Study of Allene-Based Ligands for Transition Metal Complexes – Synthesis and Applications in Catalysis and as Metallodrugs

Hanna Katarzyna Maliszewska

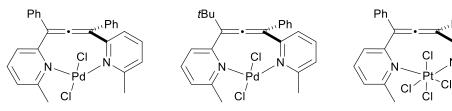
University of East Anglia, Norwich

School of Chemistry

March 2021

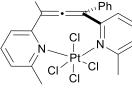
Appendices

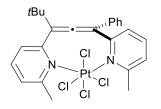
Table of Contents

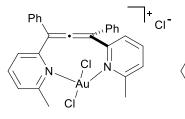

Table of Contents	
Appendix A – Structures of new complexes	
Appendix B – NMR Spectra	
Appendix C – X-ray data	
Appendix D – Procedures from CO-ADD	

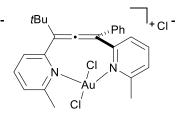
Access Condition and Agreement

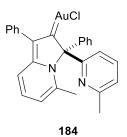
Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the Data Collections is not permitted, except that material may be duplicated by you for your research use or for educational purposes in electronic or print form. You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions only apply where a deposit may be explicitly provided under a stated licence, such as a Creative Commons licence or Open Government licence.

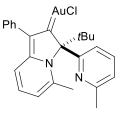

Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder themselves) and UEA reserves the right to take immediate 'take down' action on behalf of the copyright and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in this database has been supplied on the understanding that it is copyright material and that no quotation from the material may be published without proper acknowledgement.



