Regarding these curves, the numerical results of the
proposed analytical model are depicted by the lines, while
those of the ns-2 simulation are illustrated as spots.

(1) Impact on the response time:W is the mean response
time of the system, corresponding to the y-axis in Fig. 6(a)
and Fig. 7(a). Specifically, we discuss the results in three
parts in terms of the arrival rate λ, corresponding to the
x-axis. (i) (λ < n0): When the arrival rate λ gradually
approaches the number of reserved instances (n0 = 100),
the system capability is insufficient to handle the workloads.
Thus, virtual instances begin to be set up, which causes the
response time to increase. (ii) (n0 ≤ λ < N): The mean
response time stops rising and reduces slightly because the

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

9

(a) Average response time (W) (b) Average total cost (C) (c) Cost response-time product (CRP)

Fig. 6: Impact of the block size (k = 1, 5, 10, 20) and threshold (m = 5) on the cost, response time, and CRP

(a) Average response time (W) (b) Average total cost (C) (c) Cost response-time product (CRP)

Fig. 7: Impact of the block size (k = 1, 5, 10, 20) and threshold (m = 30) on the cost, response time, and CRP

virtual instances are set up as blocks. However, if a system
is deployed with a smaller block size k or larger threshold
m, its mean response time will be longer because a small
block size results in fewer instances set up at once, while a
large threshold leads to a longer setup period. (iii) (N ≤ λ):
No matter how large the block size k that is used, the mean
response time will be convergent because all instances are
already in the busy state.

(2) Impact on cost: C is the total cost of the system and
takes the idle, setup, and busy states into consideration. The
impacts on C are depicted in Fig. 6(b) and Fig. 7(b), which
we discuss in three parts. (i) (λ < n0): As the arrival rate
λ increases, the number of busy instances increases, which
causes the total cost to increase slightly. (ii) (n0 ≤ λ < N):
As the arrival rate exceeds the capability of the reserved
resources, the system starts to turn on more instances and
increases the cost. Specifically, instances set up with a
smaller block size and larger threshold value lead to lower
costs because a block with a smaller size can decrease the
setup cost, while a larger threshold can reduce the setup
frequency. (iii) (N ≤ λ): When the arrival rate is close to the
limit of the system capability, the cost is slightly reduced
because all instances are in the busy state; hence, no more
instances can be set up, eventually resulting in system cost
convergence.

(3) Impact on the CRP: Since a trade-off exists between
the cost and the response time in terms of the threshold
value m and block size k, we use the CRP to reflect the cost-
effectiveness. Fig. 6(c) and Fig. 7(c) show the impacts, which
we discuss in three parts: (i) (λ < n0): We can see that as
the arrival rate increases, the CRP increases because both
the response time and the cost increase. We also observe
that the block size k has no impact on the CRP because

the reserved instances are still able to handle the workload.
(ii) (n0 ≤ λ < N): In this interval, the results of the CRP
are mainly affected by the threshold value m. As shown in
Fig. 6(c), when the threshold is small (m = 5), the instance
can be set up immediately, which reduces the response time
significantly while incurring only a slightly higher cost. On
the other hand, a large threshold (e.g., m = 30) reduces
the cost but leads to a higher response time. (iii) (N ≤ λ):
Similar to the results of both the response time W and cost
C, the CRP achieves convergence when the traffic exceeds
the system capability.

We have demonstrated that the block size k and thresh-
old value m have significant impacts on the response time,
cost, and CRP. Because the block size and arrival rate are
variables, obtaining an optimal threshold value is difficult.
The reason is that setting up multiple instances at a single
time causes oscillation on the CRP distributions, which
makes the global minimum of the CRP difficult to analyze.
To this end, in Section 3.5, we propose an optimal algorithm,
DBRA, which introduces the impact of reservations and
derives the optimal solutions for both the threshold value
m and the number of reservations n0.

3.5 Dynamic Block-setup and Reservation Algorithm
(DBRA)

In this section, we introduce the proposed DBRA in three
parts. Firstly, we prove the convexity of CRP-n0 and CRP-
m in 3.5.1. Next, we introduce the processing procedure of
DBRA in section 3.5.2. Finally, we discuss the time complex-
ity of DBRA in section 3.5.3.

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

10

Fig. 8: Finding the best n0 for the minimum CRP (λ = 150)

Fig. 9: Finding the best m for the minimum CRP (λ = 150)

3.5.1 The convexity of CRP-n0 and CRP-m

Since the convexity of CRP-n0 can be observed easily from
a physical perspective, we use Fig. 8 to illustrate that the
convexity of CRP-n0 is definite. To the contrary, because
the convexity of CRP-m cannot be observed intuitively,
we prove it with a second-order derivative function and
show the result in Fig. 9. In addition, since the queuing
model derived in this paper is mainly based on Poisson
distribution, the convexity of CRP-n0 and CRP-m for
other inter-arrival distributions are shown in the technical
report [30]. More details about the convexity of CRP-n0 and
CRP-m are introduced in the following paragraphs.

