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Abstract 

Background: Right atrial (RA) area predicts mortality in patients with pulmonary hypertension, and is recommended 
by the European Society of Cardiology/European Respiratory Society pulmonary hypertension guidelines. The advent 
of deep learning may allow more reliable measurement of RA areas to improve clinical assessments. The aim of this 
study was to automate cardiovascular magnetic resonance (CMR) RA area measurements and evaluate the clinical 
utility by assessing repeatability, correlation with invasive haemodynamics and prognostic value.

Methods: A deep learning RA area CMR contouring model was trained in a multicentre cohort of 365 patients with 
pulmonary hypertension, left ventricular pathology and healthy subjects. Inter-study repeatability (intraclass correla-
tion coefficient (ICC)) and agreement of contours (DICE similarity coefficient (DSC)) were assessed in a prospective 
cohort (n = 36). Clinical testing and mortality prediction was performed in n = 400 patients that were not used in the 
training nor prospective cohort, and the correlation of automatic and manual RA measurements with invasive haemo-
dynamics assessed in n = 212/400. Radiologist quality control (QC) was performed in the ASPIRE registry, n = 3795 
patients. The primary QC observer evaluated all the segmentations and recorded them as satisfactory, suboptimal or 
failure. A second QC observer analysed a random subcohort to assess QC agreement (n = 1018).

Results: All deep learning RA measurements showed higher interstudy repeatability (ICC 0.91 to 0.95) compared to 
manual RA measurements (1st observer ICC 0.82 to 0.88, 2nd observer ICC 0.88 to 0.91). DSC showed high agreement 
comparing automatic artificial intelligence and manual CMR readers. Maximal RA area mean and standard deviation 
(SD) DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs 
observer 2 is 92.4 ± 3.5  cm2, 91.2 ± 4.5  cm2 and 93.2 ± 3.2  cm2, respectively. Minimal RA area mean and SD DSC metric 
for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 was 
89.8 ± 3.9  cm2, 87.0 ± 5.8  cm2 and 91.8 ± 4.8  cm2. Automatic RA area measurements all showed moderate correlation 
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Introduction
Changes in the right atrium (RA) are important to rec-
ognise in the evaluation of patients with right ven-
tricular (RV) failure [1–5]. Right atrial pressure (RAP) 
measured at right heart catheterisation is fundamental 
to the haemodynamic assessment of RV failure [6, 7] 
and predicts mortality in patients with pulmonary artery 
hypertension (PAH) [8, 9].

Accurate and repeatable measurements of cardiac 
chamber size and function are important for patient 
management [10]. A number of studies have revealed the 
prognostic significance of cardiovascular magnetic reso-
nance (CMR) measurements in various cardiopulmonary 
diseases such as cardiomyopathies, pulmonary arterial 
hypertension (PAH), heart failure and ischaemic heart 
disease [11–15]. RA size and function measured by CMR 
can predict mortality [16–18] and the European Society 
of Cardiology (ESC) and European Respiratory Society 
(ERS) guidelines advocate the use of maximal (systolic) 
RA area for stratification of PAH patients [19].

RA measurements are often made manually on images 
viewed on patient archive and communication systems 
(PACS) or dedicated software packages with potential for 
observer variability. Image analysis tools differ between 
packages and the analysis does take a small but signifi-
cant amount of time. With the advent of artificial intel-
ligence (AI), deep learning using convolutional neural 
networks (CNNs), accurate cardiac chamber segmenta-
tions are possible [20–24]. Reference ranges for cardiac 
structure and function in healthy Caucasian adults from 
the UK Biobank population cohort were described for 
all four cardiac chambers using CMR [25]. Automated 
quality control (QC) in image segmentation was applied 
to the UK Biobank CMR study via the reverse classifi-
cation accuracy (RCA) approach to categorize between 
successful and failed segmentations. This previous work 
showed that RCA has the potential for accurate and fully 
automatic segmentation QC on a per-case basis [26]. A 
deep learning based framework for automated, quality-
controlled characterization of cardiac function from 
cine CMR has been established and reference values 

for cardiac function metrics were automatically derived 
from the UK Biobank cohort [27]. Fully automated CMR 
derived biventricular evaluation of function and mor-
phology in a real-world setting has achieved good results 
without any operator interaction [28]. However, in the 
case of unseen anatomic variations, such as severe car-
diac chamber shape changes and dilatation as in PAH, 
or significant artefact, then deep learning measurements 
may fail or be suboptimal [29].