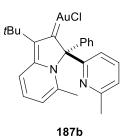


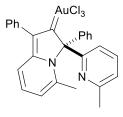


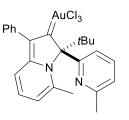

195


175

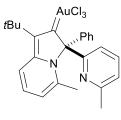
176

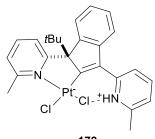


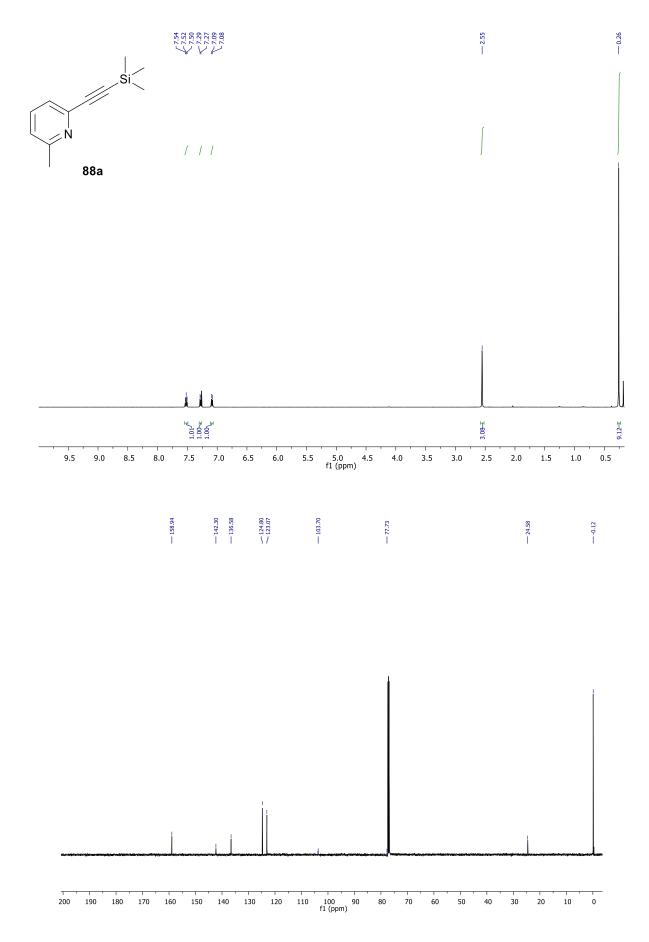


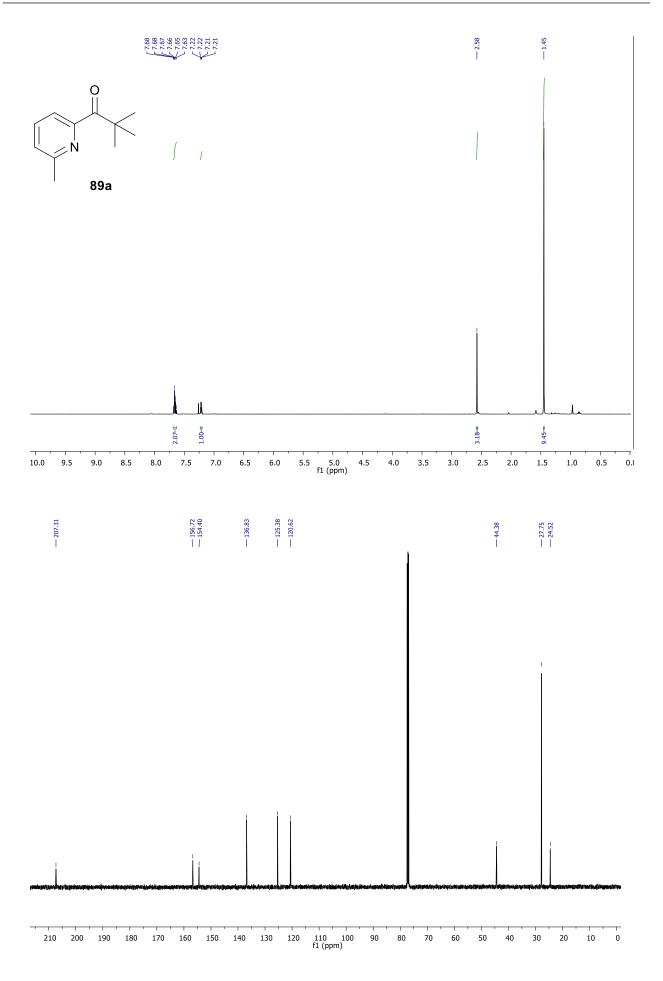


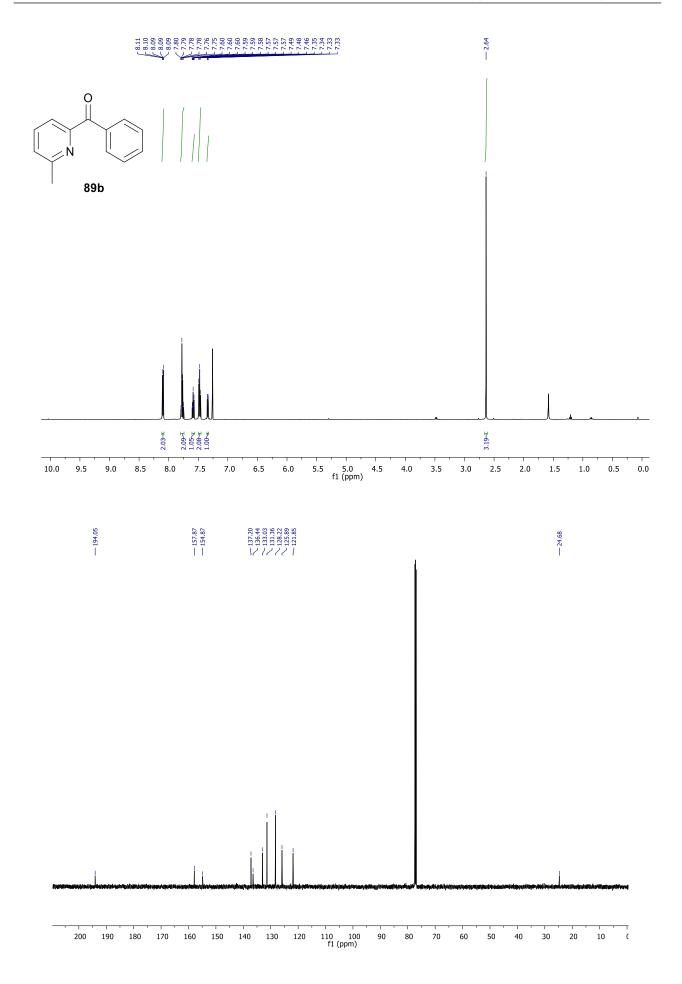
187a

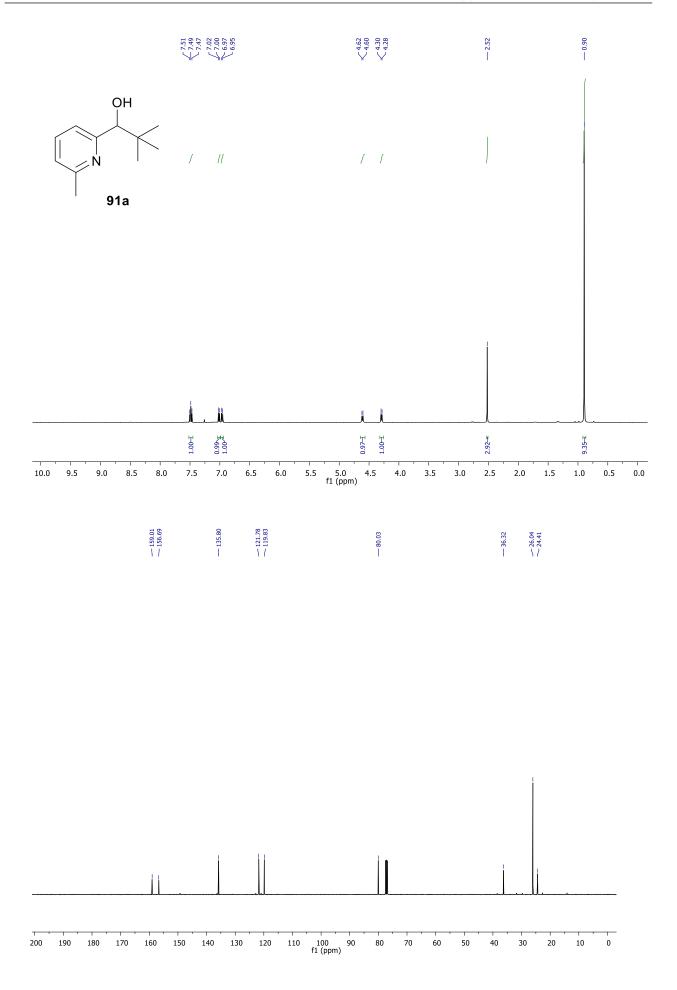




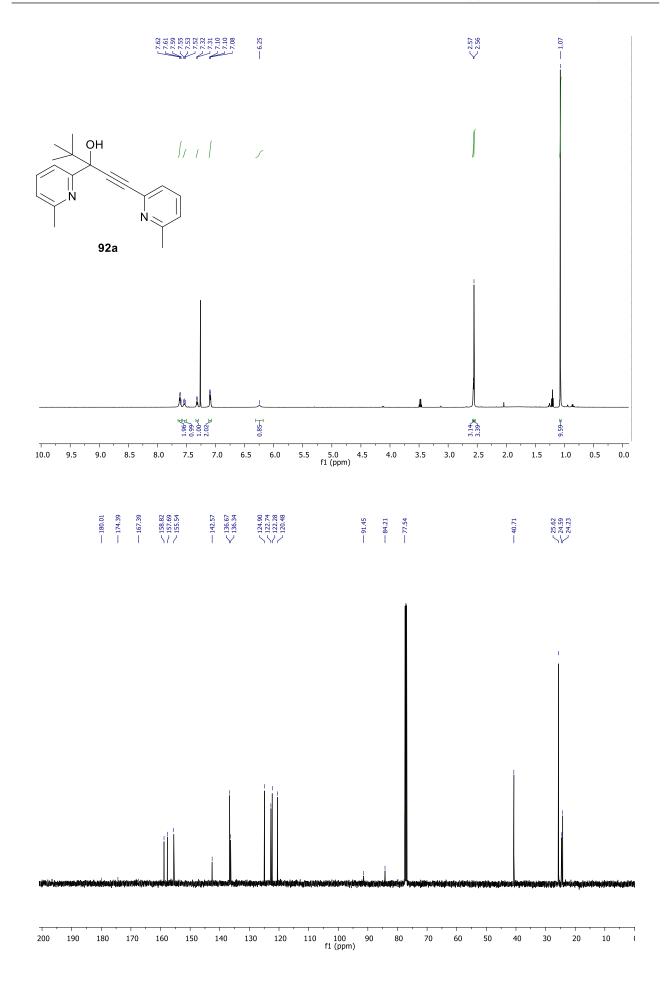

189a

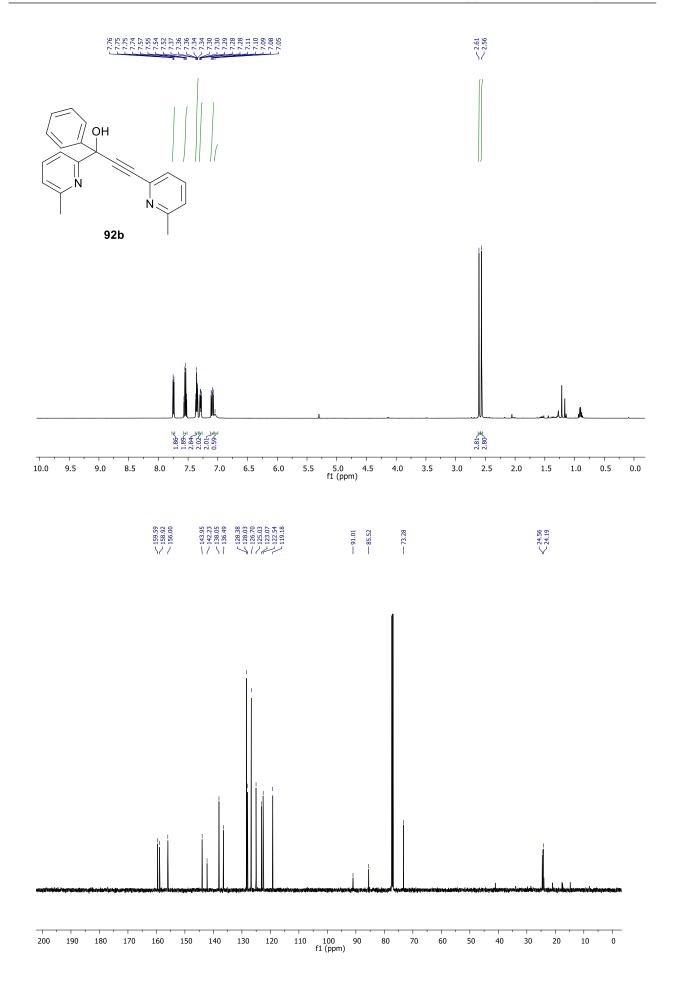

189b

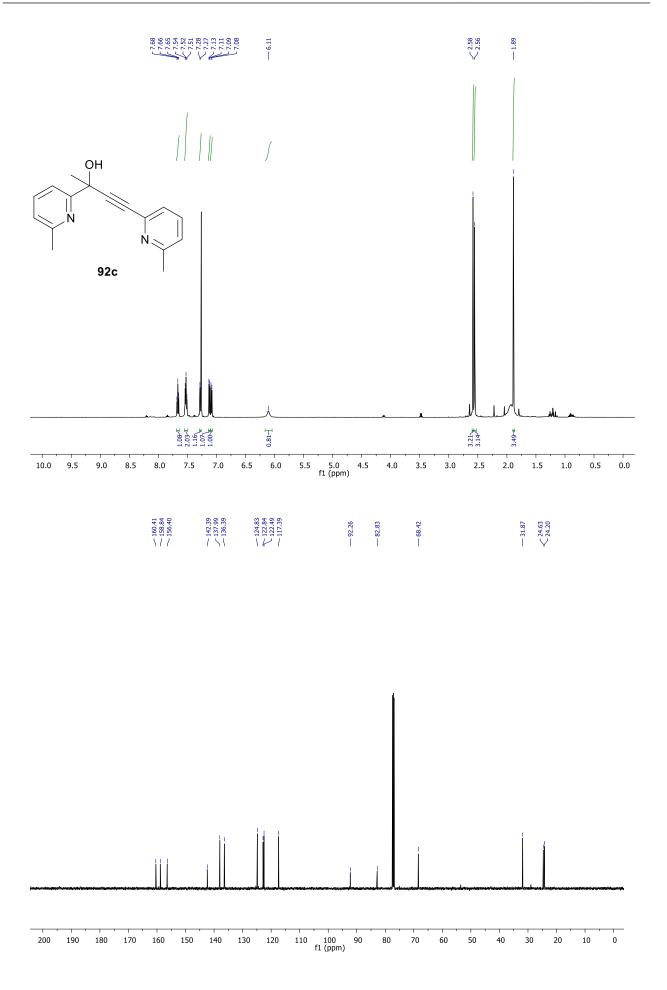


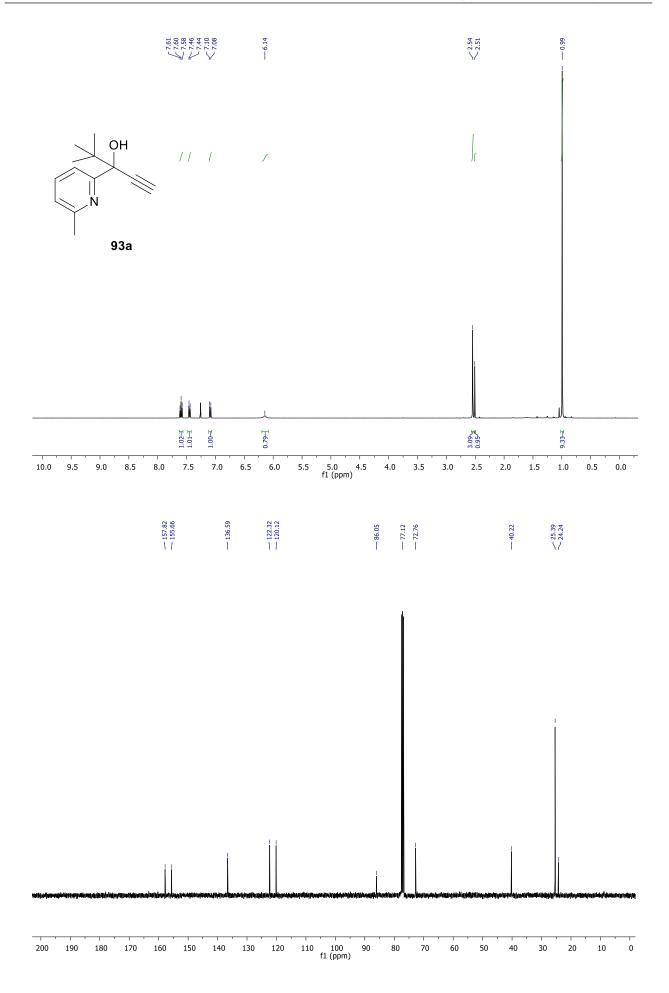

Appendix B – NMR Spectra

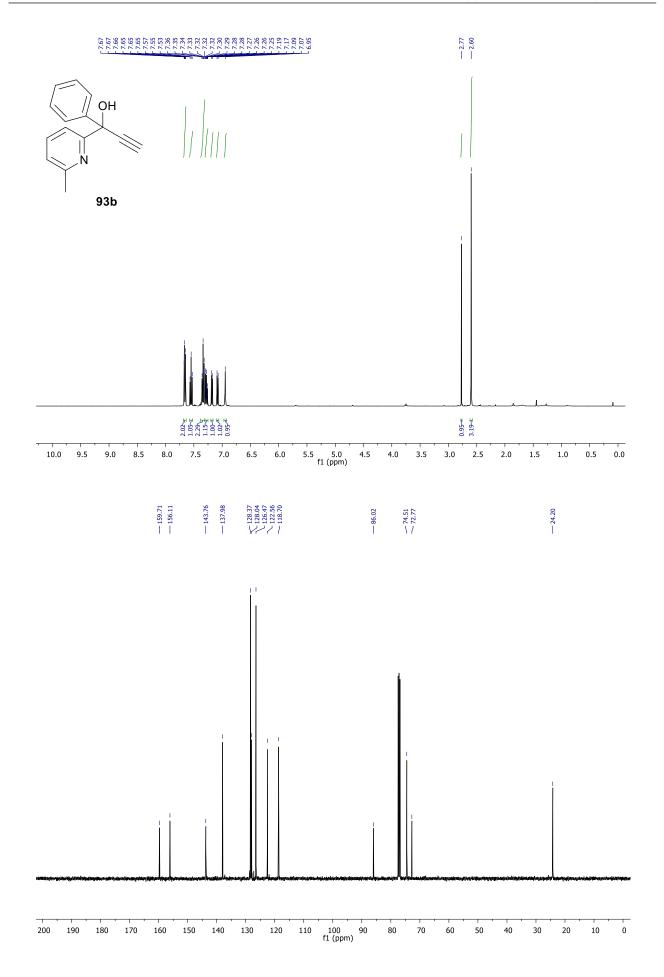


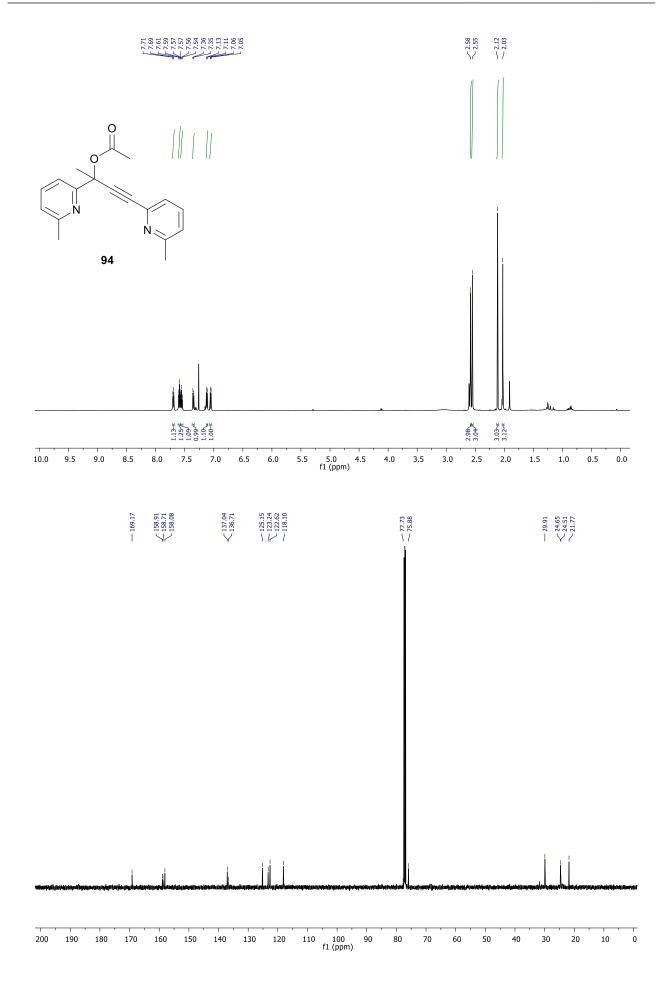


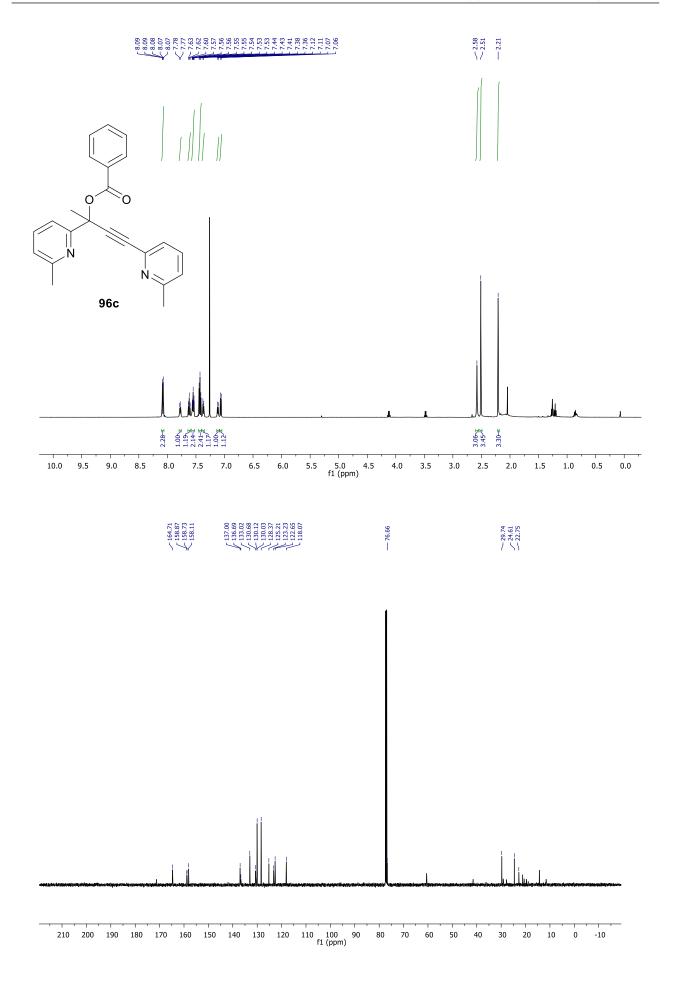


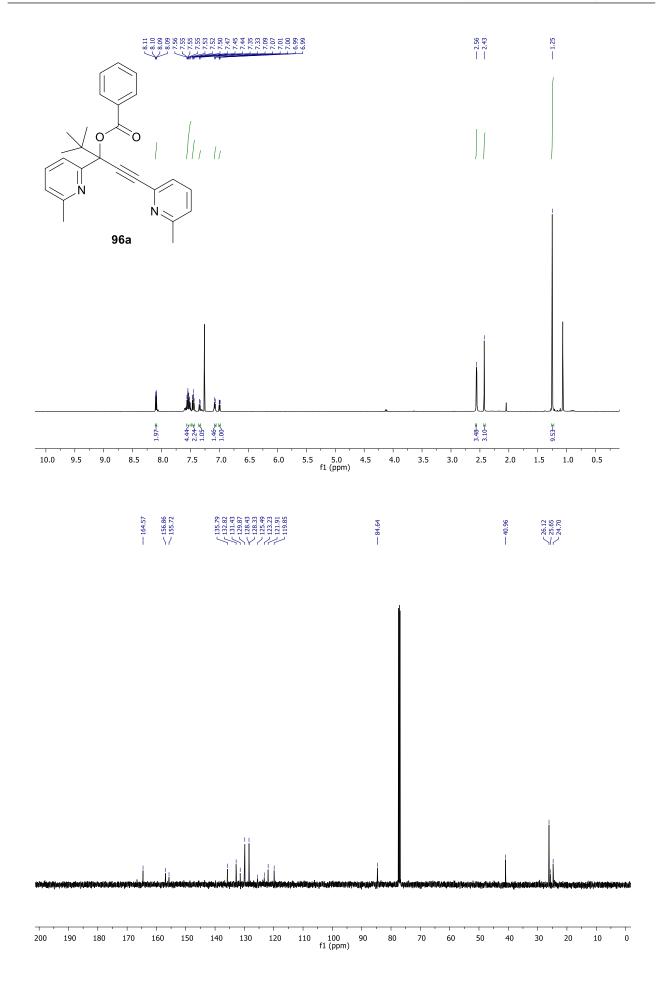


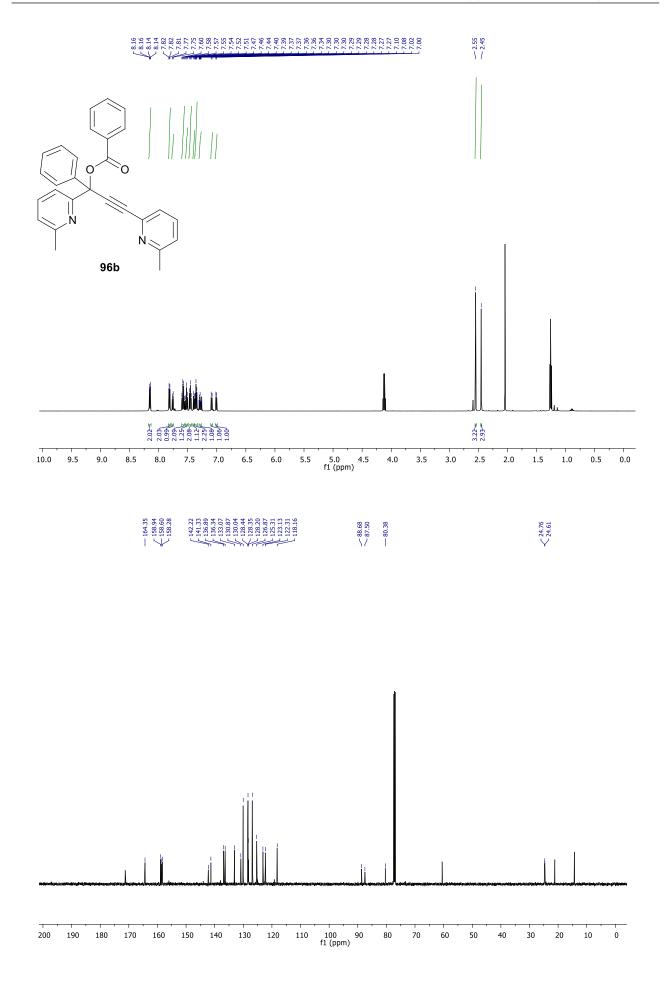


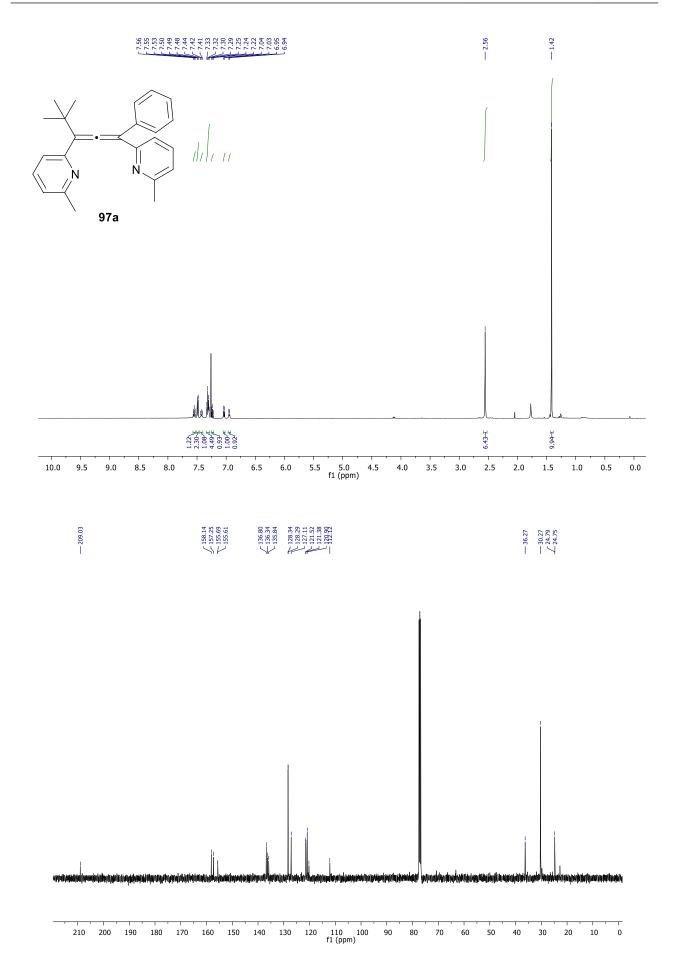


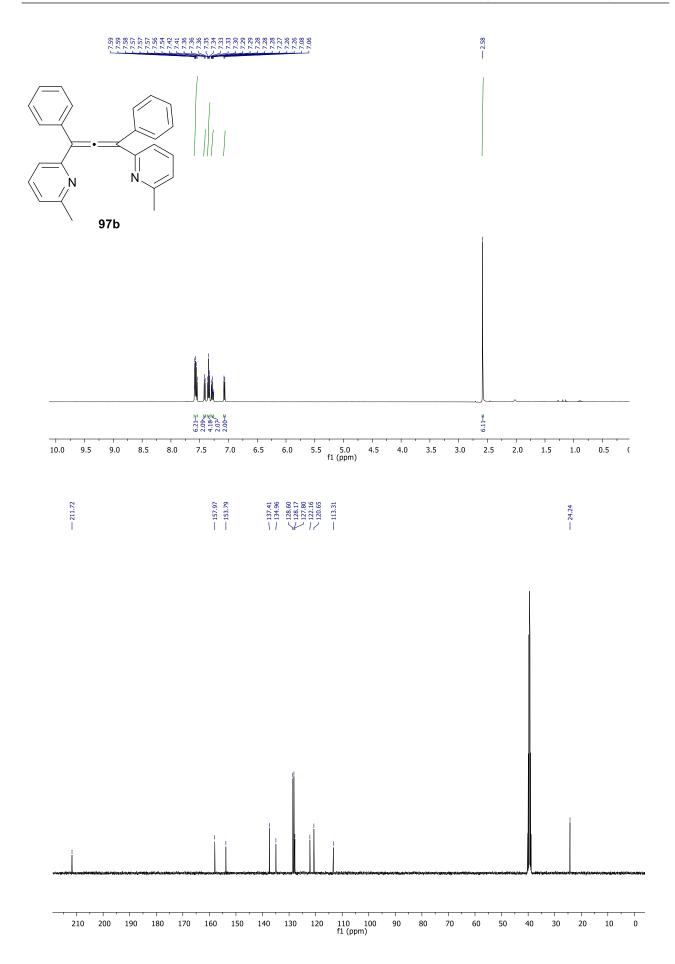


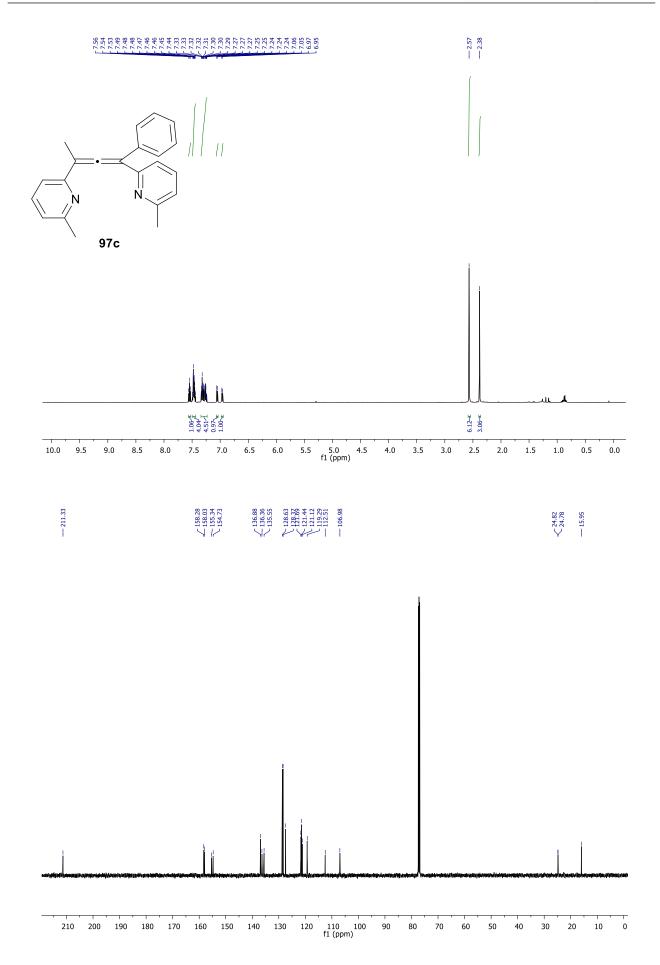




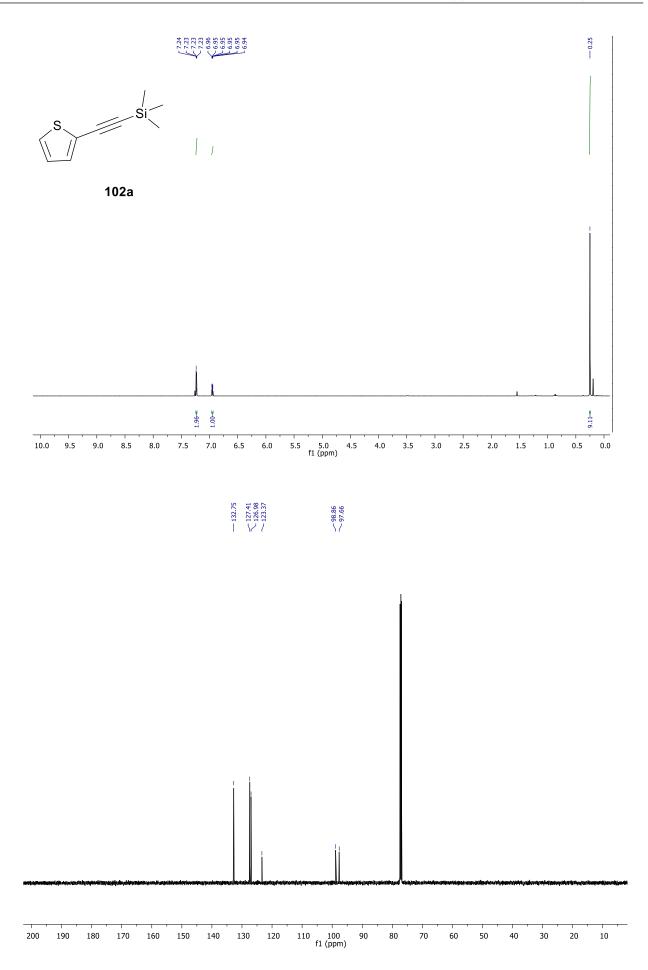


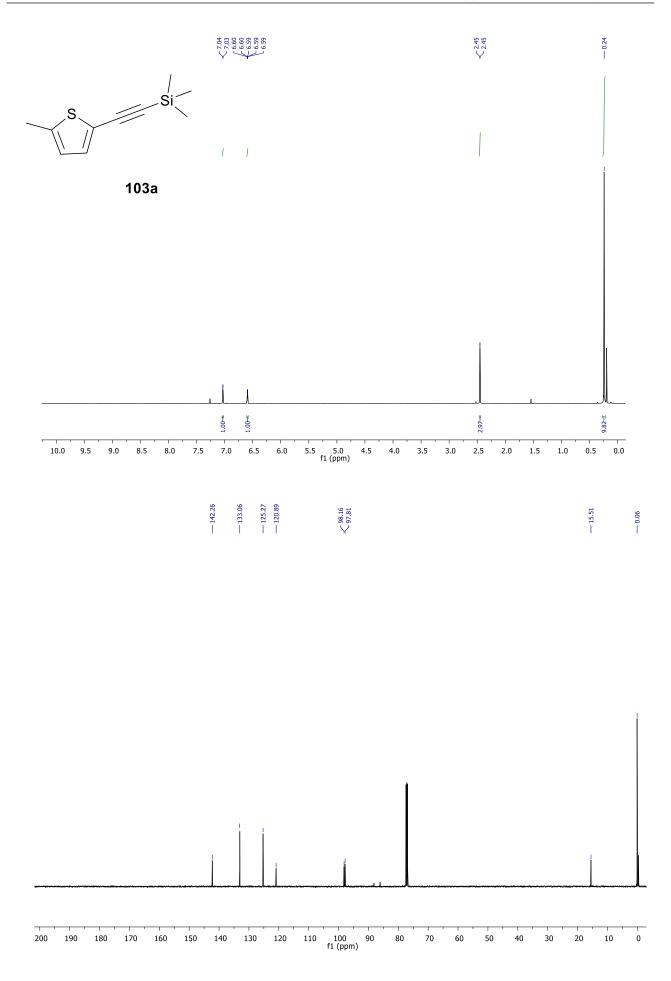