(I) The convexity of CRP-n0:
In Fig. 8, we illustrate the convexity of CRP-n0 with the
most extreme case (m = 1) because a small threshold value
easily leads to the oscillation, which makes the optimization
more difficult than other cases. In Fig. 8, the curves can
be divided into three segments as follows. (1) Oscillation
segment: Because the number of reserved instances is not
sufficient to provide service immediately (i.e., n0 is small),
the operator has to dynamically turn on more virtual
instances to enhance the performance. However, with
the change in the number of reserved instances, different
remainders of block size will lead to different performance
results. Specifically, there are a total of N instances in the
system, which consists of n0 reserved instances and (N−n0)
dynamic instances. In the dynamic instances, we consider
k instances deployed at a time. Thus, there are

⌊
N−n0

k

⌋

blocks with block size k and a remaining block with block
size r. Therefore, in an oscillation period, there are k
different results with the change in n0 because the number
of remainders (r = (N − n0) % k) is within the range
r = [0 : k − 1]. (2) Descending segment: When the number
of reserved instances (n0) increases, the system gradually
relies on the reserved instances instead of the dynamic
ones. Both the setup cost (Cs) and the response time (W)
can therefore be decreased. Eventually, the system reaches
the minimum CRP with a proper n0. (3) Ascending segment:
When n0 continues to increase, however, the response time
cannot be further reduced, but costs will keep increasing
because of too many idle reserved instances. Finally, the
trend of CRP-n0 is formed as a convex function in which
the local minimums are distributed regularly, and the global
minimum can be found by gradient descent.

(II) The convexity of CRP-m:
We confirm the convexity of CRP-m by using a second-order
derivative function. That is, CRP-m is a convex function if
∂2CRP
∂m2 > 0. As shown in (7), ∂

2CRP
∂m2 can be obtained as

follows:

∂2CRP

∂m2
=
∂2W

∂m2
C + 2

∂W

∂m

∂C

∂m
+W

∂2C

∂m2
, (36)

where ∂W
∂m , ∂C

∂m , ∂2W
∂m2 , and ∂2C

∂m2 can be found in (37), (38),
(39), and (40), respectively.

∂W

∂m
=

[
∑

(i,j)∈S j
∂πi,j

∂m]λ(1−
∑
i∈I πi,K)

[λ(1−
∑
i∈I πi,K)]2

+
λ(
∑

(i,j)∈S jπi,j)
∑
i∈I

∂πi,K

∂m

[λ(1−
∑
i∈I πi,K)]2

, (37)

∂C

∂m
= {

∑
(i,j)∈S

c1[max(i− j, 0)
∂πi,j
∂m

] +min(i, j)
∂πi,j
∂m
}

+ (c2 + c3α)
∑
i∈I

K∑
j=i

[−b (j − i)k
m2

cπi,j + b (j − i)k
m

c∂πi,j
∂m

]

(38)
∂2W

∂m2
= {

∑
(i,j)∈S

λj[(1−
∑
i∈I

πi,K)
∂2πi,j
∂m2

+ πi,j
∑
i∈I

∂2πi,K
∂m2

]}

+ [
∑

(i,j)∈S

j
∂πi,j
∂m

+
πi,j

∑
i∈I

∂πi,k

∂m

λ(1−
∑
i∈I πi,K)

](2λ
∑
i∈I

∂πi,K
∂m

),

(39)
∂2C

∂m2
= [

∑
(i,j)∈S

max(i− j, 0)c1
∂2πi,j
∂m2

+min(i, j)
∂2πi,j
∂m2

]

+ (c2 + c3α)
∑
i∈I

K∑
j=i

(j − i)k
m

[
2πi,j
m2

− 2

m

∂πi,j
∂m

+
∂2πi,j
∂m2

].

(40)

As shown in Fig. 5, setting up a block of instances should
take a setup time of (1/αi,j), in which αi,j is defined as
(1). Apparently, with the increase in the threshold value
m, the setup rate (αi,j , i > n0) decreases, which makes
the probability of the states (πi,j , i > n0) reduced. That
is, we can confirm that ∂πi,j

∂m < 0, which thereby leads to
∂W
∂m < 0 and ∂C

∂m < 0. In addition, the balance equations

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

11

Algorithm 1: DBRA
Input: λ, k
Output: optimal (CRP,m, n0)

1 Initialize m and n0 arbitrarily;
2 (CRP,m, n0) = Gradient Descent (m,n0);
/* Gradient Descent is presented in Func. 1 */

