
  

  

Abstract— Short-term forecasting of heat demand is crucial 

for controlling district heating networks and integrated 

electricity and heat supply systems. The forecast specifies an 

estimate of the energy required in the coming hours which 

enables the controller to proactively manage the storage units 

and schedule the heat generation. Consequently, improving the 

accuracy of heat demand forecasting can lead to reduced 

operational cost and increased reliability of the energy supply. 

This paper presents the development of a sample weighted 

Support Vector Machine (SVM) to improve the accuracy of 

heating demand forecasting. As the dynamics of heat demand 

time series change over time, recurrence plot analysis is first 

used to investigate any seasonal behavior and its relationship to 

ambient temperature. Then, to capture this seasonal behavior, 

a membership-function-based method is presented to generate 

the weight of each sample in learning a SVM model. This 

method is evaluated using a dataset with half hourly resolution 

from an industrial case study in the UK. Compared to 

conventional forecasting methods, the proposed approach 

shows significantly better accuracy in 24 hours ahead 

forecasting of heat demand. 

Keywords—heat demand, recurrence plot, seasonal 

behavior, online forecasting, district heating system.   

I. INTRODUCTION  

Due to the fast growth of microgrids and smart district 
heating systems, a wide range of controllers for optimal 
control of these systems have been developed aiming to 
improve operational efficiency and reduce energy costs and 
GHG emissions. Among these, the prediction-based method 
has been shown particularly efficient to optimize the 
operation of such systems [1]. As it uses predicted values of 
power generation and consumption in the coming hours, the 
controller can use those estimates to optimally schedule the 
generation and manage the storage units to handle future 
energy shortage/surplus [2].  One of the important variables 
that its accurate forecasting can significantly reduce the 
operating costs, is the heat demand [3]. It includes hot water 
consumption and space heating, accounts for a high 
percentage of total energy consumption. In the UK, the heat 
demand's share of total energy use in homes is about 68% [4]. 
The predicted heat load (usually for a short-term period e.g. 
24 hours) can be used in the optimal control of combined 
heat and power (CHP) units, boilers, or heat pumps [5]. 

 In previous studies, different methods were used to 
forecast the heat demand being a time series prediction 
problem. Fang and Lahdelma (2016) analyzed heat demand 
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data and selected the influencing variables such as air 
temperature and wind speed as the inputs of a seasonal 
autoregressive integrated moving average (SARIMA) [6]. 
Ahmad and Chen (2018) have developed different machine 
learning models such as Gaussian process regression, 
multiple linear regression, and artificial neural network to 
predict heat demand. Their models have been made to 
consider many variables, including ambient temperature, 
wind speed and direction, and solar radiation [7]. Similarly, 
this was done by Idowu et al. (2014) using different machine 
learning approaches and they incorporated the ambient 
temperature, solar radiation, and humidity into the model [8]. 
Although these studies have attempted to develop a variety of 
methods for modeling heat demand, their common 
denominator is to highlight the seasonal behavior of heat 
demand. 

 Some other studies have mainly focused on addressing 
the seasonal behavior of heat demand. Bergshtinson et al. 
(2021) have shown the seasonal behavior of heat demand 
throughout the year and accordingly classified one year data 
into summer, winter and a transition period [3]. Potocnik et al 
(2021) in addition to seasonal behavior, provided a detailed 
description of the various linear dependence between ambient 
temperature and heat demand in different seasons [9]. This 
seasonal behavior, which is also observed in other variables 
such as solar radiation and wind speed [10], can be modeled 
by using a time parameter as an input in predictive models 
[6] or by classifying the dataset into different seasons [11]. 
However, the main challenge in both methods is recognition 
of different seasons and the transitions between them.  

 This paper presents a novel method for modeling such 
seasonal behavior based on the sample weighted training 
approach. Initially, linear and nonlinear methods are utilized 
to analyze heat demand data, and then the effect of ambient 
temperature on this variable is investigated. The Recurrence 
Plot (RP) is used as a nonlinear data analysis technique to 
recognize the different seasons based on the structural 
changes in the dynamical behavior of heat demand. Then, 
based on the results of the analysis, a new method for 
modeling heat demand is presented. The proposed approach 
incorporates the seasonal behavior of data into SVM model 
training by means of a weight coefficient. The results show 
that this technique increases the accuracy of heat demand 
forecasting compared to the conventional methods. 