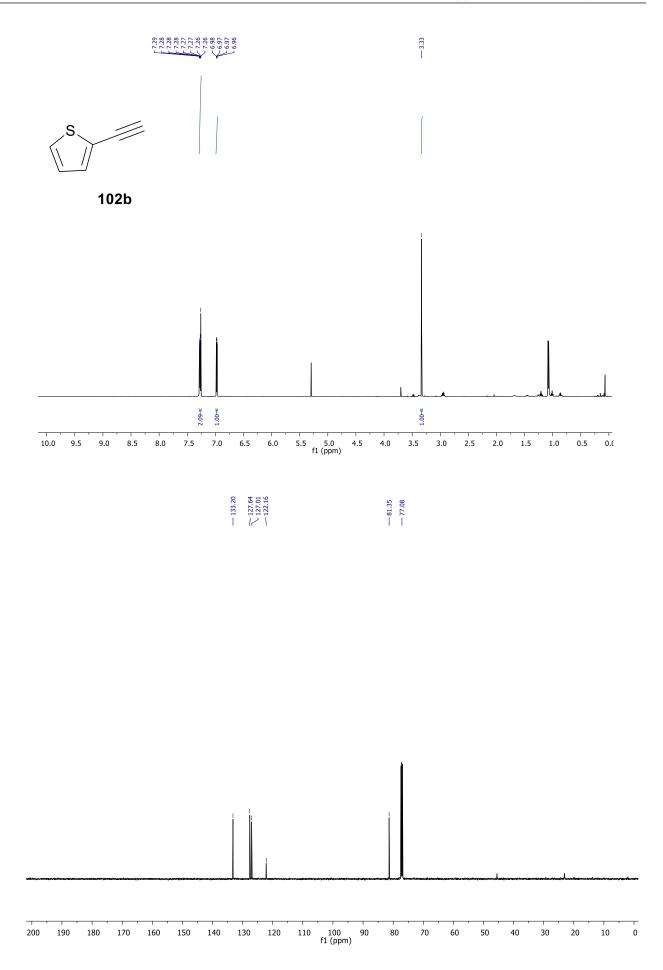


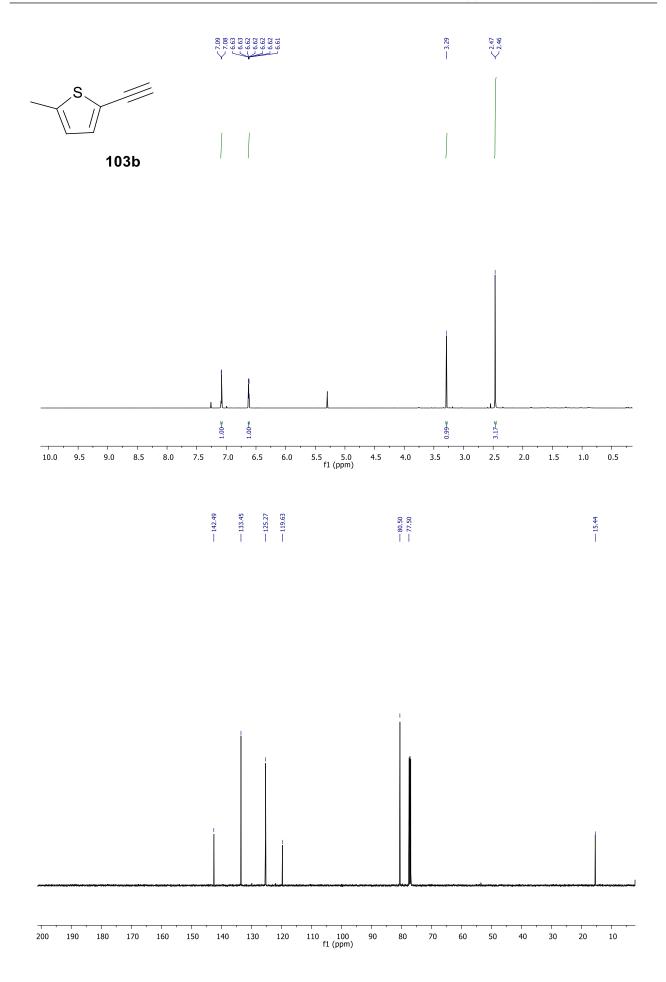


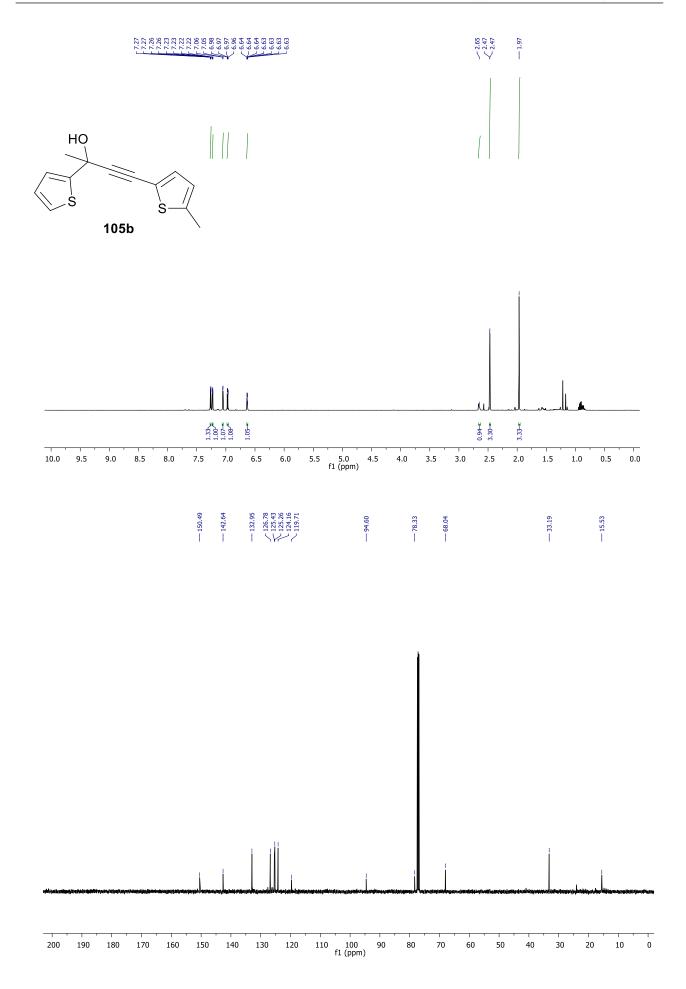


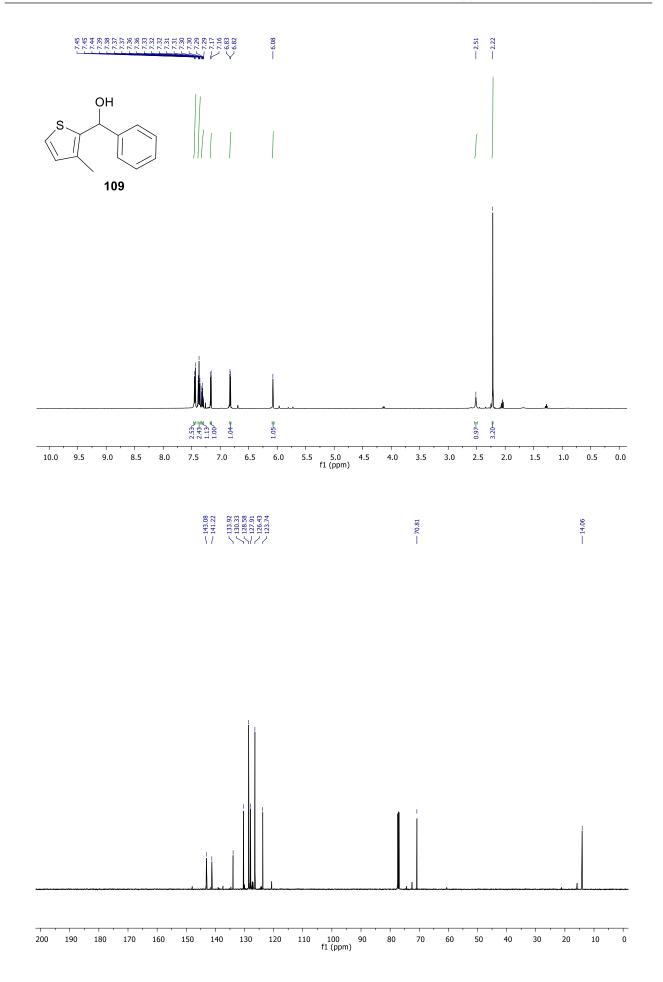


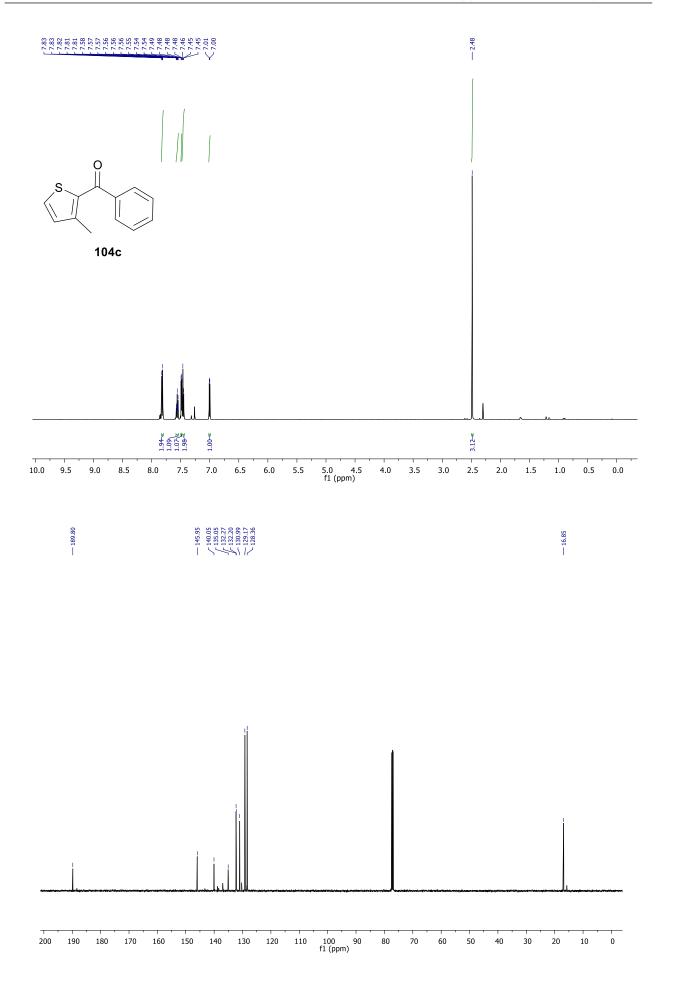


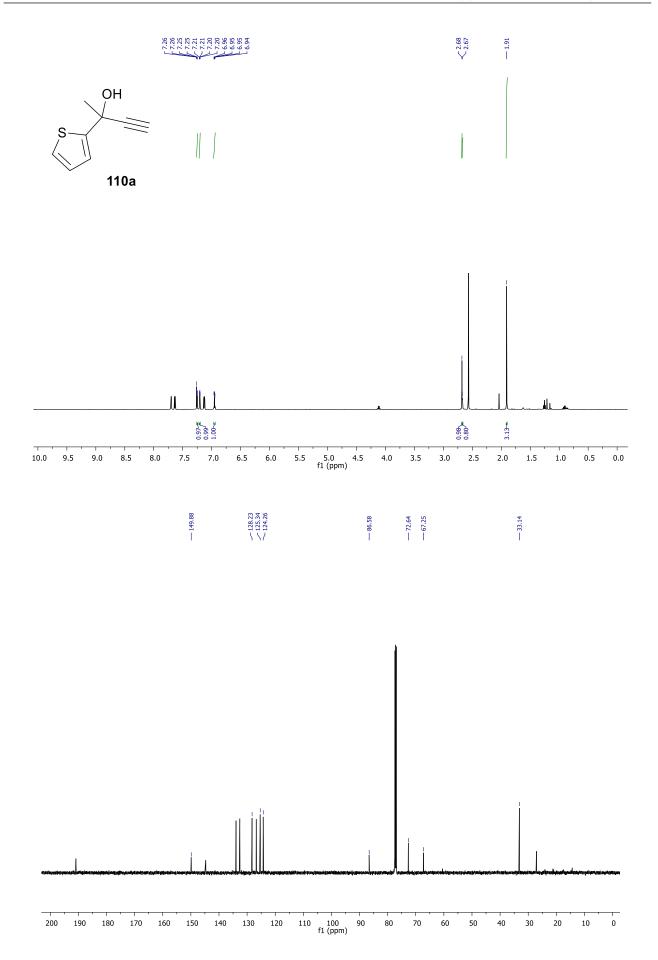


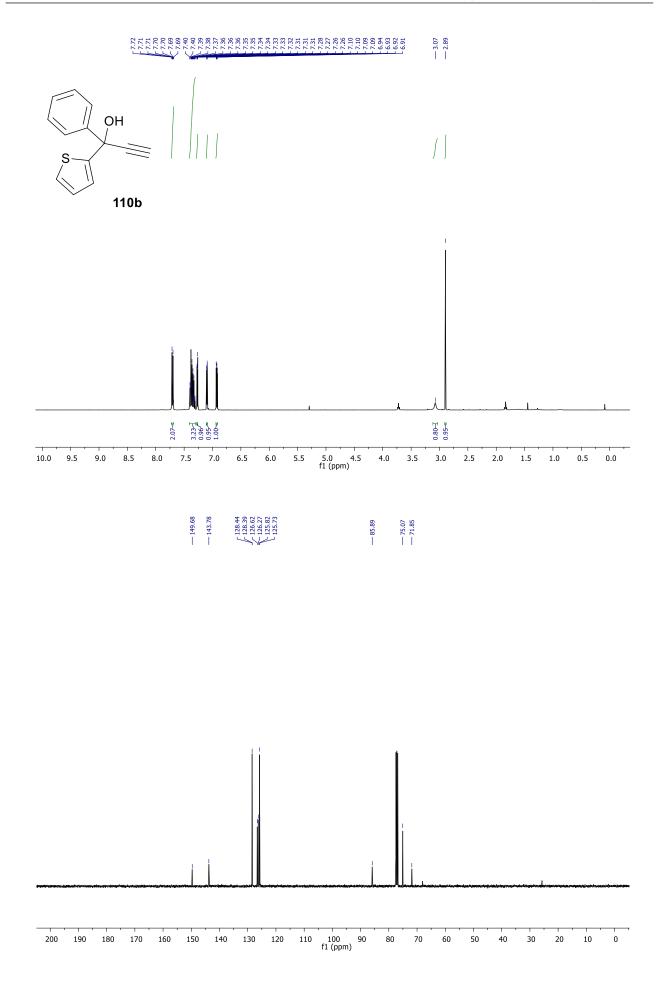


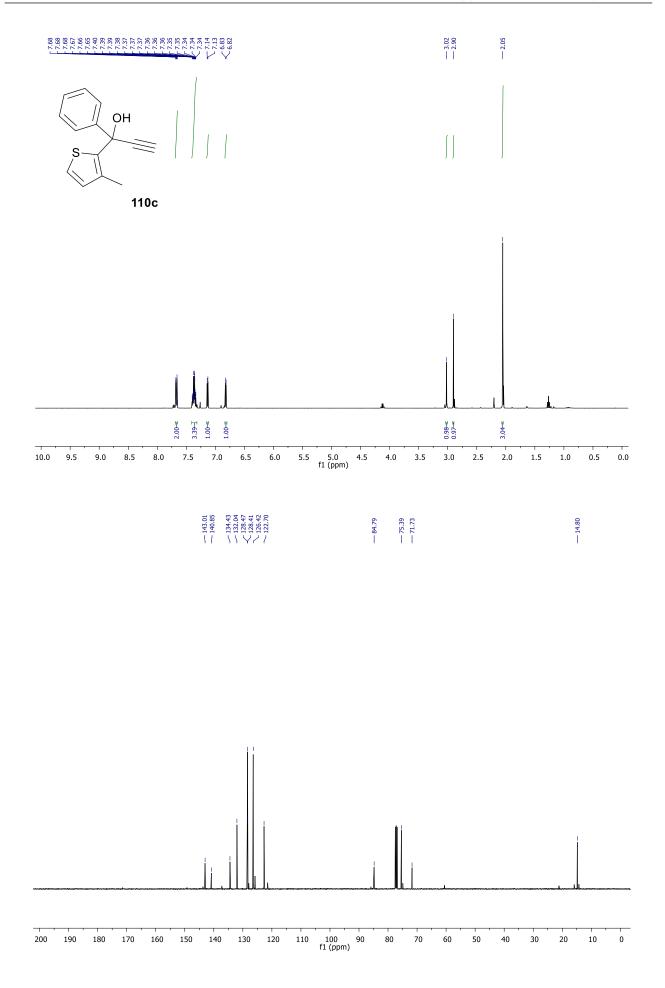


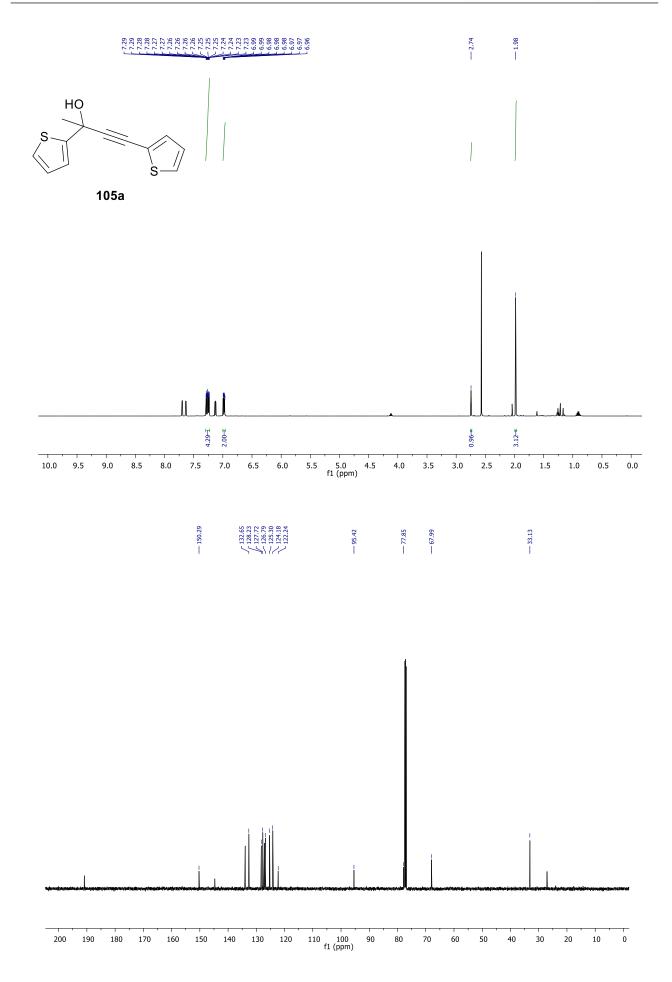


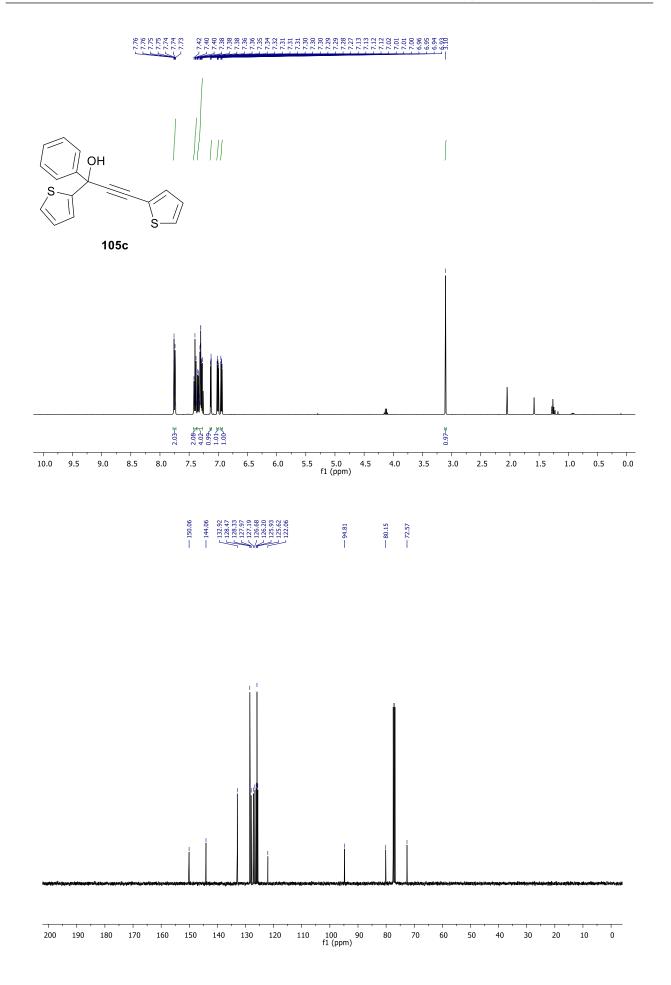


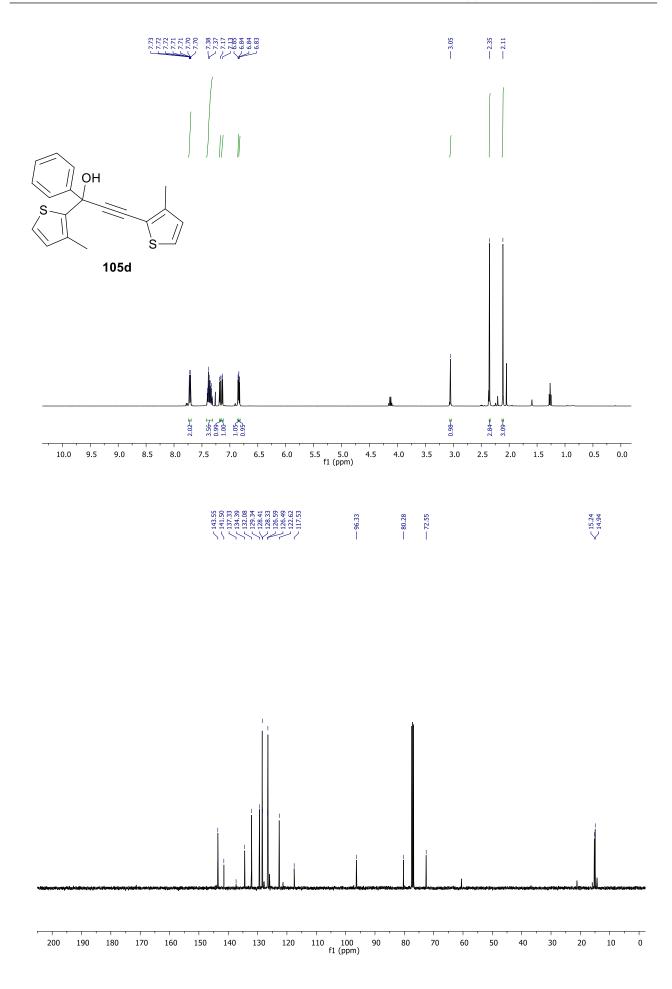


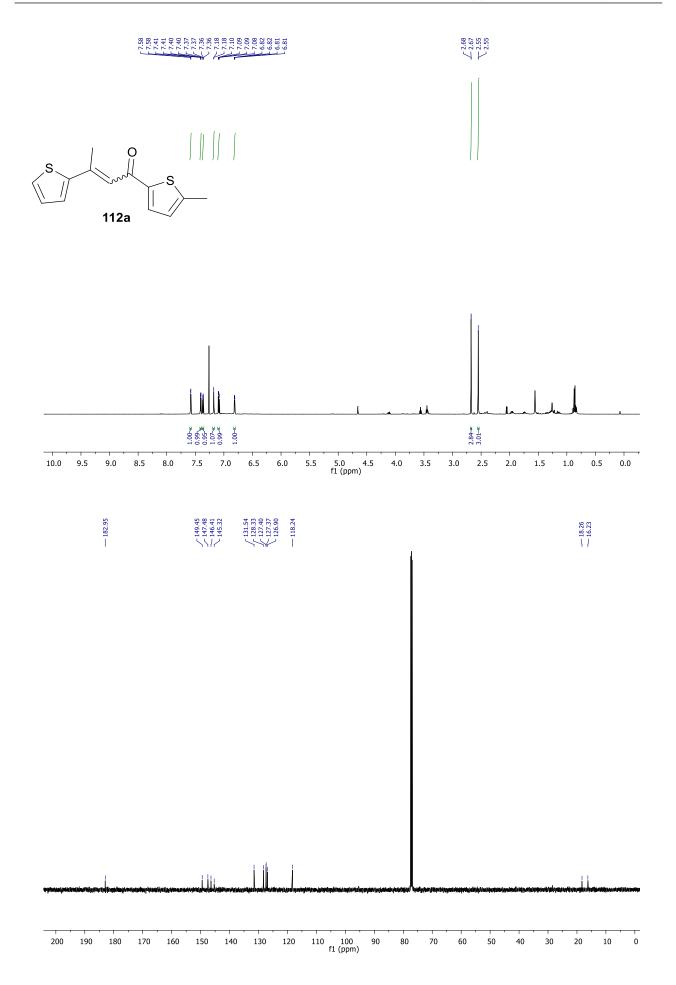


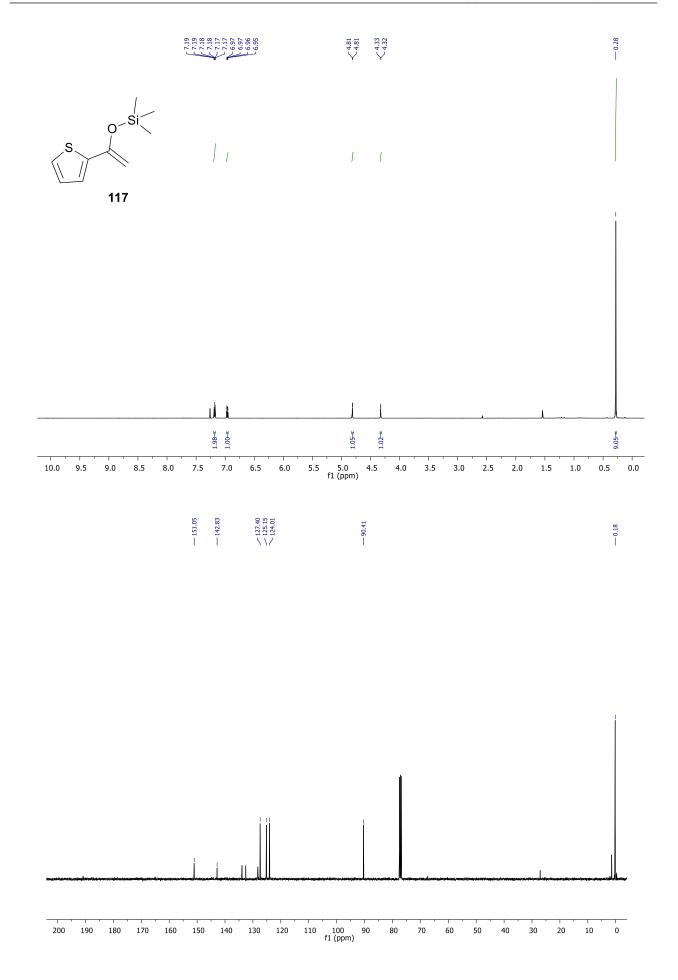


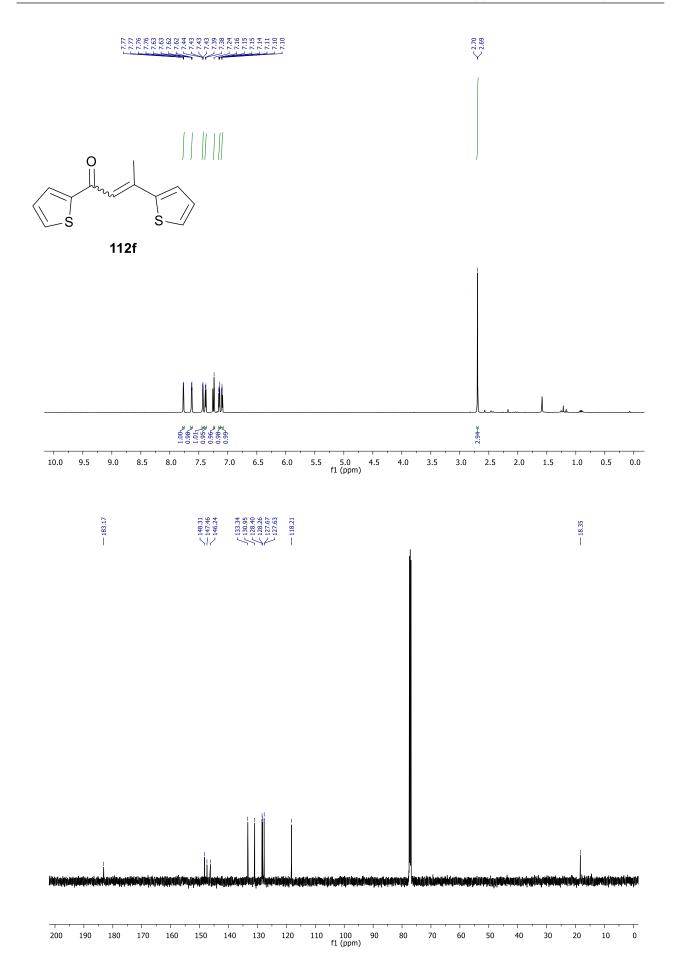


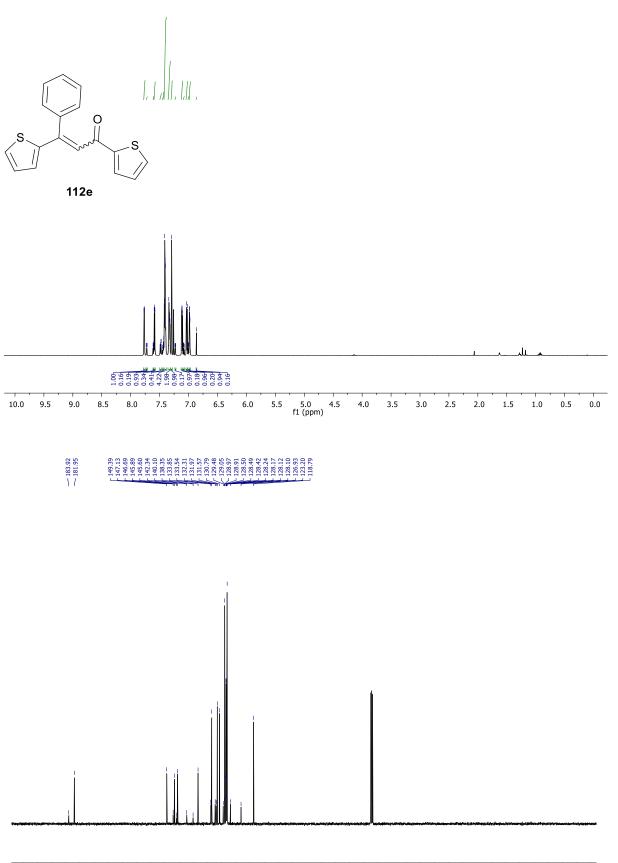


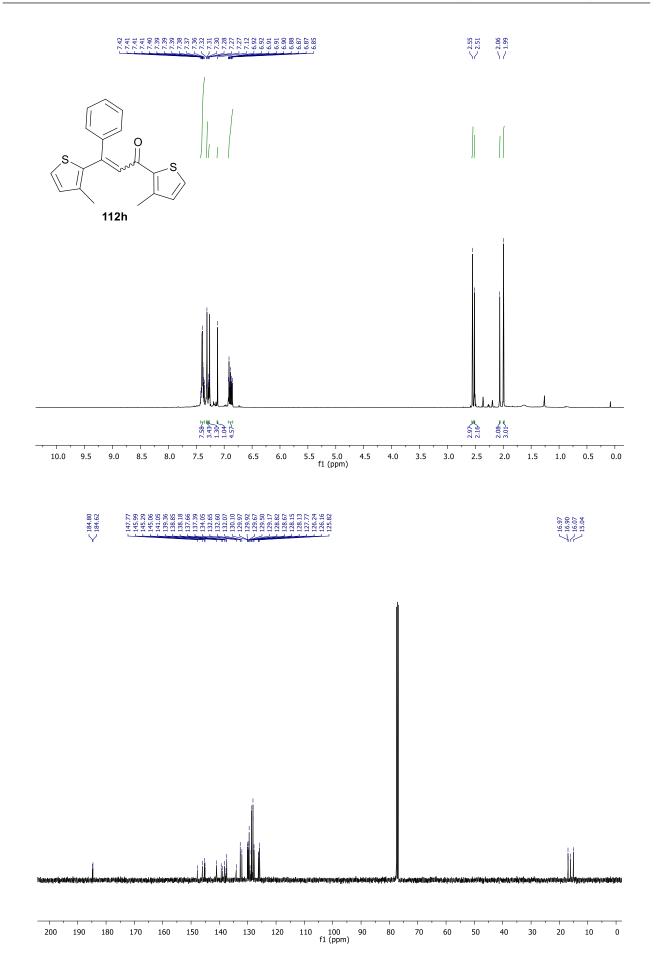


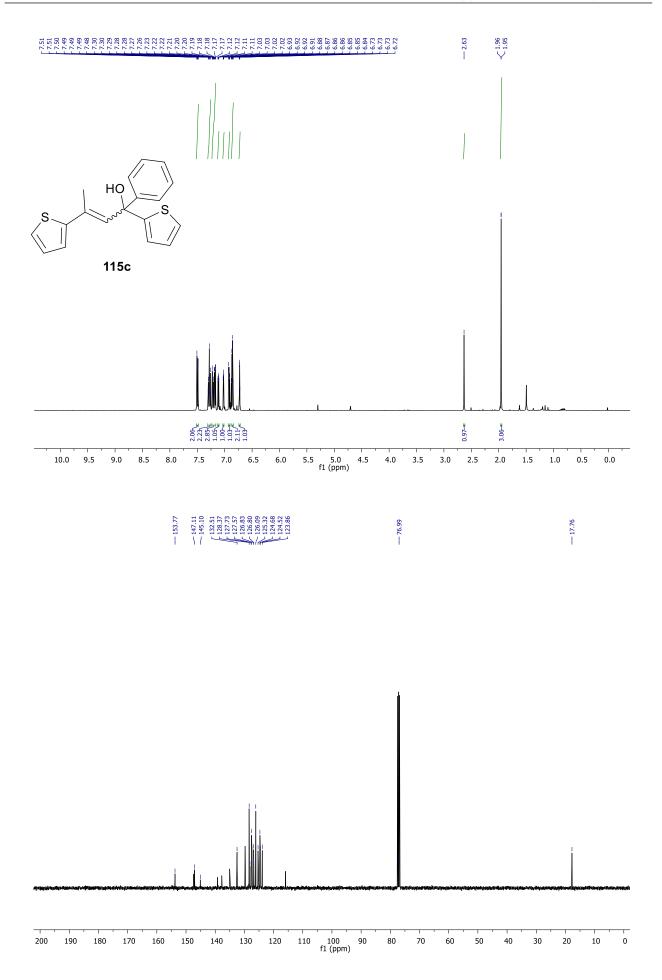

31

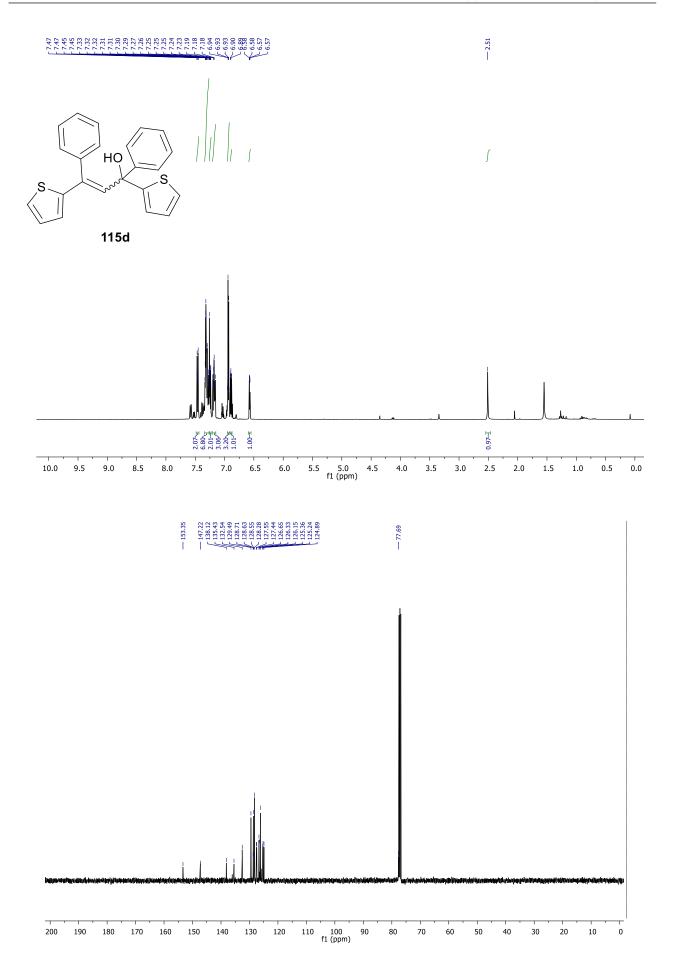


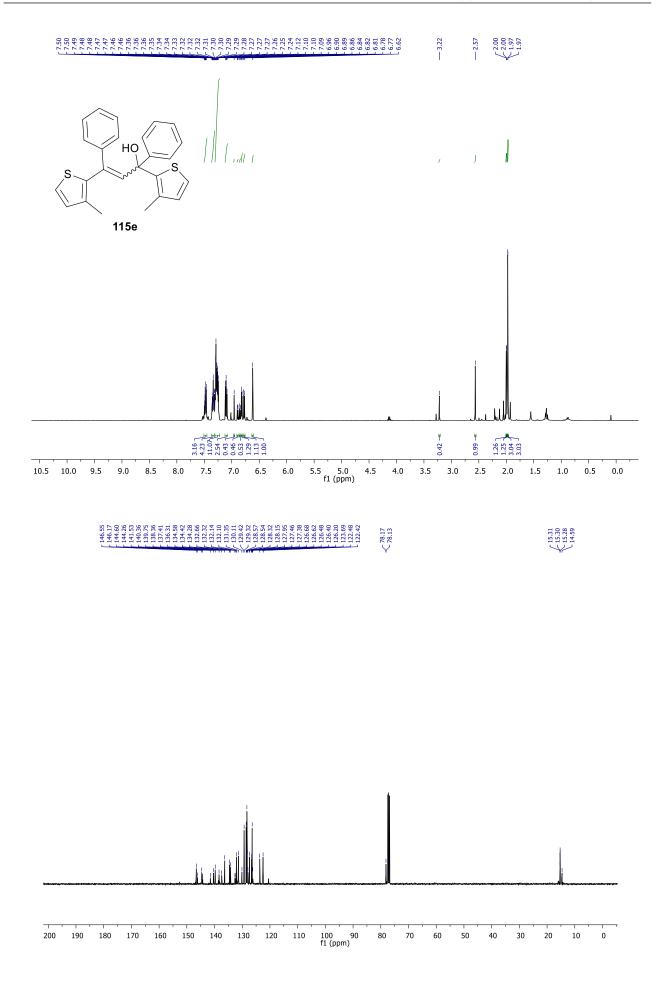




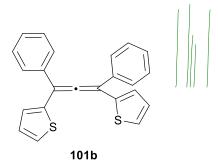




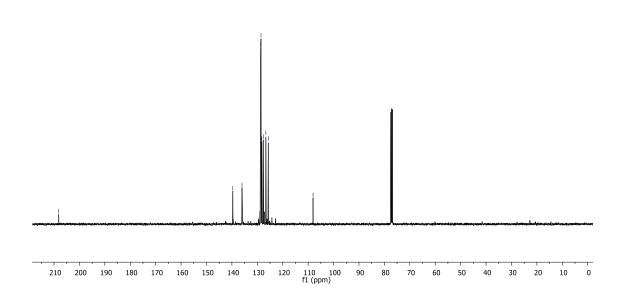


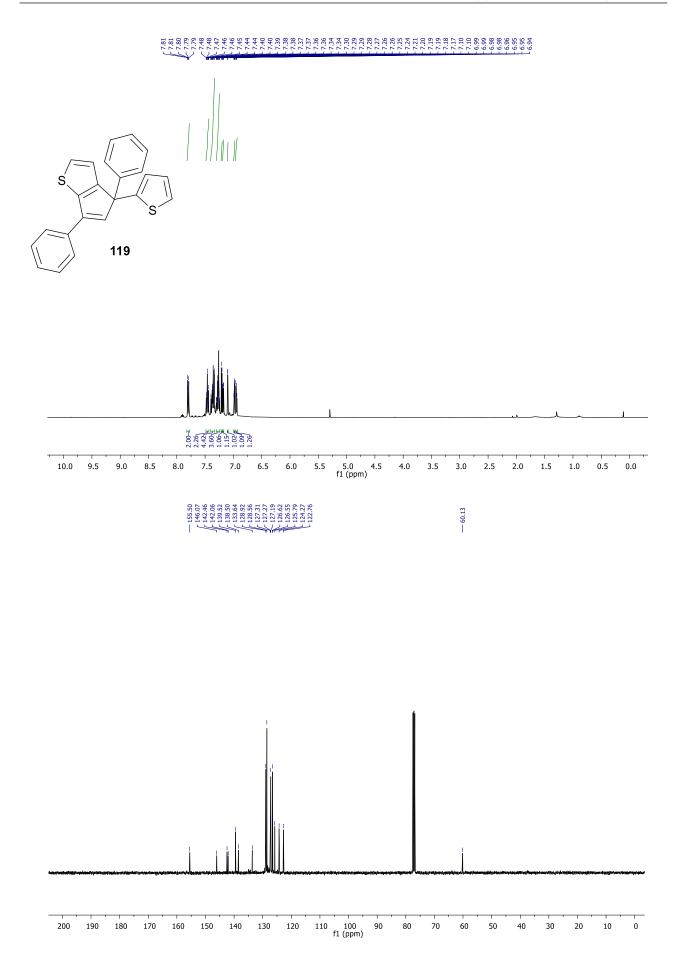


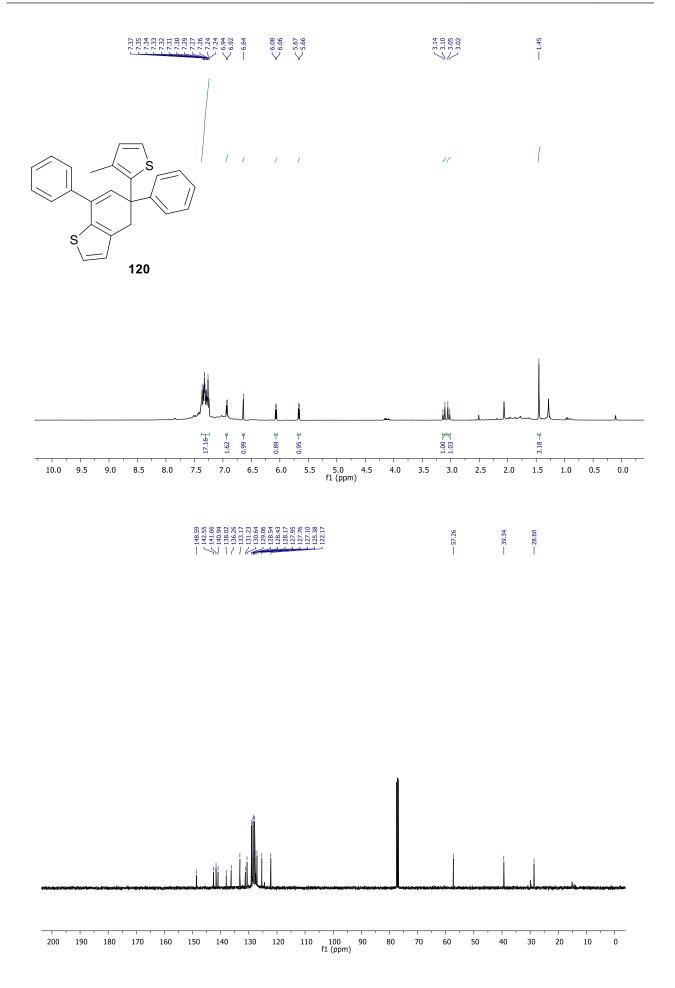
110 100 f1 (ppm)