3 n0 ← n0 + k;
4 while Local Search (m,n0) = True do

/* Local Search is presented in Func. 2 */

5 n0 ← n0 + k;
6 end
7 (CRP,m, n0) = Gradient Descent (m,n0);
8 return optimal (CRP,m, n0);

Function 1: Gradient Descent
Input: m,nv
Output: Local minimum (CRP,m, n0)

1 Compute CRP (m,n0);
2 V ← CRP (m,n0);
3 Set learning rate βm, βn;
4 while ∆V not converge do
5 m← m - βm∂CRP

∂m and n0 ← n0 - βn ∂CRP∂n0
;

6 Compute CRP (m,n0);
7 V̂ ← CRP (m,n0);
8 ∆V ←

∣∣∣V̂ − V ∣∣∣;
9 V ← V̂ ;

10 end
11 return (V,m, n0);

Function 2: Local Search
Input: m,n0
Output: True or False

1 Compute CRP (m,n0);
2 Compute CRP (m,n0 + 1) and CRP (m,n0 − 1);
3 Set learning rate βm, βn;
4 if CRP (m,n0) < CRP (m,n0 + 1) then
5 if CRP (m,n0) < CRP (m,n0 − 1) then
6 return True;
7 else
8 return False;
9 end

10 else
11 return False;
12 end

of πi,j shown in Section 3.3.1 (II) indicate that the states
(πi,j , i = n0 +k, n0 +2k, · · · , N−r) are directly affected by
the setup rate (αi,j). Therefore, we can infer that ∂2W

∂m2 > 0

and ∂2C
∂m2 > 0 because ∂2αi,j

∂m2 > 0. Finally, by plugging the
results of (37), (38), (39), and (40) back into (36), we can
confirm that ∂2CRP

∂m2 > 0, which proves the convexity of
CRP-m. As shown in Fig. 9, the trend of CRP-m is a convex
function in which the global minimum can easily be found
by gradient descent.

3.5.2 The procedure of DBRA
As shown in Algorithm 1, operators can arbitrarily choose a
set of initial parameters (m,n0) and find the adjacent local
minimum after the first Gradient Descent, in which the learn-
ing rate of both the threshold (βm) and the reserved number
(βn) are determined by the operators. Next, according to
the convexity of CRP-n0, we take advantage of the fact that
the oscillation period is a block size k. By this way, we can
increase n0 by k to move to the next local minimum. After
reaching the next local minimum, we use the Function 2 to
determine whether it is currently a local minimum or not.
If yes, we continue to increase n0 by k. Otherwise, it means
that the indicator has already jumped out of the oscillation
period. In the last step of Algorithm 1, we use the last
Gradient Descent to find the point of the global minimum
with the best n0 and m for the current λ and k.

3.5.3 Time complexity of DBRA
As the discussion of Section 3.5.2, the largest time complex-
ity of CRP-n0 is at k = 1 because there is no oscillation that
can move n0 forward by k in each iteration. The required
iterations are at most d Nβn

e, where βn is the learning rate
of n0. In contrast, for the time complexity of CRP-m, the
required steps of iterations are at most dK−Nβm

e, in which βm
is the learning rate ofm, and (K−N) is the maximum queue
length. Since the iterations of CRP-m are conducted within
each iteration of CRP-n0, the overall steps of DBRA are at
most dN(K−N)

βnβm
e. For the most complicated case, both βn and

βm are set to 1, which makes the maximum steps of DBRA
becomeN(K−N). Finally, in a real-world 5G scenario, most
arrival requests are buffered at a base station (gNB) before
being dispatched to UPFs. Thus, we consider K >> N
and estimate the time complexity of DBRA as O(NK). In
addition, the deployment information will be collected at
a central managerial unit. For example, in 5G, the session
management function (SMF) synchronizes user data with
UPFs by using packet forwarding control protocol (PFCP),
which consists of five packet processing rules, namesly, the
packet detection rule (PDR), forwarding action rule (FAR),
QoS enhancement rule (QER), usage reporting rule (URR),
and buffering action rule (BAR). Based on the collective
information, operators can conduct our DBRA on SMF to
deploy UPFs with the optimal reserved number and the
threshold value. Since the above collective information is
sent in the control plane which will not cause significant
traffic and will hardly affect system performance, we tem-
porarily ignore the impact of control-plane messages and
leave this issue for our future works.