 The paper is organized as follows. Section 2 introduces 
the data of a case study and describes the data analysis. 
Section 3 presents the proposed sample weighted model for 
forecasting the heat demand. Section 4 provides a 
comparison of the results between the proposed approach and 
other machine learning approaches. Finally, section 5 
concludes the paper. 
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II. DATA DESCRIPTION AND ANALYSIS 

This section presents the dataset of heat demand and its 
dynamical and seasonal behavior analysis as follows:  

A. Site and Data 

Half-hourly heat demand data and ambient temperature 
for one year from 01/01/2020 to 31/12/2020 are shown in 
Fig. 1. Heat demand data are provided for an initial phase of 
a development of 153 properties including 1-to-3-bedroom 
flats, 3-bedroom semi-detached houses, and 4-bedroom 
detached houses in the southeast of the UK. The energy 
system was modelled by SMS-PLC with contributions from 
Vital Energi Utilities Limited, taking into account the 
building archetypes, dimensions and constructions, as well as 
meteorological data of the region. It is considered that the 
daytime internal temperature set point is 21˚C until 10 pm 
and 16˚C overnight. Data reveal that the average heat demand 
is 39.3 kWth, while its minimum and maximum are 8.8 kWth 
and 172.9 kWth, respectively. In addition, the average 
temperature in this region is 11.4˚C, with the minimum being 
-3.2˚C and the maximum 30.7˚C. 

B. Time Series Analysis 

In previous studies, the impact of various variables such as 
ambient temperature, wind speed and direction, humidity, 
and solar radiation on heat demand has been investigated, and 
it was found that ambient temperature is the most influential 
variable [12]. As mentioned by Nigitz and Golles (2019), 
given that the meteorological variables are related to each 
other, considering all of them would increase the complexity 
of the model without much potential to improve the 
prediction [13]. Therefore, here only the effect of ambient 
temperature on heat demand is considered to demonstrate the 
effectiveness of the proposed approach. Fig. 2 (a) illustrates 
the Auto-Correlation Function (ACF) of heat demand. The 
plot shows there is a high linear correlation between heat 
demand samples with a daily period (48 samples). In 
addition, the cross-correlation between heat demand and 
ambient temperature, shown in Fig. 2 (b), reveals these two 
variables have a meaningful  negative linear relationship as a 
decrease in ambient temperature increases heat demand. 

 

Figure 1. Half-hourly data for one year from 01/01/2020 to 31/12/2020 a) 

Heat demand b) Ambient temperature 

 

Figure 2. a) Auto-correlation function of heat demand data b) Cross 

correlation function of heat demand and ambient temperature 

The next issue to consider is the analysis of the dynamical 
behavior of heat demand. Recurrence Plot (RP) is used here 
as an advanced technique to identify hidden patterns and 
structural changes in complicated data. Given a time series 

, the RP matrix is calculated as 
follows:  

                            (1) 

where,  is the kth phase space trajectory of the time 
series and is defined as: 

.                (2) 

where d and  represent dimension and delay, 
respectively [14]. Although a lot of information can be 
extracted from the RP, the important points can be 
summarized as follows [10]: 

a) Dynamical behavior: RP can reveal that a time series is 
periodic, chaotic, or stochastic. Parallel diagonal lines in the 
RP show the system is periodic and the vertical distance 
between the lines specifies their oscillation period.  If these 
diagonal lines occur beside single isolated points, the process 
could be chaotic and separate points represent a stochastic 
time series.  

b) Seasonal behavior: disruptions in the pattern and 
separate blocks represent seasonal behavior.  

Fig. 3 shows the RP of heat demand as the dimension and 
the delay of the data are 6 and 16, respectively. The false 
nearest neighbor is used for dimension calculation [15], and 
mutual information is used for delay calculation [16]. As 
shown in Fig. 3 (a), three separate patterns along the main 
diagonal are observed in the RP in which the dark block in 
the middle of the pattern represents summer (hot seasons) 
and the other two represent winter (cold seasons). On the 
other hand, parallel diagonal lines in Fig. 3 (b) represent heat 
demand data are periodic with an oscillation period of 48 
samples (24 hours).  



  

 
Figure 3. a) The RP of heat demand, (b) a zoomed in portion of RP 

While RP is used to analyze a time series, Cross 
Recurrence Plot (CRP) can be used to investigate the 
nonlinear interrelationships between a pair of time series. 
CRP matrix is calculated as follows: 

                                  (3) 

where  and which are calculated by (2), represent 
the trajectory vectors of the first and the second time series, 
respectively [17]. Fig 4. shows the CRP of heat demand and 
ambient temperature. In CRP patterns, a small distance 
between the phase space trajectories of two time series, 
which is visualized by darker color spectrum, indicates 
greater nonlinear dependence. Fig. 4 shows that the 
interrelationships between heat demand and ambient 
temperature change over time. The disruption in the middle 
of the plot reveals that heat demand data and ambient 
temperature have a strong nonlinear relationship in winter, 
but it is weak in summer. So, it can be concluded that not 
only does the dynamical behavior of heat demand change 
over time, but the effects of ambient temperature on heat 
demand are also subject to seasonal variation. 