Automation of RA area measurements may result in 
lower variability and assist clinicians to reach fast and 
robust clinical decisions. However, there are currently no 
studies that have automated CMR RA area metrics in the 
setting of PAH in which patients have varying degrees of 
RV failure, and the repeatability, correlation with invasive 
haemodynamics and success/failure rate in clinical popu-
lations remains unknown.

The aim of this study was to develop a quantitative 
CMR-based automated artificial intelligence (AI) analy-
sis of the RA in a large cohort of patients with heart fail-
ure and PAH with varying aetiology and disease severity, 
and (i) determine the failure rate of the model in a large 
clinical registry, (ii) evaluate interstudy repeatability, (iii) 
directly compare the association of manual RA area and 
AI RA area with invasive haemodynamics and (iv) evalu-
ate RA measurements as predictors of mortality.

Methods
Study population
A cohort of 365 subjects was used for training. This 
included a random selection of studies from 285 patients 
in the ASPIRE registry (several ASPIRE follow up scans 
were included with a total number of studies of 367). 
Sixty-six subjects from Leeds, including 29 healthy 
subjects and 37 patients with myocardial infarction of 
which 19 were acute and 18 were chronic. Fourteen 
healthy subjects from Leiden University Medical Centre 
(LUMC) were also included. The total number of studies 
included in the training cohort was 447. The demograph-
ics of the Leeds and Leiden subjects have been previously 
described [30, 31].

with invasive parameters (r = 0.45 to 0.66), manual (r = 0.36 to 0.57). Maximal RA area could accurately predict 
elevated mean RA pressure low and high-risk thresholds (area under the receiver operating characteristic curve arti-
ficial intelligence = 0.82/0.87 vs manual = 0.78/0.83), and predicted mortality similar to manual measurements, both 
p < 0.01. In the QC evaluation, artificial intelligence segmentations were suboptimal at 108/3795 and a low failure rate 
of 16/3795. In a subcohort (n = 1018), agreement by two QC observers was excellent, kappa 0.84.

Conclusion: Automatic artificial intelligence CMR derived RA size and function are accurate, have excellent repeat-
ability, moderate associations with invasive haemodynamics and predict mortality.

Keywords: Right atrial area, Cardiovascular magnetic resonance, Convolutional neural networks, Artificial 
intelligence, Deep learning training, Clinical testing, Repeatability assessment, Mortality prediction
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To test the model we used two populations. The first 
population included 36 patients CMR studies for pro-
spective repeatability testing from the RESPIRE study 
(ClinicalTrials.gov Identifier: NCT03841344) [32]. The 
second population contained 400 patients CMR studies 
for clinical testing from the ASPIRE registry (ASPIRE, 
ref: c06/Q2308/8). For quality control and failure rate 
we included 3795 patients (5756 CMR studies, as fol-
low up studies were included) from the ASPIRE registry 
(Fig.  1). Prospectively recruited patients provided writ-
ten informed consent. Consent was waived for analysis of 
retrospective cases.

CMR protocol
The training cohort included 1.5T (HDx, General Electric 
Healthcare, Chicago, Illinois, USA) and 1.5T (Ingenia, 
Philips Healthcare, Best, the Netherlands) studies. The 
testing cohort consisted of GE studies acquired in a clini-
cal setting in the ASPIRE registry. The RESPIRE prospec-
tive cohort consisted of GE studies [32]. CMR studies in 
the testing cohort were performed using a whole-body 
scanner at 1.5T (HDx (General Electric Healthcare) [33]. 
Cine CMR acquisitions were made using a balanced 
steady state free precession (bSSFP) sequence. Follow-
ing planning sequences, 4-chamber cine images were 
acquired. A stack of short axis images were acquired cov-
ering apex to base. Slice thickness and number of cardiac 
phases were 8 mm with 20 phases.