4 PERFORMANCE EVALUATION

As discussed in Sec. 2, previous studies are not close enough
to the actual network slicing defined in the most recent
3GPP standards. Although we want to compare our pro-
posed DBRA with other algorithms, there are none based on
3GPP R15. Thus, we compare the DBRA with two baseline
algorithms:

1) Fully Static Deployment (FSD): In FSD, all NFIs are
always turned on. That is, n0 in Fig. 3 equals N .
This strategy reduces the setup cost and decreases

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

12

(a) Average response time (W) (b) Average total cost (C) (c) Cost response-time product (CRP)

Fig. 10: Comparison with the baseline algorithms (FSD, FDD/L, FDD/S) regarding the impact of the request arrival rate
(λ) (k = 10)

(a) Average response time (W) (b) Average total cost (C) (c) Cost response-time product (CRP)

Fig. 11: Comparison with the baseline algorithms (FSD, FDD/L, FDD/S) regarding the impact of the block size (k) (λ = 150)

the response time. However, many instances may
be idle, which may lead to high costs. Essentially,
FSD will not set up virtual instances dynamically,
which is typical in legacy systems such as 4G.

2) Fully Dynamic Deployment (FDD): In FDD, n0 in
Fig. 3 equals 0. Thus, FDD can reduce costs by
scaling in/out the virtual instances dynamically.
However, the response time may increase. The ac-
tual performance of FDD highly depends on the
threshold m. Thus, we further categorize FDD into
FDD/L and FDD/S: (1) In FDD/L, the threshold
value m is tuned to the maximum (K −N), and the
system is more conservative in turning on NFIs. (2)
In FDD/S, where m is half of the maximum, and the
system is more dynamic.

4.1 Experimental Results

According to the rules of the AWS EC2 [31], the number of
instances that a user can rent is at most 20 in each region.
Since AWS divides its entire service region into 25 regions,
the number of instances that a user can use is up to 500.
In addition, according to the rules of Microsoft Azure [32],
each user can rent up to 800 instances. To evaluate the
performance of DBRA in a rational range, we consider
the median value from both of these two famous cloud
providers. Since the median values of the limits for EC2 and
Azure are 500/2 and 800/2, respectively, we set N = 300
(which can be other values too). We also set K = 350
to discuss fully-loaded cases. Please note other reasonable
values can also be chosen. We did choose other values to
evaluate the performance. Furthermore, in Fig. 10, we show
the difference between each method with the change of the

arrival rate. To observe the system from an available state
to an overloading state, we set the range of the arrival rate
within λ = [50 : 350]. In addition, to observe the impact
of the block-setup deployment, we set at least 5 blocks in
the system. Thus, in Fig. 11, the range of the block size that
we set is k = [1 : 70]. Since block-setup deployment is a
multi-dimensional problem, we observe the trend of each
method with the change of the arrival rate and block size
by fixing one to each other. Specifically, in Fig. 10, to purely
discuss the difference between each method with the change
of the arrival rate, we fix the block size at k = 10 because
too extreme cases (k = 1; k = 70) may make the discussion
not general enough. Identically, in Fig. 11, to purely discuss
the impact of the block size, we fix the arrival rate with the
value λ = 150. Although other parameters result in different
figures, the conclusions and insights obtained from them are
the same.

For the weight factors (c1, c2, c3), we refer to [33]–[35]
to set the values in a rational range. In [33], the authors
show extensive testing results to emphasize how significant
workloads should be burdened while multiple instances are
set up. In addition, the authors of [34], [35] discuss the setup
costs of multiple instances in many different environments
such as Amazon EC2, Window Azure, Rackspace, etc. Based
on the testing results of the above studies, the costs caused
by each state of instances are ordered as setup > busy >
idle. Since the costs estimated by operators are different
from one another, we tentatively set the weight of the idle
cost as c1 = 0.6, and the setup cost as c2 = 1, c3 = 3.
We set the weight of the busy cost as 1. Although other
parameters result in different figures, the conclusions and
insights obtained from them are the same.

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

13

In Fig. 10(a)–Fig. 10(c), all algorithms converge together
when the system is fully loaded. Thus, there is no difference
between the algorithms when λ is high. On the other hand,
as shown in Fig. 11(a)–Fig. 11(c), we discuss the impact of
the block size (k) at λ = 150. With the change in block size k,
the performance of our proposed DBRA is as stable as that
of FSD, while that of FDD fluctuates. Through a comparison
of Fig. 10 and Fig. 11, we can verify the significant influence
of the DBRA on the reservations.

As shown in Fig. 10(a) and Fig. 11(a), among all of the
strategies, FSD has the lowest response time because it keeps
all NFIs running all the time. As shown in Fig. 10(b) and
Fig. 11(b), however, FSD results in high costs because a very
large number of NFIs may be idle. In terms of the CRP, FSD
is not flexible enough, leading to higher values of the CRP
than those of other algorithms when λ is small.