 
Figure 4. CRP of heat demand and ambient temperature 

III.  PROPOSED APPROACH 

According to the analysis described in the previous 
section, the dynamical behavior of the time series of heat 
demand and its relationship with ambient temperature change 
over time. Hence, a new method based on sample weighted 
SVM is presented to model this complex behavior by 
considering the transition between seasons. While standard 
SVM uses all samples equally in training the model, sample 
weighted SVM emphasizes some samples more than others. 
This technique is useful when there is more confidence on 
some training samples, the samples become less important 
over time, or some training samples are more relevant than 
others [18]. This method has been utilized for different 
applications. Wang et al. (2020) developed a sample 
weighted SVM to predict hypoglycemic drugs of type 2 
diabetes by considering the relevant–irrelevant label pair as a 
metric to generate the samples’ weights [19]. Yu et al. (2020) 
used this method to reduce the effects of outliers in the 
training datasets of a credit risk model [20] and Tang et al 
(2019) also implemented this method for forecasting stock 
turning points [21]. Here, this method is developed to predict 
heat demand with complex seasonal behavior which is 
outlined in this section.  

A.  Formulation of the Sample-weighted SVM 

Define Given a training dataset such as , for i 
= 1, 2, …, N , where  is the sample weight, the prediction 
function of a SVM is defined as follows [22]: 

                   (4) 

where Φ(x)  is a nonlinear function that maps the input 
variables into a high dimensional space, w is the weight 
vector and b is bias. In order to calculate the model 
parameters, the following optimization problem is to be 
solved: 

J=                (5) 

Subject to: 

                 (6) 

where C is the regularization parameter and ε is the 
training error. The solution to (5) and (6) is derived by 
constructing the Lagrangian function: 

  

(7) 

where  is the Lagrange multiplier and the final form of 
the prediction function can be obtained as follows: 

                    (8) 

Here,  is the kernel function given as 
 so that the nonlinear mapping  needn’t to 

be known explicitly. In this paper, RBF-Kernel is used: 

                       (9) 

Where  represents the Kernel coefficient.  

B. Construction of the Weight Vector 

In order to develop a sample weighted model, it is 
necessary to determine the weight assigned to each sample. 



  

Fig. 5 illustrates a method to construct the weight vector 
taking into account both seasonal changes and daily 
temperature. According to Fig. 5, during each training 
process, the weight vector is updated by multiplying the 
seasonal coefficient (Ws) by the temperature coefficient 
(Wt).  

To specify the Ws, the moving average of the ambient 
temperature (MA) is applied to the membership function 
shown in Fig. 6, where the values of Tw and Ts are specified 
by comparing the season blocks in Fig. 4 with the moving 
average curve (Fig. 7). According to the pattern shown in 
Fig. 4, the first dark block represents winter, approximately 
from 1 to about 6300, and the bright block represents 
summer, approximately from 7900 to 12300. As the MA 
values for the time of 6300 (the end of winter) and 7900 (the 
start of summer) are 14 and 16 ˚C, a sample with an 
associated moving average temperature lower than Tw 
(14˚C) belongs to winter, with an associated moving average 
temperature higher than Ts (16˚C) belongs to summer, and 
between these two values belongs to the transition period.  

To calculate Wt for ith sample, (10) is used. It shows a 
sample whose associated daily temperature is close to the 
next day's temperature will weigh more in the training 
process. 

            (10) 

    (11)       

where  represents the associated daily temperature 
of the ith sample,  is the predicted next day's temperature, k 
is the day index of the ith sample and K is the number of the 
training samples. As the weather forecasting services provide 
the accurate prediction of the next day's temperature, it is 
assumed that these values are used directly as input to our 
model. 

C. Architecture of the Predictive Model 

This section presents the architecture of the predictive 
model. As shown in Fig. 8, after receiving the data, the 
moving average value is calculated. Using this value, the 

 

Figure 5. Flowchart of the weight vector construction 

.  

Figure 6. Membership function of season changes 

 

Figure 7. The moving average of the ambient temperature 

sample's weight is determined based on the described 

method in Section 3.2. Then, the input vectors are 

normalized by the min-max method to lie between 0 and 1 

[23].  

                (13)                                                     

As The sample weight vector is constructed based on the 

daily ambient temperature and updated every 48 samples (24 

hours), so the model will be retrained every 48 samples. In 

the case of model training, the expanding window technique 

is used to ensure all the available information is utilized in 

the training process [24]. Following the training of the 

model, the normalized amount of heat demand for the next 

24 hours (48 samples ahead) is predicted and finally, the 

predicted value is denormalized. 