Leeds and Leiden CMR studies were performed on a 
1.5 T system (Ingenia, Philips Healthcare) equipped with 
a 28-channel flexible torso coil and digitization of the 
CMR signal in the receiver coil. Vertical long-axis, hori-
zontal long-axis, 3-chamber (left ventricular (LV) outflow 
tract-views), and the LV volume contiguous short axis 
stack cine imaging were defined using survey. All cines 

were acquired with a bSSFP, single-slice breath-hold 
sequence. Typical parameters for bSSFP cine were as fol-
lows: SENSE factor 2, flip angle 60°, TE 1.5 ms, TR 3 ms, 
field of view 320–420 mm according to patient size, slice 
thickness 8 mm and 30 phases per cardiac cycle.

Image analysis
Four observers SA, FA, KK and AJS (with 2, 3, 13 and 
11  years CMR experience, respectively) manually drew 
LV and RV and atrial contours in 4-chamber cine CMR 
views on all cardiac phases for the training and testing 
cohorts. All contours were drawn with observers blinded 
to the patient’s clinical information. All manual contours 
were reviewed by an expert CMR reader (AJS). RV endo-
cardial and epicardial surfaces were also manually traced 
from the stack of short-axis cine images to obtain RV 
volumetric and functional measurements as previously 
described [33]. MASS software (research version 2020; 
Leiden University Medical Center, Leiden, the Nether-
lands) was used for the manual contouring for developing 
the algorithm and repeatability testing).

Deep learning training
CMR studies including a random selection of patients 
from the ASPIRE registry, subjects from Leeds, and from 
LUMC were used for deep learning training. The train-
ing process was performed in two stages. We trained two 
CNN models with different numbers of manually anno-
tated 4-chamber view images in the training set. The val-
idation set and test set used were the same for both of 
the CNN models. Since no hyper parameter tuning was 
performed in the current experiments a relatively small 
validation set of 6 subjects (180 images) was deemed 
sufficient to confirm model convergence during train-
ing and to confirm that the models did not suffer from 

Fig. 1 Study flow chart. Max = maximal; Min = minimal; DSC = DICE similarity coefficient
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overfitting. The test set consisting of 20 cases was used to 
compare the model performance of the initial model with 
the final model. Following this strategy we maximised the 
number of studies available for training. The initial model 
was trained on a combination of Philips (Leeds/LUMC, 
n = 80) and GE (Sheffield, n = 184) data (total n = 264). 
The contours used for training were all generated with-
out the use of a CNN. For the final model 183 additional 
Sheffield GE scans were added. The contours for these 
additional cases were generated by reviewing and editing 
the contours generated using the base model. On average 
50% of the contours generated by the initial model were 
manually edited for this set of cases. These cases were 
separate from the test cohorts.

The CNNs used for the experiments had an UNET-
like architecture with 16 convolutional layers includ-
ing residual learning units and was implemented using 
Python and TensorFlow. Input images were resampled to 
a fixed pixel spacing of 1 mm and cropped to a 256 × 256 
image matrix size and zero filled when required. Dur-
ing training, data augmentation was performed on the 
fly by creating new training samples by randomly rotat-
ing, flipping, shifting and modifying image intensities of 
the original images. A total of 447 manually annotated 
4-chamber cine series were used for training correspond-
ing to 10,045 images. For training the Adam optimizer 
method was used, the learning rate was selected as 0.001 
and cross-entropy was used as loss function. Each train-
ing batch included a random selection of 20 images. 
The number of epochs was set at a fixed number of 50, 
with all images used once in every epoch. The raw out-
put of the CNNs is a labeled image, with the six possi-
ble label values corresponding to either one of the four 
cardiac cavities, the LV myocardium, or background. 
For each cardiac label, the largest connected component 
was extracted and a closed spatially smoothed contour 
around the extracted region generated. The area of the 
cardiac cavities was subsequently derived as the area sur-
rounded by the generated contours. All experiments were 
executed on a standard PC with Intel Core i7 CPU with 
64 GB of internal RAM memory equipped with an Nvidia 
GTX 1080 TI GPU with 12 GB of memory. The authors 
are happy to be contacted for research access to the Mass 
software and the AI segmentation tool upon request.