FDD/L uses not only a dynamic strategy to reduce the
number of idle NFIs but also a large threshold (m = 50) to
constrain the number of block setups. Although FDD/L can
reduce costs significantly compared with FSD, as illustrated
in Fig. 10(b) and Fig. 11(b), it delays in turning on the NFIs,
resulting in a higher response time, as shown in Fig. 10(a)
and Fig. 11(a). Finally, for the overall comprehensive indi-
cator CRP, the performance of FDD/L is better than that of
FSD due to its flexibility.

In addition, FDD/S is fully dynamic. Unlike FDD/L,
FDD/S uses a smaller threshold (m = 25). Thus, FDD/S
is more aggressive in the deployment of NFIs. Therefore, as
shown in Fig. 10(a) and Fig. 11(a), the response time can be
further reduced compared with that of FDD/L. Although
the setup cost of FDD/S is slightly higher than that of
FDD/L, the CRP of FDD/S is still lower than that of FDD/L
when λ is low.

Because a slice with a large block size can launch more
NFIs at a time, when the block size increases, the response
time decreases and the cost increases. Particularly, in Fig. 11,
FDD is close to the DBRA in terms of W , C, and CRP when
the block size k = 40 and 55. This result occurs because the
best number of reservations (n0) we analyzed is 163, and
FDD with a block size k = 40 and k = 55 can result in
160 and 165 NFIs, respectively, when λ = 150. Thus, the
performance of FDD can be close to that of the DBRA when
k = 40 and 55. Nevertheless, we do not intervene in the
determination of the block size (k). We pay more attention to
developing a flexible model for the analysis of reservations
(n0) and the threshold (m).

As discussed in Sec. 3, the proposed DBRA can find the
optimal CRP. It can effectively determine the best number
of reserved NFIs (n0). Thus, it allows service requests to
be served as soon as they enter the system. As shown in
Fig. 10(a) and Fig. 11(a), the DBRA is only 1.43% worse
than FSD in terms of the response time. In addition, the
DBRA adjusts the threshold m dynamically. That is, the
system can adjust the setup time and number of NFIs
dynamically. Thus, the number of idle NFIs is reduced. As
shown in Fig. 10(b) and Fig. 11(b), the cost of the DBRA
is the smallest. Finally, Fig. 10(c) and Fig. 11(c) show that
the DBRA has the smallest CRP. In addition to Poisson
distribution, other types of arrival rates have similar results,
which are presented in Section 4.2.

4.2 Other distributions of arrival rates
In this section, we show that our queuing model is accurate
in terms of the arrival rate with other probability distribu-
tions.

Due to the nature of telecommunication systems, to
implement algorithms of a real-life scenario is expensive
in terms of the time and cost. In this paper, we used a
queuing model to quantify the behaviors of autoscaling
network slices, where the Poisson process was used to
approximate the arrival traffic for the network. We un-
derstand that the Poisson process cannot capture all the
properties of the arrival traffic with general distributions.
Here, we conducted extensive simulations by taking more
probability distributions into consideration. Arrival traffic
with a normal distribution, uniform distribution, and Pareto
distribution were used as input for our simulation models.

Our simulation results demonstrate that our queuing
model did a very good job in approximating the arrival
traffic with the above distributions, as shown in Table 2.
Specifically, for the normal distribution, we set various
values for the mean value and standard deviation for the
arrival rate distribution. Specifically, for the normal distribu-
tion, we set various values for the mean value and standard
deviation for the arrival rate distribution. The values of
the inter-arrivals in normal distribution are strictly positive
because the probability of the negative inter-arrival is very
small in our settings, and thus the impact on our results is
limited. The results show that the similarity between the
mathematical and experimental results is 94%, 96%, and
97% in terms of CRP, cost, and response time, respectively.
This demonstrates the good accuracy of our queuing model.
Similarly, the accuracy of the worst case we tested was still
approximately 91%, 93%, and 97% for the uniform distribu-
tion and 97%, 98%, and 98% for the Pareto distribution.

5 CONCLUSIONS

In this paper, to analyze the network slicing strategies for
5G networks, we specifically model the network slicing
behaviors based on 3GPP R15. We study the effects of
the reservation and block-setup concepts. Although the reser-
vation concept may lead to additional idle costs, it can
reduce the response time. We specifically study the effect
of reservations and build a system block-setup model for
future 5G networks. Therefore, operators can find the best
parameters (m,n0) to control reservations and optimize the
cost-effectiveness for any given block size k. The proposed
DBRA has low computational complexity. We also compare
the proposed DBRA with two baseline algorithms. The
results show that DBRA has the smallest CRP.