Based on the results of the analysis, it was determined 
that heating demand and ambient temperature have a strong 
dependency during winter, but they are not dependent during 
summer. Following these results, the feature selection for 
winter and summer was conducted separately. While only 
historical data of heating demand are considered for summer, 
historical data of both heating demand and ambient 
temperature are used for winter. In the validation stage, by 
using the backward feature elimination [25], the following 
combinations of input vectors were selected for winter and 
summer, respectively: 

 

 

  (14) 

    () 

where the numbers represent the lags of each vector. 



  

 
Figure 8. Architecture of the predictive model 

IV. RESULTS AND DISCUSSION  

In this section, the results of the heat demand forecasting 
(48 samples ahead) by the proposed approach are presented. 
In order to test it in both winter and summer, 9000 samples 
from the available database are considered for training and 
validation and 8520 samples for testing. Therefore, the test 
period runs from 07.07.2020 to 31.12.2020. Modified Mean 
Absolute Percentage Error (Mod-MAPE) and Mean Squared 
Error (MSE) are used to evaluate the accuracy of the 
proposed approach. These metrics are defined as follows 
[26]: 

          (16) 

                 (17) 

where is actual heat demand,  is the predicted 
one, and  is the number of test samples. According to Table 
I, the prediction results of the proposed approach with 
sample-weighted SVM are compared to those of several 
conventional linear and nonlinear forecasting methods. The 
input vectors of all conventional models are considered as 
(14), and their coefficients were determined by using the 5-
fold cross-validation technique and grid search method [27]. 
Moreover, to make the comparison between the methods as 
fair as possible, all the conventional methods are retrained 
every 48 samples. 

Table I shows that the linear model has the lowest 
accuracy in forecasting heat demand with a MAPE of 
13.60% and a MSE of 55.28. In artificial neural network 
models, Radial Basis Function (RBF) has better accuracy 
compared to Multi-Layer Perceptron (MLP), which has a 
4.9% reduction in MSE over linear regression. 

Table I. COMPARISON RESULTS OF HEAT DEMAND PREDICTION 

Method 
Mod-

MAPE% 
MSE Parameters 

Linear regression 13.60 55.28  

MLP 13.34 53.93 
No of neurons: [26, 28] 

Activation: tanh 
Regularization:4.7e-6 

RBF 12.62 52.54 
No of neurons: 150 

overlap coefficient: 3.7 

SVM 12.32 51.63 C=0.1998, = 0.0439 

Proposed 
approach 

11.64 46.52 C=0.1998, = 0.0439 

     

Table II. PREDICTION ACCURACY FOR DIFFERENT SEASONS  

Method Summer Transition period Winter 

SVM 12.47% 12.47% 11.17% 

Proposed 
approach 

11.52% 11.69% 10.42% 

 

The next method is the standard SVM, which has the best 
accuracy among the conventional methods with MSE 51.63 
and MAPE 12.32%. Nevertheless, the proposed approach 
yielded the highest forecasting accuracy. Not only this 
method has the lowest MAPE value of 11.64%, but it also 
has a MSE value that is 9.9% below the best conventional 
method, i.e., standard SVM. The significant reduction in 
MSE indicates that the proposed approach has effectively 
reduced the forecasting errors.  

In Table II, a comparison of prediction accuracy (MAPE) 
for different seasons is provided between the proposed 
approach and the standard SVM method (which has the 
highest accuracy among conventional methods).  

The result indicates that the proposed approach has 
improved the accuracy of the prediction in both seasons and 
during the transition period. The improvement in summer is 
more than in other periods, which can be explained by the 
choice of the predictive model inputs for this season. While 
the ambient temperature is an input for the SVM model in 
this season, the proposed approach uses only historical data 
of heat demand to predict the future values. 

Furthermore, Fig. 9 illustrates the half-hourly results of 
heat demand forecasting by the proposed approach. As it can 
be seen, not only the short-term forecasting was done with 
high accuracy, but the long-term trend was also captured 
appropriately. 

V. CONCLUSION 

 
This paper presented a method for forecasting short-term heat 
demand with complex seasonal behavior by using sample 
weighted SVM. The data was first analyzed using linear and 
nonlinear analyses to investigate their dynamic and seasonal 
behaviors. Then, the effect of ambient temperature on heat 
demand was studied. Following the observed seasonality of  



  

heat demand, an approach based on the daily temperature and 
the seasonal change membership function was developed to 
construct the weight vector to be used in training SVM 
models. A comparison between the proposed approach and 
several conventional forecasting methods shows that our 
method can model the seasonal behavior effectively, resulting 
in a reduction of 9.9% in MSE and a higher accuracy for heat 
demand forecasting.  
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