Quality control
All automatically AI segmented RA area contours across 
all cardiac phases and resultant volume-time curves were 
evaluated by AS and scored as satisfactory, suboptimal or 
failure. In addition, the quality of the image acquisition 
was assessed for artefacts and slice position error. The 
definitions for QC were assigned prior to image review. 
Satisfactory was defined as either perfect contouring or 

minor errors that were not thought to affect the volu-
metric results. Suboptimal was defined as contours with 
errors deemed significant enough to affect the volumetric 
results. Failure defined as either absent contours or gross 
failure of the algorithm to segment the cardiac structures.

Repeatability and agreement of the deep learning 
contours
To evaluate inter-study agreement two CMR scans were 
performed on the same day in two separate sittings as 
part of the RESPIRE study [32] for AI and manual meas-
urements. In addition, interobserver agreement assess-
ments, manual (AS) vs manual (FA), AI vs AS and AI 
versus FA were made. Agreement of the machine learn-
ing contouring model was evaluated by DSC. The DICE 
similarity for all cardiac cavities was computed in the 
20 subjects in the test set. This was both for the baseline 
model as well as the final model.

Association of manual and AI CMR measurements 
with invasive haemodynamics
Correlations with invasive haemodynamics were per-
formed in patients in the ASPIRE registry clinical testing 
cohort who underwent right heart catheterisation within 
48 h of CMR. The accuracy of RA CMR measurements to 
predict ESC/ERS mean RAP low and high-risk thresholds 
of 8 mmHg and 14 mmHg respectively, was assessed.

Statistical analysis
Continuous variables are presented as proportions 
and means ± standard deviations. Normal distribution 
assessed by visual inspection of histograms and using 
the Shapiro–Wilk test. Variables that were not normally 
distributed were correlated using Spearman correla-
tion coefficient. Univariate Cox regression Hazard ratios 
were calculated for AI and manual RA measurements 
to estimate the prognostic significance. Accuracy of RA 
measurements to predict RA thresholds performed using 
receiver operating characteristic analysis. Intraclass cor-
relation coefficients and Bland–Altman plots were used 
to assess repeatability of manual and AI CMR metrics. 
Inter-rater reliability of the two observers grading of seg-
mentation quality as satisfactory, suboptimal or failure 
was assessed using Cohen’s kappa testing in a subcohort. 
Statistical analysis was carried out using SPSS (version 
26, Statistical Package for the Social Sciences, Inter-
national Business Machines, Inc., Armonk, New York, 
USA) and RStudio (version 1.2.5033, RStudio, Boston, 
Massachusetts, USA), and p value of 0.05 was considered 
statistically significant. For data presentation, GraphPad 
Prism (version 9.1.0, GraphPad Software, San Diego, Cal-
ifornia, USA) software was used.
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Results
Patients
The ASPIRE registry in the training model included 
patients with left heart disease (15%), lung disease 
(12%), chronic thromboembolic PAH (21%), PAH 
(29%), other PAH (2%) and non-PAH (21%). The mean 
and standard deviation (SD) of the main haemody-
namics of the ASPIRE registry in the training model is 
10.4 ± 6.2  mmHg for mean RAP, 41.0 ± 15.5  mmHg for 
mean pulmonary arterial pressure, 13.4 ± 6.0 mmHg for 
pulmonary arterial wedge pressure, and 561 ± 466 dynes/

m2 for pulmonary vascular resistance. The characteris-
tics for the prospective repeatability, clinical testing and 
full cohort are presented in Table 1. In the clinical testing 
cohort, 218 of the 400 patients had died (54.5%) during a 
mean follow-up period of 1 year.