ACKNOWLEDGEMENTS

Cheng-Ying Hsieh and Jyh-Cheng Chen’s work was sup-
ported in part by the Ministry of Science and Technology
of Taiwan under grant numbers MOST 110-2224-E-A49-
002 and MOST 108-2221-E-009-042-MY3. The research of
Tuan Phung-Duc was supported in part by JSPS KAKENHI
Grant Numbers 18K18006 and 21K11765. The research of
Yi Ren was supported in part by EPSRC EP/T022566/1,
EP/T024593/1, and the Royal Society IEC\R3\213100. The

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

14

TABLE 2: Comparison of the experimental results with the mathematical model derived under the Poisson process

Probability distributions m = 30 m = 5
of the arrival rate CRP Cost Response time CRP Cost Response time

Poisson (avg=[50,60,...,250]) 99.48% 99.81% 99.62% 99.58% 99.70% 99.80%

Normal (avg=[50,60,...,250], std=avg×0.18) 96.63% 98.38% 98.15% 94.61% 96.16% 98.32%
Normal (avg=[50,60,...,250], std=avg×0.15) 95.93% 98.10% 97.73% 94.51% 96.14% 98.24%
Normal (avg=[50,60,...,250], std=avg×0.1) 95.97% 98.10% 97.68% 94.42% 96.09% 98.23%
Normal (avg=[50,60,...,250], std=avg×0.05) 95.78% 98.05% 97.63% 94.36% 96.40% 98.18%
Uniform (min=0, max=[50,60,...,250]×1.8) 94.78% 95.67% 97.30% 95.90% 96.60% 97.99%
Uniform (min=0, max=[50,60,...,250]×2.0) 97.56% 98.82% 98.69% 96.67% 97.74% 98.86%
Uniform (min=0, max=[50,60,...,250]×2.2) 91.88% 93.86% 97.82% 91.27% 93.00% 97.72%
Pareto (avg=[50,60,...,250], shape=2) 97.32% 98.64% 98.70% 98.00% 98.80% 99.20%
Pareto (avg=[50,60,...,250], shape=3) 97.19% 98.59% 98.54% 96.14% 97.37% 98.69%
Pareto (avg=[50,60,...,250], shape=4) 96.02% 98.02% 97.89% 94.84% 96.43% 98.29%

authors would like to thank Mr. Shinto Hideyama, a former
student of the second author at University of Tsukuba,
for his help in the derivation of the stationary distribution
and some initial numerical examples. The authors are very
grateful to the editor and all reviewers for their valuable
comments to improve this article.

REFERENCES

[1] 3GPP, 3rd Generation Partnership Project ”The Mobile Broadband
Standard”, Available: https://www.3gpp.org/.

[2] 3GPP, “Technical Specification Group Core Network and Termi-
nals; Interface between the Control Plane and the User Plane
Nodes; Stage 3,” 3rd Generation Partnership Project (3GPP), Tech-
nical Specification (TS) 29.244, 06 2019, version 15.6.0.

[3] 3GPP, “Technical Specification Group Services and System As-
pects; Management and orchestration; Concepts, use cases and
requirements,” 3rd Generation Partnership Project (3GPP), Tech-
nical Specification (TS) 28.530, 12 2018, version 15.1.0.

[4] ETSI, “Network Functions Virtualisation (NFV) Release 2; Man-
agement and Orchestration; Functional requirements specification
MANO Functional Rqmts Spec,” European Telecommunications
Standards Institute (ETSI), Group Specification (GS) GS NFV-EVE
010, 02 2018, version 2.4.1.

[5] 3GPP, “Technical Specification Group Services and System As-
pects; Management and orchestration; Provisioning,” 3rd Gen-
eration Partnership Project (3GPP), Technical Specification (TS)
28.531, 9 2018, version 15.0.0.

[6] V. J. Maccio and D. G. Down, “Exact analysis of energy-aware
multiserver queueing systems with setup times,” in Proc. of IEEE
24th International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), pp. 11–20,
Sept. 2016.

[7] S. K. Bar-Lev, M. Parlar, D. Perry, W. Stadje, and F. A. V. der
Duyn Schouten, “Applications of bulk queues to group testing
models with incomplete identification,” European Journal of Opera-
tional Research, vol. 183, no. 1, pp. 226 – 237, 2007.

[8] A. Banerjee and U. Gupta, “Reducing congestion in bulk-service
finite-buffer queueing system using batch-size-dependent ser-
vice,” Performance Evaluation, vol. 69, no. 1, pp. 53 – 70, 2012.

[9] A. Banerjee, U. Gupta, and S. Chakravarthy, “Analysis of a finite-
buffer bulk-service queue under markovian arrival process with
batch-size-dependent service,” Computers and Operations Research,
vol. 60, pp. 138 – 149, 2015.

[10] A. Maity and U. C. Gupta, “Analysis and optimal control of a
queue with infinite buffer under batch-size dependent versatile
bulk-service rule,” OPSEARCH, pp. 472–489, 2015.