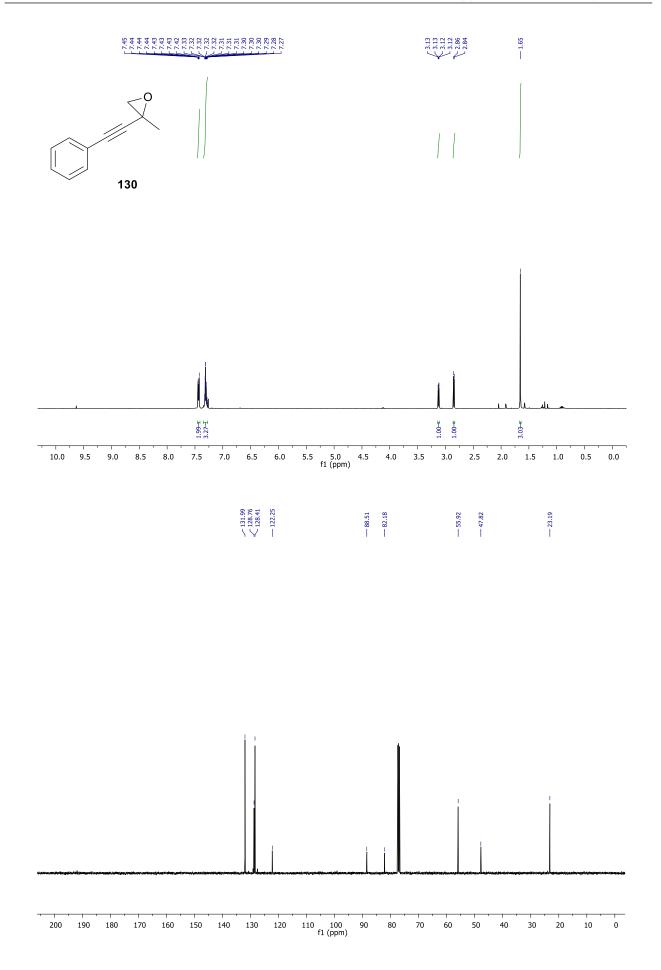


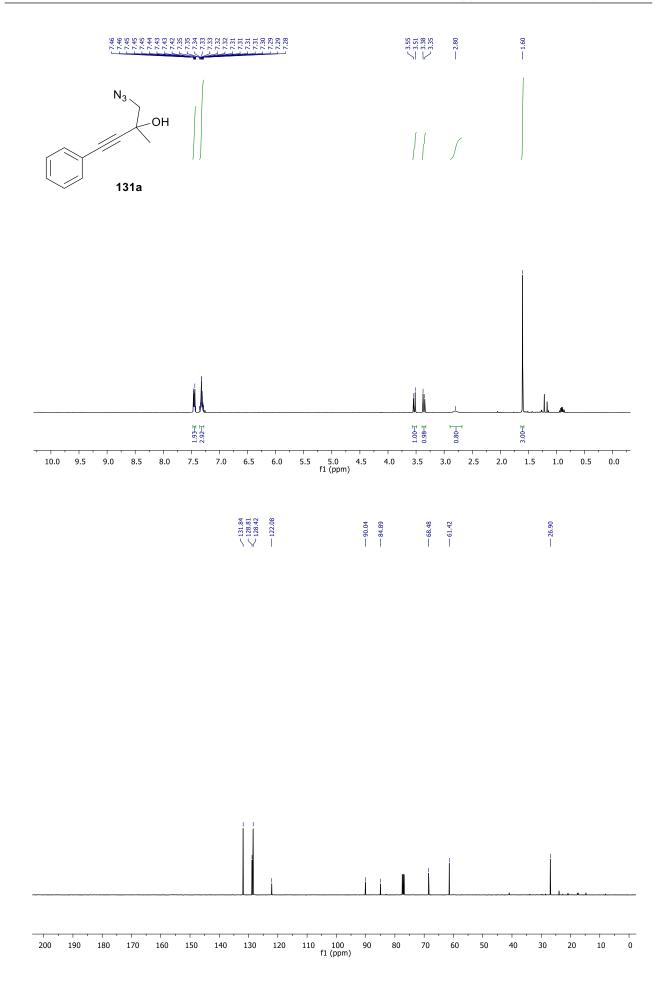


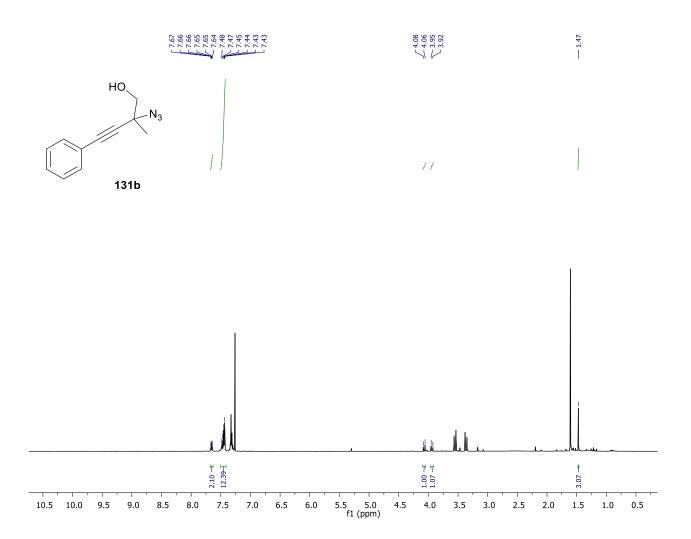


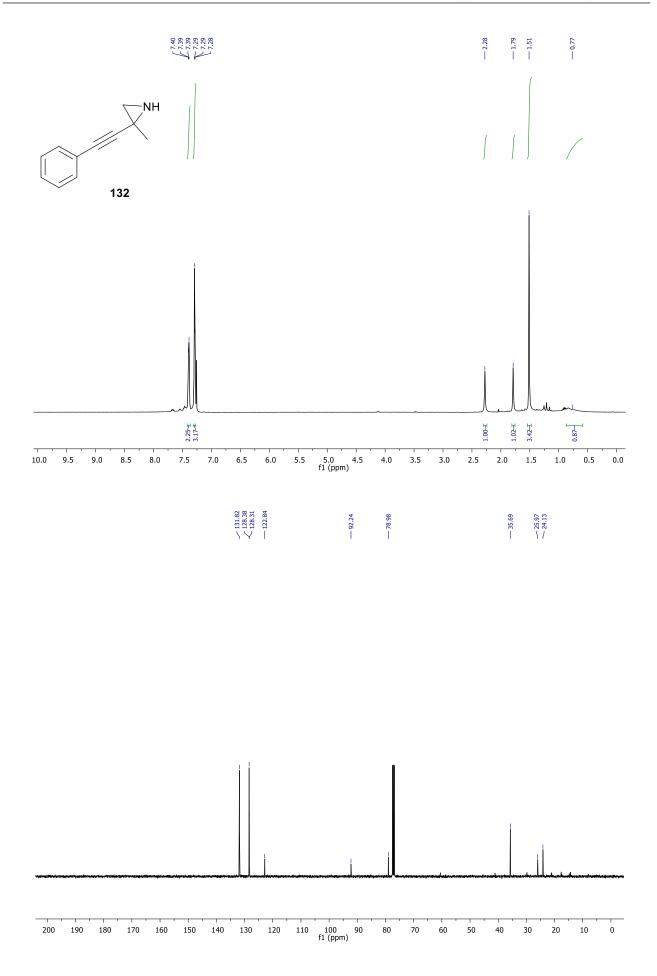


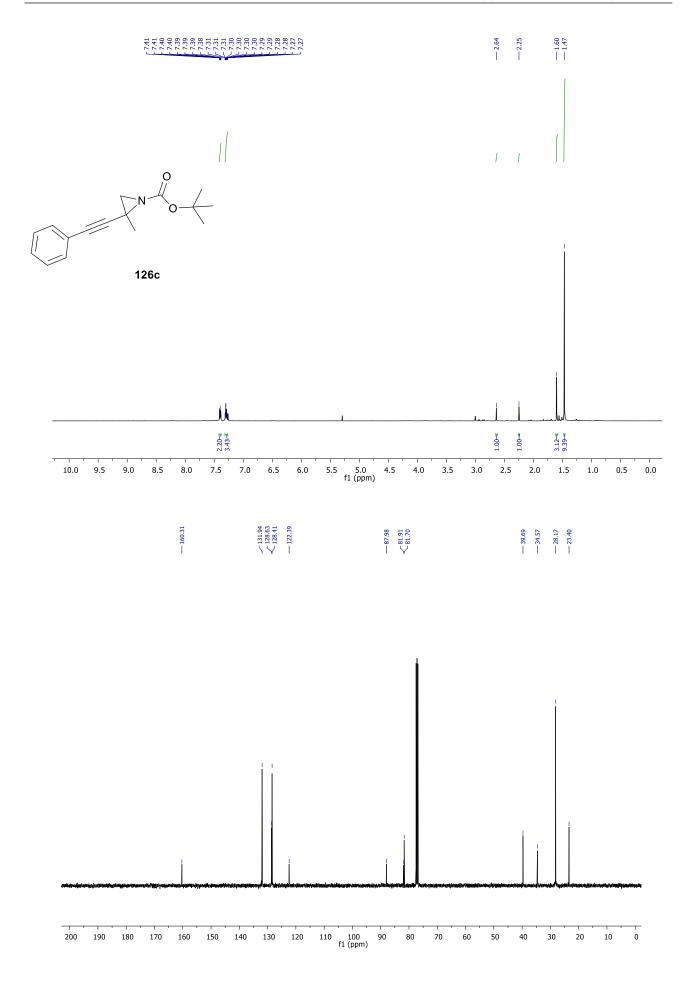

7,561 7,561 7,560 7,560 7,560 7,560 7,560 7,560 7,560 7,570

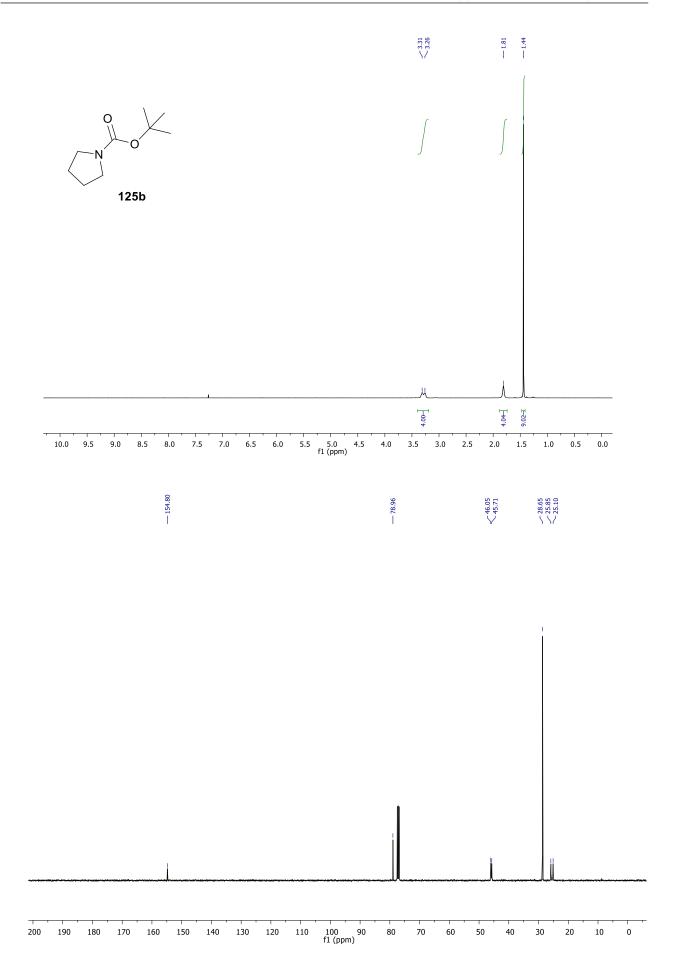


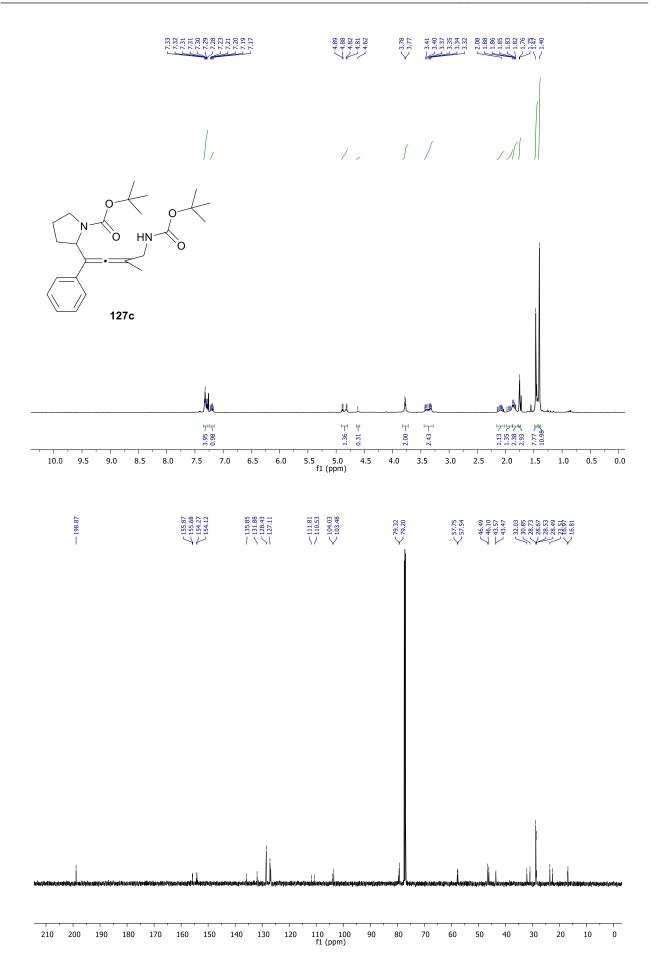


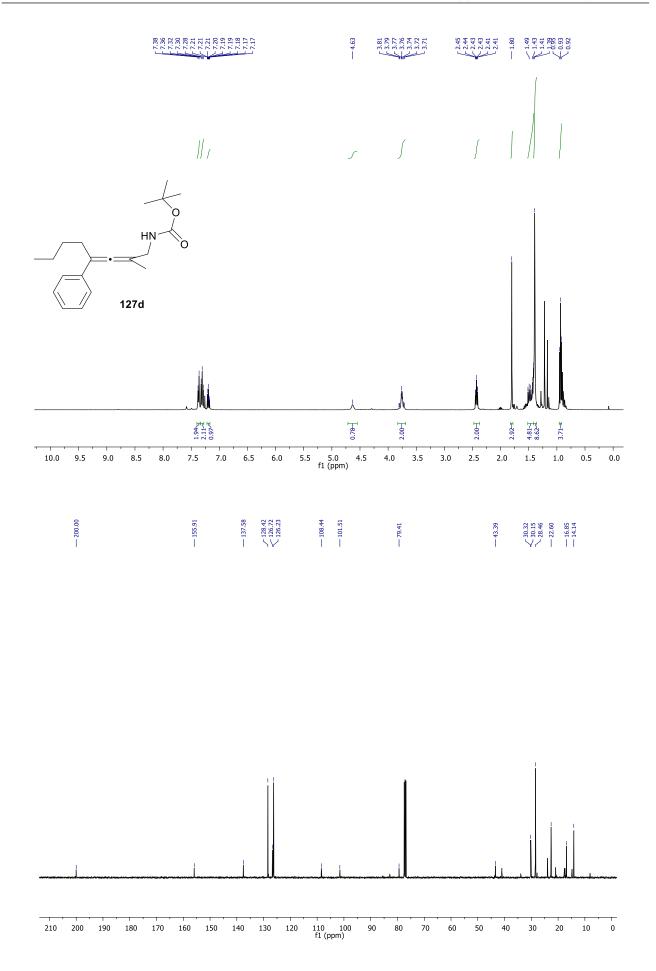


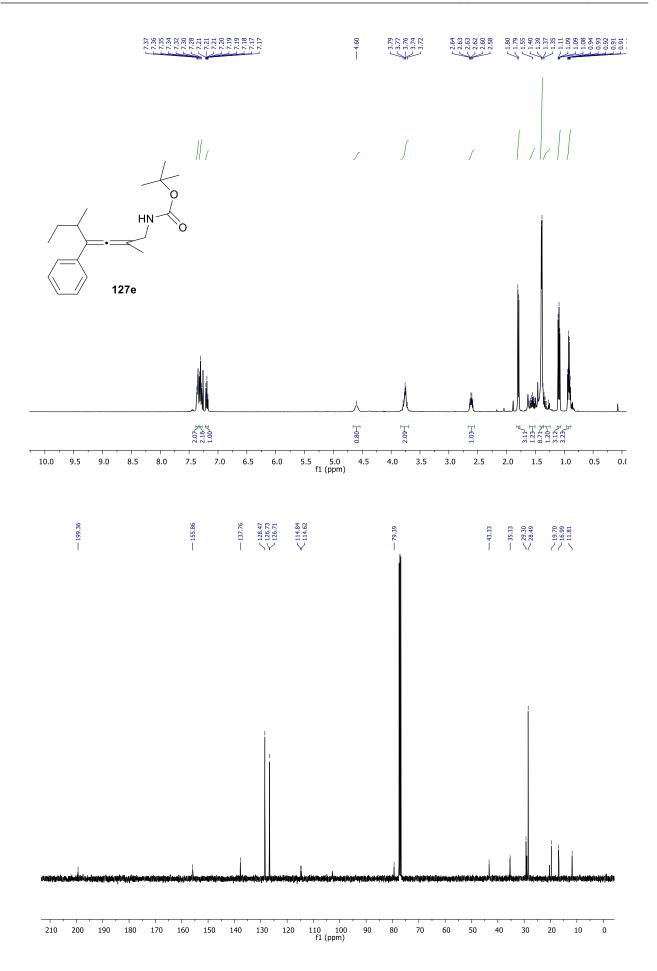


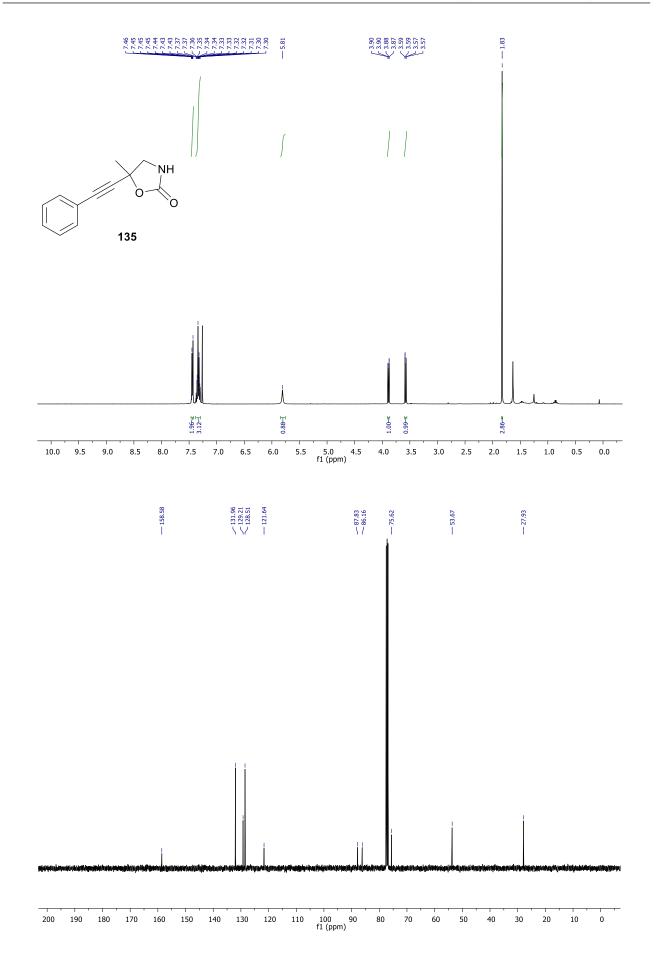


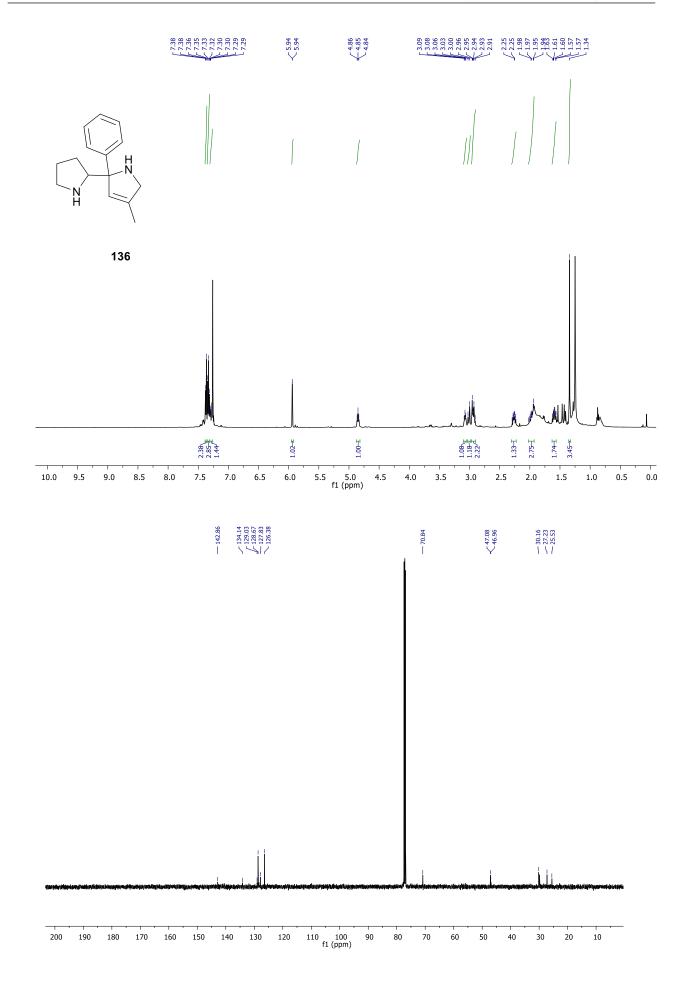


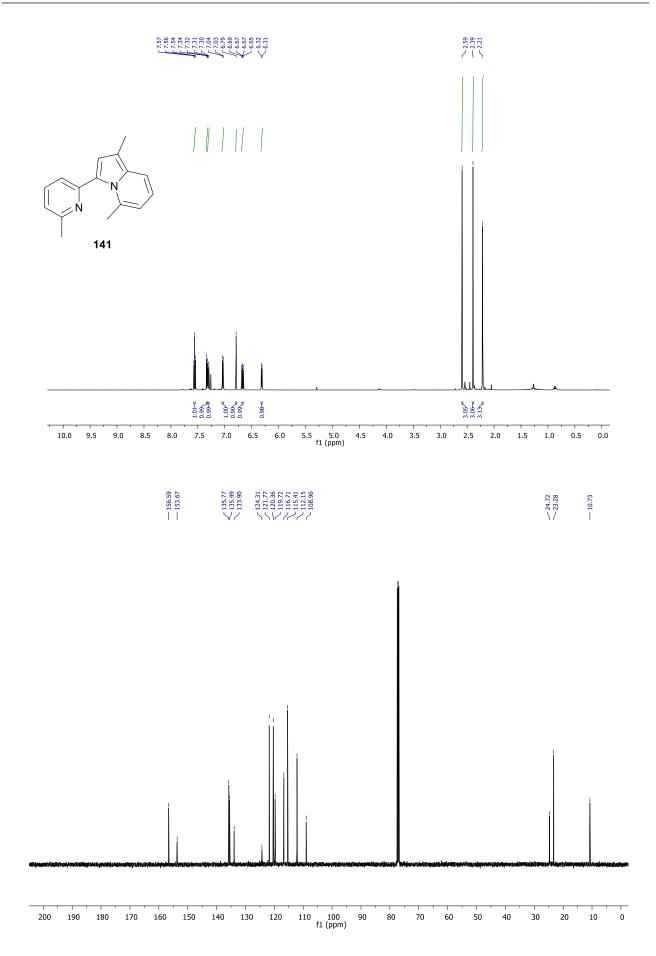


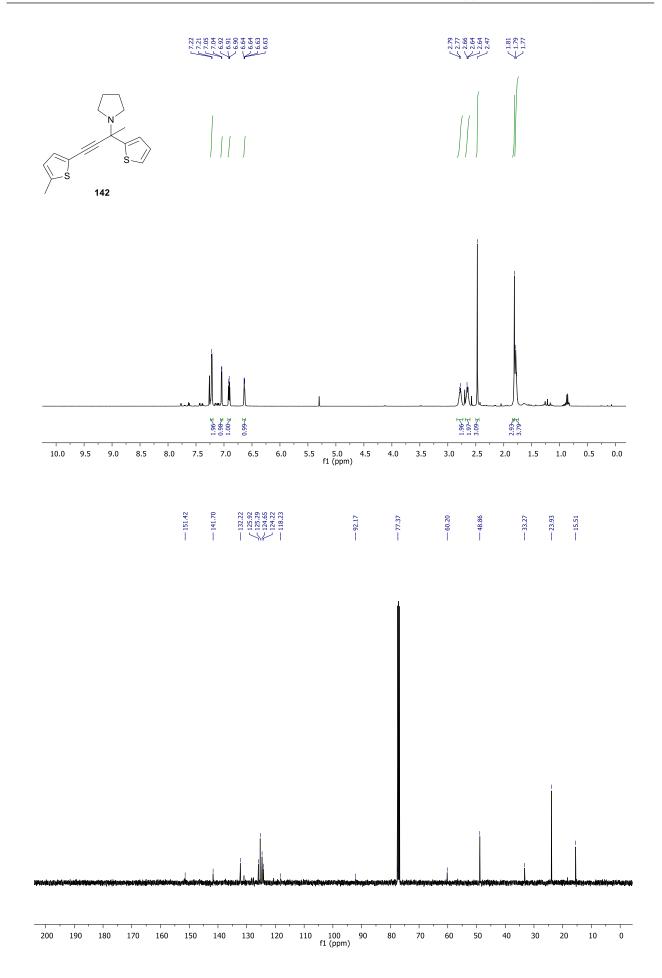


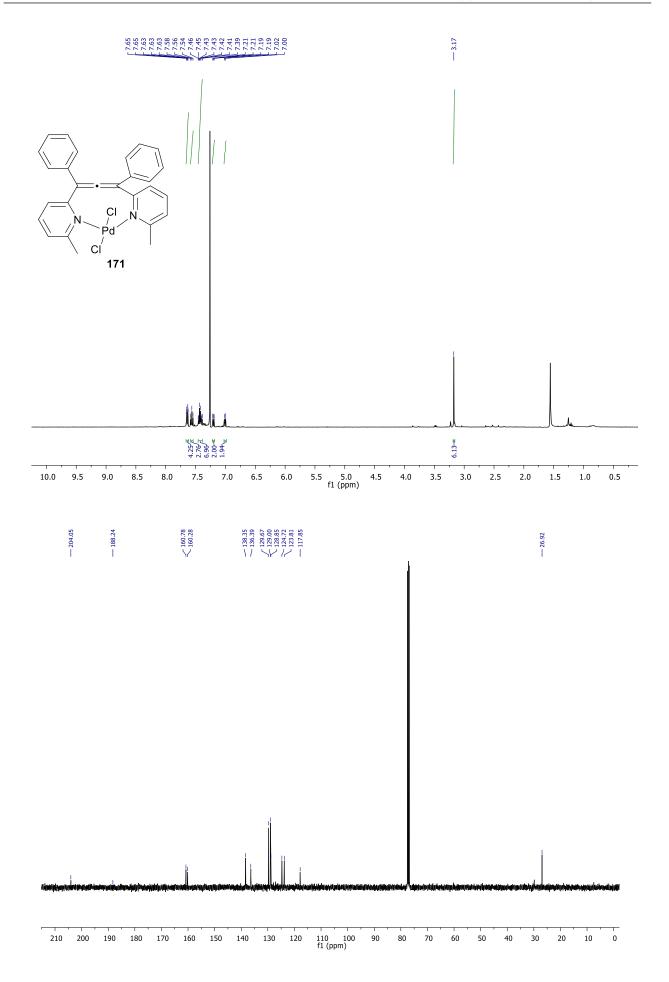


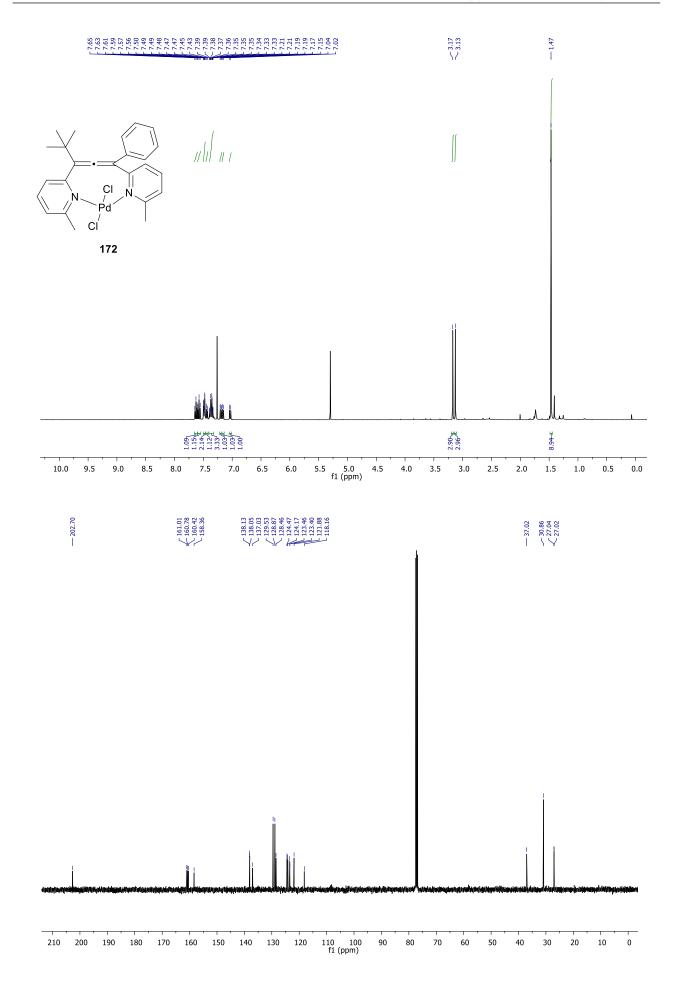


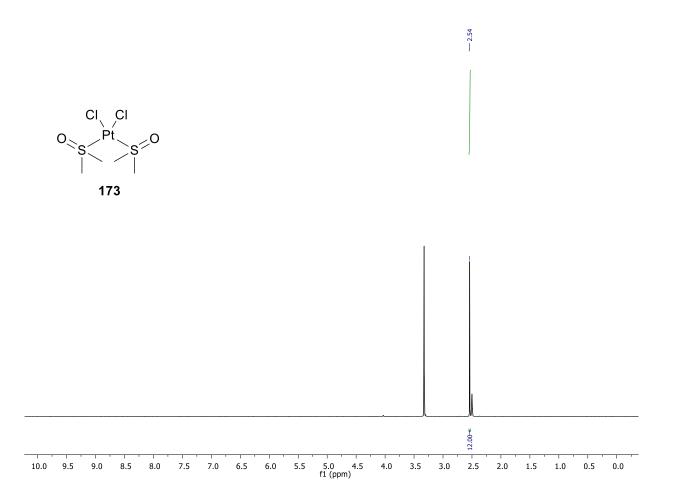


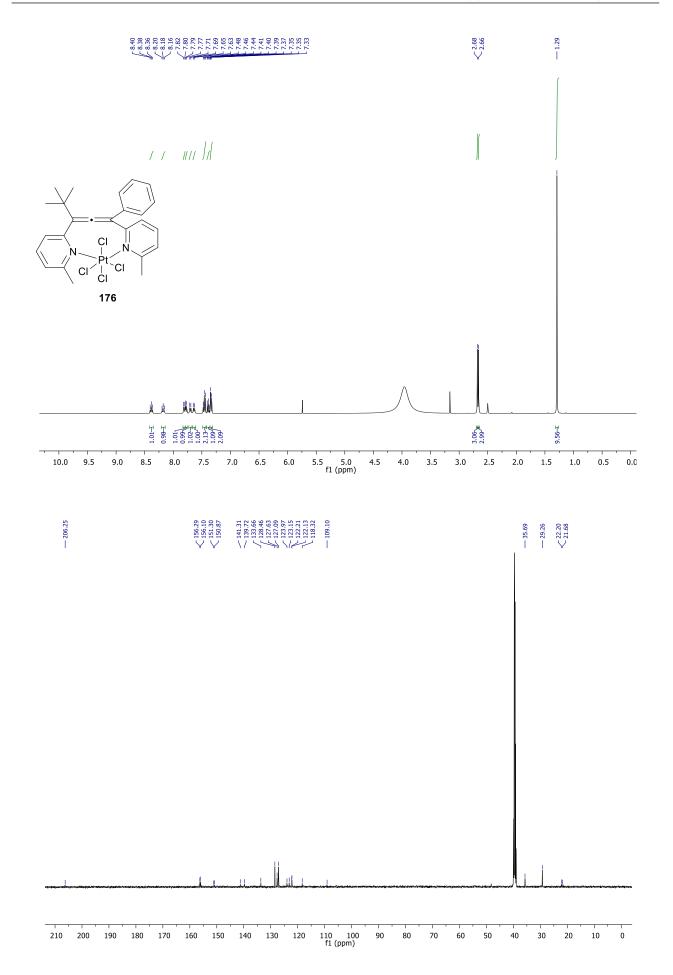


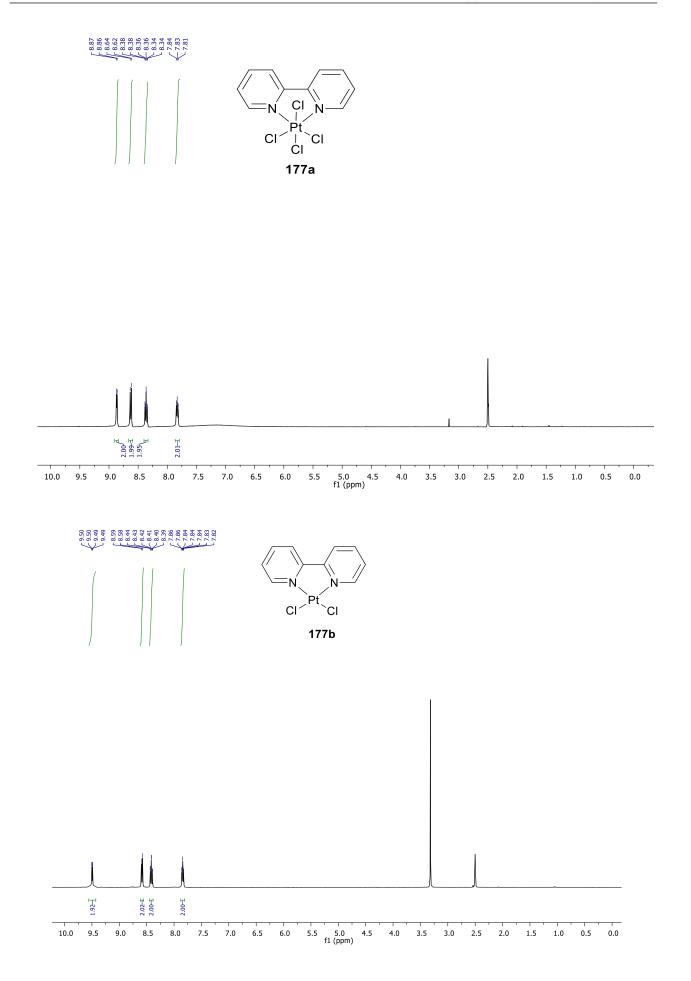


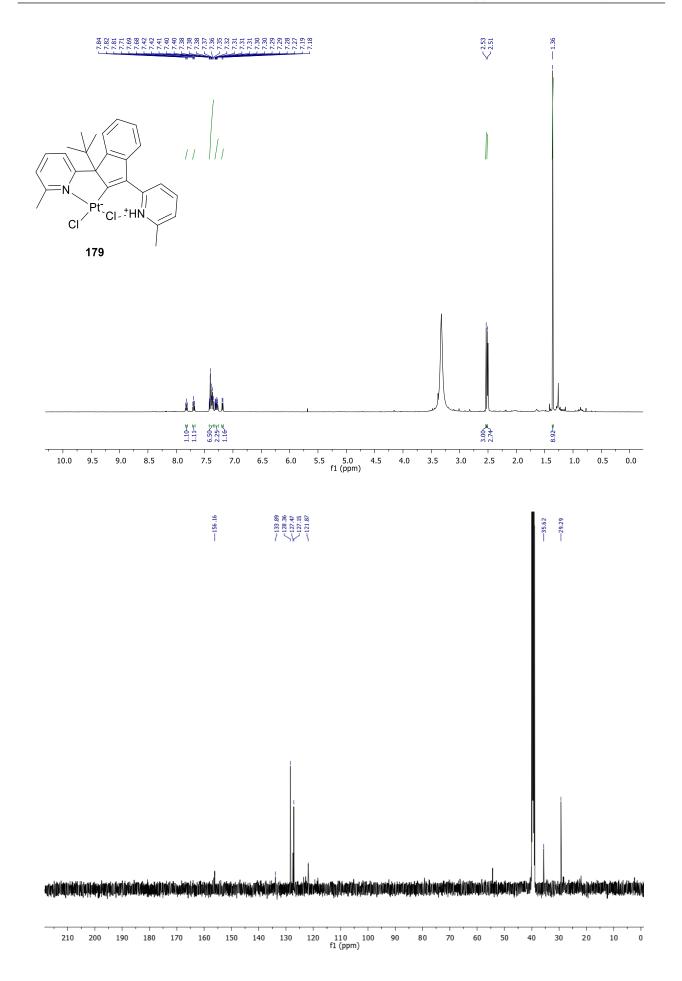


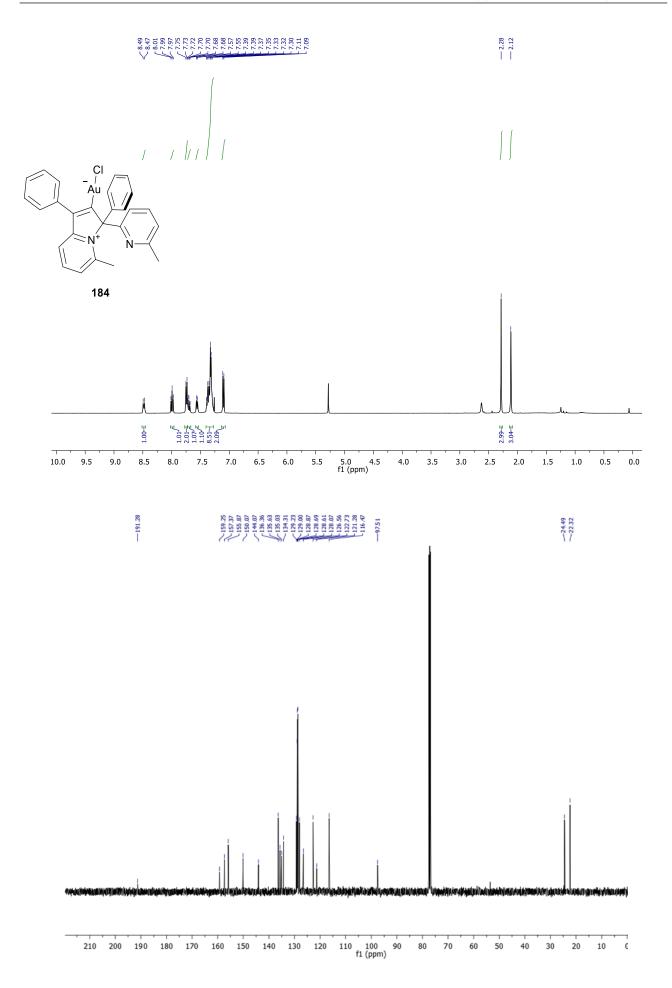


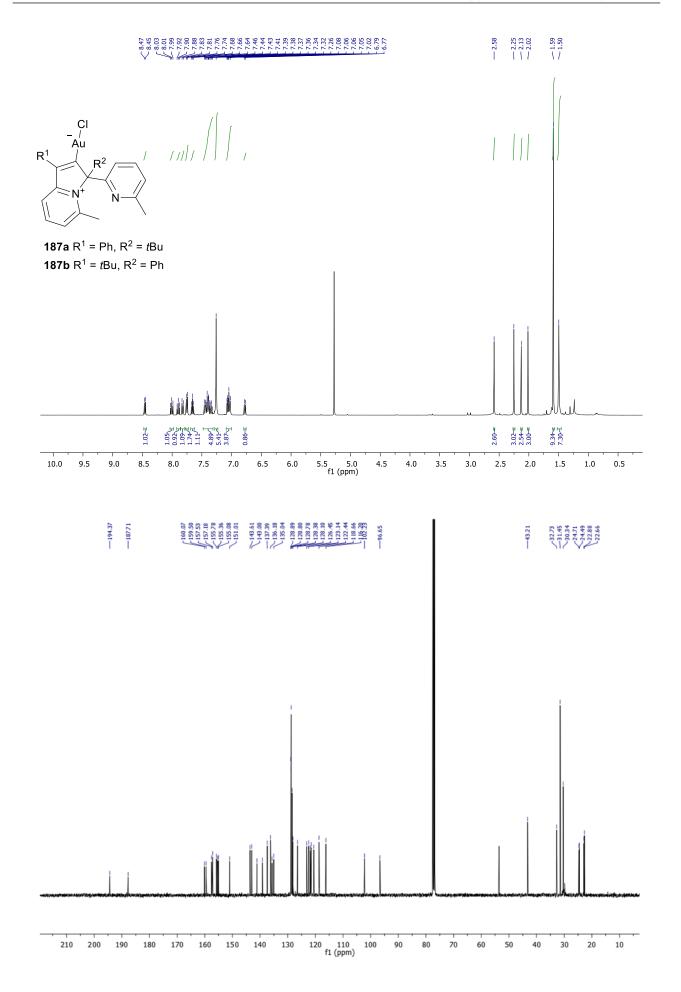


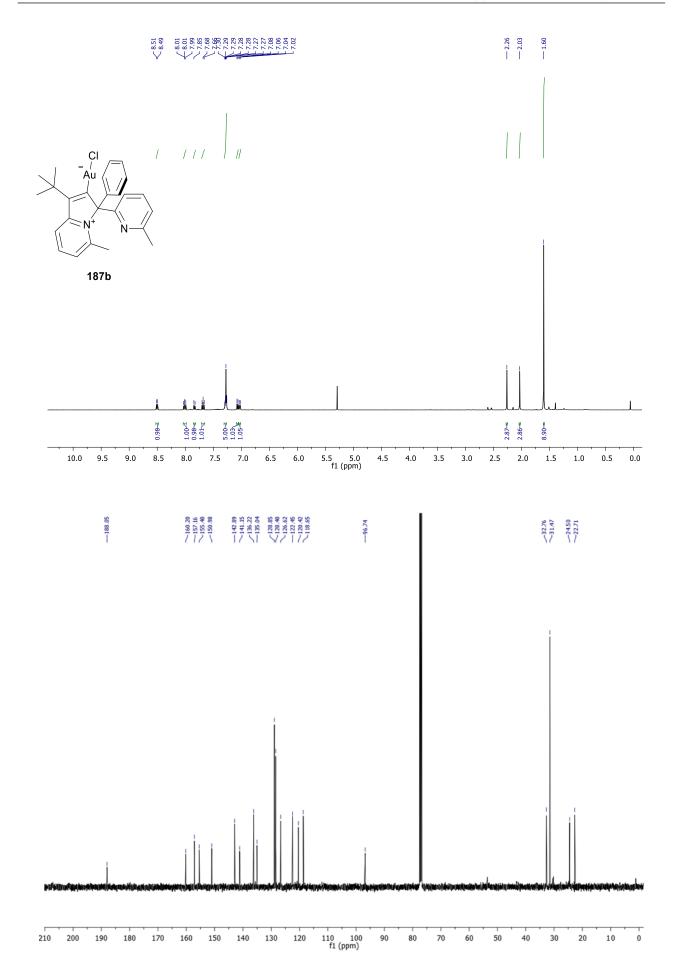


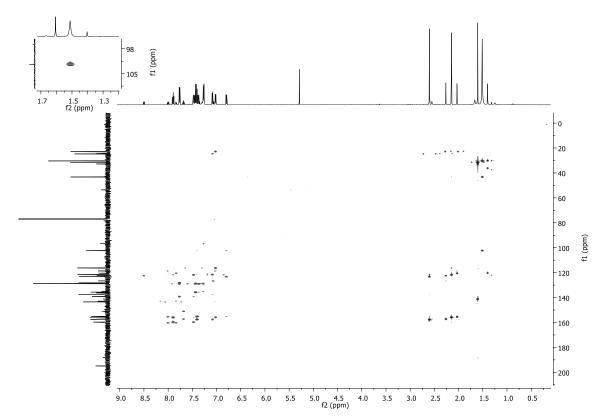


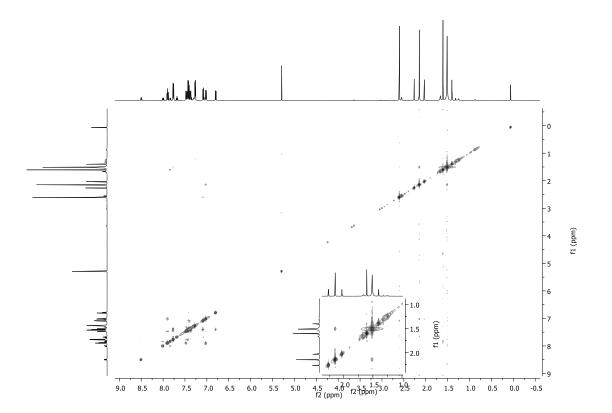


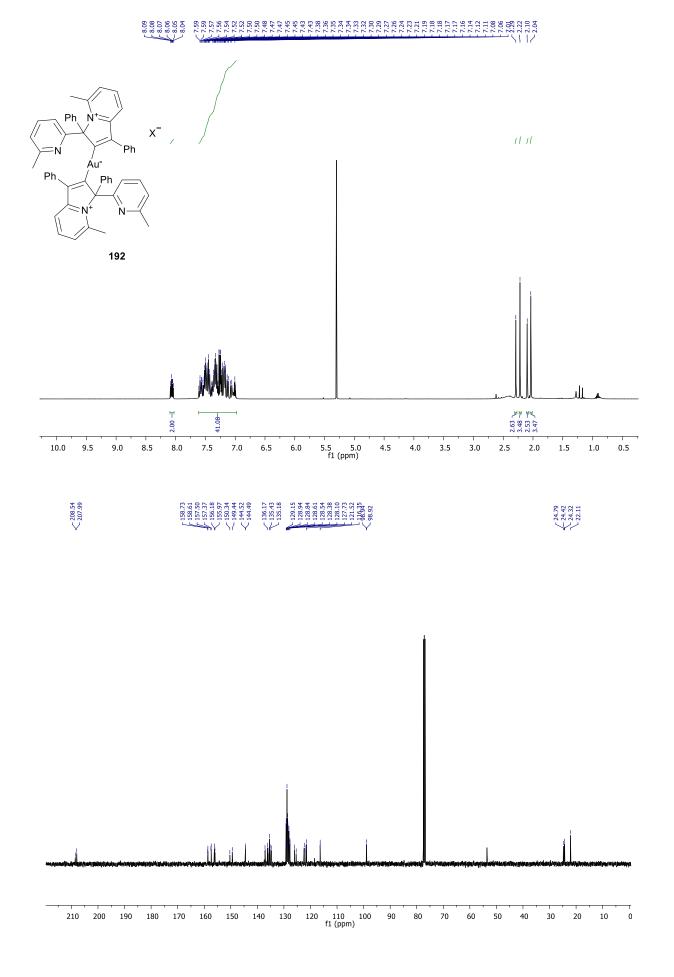