Quality control
Of 3795 patients (5756 studies) analysed by the AI model, 
16 (0.3%) failed. 108 (1.9%) had suboptimal contours sig-
nificant enough to be thought to affect the area meas-
urements. In 72/108 patients, the 4-chamber slice was 

Table 1 Demographics, CMR and invasive haemodynamics of patients in the (i) RESPIRE (ii) Clinical testing and (iii) full cohort

BSA, body surface area; CMR, cardiovascular magnetic resonance; CTEPH, chronic thromboembolic pulmonary hypertension; max, maximal; min, minimal; mRAP, 
mean right atrial pressure; mPAP, mean pulmonary arterial pressure; MvO2, mixed venous oxygen saturation; PAH, pulmonary arterial hypertension; PAWP, pulmonary 
arterial wedge pressure; PH, pulmonary hypertension; PVR, pulmonary vascular resistance; RHC, right heart catheterization; RVESVI, right ventricular end-systolic 
volume index; RVEDVI, right ventricular end-diastolic volume index; RVSVI, right ventricular stroke volume index; RVEF, right ventricular ejection fraction; RA, right 
atrial; WHO FC, World Health Organisation functional class. Data presented as mean ± standard deviation

RESPIRE repeatability (n = 36) Clinical testing (n = 400) Full cohort (n = 3795)

Demographics

 Age, yr 49.5 ± 15.9 55.4 ± 16.4 62.8 ± 15.3

 Sex, F/M (F %) 30/6 (83) 283/117 (71) 2355/1440 (62)

 BSA  (m2) 1.9 ± 0.2 1.8 ± 0.2 1.8 ± 0.2

 WHO FC I, n (%) 0 (0) 2 (1) 47 (1)

 WHO FC II, n (%) 2 (6) 21 (5) 441 (12)

 WHO FC III, n (%) 30 (83) 338 (85) 2743 (77)

 WHO FC IV, n (%) 4 (11) 36 (9) 336 (10)

Diagnosis, n (%)

 Left Heart Disease 0 (0) 0 (0) 611 (16)

 Lung Disease 0 (0) 0 (0) 632 (17)

 CTEPH 0 (0) 0 (0) 728 (19)

 PAH 36 (100) 400 (100) 1040 (28)

 Other PAH 0 (0) 0 (0) 84 (2)

 Other (not PAH) 0 (0) 0 (0) 677 (18)

Haemodynamics

 mRAP, mmHg 11 ± 7 10.4 ± 6.0 10.1 ± 6.0

 mPAP, mmHg 52 ± 13 48.0 ± 13.7 40.8 ± 14.2

 PAWP, mmHg 10 ± 3 10.3 ± 2.9 12.8 ± 5.9

 Cardiac output L/min 4.5 ± 1.7 4.9 ± 1.5 4.9 ± 1.9

 Cardiac index, L/min/m2 2.5 ± 0.9 2.8 ± 0.9 2.7 ± 1.0

 PVR, dynes/m2 899 ± 512 720 ± 419 562 ± 419

  MvO2, % 65.0 ± 9.1 63.5 ± 9.1 65.2 ± 9.3

CMR volumetric measurements

 RVESVI, ml/m2 25.4 ± 9.2 46.8 ± 28.2 37.3 ± 27.1

 RVEDVI, ml/m2 63.3 ± 27.6 72.7 ± 35.5 62.6 ± 35.5

 RVSVI, ml/m2 37.9 ± 20.7 25.9 ± 12.7 25.3 ± 15.4

 RVEF, % 43.3 ± 10.0 39.1 ± 14.1 44.6 ± 16.1

CMR area measurements

 Automatic max RA area,  cm2 22.6 ± 6.3 25.5 ± 9.8 25.8 ± 10.6

 Manual max RA area,  cm2 22.5 ± 6.3 26.0 ± 10.3 -

 Automatic min RA area,  cm2 15.0 ± 5.5 18.4 ± 9.4 18.5 ± 10.3

 Manual min RA area,  cm2 15.3 ± 5.7 19.3 ± 10.1 -
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off-plane, with the most frequent error being inclusion 
of the LV outflow tract and suboptimal view of the RA. 
In 36/108 severe image artefact, typically breathing arte-
fact or poor cardiac gating lead to suboptimal RA con-
tours. In a randomly selected subcohort of 1018 studies, 
the scoring of satisfactory, suboptimal and failure showed 
excellent agreement between observer 1 and observer 2, 
with a high kappa statistic of 0.84.