[11] B. Kar, E. H. Wu, and Y. Lin, “Energy cost optimization in dynamic
placement of virtualized network function chains,” IEEE Transac-
tions on Network and Service Management, 2018.

[12] T. Taleb, I. Afolabi, K. Samdanis, and F. Z. Yousaf, “On multi-
domain network slicing orchestration architecture and federated
resource control,” IEEE Network, 2019.

[13] A. De Domenico, Y.-F. Liu, and W. Yu, “Optimal virtual network
function deployment for 5g network slicing in a hybrid cloud
infrastructure,” IEEE Transactions on Wireless Communications, 2020.

[14] J. Li, J. Liu, T. Huang, and Y. Liu, “Dra-ig: The balance of per-
formance isolation and resource utilization efficiency in network
slicing,” IEEE International Conference on Communications (ICC),
2020.

[15] Q.-T. Luu, S. Kerboeuf, and M. Kieffer, “Uncertainty-aware re-
source provisioning for network slicing,” IEEE Transactions on
Network and Service Management, 2021.

[16] R. Su, D. Zhang, R. Venkatesan, Z. Gong, C. Li, F. Ding, F. Jiang,
and Z. Zhu, “Resource allocation for network slicing in 5g telecom-
munication networks: A survey of principles and models,” IEEE
Network, 2019.

[17] F. Debbabi, R. Jmal, L. C. Fourati, and A. Ksentini, “Algorithmics
and modeling aspects of network slicing in 5g and beyonds
network: Survey,” IEEE Access, 2020.

[18] A. Banchs, G. de Veciana, V. Sciancalepore, and X. Costa-Perez,
“Resource allocation for network slicing in mobile networks,”
IEEE Access, 2020.

[19] V. J. Maccio and D. G. Down, “On optimal control for energy-
aware queueing systems,” 27th International Teletraffic Congress, pp.
98–106, Sep. 2015.

[20] T. Phung-Duc, “Multiserver queues with finite capacity and setup
time,” Analytical and Stochastic Modelling Techniques and Applica-
tions, pp. 173–187, 2015.

[21] Hao, Yaqian, Wang, Jinting, Yang, Mingyu, Wang, and Ruoyu,
“Equilibrium analysis of the m/m/1 queues with setup times un-
der n-policy,” in Proc. of Queueing Theory and Network Applications,
2017.

[22] O. Bountali and A. Economou, “Equilibrium threshold joining
strategies in partially observable batch service queueing systems,”
Annals of Operations Research, Aug 2017.

[23] C. Schwartz, R. Pries, and P. Tran-Gia, “A queuing analysis of
an energy-saving mechanism in data centers,” in Proc. of The
International Conference on Information Network, pp. 70–75, Feb.
2012.

[24] I. Mitrani, “Managing performance and power consumption in
a server farm,” Annals of Operations Research, vol. 202, no. 1, pp.
121–134, Jan 2013.

[25] T. Phung-Duc, Y. Ren, J. Chen, and Z. Yu, “Design and Analysis of
Deadline and Budget Constrained Autoscaling (DBCA) Algorithm
for 5G Mobile Networks,” in Proc. of IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), pp. 94–101,
Dec. 2016.

[26] Y. Ren, T. Phung-Duc, J. Chen, and Z. Yu, “Dynamic auto scal-
ing algorithm (dasa) for 5g mobile networks,” 2016 IEEE Global
Communications Conference (GLOBECOM), pp. 1–6, 2016.

[27] Y. Ren, T. Phung-Duc, Y.-K. Liu, J.-C. Chen, and Y.-H. Lin, “Asa:
Adaptive vnf scaling algorithm for 5g mobile networks,” 2018
IEEE 7th International Conference on Cloud Networking (CloudNet),
2018.

[28] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch,
“Optimality analysis of energy-performance trade-off for server
farm management,” Perform. Eval., pp. 1155–1171, Nov. 2010.

[29] ”The network simulator - ns-2.” Available:
http://www.isi.edu/nsnam/ns/.

[30] ”Technical report for the inter-arrivals with
different probability distributions” Available:
http://wire.cs.nctu.edu.tw/er/TechnicalReport.pdf.

[31] ”Cluster configuration guidelines and best practices” Available:

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3169034, IEEE
Transactions on Mobile Computing

15

https://docs.aws.amazon.com/emr/latest/ManagementGuide/
emr-plan-instances-guidelines.html.

[32] ”Resources not limited to 800 instances per resource group”
Available: https://docs.microsoft.com/en-us/azure/azure-
resource-manager/management/resources-without-resource-
group-limit.

[33] T. L. Nguyen and A. Lebre, “Virtual machine boot time model,”
2017 25th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), pp. 430–437, 2017.