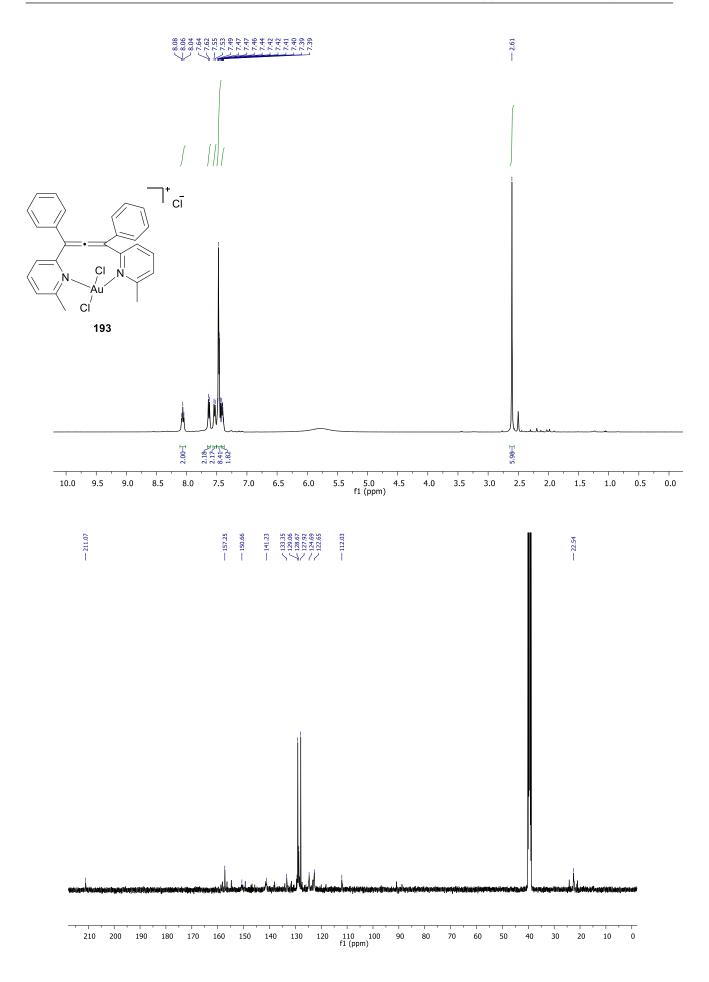


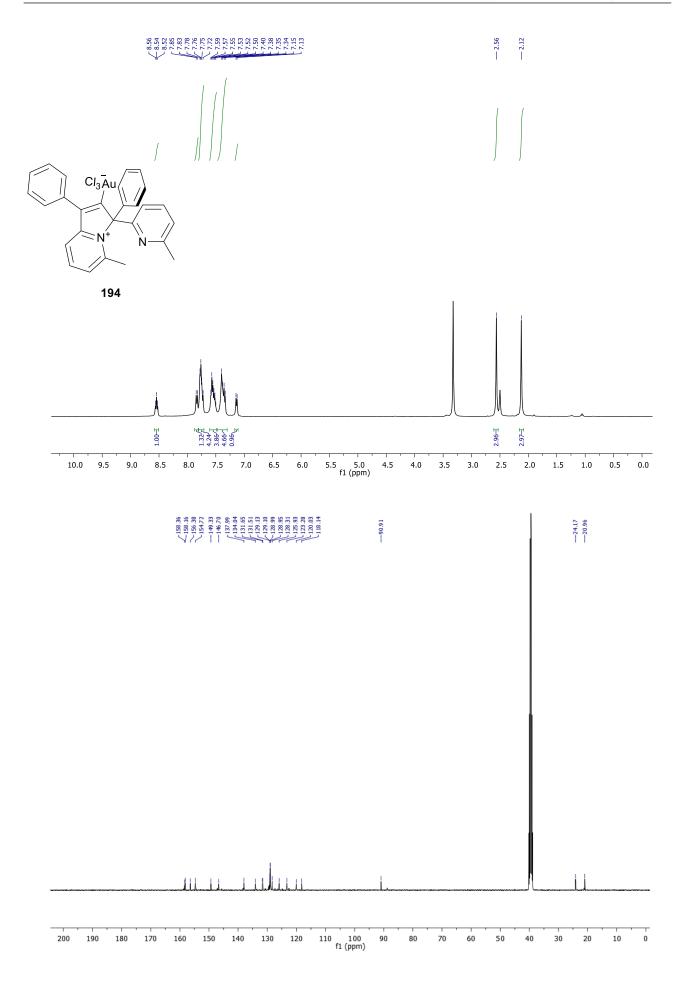


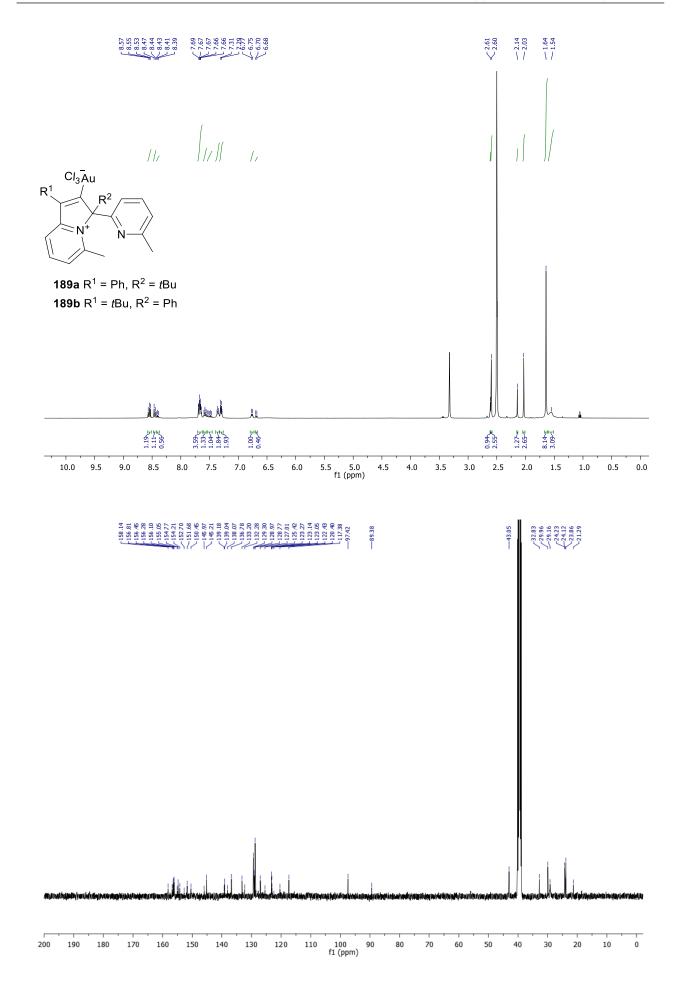


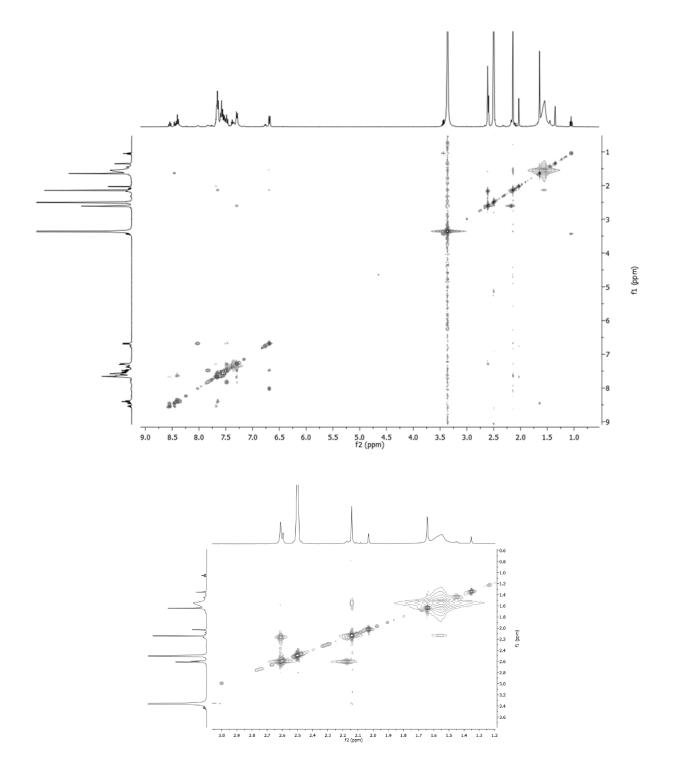


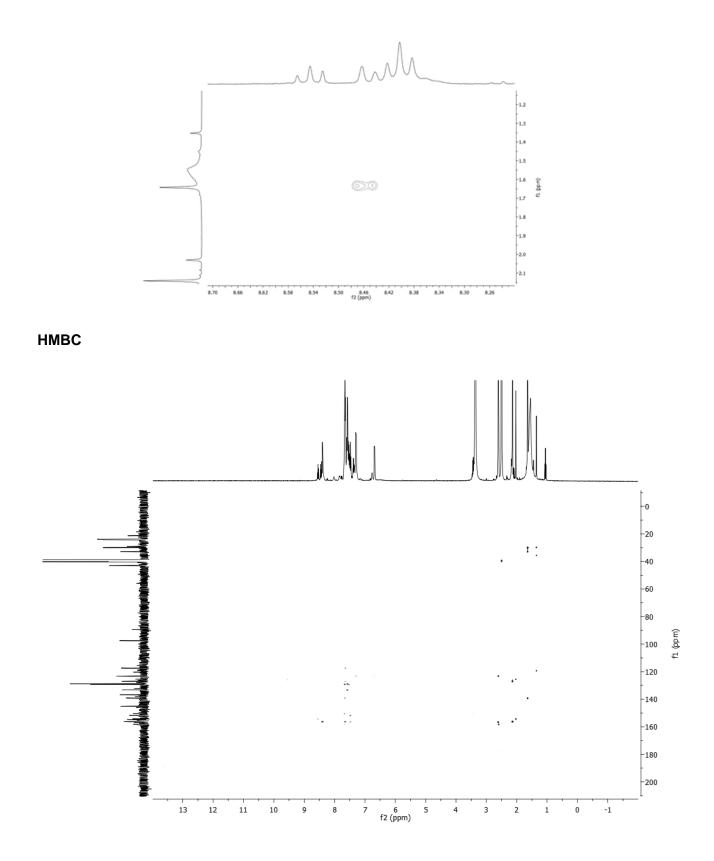


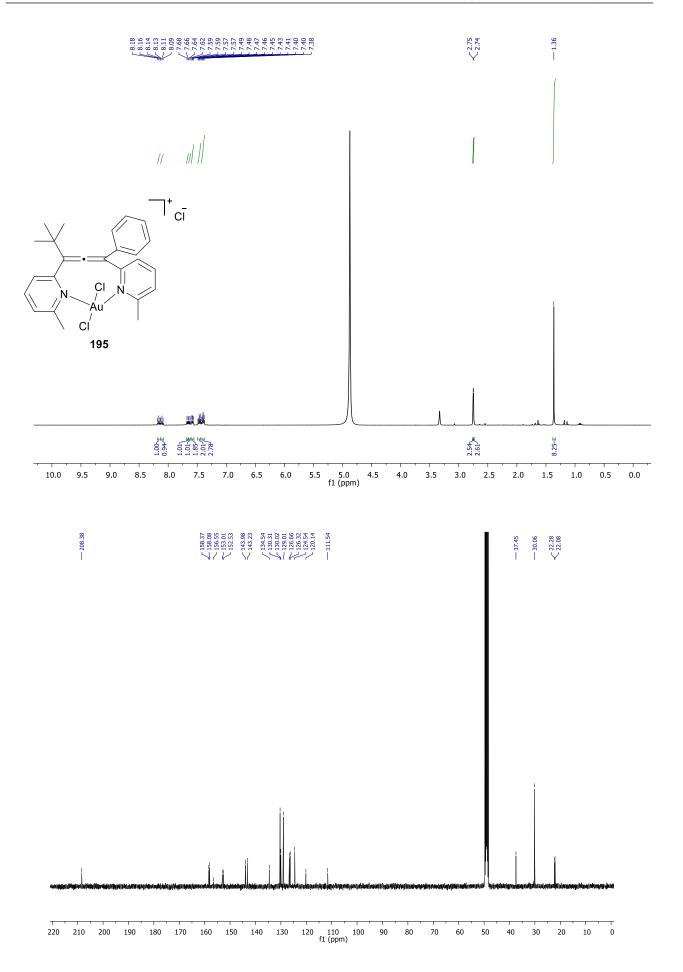

2D NMRs of 187 at 1:0.3 187a:187b HMBC

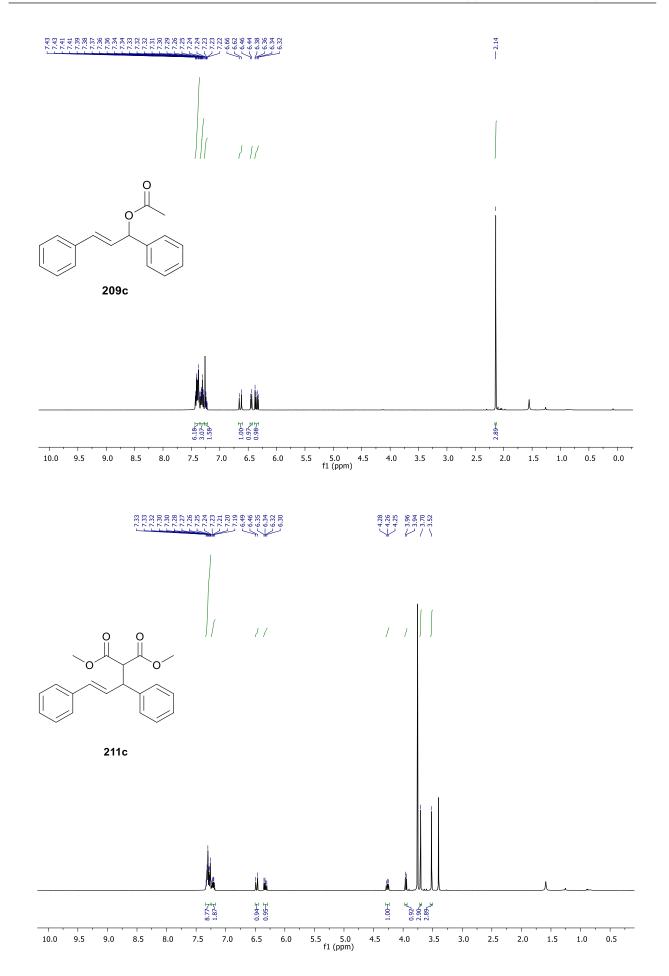


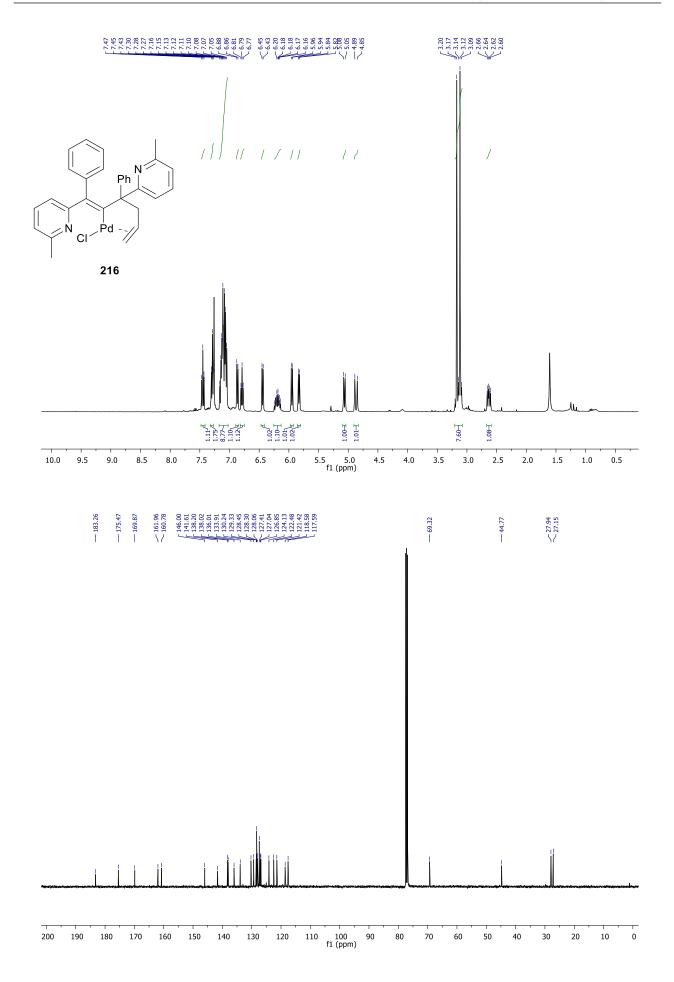

NOESY



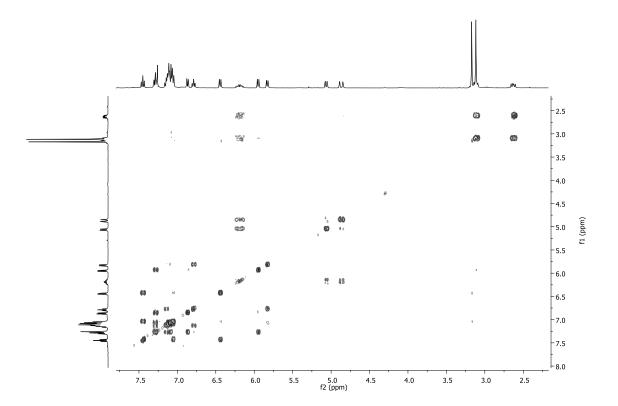


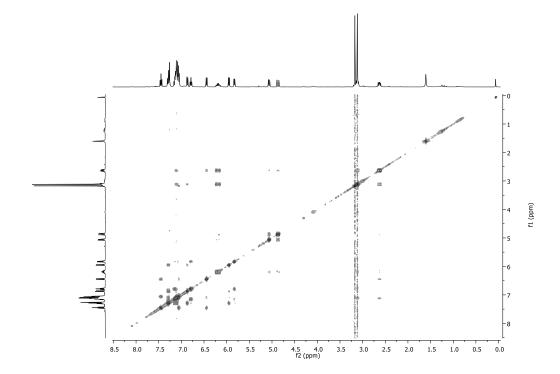

2D NMRs of 189 at 1:0.4 ratio of 189a:189b


NOESY

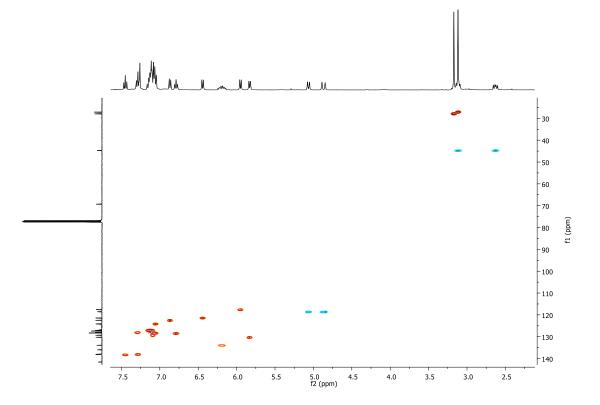


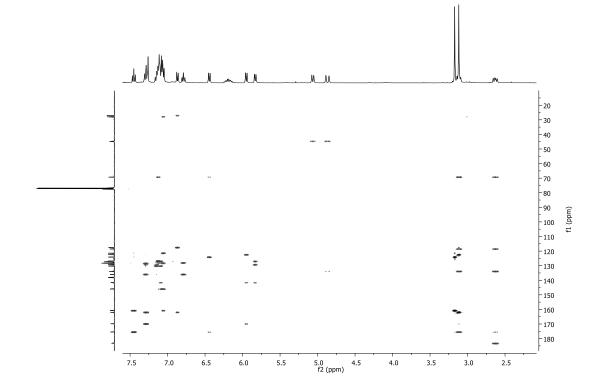
76

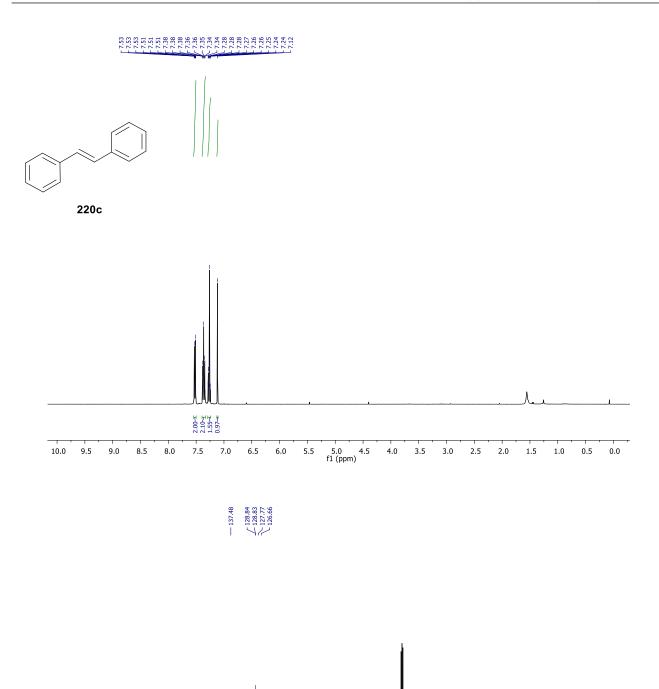




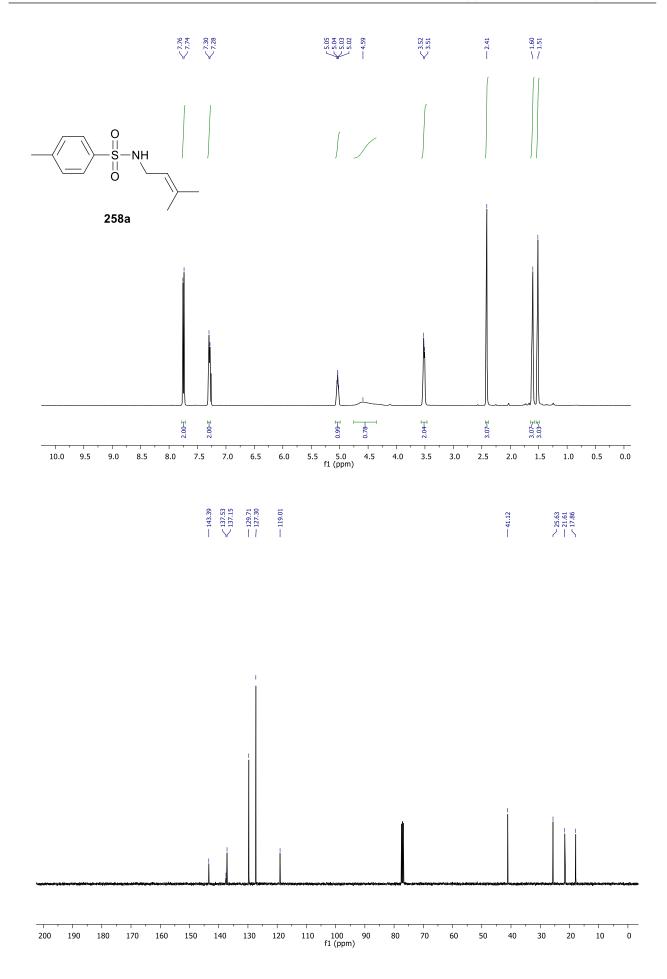
2D NMR of 216

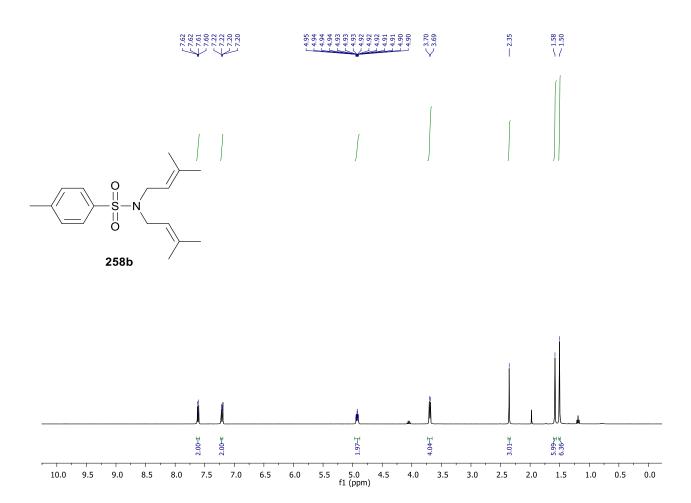

COSY

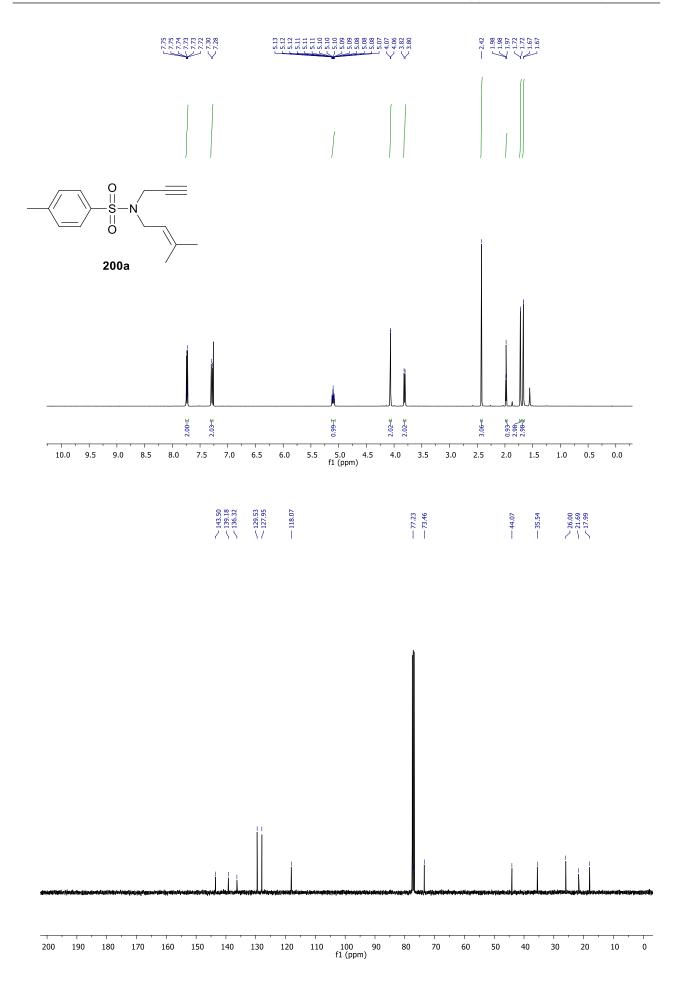

NOESY

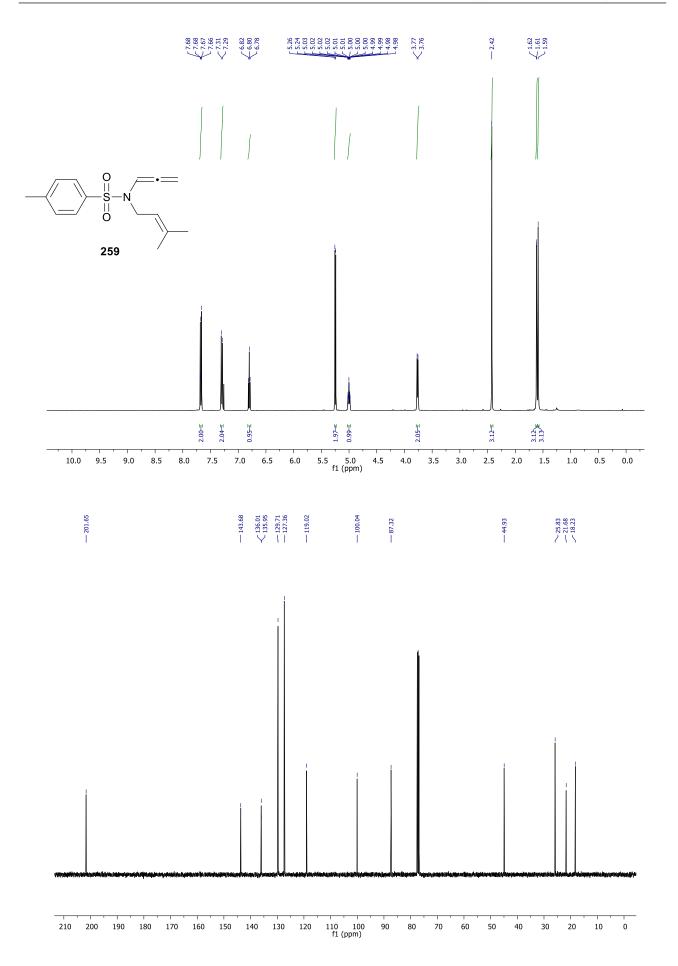


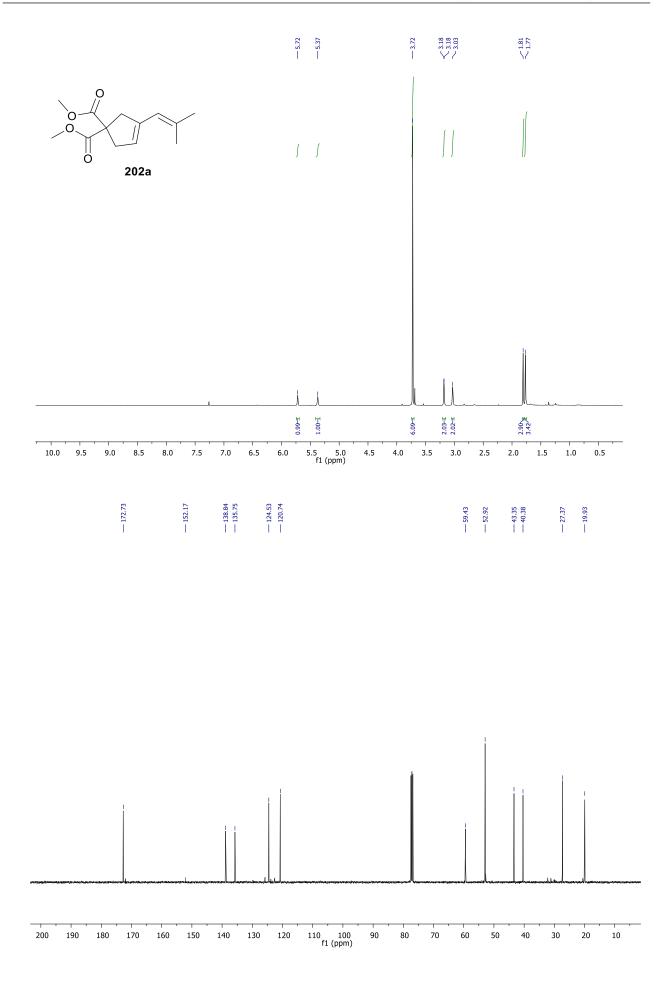
HSQC

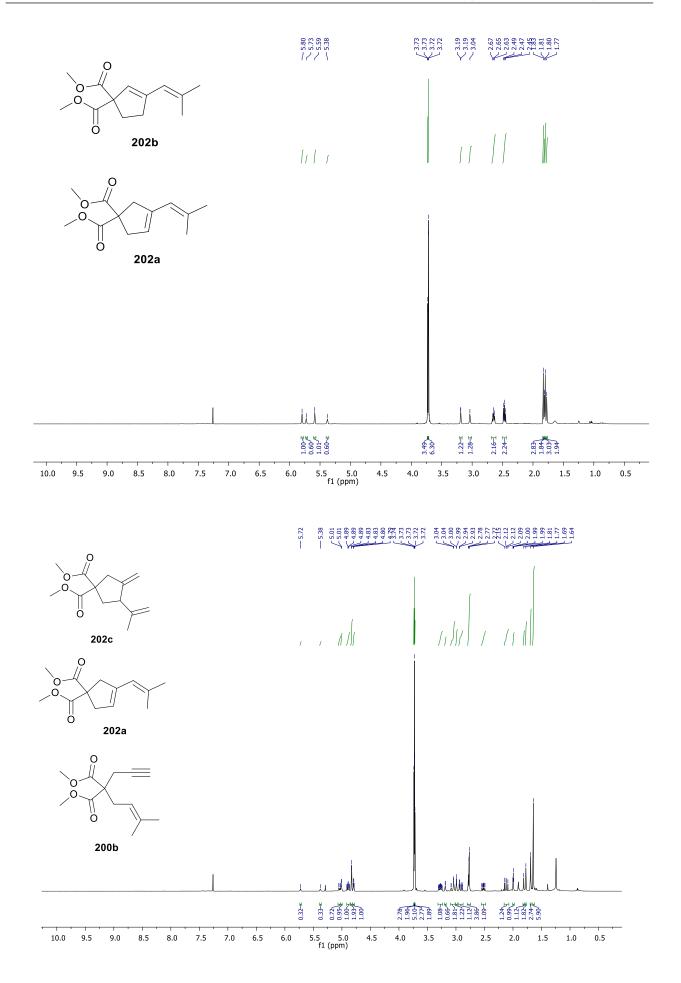

нмвс

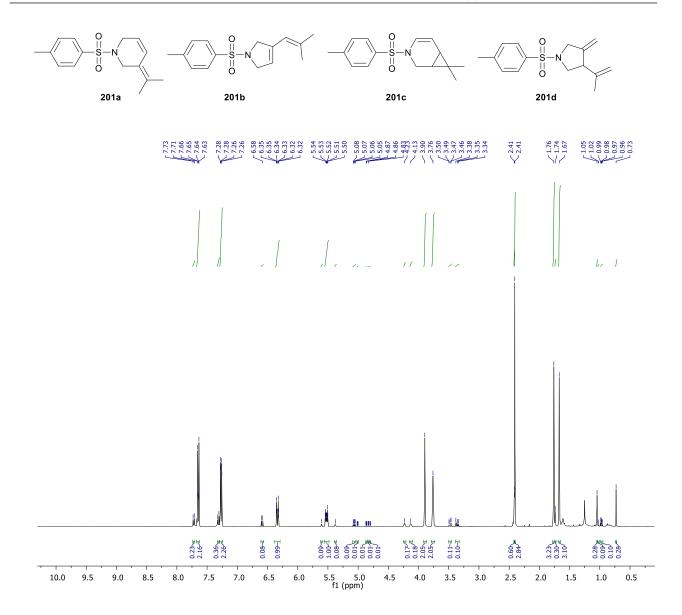


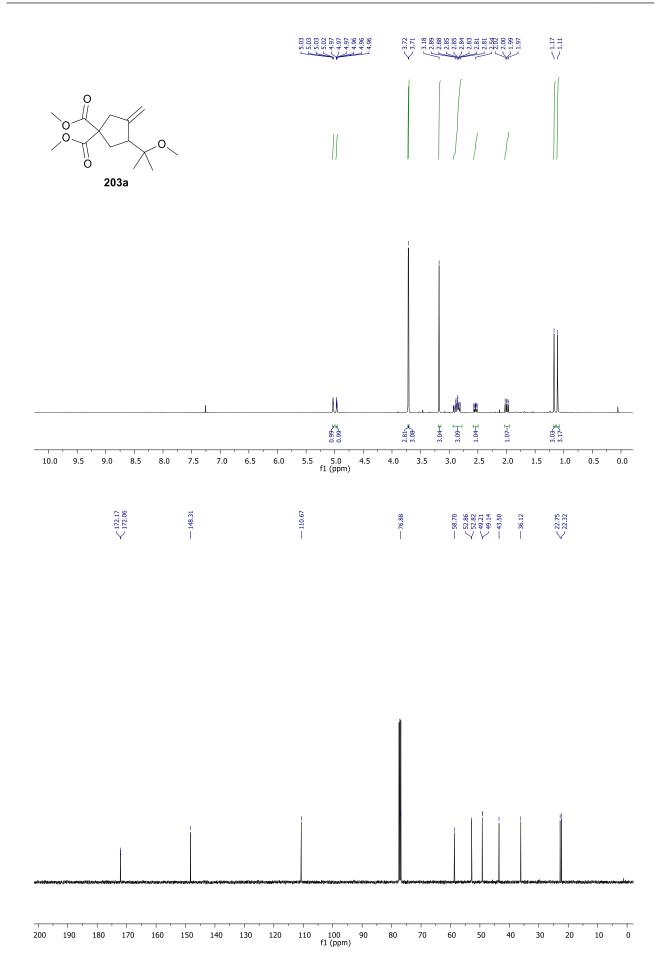


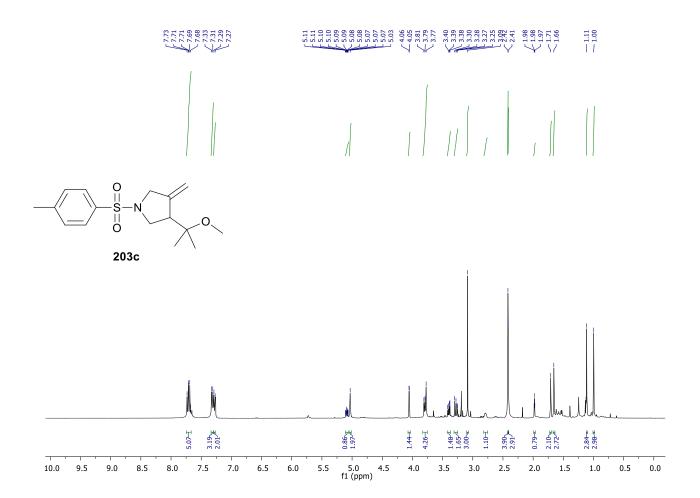

100 90 f1 (ppm)