Segmentation agreement
Manual and automatic AI segmentation were assessed 
in the same day repeat studies from the prospective 
RESPIRE study. DSC showed high agreement (Fig.  2) 
comparing automatic AI and manual CMR readers, with 

a minimal bias towards either reader, validating similar-
ity in the resulting contours. Manual contours made by 
observer 1 and observer 2 were closely related for both 
maximal RA area and minimal RA area. The mean and 
SD DSC metric for observer 1 vs observer 2, AI measure-
ments vs observer 1 and AI measurements vs observer 
2 is 92.4 ± 3.5, 91.2 ± 4.5 and 93.2 ± 3.2 for maximal 
RA area. The mean and SD DSC metric for observer 1 
vs observer 2, AI measurements vs observer 1 and AI 
measurements vs Observer 2 is 89.8 ± 3.9, 87.0 ± 5.8 
and 91.8 ± 4.8 for minimal RA area. The DSC for all four 
cardiac chambers before and after refinement for the 20 
subjects in the test set are shown in Additional file  1: 
Table S1.

Repeatability and agreement assessment
All AI RA measurements showed higher interstudy 
(scan-rescan) repeatability ICC 0.91 to 0.95, compared 
to manual measurements (observer 1 ICC 0.82 to 0.88, 
observer 2 ICC 0.88 to 0.91). Similar repeatability was 
also found comparing both observers with AI RA con-
tours compared to observer 1 vs observer 2 ICC 0.96 to 
0.98, see Tables 2, 3. Minimal bias was found for AI RA 
measurements, Fig. 3.

Clinical testing cohort
In the clinical testing cohort (n = 400), RA area meas-
urements made by AI and observers were comparable 
(Table 1). In the clinical testing cohort both manual and 
AI maximal RA area predicted overall all-cause mortal-
ity with similar predictive value, (hazard ratio 1.02 (95% 
confidence interval 1.01 to 1.03) and 1.02 (95% confi-
dence interval 1.01 to 1.03) respectively, both p < 0.01). 

Fig. 2 Right atrial (RA) measurements and DICE similarity coefficient. 
Maximal and minimal RA area DICE similarity coefficient results for 
(i) observer 1 vs observer 2 contour agreement, (ii) automatic vs 
observer 1 and (iii) automatic vs observer 2. RA = right atrial

Table 2 Scan-rescan variability of automatic AI and manual right atrial CMR measurements

Interstudy (scan-rescan) variability (n = 36)

Automatic Observer 1 Observer 2

ICC 95% CI ICC 95% CI ICC 95% CI

Max RA area 0.91 0.82, 0.96 0.82 0.65, 0.91 0.88 0.76, 0.94

Min RA area 0.95 0.89, 0.97 0.88 0.75, 0.94 0.91 0.84, 0.96

Table 3 Interobserver variability of automatic AI and manual right atrial CMR measurements

AI, artificial intelligence; CMR, cardiovascular magnetic resonance; max, maximal; min, minimal; RA, right atrial

Interobserver variability (n = 36)

Automatic vs Observer 1 Automatic vs Observer 2 Observer 1 vs Observer 2

ICC 95% CI ICC 95% CI ICC 95% CI

Max RA area 0.99 0.97, 0.99 0.98 0.95, 0.99 0.98 0.94, 0.99

Min RA area 0.99 0.98, 0.99 0.97 0.92, 0.99 0.96 0.95, 0.99
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Manual and AI minimal RA area also showed a simi-
lar predicted mortality hazard ratio of 1.03 (95% con-
fidence interval 1.01 to 1.02) and 1.02 (95% confidence 
interval 1.01 to 1.03), respectively, both p < 0.01.

Of the 400 patients identified for the clinical testing 
cohort, 212 patients underwent CMR and right heart 
catheterization (RHC) within 48  h. Moderate positive 
correlations were found between RA area measure-
ments and mean RAP (mRAP) (AI, r = 0.64 and man-
ual, r = 0.57). Moderate correlations of AI maximal RA 
area measurements with all invasive haemodynamics 
were found, see Table 4. The strongest correlation was 
found between minimal RA area and mRAP, r = 0.66), 
see Table 5.