[34] Razavi, Kaveh, Razorea, L. Mihai, Kielmann, and Thilo, “Reducing
vm startup time and storage costs by vm image content consolida-
tion,” Euro-Par 2013: Parallel Processing Workshops, pp. 75–84, 2014.

[35] M. Mao and M. Humphrey, “A performance study on the vm
startup time in the cloud,” 2012 IEEE Fifth International Conference
on Cloud Computing, pp. 423–430, 2012.

Cheng-Ying Hsieh received his B.S. degree
in mechanical engineering from National Chiao
Tung University (NCTU), Hsinchu, Taiwan, in
2014. He is now a Ph.D. candidate in the De-
partment of Computer Science at National Yang
Ming Chiao Tung University (NYCU), formerly
NCTU. His research interests include 5G mobil-
ity networks, queueing analysis, deep learning.

Tuan Phung-Duc is an Associate Professor at
Faculty of Engineering, Information and Sys-
tems, University of Tsukuba. He received a
Ph.D. in Informatics from Kyoto University in
2011. He is in the Editorial Board of the KSII
Transactions on Internet and Information Sys-
tems and two other international journals. He
served a Guest Editor of the special issue of An-
nals of Operations Research on Retrial Queues
and Related Models and currently is serving
as a Guest Editor of the Special Issue of the

same journal on Queueing Theory and Network Applications. He
was the Chairman of 10th International Workshop on Retrial Queues
(WRQ’2014) and the TPC co-chair of 23rd International Conference
on Analytical, and Stochastic Modelling Techniques and Applications
(ASMTA’16), TPC co-chair of The 13th and 14th International Con-
ference on Queueing Theory and Network Applications (QTNA2018,
QTNA2019), General co-chair of EAI VALUETOOLS 2020 - 13th EAI In-
ternational Conference on Performance Evaluation Methodologies and
Tools, and General chair of ASMTA/EPEW : The 26th International
Conference on Analytical & Stochastic Modelling Techniques & Applica-
tions / 17th European Performance Engineering Workshop. Dr. Phung
Duc received the Research Encourage Award from The Operations Re-
search Society of Japan in 2013. His research interests include Applied
Probability, Stochastic Models and their Applications in Performance
Analysis of Telecommunication and Service Systems.

Yi Ren received a Ph.D. degree in information
communication and technology from the Univer-
sity of Agder, Grimstad, Norway, in 2012. He was
with the Department of Computer Science, Na-
tional Chiao Tung University (NCTU), Hsinchu,
Taiwan, as a Postdoctoral Fellow, an Assistant
Research Fellow, and an Adjunct Assistant Pro-
fessor from 2012 to 2017. He is currently a
Lecturer with the School of Computing Science,
University of East Anglia (UEA), Norwich, U.K.
His current research interests include Internet

of Things and 5G mobile technology: security, performance analysis,
protocol design, radio resource allocation, mobile edge computing, WiFi
and Bluetooth Technology, 3GPP, LTE, software-defined networking,
network function virtualization, etc. He was a recipient of the Best Paper
Award in IEEE MDM 2012.

Jyh-Cheng Chen (S’96-M’99-SM’04-F’12) re-
ceived the Ph.D. degree from the State Univer-
sity of New York at Buffalo in 1998. He was a
Research Scientist with Bellcore/Telcordia Tech-
nologies, Morristown, NJ, USA, from 1998 to
2001, and a Senior Scientist with Telcordia Tech-
nologies, Piscataway, NJ, USA, from 2008 to
2010. He was with the Department of Computer
Science, National Tsing Hua University (NTHU),
Hsinchu, Taiwan, as an Assistant Professor, an
Associate Professor, and a Full Professor from

2001 to 2008. He has been a Faculty Member with National Yang Ming
Chiao Tung University (NYCU), formerly National Chiao Tung University
(NCTU), since 2010. He is currently the Chair Professor with the Depart-
ment of Computer Science, and the Dean of the College of Computer
Science, NYCU. Dr. Chen is a Distinguished Member of the Association
for Computing Machinery (ACM). He was a member of the Fellows Eval-
uation Committee, IEEE Computer Society. He has received numerous
awards, including the Outstanding Teaching Award from both NCTU and
NTHU, the Outstanding I.T. Elite Award, Taiwan, the Mentor of Merit
Award from NCTU, the Medal of Honor and the K. T. Li Breakthrough
Award from the Institute of Information and Computing Machinery, the
Outstanding Engineering Professor Award from the Chinese Institute
of Engineers, the Outstanding Research Award from the Ministry of
Science and Technology, the Best Paper Award for Young Scholars from
the IEEE Communications Society Taipei and Tainan Chapters, and the
IEEE Information Theory Society Taipei Chapter, and the Telcordia CEO
Award.

Authorized licensed use limited to: Univ of East Anglia. Downloaded on May 13,2022 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