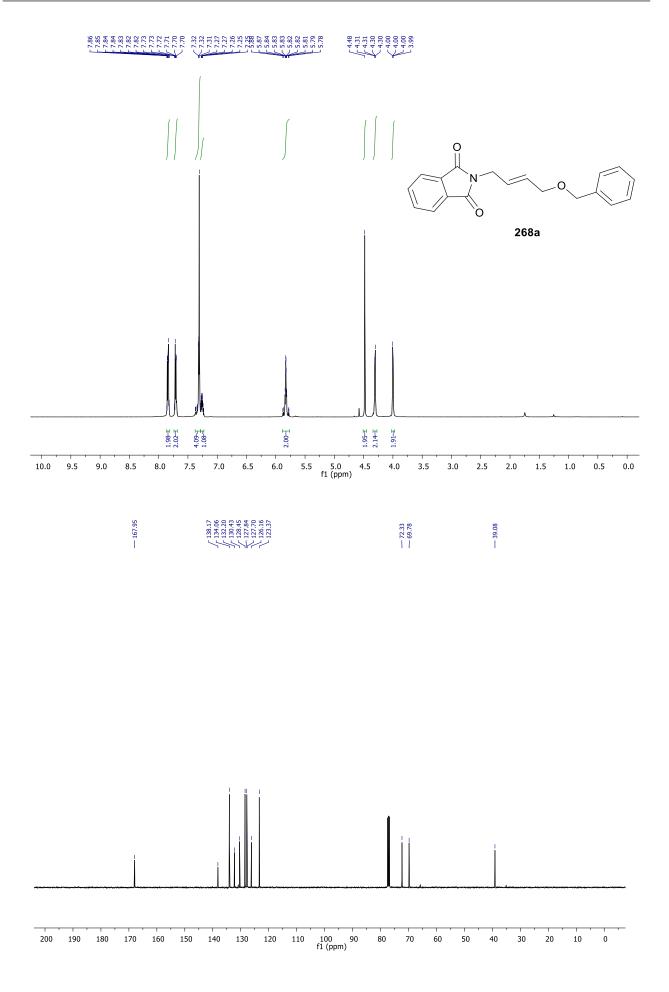


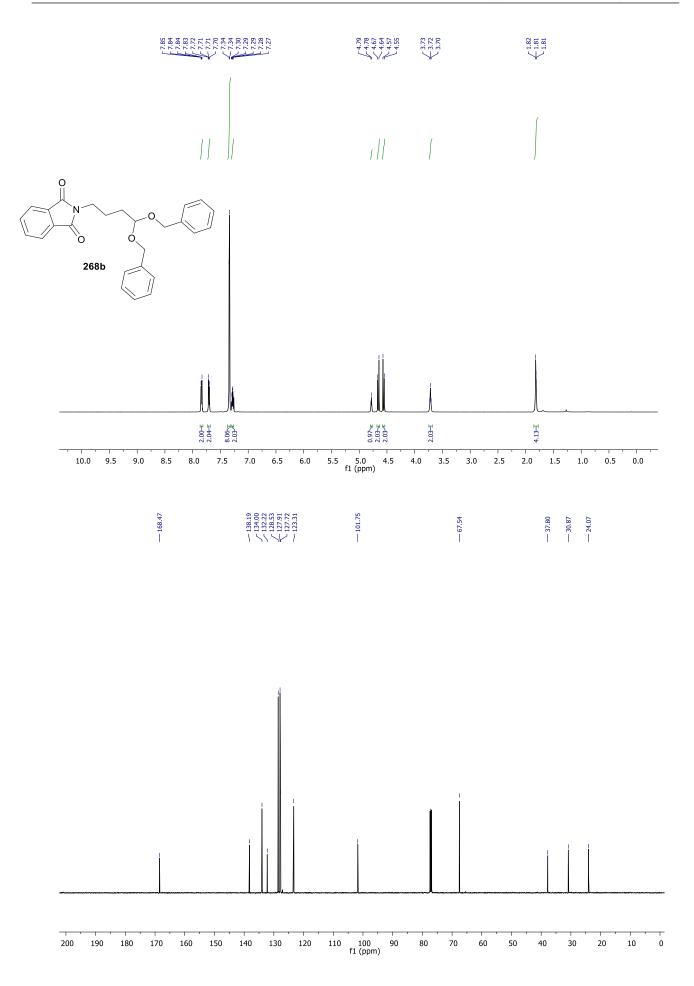


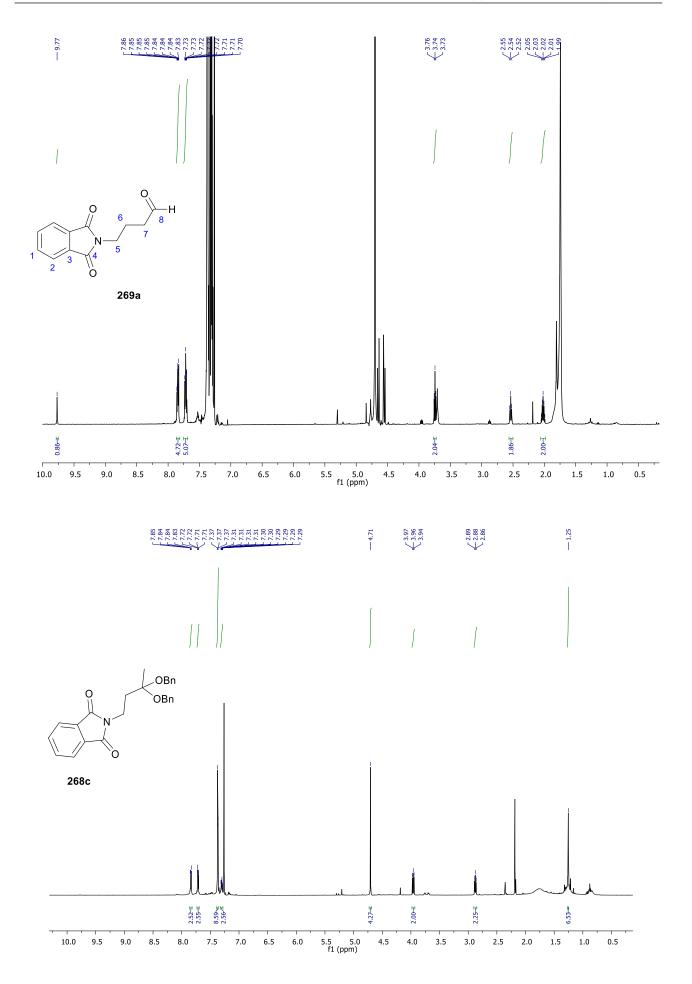


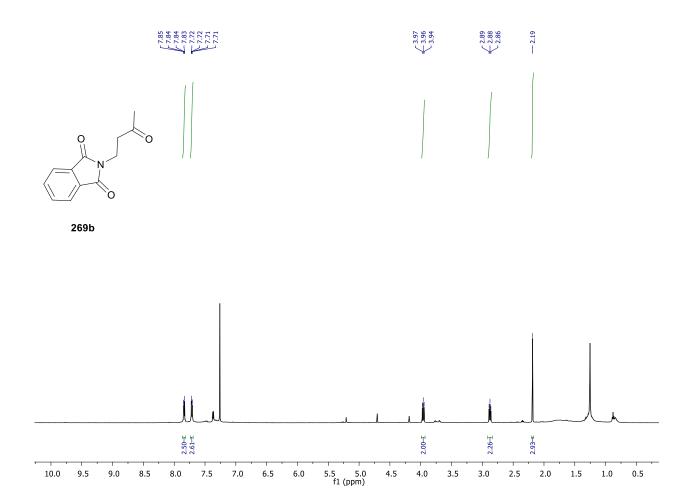












Appendix C – X-ray data

Data for complexes **179**, **184**, **187b**, **194** and **189b** can be found at: <u>https://doi.org/10.1039/D0DT00665C</u>.

 Table 1 Summary of X-ray data.

	Complex 184	Complex 194	Complex 179	Complex 189b	
Elemental formula	C ₂₇ H ₂₂ AuClN ₂	C ₂₇ H ₂₂ AuCl ₃ N ₂ , Dichloromethan e C ₂₅ H ₂₆ Cl ₂ N ₂ Pt, CHCl ₃		C ₂₅ H ₂₆ AuCl ₃ N ₂	
Formula weight	606.88	762.71	739.83	657.79	
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic	
Space group	P 21/n (equiv. to no. 14)	P 21/c (no. 14)	P -1 (no. 2)	P 21/n (equiv. to no. 14)	
Unit cell dimensions: a = (Å)	13.6080(2)	10.7752(2)	9.3270(3)	9.46335(14)	
b =	12.09078(15)	14.9805(3)	11.8674(5)	19.7083(2)	
c =	14.8143(2)	17.3390(3)	12.9754(4)	14.0613(2)	
α = (°)	90	90	105.467(3	90	
β =	110.984(2)	96.371(2)	91.480(3)	108.2848(15)	
γ =	90	90	102.873(3)	90	
Volume (ų)	2275.77(6)	2781.54(9)	1343.84(9)	2490.10(6)	
Z, Calculated density (Mg/m ³)	4, 1.771	4, 1.821 2, 1.828		4, 1.755	
F(000)	1176	1480	720	1280	
Absorption coefficient (mm ⁻¹)	6.598	5.790	5.737	6.245	

Temperatur e (K)	100.01(10) K	140(1)	140(1)	100.01(10)		
Crystal colour, shape	colourless plate	pale yellow plate	pale yellow prism	yellow plate		
Crystal size (mm)	0.07 x 0.10 x 0.16	0.56 x 0.32 x 0.09 0.110		0.16 x 0.11 x 0.026		
		On the diffractom	eter:			
Theta range for data collection 2.237 to 29.995 3.594 to 29.999 3.575 to 29.999 1.842 to 30						
Limiting indices	-19<=h<=19, - 17<=k<=17, -20<=l<=20	-15<=h<=15, - 21<=k<=21, -24<=l<=24	-13<=h<=13, - 16<=k<=16, -18<=l<=18	-13<=h<=13, - 27<=k<=27, -19<=l<=19		
Completene ss to theta = 25.242 (%)	100.0	99.7	99.7	100.0		
	Absorption correction:					
	Se	mi-empirical from e	quivalents			
Max. and min. transmission	1.00000 and 0.45490	1.000 and 0.236	1.000 and 0.1190	1.00000 and 0.39824		
Reflections collected (not including absences)	82534	53936	26150	93429		
No. of unique reflections, R(int) for equivalents	6634, 0.056	8091, 0.037	7821, 0.094	7264, 0.036		
No. of 'observed' reflections (I > 2σι)	6115	7083	7106	6792		
		Refinement:				
Data / restraints / parameters	6634 / 0 / 282	8091 / 0 / 327	7821/0/313	7264 / 0 / 282		

Goodness- of-fit on F ²	1.106	1.046	1.065	1.053
Final R indices ('obsd' data)	R ₁ = 0.025, wR ₂ = 0.056	R ₁ = 0.023, wR ₂ = 0.047	R1 = 0.054, wR ₂ = 0.134	R1 = 0.018, wR ₂ = 0.041
Final R indices (all data)	R ₁ = 0.030, wR ₂ = 0.057	R ₁ = 0.031, wR ₂ = 0.048	R1 = 0.059, wR ₂ = 0.141	R1 = 0.021, wR ₂ = 0.042
Reflections weighted: 1/w = *	σ²(Fo²)+(0.02 31P)²+4.323P	σ ² (Fo ²)+(0.0186P) ² +2.648P	σ²(Fo²)+(0.0835P)²+1.455P	σ ² (Fo ²)+(0.0191P) ² +3.303P
Largest diff. peak and hole (e.Å ⁻³)	1.49 and - 1.11	1.42 and -0.77	7.42 and -4.37	1.27 and -0.48
Location of largest difference peak	near the Au atom	near the Au atom	near the Pt atom	near Cl(1)

 Table 2 Summary of X-Ray data continued.

	Complex 187b	Compound 141	Complex 189a	Complex 172
Elemental formula	C ₂₅ H ₂₆ AuClN ₂	C16H16N2	C25H26AuCl3N2	$C_{25}H_{26}Cl_2N_2Pd$
Formula weight	586.89	236.31	657.79	531.78
Crystal system	Tetragonal	Monoclinic	Monoclinic	Monoclinic
Space group	P 41 (no. 76)	P 21/c (no. 14)	P 21/n (equiv. to no. 14)	P 21/c (no. 14)
Unit cell dimensions: a = (Å)	10.03923(5)	15.9846(3)	9.0844(2)	9.3560(3)
b =	10.03923(5)	6.86460(10)	15.9007(4)	14.1423(4)
C =	21.99014(18)	12.1208(2)	17.2456(4)	17.5530(5)
<i>α</i> = (°)	90	90	90	90

β =	90	90 110.310(2) 102.833(2)		103.017(3)
γ =	90	90	90	90
Volume (ų)	2216.28(2)	1247.30(4) 2428.87(10)		2262.85(12)
Z, Calculated density (Mg/m ³)	4, 1.759	4, 1.258	4, 1.799	4, 1.561
F(000)	1144	504	1280	1080
Absorption coefficient (mm ⁻¹)	6.772	0.576	6.402	1.071
Temperatur e (K)	100.01(10)	100(2)	100.00(10)	100.00(10)
Crystal colour, shape	yellow cuboid	colourless plate	colourless plate yellow plate	
Crystal size (mm)	0.10 x 0.09 x 0.07	0.150 × 0.100 × 0.020	0.154 × 0.108 × 0.010	0.332 × 0.286 × 0.019
	0	n the diffractomete	er:	
Theta range for data collection(°)	2.029 to 29.990	5.903 to 70.105	2.3290 to 30.9370	2.2200 to 31.1750
Limiting indices	-14<=h<=14, - 14<=k<=14, -30<=l<=30	$-18 \le h \le 17, -8$ $\le k \le 8, -14 \le 1$ ≤ 14	$\begin{array}{c} -11 \leq h \leq 12, -19 \\ \leq k \leq 22, -23 \leq I \\ \leq 21 \end{array}$	$-11 \le h \le 12, -19 \le k \le 17, -22 \le l \le 21$
Completene ss to theta = 25.242 (%)	100.0	99.8	99.9	99.9
	A	bsorption correctio	n:	
	Semi-e	empirical from equiv	valents	
Max. and min. transmission	1.00000 and 0.48497	1.000 and 0.702	1.00000 and 0.60590	1.00000 and 0.55327
Reflections collected (not including absences)	84333	33713	29087	26885

No. of unique reflections, R(int) for equivalents	6451, 0.036	2356, 0.0468	6308, 0.0447	5767, 0.0316			
No. of 'observed' reflections (I > 2σ ₁)	6283	n/a	n/a	n/a			
Refinement:							
Data / restraints / parameters	6451/1/264	2356 / 0 / 168	6308/0/285	5767/0/276			
Goodness- of-fit on F ²	1.087	0.947	1.063	1.063			
Final R indices ('obsd' data)	R1 = 0.013, wR ₂ = 0.029	R1 = 0.0407, wR ₂ = 0.0903	R ₁ = 0.0256, wR ₂ = 0.0496	R ₁ = 0.0240, wR ₂ = 0.0567			
Final R indices (all data)	R1 = 0.014, wR ₂ = 0.029	R1 = 0.0438, wR ₂ = 0.0924	$R_1 = 0.0330,$ $wR_2 = 0.0513$	R1 = 0.0262, wR2 = 0.0574			
Reflections weighted: 1/w = *	σ²(Fo²)+(0.0127P) ²+1.184P	n/a	n/a	n/a			
Largest diff. peak and hole (e.Å ⁻³)	0.61 and -0.44	0.171 and -0.198	1.57 and -0.77	0.65 and -0.71			
Location of largest difference peak	near the Au atom	n/a	near the Au atom	near the Pd atom			

Compound 141

Table 3 Atomic coordinates [× 10⁴], equivalent isotropic displacement parameters [Å² × 10³] and site occupancy factors. *Ueq* is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Atom	x	У	Z	U _{eq}
N2	2034(1)	5329(2)	5883(1)	21(1)
N1	3686(1)	3425(2)	5715(1)	22(1)
C5	2765(1)	2489(2)	3756(1)	23(1)
C2	4407(1)	2826(2)	5478(1)	23(1)

C6	2878(1)	3265(2)	4863(1)	20(1)
C11	1295(1)	4980(2)	6246(1)	24(1)
C7	2095(1)	3772(2)	5181(1)	22(1)
C15	2482(1)	7114(2)	6119(1)	24(1)
C9	893(1)	3248(2)	5743(1)	25(1)
C3	4341(1)	2051(2)	4387(1)	25(1)
C8	1390(1)	2529(2)	5081(1)	24(1)
C12	1106(1)	6334(2)	7004(1)	29(1)
C16	3119(1)	7635(2)	5509(1)	27(1)
C14	2275(1)	8379(2)	6851(1)	29(1)
C4	3510(1)	1880(2)	3518(1)	25(1)
C13	1599(1)	7978(2)	7332(1)	31(1)
C1	5287(1)	2996(2)	6465(1)	29(1)
C10	112(1)	2310(2)	5952(1)	33(1)

Table 4 Bond lengths [Å] and angles [°].

N2-C7	1.3903(17)	N1-C2-C3	122.08(12)
N2-C15	1.3971(18)	N1-C2-C1	116.12(12)
N2-C11	1.4176(17)	C3–C2–C1	121.79(12)
N1-C2	1.3451(17)	N1-C6-C5	122.47(12)
N1-C6	1.3494(17)	N1-C6-C7	117.11(11)
C5–C4	1.3827(19)	C5–C6–C7	120.18(12)
C5–C6	1.3966(18)	C9–C11–C12	132.79(13)
C5–H5	0.9500	C9-C11-N2	108.50(11)
C2–C3	1.3947(19)	C12-C11-N2	118.71(13)
C2C1	1.5017(19)	C8-C7-N2	107.45(11)
C6–C7	1.4741(18)	C8-C7-C6	124.83(12)
C11–C9	1.388(2)	N2-C7-C6	125.95(12)
C11–C12	1.4108(19)	C14-C15-N2	118.09(13)
C7–C8	1.3851(19)	C14–C15–C16	122.03(13)
C15–C14	1.361(2)	N2-C15-C16	119.75(12)
C15–C16	1.4956(19)	C11–C9–C8	106.59(12)
C9–C8	1.4002(19)	C11–C9–C10	125.31(13)
C9–C10	1.5017(19)	C8–C9–C10	127.99(13)
C3–C4	1.3848(19)	C4–C3–C2	119.34(12)
C3–H3	0.9500	C4–C3–H3	120.3
C8–H8	0.9500	C2-C3-H3	120.3
C12–C13	1.355(2)	C7–C8–C9	109.81(13)
C12–H12	0.9500	C7–C8–H8	125.1
C16–H16A	0.9800	C9–C8–H8	125.1
C16–H16B	0.9800	C13-C12-C11	120.42(13)
C16-H16C	0.9800	C13-C12-H12	119.8
C14–C13	1.422(2)	C11-C12-H12	119.8
C14–H14	0.9500	C15-C16-H16A	109.5
C4–H4	0.9500	C15-C16-H16B	109.5
C13–H13	0.9500	H16A–C16–H16B	109.5
C1–H1A	0.9800	C15-C16-H16C	109.5
C1–H1B	0.9800	H16A-C16-H16C	109.5
C1–H1C	0.9800	H16B-C16-H16C	109.5
C10–H10A	0.9800	C15-C14-C13	122.29(14)
C10–H10B	0.9800	C15–C14–H14	118.9 ໌
C10-H10C	0.9800	C13-C14-H14	118.9
		C5–C4–C3	118.96(12)
C7-N2-C15	131.32(11)	C5–C4–H4	120.5
C7-N2-C11	107.62(11)	C3–C4–H4	120.5
C15-N2-C11	120.47(11)	C12-C13-C14	119.20(13)
C2-N1-C6	118.34(11)	C12-C13-H13	120.4
C4-C5-C6	118.81(12)	C14–C13–H13	120.4
C4-C5-H5	120.6	C2-C1-H1A	109.5
C6-C5-H5	120.6	C2C1H1B	109.5

H1A–C1–H1B	109.5	C9–C10–H10B	109.5
C2-C1-H1C	109.5	H10A-C10-H10B	109.5
H1A–C1–H1C	109.5	C9–C10–H10C	109.5
H1B-C1-H1C	109.5	H10A-C10-H10C	109.5
C9-C10-H10A	109.5	H10B-C10-H10C	109.5

Table 5 Anisotropic displacement parameters [Å²× 10³]. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + \dots + 2h k a^* b^* U^{12}]$.

Atom	<i>U</i> ¹¹	U ²²	U ³³	U ²³	U ¹³	U^{12}	
N2	20(1)	25(1)	18(1)	1(1)	7(1)	2(1)	
N1	22(1)	24(1)	20(1)	1(1)	9(1)	1(1)	
C5	25(1)	24(1)	19(1)	1(1)	7(1)	0(1)	
C2	24(1)	23(1)	24(1)	2(1)	11(1)	1(1)	
C6	23(1)	20(1)	19(1)	2(1)	9(1)	0(1)	
C11	20(1)	32(1)	21(1)	5(1)	9(1)	5(1)	
C7	23(1)	24(1)	18(1)	0(1)	8(1)	1(1)	
C15	22(1)	25(1)	21(1)	0(1)	3(1)	2(1)	
C9	23(1)	30(1)	25(1)	5(1)	10(1)	2(1)	
C3	25(1)	27(1)	26(1)	1(1)	14(1)	3(1)	
C8	23(1)	26(1)	24(1)	1(1)	9(1)	-1(1)	
C12	25(1)	41(1)	23(1)	2(1)	11(1)	9(1)	
C16	28(1)	25(1)	27(1)	0(1)	9(1)	-3(1)	
C14	26(1)	30(1)	26(1)	-4(1)	4(1)	4(1)	
C4	32(1)	25(1)	21(1)	-1(1)	13(1)	1(1)	
C13	29(1)	39(1)	24(1)	-5(1)	7(1)	10(1)	
C1	24(1)	34(1)	27(1)	-2(1)	8(1)	2(1)	
C10	28(1)́	37(1)	38(1)	8(1)	18(1)	2(1)	

Complex 172

Atom	X	у	Z	U(eq)
Pd01	2358.9(2)	2603.0(2)	4526.2(2)	10.33(4)
Cl02	-9.8(5)	2741.9(3)	4728.0(2)	14.91(8)
Cl03	4543.6(5)	2330.6(3)	4146.6(3)	17.11(9)
N004	2503.2(16)	1287.3(10)	4995.4(8)	12.4(3)
N005	2634.6(16)	4035.3(10)	4458.0(8)	12.1(3)
C006	2968.6(18)	4450.7(12)	5180.5(10)	12.1(3)
C007	3497.5(18)	2986.8(12)	5923.6(9)	12.2(3)
C008	3413.6(19)	1259.0(12)	5718.1(10)	12.4(3)
C009	4121.9(19)	2148.2(12)	6072.3(9)	12.4(3)
C00A	2930.1(18)	3846.3(11)	5876.9(9)	11.4(3)
C00B	3024(2)	5501.5(13)	3864.6(11)	17.2(3)
COOC	5614.3(19)	2090.6(12)	6610.4(10)	12.7(3)
C00D	8228(2)	1834.1(13)	6807.1(11)	17.8(4)
COOE	1779(2)	503.9(12)	4673.9(10)	15.3(3)
C00F	2171.1(19)	4197.5(12)	6522.4(10)	12.9(3)
C00G	6826(2)	1816.6(12)	6321.6(10)	15.6(3)
C00H	3339.1(19)	5404.0(12)	5251.0(10)	14.6(3)
C00I	3362(2)	5933.6(13)	4587.9(11)	18.2(4)
C00J	7212(2)	2335.1(13)	7882.7(11)	18.2(4)
C00K	5813(2)	2348.2(12)	7397.0(10)	15.4(3)
COOL	2671.2(19)	4542.2(12)	3810.0(10)	14.0(3)
COOM	3314(2)	4695.5(13)	7169.9(10)	16.9(3)
COON	8415(2)	2093.6(13)	7588.7(12)	19.9(4)
C00O	1545(2)	3338.5(13)	6877.0(11)	18.4(4)
C00P	3669(2)	409.6(12)	6126.1(11)	16.3(3)
C00Q	891(2)	4866.2(13)	6186.1(11)	18.3(4)
C00R	1964(2)	-344.5(13)	5080.2(11)	17.7(3)
C00S	2329(2)	4041.2(14)	3036.2(10)	19.2(4)
C00T	2925(2)	-400.8(12)	5802.4(11)	18.8(4)
C00U	835(2)	600.6(14)	3865.5(11)	20.6(4)

Table 6 Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å2 $\times 10^3$). Ueq is defined as 1/3 of the trace of the orthogonalised Uij tensor.

Atom	U 11	U22	U ₃₃	U ₂₃	U 13	U 12
Pd01	12.37(7)	9.59(7)	8.66(7)	0.63(4)	1.57(5)	0.16(4)
CI02	12.63(18)	15.2(2)	15.98(19)	0.16(13)	1.21(15)	-0.18(13)
CI03	18.0(2)	19.1(2)	15.9(2)	0.99(14)	7.31(16)	2.91(15)
N004	14.9(7)	10.7(7)	11.7(7)	0.0(5)	3.5(6)	0.8(5)
N005	11.5(7)	11.5(7)	13.0(7)	1.9(5)	2.3(5)	0.1(5)
C006	9.6(7)	12.4(8)	13.9(8)	1.7(6)	1.5(6)	1.0(5)
C007	12.3(8)	16.0(8)	7.9(7)	-0.1(6)	1.7(6)	-1.3(6)
C008	12.7(8)	12.7(8)	12.6(8)	0.6(6)	4.2(6)	1.4(6)
C009	15.2(8)	12.8(8)	9.0(7)	0.5(5)	2.3(6)	0.6(6)
C00A	11.6(8)	11.1(8)	10.4(7)	-0.3(5)	0.1(6)	-0.9(5)
C00B	15.3(8)	16.9(9)	19.4(9)	7.7(6)	4.0(7)	-0.3(6)
COOC	14.7(8)	9.6(7)	13.1(8)	2.7(6)	1.3(6)	0.9(6)
C00D	13.9(8)	15.9(9)	24.2(9)	-0.3(6)	5.5(7)	0.8(6)
C00E	16.6(8)	13.4(8)	16.6(8)	-3.6(6)	5.5(7)	-0.1(6)
C00F	13.8(8)	13.0(8)	11.4(8)	-0.9(6)	1.9(6)	0.2(6)
C00G	19.4(9)	13.9(8)	13.6(8)	1.2(6)	3.9(7)	2.1(6)
C00H	14.7(8)	12.1(8)	16.3(8)	0.8(6)	1.7(7)	-0.3(6)
C00I	17.9(9)	11.2(8)	24.7(9)	5.2(6)	3.1(7)	-1.2(6)
COOJ	22.3(9)	15.3(9)	14.3(8)	-1.2(6)	-1.7(7)	1.7(6)
C00K	17.7(8)	14.0(8)	14.5(8)	0.5(6)	3.5(7)	3.5(6)
COOL	12.3(8)	15.7(8)	13.6(8)	3.6(6)	2.4(6)	2.1(6)
C00M	20.0(9)	17.2(9)	12.0(8)	-3.7(6)	0.8(7)	-0.1(6)
COON	15.7(9)	16.2(9)	24.3(9)	0.6(7)	-3.2(7)	0.1(6)
C00O	22.3(9)	19.1(9)	15.5(8)	-0.1(6)	8.1(7)	-3.2(7)
C00P	18.6(9)	13.9(8)	16.0(8)	3.5(6)	3.2(7)	3.0(6)
C00Q	16.1(8)	20.0(9)	18.7(9)	-0.2(6)	4.1(7)	5.1(6)
C00R	20.3(9)	12.3(8)	22.3(9)	-3.3(6)	8.6(7)	-1.3(6)
COOS	22.8(9)	21.7(9)	12.7(8)	3.6(6)	3.4(7)	0.6(7)
C00T	24.9(9)	9.7(8)	23.3(9)	3.2(6)	8.3(8)	1.8(6)
C00U	26.4(10)	17.9(9)	16.0(9)	-3.7(6)	1.6(7)	-3.1(7)

Table 7 Anisotropic displacement parameters ($Å^2 \times 10^3$). The anisotropic displacement factor exponent takes the form: $-2\pi 2[h2a^*2U11+2hka^*b^*U12+...]$.