Maximal RA area could accurately predict mRAP 
low and high ESC/ERS risk thresholds (area under 
the receiver operating characteristic curve AI = 0.82 
vs manual = 0.78 to identify low-risk patients with 
mRAP ≤ 8 mmHg and AI = 0.87 vs manual = 0.83 to iden-
tify high-risk patients with mRAP > 14 mmHg). Minimal 
RA area had a marginally highest accuracy for predic-
tion of elevated mRAP, the strongest prediction was for 
mPAP > 14, area under the curve (AUC) 0.90, see Fig. 4. 
In comparison with manual measurements, automatic 
maximal RA area was not more accurate for detection of 
patients with mRAP > 8  mmHg and mRAP > 14  mmHg, 

Fig. 3 Bland–Altman plots and RA measurements. Bland–Altman plots showing CMR RA measurements scan-rescan results for (left) deep learning 
automatic AI measurements, (middle) observer 1 manual measurements, and (right) observer 2 manual measurements. CMR = cardiovascular 
magnetic resonance; AI = artificial intelligence; RA = right atrial

Table 4 Pearson correlation (r) for the relation of manual 
maximal RA area and automatic AI maximal RA area with RHC 
parameters.  mRAP, mean right atrial pressure; PVR, pulmonary 
vascular resistance

RHC parameters Manual maximal RA 
area (n = 212)

Automatic maximal 
RA area (n = 212)

r p r P

mRAP 0.57  < 0.001 0.64  < 0.001

mPAP 0.38  < 0.001 0.46  < 0.001

Cardiac index − 0.36  < 0.001 − 0.45  < 0.001

PVR 0.36  < 0.001 0.47  < 0.001

SvO2 − 0.41  < 0.001 − 0.48  < 0.001

Table 5 Pearson correlation (r) for the relation of manual 
minimal RA area and automatic AI minimal RA area with RHC 
parameters

RA, right atrial; AI, artificial intelligence; RHC, right heart catheterization; mRAP, 
mean right atrial pressure; mPAP, mean pulmonary arterial pressure; PVR, 
pulmonary vascular resistance; MvO2, mixed venous oxygen saturation

RHC parameters Manual minimal RA 
area (n = 212)

Automatic minimal 
RA area (n = 212)

r p r p

mRAP 0.57  < 0.001 0.66  < 0.001

mPAP 0.40  < 0.001 0.50  < 0.001

Cardiac index − 0.39  < 0.001 − 0.50  < 0.001

PVR 0.40  < 0.001 0.54  < 0.001

SvO2 − 0.44  < 0.001 − 0.55  < 0.001
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(p = 0.11) and (p = 0.13), respectively. Automatic con-
touring of minimal RA area trended to suggest higher 
accuracy for predicting elevated mRAP > 8  mmHg and 
mRAP > 14 mmHg than manual measurements (p = 0.05) 
(p = 0.06), respectively, however these results are not of 
statistical significance.

Discussion
This study shows that CMR RA area measurements 
can be fully automated using AI with a very low failure 
rate in a large clinical cohort with varying RA size and 

deformity. The variability of AI derived RA area measure-
ments is lower than manual measurements in a scan-res-
can cohort of patients with varying severities of RA size 
and function, and PAH. RA area measurements mod-
erately correlate with invasive haemodynamics, and AI 
measurements can identify mRAP prognostic thresholds 
with more confidence than manual measurements, finally 
RA area measurements predict mortality with similar 
accuracy to manual measurements.

This study shows that fully automated Al-based con-
touring of the RA has a very low AI failure rate of ~ 2% 

Fig. 4 ROC curves and RA area measurements. ROC curves showing the accuracy of RA area measurements to predict mPAP at ESC/ERS guidelines 
risk thresholds. ROC = receiver operating characteristic; RA = right atrial; mPAP = mean pulmonary arterial pressure; ESC/ERS = European Society of 
Cardiology and European Respiratory Society; AUC = area under the curve
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in a large clinical population of patients with varying 
degrees of breathlessness, exercise limitation and aetiol-
ogy of cardiac and pulmonary disease. The main reasons 
for failure were severe artefact, in particular poor cardiac 
gating, image noise and acquisition issues such as poor 
slice positioning of the 4-chamber slice, the latter the 
most common scenario. Such images cannot yield accu-
rate RA area measurements by an observer or AI.