Table 8 Bond lengths.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Pd01	CI02	2.3300(4)	C00B	C00I	1.380(3)
Pd01	CI03	2.3203(5)	C00B	COOL	1.395(2)
Pd01	N004	2.0269(14)	C00C	C00G	1.397(3)
Pd01	N005	2.0489(14)	C00C	C00K	1.399(2)
Pd01	C007	2.5038(16)	C00D	C00G	1.394(2)
N004	C008	1.360(2)	C00D	COON	1.393(3)
N004	C00E	1.354(2)	C00E	C00R	1.387(3)
N005	C006	1.368(2)	C00E	C00U	1.499(2)
N005	C00L	1.351(2)	C00F	COOM	1.544(2)
C006	C00A	1.499(2)	C00F	C00O	1.540(2)
C006	C00H	1.391(2)	C00F	C00Q	1.536(2)
C007	C009	1.322(2)	C00H	C00I	1.388(2)
C007	C00A	1.321(2)	C00J	C00K	1.392(3)
C008	C009	1.490(2)	C00J	COON	1.383(3)
C008	C00P	1.391(2)	C00L	COOS	1.501(2)
C009	C00C	1.501(2)	C00P	COOT	1.394(3)
C00A	C00F	1.548(2)	C00R	C00T	1.382(3)

Table 9 Bond angles.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cl02	Pd01	C007	92.41(4)	C007	C00A	C006	119.48(16)
CI03	Pd01	Cl02	170.825(16)	C007	C00A	C00F	119.58(15)
CI03	Pd01	C007	96.28(4)	C00I	C00B	COOL	119.70(17)
N004	Pd01	Cl02	89.67(4)	C00G	COOC	C009	120.17(15)
N004	Pd01	CI03	88.97(4)	C00G	C00C	C00K	119.47(16)
N004	Pd01	N005	159.00(6)	C00K	C00C	C009	120.31(16)
N004	Pd01	C007	80.00(6)	C00N	C00D	C00G	119.95(18)
N005	Pd01	Cl02	93.56(4)	N004	C00E	C00R	120.07(16)
N005	Pd01	CI03	90.96(4)	N004	C00E	C00U	116.92(16)
N005	Pd01	C007	79.13(6)	C00R	C00E	C00U	122.98(16)
C008	N004	Pd01	112.11(11)	C00M	C00F	C00A	109.21(14)
C00E	N004	Pd01	126.91(12)	C00O	C00F	C00A	108.78(14)
C00E	N004	C008	120.95(15)	C00O	C00F	COOM	109.02(14)
C006	N005	Pd01	112.07(11)	C00Q	C00F	C00A	111.28(14)
COOL	N005	Pd01	126.94(12)	C00Q	C00F	COOM	110.67(14)
C00L	N005	C006	120.56(15)	C00Q	C00F	C00O	107.83(15)
N005	C006	C00A	117.94(14)	C00D	C00G	COOC	120.13(17)
N005	C006	C00H	119.93(16)	C00I	C00H	C006	119.94(17)
C00H	C006	C00A	122.12(15)	C00B	C00I	C00H	119.27(16)
C009	C007	Pd01	94.04(11)	C00N	C00J	C00K	120.46(17)
C00A	C007	Pd01	93.57(11)	C00J	C00K	COOC	119.91(17)
C00A	C007	C009	172.31(17)	N005	C00L	C00B	120.59(16)
N004	C008	C009	119.37(14)	N005	C00L	COOS	118.07(15)
N004	C008	C00P	120.28(16)	C00B	C00L	COOS	121.35(16)
C00P	C008	C009	120.34(15)	C00J	C00N	C00D	120.02(17)
C007	C009	C008	122.65(15)	C008	C00P	C00T	119.22(16)
C007	C009	C00C	118.68(15)	C00T	C00R	C00E	120.12(17)
C008	C009	C00C	118.67(14)	C00R	C00T	C00P	119.25(16)
C006	C00A	C00F	120.87(14)				

Atom	X	У	Z	U(eq)
H00B	3032.31	5848.6	3415.52	21
H00D	9037.56	1672.53	6609.24	21
H00G	6697.87	1622.29	5804.45	19
HOOH	3571.38	5686.57	5741.83	18
H00I	3602.24	6572.46	4630.73	22
H00J	7337.62	2489.8	8408.59	22
HOOK	5011.56	2527.94	7594.9	19
H00A	4083.98	4259.16	7388.06	25
H00C	2849.38	4910.6	7573.14	25
H00E	3720.83	5226.42	6951.07	25
HOON	9349.93	2104.47	7913.09	24
H00F	884.63	2999.54	6470.64	28
HOOL	1026.08	3551.19	7258.79	28
HOOM	2333.12	2929.31	7122.66	28
H00P	4327.58	383	6609.17	20
H00O	1259.76	5423.47	5983.72	27
H00Q	403.28	5041.04	6591.44	27
H00R	209.1	4552.2	5772.92	27
H00S	1439.4	-876.55	4866.19	21
H00T	3190.96	3719.98	2960.98	29
H00U	2018.28	4493.54	2624.42	29
H00V	1560.01	3589.59	3028.28	29
H00W	3074.64	-973.12	6069.52	23
H00X	168.86	1119.46	3852.38	31
H00Y	289.05	27.91	3724.31	31
Н	1444.3	716.17	3502.17	31

Table 10 Hydrogen atom coordinates ($Å \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$).

Complex 189a

Table 11 Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å2 $\times 10^3$). Ueq is defined as 1/3 of the trace of the orthogonalised Uij tensor.

Atom	x	У	Z	U(eq)
Au01	5735.5(2)	2338.8(2)	7403.1(2)	12.93(4)
CI02	4683.6(8)	1695.5(4)	8333.3(4)	18.17(14)
CI03	6843.6(9)	2953.2(5)	6477.5(4)	23.91(15)
CI04	7892.3(9)	1502.1(5)	7832.8(5)	26.96(17)
N005	1640(3)	3843.4(14)	6754.2(12)	12.8(5)
N006	3547(3)	3753.9(15)	8822.3(13)	16.1(5)
C007	3809(3)	3000.2(17)	6964.7(15)	12.6(5)
C008	2965(3)	2833.0(17)	6235.3(15)	13.2(5)
C009	3192(3)	2173.3(17)	5663.0(15)	14.0(6)
C00A	3109(3)	2353.5(17)	4861.0(15)	15.5(6)
C00B	3143(3)	3721.2(17)	7360.6(15)	13.3(5)
C00C	2768(3)	3424.1(17)	8145.0(15)	15.7(6)
C00D	1649(3)	3380.4(16)	6083.7(15)	13.0(5)
C00E	1658(3)	2811.3(18)	8115.7(17)	18.3(6)
C00F	3434(3)	1344.0(17)	5922.8(15)	15.3(6)
C00G	-705(3)	4434.7(18)	6142.7(16)	18.7(6)
C00H	487(3)	3455.4(17)	5416.3(15)	16.3(6)
C00I	3485(3)	5323.3(17)	7713.9(17)	19.1(6)
COOJ	3595(3)	711.5(18)	5397.6(16)	17.9(6)
COOK	3242(3)	3476.2(19)	9510.8(16)	19.0(6)
COOL	4212(4)	4782.7(18)	6503.4(16)	20.1(6)
COOM	161(3)	4631.3(18)	7600.1(16)	18.7(6)
COON	1339(4)	2534.8(19)	8821.8(18)	21.4(6)
C00O	3257(3)	1720.8(18)	4337.8(16)	17.7(6)
C00P	431(3)	4319.9(17)	6824.9(16)	15.1(6)
C00Q	-674(3)	4015.4(18)	5444.3(17)	20.8(6)
C00R	4127(3)	4556.5(17)	7356.6(16)	15.4(6)
COOS	3497(3)	896.9(19)	4602.1(16)	18.5(6)
C00T	5750(3)	4412.7(18)	7850.2(16)	17.6(6)
C00U	2148(4)	2877(2)	9526.9(17)	21.7(6)
C00V	4165(4)	3861(2)	10262.1(16)	25.0(7)

Table 12 Anisotropic displacement parameters (Å²×10³). The anisotropic displacement factorexponent takes the form: $-2\pi 2[h2a*2U11+2hka*b*U12+...]$.

Atom	U11	U22	U33	U23	U13	U12
Au01	12.31(6)	11.65(6)	13.68(6)	-3.06(4)	0.41(4)	1.28(4)
Cl02	23.2(4)	15.0(3)	15.2(3)	1.9(2)	1.7(2)	1.9(3)
CI03	23.2(4)	25.8(4)	26.4(4)	-4.3(3)	13.6(3)	-2.8(3)
CI04	17.8(4)	21.9(4)	36.8(4)	-7.1(3)	-3.4(3)	8.1(3)
N005	13.5(13)	11.6(11)	12.5(10)	1.1(8)	1.4(9)	-1.2(9)
N006	16.0(13)	17.0(12)	14.6(11)	-0.2(9)	1.7(9)	4.4(9)
C007	12.6(14)	10.4(13)	14.6(12)	1.3(10)	2.6(10)	-1.7(10)
C008	14.4(15)	12.9(14)	13.0(12)	2.3(10)	4.3(10)	-1.9(10)
C009	12.5(15)	15.9(14)	12.5(12)	-2.4(10)	0.2(10)	-3.2(10)
C00A	15.0(16)	15.1(14)	15.7(13)	2.4(10)	1.8(11)	-0.3(11)
C00B	12.0(14)	14.5(14)	11.9(12)	0.3(10)	-0.3(10)	0.8(10)
C00C	17.7(16)	16.0(14)	13.7(12)	0.8(10)	3.9(10)	6.7(11)
C00D	15.4(15)	11.3(13)	12.9(12)	0.4(10)	4.6(10)	-2.5(10)
C00E	18.9(16)	18.7(16)	17.0(14)	1.2(10)	3.3(11)	2.1(11)
C00F	16.2(15)	17.3(14)	11.8(12)	-0.4(10)	2.1(10)	-2.8(11)
C00G	16.6(16)	14.6(14)	24.1(14)	2.1(11)	3.0(11)	1.4(11)
C00H	18.7(16)	16.3(15)	12.8(12)	1.9(10)	1.0(10)	-3.7(11)
C00I	17.4(16)	13.3(14)	24.4(15)	-2.2(11)	0.0(12)	2.4(11)
C00J	19.3(16)	13.0(14)	19.4(14)	0.0(10)	-0.1(11)	-0.3(11)
C00K	15.1(16)	23.8(16)	16.8(13)	-2.7(11)	0.8(11)	6.6(11)
COOL	23.3(17)	14.2(14)	21.5(14)	2.1(11)	2.2(12)	-3.6(11)
C00M	16.4(16)	18.0(15)	23.3(14)	-1.1(11)	7.5(12)	1.8(11)
C00N	17.9(17)	22.4(16)	24.6(15)	4.3(12)	6.1(12)	0.3(12)
C00O	16.6(16)	22.3(15)	12.6(13)	-2.1(11)	0.0(10)	-0.8(11)
C00P	12.9(15)	12.1(14)	19.9(13)	1.9(10)	2.5(11)	-1.5(10)
C00Q	16.6(16)	20.0(16)	21.8(15)	5.0(11)	-4.0(11)	-1.0(12)
C00R	12.6(15)	12.2(14)	19.4(13)	-1.0(10)	-0.5(10)	-2.2(10)
C00S	15.5(16)	21.1(16)	17.4(14)	-6.9(11)	0.9(11)	-0.7(11)
C00T	12.2(15)	16.8(14)	21.5(14)	-3.8(11)	-1.2(11)	-4.5(11)
C00U	20.7(17)	28.9(17)	16.6(14)	5.5(12)	6.4(11)	3.8(12)
C00V	26.1(19)	30.3(18)	15.9(14)	-0.6(12)	-1.1(12)	3.5(13)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Au01	CI02	2.2833(7)	C00B	C00R	1.602(4)
Au01	CI03	2.2869(8)	C00C	C00E	1.395(4)
Au01	CI04	2.3481(7)	C00D	C00H	1.384(4)
Au01	C007	2.038(3)	C00E	COON	1.385(4)
N005	C00B	1.537(3)	C00F	C00J	1.383(4)
N005	C00D	1.373(3)	C00G	C00P	1.394(4)
N005	C00P	1.362(4)	C00G	C00Q	1.382(4)
N006	C00C	1.331(3)	C00H	C00Q	1.389(4)
N006	C00K	1.352(4)	C00I	C00R	1.538(4)
C007	C008	1.346(4)	C00J	C00S	1.387(4)
C007	C00B	1.527(4)	C00K	C00U	1.381(4)
C008	C009	1.486(4)	C00K	C00V	1.508(4)
C008	C00D	1.454(4)	C00L	C00R	1.533(4)
C009	C00A	1.398(4)	C00M	C00P	1.496(4)
C009	C00F	1.394(4)	C00N	C00U	1.385(4)
C00A	C00O	1.378(4)	C00O	C00S	1.388(4)
C00B	C00C	1.541(4)	C00R	C00T	1.547(4)

Table 13 Bond lengths.

Table 14 E	ond angles	5.
------------	------------	----

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
CI02	Au01	CI03	178.30(3)	N006	C00C	C00E	123.1(3)
CI02	Au01	CI04	88.54(3)	C00E	C00C	C00B	118.8(2)
CI03	Au01	CI04	89.80(3)	N005	C00D	C008	109.2(2)
C007	Au01	CI02	91.89(8)	N005	C00D	C00H	120.5(3)
C007	Au01	CI03	89.74(8)	C00H	C00D	C008	130.2(2)
C007	Au01	CI04	175.70(7)	C00N	C00E	C00C	118.7(3)
C00D	N005	C00B	109.5(2)	C00J	C00F	C009	120.6(2)
C00P	N005	C00B	128.5(2)	C00Q	C00G	C00P	121.2(3)
C00P	N005	C00D	122.0(2)	C00D	C00H	C00Q	118.1(3)
C00C	N006	C00K	118.0(3)	C00F	C00J	C00S	120.0(3)
C008	C007	Au01	120.6(2)	N006	C00K	C00U	122.1(3)
C008	C007	C00B	111.5(2)	N006	C00K	C00V	116.1(3)
C00B	C007	Au01	127.94(17)	C00U	C00K	C00V	121.8(3)
C007	C008	C009	128.7(3)	C00E	C00N	C00U	118.2(3)
C007	C008	C00D	108.9(2)	C00A	C00O	C00S	120.3(3)
C00D	C008	C009	122.2(2)	N005	C00P	C00G	117.3(2)
C00A	C009	C008	121.8(2)	N005	C00P	C00M	124.0(2)
C00F	C009	C008	119.3(2)	C00G	C00P	C00M	118.2(3)
C00F	C009	C00A	118.8(3)	C00G	C00Q	C00H	120.1(3)
C00O	C00A	C009	120.4(3)	C00I	C00R	C00B	113.2(2)
N005	C00B	C00C	107.5(2)	C00I	C00R	C00T	107.2(2)
N005	C00B	C00R	107.7(2)	C00L	C00R	C00B	110.2(2)
C007	C00B	N005	99.87(19)	COOL	C00R	C00I	107.6(2)
C007	C00B	C00C	110.4(2)	C00L	C00R	C00T	108.5(2)
C007	C00B	C00R	110.1(2)	C00T	C00R	C00B	109.9(2)
C00C	C00B	C00R	119.4(2)	C00J	C00S	C00O	119.8(3)
N006	C00C	C00B	118.1(3)	C00K	C00U	C00N	119.8(3)

Atom	x	у	z	U(eq)
H00A	2949.12	2915.91	4675.53	19
H00E	1131.48	2587.98	7620.67	22
H00F	3488.24	1212.22	6465.7	18
H00G	-1515.43	4807.51	6158.03	22
H00H	482.73	3133.09	4952.02	20
H00B	2484.52	5459.79	7389.87	29
H00C	4160.92	5805.22	7721.43	29
H00D	3402.05	5193.45	8257.97	29
H00J	3773.08	149.66	5581.9	21
H00I	4610.61	4302.7	6258.28	30
H00K	4879.78	5268.31	6511.96	30
HOOL	3199.87	4921.82	6194.57	30
H00M	-482.61	4231.01	7803	28
H00N	-339.64	5180.49	7520.81	28
H00O	1128.5	4686.46	7984.22	28
H00P	584.85	2121.2	8822.64	26
H00Q	3194.39	1849.01	3793.43	21
H00R	-1447.7	4110.46	4982.51	25
H00S	3593.26	461.73	4239.22	22
H00T	5708	4203.24	8379.33	26
H00U	6307.53	4944.86	7902.9	26
H00V	6262.08	3999.05	7581.2	26
H00W	1951.65	2700.65	10020.3	3 26
H00X	5238.2	3745.74	10297.2	6 37
H00Y	3859.66	3615.9	10723.74	4 37
Н	3998.71	4469.67	10253.84	4 37

Table 15 Hydrogen atom coordinates ($Å \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$).

CheckCIF reports

Complex 172

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) hm_233b_2

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: hm_233b_2

Bond precision:	C-C = 0.0025 A		Wavelength	-0.71073
Cell:	a=9.3560(3) alpha=90			
Temperature:				
	Calculated		Reported	
Volume	2262.85(12)		2262.85(1	2)
Space group			P 1 21/C	1
Hall group	-P 2ybc		-P 2ybc	
-	C25 H26 Cl2 N2 H			
Sum formula	C25 H26 Cl2 N2 H	Pd.	C25 H26 C	12 N2 Pd
Mr	531.78		531.78	
Dx,g cm-3	1.561		1.561	
Z	4		4	
Mu (mm-1)	1.071		1.071	
F000	1080.0		1080.0	
F000'	1077.46			
h,k,lmax			12,19,22	
Nref			5767	
Tmin, Tmax			0.553,1.0	00
'Tmin'	0.694			
Correction meth AbsCorr - MULTI	od- # Reported T -SCAN	Limits: T	min=0.553 1	Tmax=1.000
Data completene	88= 0.799	Theta (m	ax)= 30.99	7
R(reflections) =	0.0240(5379)	wR2(ref	lections) -	0.0575(5767)
S = 1.063	Npar-	276		

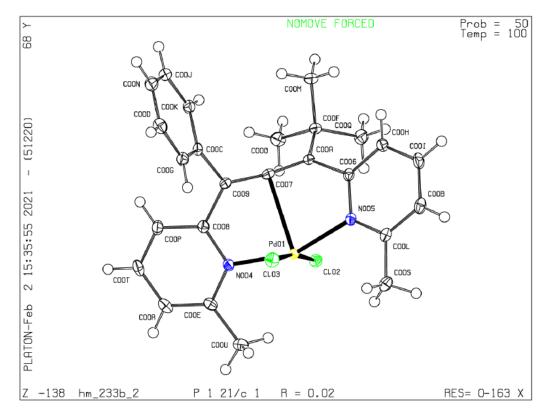
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level G		
PLAT232 ALERT 2 G Hirshfeld Test Diff (M-X) Pd01Cl02 .	8.5	s.u.
PLAT720 ALERT 4 G Number of Unusual/Non-Standard Labels	55	Note
PLAT794 ALERT 5 G Tentative Bond Valency for Pd01 (II) .	2.15	Info
PLAT910 ALERT 3 G Missing # of FCF Reflection(s) Below Theta(Min).	1	Note
PLAT912 ALERT 4 G Missing # of FCF Reflections Above STh/L= 0.600	1225	Note
PLAT933 ALERT 2 G Number of OMIT Records in Embedded .res File	1	Note
PLAT941 ALERT 3 G Average HKL Measurement Multiplicity	4.7	LOW
PLAT952 ALERT 5 G Calculated (ThMax) and CIF-Reported Lmax Differ	3	Units
PLAT958 ALERT 1 G Calculated (ThMax) and Actual (FCF) Lmax Differ	3	Units
PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density.	18	Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
0 ALERT level C = Check. Ensure it is not caused by an omission or oversight
10 ALERT level C = Ceneral information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
3 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 05/12/2020; check.def file version of 05/12/2020

Datablock hm_233b_2 - ellipsoid plot

Complex 184

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: hannad3x

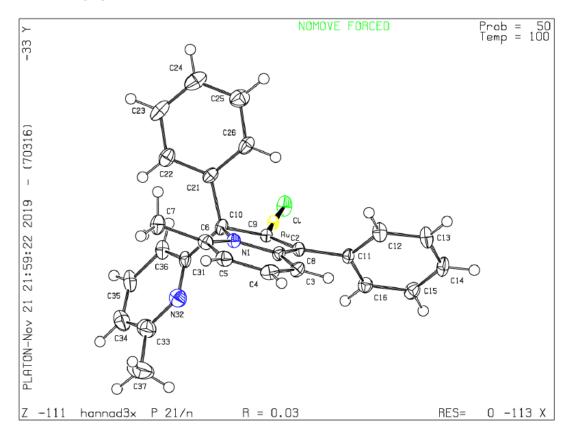
Bond precision:	C-C = 0.0046 A	- 0.0046 A Wavelength-0.71073				
	a=13.6080(2) alpha=90					
Temperature:	-			2		
	Calculated	1	Reported			
Volume	2275.77(6)		2275.77(6)		
Space group	P 21/n		P 21/n			
Hall group	-P 2yn		-P 2yn			
Moiety formula	C27 H22 Au Cl N2	1	C27 H22 A	u Cl N2		
Sum formula	C27 H22 Au Cl N2	1	C27 H22 A	u Cl N2		
Mr	606.89		606.88			
Dx,g cm-3	1.771		1.771			
Z	4		4			
Mu (mm-1)	6.598		6.598			
F000	1176.0		1176.0			
F000'	1169.20					
h,k,lmax	19,17,20		19,17,20			
Nref	6634		6634			
Tmin, Tmax	0.458,0.630		0.455,1.0	00		
'Tmin'	0.323					
Correction meth AbsCorr = MULTI	od- # Reported T -SCAN	Limits: Tm:	in=0.455 1	Imax-1.000		
Data completeness= 1.000 Theta(max) = 29.995						
R(reflections) -	R(reflections) = 0.0252(6115) wR2(reflections) = 0.0566(6634)					
S = 1.106	Npar=	282				

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level G PLAT142 ALERT 4 G s.u. on b - Axis Small or Missing	Alert level C <u>PLAT220 ALERT 2 C</u> Non-Solvent Read 1 C <u>PLAT480 ALERT 4 C</u> Long HA H-Bond Report <u>PLAT480 ALERT 4 C</u> Long HA H-Bond Report	ed H3CL . 2.96 Ang.
<pre>0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 2 ALERT level G = General information/check it is not something unexpected</pre>	PLAT142 ALERT 4 G s.u. on b - Axis Small o	
<pre>1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check</pre>	<pre>0 ALERT level B = A potentially serious 3 ALERT level C = Check. Ensure it is r 2 ALERT level G = General information/c 0 ALERT type 1 CIF construction/syntax 1 ALERT type 2 Indicator that the struc 0 ALERT type 3 Indicator that the struc 4 ALERT type 4 Improvement, methodology</pre>	s problem, consider carefully not caused by an omission or oversight sheck it is not something unexpected error, inconsistent or missing data sture model may be wrong or deficient sture quality may be low 7, query or suggestion

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 07/08/2019; check.def file version of 30/07/2019

Datablock hannad3x - ellipsoid plot

Complex 187b.

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

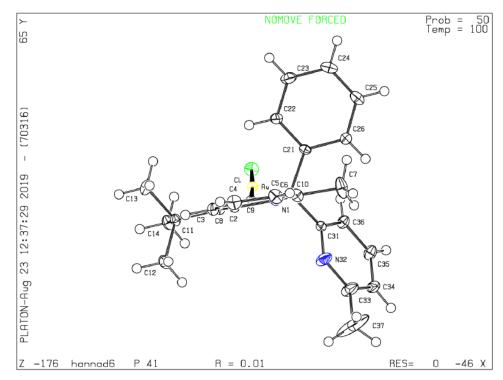
No syntax errors found. CIF dictionary Interpreting this report

Datablock: hannad6

Bond precision: C-C = 0.0045 A Wavelength=0.71073						
Cell:	a=10.03923(5)	b=10.03923(5)	c=21.99014(18)			
Temperature:	alpha=90 100 K	beta=90	gamma=90			
	Calculated	Reporte	d			
Volume	2216.30(3)	2216.28				
Space group		P 41				
Hall group	P 4w	P 4w				
Moiety formula	C25 H26 Au Cl N2	C25 H26	Au Cl N2			
Sum formula	C25 H26 Au Cl N2	C25 H26	Au Cl N2			
Mr	586.90	586.89				
Dx,g cm-3	1.759	1.759				
Z	4	4				
Mu (mm-1)	6.772	6.772				
F000	1144.0	1144.0				
F000'	1137.19					
h,k,lmax		14,14,3	0			
Nref	6449[3302]	6451				
Tmin, Tmax		0.485,1	.000			
Tmin'	0.503					
Correction method= # Reported T Limits: Tmin=0.485 Tmax=1.000 AbsCorr = MULTI-SCAN						
Data completeness= 1.95/1.00 Theta(max)= 29.990						
R(reflections) =	0.0130(6283)	wR2(reflections	3)= 0.0291(6451)			
S = 1.087	Npar-	264				

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level B PLAT213 ALERT 2 B Atom C37 has ADP max/min Ratio PLAT220 ALERT 2 B Non-Solvent Resd 1 C Ueq(max)/Ueq(min) Range		prolat Ratio
Alert level C <u>PLATISO ALERT 1 C</u> Volume as Calculated Differs from that Given <u>PLAT222 ALERT 3 C</u> Non-Solv. Resd 1 H Uiso(max)/Uiso(min) Range <u>PLAT480 ALERT 4 C</u> Long HA H-Bond Reported H5CL .	2216.28 8.3 2.95	Ratio
Alert level G PLAT143 ALERT 4 G s.u. on c - Axis Small or Missing PLAT791 ALERT 4 G Model has Chirality at Cl0 (Chiral SPGR)		Ang. Verify
<pre>0 ALERT level A = Most likely a serious problem - resolve or explain 2 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or 2 ALERT level G = General information/check it is not something und</pre>	y oversigh	ıt
<pre>1 ALERT type 1 CIF construction/syntax error, inconsistent or miss; 2 ALERT type 2 Indicator that the structure model may be wrong or o 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check</pre>		


It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 07/08/2019; check.def file version of 30/07/2019