Using CMR, reference ranges for cardiac structure and 
function in healthy adults were previously described for 
all four cardiac chambers [25]. Automation of the QC 
process can potentially assist in validating AI algorithms. 
The potential for accurate and fully automatic segmenta-
tion QC has been demonstrated and applied to the UK 
Biobank CMR study using the RCA approach [26]. Refer-
ence values for cardiac function metrics were automati-
cally derived from the UK Biobank and a deep learning 
based framework for automated, quality-controlled char-
acterization of cardiac function from cine CMR has been 
confirmed [27]. Although, we advocate use of observer 
review in the QC process to maintain oversight of the 
segmented contours.

Assessment of interstudy (scan-rescan) repeatability is 
crucial to evaluate the utility of imaging measurements 
[34]. Interstudy repeatability is especially important for 
the comparison of automatic AI measurements with 
manual measurements [35]. We utilised a prospective 
scan-rescan study with rigorous study design [32] and 
show AI measurements are highly repeatable with mar-
ginally higher repeatability than manual measurements. 
Lower variability has advantages for more precise evalu-
ation of changes in the RA following therapeutic inter-
vention in trials and clinical practice, where treatment 
decisions are impacted by progressive structural and 
functional changes in the heart.

The ASPIRE registry includes a wide range of pathol-
ogy including PAH, left heart failure, lung disease, 
chronic thromboembolic disease and patients found to 
have normal invasive haemodynamics. The AI ’seeing’ 
a wider range of pathology is of paramount importance 
[20]. This is the first study to compare AI and manual 
measurements with invasive haemodynamic measure-
ments of RAP. Here in this diverse population we iden-
tify a close correlation of AI RA area measurements with 
invasive mRAP, this combined with the low scan-rescan 
variability supports its potential use as a clinical tool. 
We show that RA area measurements are prognostic to 
a similar level as manual measurements. Further work 
to evaluate AI metrics in risk stratification is required as 
has been achieved for RV measurements [33]. In addition 
further work will be to clinically evaluate the range of 
physiological parameters that can be extracted from the 

AI segmentations, such as RA strain [36, 37] and poten-
tially reservoir and conduit function [38, 39]. RHC meas-
urements correlated strongly with AI RA measurements, 
indicating AI metrics may provide physiologically accu-
rate measure of pathophysiological changes in the heart 
given their high consistency and repeatability.

Limitations and future work
This is a single centre clinical testing of an AI algorithm 
developed in a multi-vendor multicentre cohort, with 
the clinical testing in the setting of a tertiary referral cen-
tre for patients with PAH. The imaging appearances and 
patient populations are likely representative of other PAH 
referral centres. The algorithm was generated in a mul-
ticentre setting, with single centre testing. Multicentre 
testing would be the next step to determine wider applica-
bility of the algorithm. The current approach uses manual 
QC which is advantageous from a regulatory standpoint 
and maintains expert oversight of the AI. Future work to 
automate QC is of interest, however we consider manual 
review an important component of the system. Further-
more, future work will include evaluation of the utility of 
such automatic QC approaches in clinical populations.

This study developed an AI model for RA area estima-
tion rather than volume. The rationale was to automate 
measurements made clinically and consistent with the 
ESC/ERS guidelines in PAH. Further work to develop 
and clinically evaluate a 3-dimensional or multislice RA 
volumetric model would be of value and work to extract 
physiological parameters previously suggested to be 
important [17] may be of benefit in future studies. Future 
work will be to explore the development of a four cham-
ber AI prognostic model in PAH.

Conclusion
In this study we have developed, tested and clinically vali-
dated an AI model to fully automate CMR RA area meas-
urements. The data suggests great clinical applicability of 
AI derived RA measurements, in addition to time saving 
benefits.
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