Datablock hannad6 - ellipsoid plot

Complex 194

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

- -

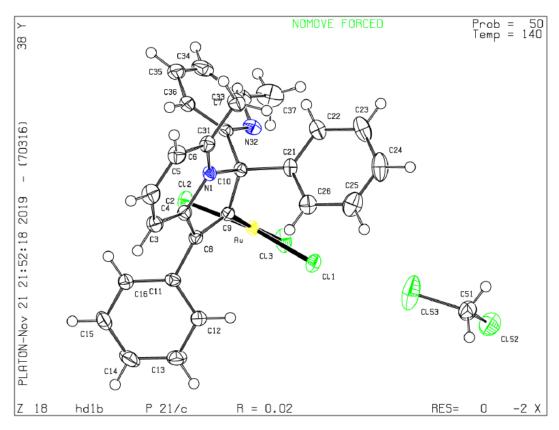
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report						
Datablock: hdlb						
Bond precision:	C-C = 0.0037 A	1	Mavelengt)	h=0.71073		
Cell:	a=10.7752(2) b alpha=90 b			c=17.3390(3) gamma=90		
Temperature:	140 K	eta=90.3	/1(2)	gamma=90		
	Calculated		Reported			
Volume	2781.54(9)		2781.54 (9)		
	P 21/C		P 21/C			
Hall group	-P 2ybc		-P 2ybc	-		
Moiety formula	C27 H22 Au Cl3 N2, Cl2	C H2	C27 H22 J Cl2	Au Cl3 N2, C H2		
Sum formula	C28 H24 Au Cl5 N2		C28 H24 A	Au Cl5 N2		
Mr	762.71		762.71			
Dx,g cm-3	1.821		1.821			
Z	4		4			
Mu (mm-1)	5.790		5.790			
F000	1480.0		1480.0			
F000'	1475.54					
h,k,lmax	15,21,24		15,21,24			
Nref	8105		8091			
Tmin, Tmax	0.124,0.594		0.236,1.0	000		
Tmin'	0.034					
Correction method= # Reported T Limits: Tmin=0.236 Tmax=1.000 AbsCorr = MULTI-SCAN						
Data completeness= 0.998 Theta(max)= 29.999						
R(reflections) =	0.0233(7083)	wR2(ref)	lections)	- 0.0484(8091)		
S = 1.046 Npar= 327						

```
The following ALERTS were generated. Each ALERT has the format
      test-name ALERT alert-type alert-level.
Click on the hyperlinks for more details of the test.
4
  Alert level C
PLAT244 ALERT 4 C Low
                         'Solvent' Ueg as Compared to Neighbors of
                                                                         C51 Check
Alert level G
PLAT434 ALERT 2 G Short Inter HL. .HL Contact Cl1
                                                      ..C153
                                                                        3.23 Ang.
                                                      x,y,z =
                                                                   1 555 Check
                                                     (Centro SPGR)
PLAT793 ALERT 4 G Model has Chirality at C10
                                                                           R Verify
   0 ALERT level A - Most likely a serious problem - resolve or explain
   0 ALERT level B = A potentially serious problem, consider carefully
   1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
   2 ALERT level G - General information/check it is not something unexpected
   0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
   1 ALERT type 2 Indicator that the structure model may be wrong or deficient
   0 ALERT type 3 Indicator that the structure quality may be low
   2 ALERT type 4 Improvement, methodology, query or suggestion
   0 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 07/08/2019; check.def file version of 30/07/2019

Complex 189a

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 261_17.07._3

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 261_17.07._3

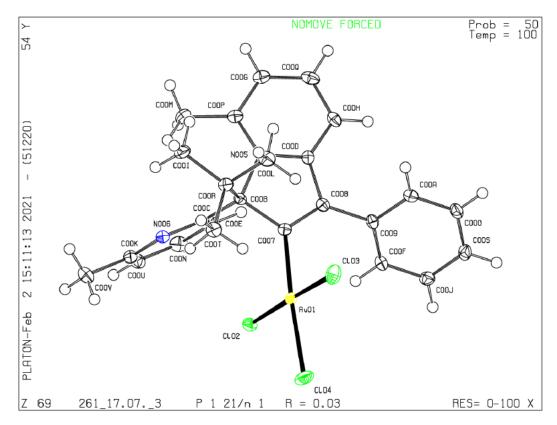
Bond precision:	C-C = 0.0040 A	Wavelengt	Wavelength=0.71073		
Cell:	a-9.0844(2) b-	15.9007(4)	c=17.2456(4)		
Temperature:	alpha=90 be 100 K	ta=102.833(2)	gamma-90		
	Calculated	Reported			
Volume	2428.87(10)	2428.87(
Space group		P 1 21/n	1		
Hall group		-P 2yn			
Moiety formula	C25 H26 Au Cl3 N2	C25 H26 J	Au Cl3 N2		
Sum formula	C25 H26 Au Cl3 N2	C25 H26 J	Au Cl3 N2		
Mr	657.80	657.79			
Dx,g cm-3	1.799	1.799			
Z	4	4			
Mu (mm-1)	6.402	6.402			
F000	1280.0	1280.0			
F000'	1274.36				
h,k,lmax	13,22,24	12,22,23			
Nref	7599	6308			
Tmin, Tmax	0.441,0.938	0.606,1.0	000		
'Tmin'	0.369				
Correction method- # Reported T Limits: Tmin=0.606 Tmax=1.000 AbsCorr = MULTI-SCAN					
Data completeness= 0.830 Theta(max)= 30.785					
R(reflections) = 0.0256(5494) wR2(reflections) = 0.0513(6308)					
S = 1.063 Npar= 285					

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C						
PLAT601 ALERT 2 C Unit Cell Contains Solvent Accessible VOIDS of .	50	Ang**3				
PLAT971 ALERT 2 C Check Calcd Resid. Dens. 0.84A From Au01	1.63	eA-3				
PLAT975 ALERT 2 C Check Calcd Resid. Dens. 0.81A From N006	0.64	eA-3				
Alert level G <u>PLAT380 ALERT 4 G</u> Incorrectly? Oriented X(sp2)-Methyl Moiety <u>PLAT720 ALERT 4 G</u> Number of Unusual/Non-Standard Labels <u>PLAT793 ALERT 4 G</u> Model has Chirality at COOB (Centro SPGR)	56 S	Check Note Verify				
PLAT910 ALERT 3 C Missing # of FCF Reflection(s) Below Theta(Min).		Note				
PLAT912 ALERT 4 C Missing # of FCF Reflections Above STh/L= 0.600	1247					
PLAT941 ALERT 3 C Average HKL Measurement Multiplicity	4.6					
PLAT978_ALERT_2_C Number C-C Bonds with Positive Residual Density.	3	Info				
0 ALERT level A = Most likely a serious problem - resolve or explain						
0 ALERT level B = A potentially serious problem, consider carefully						
3 ALERT level C = Check. Ensure it is not caused by an omission or ov	-					
7 ALERT level C = General information/check it is not something unexp	ected					
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing	data					
4 ALERT type 2 Indicator that the structure model may be wrong or deficient						
2 ALERT type 3 Indicator that the structure quality may be low						
4 ALERT type 4 Improvement, methodology, query or suggestion						
0 ALERT type 5 Informative message, check						
*						

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 05/12/2020; check.def file version of 05/12/2020

Datablock 261_17.07._3 - ellipsoid plot

Complex 189b.

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

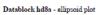
Datablock: hd8a

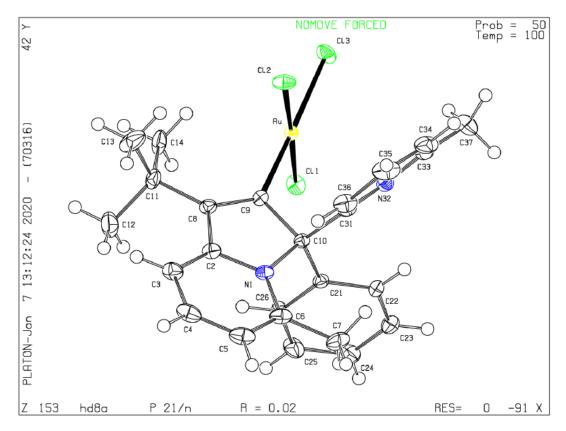
Bond precision: C-C = 0.0034 A Wavelength=0.71073						
	a=9.46335(14)					
Temperature:	alpha-90 100 K	beta=108.2	848(15)	gamma=90		
	Calculated		Reported			
Volume	2490.11(6)		2490.10(6)			
Space group	P 21/n		P 21/n			
Hall group	-P 2yn		-P 2yn			
Moiety formula	C25 H26 Au Cl3 N	2	C25 H26 Au	Cl3 N2		
Sum formula	C25 H26 Au Cl3 N	2	C25 H26 Au	Cl3 N2		
Mr	657.80		657.79			
Dx,g cm-3	1.755		1.755			
Z	4		4			
Mu (mm-1)	6.245		6.245			
F000	1280.0		1280.0			
F000'	1274.36					
h,k,lmax			13,27,19			
Nref	7265		7264			
Tmin, Tmax			0.398,1.000	D		
'Tmin'	0.365					
Correction method- # Reported T Limits: Tmin=0.398 Tmax=1.000 AbsCorr = MULTI-SCAN						
Data completeness= 1.000 Theta(max)= 30.000						
R(reflections) = 0.0184(6792) wR2(reflections) = 0.0418(7264)						
S = 1.053	Npar-	282				

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

	Report Ang.
Alert level G DIAT793 ALERT 4 G Model has Chirality at C10 (Centro SPGR) R	Verify
0 ALERT level A = Most likely a serious problem - resolve or explain	
0 ALERT level B = A potentially serious problem, consider carefully	
2 ALERT level C = Check. Ensure it is not caused by an omission or oversig	
1 ALERT level C = General information/check it is not something unexpected	
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data	
1 ALERT type 2 Indicator that the structure model may be wrong or deficien	t.
0 ALERT type 3 Indicator that the structure guality may be low	
2 ALERT type 4 Improvement, methodology, query or suggestion	
0 ALERT type 5 Informative message, check	

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.


Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 22/12/2019; check.def file version of 13/12/2019

Complex 179

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: hannad2x

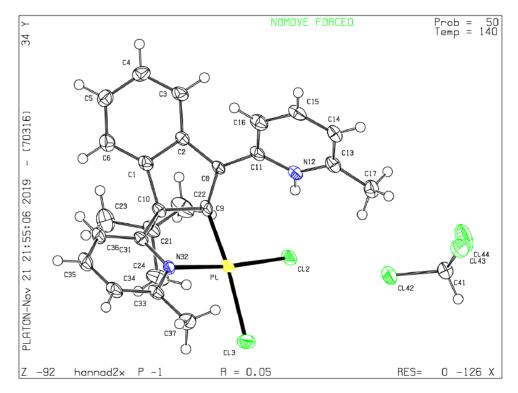
Bond precision: C-C = 0.0078 A Wavelength=0.71073 Cell: a=9.3270(3) b=11.8674(5) c=12.9754(4) alpha=105.467(3) beta=91.480(3) gamma=102.873(3) Temperature: 140 K Calculated Reported Volume 1343.84(9) 1343.84(9) P -1 P -1 Space group -P 1 -P 1 Hall group Moiety formula C25 H26 Cl2 N2 Pt, C H Cl3 C25 H26 Cl2 N2 Pt, C H Cl3 C26 H27 Cl5 N2 Pt C26 H27 Cl5 N2 Pt Sum formula 739.83 739.83 Mr 1,828 1.828 Dx,g cm-3 \mathbf{Z} 2 2 Mu (mm-1) 5.737 5.737 F000 720.0 720.0 F000' 718.36 h,k,lmax 13,16,18 13,16,18 Nref 7834 7821 Tmin, Tmax 0.458,0.532 0.119,1.000 Tmin' 0.079 Correction method= # Reported T Limits: Tmin=0.119 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 0.998 Theta(max) = 29.999 R(reflections) = 0.0538(7106) wR2(reflections) = 0.1407(7821) S = 1.065Npar= 313

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C DIFMX02 ALERT 1 C The maximum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT097 ALERT 2 C Large Reported Max. (Positive) Residual Density 7.42 eA-3 PLAT480 ALERT 4 C Long HA H-Bond Reported H17BCL2 2.94 Ang. PLAT480 ALERT 4 C Long HA H-Bond Reported H17CCL2 2.89 Ang.
PLAT480 ALERT 4 C Long HA H-Bond Reported H37ACL43 . 2.94 Ang.
Alert level G
PLAT154 ALERT 1 G The s.u.'s on the Cell Angles are Equal(Note) 0.003 Degree PLAT434 ALERT 2 G Short Inter HL.HL Contact Cl2Cl42 3.36 Ang.
PLAT793_ALERT_4_G Model has Chirality at C10 x,y,z = 1_555 Check PLAT794_ALERT_5_G Tentative Bond Valency for Pt (Centro SPGR) R Verify . 1.95 Info
<pre>0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 4 ALERT level G = General information/check it is not something unexpected</pre>
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 07/08/2019; check.def file version of 30/07/2019

Datablock hannad2x - ellipsoid plot

Appendix D – Procedures from CO-ADD

Primary Antimicrobial Screening

Bacterial and Fungal

Procedure and Materials

1.0 Summary

1.1 Study

Primary antimicrobial screening study by whole cell growth inhibition assays, using the provided samples at a single concentration, in duplicate (n=2). The inhibition of growth is measured against 5 bacteria: *Escherichia coli*, *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa* and *Staphylococcus aureus*, and 2 fungi: *Candida albicans* and *Cryptococcus neoformans*.

1.2 Assay Parameters

Test concentration		32 μg/mL or 20 μM ≤1% DMSO		
QC		Duplicate (n=2) Control MIC: Pass		
Plates		Non-Binding Surface, 384 well plate		
Media	Bacteria Fungi	Cation-adjusted Mueller Hinton broth Yeast Nitrogen Base		
Read Out	Bacteria C. albicans	OD600 OD530		
	C. neoformans	Resazurin OD ₆₀₀₋₅₇₀		

1.3 Outcomes

Primary Screening outcomes are detailed in individual Project reports, personalised for each Project Submission for each CO-ADD user.

Please see your data sheet with file extension **P0XXX_PS_data.xlsx**, for example CO-ADD Project **P0100**, **P0100_PS_data.xlsx**

1.4 Comments

To confirm the inhibitory activity, the hit compound/s will be re-tested against the strains in a dose response assay to determine the minimum inhibitory concentration (MIC) of

the compounds. Furthermore, to further evaluate the antimicrobial potential of the compounds they will be assayed against a mammalian cell line to determine general cell toxicity.

In order to continue with Hit Confirmation assays, CO-ADD requests (as per the standard T&C's) that chemical structures of the compound/s (both active and inactive) be supplied after receipt of the primary screening report. All structural information will be kept confidential and only used internally by CO-ADD for the purpose of evaluating novelty of the chemistry to choose compounds for further validation. No publication will result without your written consent.

If possible, please provide structures as **smiles**, **sdf/sd** or **cdx** files. If you do not have this means, images may also be accepted. Once we have received your structures, we will schedule the dose response assay of the active compound.

If you have not already provided structures to CO-ADD for your full compound set, please do so within a reasonable timeframe after receiving this report, so as not to delay Hit Confirmation.

1.5 Publishing CO-ADD data

If you wish to publish data provided by CO-ADD, we kindly ask that you acknowledge CO-ADD appropriately with the following reference:

Helping Chemists Discover New Antibiotics

M.A. Blaskovich, J. Zuegg, A.G. Elliott, M.A. Cooper *ACS Infect. Dis.*, **2015**, 1(7), 285-287.

DOI: 10.1021/acsinfecdis.5b00044; PMID: 27622818

as well as an acknowledgement for the funding of CO-ADD:

"The antimicrobial screening performed by CO-ADD (The Community for Antimicrobial Drug Discovery) was funded by the Wellcome Trust (UK) and The University of Queensland (Australia)."

Please advise CO-ADD at your earliest convenience that you have used provided data for publication purposes. This information is extremely helpful in keeping track of the outputs from the CO-ADD initiative and supports the program in renewed funding possibilities to continue CO-ADD as a free screening service available to the academic community.

CO-ADD also asks, that where possible you publish your data in an Open Access journals.

2.0 Methods

2.1 Sample preparation

Samples were provided by the collaborator and stored frozen at -20 \Box C. Samples were prepared in DMSO and water to a final testing concentration of 32 µg/mL or 20 µM (unless otherwise indicated in the data sheet), in 384-well, non-binding surface plate (NBS) for each bacterial/fungal strain, and in duplicate (n=2), and keeping the final DMSO concentration to a maximum of 1% DMSO. All the sample-preparation where done using liquid handling robots.

Compounds that showed solubility issues during stock solution preparation are detailed in the data sheet.

2.2 Antimicrobial Assay

2.2.1 Procedure

All bacteria were cultured in Cation-adjusted Mueller Hinton broth (**CAMHB**) at 37 \Box C overnight. A sample of each culture was then diluted 40-fold in fresh broth and incubated at 37 \Box C for 1.5-3 h. The resultant mid-log phase cultures were diluted (CFU/mL measured by OD₆₀₀), then added to each well of the compound containing plates, giving a cell density of 5 \Box 10⁵ CFU/mL and a total volume of 50 µL. All the plates were covered and incubated at 37 °C for 18 h without shaking.

2.2.2 Analysis

Inhibition of bacterial growth was determined measuring absorbance at 600 nm (OD_{600}), using a Tecan M1000 Pro monochromator plate reader. The percentage of growth inhibition was calculated for each well, using the negative control (media only) and positive control (bacteria without inhibitors) on the same plate as references. The significance of the inhibition values was determined by modified Z-scores, calculated using the median and MAD of the samples (no controls) on the same plate. Samples

with inhibition value above 80% and Z-Score above 2.5 for either replicate (n=2 on different plates) were classed as actives. Samples with inhibition values between 50 - 80% and Z-Score above 2.5 for either replicate (n=2 on different plates) were classed as partial actives. Samples with inhibition values between 50 - 80% and Z-Score above 2.5 for either replicate (n=2 on different plates) were classed as partial actives.

2.3 Antifungal Assay

2.3.1 Procedure

Fungi strains were cultured for 3 days on Yeast Extract-Peptone Dextrose (**YPD**) agar at 30 °C. A yeast suspension of 1 x 10⁶ to 5 x 10⁶ CFU/mL (as determined by OD₅₃₀) was prepared from five colonies. The suspension was subsequently diluted and added to each well of the compound-containing plates giving a final cell density of fungi suspension of 2.5 x 10³ CFU/mL and a total volume of 50 µL. All plates were covered and incubated at 35 \Box C for 24 h without shaking.

2.3.2 Analysis

Growth inhibition of *C. albicans* was determined measuring absorbance at 530 nm (OD_{530}) , while the growth inhibition of *C. neoformans* was determined measuring the difference in absorbance between 600 and 570 nm $(OD_{600-570})$, after the addition of resazurin (0.001% final concentration) and incubation at 35 \Box C for additional 2 h. The absorbance was measured using a Biotek Synergy HTX plate reader. The percentage of growth inhibition was calculated for each well, using the negative control (media only) and positive control (fungi without inhibitors) on the same plate. The significance of the inhibition values was determined by modified Z-scores, calculated using the median and MAD of the samples (no controls) on the same plate. Samples with inhibition value above 80% and Z-Score above 2.5 for either replicate (n=2 on different plates) were classed as actives. Samples with inhibition values between 50 - 80% and Z-Score above 2.5 for either replicate (n=2 on different plates) were classed as partial actives.

2.4 Antibiotic standards preparation and Quality control

Colistin and Vancomycin were used as positive bacterial inhibitor standards for Gramnegative and Gram-positive bacteria, respectively. Fluconazole was used as a positive fungal inhibitor standard for *C. albicans and C. neoformans.*

The antibiotics were provided in 4 concentrations, with 2 above and 2 below its MIC value, and plated into the first 8 wells of column 23 of the 384-well NBS plates.

The quality control (QC) of the assays was determined by the antimicrobial controls and the Z'-factor (using positive and negative controls). Each plate was deemed to fulfil the quality criteria (pass QC), if the Z'-factor was above 0.4, and the antimicrobial standards showed full range of activity, with full growth inhibition at their highest concentration, and no growth inhibition at their lowest concentration.

3.0 Materials

3.1 Assay materials

Material	Code	Brand	Cat No.
Compound preparation plate [Polypropylene]	РР	Corning	3364
Assay Plates [Non-binding surface]	NBS 384w	Corning	3640
Growth media - bacteria	САМНВ	Bacto Laboratories	212322
Culture agar - fungi	YPD	Becton Dickinson	242720
Growth media - fungi	YNB	Becton Dickinson	233520
Resazurin		Sigma-Aldrich	R7017

3.2 Standards

Sample Name	Sample ID	Full MW	Stock Conc. (mg/mL)	Solvent	Source
Colistin - Sulfate	MCC_000094:02	1400.63	10.0	DMSO	Sigma; C4461
Vancomycin - HCL	MCC_000095:02	1485.71	10.0	DMSO	Sigma; 861987
Fluconazole	MCC_008383:01	306.27	2.56	DMSO	Sigma; F8929

3.3 Microbial Strains

ID	Batch	Organism	Strain	Description
GN_001	02	Escherichia coli	ATCC 25922	FDA control strain
GN_003	02	Klebsiella pneumoniae	ATCC 700603	MDR
GN_034	02	Acinetobacter baumannii	ATCC 19606	Type strain
GN_042	02	Pseudomonas aeruginosa	ATCC 27853	Quality control strain
GP_020	02	Staphylococcus aureus	ATCC 43300	MRSA
FG 001	01	Candida albicans	ATCC 90028	CLSI reference
 FG_002	01	Cryptococcus neoformans	ATCC 208821	H99 - Type strain

4.0 Controls

All antibiotic and antifungal controls displayed inhibitory values within the expected range. For further information please contact the CO-ADD team at support@co-add.org.

Strain ID	Species	Antibiotic	Pass/Fail
GN_001:02	E. coli	Colistin	Pass
GN_003:02	K. pneumoniae (MDR)	Colistin	Pass
GN_034:02	A. baumannii	Colistin	Pass
GN_042:02	P. aeruginosa	Colistin	Pass
GP_020:02	S. aureus (MRSA)	Vancomycin	Pass
FG_001:01	C. albicans	Fluconazole	Pass
FG_002:01	C. neoformans (H99)	Fluconazole	Pass

4.1 Antimicrobial susceptibility of tested strains

Values are the average of \geq 6 independent biological replicates. All values are within the expected range as per CLSI guidelines.

4.1.1 Antibiotic standards

MIC determined by BMD method, CA-MHB, Corning 3640 384 NBS plates		GN_001:02 Escherichia coli FDA Control ATCC 25922	GN_003:02 Klebsiella pneumophilaGN_034:02 Acinetobacte baumannii Type strainESBLAcinetobacte baumannii Type strainATCC 700603ATCC 19606		GN_042:02 Pseudomonas aeruginosa QC strain ATCC 27853
Compound Compound Type		MIC (μg/mL)			
Colistin - sulfate	Antibiotic	0.125	0.25	0.25	0.25

-	MIC determined by BMD method, CA-MHB, Corning 3640 384 NBS plates		
Compound	MIC (µg/mL)		
Vancomycin - HCl	Antibiotic	1	

4.1.2 Antifungal standard

MIC determined b YNB, Corning 364	y BMD method, 10 384 NBS plates	FG_001:02 Candida albicans CLSI reference ATCC 90028	FG_002:02 Cryptococcus neoformans H99 Type strain ATCC 208821
Compound	Compound Type	MIC (µ	ıg/mL)
Fluconazole	Antifungal	0.125	8

Hit-Confirmation

Antimicrobial screening, Cytotoxicity & Haemolysis

Procedure and Materials

1.0 Summary

1.1 Study

Hit Confirmation of active compounds by whole cell growth inhibition assays was conducted as an 8-point dose response to determine the Minimum Inhibitory Concentration (MIC), in duplicate (n=2). The inhibition of growth is measured against those microorganisms that showed susceptibility to the compounds tested in the Primary Screen.

Included in the Hit Confirmation were 5 bacteria: *Escherichia coli*, *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa* and *Staphylococcus aureus*, and 2 fungi *Candida albicans* and *Cryptococcus neoformans*.

In addition to determining MIC, active compounds were counter screened for cytotoxicity against a human embryonic kidney cell line, HEK293, by determining their CC_{50} value. The compounds were also screened for haemolysis of human red blood cells.

Assay Parameters	Bacteria	Fungi	HEK293	Haemolysis
	32 - 0.25 μg/mL or	32 - 0.25 μg/mL or	32 - 0.25 μg/mL or	32 - 0.25 μg/mL or
Test concentration	20 – 0.15 μM	20 – 0.15 μM	20 – 0.15 μM	20 – 0.15 μM
	≤0.5% DMSO	≤0.5% DMSO	≤0.5% DMSO	≤0.5% DMSO
QC	Duplicate (n=2) Control MIC:	Duplicate (n=2) Control MIC:	Duplicate (n=2) Control CC ₅₀ :	Duplicate (n=2) Control HC ₁₀ :
	Pass	Pass	Pass	Pass
	Non-Binding	Non-Binding	TC, 384-well	Polypropylene
Plates	Surface (NBS),	Surface (NBS),	black wall/clear	384-well and
	384-well plate	384-well plate	bottom	polystyrene 384well plates
	Cation-adjusted		DMEM	
Media	Yeast Nitrogen		supplemented with 10% FBS	0.9% NaCl
Read Out	OD600	OD630 Resazurin OD600-570	Resazurin Fs60/590	OD405

1.2 Assay Parameters

1.3 Outcomes

Hit Confirmation outcomes are detailed in individual Project reports, personalised for each Project Submission for each CO-ADD user.

Please see your data sheet with file extension **P0XXX_HC_data.xlsx**, for example CO-ADD Project **P0100**, **P0100_HC_data.xlsx**

1.4 Structural Novelty

As per the T&C's of CO-ADD, structures for all submitted compounds for antimicrobial screening should be disclosed to CO-ADD following Primary Screening. Without structures for all submitted compounds, Hit Confirmation assays will not be triggered.

If you have not already done so, please **provide CO-ADD with the chemical structure** of the full sample set in this study (both for compounds showing activity and those that do not), which will allow CO-ADD to filter out future samples with the same, or highly similar structure. In addition, please **notify CO-ADD** if you agree to publish the data (*i.e.* structures and activity) in the public bioactive database ChEMBL (www.ebi.ac.uk/chembl/). CO-ADD aims to increase the public knowledge of antimicrobial research, including data about non-active compounds.

All confirmed hits, without cytotoxicity or haemolytic activity, will be considered for further HitValidation, after a detailed analysis of structure-activity relationship and antimicrobial novelty, within CO-ADD samples, as well as, within public antimicrobial activity databases, like ChEMBL (www.ebi.ac.uk/chembl/).

1.5 Publishing CO-ADD Data

If you wish to publish data provided by CO-ADD, we kindly ask that you acknowledge CO-ADD appropriately with the following reference:

Helping Chemists Discover New Antibiotics

M.A. Blaskovich, J. Zuegg, A.G. Elliott, M.A. Cooper *ACS Infect. Dis.*, **2015**, 1(7), 285-287.

DOI: <u>10.1021/acsinfecdis.5b00044</u>; PMID: <u>27622818</u> as well as an acknowledgement for the funding of CO-ADD: "The antimicrobial screening performed by CO-ADD (The Community for Antimicrobial Drug Discovery) was funded by the Wellcome Trust (UK) and The University of Queensland (Australia)."

Please advise CO-ADD at your earliest convenience that you have used provided data for publication purposes. This information is extremely helpful in keeping track of the outputs from the CO-ADD initiative and supports the program in renewed funding possibilities to continue CO-ADD as a free screening service available to the academic community.

CO-ADD also asks, that where possible you publish your data in an Open Access journals.

2.0 Methods

2.1 Sample Preparation

Samples were provided by the collaborator and stored frozen at -20 °C. Samples were prepared in DMSO and water to a final testing concentration of 32 μ g/mL or 20 μ M (unless otherwise indicated in the data sheet) and serially diluted 1:2 fold for 8 times. Each sample concentration was prepared in 384-well plates, non-binding surface plate (**NBS**; Corning 3640) for each bacterial/fungal strain, tissue-culture treated (**TC-treated**; Corning 3712/3764) black for mammalian cell types and polypropylene 384-well (**PP**; Corning 3657) for haemolysis assays, all in duplicate (n=2), and keeping the final DMSO concentration to a maximum of 0.5%. All the sample preparation was done using liquid handling robots.

Compounds that showed notable solubility issues during stock solution preparation are detailed in the **Data sheet** for the individual Project.

2.2 Antibacterial Assay

2.2.1 Procedure

All bacteria were cultured in Cation-adjusted Mueller Hinton broth (**CAMHB**) at 37 °C overnight. A sample of each culture was then diluted 40-fold in fresh broth and incubated at 37 °C for 1.5-3 h. The resultant mid-log phase cultures were diluted (CFU/mL measured by OD_{600}), then added to each well of the compound containing

plates, giving a cell density of 5 x 10^5 CFU/mL and a total volume of 50 µL. All the plates were covered and incubated at 37 °C for 18 h without shaking.

2.2.2 Analysis

Inhibition of bacterial growth was determined measuring absorbance at 600 nm (OD₆₀₀), using a Tecan M1000 Pro monochromator plate reader. The percentage of growth inhibition was calculated for each well, using the negative control (media only) and positive control (bacteria without inhibitors) on the same plate as references.

The percentage of growth inhibition was calculated for each well, using the negative control (media only) and positive control (bacteria without inhibitors) on the same plate. The MIC was determined as the lowest concentration at which the growth was fully inhibited, defined by an inhibition \geq 80%. In addition, the maximal percentage of growth inhibition is reported as D_{Max}, indicating any compounds with partial activity.

Hits were classified by MIC \leq 16 µg/mL or MIC \leq 10 µM in either replicate (n=2 on different plates).

2.3 Antifungal Assay

2.3.1 Procedure

Fungi strains were cultured for 3 days on Yeast Extract-Peptone Dextrose (**YPD**) agar at 30 °C. A yeast suspension of 1 x 10⁶ to 5 x 10⁶ CFU/mL (as determined by OD₅₃₀) was prepared from five colonies. The suspension was subsequently diluted and added to each well of the compound-containing plates giving a final cell density of fungi suspension of 2.5 x 10³ CFU/mL and a total volume of 50 µL. All plates were covered and incubated at 35 °C for 36 h without shaking.

2.3.2 Analysis

Growth inhibition of *C. albicans* was determined measuring absorbance at 630 nm (OD_{630}) , while the growth inhibition of *C. neoformans* was determined measuring the difference in absorbance between 600 and 570 nm $(OD_{600-570})$, after the addition of resazurin (0.001% final concentration) and incubation at 35 °C for 2 h. The absorbance was measured using a Biotek Multiflo Synergy HTX plate reader.

In both cases, the percentage of growth inhibition was calculated for each well, using the negative control (media only) and positive control (fungi without inhibitors) on the same plate. The MIC was determined as the lowest concentration at which the growth was fully inhibited, defined by an inhibition \geq 80% for *C. albicans* and an inhibition \geq 70% for *C. neoformans*. Due to a higher variance in growth and inhibition, a lower threshold was applied to the data for *C. neoformans*. In addition, the maximal percentage of growth inhibition is reported as D_{Max}, indicating any compounds with marginal activity.

Hits were classified by MIC \leq 16 µg/mL or MIC \leq 10 µM in either replicate (n=2 on different plates).

2.4 Cytotoxicity Assay

2.4.1 Procedure

HEK293 cells were counted manually in a Neubauer haemocytometer and then plated in the 384-well plates containing the compounds to give a density of 5000 cells/well in a final volume of 50 μ L. **DMEM** supplemented with **10% FBS** was used as growth media and the cells were incubated together with the compounds for 20 h at 37 °C in 5% CO₂.

2.4.2 Analysis

Cytotoxicity (or cell viability) was measured by fluorescence, ex: 560/10 nm, em: 590/10 nm ($F_{560/590}$), after addition of 5 µL of 25 µg/mL resazurin (2.3 µg/mL final concentration) and after incubation for further 3 h at 37 °C in 5% CO₂. The fluorescence intensity was measured using a Tecan M1000 Pro monochromator plate reader, using automatic gain calculation.

 CC_{50} (concentration at 50% cytotoxicity) were calculated by curve fitting the inhibition values *vs.* log(concentration) using a sigmoidal dose-response function, with variable fitting values for bottom, top and slope. In addition, the maximal percentage of cytotoxicity is reported as D_{Max} , indicating any compounds with partial cytotoxicity.

The curve fitting was implemented using Pipeline Pilot's dose-response component, resulting in similar values to curve fitting tools such as GraphPad's Prism and IDBS's XIFit. Any value with > indicate sample with no activity (low D_{Max} value) or samples with CC₅₀ values above the maximum tested concentration (higher D_{Max} value).

Cytotoxic samples were classified by $CC_{50} \le 32 \ \mu g/mL$ or $CC_{50} \le 10 \ \mu M$ in either replicate (n=2 on different plates). In addition, samples were flagged as partial cytotoxic if $D_{Max} \ge 50\%$, even with $CC_{50} >$ the maximum tested concentration.

2.5 Haemolysis Assay

2.5.1 Procedure

Human whole blood was washed three times with 3 volumes of 0.9% NaCl and then resuspended in same to a concentration of 0.5×10^8 cells/mL, as determined by manual cell count in a Neubauer haemocytometer. The washed cells were then added to the 384-well compound-containing plates for a final volume of 50 µL. After a 10 min shake on a plate shaker the plates were then incubated for 1 h at 37 °C. After incubation, the plates were centrifuged at 1000g for 10 min to pellet cells and debris, 25 µL of the supernatant was then transferred to a polystyrene 384-well assay plate.

2.5.2 Analysis

Haemolysis was determined by measuring the supernatant absorbance at 405 mm (OD₄₀₅). The absorbance was measured using a Tecan M1000 Pro monochromator plate reader.

 HC_{10} and HC_{50} (concentration at 10% and 50% haemolysis, respectively) were calculated by curve fitting the inhibition values *vs.* log(concentration) using a sigmoidal dose-response function with variable fitting values for top, bottom and slope. In addition, the maximal percentage of haemolysis is reported as D_{Max} , indicating any compounds with partial haemolysis.

The curve fitting was implemented using Pipeline Pilot's dose-response component, resulting in similar values to curve fitting tools such as GraphPad's Prism and IDBS's XIFit. Any value with > indicate sample with no activity (low D_{Max} value) or samples with HC₁₀ values above the maximum tested concentration (higher D_{Max} value).

Haemolysis samples were classified by $HC_{10} \le 32 \ \mu g/mL$ or $HC_{10} \le 10 \ \mu M$ in either replicate (n=2 on different plates). In addition, samples were flagged as partial haemolytic if $D_{Max} \ge 50\%$, even with $HC_{10} >$ the maximum tested concentration.

2.6 Antibiotic, Cytotoxic and Haemolytic Standards Preparation and Quality Control

Colistin and Vancomycin were used as positive bacterial inhibitor standards for Gramnegative and Gram-positive bacteria, respectively. Fluconazole was used as a positive fungal inhibitor standard for *C. albicans and C. neoformans.* Tamoxifen was used as a positive cytotoxicity standard. Melittin was used as a positive haemolytic standard.

Each antibiotic standard was provided in 4 concentrations, with 2 above and 2 below its MIC or CC_{50} value, and plated into the first 8 wells of column 23 of the 384-well NBS plates. Tamoxifen and melittin was used in 8 concentrations in 2 fold serial dilutions with 50 µg/mL highest concentration.

The quality control (QC) of the assays was determined by Z'-Factor, calculated from the Negative (media only) and Positive Controls (bacterial, fungal or cell culture without inhibitor), and the Standards. Plates with a Z'-Factor of ≥ 0.4 and Standards active at the highest and inactive at the lowest concentration, were accepted for further data analysis.

3.0 Materials

3.1 Assay Materials

Material	Code	Brand/Supplier	Cat No.
Compound preparation plate, Polypropylene	РР	Corning	3364
Assay Plates – Antimicrobial Non-binding surface	NBS 384w	Corning	3640
Assay Plates – Cytotoxicity Tissue culture treated	Black/Clear bottom 384w	Corning	3712
Assay Plates - Haemolysis	PP-Haem	Corning	3657
Reading Plates - Haemolysis	Clear 384w	Corning	3680
Growth media - bacteria	САМНВ	Bacto Laboratories	212322
Culture agar - fungi	YPD Becton Dickinson		242720
Growth media - fungi	YNB	Becton Dickinson	233520
Resazurin		Sigma-Aldrich	R7017
Dulbecco's Modified Eagle Medium	DMEM	Life Technologies	11995-073

Foetal Bovine Serum	FBS	Bovogen	FFBS-500
0.9% NaCl	Saline	Baxter	AHF7124

3.2 Standards

Sample Name	Sample ID	Full MW	Stock Conc. (mg/mL)	Solvent	Source
Colistin - Sulfate	MCC_000094:02	1400.63	10.0	DMSO	Sigma; C4461
Vancomycin - HCL	MCC_000095:02	1485.71	10.0	DMSO	Sigma; 861987
Fluconazole	MCC_008383:01	306.27	2.56	DMSO	Sigma; F8929
Tamoxifen	MCC_000096:01	371.50	10	DMSO	Sigma; T5648
Melittin	MCC_008868:02	2846.46	10	Water	Sigma: M2272

3.3 Microbial strains and cell lines

ID	Batch	Organism	Strain	Description
GN_001	02	Escherichia coli	ATCC 25922	FDA control strain
GN 003	02	Klebsiella pneumoniae	ATCC 700603	MDR
GN 034	02	Acinetobacter baumannii	ATCC 19606	Type strain
 GN 042	02	Pseudomonas aeruginosa	ATCC 27853	Quality control strain
 GP 020	02	Staphylococcus aureus	ATCC 43300	MRSA
FG 001	01	Candida albicans	ATCC 90028	CLSI reference
FG 002	01	Cryptococci neoformans	ATCC 208821	H99, Type strain
MA 007	02	Homo sapiens embryonic kidney cells	ATCC CRL-1573	НЕК 293
HA_150	-	Homo sapiens	ARCBS 5400 00150	Whole blood

4.0 Controls

4.1 Antimicrobial susceptibility of tested strains

Values are the average of \geq 6 independent biological replicates. All values are within the expected range as per CLSI guidelines.

4.1.1 Antibiotic standards

MIC determined by BMD method, CA-MHB, Corning 3640 384 NBS plates		GN_001:02 <i>Escherichia coli</i> FDA Control ATCC 25922	GN_003:02 <i>Klebsiella</i> <i>pneumophila</i> ESBL ATCC 700603	GN_034:02 <i>Acinetobacter</i> <i>baumannii</i> Type strain ATCC 19606	GN_042:02 <i>Pseudomonas</i> <i>aeruginosa</i> QC strain ATCC 27853
Compound	Compound Type	MIC (μg/mL)			
Colistin - sulfate	Antibiotic	0.125	0.25	0.25	0.25

	MIC determined by BMD method, CA-MHB, Corning 3640 384 NBS plates		
Compound	MIC (µg/mL)		
Vancomycin - HCl	Antibiotic	1	

4.1.2 Antifungal standard

MIC determined by BMD method, YNB, Corning 3640 384 NBS plates		FG_001:02 <i>Candida albicans</i> CLSI reference ATCC 90028	FG_002:02 Cryptococcus neoformans H99 Type strain ATCC 208821
Compound	Compound Type	MIC (µ	ıg/mL)
Fluconazole	Antifungal	0.125	8

4.2 Susceptibility profile of cell lines

Values are the average of > 6 independent biological replicates. CC_{50} is the concentration at 50% cytotoxicity.		MA_007 HEK293 ATCC CRL-1573 CC₅₀ (μg/mL)		
Compound Compound Type		Average	Stdev	
Tamoxifen	PKC inhibitor	9 2.2		

4.3 Susceptibility profile of human washed red cells

Values are the average of > 6 independent biological replicates. HC_{10} and HC_{50} are the concentrations at 10%		HA_150 Human Whole blood ARCBS 00150			
and 50% haemolysis, respectively.		HC ₁₀ (µ	ug/mL)	НС ₅₀ (µ	ıg/mL)
Compound Compound Type		Average	Stdev	Average	Stdev
Melittin Haemolytic peptide		2.7	0.9	8.5	2.5

4.4 Outcome

All standard compound controls displayed inhibitory values within the expected range for each assay type and each organism tested. For further information please contact the CO-ADD team at support@co-add.org.

Strain ID	Species	Standard positive inhibitor control	Pass/Fail
GN_001:02	E. coli	Colistin	Pass
GN_003:02	K. pneumoniae (MDR)	Colistin	Pass
GN_034:02	A. baumannii	Colistin	Pass
GN_042:02	P. aeruginosa	Colistin	Pass
GP_020:02	S. aureus (MRSA)	Vancomycin	Pass
FG_001:01	C. albicans	Fluconazole	Pass
FG_002:01	C. neoformans (H99)	Fluconazole	Pass
MA_007:02	Homo sapiens HEK293	Tamoxifen	Pass
HA_150	Homo sapiens	Melittin	Pass